Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * User-space Probes (UProbes)
   4 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 * Copyright (C) IBM Corporation, 2008-2012
   6 * Authors:
   7 *	Srikar Dronamraju
   8 *	Jim Keniston
   9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
  10 */
  11
  12#include <linux/kernel.h>
  13#include <linux/highmem.h>
  14#include <linux/pagemap.h>	/* read_mapping_page */
  15#include <linux/slab.h>
  16#include <linux/sched.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/coredump.h>
  19#include <linux/export.h>
  20#include <linux/rmap.h>		/* anon_vma_prepare */
  21#include <linux/mmu_notifier.h>	/* set_pte_at_notify */
  22#include <linux/swap.h>		/* try_to_free_swap */
  23#include <linux/ptrace.h>	/* user_enable_single_step */
  24#include <linux/kdebug.h>	/* notifier mechanism */
  25#include "../../mm/internal.h"	/* munlock_vma_page */
  26#include <linux/percpu-rwsem.h>
  27#include <linux/task_work.h>
  28#include <linux/shmem_fs.h>
  29#include <linux/khugepaged.h>
  30
  31#include <linux/uprobes.h>
  32
  33#define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
  34#define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
  35
  36static struct rb_root uprobes_tree = RB_ROOT;
  37/*
  38 * allows us to skip the uprobe_mmap if there are no uprobe events active
  39 * at this time.  Probably a fine grained per inode count is better?
  40 */
  41#define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
  42
  43static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
  44
  45#define UPROBES_HASH_SZ	13
  46/* serialize uprobe->pending_list */
  47static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
  48#define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
  49
  50DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
  51
  52/* Have a copy of original instruction */
  53#define UPROBE_COPY_INSN	0
  54
  55struct uprobe {
  56	struct rb_node		rb_node;	/* node in the rb tree */
  57	refcount_t		ref;
  58	struct rw_semaphore	register_rwsem;
  59	struct rw_semaphore	consumer_rwsem;
  60	struct list_head	pending_list;
  61	struct uprobe_consumer	*consumers;
  62	struct inode		*inode;		/* Also hold a ref to inode */
  63	loff_t			offset;
  64	loff_t			ref_ctr_offset;
  65	unsigned long		flags;
  66
  67	/*
  68	 * The generic code assumes that it has two members of unknown type
  69	 * owned by the arch-specific code:
  70	 *
  71	 * 	insn -	copy_insn() saves the original instruction here for
  72	 *		arch_uprobe_analyze_insn().
  73	 *
  74	 *	ixol -	potentially modified instruction to execute out of
  75	 *		line, copied to xol_area by xol_get_insn_slot().
  76	 */
  77	struct arch_uprobe	arch;
  78};
  79
  80struct delayed_uprobe {
  81	struct list_head list;
  82	struct uprobe *uprobe;
  83	struct mm_struct *mm;
  84};
  85
  86static DEFINE_MUTEX(delayed_uprobe_lock);
  87static LIST_HEAD(delayed_uprobe_list);
  88
  89/*
  90 * Execute out of line area: anonymous executable mapping installed
  91 * by the probed task to execute the copy of the original instruction
  92 * mangled by set_swbp().
  93 *
  94 * On a breakpoint hit, thread contests for a slot.  It frees the
  95 * slot after singlestep. Currently a fixed number of slots are
  96 * allocated.
  97 */
  98struct xol_area {
  99	wait_queue_head_t 		wq;		/* if all slots are busy */
 100	atomic_t 			slot_count;	/* number of in-use slots */
 101	unsigned long 			*bitmap;	/* 0 = free slot */
 102
 103	struct vm_special_mapping	xol_mapping;
 104	struct page 			*pages[2];
 105	/*
 106	 * We keep the vma's vm_start rather than a pointer to the vma
 107	 * itself.  The probed process or a naughty kernel module could make
 108	 * the vma go away, and we must handle that reasonably gracefully.
 109	 */
 110	unsigned long 			vaddr;		/* Page(s) of instruction slots */
 111};
 112
 113/*
 114 * valid_vma: Verify if the specified vma is an executable vma
 115 * Relax restrictions while unregistering: vm_flags might have
 116 * changed after breakpoint was inserted.
 117 *	- is_register: indicates if we are in register context.
 118 *	- Return 1 if the specified virtual address is in an
 119 *	  executable vma.
 120 */
 121static bool valid_vma(struct vm_area_struct *vma, bool is_register)
 122{
 123	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
 124
 125	if (is_register)
 126		flags |= VM_WRITE;
 127
 128	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
 129}
 130
 131static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
 132{
 133	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
 134}
 135
 136static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
 137{
 138	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
 139}
 140
 141/**
 142 * __replace_page - replace page in vma by new page.
 143 * based on replace_page in mm/ksm.c
 144 *
 145 * @vma:      vma that holds the pte pointing to page
 146 * @addr:     address the old @page is mapped at
 147 * @old_page: the page we are replacing by new_page
 148 * @new_page: the modified page we replace page by
 149 *
 150 * If @new_page is NULL, only unmap @old_page.
 151 *
 152 * Returns 0 on success, negative error code otherwise.
 153 */
 154static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
 155				struct page *old_page, struct page *new_page)
 156{
 157	struct mm_struct *mm = vma->vm_mm;
 158	struct page_vma_mapped_walk pvmw = {
 159		.page = compound_head(old_page),
 160		.vma = vma,
 161		.address = addr,
 162	};
 163	int err;
 164	struct mmu_notifier_range range;
 
