Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Procedures for creating, accessing and interpreting the device tree.
   4 *
   5 * Paul Mackerras	August 1996.
   6 * Copyright (C) 1996-2005 Paul Mackerras.
   7 *
   8 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
   9 *    {engebret|bergner}@us.ibm.com
  10 *
  11 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
  12 *
  13 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
  14 *  Grant Likely.
  15 */
  16
  17#define pr_fmt(fmt)	"OF: " fmt
  18
  19#include <linux/bitmap.h>
  20#include <linux/console.h>
  21#include <linux/ctype.h>
  22#include <linux/cpu.h>
  23#include <linux/module.h>
  24#include <linux/of.h>
  25#include <linux/of_device.h>
  26#include <linux/of_graph.h>
  27#include <linux/spinlock.h>
  28#include <linux/slab.h>
  29#include <linux/string.h>
  30#include <linux/proc_fs.h>
  31
  32#include "of_private.h"
  33
  34LIST_HEAD(aliases_lookup);
  35
  36struct device_node *of_root;
  37EXPORT_SYMBOL(of_root);
  38struct device_node *of_chosen;
  39struct device_node *of_aliases;
  40struct device_node *of_stdout;
  41static const char *of_stdout_options;
  42
  43struct kset *of_kset;
  44
  45/*
  46 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
  47 * This mutex must be held whenever modifications are being made to the
  48 * device tree. The of_{attach,detach}_node() and
  49 * of_{add,remove,update}_property() helpers make sure this happens.
  50 */
  51DEFINE_MUTEX(of_mutex);
  52
  53/* use when traversing tree through the child, sibling,
  54 * or parent members of struct device_node.
  55 */
  56DEFINE_RAW_SPINLOCK(devtree_lock);
  57
  58bool of_node_name_eq(const struct device_node *np, const char *name)
  59{
  60	const char *node_name;
  61	size_t len;
  62
  63	if (!np)
  64		return false;
  65
  66	node_name = kbasename(np->full_name);
  67	len = strchrnul(node_name, '@') - node_name;
  68
  69	return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
  70}
  71EXPORT_SYMBOL(of_node_name_eq);
  72
  73bool of_node_name_prefix(const struct device_node *np, const char *prefix)
  74{
  75	if (!np)
  76		return false;
  77
  78	return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
  79}
  80EXPORT_SYMBOL(of_node_name_prefix);
  81
  82static bool __of_node_is_type(const struct device_node *np, const char *type)
  83{
  84	const char *match = __of_get_property(np, "device_type", NULL);
  85
  86	return np && match && type && !strcmp(match, type);
  87}
  88
  89int of_n_addr_cells(struct device_node *np)
  90{
  91	u32 cells;
  92
  93	do {
  94		if (np->parent)
  95			np = np->parent;
  96		if (!of_property_read_u32(np, "#address-cells", &cells))
  97			return cells;
  98	} while (np->parent);
  99	/* No #address-cells property for the root node */
 100	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
 101}
 102EXPORT_SYMBOL(of_n_addr_cells);
 103
 104int of_n_size_cells(struct device_node *np)
 105{
 106	u32 cells;
 107
 108	do {
 109		if (np->parent)
 110			np = np->parent;
 111		if (!of_property_read_u32(np, "#size-cells", &cells))
 112			return cells;
 113	} while (np->parent);
 114	/* No #size-cells property for the root node */
 115	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
 116}
 117EXPORT_SYMBOL(of_n_size_cells);
 118
 119#ifdef CONFIG_NUMA
 120int __weak of_node_to_nid(struct device_node *np)
 121{
 122	return NUMA_NO_NODE;
 123}
 124#endif
 125
 
 
 
 126/*
 127 * Assumptions behind phandle_cache implementation:
 128 *   - phandle property values are in a contiguous range of 1..n
 129 *
 130 * If the assumptions do not hold, then
 131 *   - the phandle lookup overhead reduction provided by the cache
 132 *     will likely be less
 133 */
 134
 135static struct device_node **phandle_cache;
 136static u32 phandle_cache_mask;
 137
 138/*
 139 * Caller must hold devtree_lock.
 140 */
 141static void __of_free_phandle_cache(void)
 142{
 143	u32 cache_entries = phandle_cache_mask + 1;
 144	u32 k;
 145
 146	if (!phandle_cache)
 147		return;
 148
 149	for (k = 0; k < cache_entries; k++)
 150		of_node_put(phandle_cache[k]);
 151
 152	kfree(phandle_cache);
 153	phandle_cache = NULL;
 154}
 155
 156int of_free_phandle_cache(void)
 157{
 158	unsigned long flags;
 159
 160	raw_spin_lock_irqsave(&devtree_lock, flags);
 161
 162	__of_free_phandle_cache();
 163
 164	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 165
 166	return 0;
 167}
 168#if !defined(CONFIG_MODULES)
 169late_initcall_sync(of_free_phandle_cache);
 170#endif
 171
 172/*
 173 * Caller must hold devtree_lock.
 174 */
 175void __of_free_phandle_cache_entry(phandle handle)
 176{
 177	phandle masked_handle;
 178	struct device_node *np;
 179
 180	if (!handle)
 181		return;
 182
 183	masked_handle = handle & phandle_cache_mask;
 184
 185	if (phandle_cache) {
 186		np = phandle_cache[masked_handle];
 187		if (np && handle == np->phandle) {
 188			of_node_put(np);
 189			phandle_cache[masked_handle] = NULL;
 190		}
 191	}
 192}
 193
 194void of_populate_phandle_cache(void)
 195{
 196	unsigned long flags;
 197	u32 cache_entries;
 198	struct device_node *np;
 199	u32 phandles = 0;
 200
 201	raw_spin_lock_irqsave(&devtree_lock, flags);
 202
 203	__of_free_phandle_cache();
 
 204
 205	for_each_of_allnodes(np)
 206		if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
 207			phandles++;
 208
 209	if (!phandles)
 210		goto out;
 211
 212	cache_entries = roundup_pow_of_two(phandles);
 213	phandle_cache_mask = cache_entries - 1;
 214
 215	phandle_cache = kcalloc(cache_entries, sizeof(*phandle_cache),
 216				GFP_ATOMIC);
 217	if (!phandle_cache)
 218		goto out;
 219
 220	for_each_of_allnodes(np)
 221		if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL) {
 222			of_node_get(np);
 223			phandle_cache[np->phandle & phandle_cache_mask] = np;
 224		}
 225
 226out:
 227	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 228}
 229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 230void __init of_core_init(void)
 231{
 232	struct device_node *np;
 233
 234	of_populate_phandle_cache();
 235
 236	/* Create the kset, and register existing nodes */
 237	mutex_lock(&of_mutex);
 238	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
 239	if (!of_kset) {
 240		mutex_unlock(&of_mutex);
 241		pr_err("failed to register existing nodes\n");
 242		return;
 243	}
 244	for_each_of_allnodes(np)
 245		__of_attach_node_sysfs(np);
 246	mutex_unlock(&of_mutex);
 247
 248	/* Symlink in /proc as required by userspace ABI */
 249	if (of_root)
 250		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
 251}
 252
 253static struct property *__of_find_property(const struct device_node *np,
 254					   const char *name, int *lenp)
 255{
 256	struct property *pp;
 257
 258	if (!np)
 259		return NULL;
 260
 261	for (pp = np->properties; pp; pp = pp->next) {
 262		if (of_prop_cmp(pp->name, name) == 0) {
 263			if (lenp)
 264				*lenp = pp->length;
 265			break;
 266		}
 267	}
 268
 269	return pp;
 270}
 271
 272struct property *of_find_property(const struct device_node *np,
 273				  const char *name,
 274				  int *lenp)
 275{
 276	struct property *pp;
 277	unsigned long flags;
 278
 279	raw_spin_lock_irqsave(&devtree_lock, flags);
 280	pp = __of_find_property(np, name, lenp);
 281	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 282
 283	return pp;
 284}
 285EXPORT_SYMBOL(of_find_property);
 286
 287struct device_node *__of_find_all_nodes(struct device_node *prev)
 288{
 289	struct device_node *np;
 290	if (!prev) {
 291		np = of_root;
 292	} else if (prev->child) {
 293		np = prev->child;
 294	} else {
 295		/* Walk back up looking for a sibling, or the end of the structure */
 296		np = prev;
 297		while (np->parent && !np->sibling)
 298			np = np->parent;
 299		np = np->sibling; /* Might be null at the end of the tree */
 300	}
 301	return np;
 302}
 303
 304/**
 305 * of_find_all_nodes - Get next node in global list
 306 * @prev:	Previous node or NULL to start iteration
 307 *		of_node_put() will be called on it
 308 *
 309 * Returns a node pointer with refcount incremented, use
 310 * of_node_put() on it when done.
 311 */
 312struct device_node *of_find_all_nodes(struct device_node *prev)
 313{
 314	struct device_node *np;
 315	unsigned long flags;
 316
 317	raw_spin_lock_irqsave(&devtree_lock, flags);
 318	np = __of_find_all_nodes(prev);
 319	of_node_get(np);
 320	of_node_put(prev);
 321	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 322	return np;
 323}
 324EXPORT_SYMBOL(of_find_all_nodes);
 325
 326/*
 327 * Find a property with a given name for a given node
 328 * and return the value.
 329 */
 330const void *__of_get_property(const struct device_node *np,
 331			      const char *name, int *lenp)
 332{
 333	struct property *pp = __of_find_property(np, name, lenp);
 334
 335	return pp ? pp->value : NULL;
 336}
 337
 338/*
 339 * Find a property with a given name for a given node
 340 * and return the value.
 341 */
 342const void *of_get_property(const struct device_node *np, const char *name,
 343			    int *lenp)
 344{
 345	struct property *pp = of_find_property(np, name, lenp);
 346
 347	return pp ? pp->value : NULL;
 348}
 349EXPORT_SYMBOL(of_get_property);
 350
 351/*
 352 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
 353 *
 354 * @cpu: logical cpu index of a core/thread
 355 * @phys_id: physical identifier of a core/thread
 356 *
 357 * CPU logical to physical index mapping is architecture specific.
 358 * However this __weak function provides a default match of physical
 359 * id to logical cpu index. phys_id provided here is usually values read
 360 * from the device tree which must match the hardware internal registers.
 361 *
 362 * Returns true if the physical identifier and the logical cpu index
 363 * correspond to the same core/thread, false otherwise.
 364 */
 365bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
 366{
 367	return (u32)phys_id == cpu;
 368}
 369
 370/**
 371 * Checks if the given "prop_name" property holds the physical id of the
 372 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
 373 * NULL, local thread number within the core is returned in it.