 
 165	struct mem_cgroup *memcg;
 166
 167	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
 168				addr + PAGE_SIZE);
 169
 170	if (new_page) {
 171		err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL,
 172					    &memcg, false);
 173		if (err)
 174			return err;
 175	}
 176
 177	/* For try_to_free_swap() and munlock_vma_page() below */
 178	lock_page(old_page);
 179
 180	mmu_notifier_invalidate_range_start(&range);
 181	err = -EAGAIN;
 182	if (!page_vma_mapped_walk(&pvmw)) {
 183		if (new_page)
 184			mem_cgroup_cancel_charge(new_page, memcg, false);
 185		goto unlock;
 186	}
 187	VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
 188
 189	if (new_page) {
 190		get_page(new_page);
 191		page_add_new_anon_rmap(new_page, vma, addr, false);
 192		mem_cgroup_commit_charge(new_page, memcg, false, false);
 193		lru_cache_add_active_or_unevictable(new_page, vma);
 194	} else
 195		/* no new page, just dec_mm_counter for old_page */
 196		dec_mm_counter(mm, MM_ANONPAGES);
 197
 198	if (!PageAnon(old_page)) {
 199		dec_mm_counter(mm, mm_counter_file(old_page));
 200		inc_mm_counter(mm, MM_ANONPAGES);
 201	}
 202
 203	flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
 204	ptep_clear_flush_notify(vma, addr, pvmw.pte);
 205	if (new_page)
 206		set_pte_at_notify(mm, addr, pvmw.pte,
 207				  mk_pte(new_page, vma->vm_page_prot));
 208
 209	page_remove_rmap(old_page, false);
 210	if (!page_mapped(old_page))
 211		try_to_free_swap(old_page);
 212	page_vma_mapped_walk_done(&pvmw);
 213
 214	if (vma->vm_flags & VM_LOCKED)
 215		munlock_vma_page(old_page);
 216	put_page(old_page);
 217
 218	err = 0;
 219 unlock:
 220	mmu_notifier_invalidate_range_end(&range);
 221	unlock_page(old_page);
 222	return err;
 223}
 224
 225/**
 226 * is_swbp_insn - check if instruction is breakpoint instruction.
 227 * @insn: instruction to be checked.
 228 * Default implementation of is_swbp_insn
 229 * Returns true if @insn is a breakpoint instruction.
 230 */
 231bool __weak is_swbp_insn(uprobe_opcode_t *insn)
 232{
 233	return *insn == UPROBE_SWBP_INSN;
 234}
 235
 236/**
 237 * is_trap_insn - check if instruction is breakpoint instruction.
 238 * @insn: instruction to be checked.
 239 * Default implementation of is_trap_insn
 240 * Returns true if @insn is a breakpoint instruction.
 241 *
 242 * This function is needed for the case where an architecture has multiple
 243 * trap instructions (like powerpc).
 244 */
 245bool __weak is_trap_insn(uprobe_opcode_t *insn)
 246{
 247	return is_swbp_insn(insn);
 248}
 249
 250static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
 251{
 252	void *kaddr = kmap_atomic(page);
 253	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
 254	kunmap_atomic(kaddr);
 255}
 256
 257static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
 258{
 259	void *kaddr = kmap_atomic(page);
 260	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
 261	kunmap_atomic(kaddr);
 262}
 263
 264static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
 265{
 266	uprobe_opcode_t old_opcode;
 267	bool is_swbp;
 268
 269	/*
 270	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
 271	 * We do not check if it is any other 'trap variant' which could
 272	 * be conditional trap instruction such as the one powerpc supports.
 273	 *
 274	 * The logic is that we do not care if the underlying instruction
 275	 * is a trap variant; uprobes always wins over any other (gdb)
 276	 * breakpoint.
 277	 */
 278	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
 279	is_swbp = is_swbp_insn(&old_opcode);
 280
 281	if (is_swbp_insn(new_opcode)) {
 282		if (is_swbp)		/* register: already installed? */
 283			return 0;
 284	} else {
 285		if (!is_swbp)		/* unregister: was it changed by us? */
 286			return 0;
 287	}
 288
 289	return 1;
 290}
 291
 292static struct delayed_uprobe *
 293delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
 294{
 295	struct delayed_uprobe *du;
 296
 297	list_for_each_entry(du, &delayed_uprobe_list, list)
 298		if (du->uprobe == uprobe && du->mm == mm)
 299			return du;
 300	return NULL;
 301}
 302
 303static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
 304{
 305	struct delayed_uprobe *du;
 306
 307	if (delayed_uprobe_check(uprobe, mm))
 308		return 0;
 309
 310	du  = kzalloc(sizeof(*du), GFP_KERNEL);
 311	if (!du)
 312		return -ENOMEM;
 313
 314	du->uprobe = uprobe;
 315	du->mm = mm;
 316	list_add(&du->list, &delayed_uprobe_list);
 317	return 0;
 318}
 319
 320static void delayed_uprobe_delete(struct delayed_uprobe *du)
 321{
 322	if (WARN_ON(!du))
 323		return;
 324	list_del(&du->list);
 325	kfree(du);
 326}
 327
 328static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
 329{
 330	struct list_head *pos, *q;
 331	struct delayed_uprobe *du;
 332
 333	if (!uprobe && !mm)
 334		return;
 335
 336	list_for_each_safe(pos, q, &delayed_uprobe_list) {
 337		du = list_entry(pos, struct delayed_uprobe, list);
 338
 339		if (uprobe && du->uprobe != uprobe)
 340			continue;
 341		if (mm && du->mm != mm)
 342			continue;
 343
 344		delayed_uprobe_delete(du);
 345	}
 346}
 347
 348static bool valid_ref_ctr_vma(struct uprobe *uprobe,
 349			      struct vm_area_struct *vma)
 350{
 351	unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
 352
 353	return uprobe->ref_ctr_offset &&
 354		vma->vm_file &&
 355		file_inode(vma->vm_file) == uprobe->inode &&
 356		(vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
 357		vma->vm_start <= vaddr &&
 358		vma->vm_end > vaddr;
 359}
 360
 361static struct vm_area_struct *
 362find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
 363{
 364	struct vm_area_struct *tmp;
 365
 366	for (tmp = mm->mmap; tmp; tmp = tmp->vm_next)
 367		if (valid_ref_ctr_vma(uprobe, tmp))
 368			return tmp;
 369
 370	return NULL;
 371}
 372
 373static int
 374__update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
 375{
 376	void *kaddr;
 377	struct page *page;
 378	struct vm_area_struct *vma;
 379	int ret;
 380	short *ptr;
 381
 382	if (!vaddr || !d)
 383		return -EINVAL;
 384
 385	ret = get_user_pages_remote(NULL, mm, vaddr, 1,
 386			FOLL_WRITE, &page, &vma, NULL);
 387	if (unlikely(ret <= 0)) {
 388		/*
 389		 * We are asking for 1 page. If get_user_pages_remote() fails,
 390		 * it may return 0, in that case we have to return error.
 391		 */
 392		return ret == 0 ? -EBUSY : ret;
 393	}
 394
 395	kaddr = kmap_atomic(page);
 396	ptr = kaddr + (vaddr & ~PAGE_MASK);
 397
 398	if (unlikely(*ptr + d < 0)) {
 399		pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
 400			"curr val: %d, delta: %d\n", vaddr, *ptr, d);
 401		ret = -EINVAL;
 402		goto out;
 403	}
 404
 405	*ptr += d;
 406	ret = 0;
 407out:
 408	kunmap_atomic(kaddr);
 409	put_page(page);
 410	return ret;
 411}
 412
 413static void update_ref_ctr_warn(struct uprobe *uprobe,
 414				struct mm_struct *mm, short d)
 415{
 416	pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
 417		"0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
 418		d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
 419		(unsigned long long) uprobe->offset,
 420		(unsigned long long) uprobe->ref_ctr_offset, mm);
 421}
 422
 423static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
 424			  short d)
 425{
 426	struct vm_area_struct *rc_vma;
 427	unsigned long rc_vaddr;
 428	int ret = 0;
 429
 430	rc_vma = find_ref_ctr_vma(uprobe, mm);
 431
 432	if (rc_vma) {
 433		rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
 434		ret = __update_ref_ctr(mm, rc_vaddr, d);
 435		if (ret)
 436			update_ref_ctr_warn(uprobe, mm, d);
 437
 438		if (d > 0)
 439			return ret;
 440	}
 441
 442	mutex_lock(&delayed_uprobe_lock);
 443	if (d > 0)
 444		ret = delayed_uprobe_add(uprobe, mm);
 445	else
 446		delayed_uprobe_remove(uprobe, mm);
 447	mutex_unlock(&delayed_uprobe_lock);
 448
 449	return ret;
 450}
 451
 452/*
 453 * NOTE:
 454 * Expect the breakpoint instruction to be the smallest size instruction for
 455 * the architecture. If an arch has variable length instruction and the
 456 * breakpoint instruction is not of the smallest length instruction
 457 * supported by that architecture then we need to modify is_trap_at_addr and
 458 * uprobe_write_opcode accordingly. This would never be a problem for archs
 459 * that have fixed length instructions.
 460 *
 461 * uprobe_write_opcode - write the opcode at a given virtual address.
 462 * @mm: the probed process address space.
 463 * @vaddr: the virtual address to store the opcode.
 464 * @opcode: opcode to be written at @vaddr.
 465 *
 466 * Called with mm->mmap_sem held for write.
 467 * Return 0 (success) or a negative errno.
 468 */
 469int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
 470			unsigned long vaddr, uprobe_opcode_t opcode)
 471{
 472	struct uprobe *uprobe;
 473	struct page *old_page, *new_page;
 474	struct vm_area_struct *vma;
 475	int ret, is_register, ref_ctr_updated = 0;
 476	bool orig_page_huge = false;
 477	unsigned int gup_flags = FOLL_FORCE;
 478
 479	is_register = is_swbp_insn(&opcode);
 480	uprobe = container_of(auprobe, struct uprobe, arch);
 481
 482retry:
 483	if (is_register)
 484		gup_flags |= FOLL_SPLIT_PMD;
 485	/* Read the page with vaddr into memory */
 486	ret = get_user_pages_remote(NULL, mm, vaddr, 1, gup_flags,
 487				    &old_page, &vma, NULL);
 488	if (ret <= 0)
 489		return ret;
 490
 491	ret = verify_opcode(old_page, vaddr, &opcode);
 492	if (ret <= 0)
 493		goto put_old;
 494
 495	if (WARN(!is_register && PageCompound(old_page),
 496		 "uprobe unregister should never work on compound page\n")) {
 497		ret = -EINVAL;
 498		goto put_old;
 499	}
 500
 501	/* We are going to replace instruction, update ref_ctr. */
 502	if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
 503		ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
 504		if (ret)
 505			goto put_old;
 506
 507		ref_ctr_updated = 1;
 508	}
 509
 510	ret = 0;
 511	if (!is_register && !PageAnon(old_page))
 512		goto put_old;
 513
 514	ret = anon_vma_prepare(vma);
 515	if (ret)
 516		goto put_old;
 517
 518	ret = -ENOMEM;
 519	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
 520	if (!new_page)
 521		goto put_old;
 522
 523	__SetPageUptodate(new_page);
 524	copy_highpage(new_page, old_page);
 525	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
 526
 527	if (!is_register) {
 528		struct page *orig_page;
 529		pgoff_t index;
 530
 531		VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
 532
 533		index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
 534		orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
 535					  index);
 536
 537		if (orig_page) {
 538			if (PageUptodate(orig_page) &&
 539			    pages_identical(new_page, orig_page)) {
 540				/* let go new_page */
 541				put_page(new_page);
 542				new_page = NULL;
 543
 544				if (PageCompound(orig_page))
 545					orig_page_huge = true;
 546			}
 547			put_page(orig_page);
 548		}
 549	}
 550
 551	ret = __replace_page(vma, vaddr, old_page, new_page);
 552	if (new_page)
 553		put_page(new_page);
 554put_old:
 555	put_page(old_page);
 556
 557	if (unlikely(ret == -EAGAIN))
 558		goto retry;
 559
 560	/* Revert back reference counter if instruction update failed. */
 561	if (ret && is_register && ref_ctr_updated)
 562		update_ref_ctr(uprobe, mm, -1);
 563
 564	/* try collapse pmd for compound page */
 565	if (!ret && orig_page_huge)
 566		collapse_pte_mapped_thp(mm, vaddr);
 567
 568	return ret;
 569}
 570
 571/**
 572 * set_swbp - store breakpoint at a given address.
 573 * @auprobe: arch specific probepoint information.
 574 * @mm: the probed process address space.
 575 * @vaddr: the virtual address to insert the opcode.
 576 *
 577 * For mm @mm, store the breakpoint instruction at @vaddr.
 578 * Return 0 (success) or a negative errno.
 579 */
 580int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
 581{
 582	return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
 583}
 584
 585/**
 586 * set_orig_insn - Restore the original instruction.
 587 * @mm: the probed process address space.
 588 * @auprobe: arch specific probepoint information.
 589 * @vaddr: the virtual address to insert the opcode.
 590 *
 591 * For mm @mm, restore the original opcode (opcode) at @vaddr.
 592 * Return 0 (success) or a negative errno.
 593 */
 594int __weak
 595set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
 596{
 597	return uprobe_write_opcode(auprobe, mm, vaddr,
 598			*(uprobe_opcode_t *)&auprobe->insn);
 599}
 600
 601static struct uprobe *get_uprobe(struct uprobe *uprobe)
 602{
 603	refcount_inc(&uprobe->ref);
 604	return uprobe;
 605}
 606
 607static void put_uprobe(struct uprobe *uprobe)
 608{
 609	if (refcount_dec_and_test(&uprobe->ref)) {
 610		/*
 611		 * If application munmap(exec_vma) before uprobe_unregister()
 612		 * gets called, we don't get a chance to remove uprobe from
 613		 * delayed_uprobe_list from remove_breakpoint(). Do it here.
 614		 */
 615		mutex_lock(&delayed_uprobe_lock);
 616		delayed_uprobe_remove(uprobe, NULL);
 617		mutex_unlock(&delayed_uprobe_lock);
 618		kfree(uprobe);
 619	}
 620}
 621
 622static int match_uprobe(struct uprobe *l, struct uprobe *r)
 623{
 624	if (l->inode < r->inode)
 625		return -1;
 626
 627	if (l->inode > r->inode)
 628		return 1;
 629
 630	if (l->offset < r->offset)
 631		return -1;
 632
 633	if (l->offset > r->offset)
 634		return 1;
 635
 636	return 0;
 637}
 638
 639static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
 640{
 641	struct uprobe u = { .inode = inode, .offset = offset };
 642	struct rb_node *n = uprobes_tree.rb_node;
 643	struct uprobe *uprobe;
 644	int match;
 645
 646	while (n) {
 647		uprobe = rb_entry(n, struct uprobe, rb_node);
 648		match = match_uprobe(&u, uprobe);
 649		if (!match)
 650			return get_uprobe(uprobe);
 651
 652		if (match < 0)
 653			n = n->rb_left;
 654		else
 655			n = n->rb_right;
 656	}
 657	return NULL;
 658}
 659
 660/*
 661 * Find a uprobe corresponding to a given inode:offset
 662 * Acquires uprobes_treelock
 663 */
 664static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
 665{
 666	struct uprobe *uprobe;
 667
 668	spin_lock(&uprobes_treelock);
 669	uprobe = __find_uprobe(inode, offset);
 670	spin_unlock(&uprobes_treelock);
 671
 672	return uprobe;
 673}
 674
 675static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
 676{
 677	struct rb_node **p = &uprobes_tree.rb_node;
 678	struct rb_node *parent = NULL;
 679	struct uprobe *u;
 680	int match;
 681
 682	while (*p) {
 683		parent = *p;
 684		u = rb_entry(parent, struct uprobe, rb_node);
 685		match = match_uprobe(uprobe, u);
 686		if (!match)
 687			return get_uprobe(u);
 688
 689		if (match < 0)
 690			p = &parent->rb_left;
 691		else
 692			p = &parent->rb_right;
 693
 694	}
 695
 696	u = NULL;
 697	rb_link_node(&uprobe->rb_node, parent, p);
 698	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
 699	/* get access + creation ref */
 700	refcount_set(&uprobe->ref, 2);
 701
 702	return u;
 703}
 704
 705/*
 706 * Acquire uprobes_treelock.
 707 * Matching uprobe already exists in rbtree;
 708 *	increment (access refcount) and return the matching uprobe.
 709 *
 710 * No matching uprobe; insert the uprobe in rb_tree;
 711 *	get a double refcount (access + creation) and return NULL.
 712 */
 713static struct uprobe *insert_uprobe(struct uprobe *uprobe)
 714{
 715	struct uprobe *u;
 716
 717	spin_lock(&uprobes_treelock);
 718	u = __insert_uprobe(uprobe);
 719	spin_unlock(&uprobes_treelock);
 720
 721	return u;
 722}
 723
 724static void
 725ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
 726{
 727	pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
 728		"ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
 729		uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
 730		(unsigned long long) cur_uprobe->ref_ctr_offset,
 731		(unsigned long long) uprobe->ref_ctr_offset);
 732}
 733
 734static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
 735				   loff_t ref_ctr_offset)
 736{
 737	struct uprobe *uprobe, *cur_uprobe;
 738
 739	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
 740	if (!uprobe)
 741		return NULL;
 742
 743	uprobe->inode = inode;
 744	uprobe->offset = offset;
 745	uprobe->ref_ctr_offset = ref_ctr_offset;
 746	init_rwsem(&uprobe->register_rwsem);
 747	init_rwsem(&uprobe->consumer_rwsem);
 748
 749	/* add to uprobes_tree, sorted on inode:offset */
 750	cur_uprobe = insert_uprobe(uprobe);
 751	/* a uprobe exists for this inode:offset combination */
 752	if (cur_uprobe) {
 753		if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
 754			ref_ctr_mismatch_warn(cur_uprobe, uprobe);
 755			put_uprobe(cur_uprobe);
 756			kfree(uprobe);
 757			return ERR_PTR(-EINVAL);
 758		}
 759		kfree(uprobe);
 760		uprobe = cur_uprobe;
 761	}
 762
 763	return uprobe;
 764}
 765
 766static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
 767{
 768	down_write(&uprobe->consumer_rwsem);
 769	uc->next = uprobe->consumers;
 770	uprobe->consumers = uc;
 771	up_write(&uprobe->consumer_rwsem);
 772}
 773
 774/*
 775 * For uprobe @uprobe, delete the consumer @uc.
 776 * Return true if the @uc is deleted successfully
 777 * or return false.
 778 */
 779static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
 780{
 781	struct uprobe_consumer **con;
 782	bool ret = false;
 783
 784	down_write(&uprobe->consumer_rwsem);
 785	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
 786		if (*con == uc) {
 787			*con = uc->next;
 788			ret = true;
 789			break;
 790		}
 791	}
 792	up_write(&uprobe->consumer_rwsem);
 793
 794	return ret;
 795}
 796
 797static int __copy_insn(struct address_space *mapping, struct file *filp,
 798			void *insn, int nbytes, loff_t offset)
 799{
 800	struct page *page;
 801	/*
 802	 * Ensure that the page that has the original instruction is populated
 803	 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
 804	 * see uprobe_register().
 805	 */
 806	if (mapping->a_ops->readpage)
 807		page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
 808	else
 809		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
 810	if (IS_ERR(page))
 811		return PTR_ERR(page);
 812
 813	copy_from_page(page, offset, insn, nbytes);
 814	put_page(page);
 815
 816	return 0;
 817}
 818
 819static int copy_insn(struct uprobe *uprobe, struct file *filp)
 820{
 821	struct address_space *mapping = uprobe->inode->i_mapping;
 822	loff_t offs = uprobe->offset;
 823	void *insn = &uprobe->arch.insn;
 824	int size = sizeof(uprobe->arch.insn);
 825	int len, err = -EIO;
 826
 827	/* Copy only available bytes, -EIO if nothing was read */
 828	do {
 829		if (offs >= i_size_read(uprobe->inode))
 830			break;
 831
 832		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
 833		err = __copy_insn(mapping, filp, insn, len, offs);
 834		if (err)
 835			break;
 836
 837		insn += len;
 838		offs += len;
 839		size -= len;
 840	} while (size);
 841
 842	return err;
 843}
 844
 845static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
 846				struct mm_struct *mm, unsigned long vaddr)
 847{
 848	int ret = 0;
 849
 850	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
 851		return ret;
 852
 853	/* TODO: move this into _register, until then we abuse this sem. */
 854	down_write(&uprobe->consumer_rwsem);
 855	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
 856		goto out;
 857
 858	ret = copy_insn(uprobe, file);
 859	if (ret)
 860		goto out;
 861
 862	ret = -ENOTSUPP;
 863	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
 864		goto out;
 865
 866	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
 867	if (ret)
 868		goto out;
 869
 870	/* uprobe_write_opcode() assumes we don't cross page boundary */
 871	BUG_ON((uprobe->offset & ~PAGE_MASK) +
 872			UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
 873
 874	smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
 875	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
 876
 877 out:
 878	up_write(&uprobe->consumer_rwsem);
 879
 880	return ret;
 881}
 882
 883static inline bool consumer_filter(struct uprobe_consumer *uc,
 884				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
 885{
 886	return !uc->filter || uc->filter(uc, ctx, mm);
 887}
 888
 889static bool filter_chain(struct uprobe *uprobe,
 890			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
 891{
 892	struct uprobe_consumer *uc;
 893	bool ret = false;
 894
 895	down_read(&uprobe->consumer_rwsem);
 896	for (uc = uprobe->consumers; uc; uc = uc->next) {
 897		ret = consumer_filter(uc, ctx, mm);
 898		if (ret)
 899			break;
 900	}
 901	up_read(&uprobe->consumer_rwsem);
 902
 903	return ret;
 904}
 905
 906static int
 907install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
 908			struct vm_area_struct *vma, unsigned long vaddr)
 909{
 910	bool first_uprobe;
 911	int ret;
 912
 913	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
 914	if (ret)
 915		return ret;
 916
 917	/*
 918	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
 919	 * the task can hit this breakpoint right after __replace_page().
 920	 */
 921	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
 922	if (first_uprobe)
 923		set_bit(MMF_HAS_UPROBES, &mm->flags);
 924
 925	ret = set_swbp(&uprobe->arch, mm, vaddr);
 926	if (!ret)
 927		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
 928	else if (first_uprobe)
 929		clear_bit(MMF_HAS_UPROBES, &mm->flags);
 930
 931	return ret;
 932}
 933
 934static int
 935remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
 936{
 937	set_bit(MMF_RECALC_UPROBES, &mm->flags);
 938	return set_orig_insn(&uprobe->arch, mm, vaddr);
 939}
 940
 941static inline bool uprobe_is_active(struct uprobe *uprobe)
 942{
 943	return !RB_EMPTY_NODE(&uprobe->rb_node);
 944}
 945/*
 946 * There could be threads that have already hit the breakpoint. They
 947 * will recheck the current insn and restart if find_uprobe() fails.
 948 * See find_active_uprobe().
 949 */
 950static void delete_uprobe(struct uprobe *uprobe)
 951{
 952	if (WARN_ON(!uprobe_is_active(uprobe)))
 953		return;
 954
 955	spin_lock(&uprobes_treelock);
 956	rb_erase(&uprobe->rb_node, &uprobes_tree);
 957	spin_unlock(&uprobes_treelock);
 958	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
 959	put_uprobe(uprobe);
 960}
 961
 962struct map_info {
 963	struct map_info *next;
 964	struct mm_struct *mm;
 965	unsigned long vaddr;
 966};
 967
 968static inline struct map_info *free_map_info(struct map_info *info)
 969{
 970	struct map_info *next = info->next;
 971	kfree(info);
 972	return next;
 973}
 974
 975static struct map_info *
 976build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
 977{
 978	unsigned long pgoff = offset >> PAGE_SHIFT;
 979	struct vm_area_struct *vma;
 980	struct map_info *curr = NULL;
 981	struct map_info *prev = NULL;
 982	struct map_info *info;
 983	int more = 0;
 984
 985 again:
 986	i_mmap_lock_read(mapping);
 987	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
 988		if (!valid_vma(vma, is_register))
 989			continue;
 990
 991		if (!prev && !more) {
 992			/*
 993			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
 994			 * reclaim. This is optimistic, no harm done if it fails.
 995			 */
 996			prev = kmalloc(sizeof(struct map_info),
 997					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
 998			if (prev)
 999				prev->next = NULL;
1000		}
1001		if (!prev) {
1002			more++;
1003			continue;
1004		}
1005
1006		if (!mmget_not_zero(vma->vm_mm))
1007			continue;
1008
1009		info = prev;
1010		prev = prev->next;
1011		info->next = curr;
1012		curr = info;
1013
1014		info->mm = vma->vm_mm;
1015		info->vaddr = offset_to_vaddr(vma, offset);
1016	}
1017	i_mmap_unlock_read(mapping);
1018
1019	if (!more)
1020		goto out;
1021
1022	prev = curr;
1023	while (curr) {
1024		mmput(curr->mm);
1025		curr = curr->next;
1026	}
1027
1028	do {
1029		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1030		if (!info) {
1031			curr = ERR_PTR(-ENOMEM);
1032			goto out;
1033		}
1034		info->next = prev;
1035		prev = info;
1036	} while (--more);
1037
1038	goto again;
1039 out:
1040	while (prev)
1041		prev = free_map_info(prev);
1042	return curr;
1043}
1044
1045static int
1046register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1047{
1048	bool is_register = !!new;
1049	struct map_info *info;
1050	int err = 0;
1051
1052	percpu_down_write(&dup_mmap_sem);
1053	info = build_map_info(uprobe->inode->i_mapping,
1054					uprobe->offset, is_register);
1055	if (IS_ERR(info)) {
1056		err = PTR_ERR(info);
1057		goto out;
1058	}
1059
1060	while (info) {
1061		struct mm_struct *mm = info->mm;
1062		struct vm_area_struct *vma;
1063
1064		if (err && is_register)
1065			goto free;
1066
1067		down_write(&mm->mmap_sem);
1068		vma = find_vma(mm, info->vaddr);
1069		if (!vma || !valid_vma(vma, is_register) ||
1070		    file_inode(vma->vm_file) != uprobe->inode)
1071			goto unlock;
1072
1073		if (vma->vm_start > info->vaddr ||
1074		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1075			goto unlock;
1076
1077		if (is_register) {
1078			/* consult only the "caller", new consumer. */
1079			if (consumer_filter(new,
1080					UPROBE_FILTER_REGISTER, mm))
1081				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1082		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1083			if (!filter_chain(uprobe,
1084					UPROBE_FILTER_UNREGISTER, mm))
1085				err |= remove_breakpoint(uprobe, mm, info->vaddr);
1086		}
1087
1088 unlock:
1089		up_write(&mm->mmap_sem);
1090 free:
1091		mmput(mm);
1092		info = free_map_info(info);
1093	}
1094 out:
1095	percpu_up_write(&dup_mmap_sem);
1096	return err;
1097}
1098
1099static void
1100__uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
 