 374 */
 375static bool __of_find_n_match_cpu_property(struct device_node *cpun,
 376			const char *prop_name, int cpu, unsigned int *thread)
 377{
 378	const __be32 *cell;
 379	int ac, prop_len, tid;
 380	u64 hwid;
 381
 382	ac = of_n_addr_cells(cpun);
 383	cell = of_get_property(cpun, prop_name, &prop_len);
 384	if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
 385		return true;
 386	if (!cell || !ac)
 387		return false;
 388	prop_len /= sizeof(*cell) * ac;
 389	for (tid = 0; tid < prop_len; tid++) {
 390		hwid = of_read_number(cell, ac);
 391		if (arch_match_cpu_phys_id(cpu, hwid)) {
 392			if (thread)
 393				*thread = tid;
 394			return true;
 395		}
 396		cell += ac;
 397	}
 398	return false;
 399}
 400
 401/*
 402 * arch_find_n_match_cpu_physical_id - See if the given device node is
 403 * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
 404 * else false.  If 'thread' is non-NULL, the local thread number within the
 405 * core is returned in it.
 406 */
 407bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
 408					      int cpu, unsigned int *thread)
 409{
 410	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
 411	 * for thread ids on PowerPC. If it doesn't exist fallback to
 412	 * standard "reg" property.
 413	 */
 414	if (IS_ENABLED(CONFIG_PPC) &&
 415	    __of_find_n_match_cpu_property(cpun,
 416					   "ibm,ppc-interrupt-server#s",
 417					   cpu, thread))
 418		return true;
 419
 420	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
 421}
 422
 423/**
 424 * of_get_cpu_node - Get device node associated with the given logical CPU
 425 *
 426 * @cpu: CPU number(logical index) for which device node is required
 427 * @thread: if not NULL, local thread number within the physical core is
 428 *          returned
 429 *
 430 * The main purpose of this function is to retrieve the device node for the
 431 * given logical CPU index. It should be used to initialize the of_node in
 432 * cpu device. Once of_node in cpu device is populated, all the further
 433 * references can use that instead.
 434 *
 435 * CPU logical to physical index mapping is architecture specific and is built
 436 * before booting secondary cores. This function uses arch_match_cpu_phys_id
 437 * which can be overridden by architecture specific implementation.
 438 *
 439 * Returns a node pointer for the logical cpu with refcount incremented, use
 440 * of_node_put() on it when done. Returns NULL if not found.
 441 */
 442struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
 443{
 444	struct device_node *cpun;
 445
 446	for_each_of_cpu_node(cpun) {
 447		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
 448			return cpun;
 449	}
 450	return NULL;
 451}
 452EXPORT_SYMBOL(of_get_cpu_node);
 453
 454/**
 455 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
 456 *
 457 * @cpu_node: Pointer to the device_node for CPU.
 458 *
 459 * Returns the logical CPU number of the given CPU device_node.
 460 * Returns -ENODEV if the CPU is not found.
 461 */
 462int of_cpu_node_to_id(struct device_node *cpu_node)
 463{
 464	int cpu;
 465	bool found = false;
 466	struct device_node *np;
 467
 468	for_each_possible_cpu(cpu) {
 469		np = of_cpu_device_node_get(cpu);
 470		found = (cpu_node == np);
 471		of_node_put(np);
 472		if (found)
 473			return cpu;
 474	}
 475
 476	return -ENODEV;
 477}
 478EXPORT_SYMBOL(of_cpu_node_to_id);
 479
 480/**
 481 * __of_device_is_compatible() - Check if the node matches given constraints
 482 * @device: pointer to node
 483 * @compat: required compatible string, NULL or "" for any match
 484 * @type: required device_type value, NULL or "" for any match
 485 * @name: required node name, NULL or "" for any match
 486 *
 487 * Checks if the given @compat, @type and @name strings match the
 488 * properties of the given @device. A constraints can be skipped by
 489 * passing NULL or an empty string as the constraint.
 490 *
 491 * Returns 0 for no match, and a positive integer on match. The return
 492 * value is a relative score with larger values indicating better
 493 * matches. The score is weighted for the most specific compatible value
 494 * to get the highest score. Matching type is next, followed by matching
 495 * name. Practically speaking, this results in the following priority
 496 * order for matches:
 497 *
 498 * 1. specific compatible && type && name
 499 * 2. specific compatible && type
 500 * 3. specific compatible && name
 501 * 4. specific compatible
 502 * 5. general compatible && type && name
 503 * 6. general compatible && type
 504 * 7. general compatible && name
 505 * 8. general compatible
 506 * 9. type && name
 507 * 10. type
 508 * 11. name
 509 */
 510static int __of_device_is_compatible(const struct device_node *device,
 511				     const char *compat, const char *type, const char *name)
 512{
 513	struct property *prop;
 514	const char *cp;
 515	int index = 0, score = 0;
 516
 517	/* Compatible match has highest priority */
 518	if (compat && compat[0]) {
 519		prop = __of_find_property(device, "compatible", NULL);
 520		for (cp = of_prop_next_string(prop, NULL); cp;
 521		     cp = of_prop_next_string(prop, cp), index++) {
 522			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
 523				score = INT_MAX/2 - (index << 2);
 524				break;
 525			}
 526		}
 527		if (!score)
 528			return 0;
 529	}
 530
 531	/* Matching type is better than matching name */
 532	if (type && type[0]) {
 533		if (!__of_node_is_type(device, type))
 534			return 0;
 535		score += 2;
 536	}
 537
 538	/* Matching name is a bit better than not */
 539	if (name && name[0]) {
 540		if (!of_node_name_eq(device, name))
 541			return 0;
 542		score++;
 543	}
 544
 545	return score;
 546}
 547
 548/** Checks if the given "compat" string matches one of the strings in
 549 * the device's "compatible" property
 550 */
 551int of_device_is_compatible(const struct device_node *device,
 552		const char *compat)
 553{
 554	unsigned long flags;
 555	int res;
 556
 557	raw_spin_lock_irqsave(&devtree_lock, flags);
 558	res = __of_device_is_compatible(device, compat, NULL, NULL);
 559	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 560	return res;
 561}
 562EXPORT_SYMBOL(of_device_is_compatible);
 563
 564/** Checks if the device is compatible with any of the entries in
 565 *  a NULL terminated array of strings. Returns the best match
 566 *  score or 0.
 567 */
 568int of_device_compatible_match(struct device_node *device,
 569			       const char *const *compat)
 570{
 571	unsigned int tmp, score = 0;
 572
 573	if (!compat)
 574		return 0;
 575
 576	while (*compat) {
 577		tmp = of_device_is_compatible(device, *compat);
 578		if (tmp > score)
 579			score = tmp;
 580		compat++;
 581	}
 582
 583	return score;
 584}
 585
 586/**
 587 * of_machine_is_compatible - Test root of device tree for a given compatible value
 588 * @compat: compatible string to look for in root node's compatible property.
 589 *
 590 * Returns a positive integer if the root node has the given value in its
 591 * compatible property.
 592 */
 593int of_machine_is_compatible(const char *compat)
 594{
 595	struct device_node *root;
 596	int rc = 0;
 597
 598	root = of_find_node_by_path("/");
 599	if (root) {
 600		rc = of_device_is_compatible(root, compat);
 601		of_node_put(root);
 602	}
 603	return rc;
 604}
 605EXPORT_SYMBOL(of_machine_is_compatible);
 606
 607/**
 608 *  __of_device_is_available - check if a device is available for use
 609 *
 610 *  @device: Node to check for availability, with locks already held
 611 *
 612 *  Returns true if the status property is absent or set to "okay" or "ok",
 613 *  false otherwise
 614 */
 615static bool __of_device_is_available(const struct device_node *device)
 616{
 617	const char *status;
 618	int statlen;
 619
 620	if (!device)
 621		return false;
 622
 623	status = __of_get_property(device, "status", &statlen);
 624	if (status == NULL)
 625		return true;
 626
 627	if (statlen > 0) {
 628		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
 629			return true;
 630	}
 631
 632	return false;
 633}
 634
 635/**
 636 *  of_device_is_available - check if a device is available for use
 637 *
 638 *  @device: Node to check for availability
 639 *
 640 *  Returns true if the status property is absent or set to "okay" or "ok",
 641 *  false otherwise
 642 */
 643bool of_device_is_available(const struct device_node *device)
 644{
 645	unsigned long flags;
 646	bool res;
 647
 648	raw_spin_lock_irqsave(&devtree_lock, flags);
 649	res = __of_device_is_available(device);
 650	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 651	return res;
 652
 653}
 654EXPORT_SYMBOL(of_device_is_available);
 655
 656/**
 657 *  of_device_is_big_endian - check if a device has BE registers
 658 *
 659 *  @device: Node to check for endianness
 660 *
 661 *  Returns true if the device has a "big-endian" property, or if the kernel
 662 *  was compiled for BE *and* the device has a "native-endian" property.
 663 *  Returns false otherwise.
 664 *
 665 *  Callers would nominally use ioread32be/iowrite32be if
 666 *  of_device_is_big_endian() == true, or readl/writel otherwise.
 667 */
 668bool of_device_is_big_endian(const struct device_node *device)
 669{
 670	if (of_property_read_bool(device, "big-endian"))
 671		return true;
 672	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
 673	    of_property_read_bool(device, "native-endian"))
 674		return true;
 675	return false;
 676}
 677EXPORT_SYMBOL(of_device_is_big_endian);
 678
 679/**
 680 *	of_get_parent - Get a node's parent if any
 681 *	@node:	Node to get parent
 682 *
 683 *	Returns a node pointer with refcount incremented, use
 684 *	of_node_put() on it when done.
 685 */
 686struct device_node *of_get_parent(const struct device_node *node)
 687{
 688	struct device_node *np;
 689	unsigned long flags;
 690
 691	if (!node)
 692		return NULL;
 693
 694	raw_spin_lock_irqsave(&devtree_lock, flags);
 695	np = of_node_get(node->parent);
 696	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 697	return np;
 698}
 699EXPORT_SYMBOL(of_get_parent);
 700
 701/**
 702 *	of_get_next_parent - Iterate to a node's parent
 703 *	@node:	Node to get parent of
 704 *
 705 *	This is like of_get_parent() except that it drops the
 706 *	refcount on the passed node, making it suitable for iterating
 707 *	through a node's parents.
 708 *
 709 *	Returns a node pointer with refcount incremented, use
 710 *	of_node_put() on it when done.
 711 */
 712struct device_node *of_get_next_parent(struct device_node *node)
 713{
 714	struct device_node *parent;
 715	unsigned long flags;
 716
 717	if (!node)
 718		return NULL;
 719
 720	raw_spin_lock_irqsave(&devtree_lock, flags);
 721	parent = of_node_get(node->parent);
 722	of_node_put(node);
 723	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 724	return parent;
 725}
 726EXPORT_SYMBOL(of_get_next_parent);
 727
 728static struct device_node *__of_get_next_child(const struct device_node *node,
 729						struct device_node *prev)
 730{
 731	struct device_node *next;
 732
 733	if (!node)
 734		return NULL;
 735
 736	next = prev ? prev->sibling : node->child;
 737	for (; next; next = next->sibling)
 738		if (of_node_get(next))
 739			break;
 740	of_node_put(prev);
 741	return next;
 742}
 743#define __for_each_child_of_node(parent, child) \
 744	for (child = __of_get_next_child(parent, NULL); child != NULL; \
 745	     child = __of_get_next_child(parent, child))
 746
 747/**
 748 *	of_get_next_child - Iterate a node childs
 749 *	@node:	parent node
 750 *	@prev:	previous child of the parent node, or NULL to get first
 751 *
 752 *	Returns a node pointer with refcount incremented, use of_node_put() on
 753 *	it when done. Returns NULL when prev is the last child. Decrements the
 754 *	refcount of prev.
 755 */
 756struct device_node *of_get_next_child(const struct device_node *node,
 757	struct device_node *prev)
 758{
 759	struct device_node *next;
 760	unsigned long flags;
 761
 762	raw_spin_lock_irqsave(&devtree_lock, flags);
 763	next = __of_get_next_child(node, prev);
 764	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 765	return next;
 766}
 767EXPORT_SYMBOL(of_get_next_child);
 768
 769/**
 770 *	of_get_next_available_child - Find the next available child node
 771 *	@node:	parent node
 772 *	@prev:	previous child of the parent node, or NULL to get first
 773 *
 774 *      This function is like of_get_next_child(), except that it
 775 *      automatically skips any disabled nodes (i.e. status = "disabled").
 776 */
 777struct device_node *of_get_next_available_child(const struct device_node *node,
 778	struct device_node *prev)
 779{
 780	struct device_node *next;
 781	unsigned long flags;
 782
 783	if (!node)
 784		return NULL;
 785
 786	raw_spin_lock_irqsave(&devtree_lock, flags);
 787	next = prev ? prev->sibling : node->child;
 788	for (; next; next = next->sibling) {
 789		if (!__of_device_is_available(next))
 790			continue;
 791		if (of_node_get(next))
 792			break;
 793	}
 794	of_node_put(prev);
 795	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 796	return next;
 797}
 798EXPORT_SYMBOL(of_get_next_available_child);
 799
 800/**
 801 *	of_get_next_cpu_node - Iterate on cpu nodes
 802 *	@prev:	previous child of the /cpus node, or NULL to get first
 803 *
 804 *	Returns a cpu node pointer with refcount incremented, use of_node_put()
 805 *	on it when done. Returns NULL when prev is the last child. Decrements
 806 *	the refcount of prev.
 807 */
 808struct device_node *of_get_next_cpu_node(struct device_node *prev)
 809{
 810	struct device_node *next = NULL;
 811	unsigned long flags;
 812	struct device_node *node;
 813
 814	if (!prev)
 815		node = of_find_node_by_path("/cpus");
 816
 817	raw_spin_lock_irqsave(&devtree_lock, flags);
 818	if (prev)
 819		next = prev->sibling;
 820	else if (node) {
 821		next = node->child;
 822		of_node_put(node);
 823	}
 824	for (; next; next = next->sibling) {
 825		if (!(of_node_name_eq(next, "cpu") ||
 826		      __of_node_is_type(next, "cpu")))
 827			continue;
 828		if (of_node_get(next))
 829			break;
 830	}
 831	of_node_put(prev);
 832	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 833	return next;
 834}
 835EXPORT_SYMBOL(of_get_next_cpu_node);
 836
 837/**
 838 * of_get_compatible_child - Find compatible child node
 839 * @parent:	parent node
 840 * @compatible:	compatible string
 841 *
 842 * Lookup child node whose compatible property contains the given compatible
 843 * string.
 844 *
 845 * Returns a node pointer with refcount incremented, use of_node_put() on it
 846 * when done; or NULL if not found.
 847 */
 848struct device_node *of_get_compatible_child(const struct device_node *parent,
 849				const char *compatible)
 850{
 851	struct device_node *child;
 852
 853	for_each_child_of_node(parent, child) {
 854		if (of_device_is_compatible(child, compatible))
 855			break;
 856	}
 857
 858	return child;
 859}
 860EXPORT_SYMBOL(of_get_compatible_child);
 861
 862/**
 863 *	of_get_child_by_name - Find the child node by name for a given parent
 864 *	@node:	parent node
 865 *	@name:	child name to look for.
 866 *
 867 *      This function looks for child node for given matching name
 868 *
 869 *	Returns a node pointer if found, with refcount incremented, use
 870 *	of_node_put() on it when done.
 871 *	Returns NULL if node is not found.
 872 */
 873struct device_node *of_get_child_by_name(const struct device_node *node,
 874				const char *name)
 875{
 876	struct device_node *child;
 877
 878	for_each_child_of_node(node, child)
 879		if (of_node_name_eq(child, name))
 880			break;
 881	return child;
 882}
 883EXPORT_SYMBOL(of_get_child_by_name);
 884
 885struct device_node *__of_find_node_by_path(struct device_node *parent,
 886						const char *path)
 887{
 888	struct device_node *child;
 889	int len;
 890
 891	len = strcspn(path, "/:");
 892	if (!len)
 893		return NULL;
 894
 895	__for_each_child_of_node(parent, child) {
 896		const char *name = kbasename(child->full_name);
 897		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
 898			return child;
 899	}
 900	return NULL;
 901}
 902
 903struct device_node *__of_find_node_by_full_path(struct device_node *node,
 904						const char *path)
 905{
 906	const char *separator = strchr(path, ':');
 907
 908	while (node && *path == '/') {
 909		struct device_node *tmp = node;
 910
 911		path++; /* Increment past '/' delimiter */
 912		node = __of_find_node_by_path(node, path);
 913		of_node_put(tmp);
 914		path = strchrnul(path, '/');
 915		if (separator && separator < path)
 916			break;
 917	}
 918	return node;
 919}
 920
 921/**
 922 *	of_find_node_opts_by_path - Find a node matching a full OF path
 923 *	@path: Either the full path to match, or if the path does not
 924 *	       start with '/', the name of a property of the /aliases
 925 *	       node (an alias).  In the case of an alias, the node
 926 *	       matching the alias' value will be returned.
 927 *	@opts: Address of a pointer into which to store the start of
 928 *	       an options string appended to the end of the path with
 929 *	       a ':' separator.
 930 *
 931 *	Valid paths:
 932 *		/foo/bar	Full path
 933 *		foo		Valid alias
 934 *		foo/bar		Valid alias + relative path
 935 *
 936 *	Returns a node pointer with refcount incremented, use
 937 *	of_node_put() on it when done.
 938 */
 939struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
 940{
 941	struct device_node *np = NULL;
 942	struct property *pp;
 943	unsigned long flags;
 944	const char *separator = strchr(path, ':');
 945
 946	if (opts)
 947		*opts = separator ? separator + 1 : NULL;
 948
 949	if (strcmp(path, "/") == 0)
 950		return of_node_get(of_root);
 951
 952	/* The path could begin with an alias */
 953	if (*path != '/') {
 954		int len;
 955		const char *p = separator;
 956
 957		if (!p)
 958			p = strchrnul(path, '/');
 959		len = p - path;
 960
 961		/* of_aliases must not be NULL */
 962		if (!of_aliases)
 963			return NULL;
 964
 965		for_each_property_of_node(of_aliases, pp) {
 966			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
 967				np = of_find_node_by_path(pp->value);
 968				break;
 969			}
 970		}
 971		if (!np)
 972			return NULL;
 973		path = p;
 974	}
 975
 976	/* Step down the tree matching path components */
 977	raw_spin_lock_irqsave(&devtree_lock, flags);
 978	if (!np)
 979		np = of_node_get(of_root);
 980	np = __of_find_node_by_full_path(np, path);
 981	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 982	return np;
 983}
 984EXPORT_SYMBOL(of_find_node_opts_by_path);
 985
 986/**
 987 *	of_find_node_by_name - Find a node by its "name" property
 988 *	@from:	The node to start searching from or NULL; the node
 989 *		you pass will not be searched, only the next one
 990 *		will. Typically, you pass what the previous call
 991 *		returned. of_node_put() will be called on @from.
 992 *	@name:	The name string to match against
 993 *
 994 *	Returns a node pointer with refcount incremented, use
 995 *	of_node_put() on it when done.
 996 */
 997struct device_node *of_find_node_by_name(struct device_node *from,
 998	const char *name)
 999{
1000	struct device_node *np;
1001	unsigned long flags;
1002
1003	raw_spin_lock_irqsave(&devtree_lock, flags);
1004	for_each_of_allnodes_from(from, np)
1005		if (of_node_name_eq(np, name) && of_node_get(np))
 
1006			break;
1007	of_node_put(from);
1008	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1009	return np;
1010}
1011EXPORT_SYMBOL(of_find_node_by_name);
1012
1013/**
1014 *	of_find_node_by_type - Find a node by its "device_type" property
1015 *	@from:	The node to start searching from, or NULL to start searching
1016 *		the entire device tree. The node you pass will not be
1017 *		searched, only the next one will; typically, you pass
1018 *		what the previous call returned. of_node_put() will be
1019 *		called on from for you.
1020 *	@type:	The type string to match against
1021 *
1022 *	Returns a node pointer with refcount incremented, use
1023 *	of_node_put() on it when done.
1024 */
1025struct device_node *of_find_node_by_type(struct device_node *from,
1026	const char *type)
1027{
1028	struct device_node *np;
1029	unsigned long flags;
1030
1031	raw_spin_lock_irqsave(&devtree_lock, flags);
1032	for_each_of_allnodes_from(from, np)
1033		if (__of_node_is_type(np, type) && of_node_get(np))
 
1034			break;
1035	of_node_put(from);
1036	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1037	return np;
1038}
1039EXPORT_SYMBOL(of_find_node_by_type);
1040
1041/**
1042 *	of_find_compatible_node - Find a node based on type and one of the
1043 *                                tokens in its "compatible" property
1044 *	@from:		The node to start searching from or NULL, the node
1045 *			you pass will not be searched, only the next one
1046 *			will; typically, you pass what the previous call
1047 *			returned. of_node_put() will be called on it
1048 *	@type:		The type string to match "device_type" or NULL to ignore
1049 *	@compatible:	The string to match to one of the tokens in the device
1050 *			"compatible" list.
1051 *
1052 *	Returns a node pointer with refcount incremented, use
1053 *	of_node_put() on it when done.