 
 
 
 
1101{
1102	int err;
1103
1104	if (WARN_ON(!consumer_del(uprobe, uc)))
1105		return;
1106
1107	err = register_for_each_vma(uprobe, NULL);
1108	/* TODO : cant unregister? schedule a worker thread */
1109	if (!uprobe->consumers && !err)
1110		delete_uprobe(uprobe);
1111}
1112
1113/*
1114 * uprobe_unregister - unregister an already registered probe.
1115 * @inode: the file in which the probe has to be removed.
1116 * @offset: offset from the start of the file.
1117 * @uc: identify which probe if multiple probes are colocated.
1118 */
1119void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1120{
1121	struct uprobe *uprobe;
1122
1123	uprobe = find_uprobe(inode, offset);
1124	if (WARN_ON(!uprobe))
1125		return;
1126
1127	down_write(&uprobe->register_rwsem);
1128	__uprobe_unregister(uprobe, uc);
1129	up_write(&uprobe->register_rwsem);
1130	put_uprobe(uprobe);
1131}
1132EXPORT_SYMBOL_GPL(uprobe_unregister);
1133
1134/*
1135 * __uprobe_register - register a probe
1136 * @inode: the file in which the probe has to be placed.
1137 * @offset: offset from the start of the file.
1138 * @uc: information on howto handle the probe..
1139 *
1140 * Apart from the access refcount, __uprobe_register() takes a creation
1141 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1142 * inserted into the rbtree (i.e first consumer for a @inode:@offset
1143 * tuple).  Creation refcount stops uprobe_unregister from freeing the
1144 * @uprobe even before the register operation is complete. Creation
1145 * refcount is released when the last @uc for the @uprobe
1146 * unregisters. Caller of __uprobe_register() is required to keep @inode
1147 * (and the containing mount) referenced.
1148 *
1149 * Return errno if it cannot successully install probes
1150 * else return 0 (success)
1151 */
1152static int __uprobe_register(struct inode *inode, loff_t offset,
1153			     loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1154{
1155	struct uprobe *uprobe;
1156	int ret;
1157
1158	/* Uprobe must have at least one set consumer */
1159	if (!uc->handler && !uc->ret_handler)
1160		return -EINVAL;
1161
1162	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1163	if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
1164		return -EIO;
1165	/* Racy, just to catch the obvious mistakes */
1166	if (offset > i_size_read(inode))
1167		return -EINVAL;
1168
1169 retry:
1170	uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1171	if (!uprobe)
1172		return -ENOMEM;
1173	if (IS_ERR(uprobe))
1174		return PTR_ERR(uprobe);
1175
1176	/*
1177	 * We can race with uprobe_unregister()->delete_uprobe().
1178	 * Check uprobe_is_active() and retry if it is false.
1179	 */
1180	down_write(&uprobe->register_rwsem);
1181	ret = -EAGAIN;
1182	if (likely(uprobe_is_active(uprobe))) {
1183		consumer_add(uprobe, uc);
1184		ret = register_for_each_vma(uprobe, uc);
1185		if (ret)
1186			__uprobe_unregister(uprobe, uc);
1187	}
1188	up_write(&uprobe->register_rwsem);
1189	put_uprobe(uprobe);
1190
1191	if (unlikely(ret == -EAGAIN))
1192		goto retry;
1193	return ret;
1194}
1195
1196int uprobe_register(struct inode *inode, loff_t offset,
1197		    struct uprobe_consumer *uc)
1198{
1199	return __uprobe_register(inode, offset, 0, uc);
1200}
1201EXPORT_SYMBOL_GPL(uprobe_register);
1202
1203int uprobe_register_refctr(struct inode *inode, loff_t offset,
1204			   loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1205{
1206	return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1207}
1208EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1209
1210/*
1211 * uprobe_apply - unregister an already registered probe.
1212 * @inode: the file in which the probe has to be removed.
1213 * @offset: offset from the start of the file.
1214 * @uc: consumer which wants to add more or remove some breakpoints
1215 * @add: add or remove the breakpoints
1216 */
1217int uprobe_apply(struct inode *inode, loff_t offset,
1218			struct uprobe_consumer *uc, bool add)
1219{
1220	struct uprobe *uprobe;
1221	struct uprobe_consumer *con;
1222	int ret = -ENOENT;
1223
1224	uprobe = find_uprobe(inode, offset);
1225	if (WARN_ON(!uprobe))
1226		return ret;
1227
1228	down_write(&uprobe->register_rwsem);
1229	for (con = uprobe->consumers; con && con != uc ; con = con->next)
1230		;
1231	if (con)
1232		ret = register_for_each_vma(uprobe, add ? uc : NULL);
1233	up_write(&uprobe->register_rwsem);
1234	put_uprobe(uprobe);
1235
1236	return ret;
1237}
1238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1239static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1240{
1241	struct vm_area_struct *vma;
1242	int err = 0;
1243
1244	down_read(&mm->mmap_sem);
1245	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1246		unsigned long vaddr;
1247		loff_t offset;
1248
1249		if (!valid_vma(vma, false) ||
1250		    file_inode(vma->vm_file) != uprobe->inode)
1251			continue;
1252
1253		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1254		if (uprobe->offset <  offset ||
1255		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1256			continue;
1257
1258		vaddr = offset_to_vaddr(vma, uprobe->offset);
1259		err |= remove_breakpoint(uprobe, mm, vaddr);
1260	}
1261	up_read(&mm->mmap_sem);
1262
1263	return err;
1264}
1265
1266static struct rb_node *
1267find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1268{
1269	struct rb_node *n = uprobes_tree.rb_node;
1270
1271	while (n) {
1272		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1273
1274		if (inode < u->inode) {
1275			n = n->rb_left;
1276		} else if (inode > u->inode) {
1277			n = n->rb_right;
1278		} else {
1279			if (max < u->offset)
1280				n = n->rb_left;
1281			else if (min > u->offset)
1282				n = n->rb_right;
1283			else
1284				break;
1285		}
1286	}
1287
1288	return n;
1289}
1290
1291/*
1292 * For a given range in vma, build a list of probes that need to be inserted.
1293 */
1294static void build_probe_list(struct inode *inode,
1295				struct vm_area_struct *vma,
1296				unsigned long start, unsigned long end,
1297				struct list_head *head)
1298{
1299	loff_t min, max;
1300	struct rb_node *n, *t;
1301	struct uprobe *u;
1302
1303	INIT_LIST_HEAD(head);
1304	min = vaddr_to_offset(vma, start);
1305	max = min + (end - start) - 1;
1306
1307	spin_lock(&uprobes_treelock);
1308	n = find_node_in_range(inode, min, max);
1309	if (n) {
1310		for (t = n; t; t = rb_prev(t)) {
1311			u = rb_entry(t, struct uprobe, rb_node);
1312			if (u->inode != inode || u->offset < min)
1313				break;
1314			list_add(&u->pending_list, head);
1315			get_uprobe(u);
1316		}
1317		for (t = n; (t = rb_next(t)); ) {
1318			u = rb_entry(t, struct uprobe, rb_node);
1319			if (u->inode != inode || u->offset > max)
1320				break;
1321			list_add(&u->pending_list, head);
1322			get_uprobe(u);
1323		}
1324	}
1325	spin_unlock(&uprobes_treelock);
1326}
1327
1328/* @vma contains reference counter, not the probed instruction. */
1329static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1330{
1331	struct list_head *pos, *q;
1332	struct delayed_uprobe *du;
1333	unsigned long vaddr;
1334	int ret = 0, err = 0;
1335
1336	mutex_lock(&delayed_uprobe_lock);
1337	list_for_each_safe(pos, q, &delayed_uprobe_list) {
1338		du = list_entry(pos, struct delayed_uprobe, list);
1339
1340		if (du->mm != vma->vm_mm ||
1341		    !valid_ref_ctr_vma(du->uprobe, vma))
1342			continue;
1343
1344		vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1345		ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1346		if (ret) {
1347			update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1348			if (!err)
1349				err = ret;
1350		}
1351		delayed_uprobe_delete(du);
1352	}
1353	mutex_unlock(&delayed_uprobe_lock);
1354	return err;
1355}
1356
1357/*
1358 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1359 *
1360 * Currently we ignore all errors and always return 0, the callers
1361 * can't handle the failure anyway.
1362 */
1363int uprobe_mmap(struct vm_area_struct *vma)
1364{
1365	struct list_head tmp_list;
1366	struct uprobe *uprobe, *u;
1367	struct inode *inode;
1368
1369	if (no_uprobe_events())
1370		return 0;
1371
1372	if (vma->vm_file &&
1373	    (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1374	    test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1375		delayed_ref_ctr_inc(vma);
1376
1377	if (!valid_vma(vma, true))
1378		return 0;
1379
1380	inode = file_inode(vma->vm_file);
1381	if (!inode)
1382		return 0;
1383
1384	mutex_lock(uprobes_mmap_hash(inode));
1385	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1386	/*
1387	 * We can race with uprobe_unregister(), this uprobe can be already
1388	 * removed. But in this case filter_chain() must return false, all
1389	 * consumers have gone away.
1390	 */
1391	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1392		if (!fatal_signal_pending(current) &&
1393		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1394			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1395			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1396		}
1397		put_uprobe(uprobe);
1398	}
1399	mutex_unlock(uprobes_mmap_hash(inode));
1400
1401	return 0;
1402}
1403
1404static bool
1405vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1406{
1407	loff_t min, max;
1408	struct inode *inode;
1409	struct rb_node *n;
1410
1411	inode = file_inode(vma->vm_file);
1412
1413	min = vaddr_to_offset(vma, start);
1414	max = min + (end - start) - 1;
1415
1416	spin_lock(&uprobes_treelock);
1417	n = find_node_in_range(inode, min, max);
1418	spin_unlock(&uprobes_treelock);
1419
1420	return !!n;
1421}
1422
1423/*
1424 * Called in context of a munmap of a vma.
1425 */
1426void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1427{
1428	if (no_uprobe_events() || !valid_vma(vma, false))
1429		return;
1430
1431	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1432		return;
1433
1434	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1435	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1436		return;
1437
1438	if (vma_has_uprobes(vma, start, end))
1439		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1440}
1441
1442/* Slot allocation for XOL */
1443static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1444{
1445	struct vm_area_struct *vma;
1446	int ret;
1447
1448	if (down_write_killable(&mm->mmap_sem))
1449		return -EINTR;
1450
1451	if (mm->uprobes_state.xol_area) {
1452		ret = -EALREADY;
1453		goto fail;
1454	}
1455
1456	if (!area->vaddr) {
1457		/* Try to map as high as possible, this is only a hint. */
1458		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1459						PAGE_SIZE, 0, 0);
1460		if (area->vaddr & ~PAGE_MASK) {
1461			ret = area->vaddr;
1462			goto fail;
1463		}
1464	}
1465
1466	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1467				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1468				&area->xol_mapping);
1469	if (IS_ERR(vma)) {
1470		ret = PTR_ERR(vma);
1471		goto fail;
1472	}
1473
1474	ret = 0;
1475	/* pairs with get_xol_area() */
1476	smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1477 fail:
1478	up_write(&mm->mmap_sem);
1479
1480	return ret;
1481}
1482
1483static struct xol_area *__create_xol_area(unsigned long vaddr)
1484{
1485	struct mm_struct *mm = current->mm;
1486	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1487	struct xol_area *area;
1488
1489	area = kmalloc(sizeof(*area), GFP_KERNEL);
1490	if (unlikely(!area))
1491		goto out;
1492
1493	area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1494			       GFP_KERNEL);
1495	if (!area->bitmap)
1496		goto free_area;
1497
1498	area->xol_mapping.name = "[uprobes]";
1499	area->xol_mapping.fault = NULL;
1500	area->xol_mapping.pages = area->pages;
1501	area->pages[0] = alloc_page(GFP_HIGHUSER);
1502	if (!area->pages[0])
1503		goto free_bitmap;
1504	area->pages[1] = NULL;
1505
1506	area->vaddr = vaddr;
1507	init_waitqueue_head(&area->wq);
1508	/* Reserve the 1st slot for get_trampoline_vaddr() */
1509	set_bit(0, area->bitmap);
1510	atomic_set(&area->slot_count, 1);
1511	arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1512
1513	if (!xol_add_vma(mm, area))
1514		return area;
1515
1516	__free_page(area->pages[0]);
1517 free_bitmap:
1518	kfree(area->bitmap);
1519 free_area:
1520	kfree(area);
1521 out:
1522	return NULL;
1523}
1524
1525/*
1526 * get_xol_area - Allocate process's xol_area if necessary.
1527 * This area will be used for storing instructions for execution out of line.
1528 *
1529 * Returns the allocated area or NULL.
1530 */
1531static struct xol_area *get_xol_area(void)
1532{
1533	struct mm_struct *mm = current->mm;
1534	struct xol_area *area;
1535
1536	if (!mm->uprobes_state.xol_area)
1537		__create_xol_area(0);
1538
1539	/* Pairs with xol_add_vma() smp_store_release() */
1540	area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1541	return area;
1542}
1543
1544/*
1545 * uprobe_clear_state - Free the area allocated for slots.
1546 */
1547void uprobe_clear_state(struct mm_struct *mm)
1548{
1549	struct xol_area *area = mm->uprobes_state.xol_area;
1550
1551	mutex_lock(&delayed_uprobe_lock);
1552	delayed_uprobe_remove(NULL, mm);
1553	mutex_unlock(&delayed_uprobe_lock);
1554
1555	if (!area)
1556		return;
1557
1558	put_page(area->pages[0]);
1559	kfree(area->bitmap);
1560	kfree(area);
1561}
1562
1563void uprobe_start_dup_mmap(void)
1564{
1565	percpu_down_read(&dup_mmap_sem);
1566}
1567
1568void uprobe_end_dup_mmap(void)
1569{
1570	percpu_up_read(&dup_mmap_sem);
1571}
1572
1573void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1574{
1575	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1576		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1577		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1578		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1579	}
1580}
1581
1582/*
1583 *  - search for a free slot.
1584 */
1585static unsigned long xol_take_insn_slot(struct xol_area *area)
1586{
1587	unsigned long slot_addr;
1588	int slot_nr;
1589
1590	do {
1591		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1592		if (slot_nr < UINSNS_PER_PAGE) {
1593			if (!test_and_set_bit(slot_nr, area->bitmap))
1594				break;
1595
1596			slot_nr = UINSNS_PER_PAGE;
1597			continue;
1598		}
1599		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1600	} while (slot_nr >= UINSNS_PER_PAGE);
1601
1602	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1603	atomic_inc(&area->slot_count);
1604
1605	return slot_addr;
1606}
1607
1608/*
1609 * xol_get_insn_slot - allocate a slot for xol.
1610 * Returns the allocated slot address or 0.
1611 */
1612static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1613{
1614	struct xol_area *area;
1615	unsigned long xol_vaddr;
1616
1617	area = get_xol_area();
1618	if (!area)
1619		return 0;
1620
1621	xol_vaddr = xol_take_insn_slot(area);
1622	if (unlikely(!xol_vaddr))
1623		return 0;
1624
1625	arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1626			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1627
1628	return xol_vaddr;
1629}
1630
1631/*
1632 * xol_free_insn_slot - If slot was earlier allocated by
1633 * @xol_get_insn_slot(), make the slot available for
1634 * subsequent requests.
1635 */
1636static void xol_free_insn_slot(struct task_struct *tsk)
1637{
1638	struct xol_area *area;
1639	unsigned long vma_end;
1640	unsigned long slot_addr;
1641
1642	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1643		return;
1644
1645	slot_addr = tsk->utask->xol_vaddr;
1646	if (unlikely(!slot_addr))
1647		return;
1648
1649	area = tsk->mm->uprobes_state.xol_area;
1650	vma_end = area->vaddr + PAGE_SIZE;
1651	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1652		unsigned long offset;
1653		int slot_nr;
1654
1655		offset = slot_addr - area->vaddr;