1054 */
1055struct device_node *of_find_compatible_node(struct device_node *from,
1056	const char *type, const char *compatible)
1057{
1058	struct device_node *np;
1059	unsigned long flags;
1060
1061	raw_spin_lock_irqsave(&devtree_lock, flags);
1062	for_each_of_allnodes_from(from, np)
1063		if (__of_device_is_compatible(np, compatible, type, NULL) &&
1064		    of_node_get(np))
1065			break;
1066	of_node_put(from);
1067	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1068	return np;
1069}
1070EXPORT_SYMBOL(of_find_compatible_node);
1071
1072/**
1073 *	of_find_node_with_property - Find a node which has a property with
1074 *                                   the given name.
1075 *	@from:		The node to start searching from or NULL, the node
1076 *			you pass will not be searched, only the next one
1077 *			will; typically, you pass what the previous call
1078 *			returned. of_node_put() will be called on it
1079 *	@prop_name:	The name of the property to look for.
1080 *
1081 *	Returns a node pointer with refcount incremented, use
1082 *	of_node_put() on it when done.
1083 */
1084struct device_node *of_find_node_with_property(struct device_node *from,
1085	const char *prop_name)
1086{
1087	struct device_node *np;
1088	struct property *pp;
1089	unsigned long flags;
1090
1091	raw_spin_lock_irqsave(&devtree_lock, flags);
1092	for_each_of_allnodes_from(from, np) {
1093		for (pp = np->properties; pp; pp = pp->next) {
1094			if (of_prop_cmp(pp->name, prop_name) == 0) {
1095				of_node_get(np);
1096				goto out;
1097			}
1098		}
1099	}
1100out:
1101	of_node_put(from);
1102	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1103	return np;
1104}
1105EXPORT_SYMBOL(of_find_node_with_property);
1106
1107static
1108const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1109					   const struct device_node *node)
1110{
1111	const struct of_device_id *best_match = NULL;
1112	int score, best_score = 0;
1113
1114	if (!matches)
1115		return NULL;
1116
1117	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1118		score = __of_device_is_compatible(node, matches->compatible,
1119						  matches->type, matches->name);
1120		if (score > best_score) {
1121			best_match = matches;
1122			best_score = score;
1123		}
1124	}
1125
1126	return best_match;
1127}
1128
1129/**
1130 * of_match_node - Tell if a device_node has a matching of_match structure
1131 *	@matches:	array of of device match structures to search in
1132 *	@node:		the of device structure to match against
1133 *
1134 *	Low level utility function used by device matching.
1135 */
1136const struct of_device_id *of_match_node(const struct of_device_id *matches,
1137					 const struct device_node *node)
1138{
1139	const struct of_device_id *match;
1140	unsigned long flags;
1141
1142	raw_spin_lock_irqsave(&devtree_lock, flags);
1143	match = __of_match_node(matches, node);
1144	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1145	return match;
1146}
1147EXPORT_SYMBOL(of_match_node);
1148
1149/**
1150 *	of_find_matching_node_and_match - Find a node based on an of_device_id
1151 *					  match table.
1152 *	@from:		The node to start searching from or NULL, the node
1153 *			you pass will not be searched, only the next one
1154 *			will; typically, you pass what the previous call
1155 *			returned. of_node_put() will be called on it
1156 *	@matches:	array of of device match structures to search in
1157 *	@match		Updated to point at the matches entry which matched
1158 *
1159 *	Returns a node pointer with refcount incremented, use
1160 *	of_node_put() on it when done.
1161 */
1162struct device_node *of_find_matching_node_and_match(struct device_node *from,
1163					const struct of_device_id *matches,
1164					const struct of_device_id **match)
1165{
1166	struct device_node *np;
1167	const struct of_device_id *m;
1168	unsigned long flags;
1169
1170	if (match)
1171		*match = NULL;
1172
1173	raw_spin_lock_irqsave(&devtree_lock, flags);
1174	for_each_of_allnodes_from(from, np) {
1175		m = __of_match_node(matches, np);
1176		if (m && of_node_get(np)) {
1177			if (match)
1178				*match = m;
1179			break;
1180		}
1181	}
1182	of_node_put(from);
1183	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1184	return np;
1185}
1186EXPORT_SYMBOL(of_find_matching_node_and_match);
1187
1188/**
1189 * of_modalias_node - Lookup appropriate modalias for a device node
1190 * @node:	pointer to a device tree node
1191 * @modalias:	Pointer to buffer that modalias value will be copied into
1192 * @len:	Length of modalias value
1193 *
1194 * Based on the value of the compatible property, this routine will attempt
1195 * to choose an appropriate modalias value for a particular device tree node.
1196 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1197 * from the first entry in the compatible list property.
1198 *
1199 * This routine returns 0 on success, <0 on failure.
1200 */
1201int of_modalias_node(struct device_node *node, char *modalias, int len)
1202{
1203	const char *compatible, *p;
1204	int cplen;
1205
1206	compatible = of_get_property(node, "compatible", &cplen);
1207	if (!compatible || strlen(compatible) > cplen)
1208		return -ENODEV;
1209	p = strchr(compatible, ',');
1210	strlcpy(modalias, p ? p + 1 : compatible, len);
1211	return 0;
1212}
1213EXPORT_SYMBOL_GPL(of_modalias_node);
1214
1215/**
1216 * of_find_node_by_phandle - Find a node given a phandle
1217 * @handle:	phandle of the node to find
1218 *
1219 * Returns a node pointer with refcount incremented, use
1220 * of_node_put() on it when done.
1221 */
1222struct device_node *of_find_node_by_phandle(phandle handle)
1223{
1224	struct device_node *np = NULL;
1225	unsigned long flags;
1226	phandle masked_handle;
1227
1228	if (!handle)
1229		return NULL;
1230
1231	raw_spin_lock_irqsave(&devtree_lock, flags);
1232
1233	masked_handle = handle & phandle_cache_mask;
1234
1235	if (phandle_cache) {
1236		if (phandle_cache[masked_handle] &&
1237		    handle == phandle_cache[masked_handle]->phandle)
1238			np = phandle_cache[masked_handle];
1239		if (np && of_node_check_flag(np, OF_DETACHED)) {
1240			WARN_ON(1); /* did not uncache np on node removal */
1241			of_node_put(np);
1242			phandle_cache[masked_handle] = NULL;
1243			np = NULL;
1244		}
1245	}
1246
1247	if (!np) {
1248		for_each_of_allnodes(np)
1249			if (np->phandle == handle &&
1250			    !of_node_check_flag(np, OF_DETACHED)) {
1251				if (phandle_cache) {
1252					/* will put when removed from cache */
1253					of_node_get(np);
1254					phandle_cache[masked_handle] = np;
1255				}
1256				break;
1257			}
1258	}
1259
1260	of_node_get(np);
1261	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1262	return np;
1263}
1264EXPORT_SYMBOL(of_find_node_by_phandle);
1265
1266void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1267{
1268	int i;
1269	printk("%s %pOF", msg, args->np);
1270	for (i = 0; i < args->args_count; i++) {
1271		const char delim = i ? ',' : ':';
1272
1273		pr_cont("%c%08x", delim, args->args[i]);
1274	}
1275	pr_cont("\n");
1276}
1277
1278int of_phandle_iterator_init(struct of_phandle_iterator *it,
1279		const struct device_node *np,
1280		const char *list_name,
1281		const char *cells_name,
1282		int cell_count)
1283{
1284	const __be32 *list;
1285	int size;
1286
1287	memset(it, 0, sizeof(*it));
1288
1289	/*
1290	 * one of cell_count or cells_name must be provided to determine the
1291	 * argument length.
1292	 */
1293	if (cell_count < 0 && !cells_name)
1294		return -EINVAL;
1295
1296	list = of_get_property(np, list_name, &size);
1297	if (!list)
1298		return -ENOENT;
1299
1300	it->cells_name = cells_name;
1301	it->cell_count = cell_count;
1302	it->parent = np;
1303	it->list_end = list + size / sizeof(*list);
1304	it->phandle_end = list;
1305	it->cur = list;
1306
1307	return 0;
1308}
1309EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1310
1311int of_phandle_iterator_next(struct of_phandle_iterator *it)
1312{
1313	uint32_t count = 0;
1314
1315	if (it->node) {
1316		of_node_put(it->node);
1317		it->node = NULL;
1318	}
1319
1320	if (!it->cur || it->phandle_end >= it->list_end)
1321		return -ENOENT;
1322
1323	it->cur = it->phandle_end;
1324
1325	/* If phandle is 0, then it is an empty entry with no arguments. */
1326	it->phandle = be32_to_cpup(it->cur++);
1327
1328	if (it->phandle) {
1329
1330		/*
1331		 * Find the provider node and parse the #*-cells property to
1332		 * determine the argument length.
1333		 */
1334		it->node = of_find_node_by_phandle(it->phandle);
1335
1336		if (it->cells_name) {
1337			if (!it->node) {
1338				pr_err("%pOF: could not find phandle\n",
1339				       it->parent);
1340				goto err;
1341			}
1342
1343			if (of_property_read_u32(it->node, it->cells_name,
1344						 &count)) {
1345				/*
1346				 * If both cell_count and cells_name is given,
1347				 * fall back to cell_count in absence
1348				 * of the cells_name property
1349				 */
1350				if (it->cell_count >= 0) {
1351					count = it->cell_count;
1352				} else {
1353					pr_err("%pOF: could not get %s for %pOF\n",
1354					       it->parent,
1355					       it->cells_name,
1356					       it->node);
1357					goto err;
1358				}
1359			}
1360		} else {
1361			count = it->cell_count;
1362		}
1363
1364		/*
1365		 * Make sure that the arguments actually fit in the remaining
1366		 * property data length
1367		 */
1368		if (it->cur + count > it->list_end) {
1369			pr_err("%pOF: %s = %d found %d\n",
1370			       it->parent, it->cells_name,
1371			       count, it->cell_count);
1372			goto err;
1373		}
1374	}
1375
1376	it->phandle_end = it->cur + count;
1377	it->cur_count = count;
1378
1379	return 0;
1380
1381err:
1382	if (it->node) {
1383		of_node_put(it->node);
1384		it->node = NULL;
1385	}
1386
1387	return -EINVAL;
1388}
1389EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1390
1391int of_phandle_iterator_args(struct of_phandle_iterator *it,
1392			     uint32_t *args,
1393			     int size)
1394{
1395	int i, count;
1396
1397	count = it->cur_count;
1398
1399	if (WARN_ON(size < count))
1400		count = size;
1401
1402	for (i = 0; i < count; i++)
1403		args[i] = be32_to_cpup(it->cur++);
1404
1405	return count;
1406}
1407
1408static int __of_parse_phandle_with_args(const struct device_node *np,
1409					const char *list_name,
1410					const char *cells_name,
1411					int cell_count, int index,
1412					struct of_phandle_args *out_args)
1413{
1414	struct of_phandle_iterator it;
1415	int rc, cur_index = 0;
1416
1417	/* Loop over the phandles until all the requested entry is found */
1418	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1419		/*
1420		 * All of the error cases bail out of the loop, so at
1421		 * this point, the parsing is successful. If the requested
1422		 * index matches, then fill the out_args structure and return,
1423		 * or return -ENOENT for an empty entry.