1656		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1657		if (slot_nr >= UINSNS_PER_PAGE)
1658			return;
1659
1660		clear_bit(slot_nr, area->bitmap);
1661		atomic_dec(&area->slot_count);
1662		smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1663		if (waitqueue_active(&area->wq))
1664			wake_up(&area->wq);
1665
1666		tsk->utask->xol_vaddr = 0;
1667	}
1668}
1669
1670void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1671				  void *src, unsigned long len)
1672{
1673	/* Initialize the slot */
1674	copy_to_page(page, vaddr, src, len);
1675
1676	/*
1677	 * We probably need flush_icache_user_range() but it needs vma.
1678	 * This should work on most of architectures by default. If
1679	 * architecture needs to do something different it can define
1680	 * its own version of the function.
1681	 */
1682	flush_dcache_page(page);
1683}
1684
1685/**
1686 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1687 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1688 * instruction.
1689 * Return the address of the breakpoint instruction.
1690 */
1691unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1692{
1693	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1694}
1695
1696unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1697{
1698	struct uprobe_task *utask = current->utask;
1699
1700	if (unlikely(utask && utask->active_uprobe))
1701		return utask->vaddr;
1702
1703	return instruction_pointer(regs);
1704}
1705
1706static struct return_instance *free_ret_instance(struct return_instance *ri)
1707{
1708	struct return_instance *next = ri->next;
1709	put_uprobe(ri->uprobe);
1710	kfree(ri);
1711	return next;
1712}
1713
1714/*
1715 * Called with no locks held.
1716 * Called in context of an exiting or an exec-ing thread.
1717 */
1718void uprobe_free_utask(struct task_struct *t)
1719{
1720	struct uprobe_task *utask = t->utask;
1721	struct return_instance *ri;
1722
1723	if (!utask)
1724		return;
1725
1726	if (utask->active_uprobe)
1727		put_uprobe(utask->active_uprobe);
1728
1729	ri = utask->return_instances;
1730	while (ri)
1731		ri = free_ret_instance(ri);
1732
1733	xol_free_insn_slot(t);
1734	kfree(utask);
1735	t->utask = NULL;
1736}
1737
1738/*
1739 * Allocate a uprobe_task object for the task if if necessary.
1740 * Called when the thread hits a breakpoint.
1741 *
1742 * Returns:
1743 * - pointer to new uprobe_task on success
1744 * - NULL otherwise
1745 */
1746static struct uprobe_task *get_utask(void)
1747{
1748	if (!current->utask)
1749		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1750	return current->utask;
1751}
1752
1753static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1754{
1755	struct uprobe_task *n_utask;
1756	struct return_instance **p, *o, *n;
1757
1758	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1759	if (!n_utask)
1760		return -ENOMEM;
1761	t->utask = n_utask;
1762
1763	p = &n_utask->return_instances;
1764	for (o = o_utask->return_instances; o; o = o->next) {
1765		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1766		if (!n)
1767			return -ENOMEM;
1768
1769		*n = *o;
1770		get_uprobe(n->uprobe);
1771		n->next = NULL;
1772
1773		*p = n;
1774		p = &n->next;
1775		n_utask->depth++;
1776	}
1777
1778	return 0;
1779}
1780
1781static void uprobe_warn(struct task_struct *t, const char *msg)
1782{
1783	pr_warn("uprobe: %s:%d failed to %s\n",
1784			current->comm, current->pid, msg);
1785}
1786
1787static void dup_xol_work(struct callback_head *work)
1788{
1789	if (current->flags & PF_EXITING)
1790		return;
1791
1792	if (!__create_xol_area(current->utask->dup_xol_addr) &&
1793			!fatal_signal_pending(current))
1794		uprobe_warn(current, "dup xol area");
1795}
1796
1797/*
1798 * Called in context of a new clone/fork from copy_process.
1799 */
1800void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1801{
1802	struct uprobe_task *utask = current->utask;
1803	struct mm_struct *mm = current->mm;
1804	struct xol_area *area;
1805
1806	t->utask = NULL;
1807
1808	if (!utask || !utask->return_instances)
1809		return;
1810
1811	if (mm == t->mm && !(flags & CLONE_VFORK))
1812		return;
1813
1814	if (dup_utask(t, utask))
1815		return uprobe_warn(t, "dup ret instances");
1816
1817	/* The task can fork() after dup_xol_work() fails */
1818	area = mm->uprobes_state.xol_area;
1819	if (!area)
1820		return uprobe_warn(t, "dup xol area");
1821
1822	if (mm == t->mm)
1823		return;
1824
1825	t->utask->dup_xol_addr = area->vaddr;
1826	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1827	task_work_add(t, &t->utask->dup_xol_work, true);
1828}
1829
1830/*
1831 * Current area->vaddr notion assume the trampoline address is always
1832 * equal area->vaddr.
1833 *
1834 * Returns -1 in case the xol_area is not allocated.
1835 */
1836static unsigned long get_trampoline_vaddr(void)
1837{
1838	struct xol_area *area;
1839	unsigned long trampoline_vaddr = -1;
1840
1841	/* Pairs with xol_add_vma() smp_store_release() */
1842	area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1843	if (area)
1844		trampoline_vaddr = area->vaddr;
1845
1846	return trampoline_vaddr;
1847}
1848
1849static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1850					struct pt_regs *regs)
1851{
1852	struct return_instance *ri = utask->return_instances;
1853	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1854
1855	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1856		ri = free_ret_instance(ri);
1857		utask->depth--;
1858	}
1859	utask->return_instances = ri;
1860}
1861
1862static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1863{
1864	struct return_instance *ri;
1865	struct uprobe_task *utask;
1866	unsigned long orig_ret_vaddr, trampoline_vaddr;
1867	bool chained;
1868
1869	if (!get_xol_area())
1870		return;
1871
1872	utask = get_utask();
1873	if (!utask)
1874		return;
1875
1876	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1877		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1878				" nestedness limit pid/tgid=%d/%d\n",
1879				current->pid, current->tgid);
1880		return;
1881	}
1882
1883	ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1884	if (!ri)
1885		return;
1886
1887	trampoline_vaddr = get_trampoline_vaddr();
1888	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1889	if (orig_ret_vaddr == -1)
1890		goto fail;
1891
1892	/* drop the entries invalidated by longjmp() */
1893	chained = (orig_ret_vaddr == trampoline_vaddr);
1894	cleanup_return_instances(utask, chained, regs);
1895
1896	/*
1897	 * We don't want to keep trampoline address in stack, rather keep the
1898	 * original return address of first caller thru all the consequent
1899	 * instances. This also makes breakpoint unwrapping easier.
1900	 */
1901	if (chained) {
1902		if (!utask->return_instances) {
1903			/*
1904			 * This situation is not possible. Likely we have an
1905			 * attack from user-space.
1906			 */
1907			uprobe_warn(current, "handle tail call");
1908			goto fail;
1909		}
1910		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1911	}
1912
1913	ri->uprobe = get_uprobe(uprobe);
1914	ri->func = instruction_pointer(regs);
1915	ri->stack = user_stack_pointer(regs);
1916	ri->orig_ret_vaddr = orig_ret_vaddr;
1917	ri->chained = chained;
1918
1919	utask->depth++;
1920	ri->next = utask->return_instances;
1921	utask->return_instances = ri;
1922
1923	return;
1924 fail:
1925	kfree(ri);
1926}
1927
1928/* Prepare to single-step probed instruction out of line. */
1929static int
1930pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1931{
1932	struct uprobe_task *utask;
1933	unsigned long xol_vaddr;
1934	int err;
1935
1936	utask = get_utask();
1937	if (!utask)
1938		return -ENOMEM;
1939
1940	xol_vaddr = xol_get_insn_slot(uprobe);
1941	if (!xol_vaddr)
1942		return -ENOMEM;
1943
1944	utask->xol_vaddr = xol_vaddr;
1945	utask->vaddr = bp_vaddr;
1946
1947	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1948	if (unlikely(err)) {
1949		xol_free_insn_slot(current);
1950		return err;
1951	}
1952
1953	utask->active_uprobe = uprobe;
1954	utask->state = UTASK_SSTEP;
1955	return 0;
1956}
1957
1958/*
1959 * If we are singlestepping, then ensure this thread is not connected to
1960 * non-fatal signals until completion of singlestep.  When xol insn itself
1961 * triggers the signal,  restart the original insn even if the task is
1962 * already SIGKILL'ed (since coredump should report the correct ip).  This
1963 * is even more important if the task has a handler for SIGSEGV/etc, The
1964 * _same_ instruction should be repeated again after return from the signal
1965 * handler, and SSTEP can never finish in this case.
1966 */
1967bool uprobe_deny_signal(void)
1968{
1969	struct task_struct *t = current;
1970	struct uprobe_task *utask = t->utask;
1971
1972	if (likely(!utask || !utask->active_uprobe))
1973		return false;
1974
1975	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1976
1977	if (signal_pending(t)) {
1978		spin_lock_irq(&t->sighand->siglock);
1979		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1980		spin_unlock_irq(&t->sighand->siglock);
1981
1982		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1983			utask->state = UTASK_SSTEP_TRAPPED;
1984			set_tsk_thread_flag(t, TIF_UPROBE);
1985		}
1986	}
1987
1988	return true;
1989}
1990
1991static void mmf_recalc_uprobes(struct mm_struct *mm)
1992{
1993	struct vm_area_struct *vma;
1994
1995	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1996		if (!valid_vma(vma, false))
1997			continue;
1998		/*
1999		 * This is not strictly accurate, we can race with
2000		 * uprobe_unregister() and see the already removed
2001		 * uprobe if delete_uprobe() was not yet called.
2002		 * Or this uprobe can be filtered out.
2003		 */
2004		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2005			return;
2006	}
2007
2008	clear_bit(MMF_HAS_UPROBES, &mm->flags);
2009}
2010
2011static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2012{
2013	struct page *page;
2014	uprobe_opcode_t opcode;
2015	int result;
2016
2017	pagefault_disable();
2018	result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2019	pagefault_enable();
2020
2021	if (likely(result == 0))
2022		goto out;
2023
2024	/*
2025	 * The NULL 'tsk' here ensures that any faults that occur here
2026	 * will not be accounted to the task.  'mm' *is* current->mm,
2027	 * but we treat this as a 'remote' access since it is
2028	 * essentially a kernel access to the memory.
2029	 */
2030	result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
2031			NULL, NULL);
2032	if (result < 0)
2033		return result;
2034
2035	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2036	put_page(page);
2037 out:
2038	/* This needs to return true for any variant of the trap insn */
2039	return is_trap_insn(&opcode);
2040}
2041
2042static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2043{
2044	struct mm_struct *mm = current->mm;
2045	struct uprobe *uprobe = NULL;
2046	struct vm_area_struct *vma;
2047
2048	down_read(&mm->mmap_sem);
2049	vma = find_vma(mm, bp_vaddr);
2050	if (vma && vma->vm_start <= bp_vaddr) {
2051		if (valid_vma(vma, false)) {
2052			struct inode *inode = file_inode(vma->vm_file);
2053			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2054
2055			uprobe = find_uprobe(inode, offset);
2056		}
2057
2058		if (!uprobe)
2059			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
2060	} else {
2061		*is_swbp = -EFAULT;
2062	}
2063
2064	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2065		mmf_recalc_uprobes(mm);
2066	up_read(&mm->mmap_sem);
2067
2068	return uprobe;
2069}
2070
2071static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2072{
2073	struct uprobe_consumer *uc;
2074	int remove = UPROBE_HANDLER_REMOVE;
2075	bool need_prep = false; /* prepare return uprobe, when needed */
2076
2077	down_read(&uprobe->register_rwsem);
2078	for (uc = uprobe->consumers; uc; uc = uc->next) {
2079		int rc = 0;
2080
2081		if (uc->handler) {
2082			rc = uc->handler(uc, regs);
2083			WARN(rc & ~UPROBE_HANDLER_MASK,
2084				"bad rc=0x%x from %ps()\n", rc, uc->handler);
2085		}
2086
2087		if (uc->ret_handler)
2088			need_prep = true;
2089
2090		remove &= rc;
2091	}
2092
2093	if (need_prep && !remove)
2094		prepare_uretprobe(uprobe, regs); /* put bp at return */
2095
2096	if (remove && uprobe->consumers) {
2097		WARN_ON(!uprobe_is_active(uprobe));
2098		unapply_uprobe(uprobe, current->mm);
2099	}
2100	up_read(&uprobe->register_rwsem);
2101}
2102
2103static void
2104handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2105{
2106	struct uprobe *uprobe = ri->uprobe;
2107	struct uprobe_consumer *uc;
2108
2109	down_read(&uprobe->register_rwsem);
2110	for (uc = uprobe->consumers; uc; uc = uc->next) {
2111		if (uc->ret_handler)
2112			uc->ret_handler(uc, ri->func, regs);
2113	}
2114	up_read(&uprobe->register_rwsem);
2115}
2116
2117static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2118{
2119	bool chained;
2120
2121	do {
2122		chained = ri->chained;
2123		ri = ri->next;	/* can't be NULL if chained */
2124	} while (chained);
2125
2126	return ri;
2127}
2128
2129static void handle_trampoline(struct pt_regs *regs)
2130{
2131	struct uprobe_task *utask;
2132	struct return_instance *ri, *next;
2133	bool valid;
2134
2135	utask = current->utask;
2136	if (!utask)
2137		goto sigill;
2138
2139	ri = utask->return_instances;
2140	if (!ri)
2141		goto sigill;
2142
2143	do {
2144		/*
2145		 * We should throw out the frames invalidated by longjmp().
2146		 * If this chain is valid, then the next one should be alive
2147		 * or NULL; the latter case means that nobody but ri->func
2148		 * could hit this trampoline on return. TODO: sigaltstack().
2149		 */
2150		next = find_next_ret_chain(ri);
2151		valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2152
2153		instruction_pointer_set(regs, ri->orig_ret_vaddr);
2154		do {
2155			if (valid)
2156				handle_uretprobe_chain(ri, regs);
2157			ri = free_ret_instance(ri);
2158			utask->depth--;
2159		} while (ri != next);
2160	} while (!valid);
2161
2162	utask->return_instances = ri;
2163	return;
2164
2165 sigill:
2166	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2167	force_sig(SIGILL);
2168
2169}
2170
2171bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2172{
2173	return false;
2174}
2175
2176bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2177					struct pt_regs *regs)
2178{
2179	return true;
2180}
2181
2182/*
2183 * Run handler and ask thread to singlestep.
2184 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2185 */
2186static void handle_swbp(struct pt_regs *regs)
2187{
2188	struct uprobe *uprobe;
2189	unsigned long bp_vaddr;
2190	int uninitialized_var(is_swbp);
2191
2192	bp_vaddr = uprobe_get_swbp_addr(regs);
2193	if (bp_vaddr == get_trampoline_vaddr())
2194		return handle_trampoline(regs);
2195
2196	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2197	if (!uprobe) {
2198		if (is_swbp > 0) {
2199			/* No matching uprobe; signal SIGTRAP. */
2200			send_sig(SIGTRAP, current, 0);
2201		} else {
2202			/*
2203			 * Either we raced with uprobe_unregister() or we can't
2204			 * access this memory. The latter is only possible if
2205			 * another thread plays with our ->mm. In both cases
2206			 * we can simply restart. If this vma was unmapped we
2207			 * can pretend this insn was not executed yet and get
2208			 * the (correct) SIGSEGV after restart.
2209			 */
2210			instruction_pointer_set(regs, bp_vaddr);
2211		}
2212		return;
2213	}
2214
2215	/* change it in advance for ->handler() and restart */
2216	instruction_pointer_set(regs, bp_vaddr);
2217
2218	/*
2219	 * TODO: move copy_insn/etc into _register and remove this hack.
2220	 * After we hit the bp, _unregister + _register can install the
2221	 * new and not-yet-analyzed uprobe at the same address, restart.
2222	 */
 
2223	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2224		goto out;
2225
2226	/*
2227	 * Pairs with the smp_wmb() in prepare_uprobe().
2228	 *
2229	 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2230	 * we must also see the stores to &uprobe->arch performed by the
2231	 * prepare_uprobe() call.
2232	 */
2233	smp_rmb();
2234
2235	/* Tracing handlers use ->utask to communicate with fetch methods */
2236	if (!get_utask())
2237		goto out;
2238
2239	if (arch_uprobe_ignore(&uprobe->arch, regs))
2240		goto out;
2241
2242	handler_chain(uprobe, regs);
2243
2244	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2245		goto out;
2246
2247	if (!pre_ssout(uprobe, regs, bp_vaddr))
2248		return;
2249
2250	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2251out:
2252	put_uprobe(uprobe);
2253}
2254
2255/*
2256 * Perform required fix-ups and disable singlestep.
2257 * Allow pending signals to take effect.
2258 */
2259static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2260{
2261	struct uprobe *uprobe;
2262	int err = 0;
2263
2264	uprobe = utask->active_uprobe;
2265	if (utask->state == UTASK_SSTEP_ACK)
2266		err = arch_uprobe_post_xol(&uprobe->arch, regs);
2267	else if (utask->state == UTASK_SSTEP_TRAPPED)
2268		arch_uprobe_abort_xol(&uprobe->arch, regs);
2269	else
2270		WARN_ON_ONCE(1);
2271
2272	put_uprobe(uprobe);
2273	utask->active_uprobe = NULL;
2274	utask->state = UTASK_RUNNING;
2275	xol_free_insn_slot(current);
2276
2277	spin_lock_irq(&current->sighand->siglock);
2278	recalc_sigpending(); /* see uprobe_deny_signal() */
2279	spin_unlock_irq(&current->sighand->siglock);
2280
2281	if (unlikely(err)) {
2282		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2283		force_sig(SIGILL);
2284	}
2285}
2286
2287/*
2288 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2289 * allows the thread to return from interrupt. After that handle_swbp()
2290 * sets utask->active_uprobe.
2291 *
2292 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2293 * and allows the thread to return from interrupt.
2294 *
2295 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2296 * uprobe_notify_resume().
2297 */
2298void uprobe_notify_resume(struct pt_regs *regs)
2299{
2300	struct uprobe_task *utask;
2301
2302	clear_thread_flag(TIF_UPROBE);
2303
2304	utask = current->utask;
2305	if (utask && utask->active_uprobe)
2306		handle_singlestep(utask, regs);
2307	else
2308		handle_swbp(regs);
2309}
2310
2311/*
2312 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2313 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2314 */
2315int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2316{
2317	if (!current->mm)
2318		return 0;
2319
2320	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2321	    (!current->utask || !current->utask->return_instances))
2322		return 0;
2323
2324	set_thread_flag(TIF_UPROBE);
2325	return 1;
2326}
2327
2328/*
2329 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2330 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2331 */
2332int uprobe_post_sstep_notifier(struct pt_regs *regs)
2333{
2334	struct uprobe_task *utask = current->utask;
2335
2336	if (!current->mm || !utask || !utask->active_uprobe)
2337		/* task is currently not uprobed */
2338		return 0;
2339
2340	utask->state = UTASK_SSTEP_ACK;
2341	set_thread_flag(TIF_UPROBE);
2342	return 1;
2343}
2344
2345static struct notifier_block uprobe_exception_nb = {
2346	.notifier_call		= arch_uprobe_exception_notify,
2347	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2348};
2349
2350void __init uprobes_init(void)
2351{
2352	int i;
2353
2354	for (i = 0; i < UPROBES_HASH_SZ; i++)
2355		mutex_init(&uprobes_mmap_mutex[i]);
2356
2357	BUG_ON(register_die_notifier(&uprobe_exception_nb));
 
 
 
2358}
v4.17
 
   1/*
   2 * User-space Probes (UProbes)
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17 *
  18 * Copyright (C) IBM Corporation, 2008-2012
  19 * Authors:
  20 *	Srikar Dronamraju
  21 *	Jim Keniston
  22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
  23 */
  24
  25#include <linux/kernel.h>
  26#include <linux/highmem.h>
  27#include <linux/pagemap.h>	/* read_mapping_page */
  28#include <linux/slab.h>
  29#include <linux/sched.h>
  30#include <linux/sched/mm.h>
  31#include <linux/sched/coredump.h>
  32#include <linux/export.h>
  33#include <linux/rmap.h>		/* anon_vma_prepare */
  34#include <linux/mmu_notifier.h>	/* set_pte_at_notify */
  35#include <linux/swap.h>		/* try_to_free_swap */
  36#include <linux/ptrace.h>	/* user_enable_single_step */
  37#include <linux/kdebug.h>	/* notifier mechanism */
  38#include "../../mm/internal.h"	/* munlock_vma_page */
  39#include <linux/percpu-rwsem.h>
  40#include <linux/task_work.h>
  41#include <linux/shmem_fs.h>
 
  42
  43#include <linux/uprobes.h>
  44
  45#define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
  46#define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
  47
  48static struct rb_root uprobes_tree = RB_ROOT;
  49/*
  50 * allows us to skip the uprobe_mmap if there are no uprobe events active
  51 * at this time.  Probably a fine grained per inode count is better?
  52 */
  53#define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
  54
  55static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
  56
  57#define UPROBES_HASH_SZ	13
  58/* serialize uprobe->pending_list */
  59static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
  60#define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
  61
  62static struct percpu_rw_semaphore dup_mmap_sem;
  63
  64/* Have a copy of original instruction */
  65#define UPROBE_COPY_INSN	0
  66
  67struct uprobe {
  68	struct rb_node		rb_node;	/* node in the rb tree */
  69	atomic_t		ref;
  70	struct rw_semaphore	register_rwsem;
  71	struct rw_semaphore	consumer_rwsem;
  72	struct list_head	pending_list;
  73	struct uprobe_consumer	*consumers;
  74	struct inode		*inode;		/* Also hold a ref to inode */
  75	loff_t			offset;
 
  76	unsigned long		flags;
  77
  78	/*
  79	 * The generic code assumes that it has two members of unknown type
  80	 * owned by the arch-specific code:
  81	 *
  82	 * 	insn -	copy_insn() saves the original instruction here for
  83	 *		arch_uprobe_analyze_insn().
  84	 *
  85	 *	ixol -	potentially modified instruction to execute out of
  86	 *		line, copied to xol_area by xol_get_insn_slot().
  87	 */
  88	struct arch_uprobe	arch;
  89};
  90
 
 
 
 
 
 
 
 
 
  91/*
  92 * Execute out of line area: anonymous executable mapping installed
  93 * by the probed task to execute the copy of the original instruction
  94 * mangled by set_swbp().
  95 *
  96 * On a breakpoint hit, thread contests for a slot.  It frees the
  97 * slot after singlestep. Currently a fixed number of slots are
  98 * allocated.
  99 */
 100struct xol_area {
 101	wait_queue_head_t 		wq;		/* if all slots are busy */
 102	atomic_t 			slot_count;	/* number of in-use slots */
 103	unsigned long 			*bitmap;	/* 0 = free slot */
 104
 105	struct vm_special_mapping	xol_mapping;
 106	struct page 			*pages[2];
 107	/*
 108	 * We keep the vma's vm_start rather than a pointer to the vma
 109	 * itself.  The probed process or a naughty kernel module could make
 110	 * the vma go away, and we must handle that reasonably gracefully.
 111	 */
 112	unsigned long 			vaddr;		/* Page(s) of instruction slots */
 113};
 114
 115/*
 116 * valid_vma: Verify if the specified vma is an executable vma
 117 * Relax restrictions while unregistering: vm_flags might have
 118 * changed after breakpoint was inserted.
 119 *	- is_register: indicates if we are in register context.
 120 *	- Return 1 if the specified virtual address is in an
 121 *	  executable vma.
 122 */
 123static bool valid_vma(struct vm_area_struct *vma, bool is_register)
 124{
 125	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
 126
 127	if (is_register)
 128		flags |= VM_WRITE;
 129
 130	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
 131}
 132
 133static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
 134{
 135	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
 136}
 137
 138static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
 139{
 140	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
 141}
 142
 143/**
 144 * __replace_page - replace page in vma by new page.
 145 * based on replace_page in mm/ksm.c
 146 *
 147 * @vma:      vma that holds the pte pointing to page
 148 * @addr:     address the old @page is mapped at
 149 * @page:     the cowed page we are replacing by kpage
 150 * @kpage:    the modified page we replace page by
 
 
 151 *
 152 * Returns 0 on success, -EFAULT on failure.
 153 */
 154static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
 155				struct page *old_page, struct page *new_page)
 156{
 157	struct mm_struct *mm = vma->vm_mm;
 158	struct page_vma_mapped_walk pvmw = {
 159		.page = old_page,
 160		.vma = vma,
 161		.address = addr,
 162	};
 163	int err;
 164	/* For mmu_notifiers */
 165	const unsigned long mmun_start = addr;
 166	const unsigned long mmun_end   = addr + PAGE_SIZE;
 167	struct mem_cgroup *memcg;
 168
 169	VM_BUG_ON_PAGE(PageTransHuge(old_page), old_page);
 
 170
 171	err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL, &memcg,
 172			false);
 173	if (err)
 174		return err;
 
 
 175
 176	/* For try_to_free_swap() and munlock_vma_page() below */
 177	lock_page(old_page);
 178
 179	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 180	err = -EAGAIN;
 181	if (!page_vma_mapped_walk(&pvmw)) {
 182		mem_cgroup_cancel_charge(new_page, memcg, false);
 
 183		goto unlock;
 184	}
 185	VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
 186
 187	get_page(new_page);
 188	page_add_new_anon_rmap(new_page, vma, addr, false);
 189	mem_cgroup_commit_charge(new_page, memcg, false, false);
 190	lru_cache_add_active_or_unevictable(new_page, vma);
 
 
 
 
 191
 192	if (!PageAnon(old_page)) {
 193		dec_mm_counter(mm, mm_counter_file(old_page));
 194		inc_mm_counter(mm, MM_ANONPAGES);
 195	}
 196
 197	flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
 198	ptep_clear_flush_notify(vma, addr, pvmw.pte);
 199	set_pte_at_notify(mm, addr, pvmw.pte,
 200			mk_pte(new_page, vma->vm_page_prot));
 
 201
 202	page_remove_rmap(old_page, false);
 203	if (!page_mapped(old_page))
 204		try_to_free_swap(old_page);
 205	page_vma_mapped_walk_done(&pvmw);
 206
 207	if (vma->vm_flags & VM_LOCKED)
 208		munlock_vma_page(old_page);
 209	put_page(old_page);
 210
 211	err = 0;
 212 unlock:
 213	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
 214	unlock_page(old_page);
 215	return err;
 216}
 217
 218/**
 219 * is_swbp_insn - check if instruction is breakpoint instruction.
 220 * @insn: instruction to be checked.
 221 * Default implementation of is_swbp_insn
 222 * Returns true if @insn is a breakpoint instruction.
 223 */
 224bool __weak is_swbp_insn(uprobe_opcode_t *insn)
 225{
 226	return *insn == UPROBE_SWBP_INSN;
 227}
 228
 229/**
 230 * is_trap_insn - check if instruction is breakpoint instruction.
 231 * @insn: instruction to be checked.
 232 * Default implementation of is_trap_insn
 233 * Returns true if @insn is a breakpoint instruction.
 234 *
 235 * This function is needed for the case where an architecture has multiple
 236 * trap instructions (like powerpc).
 237 */
 238bool __weak is_trap_insn(uprobe_opcode_t *insn)
 239{
 240	return is_swbp_insn(insn);
 241}
 242
 243static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
 244{
 245	void *kaddr = kmap_atomic(page);
 246	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
 247	kunmap_atomic(kaddr);
 248}
 249
 250static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
 251{
 252	void *kaddr = kmap_atomic(page);
 253	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
 254	kunmap_atomic(kaddr);
 255}
 256
 257static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
 258{
 259	uprobe_opcode_t old_opcode;
 260	bool is_swbp;
 261
 262	/*
 263	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
 264	 * We do not check if it is any other 'trap variant' which could
 265	 * be conditional trap instruction such as the one powerpc supports.
 266	 *
 267	 * The logic is that we do not care if the underlying instruction
 268	 * is a trap variant; uprobes always wins over any other (gdb)
 269	 * breakpoint.
 270	 */
 271	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
 272	is_swbp = is_swbp_insn(&old_opcode);
 273
 274	if (is_swbp_insn(new_opcode)) {
 275		if (is_swbp)		/* register: already installed? */
 276			return 0;
 277	} else {
 278		if (!is_swbp)		/* unregister: was it changed by us? */
 279			return 0;
 280	}
 281
 282	return 1;
 283}
 284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 285/*
 286 * NOTE:
 287 * Expect the breakpoint instruction to be the smallest size instruction for
 288 * the architecture. If an arch has variable length instruction and the
 289 * breakpoint instruction is not of the smallest length instruction
 290 * supported by that architecture then we need to modify is_trap_at_addr and
 291 * uprobe_write_opcode accordingly. This would never be a problem for archs
 292 * that have fixed length instructions.
 293 *
 294 * uprobe_write_opcode - write the opcode at a given virtual address.
 295 * @mm: the probed process address space.
 296 * @vaddr: the virtual address to store the opcode.
 297 * @opcode: opcode to be written at @vaddr.
 298 *
 299 * Called with mm->mmap_sem held for write.
 300 * Return 0 (success) or a negative errno.
 301 */
 302int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
 303			uprobe_opcode_t opcode)
 304{
 
 305	struct page *old_page, *new_page;
 306	struct vm_area_struct *vma;
 307	int ret;
 
 
 
 
 
 308
 309retry:
 
 
 310	/* Read the page with vaddr into memory */
 311	ret = get_user_pages_remote(NULL, mm, vaddr, 1,
 312			FOLL_FORCE | FOLL_SPLIT, &old_page, &vma, NULL);
 313	if (ret <= 0)
 314		return ret;
 315
 316	ret = verify_opcode(old_page, vaddr, &opcode);
 317	if (ret <= 0)
 318		goto put_old;
 319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 320	ret = anon_vma_prepare(vma);
 321	if (ret)
 322		goto put_old;
 323
 324	ret = -ENOMEM;
 325	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
 326	if (!new_page)
 327		goto put_old;
 328
 329	__SetPageUptodate(new_page);
 330	copy_highpage(new_page, old_page);
 331	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
 332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 333	ret = __replace_page(vma, vaddr, old_page, new_page);
 334	put_page(new_page);
 
 335put_old:
 336	put_page(old_page);
 337
 338	if (unlikely(ret == -EAGAIN))
 339		goto retry;
 
 
 
 
 
 
 
 
 