1424		 */
1425		rc = -ENOENT;
1426		if (cur_index == index) {
1427			if (!it.phandle)
1428				goto err;
1429
1430			if (out_args) {
1431				int c;
1432
1433				c = of_phandle_iterator_args(&it,
1434							     out_args->args,
1435							     MAX_PHANDLE_ARGS);
1436				out_args->np = it.node;
1437				out_args->args_count = c;
1438			} else {
1439				of_node_put(it.node);
1440			}
1441
1442			/* Found it! return success */
1443			return 0;
1444		}
1445
1446		cur_index++;
1447	}
1448
1449	/*
1450	 * Unlock node before returning result; will be one of:
1451	 * -ENOENT : index is for empty phandle
1452	 * -EINVAL : parsing error on data
1453	 */
1454
1455 err:
1456	of_node_put(it.node);
1457	return rc;
1458}
1459
1460/**
1461 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1462 * @np: Pointer to device node holding phandle property
1463 * @phandle_name: Name of property holding a phandle value
1464 * @index: For properties holding a table of phandles, this is the index into
1465 *         the table
1466 *
1467 * Returns the device_node pointer with refcount incremented.  Use
1468 * of_node_put() on it when done.
1469 */
1470struct device_node *of_parse_phandle(const struct device_node *np,
1471				     const char *phandle_name, int index)
1472{
1473	struct of_phandle_args args;
1474
1475	if (index < 0)
1476		return NULL;
1477
1478	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1479					 index, &args))
1480		return NULL;
1481
1482	return args.np;
1483}
1484EXPORT_SYMBOL(of_parse_phandle);
1485
1486/**
1487 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1488 * @np:		pointer to a device tree node containing a list
1489 * @list_name:	property name that contains a list
1490 * @cells_name:	property name that specifies phandles' arguments count
1491 * @index:	index of a phandle to parse out
1492 * @out_args:	optional pointer to output arguments structure (will be filled)
1493 *
1494 * This function is useful to parse lists of phandles and their arguments.
1495 * Returns 0 on success and fills out_args, on error returns appropriate
1496 * errno value.
1497 *
1498 * Caller is responsible to call of_node_put() on the returned out_args->np
1499 * pointer.
1500 *
1501 * Example:
1502 *
1503 * phandle1: node1 {
1504 *	#list-cells = <2>;
1505 * }
1506 *
1507 * phandle2: node2 {
1508 *	#list-cells = <1>;
1509 * }
1510 *
1511 * node3 {
1512 *	list = <&phandle1 1 2 &phandle2 3>;
1513 * }
1514 *
1515 * To get a device_node of the `node2' node you may call this:
1516 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1517 */
1518int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1519				const char *cells_name, int index,
1520				struct of_phandle_args *out_args)
1521{
1522	int cell_count = -1;
1523
1524	if (index < 0)
1525		return -EINVAL;
1526
1527	/* If cells_name is NULL we assume a cell count of 0 */
1528	if (!cells_name)
1529		cell_count = 0;
1530
1531	return __of_parse_phandle_with_args(np, list_name, cells_name,
1532					    cell_count, index, out_args);
1533}
1534EXPORT_SYMBOL(of_parse_phandle_with_args);
1535
1536/**
1537 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1538 * @np:		pointer to a device tree node containing a list
1539 * @list_name:	property name that contains a list
1540 * @stem_name:	stem of property names that specify phandles' arguments count
1541 * @index:	index of a phandle to parse out
1542 * @out_args:	optional pointer to output arguments structure (will be filled)
1543 *
1544 * This function is useful to parse lists of phandles and their arguments.
1545 * Returns 0 on success and fills out_args, on error returns appropriate errno
1546 * value. The difference between this function and of_parse_phandle_with_args()
1547 * is that this API remaps a phandle if the node the phandle points to has
1548 * a <@stem_name>-map property.
1549 *
1550 * Caller is responsible to call of_node_put() on the returned out_args->np
1551 * pointer.
1552 *
1553 * Example:
1554 *
1555 * phandle1: node1 {
1556 *	#list-cells = <2>;
1557 * }
1558 *
1559 * phandle2: node2 {
1560 *	#list-cells = <1>;
1561 * }
1562 *
1563 * phandle3: node3 {
1564 * 	#list-cells = <1>;
1565 * 	list-map = <0 &phandle2 3>,
1566 * 		   <1 &phandle2 2>,
1567 * 		   <2 &phandle1 5 1>;
1568 *	list-map-mask = <0x3>;
1569 * };
1570 *
1571 * node4 {
1572 *	list = <&phandle1 1 2 &phandle3 0>;
1573 * }
1574 *
1575 * To get a device_node of the `node2' node you may call this:
1576 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1577 */
1578int of_parse_phandle_with_args_map(const struct device_node *np,
1579				   const char *list_name,
1580				   const char *stem_name,
1581				   int index, struct of_phandle_args *out_args)
1582{
1583	char *cells_name, *map_name = NULL, *mask_name = NULL;
1584	char *pass_name = NULL;
1585	struct device_node *cur, *new = NULL;
1586	const __be32 *map, *mask, *pass;
1587	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1588	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1589	__be32 initial_match_array[MAX_PHANDLE_ARGS];
1590	const __be32 *match_array = initial_match_array;
1591	int i, ret, map_len, match;
1592	u32 list_size, new_size;
1593
1594	if (index < 0)
1595		return -EINVAL;
1596
1597	cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1598	if (!cells_name)
1599		return -ENOMEM;
1600
1601	ret = -ENOMEM;
1602	map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1603	if (!map_name)
1604		goto free;
1605
1606	mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1607	if (!mask_name)
1608		goto free;
1609
1610	pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1611	if (!pass_name)
1612		goto free;
1613
1614	ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1615					   out_args);
1616	if (ret)
1617		goto free;
1618
1619	/* Get the #<list>-cells property */
1620	cur = out_args->np;
1621	ret = of_property_read_u32(cur, cells_name, &list_size);
1622	if (ret < 0)
1623		goto put;
1624
1625	/* Precalculate the match array - this simplifies match loop */
1626	for (i = 0; i < list_size; i++)
1627		initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1628
1629	ret = -EINVAL;
1630	while (cur) {
1631		/* Get the <list>-map property */
1632		map = of_get_property(cur, map_name, &map_len);
1633		if (!map) {
1634			ret = 0;
1635			goto free;
1636		}
1637		map_len /= sizeof(u32);
1638
1639		/* Get the <list>-map-mask property (optional) */
1640		mask = of_get_property(cur, mask_name, NULL);
1641		if (!mask)
1642			mask = dummy_mask;
1643		/* Iterate through <list>-map property */
1644		match = 0;
1645		while (map_len > (list_size + 1) && !match) {
1646			/* Compare specifiers */
1647			match = 1;
1648			for (i = 0; i < list_size; i++, map_len--)
1649				match &= !((match_array[i] ^ *map++) & mask[i]);
1650
1651			of_node_put(new);
1652			new = of_find_node_by_phandle(be32_to_cpup(map));
1653			map++;
1654			map_len--;
1655
1656			/* Check if not found */
1657			if (!new)
1658				goto put;
1659
1660			if (!of_device_is_available(new))
1661				match = 0;
1662
1663			ret = of_property_read_u32(new, cells_name, &new_size);
1664			if (ret)
1665				goto put;
1666
1667			/* Check for malformed properties */
1668			if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1669				goto put;
1670			if (map_len < new_size)
1671				goto put;
1672
1673			/* Move forward by new node's #<list>-cells amount */
1674			map += new_size;
1675			map_len -= new_size;
1676		}
1677		if (!match)
1678			goto put;
1679
1680		/* Get the <list>-map-pass-thru property (optional) */
1681		pass = of_get_property(cur, pass_name, NULL);
1682		if (!pass)
1683			pass = dummy_pass;
1684
1685		/*
1686		 * Successfully parsed a <list>-map translation; copy new
1687		 * specifier into the out_args structure, keeping the
1688		 * bits specified in <list>-map-pass-thru.
1689		 */
1690		match_array = map - new_size;
1691		for (i = 0; i < new_size; i++) {
1692			__be32 val = *(map - new_size + i);
1693
1694			if (i < list_size) {
1695				val &= ~pass[i];
1696				val |= cpu_to_be32(out_args->args[i]) & pass[i];
1697			}
1698
1699			out_args->args[i] = be32_to_cpu(val);
1700		}
1701		out_args->args_count = list_size = new_size;
1702		/* Iterate again with new provider */
1703		out_args->np = new;
1704		of_node_put(cur);
1705		cur = new;
1706	}
1707put:
1708	of_node_put(cur);
1709	of_node_put(new);
1710free:
1711	kfree(mask_name);
1712	kfree(map_name);
1713	kfree(cells_name);
1714	kfree(pass_name);
1715
1716	return ret;
1717}
1718EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1719
1720/**
1721 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1722 * @np:		pointer to a device tree node containing a list
1723 * @list_name:	property name that contains a list
1724 * @cell_count: number of argument cells following the phandle
1725 * @index:	index of a phandle to parse out
1726 * @out_args:	optional pointer to output arguments structure (will be filled)
1727 *
1728 * This function is useful to parse lists of phandles and their arguments.
1729 * Returns 0 on success and fills out_args, on error returns appropriate
1730 * errno value.
1731 *
1732 * Caller is responsible to call of_node_put() on the returned out_args->np
1733 * pointer.
1734 *
1735 * Example:
1736 *
1737 * phandle1: node1 {
1738 * }
1739 *
1740 * phandle2: node2 {
1741 * }
1742 *
1743 * node3 {
1744 *	list = <&phandle1 0 2 &phandle2 2 3>;
1745 * }
1746 *
1747 * To get a device_node of the `node2' node you may call this:
1748 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1749 */
1750int of_parse_phandle_with_fixed_args(const struct device_node *np,
1751				const char *list_name, int cell_count,
1752				int index, struct of_phandle_args *out_args)
1753{
1754	if (index < 0)
1755		return -EINVAL;
1756	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1757					   index, out_args);
1758}
1759EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1760
1761/**
1762 * of_count_phandle_with_args() - Find the number of phandles references in a property
1763 * @np:		pointer to a device tree node containing a list
1764 * @list_name:	property name that contains a list
1765 * @cells_name:	property name that specifies phandles' arguments count
1766 *
1767 * Returns the number of phandle + argument tuples within a property. It
1768 * is a typical pattern to encode a list of phandle and variable
1769 * arguments into a single property. The number of arguments is encoded
1770 * by a property in the phandle-target node. For example, a gpios
1771 * property would contain a list of GPIO specifies consisting of a
1772 * phandle and 1 or more arguments. The number of arguments are
1773 * determined by the #gpio-cells property in the node pointed to by the
1774 * phandle.