 340	return ret;
 341}
 342
 343/**
 344 * set_swbp - store breakpoint at a given address.
 345 * @auprobe: arch specific probepoint information.
 346 * @mm: the probed process address space.
 347 * @vaddr: the virtual address to insert the opcode.
 348 *
 349 * For mm @mm, store the breakpoint instruction at @vaddr.
 350 * Return 0 (success) or a negative errno.
 351 */
 352int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
 353{
 354	return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
 355}
 356
 357/**
 358 * set_orig_insn - Restore the original instruction.
 359 * @mm: the probed process address space.
 360 * @auprobe: arch specific probepoint information.
 361 * @vaddr: the virtual address to insert the opcode.
 362 *
 363 * For mm @mm, restore the original opcode (opcode) at @vaddr.
 364 * Return 0 (success) or a negative errno.
 365 */
 366int __weak
 367set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
 368{
 369	return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
 
 370}
 371
 372static struct uprobe *get_uprobe(struct uprobe *uprobe)
 373{
 374	atomic_inc(&uprobe->ref);
 375	return uprobe;
 376}
 377
 378static void put_uprobe(struct uprobe *uprobe)
 379{
 380	if (atomic_dec_and_test(&uprobe->ref))
 
 
 
 
 
 
 
 
 381		kfree(uprobe);
 
 382}
 383
 384static int match_uprobe(struct uprobe *l, struct uprobe *r)
 385{
 386	if (l->inode < r->inode)
 387		return -1;
 388
 389	if (l->inode > r->inode)
 390		return 1;
 391
 392	if (l->offset < r->offset)
 393		return -1;
 394
 395	if (l->offset > r->offset)
 396		return 1;
 397
 398	return 0;
 399}
 400
 401static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
 402{
 403	struct uprobe u = { .inode = inode, .offset = offset };
 404	struct rb_node *n = uprobes_tree.rb_node;
 405	struct uprobe *uprobe;
 406	int match;
 407
 408	while (n) {
 409		uprobe = rb_entry(n, struct uprobe, rb_node);
 410		match = match_uprobe(&u, uprobe);
 411		if (!match)
 412			return get_uprobe(uprobe);
 413
 414		if (match < 0)
 415			n = n->rb_left;
 416		else
 417			n = n->rb_right;
 418	}
 419	return NULL;
 420}
 421
 422/*
 423 * Find a uprobe corresponding to a given inode:offset
 424 * Acquires uprobes_treelock
 425 */
 426static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
 427{
 428	struct uprobe *uprobe;
 429
 430	spin_lock(&uprobes_treelock);
 431	uprobe = __find_uprobe(inode, offset);
 432	spin_unlock(&uprobes_treelock);
 433
 434	return uprobe;
 435}
 436
 437static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
 438{
 439	struct rb_node **p = &uprobes_tree.rb_node;
 440	struct rb_node *parent = NULL;
 441	struct uprobe *u;
 442	int match;
 443
 444	while (*p) {
 445		parent = *p;
 446		u = rb_entry(parent, struct uprobe, rb_node);
 447		match = match_uprobe(uprobe, u);
 448		if (!match)
 449			return get_uprobe(u);
 450
 451		if (match < 0)
 452			p = &parent->rb_left;
 453		else
 454			p = &parent->rb_right;
 455
 456	}
 457
 458	u = NULL;
 459	rb_link_node(&uprobe->rb_node, parent, p);
 460	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
 461	/* get access + creation ref */
 462	atomic_set(&uprobe->ref, 2);
 463
 464	return u;
 465}
 466
 467/*
 468 * Acquire uprobes_treelock.
 469 * Matching uprobe already exists in rbtree;
 470 *	increment (access refcount) and return the matching uprobe.
 471 *
 472 * No matching uprobe; insert the uprobe in rb_tree;
 473 *	get a double refcount (access + creation) and return NULL.
 474 */
 475static struct uprobe *insert_uprobe(struct uprobe *uprobe)
 476{
 477	struct uprobe *u;
 478
 479	spin_lock(&uprobes_treelock);
 480	u = __insert_uprobe(uprobe);
 481	spin_unlock(&uprobes_treelock);
 482
 483	return u;
 484}
 485
 486static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
 
 
 
 
 
 
 
 
 
 
 
 487{
 488	struct uprobe *uprobe, *cur_uprobe;
 489
 490	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
 491	if (!uprobe)
 492		return NULL;
 493
 494	uprobe->inode = inode;
 495	uprobe->offset = offset;
 
 496	init_rwsem(&uprobe->register_rwsem);
 497	init_rwsem(&uprobe->consumer_rwsem);
 498
 499	/* add to uprobes_tree, sorted on inode:offset */
 500	cur_uprobe = insert_uprobe(uprobe);
 501	/* a uprobe exists for this inode:offset combination */
 502	if (cur_uprobe) {
 
 
 
 
 
 
 503		kfree(uprobe);
 504		uprobe = cur_uprobe;
 505	}
 506
 507	return uprobe;
 508}
 509
 510static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
 511{
 512	down_write(&uprobe->consumer_rwsem);
 513	uc->next = uprobe->consumers;
 514	uprobe->consumers = uc;
 515	up_write(&uprobe->consumer_rwsem);
 516}
 517
 518/*
 519 * For uprobe @uprobe, delete the consumer @uc.
 520 * Return true if the @uc is deleted successfully
 521 * or return false.
 522 */
 523static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
 524{
 525	struct uprobe_consumer **con;
 526	bool ret = false;
 527
 528	down_write(&uprobe->consumer_rwsem);
 529	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
 530		if (*con == uc) {
 531			*con = uc->next;
 532			ret = true;
 533			break;
 534		}
 535	}
 536	up_write(&uprobe->consumer_rwsem);
 537
 538	return ret;
 539}
 540
 541static int __copy_insn(struct address_space *mapping, struct file *filp,
 542			void *insn, int nbytes, loff_t offset)
 543{
 544	struct page *page;
 545	/*
 546	 * Ensure that the page that has the original instruction is populated
 547	 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
 548	 * see uprobe_register().
 549	 */
 550	if (mapping->a_ops->readpage)
 551		page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
 552	else
 553		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
 554	if (IS_ERR(page))
 555		return PTR_ERR(page);
 556
 557	copy_from_page(page, offset, insn, nbytes);
 558	put_page(page);
 559
 560	return 0;
 561}
 562
 563static int copy_insn(struct uprobe *uprobe, struct file *filp)
 564{
 565	struct address_space *mapping = uprobe->inode->i_mapping;
 566	loff_t offs = uprobe->offset;
 567	void *insn = &uprobe->arch.insn;
 568	int size = sizeof(uprobe->arch.insn);
 569	int len, err = -EIO;
 570
 571	/* Copy only available bytes, -EIO if nothing was read */
 572	do {
 573		if (offs >= i_size_read(uprobe->inode))
 574			break;
 575
 576		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
 577		err = __copy_insn(mapping, filp, insn, len, offs);
 578		if (err)
 579			break;
 580
 581		insn += len;
 582		offs += len;
 583		size -= len;
 584	} while (size);
 585
 586	return err;
 587}
 588
 589static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
 590				struct mm_struct *mm, unsigned long vaddr)
 591{
 592	int ret = 0;
 593
 594	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
 595		return ret;
 596
 597	/* TODO: move this into _register, until then we abuse this sem. */
 598	down_write(&uprobe->consumer_rwsem);
 599	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
 600		goto out;
 601
 602	ret = copy_insn(uprobe, file);
 603	if (ret)
 604		goto out;
 605
 606	ret = -ENOTSUPP;
 607	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
 608		goto out;
 609
 610	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
 611	if (ret)
 612		goto out;
 613
 614	/* uprobe_write_opcode() assumes we don't cross page boundary */
 615	BUG_ON((uprobe->offset & ~PAGE_MASK) +
 616			UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
 617
 618	smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
 619	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
 620
 621 out:
 622	up_write(&uprobe->consumer_rwsem);
 623
 624	return ret;
 625}
 626
 627static inline bool consumer_filter(struct uprobe_consumer *uc,
 628				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
 629{
 630	return !uc->filter || uc->filter(uc, ctx, mm);
 631}
 632
 633static bool filter_chain(struct uprobe *uprobe,
 634			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
 635{
 636	struct uprobe_consumer *uc;
 637	bool ret = false;
 638
 639	down_read(&uprobe->consumer_rwsem);
 640	for (uc = uprobe->consumers; uc; uc = uc->next) {
 641		ret = consumer_filter(uc, ctx, mm);
 642		if (ret)
 643			break;
 644	}
 645	up_read(&uprobe->consumer_rwsem);
 646
 647	return ret;
 648}
 649
 650static int
 651install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
 652			struct vm_area_struct *vma, unsigned long vaddr)
 653{
 654	bool first_uprobe;
 655	int ret;
 656
 657	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
 658	if (ret)
 659		return ret;
 660
 661	/*
 662	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
 663	 * the task can hit this breakpoint right after __replace_page().
 664	 */
 665	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
 666	if (first_uprobe)
 667		set_bit(MMF_HAS_UPROBES, &mm->flags);
 668
 669	ret = set_swbp(&uprobe->arch, mm, vaddr);
 670	if (!ret)
 671		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
 672	else if (first_uprobe)
 673		clear_bit(MMF_HAS_UPROBES, &mm->flags);
 674
 675	return ret;
 676}
 677
 678static int
 679remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
 680{
 681	set_bit(MMF_RECALC_UPROBES, &mm->flags);
 682	return set_orig_insn(&uprobe->arch, mm, vaddr);
 683}
 684
 685static inline bool uprobe_is_active(struct uprobe *uprobe)
 686{
 687	return !RB_EMPTY_NODE(&uprobe->rb_node);
 688}
 689/*
 690 * There could be threads that have already hit the breakpoint. They
 691 * will recheck the current insn and restart if find_uprobe() fails.
 692 * See find_active_uprobe().
 693 */
 694static void delete_uprobe(struct uprobe *uprobe)
 695{
 696	if (WARN_ON(!uprobe_is_active(uprobe)))
 697		return;
 698
 699	spin_lock(&uprobes_treelock);
 700	rb_erase(&uprobe->rb_node, &uprobes_tree);
 701	spin_unlock(&uprobes_treelock);
 702	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
 703	put_uprobe(uprobe);
 704}
 705
 706struct map_info {
 707	struct map_info *next;
 708	struct mm_struct *mm;
 709	unsigned long vaddr;
 710};
 711
 712static inline struct map_info *free_map_info(struct map_info *info)
 713{
 714	struct map_info *next = info->next;
 715	kfree(info);
 716	return next;
 717}
 718
 719static struct map_info *
 720build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
 721{
 722	unsigned long pgoff = offset >> PAGE_SHIFT;
 723	struct vm_area_struct *vma;
 724	struct map_info *curr = NULL;
 725	struct map_info *prev = NULL;
 726	struct map_info *info;
 727	int more = 0;
 728
 729 again:
 730	i_mmap_lock_read(mapping);
 731	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
 732		if (!valid_vma(vma, is_register))
 733			continue;
 734
 735		if (!prev && !more) {
 736			/*
 737			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
 738			 * reclaim. This is optimistic, no harm done if it fails.
 739			 */
 740			prev = kmalloc(sizeof(struct map_info),
 741					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
 742			if (prev)
 743				prev->next = NULL;
 744		}
 745		if (!prev) {
 746			more++;
 747			continue;
 748		}
 749
 750		if (!mmget_not_zero(vma->vm_mm))
 751			continue;
 752
 753		info = prev;
 754		prev = prev->next;
 755		info->next = curr;
 756		curr = info;
 757
 758		info->mm = vma->vm_mm;
 759		info->vaddr = offset_to_vaddr(vma, offset);
 760	}
 761	i_mmap_unlock_read(mapping);
 762
 763	if (!more)
 764		goto out;
 765
 766	prev = curr;
 767	while (curr) {
 768		mmput(curr->mm);
 769		curr = curr->next;
 770	}
 771
 772	do {
 773		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
 774		if (!info) {
 775			curr = ERR_PTR(-ENOMEM);
 776			goto out;
 777		}
 778		info->next = prev;
 779		prev = info;
 780	} while (--more);
 781
 782	goto again;
 783 out:
 784	while (prev)
 785		prev = free_map_info(prev);
 786	return curr;
 787}
 788
 789static int
 790register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
 791{
 792	bool is_register = !!new;
 793	struct map_info *info;
 794	int err = 0;
 795
 796	percpu_down_write(&dup_mmap_sem);
 797	info = build_map_info(uprobe->inode->i_mapping,
 798					uprobe->offset, is_register);
 799	if (IS_ERR(info)) {
 800		err = PTR_ERR(info);
 801		goto out;
 802	}
 803
 804	while (info) {
 805		struct mm_struct *mm = info->mm;
 806		struct vm_area_struct *vma;
 807
 808		if (err && is_register)
 809			goto free;
 810
 811		down_write(&mm->mmap_sem);
 812		vma = find_vma(mm, info->vaddr);
 813		if (!vma || !valid_vma(vma, is_register) ||
 814		    file_inode(vma->vm_file) != uprobe->inode)
 815			goto unlock;
 816
 817		if (vma->vm_start > info->vaddr ||
 818		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
 819			goto unlock;
 820
 821		if (is_register) {
 822			/* consult only the "caller", new consumer. */
 823			if (consumer_filter(new,
 824					UPROBE_FILTER_REGISTER, mm))
 825				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
 826		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
 827			if (!filter_chain(uprobe,
 828					UPROBE_FILTER_UNREGISTER, mm))
 829				err |= remove_breakpoint(uprobe, mm, info->vaddr);
 830		}
 831
 832 unlock:
 833		up_write(&mm->mmap_sem);
 834 free:
 835		mmput(mm);
 836		info = free_map_info(info);
 837	}
 838 out:
 839	percpu_up_write(&dup_mmap_sem);
 840	return err;
 841}
 842
 843static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
 844{
 845	consumer_add(uprobe, uc);
 846	return register_for_each_vma(uprobe, uc);
 847}
 848
 849static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
 850{
 851	int err;
 852
 853	if (WARN_ON(!consumer_del(uprobe, uc)))
 854		return;
 855
 856	err = register_for_each_vma(uprobe, NULL);
 857	/* TODO : cant unregister? schedule a worker thread */
 858	if (!uprobe->consumers && !err)
 859		delete_uprobe(uprobe);
 860}
 861
 862/*
 863 * uprobe_register - register a probe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 864 * @inode: the file in which the probe has to be placed.
 865 * @offset: offset from the start of the file.
 866 * @uc: information on howto handle the probe..
 867 *
 868 * Apart from the access refcount, uprobe_register() takes a creation
 869 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
 870 * inserted into the rbtree (i.e first consumer for a @inode:@offset
 871 * tuple).  Creation refcount stops uprobe_unregister from freeing the
 872 * @uprobe even before the register operation is complete. Creation
 873 * refcount is released when the last @uc for the @uprobe
 874 * unregisters. Caller of uprobe_register() is required to keep @inode
 875 * (and the containing mount) referenced.
 876 *
 877 * Return errno if it cannot successully install probes
 878 * else return 0 (success)
 879 */
 880int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
 
 881{
 882	struct uprobe *uprobe;
 883	int ret;
 884
 885	/* Uprobe must have at least one set consumer */
 886	if (!uc->handler && !uc->ret_handler)
 887		return -EINVAL;
 888
 889	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
 890	if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
 891		return -EIO;
 892	/* Racy, just to catch the obvious mistakes */
 893	if (offset > i_size_read(inode))
 894		return -EINVAL;
 895
 896 retry:
 897	uprobe = alloc_uprobe(inode, offset);
 898	if (!uprobe)
 899		return -ENOMEM;
 
 
 
 900	/*
 901	 * We can race with uprobe_unregister()->delete_uprobe().
 902	 * Check uprobe_is_active() and retry if it is false.
 903	 */
 904	down_write(&uprobe->register_rwsem);
 905	ret = -EAGAIN;
 906	if (likely(uprobe_is_active(uprobe))) {
 907		ret = __uprobe_register(uprobe, uc);
 