1775 */
1776int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1777				const char *cells_name)
1778{
1779	struct of_phandle_iterator it;
1780	int rc, cur_index = 0;
1781
1782	/*
1783	 * If cells_name is NULL we assume a cell count of 0. This makes
1784	 * counting the phandles trivial as each 32bit word in the list is a
1785	 * phandle and no arguments are to consider. So we don't iterate through
1786	 * the list but just use the length to determine the phandle count.
1787	 */
1788	if (!cells_name) {
1789		const __be32 *list;
1790		int size;
1791
1792		list = of_get_property(np, list_name, &size);
1793		if (!list)
1794			return -ENOENT;
1795
1796		return size / sizeof(*list);
1797	}
1798
1799	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1800	if (rc)
1801		return rc;
1802
1803	while ((rc = of_phandle_iterator_next(&it)) == 0)
1804		cur_index += 1;
1805
1806	if (rc != -ENOENT)
1807		return rc;
1808
1809	return cur_index;
1810}
1811EXPORT_SYMBOL(of_count_phandle_with_args);
1812
1813/**
1814 * __of_add_property - Add a property to a node without lock operations
1815 */
1816int __of_add_property(struct device_node *np, struct property *prop)
1817{
1818	struct property **next;
1819
1820	prop->next = NULL;
1821	next = &np->properties;
1822	while (*next) {
1823		if (strcmp(prop->name, (*next)->name) == 0)
1824			/* duplicate ! don't insert it */
1825			return -EEXIST;
1826
1827		next = &(*next)->next;
1828	}
1829	*next = prop;
1830
1831	return 0;
1832}
1833
1834/**
1835 * of_add_property - Add a property to a node
1836 */
1837int of_add_property(struct device_node *np, struct property *prop)
1838{
1839	unsigned long flags;
1840	int rc;
1841
1842	mutex_lock(&of_mutex);
1843
1844	raw_spin_lock_irqsave(&devtree_lock, flags);
1845	rc = __of_add_property(np, prop);
1846	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1847
1848	if (!rc)
1849		__of_add_property_sysfs(np, prop);
1850
1851	mutex_unlock(&of_mutex);
1852
1853	if (!rc)
1854		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1855
1856	return rc;
1857}
1858
1859int __of_remove_property(struct device_node *np, struct property *prop)
1860{
1861	struct property **next;
1862
1863	for (next = &np->properties; *next; next = &(*next)->next) {
1864		if (*next == prop)
1865			break;
1866	}
1867	if (*next == NULL)
1868		return -ENODEV;
1869
1870	/* found the node */
1871	*next = prop->next;
1872	prop->next = np->deadprops;
1873	np->deadprops = prop;
1874
1875	return 0;
1876}
1877
1878/**
1879 * of_remove_property - Remove a property from a node.
1880 *
1881 * Note that we don't actually remove it, since we have given out
1882 * who-knows-how-many pointers to the data using get-property.
1883 * Instead we just move the property to the "dead properties"
1884 * list, so it won't be found any more.
1885 */
1886int of_remove_property(struct device_node *np, struct property *prop)
1887{
1888	unsigned long flags;
1889	int rc;
1890
1891	if (!prop)
1892		return -ENODEV;
1893
1894	mutex_lock(&of_mutex);
1895
1896	raw_spin_lock_irqsave(&devtree_lock, flags);
1897	rc = __of_remove_property(np, prop);
1898	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1899
1900	if (!rc)
1901		__of_remove_property_sysfs(np, prop);
1902
1903	mutex_unlock(&of_mutex);
1904
1905	if (!rc)
1906		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1907
1908	return rc;
1909}
1910
1911int __of_update_property(struct device_node *np, struct property *newprop,
1912		struct property **oldpropp)
1913{
1914	struct property **next, *oldprop;
1915
1916	for (next = &np->properties; *next; next = &(*next)->next) {
1917		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1918			break;
1919	}
1920	*oldpropp = oldprop = *next;
1921
1922	if (oldprop) {
1923		/* replace the node */
1924		newprop->next = oldprop->next;
1925		*next = newprop;
1926		oldprop->next = np->deadprops;
1927		np->deadprops = oldprop;
1928	} else {
1929		/* new node */
1930		newprop->next = NULL;
1931		*next = newprop;
1932	}
1933
1934	return 0;
1935}
1936
1937/*
1938 * of_update_property - Update a property in a node, if the property does
1939 * not exist, add it.
1940 *
1941 * Note that we don't actually remove it, since we have given out
1942 * who-knows-how-many pointers to the data using get-property.
1943 * Instead we just move the property to the "dead properties" list,
1944 * and add the new property to the property list
1945 */
1946int of_update_property(struct device_node *np, struct property *newprop)
1947{
1948	struct property *oldprop;
1949	unsigned long flags;
1950	int rc;
1951
1952	if (!newprop->name)
1953		return -EINVAL;
1954
1955	mutex_lock(&of_mutex);
1956
1957	raw_spin_lock_irqsave(&devtree_lock, flags);
1958	rc = __of_update_property(np, newprop, &oldprop);
1959	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1960
1961	if (!rc)
1962		__of_update_property_sysfs(np, newprop, oldprop);
1963
1964	mutex_unlock(&of_mutex);
1965
1966	if (!rc)
1967		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1968
1969	return rc;
1970}
1971
1972static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1973			 int id, const char *stem, int stem_len)
1974{
1975	ap->np = np;
1976	ap->id = id;
1977	strncpy(ap->stem, stem, stem_len);
1978	ap->stem[stem_len] = 0;
1979	list_add_tail(&ap->link, &aliases_lookup);
1980	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1981		 ap->alias, ap->stem, ap->id, np);
1982}
1983
1984/**
1985 * of_alias_scan - Scan all properties of the 'aliases' node
1986 *
1987 * The function scans all the properties of the 'aliases' node and populates
1988 * the global lookup table with the properties.  It returns the
1989 * number of alias properties found, or an error code in case of failure.
1990 *
1991 * @dt_alloc:	An allocator that provides a virtual address to memory
1992 *		for storing the resulting tree
1993 */
1994void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1995{
1996	struct property *pp;
1997
1998	of_aliases = of_find_node_by_path("/aliases");
1999	of_chosen = of_find_node_by_path("/chosen");
2000	if (of_chosen == NULL)
2001		of_chosen = of_find_node_by_path("/chosen@0");
2002
2003	if (of_chosen) {
2004		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
2005		const char *name = NULL;
2006
2007		if (of_property_read_string(of_chosen, "stdout-path", &name))
2008			of_property_read_string(of_chosen, "linux,stdout-path",
2009						&name);
2010		if (IS_ENABLED(CONFIG_PPC) && !name)
2011			of_property_read_string(of_aliases, "stdout", &name);
2012		if (name)
2013			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
2014	}
2015
2016	if (!of_aliases)
2017		return;
2018
2019	for_each_property_of_node(of_aliases, pp) {
2020		const char *start = pp->name;
2021		const char *end = start + strlen(start);
2022		struct device_node *np;
2023		struct alias_prop *ap;
2024		int id, len;
2025
2026		/* Skip those we do not want to proceed */
2027		if (!strcmp(pp->name, "name") ||
2028		    !strcmp(pp->name, "phandle") ||
2029		    !strcmp(pp->name, "linux,phandle"))
2030			continue;
2031
2032		np = of_find_node_by_path(pp->value);
2033		if (!np)
2034			continue;
2035
2036		/* walk the alias backwards to extract the id and work out
2037		 * the 'stem' string */
2038		while (isdigit(*(end-1)) && end > start)
2039			end--;
2040		len = end - start;
2041
2042		if (kstrtoint(end, 10, &id) < 0)
2043			continue;
2044
2045		/* Allocate an alias_prop with enough space for the stem */
2046		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2047		if (!ap)
2048			continue;
2049		memset(ap, 0, sizeof(*ap) + len + 1);
2050		ap->alias = start;
2051		of_alias_add(ap, np, id, start, len);
2052	}
2053}
2054
2055/**
2056 * of_alias_get_id - Get alias id for the given device_node
2057 * @np:		Pointer to the given device_node
2058 * @stem:	Alias stem of the given device_node
2059 *
2060 * The function travels the lookup table to get the alias id for the given
2061 * device_node and alias stem.  It returns the alias id if found.
2062 */
2063int of_alias_get_id(struct device_node *np, const char *stem)
2064{
2065	struct alias_prop *app;
2066	int id = -ENODEV;
2067
2068	mutex_lock(&of_mutex);
2069	list_for_each_entry(app, &aliases_lookup, link) {
2070		if (strcmp(app->stem, stem) != 0)
2071			continue;
2072
2073		if (np == app->np) {
2074			id = app->id;
2075			break;
2076		}
2077	}
2078	mutex_unlock(&of_mutex);
2079
2080	return id;
2081}
2082EXPORT_SYMBOL_GPL(of_alias_get_id);
2083
2084/**
2085 * of_alias_get_alias_list - Get alias list for the given device driver
2086 * @matches:	Array of OF device match structures to search in
2087 * @stem:	Alias stem of the given device_node
2088 * @bitmap:	Bitmap field pointer
2089 * @nbits:	Maximum number of alias IDs which can be recorded in bitmap
2090 *
2091 * The function travels the lookup table to record alias ids for the given
2092 * device match structures and alias stem.
2093 *
2094 * Return:	0 or -ENOSYS when !CONFIG_OF or
2095 *		-EOVERFLOW if alias ID is greater then allocated nbits
2096 */
2097int of_alias_get_alias_list(const struct of_device_id *matches,
2098			     const char *stem, unsigned long *bitmap,
2099			     unsigned int nbits)
2100{
2101	struct alias_prop *app;
2102	int ret = 0;
2103
2104	/* Zero bitmap field to make sure that all the time it is clean */
2105	bitmap_zero(bitmap, nbits);
2106
2107	mutex_lock(&of_mutex);
2108	pr_debug("%s: Looking for stem: %s\n", __func__, stem);
2109	list_for_each_entry(app, &aliases_lookup, link) {
2110		pr_debug("%s: stem: %s, id: %d\n",
2111			 __func__, app->stem, app->id);
2112
2113		if (strcmp(app->stem, stem) != 0) {
2114			pr_debug("%s: stem comparison didn't pass %s\n",
2115				 __func__, app->stem);
2116			continue;
2117		}
2118
2119		if (of_match_node(matches, app->np)) {
2120			pr_debug("%s: Allocated ID %d\n", __func__, app->id);
2121
2122			if (app->id >= nbits) {
2123				pr_warn("%s: ID %d >= than bitmap field %d\n",
2124					__func__, app->id, nbits);
2125				ret = -EOVERFLOW;
2126			} else {
2127				set_bit(app->id, bitmap);
2128			}
2129		}
2130	}
2131	mutex_unlock(&of_mutex);
2132
2133	return ret;
2134}
2135EXPORT_SYMBOL_GPL(of_alias_get_alias_list);
2136
2137/**
2138 * of_alias_get_highest_id - Get highest alias id for the given stem
2139 * @stem:	Alias stem to be examined
2140 *
2141 * The function travels the lookup table to get the highest alias id for the
2142 * given alias stem.  It returns the alias id if found.
2143 */
2144int of_alias_get_highest_id(const char *stem)
2145{
2146	struct alias_prop *app;
2147	int id = -ENODEV;
2148
2149	mutex_lock(&of_mutex);
2150	list_for_each_entry(app, &aliases_lookup, link) {
2151		if (strcmp(app->stem, stem) != 0)
2152			continue;
2153
2154		if (app->id > id)
2155			id = app->id;
2156	}
2157	mutex_unlock(&of_mutex);
2158
2159	return id;
2160}
2161EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2162
2163/**
2164 * of_console_check() - Test and setup console for DT setup
2165 * @dn - Pointer to device node
2166 * @name - Name to use for preferred console without index. ex. "ttyS"
2167 * @index - Index to use for preferred console.
2168 *
2169 * Check if the given device node matches the stdout-path property in the
2170 * /chosen node. If it does then register it as the preferred console and return
2171 * TRUE. Otherwise return FALSE.
2172 */
2173bool of_console_check(struct device_node *dn, char *name, int index)
2174{
2175	if (!dn || dn != of_stdout || console_set_on_cmdline)
2176		return false;
2177
2178	/*
2179	 * XXX: cast `options' to char pointer to suppress complication
2180	 * warnings: printk, UART and console drivers expect char pointer.
2181	 */
2182	return !add_preferred_console(name, index, (char *)of_stdout_options);
2183}
2184EXPORT_SYMBOL_GPL(of_console_check);
2185
2186/**
2187 *	of_find_next_cache_node - Find a node's subsidiary cache
2188 *	@np:	node of type "cpu" or "cache"
2189 *
2190 *	Returns a node pointer with refcount incremented, use
2191 *	of_node_put() on it when done.  Caller should hold a reference
2192 *	to np.
2193 */
2194struct device_node *of_find_next_cache_node(const struct device_node *np)
2195{
2196	struct device_node *child, *cache_node;
2197
2198	cache_node = of_parse_phandle(np, "l2-cache", 0);
2199	if (!cache_node)
2200		cache_node = of_parse_phandle(np, "next-level-cache", 0);
2201
2202	if (cache_node)
2203		return cache_node;
2204
2205	/* OF on pmac has nodes instead of properties named "l2-cache"
2206	 * beneath CPU nodes.
2207	 */
2208	if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2209		for_each_child_of_node(np, child)
2210			if (of_node_is_type(child, "cache"))
2211				return child;
2212
2213	return NULL;
2214}
2215
2216/**
2217 * of_find_last_cache_level - Find the level at which the last cache is
2218 * 		present for the given logical cpu
2219 *
2220 * @cpu: cpu number(logical index) for which the last cache level is needed
2221 *
2222 * Returns the the level at which the last cache is present. It is exactly
2223 * same as  the total number of cache levels for the given logical cpu.
2224 */
2225int of_find_last_cache_level(unsigned int cpu)
2226{
2227	u32 cache_level = 0;
2228	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2229
2230	while (np) {
2231		prev = np;
2232		of_node_put(np);
2233		np = of_find_next_cache_node(np);
2234	}
2235
2236	of_property_read_u32(prev, "cache-level", &cache_level);
2237
2238	return cache_level;
2239}
2240
2241/**
2242 * of_map_rid - Translate a requester ID through a downstream mapping.
2243 * @np: root complex device node.
2244 * @rid: device requester ID to map.
2245 * @map_name: property name of the map to use.
2246 * @map_mask_name: optional property name of the mask to use.
2247 * @target: optional pointer to a target device node.
2248 * @id_out: optional pointer to receive the translated ID.
2249 *
2250 * Given a device requester ID, look up the appropriate implementation-defined
2251 * platform ID and/or the target device which receives transactions on that
2252 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2253 * @id_out may be NULL if only the other is required. If @target points to
2254 * a non-NULL device node pointer, only entries targeting that node will be
2255 * matched; if it points to a NULL value, it will receive the device node of
2256 * the first matching target phandle, with a reference held.
2257 *
2258 * Return: 0 on success or a standard error code on failure.
2259 */
2260int of_map_rid(struct device_node *np, u32 rid,
2261	       const char *map_name, const char *map_mask_name,
2262	       struct device_node **target, u32 *id_out)
2263{
2264	u32 map_mask, masked_rid;
2265	int map_len;
2266	const __be32 *map = NULL;
2267
2268	if (!np || !map_name || (!target && !id_out))
2269		return -EINVAL;
2270
2271	map = of_get_property(np, map_name, &map_len);
2272	if (!map) {
2273		if (target)
2274			return -ENODEV;
2275		/* Otherwise, no map implies no translation */
2276		*id_out = rid;
2277		return 0;
2278	}
2279
2280	if (!map_len || map_len % (4 * sizeof(*map))) {
2281		pr_err("%pOF: Error: Bad %s length: %d\n", np,
2282			map_name, map_len);
2283		return -EINVAL;
2284	}
2285
2286	/* The default is to select all bits. */
2287	map_mask = 0xffffffff;
2288
2289	/*
2290	 * Can be overridden by "{iommu,msi}-map-mask" property.
2291	 * If of_property_read_u32() fails, the default is used.
2292	 */
2293	if (map_mask_name)
2294		of_property_read_u32(np, map_mask_name, &map_mask);
2295
2296	masked_rid = map_mask & rid;
2297	for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2298		struct device_node *phandle_node;
2299		u32 rid_base = be32_to_cpup(map + 0);
2300		u32 phandle = be32_to_cpup(map + 1);
2301		u32 out_base = be32_to_cpup(map + 2);
2302		u32 rid_len = be32_to_cpup(map + 3);
2303
2304		if (rid_base & ~map_mask) {
2305			pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores rid-base (0x%x)\n",
2306				np, map_name, map_name,
2307				map_mask, rid_base);
2308			return -EFAULT;
2309		}
2310
2311		if (masked_rid < rid_base || masked_rid >= rid_base + rid_len)
2312			continue;
2313
2314		phandle_node = of_find_node_by_phandle(phandle);
2315		if (!phandle_node)
2316			return -ENODEV;
2317
2318		if (target) {
2319			if (*target)
2320				of_node_put(phandle_node);
2321			else
2322				*target = phandle_node;
2323
2324			if (*target != phandle_node)
2325				continue;
2326		}
2327
2328		if (id_out)
2329			*id_out = masked_rid - rid_base + out_base;
2330
2331		pr_debug("%pOF: %s, using mask %08x, rid-base: %08x, out-base: %08x, length: %08x, rid: %08x -> %08x\n",
2332			np, map_name, map_mask, rid_base, out_base,
2333			rid_len, rid, masked_rid - rid_base + out_base);
2334		return 0;
2335	}
2336
2337	pr_info("%pOF: no %s translation for rid 0x%x on %pOF\n", np, map_name,
2338		rid, target && *target ? *target : NULL);
2339
2340	/* Bypasses translation */
2341	if (id_out)
2342		*id_out = rid;
2343	return 0;
2344}
2345EXPORT_SYMBOL_GPL(of_map_rid);
v4.17
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Procedures for creating, accessing and interpreting the device tree.
   4 *
   5 * Paul Mackerras	August 1996.
   6 * Copyright (C) 1996-2005 Paul Mackerras.
   7 *
   8 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
   9 *    {engebret|bergner}@us.ibm.com
  10 *
  11 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
  12 *
  13 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
  14 *  Grant Likely.
  15 */
  16
  17#define pr_fmt(fmt)	"OF: " fmt
  18
 
  19#include <linux/console.h>
  20#include <linux/ctype.h>
  21#include <linux/cpu.h>
  22#include <linux/module.h>
  23#include <linux/of.h>
  24#include <linux/of_device.h>
  25#include <linux/of_graph.h>
  26#include <linux/spinlock.h>
  27#include <linux/slab.h>
  28#include <linux/string.h>
  29#include <linux/proc_fs.h>
  30
  31#include "of_private.h"
  32
  33LIST_HEAD(aliases_lookup);
  34
  35struct device_node *of_root;
  36EXPORT_SYMBOL(of_root);
  37struct device_node *of_chosen;
  38struct device_node *of_aliases;
  39struct device_node *of_stdout;
  40static const char *of_stdout_options;
  41
  42struct kset *of_kset;
  43
  44/*
  45 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
  46 * This mutex must be held whenever modifications are being made to the
  47 * device tree. The of_{attach,detach}_node() and
  48 * of_{add,remove,update}_property() helpers make sure this happens.
  49 */
  50DEFINE_MUTEX(of_mutex);
  51
  52/* use when traversing tree through the child, sibling,
  53 * or parent members of struct device_node.