 908		if (ret)
 909			__uprobe_unregister(uprobe, uc);
 910	}
 911	up_write(&uprobe->register_rwsem);
 912	put_uprobe(uprobe);
 913
 914	if (unlikely(ret == -EAGAIN))
 915		goto retry;
 916	return ret;
 917}
 
 
 
 
 
 
 918EXPORT_SYMBOL_GPL(uprobe_register);
 919
 
 
 
 
 
 
 
 920/*
 921 * uprobe_apply - unregister a already registered probe.
 922 * @inode: the file in which the probe has to be removed.
 923 * @offset: offset from the start of the file.
 924 * @uc: consumer which wants to add more or remove some breakpoints
 925 * @add: add or remove the breakpoints
 926 */
 927int uprobe_apply(struct inode *inode, loff_t offset,
 928			struct uprobe_consumer *uc, bool add)
 929{
 930	struct uprobe *uprobe;
 931	struct uprobe_consumer *con;
 932	int ret = -ENOENT;
 933
 934	uprobe = find_uprobe(inode, offset);
 935	if (WARN_ON(!uprobe))
 936		return ret;
 937
 938	down_write(&uprobe->register_rwsem);
 939	for (con = uprobe->consumers; con && con != uc ; con = con->next)
 940		;
 941	if (con)
 942		ret = register_for_each_vma(uprobe, add ? uc : NULL);
 943	up_write(&uprobe->register_rwsem);
 944	put_uprobe(uprobe);
 945
 946	return ret;
 947}
 948
 949/*
 950 * uprobe_unregister - unregister a already registered probe.
 951 * @inode: the file in which the probe has to be removed.
 952 * @offset: offset from the start of the file.
 953 * @uc: identify which probe if multiple probes are colocated.
 954 */
 955void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
 956{
 957	struct uprobe *uprobe;
 958
 959	uprobe = find_uprobe(inode, offset);
 960	if (WARN_ON(!uprobe))
 961		return;
 962
 963	down_write(&uprobe->register_rwsem);
 964	__uprobe_unregister(uprobe, uc);
 965	up_write(&uprobe->register_rwsem);
 966	put_uprobe(uprobe);
 967}
 968EXPORT_SYMBOL_GPL(uprobe_unregister);
 969
 970static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
 971{
 972	struct vm_area_struct *vma;
 973	int err = 0;
 974
 975	down_read(&mm->mmap_sem);
 976	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 977		unsigned long vaddr;
 978		loff_t offset;
 979
 980		if (!valid_vma(vma, false) ||
 981		    file_inode(vma->vm_file) != uprobe->inode)
 982			continue;
 983
 984		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
 985		if (uprobe->offset <  offset ||
 986		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
 987			continue;
 988
 989		vaddr = offset_to_vaddr(vma, uprobe->offset);
 990		err |= remove_breakpoint(uprobe, mm, vaddr);
 991	}
 992	up_read(&mm->mmap_sem);
 993
 994	return err;
 995}
 996
 997static struct rb_node *
 998find_node_in_range(struct inode *inode, loff_t min, loff_t max)
 999{
1000	struct rb_node *n = uprobes_tree.rb_node;
1001
1002	while (n) {
1003		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1004
1005		if (inode < u->inode) {
1006			n = n->rb_left;
1007		} else if (inode > u->inode) {
1008			n = n->rb_right;
1009		} else {
1010			if (max < u->offset)
1011				n = n->rb_left;
1012			else if (min > u->offset)
1013				n = n->rb_right;
1014			else
1015				break;
1016		}
1017	}
1018
1019	return n;
1020}
1021
1022/*
1023 * For a given range in vma, build a list of probes that need to be inserted.
1024 */
1025static void build_probe_list(struct inode *inode,
1026				struct vm_area_struct *vma,
1027				unsigned long start, unsigned long end,
1028				struct list_head *head)
1029{
1030	loff_t min, max;
1031	struct rb_node *n, *t;
1032	struct uprobe *u;
1033
1034	INIT_LIST_HEAD(head);
1035	min = vaddr_to_offset(vma, start);
1036	max = min + (end - start) - 1;
1037
1038	spin_lock(&uprobes_treelock);
1039	n = find_node_in_range(inode, min, max);
1040	if (n) {
1041		for (t = n; t; t = rb_prev(t)) {
1042			u = rb_entry(t, struct uprobe, rb_node);
1043			if (u->inode != inode || u->offset < min)
1044				break;
1045			list_add(&u->pending_list, head);
1046			get_uprobe(u);
1047		}
1048		for (t = n; (t = rb_next(t)); ) {
1049			u = rb_entry(t, struct uprobe, rb_node);
1050			if (u->inode != inode || u->offset > max)
1051				break;
1052			list_add(&u->pending_list, head);
1053			get_uprobe(u);
1054		}
1055	}
1056	spin_unlock(&uprobes_treelock);
1057}
1058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1059/*
1060 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1061 *
1062 * Currently we ignore all errors and always return 0, the callers
1063 * can't handle the failure anyway.
1064 */
1065int uprobe_mmap(struct vm_area_struct *vma)
1066{
1067	struct list_head tmp_list;
1068	struct uprobe *uprobe, *u;
1069	struct inode *inode;
1070
1071	if (no_uprobe_events() || !valid_vma(vma, true))
 
 
 
 
 
 
 
 
1072		return 0;
1073
1074	inode = file_inode(vma->vm_file);
1075	if (!inode)
1076		return 0;
1077
1078	mutex_lock(uprobes_mmap_hash(inode));
1079	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1080	/*
1081	 * We can race with uprobe_unregister(), this uprobe can be already
1082	 * removed. But in this case filter_chain() must return false, all
1083	 * consumers have gone away.
1084	 */
1085	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1086		if (!fatal_signal_pending(current) &&
1087		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1088			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1089			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1090		}
1091		put_uprobe(uprobe);
1092	}
1093	mutex_unlock(uprobes_mmap_hash(inode));
1094
1095	return 0;
1096}
1097
1098static bool
1099vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1100{
1101	loff_t min, max;
1102	struct inode *inode;
1103	struct rb_node *n;
1104
1105	inode = file_inode(vma->vm_file);
1106
1107	min = vaddr_to_offset(vma, start);
1108	max = min + (end - start) - 1;
1109
1110	spin_lock(&uprobes_treelock);
1111	n = find_node_in_range(inode, min, max);
1112	spin_unlock(&uprobes_treelock);
1113
1114	return !!n;
1115}
1116
1117/*
1118 * Called in context of a munmap of a vma.
1119 */
1120void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1121{
1122	if (no_uprobe_events() || !valid_vma(vma, false))
1123		return;
1124
1125	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1126		return;
1127
1128	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1129	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1130		return;
1131
1132	if (vma_has_uprobes(vma, start, end))
1133		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1134}
1135
1136/* Slot allocation for XOL */
1137static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1138{
1139	struct vm_area_struct *vma;
1140	int ret;
1141
1142	if (down_write_killable(&mm->mmap_sem))
1143		return -EINTR;
1144
1145	if (mm->uprobes_state.xol_area) {
1146		ret = -EALREADY;
1147		goto fail;
1148	}
1149
1150	if (!area->vaddr) {
1151		/* Try to map as high as possible, this is only a hint. */
1152		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1153						PAGE_SIZE, 0, 0);
1154		if (area->vaddr & ~PAGE_MASK) {
1155			ret = area->vaddr;
1156			goto fail;
1157		}
1158	}
1159
1160	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1161				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1162				&area->xol_mapping);
1163	if (IS_ERR(vma)) {
1164		ret = PTR_ERR(vma);
1165		goto fail;
1166	}
1167
1168	ret = 0;
1169	/* pairs with get_xol_area() */
1170	smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1171 fail:
1172	up_write(&mm->mmap_sem);
1173
1174	return ret;
1175}
1176
1177static struct xol_area *__create_xol_area(unsigned long vaddr)
1178{
1179	struct mm_struct *mm = current->mm;
1180	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1181	struct xol_area *area;
1182
1183	area = kmalloc(sizeof(*area), GFP_KERNEL);
1184	if (unlikely(!area))
1185		goto out;
1186
1187	area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
 
1188	if (!area->bitmap)
1189		goto free_area;
1190
1191	area->xol_mapping.name = "[uprobes]";
1192	area->xol_mapping.fault = NULL;
1193	area->xol_mapping.pages = area->pages;
1194	area->pages[0] = alloc_page(GFP_HIGHUSER);
1195	if (!area->pages[0])
1196		goto free_bitmap;
1197	area->pages[1] = NULL;
1198
1199	area->vaddr = vaddr;
1200	init_waitqueue_head(&area->wq);
1201	/* Reserve the 1st slot for get_trampoline_vaddr() */
1202	set_bit(0, area->bitmap);
1203	atomic_set(&area->slot_count, 1);
1204	arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1205
1206	if (!xol_add_vma(mm, area))
1207		return area;
1208
1209	__free_page(area->pages[0]);
1210 free_bitmap:
1211	kfree(area->bitmap);
1212 free_area:
1213	kfree(area);
1214 out:
1215	return NULL;
1216}
1217
1218/*
1219 * get_xol_area - Allocate process's xol_area if necessary.
1220 * This area will be used for storing instructions for execution out of line.
1221 *
1222 * Returns the allocated area or NULL.
1223 */
1224static struct xol_area *get_xol_area(void)
1225{
1226	struct mm_struct *mm = current->mm;
1227	struct xol_area *area;
1228
1229	if (!mm->uprobes_state.xol_area)
1230		__create_xol_area(0);
1231
1232	/* Pairs with xol_add_vma() smp_store_release() */
1233	area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1234	return area;
1235}
1236
1237/*
1238 * uprobe_clear_state - Free the area allocated for slots.
1239 */
1240void uprobe_clear_state(struct mm_struct *mm)
1241{
1242	struct xol_area *area = mm->uprobes_state.xol_area;
1243
 
 
 
 
1244	if (!area)
1245		return;
1246
1247	put_page(area->pages[0]);
1248	kfree(area->bitmap);
1249	kfree(area);
1250}
1251
1252void uprobe_start_dup_mmap(void)
1253{
1254	percpu_down_read(&dup_mmap_sem);
1255}
1256
1257void uprobe_end_dup_mmap(void)
1258{
1259	percpu_up_read(&dup_mmap_sem);
1260}
1261
1262void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1263{
1264	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1265		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1266		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1267		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1268	}
1269}
1270
1271/*
1272 *  - search for a free slot.
1273 */
1274static unsigned long xol_take_insn_slot(struct xol_area *area)
1275{
1276	unsigned long slot_addr;
1277	int slot_nr;
1278
1279	do {
1280		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1281		if (slot_nr < UINSNS_PER_PAGE) {
1282			if (!test_and_set_bit(slot_nr, area->bitmap))
1283				break;
1284
1285			slot_nr = UINSNS_PER_PAGE;
1286			continue;
1287		}
1288		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1289	} while (slot_nr >= UINSNS_PER_PAGE);
1290
1291	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1292	atomic_inc(&area->slot_count);
1293
1294	return slot_addr;
1295}
1296
1297/*
1298 * xol_get_insn_slot - allocate a slot for xol.
1299 * Returns the allocated slot address or 0.
1300 */
1301static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1302{
1303	struct xol_area *area;
1304	unsigned long xol_vaddr;
1305
1306	area = get_xol_area();
1307	if (!area)
1308		return 0;
1309
1310	xol_vaddr = xol_take_insn_slot(area);
1311	if (unlikely(!xol_vaddr))
1312		return 0;
1313
1314	arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1315			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1316
1317	return xol_vaddr;
1318}
1319
1320/*
1321 * xol_free_insn_slot - If slot was earlier allocated by
1322 * @xol_get_insn_slot(), make the slot available for
1323 * subsequent requests.
1324 */
1325static void xol_free_insn_slot(struct task_struct *tsk)
1326{
1327	struct xol_area *area;
1328	unsigned long vma_end;
1329	unsigned long slot_addr;
1330
1331	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1332		return;
1333
1334	slot_addr = tsk->utask->xol_vaddr;
1335	if (unlikely(!slot_addr))
1336		return;
1337
1338	area = tsk->mm->uprobes_state.xol_area;
1339	vma_end = area->vaddr + PAGE_SIZE;
1340	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1341		unsigned long offset;
1342		int slot_nr;
1343
1344		offset = slot_addr - area->vaddr;
1345		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1346		if (slot_nr >= UINSNS_PER_PAGE)
1347			return;
1348
1349		clear_bit(slot_nr, area->bitmap);
1350		atomic_dec(&area->slot_count);
1351		smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1352		if (waitqueue_active(&area->wq))
1353			wake_up(&area->wq);
1354
1355		tsk->utask->xol_vaddr = 0;
1356	}
1357}
1358
1359void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1360				  void *src, unsigned long len)
1361{
1362	/* Initialize the slot */
1363	copy_to_page(page, vaddr, src, len);
1364
1365	/*
1366	 * We probably need flush_icache_user_range() but it needs vma.
1367	 * This should work on most of architectures by default. If
1368	 * architecture needs to do something different it can define
1369	 * its own version of the function.
1370	 */
1371	flush_dcache_page(page);
1372}
1373
1374/**
1375 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1376 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1377 * instruction.
1378 * Return the address of the breakpoint instruction.
1379 */
1380unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1381{
1382	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1383}
1384
1385unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1386{
1387	struct uprobe_task *utask = current->utask;
1388
1389	if (unlikely(utask && utask->active_uprobe))
1390		return utask->vaddr;
1391
1392	return instruction_pointer(regs);
1393}
1394
1395static struct return_instance *free_ret_instance(struct return_instance *ri)
1396{
1397	struct return_instance *next = ri->next;
1398	put_uprobe(ri->uprobe);
1399	kfree(ri);
1400	return next;
1401}
1402
1403/*
1404 * Called with no locks held.
1405 * Called in context of a exiting or a exec-ing thread.
1406 */
1407void uprobe_free_utask(struct task_struct *t)
1408{
1409	struct uprobe_task *utask = t->utask;
1410	struct return_instance *ri;
1411
1412	if (!utask)
1413		return;
1414
1415	if (utask->active_uprobe)
1416		put_uprobe(utask->active_uprobe);
1417
1418	ri = utask->return_instances;
1419	while (ri)
1420		ri = free_ret_instance(ri);
1421
1422	xol_free_insn_slot(t);
1423	kfree(utask);
1424	t->utask = NULL;
1425}
1426
1427/*
1428 * Allocate a uprobe_task object for the task if if necessary.
1429 * Called when the thread hits a breakpoint.
1430 *
1431 * Returns:
1432 * - pointer to new uprobe_task on success
1433 * - NULL otherwise
1434 */
1435static struct uprobe_task *get_utask(void)
1436{
1437	if (!current->utask)
1438		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1439	return current->utask;
1440}
1441
1442static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1443{
1444	struct uprobe_task *n_utask;
1445	struct return_instance **p, *o, *n;
1446
1447	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1448	if (!n_utask)
1449		return -ENOMEM;
1450	t->utask = n_utask;
1451
1452	p = &n_utask->return_instances;
1453	for (o = o_utask->return_instances; o; o = o->next) {
1454		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1455		if (!n)
1456			return -ENOMEM;
1457
1458		*n = *o;
1459		get_uprobe(n->uprobe);
1460		n->next = NULL;
1461
1462		*p = n;
1463		p = &n->next;
1464		n_utask->depth++;
1465	}
1466
1467	return 0;
1468}
1469
1470static void uprobe_warn(struct task_struct *t, const char *msg)
1471{
1472	pr_warn("uprobe: %s:%d failed to %s\n",
1473			current->comm, current->pid, msg);
1474}
1475
1476static void dup_xol_work(struct callback_head *work)
1477{
1478	if (current->flags & PF_EXITING)
1479		return;
1480
1481	if (!__create_xol_area(current->utask->dup_xol_addr) &&
1482			!fatal_signal_pending(current))
1483		uprobe_warn(current, "dup xol area");
1484}
1485
1486/*
1487 * Called in context of a new clone/fork from copy_process.
1488 */
1489void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1490{
1491	struct uprobe_task *utask = current->utask;
1492	struct mm_struct *mm = current->mm;
1493	struct xol_area *area;
1494
1495	t->utask = NULL;
1496
1497	if (!utask || !utask->return_instances)
1498		return;
1499
1500	if (mm == t->mm && !(flags & CLONE_VFORK))
1501		return;
1502
1503	if (dup_utask(t, utask))
1504		return uprobe_warn(t, "dup ret instances");
1505
1506	/* The task can fork() after dup_xol_work() fails */
1507	area = mm->uprobes_state.xol_area;
1508	if (!area)
1509		return uprobe_warn(t, "dup xol area");
1510
1511	if (mm == t->mm)
1512		return;
1513
1514	t->utask->dup_xol_addr = area->vaddr;
1515	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1516	task_work_add(t, &t->utask->dup_xol_work, true);
1517}
1518
1519/*
1520 * Current area->vaddr notion assume the trampoline address is always
1521 * equal area->vaddr.
1522 *
1523 * Returns -1 in case the xol_area is not allocated.
1524 */
1525static unsigned long get_trampoline_vaddr(void)
1526{
1527	struct xol_area *area;
1528	unsigned long trampoline_vaddr = -1;
1529
1530	/* Pairs with xol_add_vma() smp_store_release() */
1531	area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1532	if (area)
1533		trampoline_vaddr = area->vaddr;
1534
1535	return trampoline_vaddr;
1536}
1537
1538static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1539					struct pt_regs *regs)
1540{
1541	struct return_instance *ri = utask->return_instances;
1542	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1543
1544	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1545		ri = free_ret_instance(ri);
1546		utask->depth--;
1547	}
1548	utask->return_instances = ri;
1549}
1550
1551static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1552{
1553	struct return_instance *ri;
1554	struct uprobe_task *utask;
1555	unsigned long orig_ret_vaddr, trampoline_vaddr;
1556	bool chained;
1557
1558	if (!get_xol_area())
1559		return;
1560
1561	utask = get_utask();
1562	if (!utask)
1563		return;
1564
1565	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1566		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1567				" nestedness limit pid/tgid=%d/%d\n",
1568				current->pid, current->tgid);
1569		return;
1570	}
1571
1572	ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1573	if (!ri)
1574		return;
1575
1576	trampoline_vaddr = get_trampoline_vaddr();
1577	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1578	if (orig_ret_vaddr == -1)
1579		goto fail;
1580
1581	/* drop the entries invalidated by longjmp() */
1582	chained = (orig_ret_vaddr == trampoline_vaddr);
1583	cleanup_return_instances(utask, chained, regs);
1584
1585	/*
1586	 * We don't want to keep trampoline address in stack, rather keep the
1587	 * original return address of first caller thru all the consequent
1588	 * instances. This also makes breakpoint unwrapping easier.
1589	 */
1590	if (chained) {
1591		if (!utask->return_instances) {
1592			/*
1593			 * This situation is not possible. Likely we have an
1594			 * attack from user-space.
1595			 */
1596			uprobe_warn(current, "handle tail call");
1597			goto fail;
1598		}
1599		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1600	}
1601
1602	ri->uprobe = get_uprobe(uprobe);
1603	ri->func = instruction_pointer(regs);
1604	ri->stack = user_stack_pointer(regs);
1605	ri->orig_ret_vaddr = orig_ret_vaddr;
1606	ri->chained = chained;
1607
1608	utask->depth++;
1609	ri->next = utask->return_instances;
1610	utask->return_instances = ri;
1611
1612	return;
1613 fail:
1614	kfree(ri);
1615}
1616
1617/* Prepare to single-step probed instruction out of line. */
1618static int
1619pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1620{
1621	struct uprobe_task *utask;
1622	unsigned long xol_vaddr;
1623	int err;
1624
1625	utask = get_utask();
1626	if (!utask)
1627		return -ENOMEM;
1628
1629	xol_vaddr = xol_get_insn_slot(uprobe);
1630	if (!xol_vaddr)
1631		return -ENOMEM;
1632
1633	utask->xol_vaddr = xol_vaddr;
1634	utask->vaddr = bp_vaddr;
1635
1636	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1637	if (unlikely(err)) {
1638		xol_free_insn_slot(current);
1639		return err;
1640	}
1641
1642	utask->active_uprobe = uprobe;
1643	utask->state = UTASK_SSTEP;
1644	return 0;
1645}
1646
1647/*
1648 * If we are singlestepping, then ensure this thread is not connected to
1649 * non-fatal signals until completion of singlestep.  When xol insn itself
1650 * triggers the signal,  restart the original insn even if the task is
1651 * already SIGKILL'ed (since coredump should report the correct ip).  This
1652 * is even more important if the task has a handler for SIGSEGV/etc, The
1653 * _same_ instruction should be repeated again after return from the signal
1654 * handler, and SSTEP can never finish in this case.
1655 */
1656bool uprobe_deny_signal(void)
1657{
1658	struct task_struct *t = current;
1659	struct uprobe_task *utask = t->utask;
1660
1661	if (likely(!utask || !utask->active_uprobe))
1662		return false;
1663
1664	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1665
1666	if (signal_pending(t)) {
1667		spin_lock_irq(&t->sighand->siglock);
1668		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1669		spin_unlock_irq(&t->sighand->siglock);
1670
1671		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1672			utask->state = UTASK_SSTEP_TRAPPED;
1673			set_tsk_thread_flag(t, TIF_UPROBE);
1674		}
1675	}
1676
1677	return true;
1678}
1679
1680static void mmf_recalc_uprobes(struct mm_struct *mm)
1681{
1682	struct vm_area_struct *vma;
1683
1684	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1685		if (!valid_vma(vma, false))
1686			continue;
1687		/*
1688		 * This is not strictly accurate, we can race with
1689		 * uprobe_unregister() and see the already removed
1690		 * uprobe if delete_uprobe() was not yet called.
1691		 * Or this uprobe can be filtered out.
1692		 */
1693		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1694			return;
1695	}
1696
1697	clear_bit(MMF_HAS_UPROBES, &mm->flags);
1698}
1699
1700static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1701{
1702	struct page *page;
1703	uprobe_opcode_t opcode;
1704	int result;
1705
1706	pagefault_disable();
1707	result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
1708	pagefault_enable();
1709
1710	if (likely(result == 0))
1711		goto out;
1712
1713	/*
1714	 * The NULL 'tsk' here ensures that any faults that occur here
1715	 * will not be accounted to the task.  'mm' *is* current->mm,
1716	 * but we treat this as a 'remote' access since it is
1717	 * essentially a kernel access to the memory.
1718	 */
1719	result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
1720			NULL, NULL);
1721	if (result < 0)
1722		return result;
1723
1724	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1725	put_page(page);
1726 out:
1727	/* This needs to return true for any variant of the trap insn */
1728	return is_trap_insn(&opcode);
1729}
1730
1731static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1732{
1733	struct mm_struct *mm = current->mm;
1734	struct uprobe *uprobe = NULL;
1735	struct vm_area_struct *vma;
1736
1737	down_read(&mm->mmap_sem);
1738	vma = find_vma(mm, bp_vaddr);
1739	if (vma && vma->vm_start <= bp_vaddr) {
1740		if (valid_vma(vma, false)) {
1741			struct inode *inode = file_inode(vma->vm_file);
1742			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1743
1744			uprobe = find_uprobe(inode, offset);
1745		}
1746
1747		if (!uprobe)
1748			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
1749	} else {
1750		*is_swbp = -EFAULT;
1751	}
1752
1753	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1754		mmf_recalc_uprobes(mm);
1755	up_read(&mm->mmap_sem);
1756
1757	return uprobe;
1758}
1759
1760static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1761{
1762	struct uprobe_consumer *uc;
1763	int remove = UPROBE_HANDLER_REMOVE;
1764	bool need_prep = false; /* prepare return uprobe, when needed */
1765
1766	down_read(&uprobe->register_rwsem);
1767	for (uc = uprobe->consumers; uc; uc = uc->next) {
1768		int rc = 0;
1769
1770		if (uc->handler) {
1771			rc = uc->handler(uc, regs);
1772			WARN(rc & ~UPROBE_HANDLER_MASK,
1773				"bad rc=0x%x from %pf()\n", rc, uc->handler);
1774		}
1775
1776		if (uc->ret_handler)
1777			need_prep = true;
1778
1779		remove &= rc;
1780	}
1781
1782	if (need_prep && !remove)
1783		prepare_uretprobe(uprobe, regs); /* put bp at return */
1784
1785	if (remove && uprobe->consumers) {
1786		WARN_ON(!uprobe_is_active(uprobe));
1787		unapply_uprobe(uprobe, current->mm);
1788	}
1789	up_read(&uprobe->register_rwsem);
1790}
1791
1792static void
1793handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1794{
1795	struct uprobe *uprobe = ri->uprobe;
1796	struct uprobe_consumer *uc;
1797
1798	down_read(&uprobe->register_rwsem);
1799	for (uc = uprobe->consumers; uc; uc = uc->next) {
1800		if (uc->ret_handler)
1801			uc->ret_handler(uc, ri->func, regs);
1802	}
1803	up_read(&uprobe->register_rwsem);
1804}
1805
1806static struct return_instance *find_next_ret_chain(struct return_instance *ri)
1807{
1808	bool chained;
1809
1810	do {
1811		chained = ri->chained;
1812		ri = ri->next;	/* can't be NULL if chained */
1813	} while (chained);
1814
1815	return ri;
1816}
1817
1818static void handle_trampoline(struct pt_regs *regs)
1819{
1820	struct uprobe_task *utask;
1821	struct return_instance *ri, *next;
1822	bool valid;
1823
1824	utask = current->utask;
1825	if (!utask)
1826		goto sigill;
1827
1828	ri = utask->return_instances;
1829	if (!ri)
1830		goto sigill;
1831
1832	do {
1833		/*
1834		 * We should throw out the frames invalidated by longjmp().
1835		 * If this chain is valid, then the next one should be alive
1836		 * or NULL; the latter case means that nobody but ri->func
1837		 * could hit this trampoline on return. TODO: sigaltstack().
1838		 */
1839		next = find_next_ret_chain(ri);
1840		valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
1841
1842		instruction_pointer_set(regs, ri->orig_ret_vaddr);
1843		do {
1844			if (valid)
1845				handle_uretprobe_chain(ri, regs);
1846			ri = free_ret_instance(ri);
1847			utask->depth--;
1848		} while (ri != next);
1849	} while (!valid);
1850
1851	utask->return_instances = ri;
1852	return;
1853
1854 sigill:
1855	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
1856	force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1857
1858}
1859
1860bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1861{
1862	return false;
1863}
1864
1865bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1866					struct pt_regs *regs)
1867{
1868	return true;
1869}
1870
1871/*
1872 * Run handler and ask thread to singlestep.
1873 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1874 */
1875static void handle_swbp(struct pt_regs *regs)
1876{
1877	struct uprobe *uprobe;
1878	unsigned long bp_vaddr;
1879	int uninitialized_var(is_swbp);
1880
1881	bp_vaddr = uprobe_get_swbp_addr(regs);
1882	if (bp_vaddr == get_trampoline_vaddr())
1883		return handle_trampoline(regs);
1884
1885	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1886	if (!uprobe) {
1887		if (is_swbp > 0) {
1888			/* No matching uprobe; signal SIGTRAP. */
1889			send_sig(SIGTRAP, current, 0);
1890		} else {
1891			/*
1892			 * Either we raced with uprobe_unregister() or we can't
1893			 * access this memory. The latter is only possible if
1894			 * another thread plays with our ->mm. In both cases
1895			 * we can simply restart. If this vma was unmapped we
1896			 * can pretend this insn was not executed yet and get
1897			 * the (correct) SIGSEGV after restart.
1898			 */
1899			instruction_pointer_set(regs, bp_vaddr);
1900		}
1901		return;
1902	}
1903
1904	/* change it in advance for ->handler() and restart */
1905	instruction_pointer_set(regs, bp_vaddr);
1906
1907	/*
1908	 * TODO: move copy_insn/etc into _register and remove this hack.
1909	 * After we hit the bp, _unregister + _register can install the
1910	 * new and not-yet-analyzed uprobe at the same address, restart.
1911	 */
1912	smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1913	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1914		goto out;
1915
 
 
 
 
 
 
 
 
 
1916	/* Tracing handlers use ->utask to communicate with fetch methods */
1917	if (!get_utask())
1918		goto out;
1919
1920	if (arch_uprobe_ignore(&uprobe->arch, regs))
1921		goto out;
1922
1923	handler_chain(uprobe, regs);
1924
1925	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1926		goto out;
1927
1928	if (!pre_ssout(uprobe, regs, bp_vaddr))
1929		return;
1930
1931	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1932out:
1933	put_uprobe(uprobe);
1934}
1935
1936/*
1937 * Perform required fix-ups and disable singlestep.
1938 * Allow pending signals to take effect.
1939 */
1940static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1941{
1942	struct uprobe *uprobe;
1943	int err = 0;
1944
1945	uprobe = utask->active_uprobe;
1946	if (utask->state == UTASK_SSTEP_ACK)
1947		err = arch_uprobe_post_xol(&uprobe->arch, regs);
1948	else if (utask->state == UTASK_SSTEP_TRAPPED)
1949		arch_uprobe_abort_xol(&uprobe->arch, regs);
1950	else
1951		WARN_ON_ONCE(1);
1952
1953	put_uprobe(uprobe);
1954	utask->active_uprobe = NULL;
1955	utask->state = UTASK_RUNNING;
1956	xol_free_insn_slot(current);
1957
1958	spin_lock_irq(&current->sighand->siglock);
1959	recalc_sigpending(); /* see uprobe_deny_signal() */
1960	spin_unlock_irq(&current->sighand->siglock);
1961
1962	if (unlikely(err)) {
1963		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1964		force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1965	}
1966}
1967
1968/*
1969 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1970 * allows the thread to return from interrupt. After that handle_swbp()
1971 * sets utask->active_uprobe.
1972 *
1973 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1974 * and allows the thread to return from interrupt.
1975 *
1976 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1977 * uprobe_notify_resume().
1978 */
1979void uprobe_notify_resume(struct pt_regs *regs)
1980{
1981	struct uprobe_task *utask;
1982
1983	clear_thread_flag(TIF_UPROBE);
1984
1985	utask = current->utask;
1986	if (utask && utask->active_uprobe)
1987		handle_singlestep(utask, regs);
1988	else
1989		handle_swbp(regs);
1990}
1991
1992/*
1993 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1994 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1995 */
1996int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1997{
1998	if (!current->mm)
1999		return 0;
2000
2001	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2002	    (!current->utask || !current->utask->return_instances))
2003		return 0;
2004
2005	set_thread_flag(TIF_UPROBE);
2006	return 1;
2007}
2008
2009/*
2010 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2011 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2012 */
2013int uprobe_post_sstep_notifier(struct pt_regs *regs)
2014{
2015	struct uprobe_task *utask = current->utask;
2016
2017	if (!current->mm || !utask || !utask->active_uprobe)
2018		/* task is currently not uprobed */
2019		return 0;
2020
2021	utask->state = UTASK_SSTEP_ACK;
2022	set_thread_flag(TIF_UPROBE);
2023	return 1;
2024}
2025
2026static struct notifier_block uprobe_exception_nb = {
2027	.notifier_call		= arch_uprobe_exception_notify,
2028	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2029};
2030
2031static int __init init_uprobes(void)
2032{
2033	int i;
2034
2035	for (i = 0; i < UPROBES_HASH_SZ; i++)
2036		mutex_init(&uprobes_mmap_mutex[i]);
2037
2038	if (percpu_init_rwsem(&dup_mmap_sem))
2039		return -ENOMEM;
2040
2041	return register_die_notifier(&uprobe_exception_nb);
2042}
2043__initcall(init_uprobes);