  54 */
  55DEFINE_RAW_SPINLOCK(devtree_lock);
  56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  57int of_n_addr_cells(struct device_node *np)
  58{
  59	u32 cells;
  60
  61	do {
  62		if (np->parent)
  63			np = np->parent;
  64		if (!of_property_read_u32(np, "#address-cells", &cells))
  65			return cells;
  66	} while (np->parent);
  67	/* No #address-cells property for the root node */
  68	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
  69}
  70EXPORT_SYMBOL(of_n_addr_cells);
  71
  72int of_n_size_cells(struct device_node *np)
  73{
  74	u32 cells;
  75
  76	do {
  77		if (np->parent)
  78			np = np->parent;
  79		if (!of_property_read_u32(np, "#size-cells", &cells))
  80			return cells;
  81	} while (np->parent);
  82	/* No #size-cells property for the root node */
  83	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
  84}
  85EXPORT_SYMBOL(of_n_size_cells);
  86
  87#ifdef CONFIG_NUMA
  88int __weak of_node_to_nid(struct device_node *np)
  89{
  90	return NUMA_NO_NODE;
  91}
  92#endif
  93
  94static struct device_node **phandle_cache;
  95static u32 phandle_cache_mask;
  96
  97/*
  98 * Assumptions behind phandle_cache implementation:
  99 *   - phandle property values are in a contiguous range of 1..n
 100 *
 101 * If the assumptions do not hold, then
 102 *   - the phandle lookup overhead reduction provided by the cache
 103 *     will likely be less
 104 */
 105static void of_populate_phandle_cache(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 106{
 107	unsigned long flags;
 108	u32 cache_entries;
 109	struct device_node *np;
 110	u32 phandles = 0;
 111
 112	raw_spin_lock_irqsave(&devtree_lock, flags);
 113
 114	kfree(phandle_cache);
 115	phandle_cache = NULL;
 116
 117	for_each_of_allnodes(np)
 118		if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
 119			phandles++;
 120
 
 
 
 121	cache_entries = roundup_pow_of_two(phandles);
 122	phandle_cache_mask = cache_entries - 1;
 123
 124	phandle_cache = kcalloc(cache_entries, sizeof(*phandle_cache),
 125				GFP_ATOMIC);
 126	if (!phandle_cache)
 127		goto out;
 128
 129	for_each_of_allnodes(np)
 130		if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
 
 131			phandle_cache[np->phandle & phandle_cache_mask] = np;
 
 132
 133out:
 134	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 135}
 136
 137#ifndef CONFIG_MODULES
 138static int __init of_free_phandle_cache(void)
 139{
 140	unsigned long flags;
 141
 142	raw_spin_lock_irqsave(&devtree_lock, flags);
 143
 144	kfree(phandle_cache);
 145	phandle_cache = NULL;
 146
 147	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 148
 149	return 0;
 150}
 151late_initcall_sync(of_free_phandle_cache);
 152#endif
 153
 154void __init of_core_init(void)
 155{
 156	struct device_node *np;
 157
 158	of_populate_phandle_cache();
 159
 160	/* Create the kset, and register existing nodes */
 161	mutex_lock(&of_mutex);
 162	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
 163	if (!of_kset) {
 164		mutex_unlock(&of_mutex);
 165		pr_err("failed to register existing nodes\n");
 166		return;
 167	}
 168	for_each_of_allnodes(np)
 169		__of_attach_node_sysfs(np);
 170	mutex_unlock(&of_mutex);
 171
 172	/* Symlink in /proc as required by userspace ABI */
 173	if (of_root)
 174		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
 175}
 176
 177static struct property *__of_find_property(const struct device_node *np,
 178					   const char *name, int *lenp)
 179{
 180	struct property *pp;
 181
 182	if (!np)
 183		return NULL;
 184
 185	for (pp = np->properties; pp; pp = pp->next) {
 186		if (of_prop_cmp(pp->name, name) == 0) {
 187			if (lenp)
 188				*lenp = pp->length;
 189			break;
 190		}
 191	}
 192
 193	return pp;
 194}
 195
 196struct property *of_find_property(const struct device_node *np,
 197				  const char *name,
 198				  int *lenp)
 199{
 200	struct property *pp;
 201	unsigned long flags;
 202
 203	raw_spin_lock_irqsave(&devtree_lock, flags);
 204	pp = __of_find_property(np, name, lenp);
 205	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 206
 207	return pp;
 208}
 209EXPORT_SYMBOL(of_find_property);
 210
 211struct device_node *__of_find_all_nodes(struct device_node *prev)
 212{
 213	struct device_node *np;
 214	if (!prev) {
 215		np = of_root;
 216	} else if (prev->child) {
 217		np = prev->child;
 218	} else {
 219		/* Walk back up looking for a sibling, or the end of the structure */
 220		np = prev;
 221		while (np->parent && !np->sibling)
 222			np = np->parent;
 223		np = np->sibling; /* Might be null at the end of the tree */
 224	}
 225	return np;
 226}
 227
 228/**
 229 * of_find_all_nodes - Get next node in global list
 230 * @prev:	Previous node or NULL to start iteration
 231 *		of_node_put() will be called on it
 232 *
 233 * Returns a node pointer with refcount incremented, use
 234 * of_node_put() on it when done.
 235 */
 236struct device_node *of_find_all_nodes(struct device_node *prev)
 237{
 238	struct device_node *np;
 239	unsigned long flags;
 240
 241	raw_spin_lock_irqsave(&devtree_lock, flags);
 242	np = __of_find_all_nodes(prev);
 243	of_node_get(np);
 244	of_node_put(prev);
 245	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 246	return np;
 247}
 248EXPORT_SYMBOL(of_find_all_nodes);
 249
 250/*
 251 * Find a property with a given name for a given node
 252 * and return the value.
 253 */
 254const void *__of_get_property(const struct device_node *np,
 255			      const char *name, int *lenp)
 256{
 257	struct property *pp = __of_find_property(np, name, lenp);
 258
 259	return pp ? pp->value : NULL;
 260}
 261
 262/*
 263 * Find a property with a given name for a given node
 264 * and return the value.
 265 */
 266const void *of_get_property(const struct device_node *np, const char *name,
 267			    int *lenp)
 268{
 269	struct property *pp = of_find_property(np, name, lenp);
 270
 271	return pp ? pp->value : NULL;
 272}
 273EXPORT_SYMBOL(of_get_property);
 274
 275/*
 276 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
 277 *
 278 * @cpu: logical cpu index of a core/thread
 279 * @phys_id: physical identifier of a core/thread
 280 *
 281 * CPU logical to physical index mapping is architecture specific.
 282 * However this __weak function provides a default match of physical
 283 * id to logical cpu index. phys_id provided here is usually values read
 284 * from the device tree which must match the hardware internal registers.
 285 *
 286 * Returns true if the physical identifier and the logical cpu index
 287 * correspond to the same core/thread, false otherwise.
 288 */
 289bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
 290{
 291	return (u32)phys_id == cpu;
 292}
 293
 294/**
 295 * Checks if the given "prop_name" property holds the physical id of the
 296 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
 297 * NULL, local thread number within the core is returned in it.
 298 */
 299static bool __of_find_n_match_cpu_property(struct device_node *cpun,
 300			const char *prop_name, int cpu, unsigned int *thread)
 301{
 302	const __be32 *cell;
 303	int ac, prop_len, tid;
 304	u64 hwid;
 305
 306	ac = of_n_addr_cells(cpun);
 307	cell = of_get_property(cpun, prop_name, &prop_len);
 
 
 308	if (!cell || !ac)
 309		return false;
 310	prop_len /= sizeof(*cell) * ac;
 311	for (tid = 0; tid < prop_len; tid++) {
 312		hwid = of_read_number(cell, ac);
 313		if (arch_match_cpu_phys_id(cpu, hwid)) {
 314			if (thread)
 315				*thread = tid;
 316			return true;
 317		}
 318		cell += ac;
 319	}
 320	return false;
 321}
 322
 323/*
 324 * arch_find_n_match_cpu_physical_id - See if the given device node is
 325 * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
 326 * else false.  If 'thread' is non-NULL, the local thread number within the
 327 * core is returned in it.
 328 */
 329bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
 330					      int cpu, unsigned int *thread)
 331{
 332	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
 333	 * for thread ids on PowerPC. If it doesn't exist fallback to
 334	 * standard "reg" property.
 335	 */
 336	if (IS_ENABLED(CONFIG_PPC) &&
 337	    __of_find_n_match_cpu_property(cpun,
 338					   "ibm,ppc-interrupt-server#s",
 339					   cpu, thread))
 340		return true;
 341
 342	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
 343}
 344
 345/**
 346 * of_get_cpu_node - Get device node associated with the given logical CPU
 347 *
 348 * @cpu: CPU number(logical index) for which device node is required
 349 * @thread: if not NULL, local thread number within the physical core is
 350 *          returned
 351 *
 352 * The main purpose of this function is to retrieve the device node for the
 353 * given logical CPU index. It should be used to initialize the of_node in
 354 * cpu device. Once of_node in cpu device is populated, all the further
 355 * references can use that instead.
 356 *
 357 * CPU logical to physical index mapping is architecture specific and is built
 358 * before booting secondary cores. This function uses arch_match_cpu_phys_id
 359 * which can be overridden by architecture specific implementation.
 360 *
 361 * Returns a node pointer for the logical cpu with refcount incremented, use
 362 * of_node_put() on it when done. Returns NULL if not found.
 363 */
 364struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
 365{
 366	struct device_node *cpun;
 367
 368	for_each_node_by_type(cpun, "cpu") {
 369		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
 370			return cpun;
 371	}
 372	return NULL;
 373}
 374EXPORT_SYMBOL(of_get_cpu_node);
 375
 376/**
 377 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
 378 *
 379 * @cpu_node: Pointer to the device_node for CPU.
 380 *
 381 * Returns the logical CPU number of the given CPU device_node.
 382 * Returns -ENODEV if the CPU is not found.
 383 */
 384int of_cpu_node_to_id(struct device_node *cpu_node)
 385{
 386	int cpu;
 387	bool found = false;
 388	struct device_node *np;
 389
 390	for_each_possible_cpu(cpu) {
 391		np = of_cpu_device_node_get(cpu);
 392		found = (cpu_node == np);
 393		of_node_put(np);
 394		if (found)
 395			return cpu;
 396	}
 397
 398	return -ENODEV;
 399}
 400EXPORT_SYMBOL(of_cpu_node_to_id);
 401
 402/**
 403 * __of_device_is_compatible() - Check if the node matches given constraints
 404 * @device: pointer to node
 405 * @compat: required compatible string, NULL or "" for any match
 406 * @type: required device_type value, NULL or "" for any match
 407 * @name: required node name, NULL or "" for any match
 408 *
 409 * Checks if the given @compat, @type and @name strings match the
 410 * properties of the given @device. A constraints can be skipped by
 411 * passing NULL or an empty string as the constraint.
 412 *
 413 * Returns 0 for no match, and a positive integer on match. The return
 414 * value is a relative score with larger values indicating better
 415 * matches. The score is weighted for the most specific compatible value
 416 * to get the highest score. Matching type is next, followed by matching
 417 * name. Practically speaking, this results in the following priority
 418 * order for matches:
 419 *
 420 * 1. specific compatible && type && name
 421 * 2. specific compatible && type
 422 * 3. specific compatible && name
 423 * 4. specific compatible
 424 * 5. general compatible && type && name
 425 * 6. general compatible && type
 426 * 7. general compatible && name
 427 * 8. general compatible
 428 * 9. type && name
 429 * 10. type
 430 * 11. name
 431 */
 432static int __of_device_is_compatible(const struct device_node *device,
 433				     const char *compat, const char *type, const char *name)
 434{
 435	struct property *prop;
 436	const char *cp;
 437	int index = 0, score = 0;
 438
 439	/* Compatible match has highest priority */
 440	if (compat && compat[0]) {
 441		prop = __of_find_property(device, "compatible", NULL);
 442		for (cp = of_prop_next_string(prop, NULL); cp;
 443		     cp = of_prop_next_string(prop, cp), index++) {
 444			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
 445				score = INT_MAX/2 - (index << 2);
 446				break;
 447			}
 448		}
 449		if (!score)
 450			return 0;
 451	}
 452
 453	/* Matching type is better than matching name */
 454	if (type && type[0]) {
 455		if (!device->type || of_node_cmp(type, device->type))
 456			return 0;
 457		score += 2;
 458	}
 459
 460	/* Matching name is a bit better than not */
 461	if (name && name[0]) {
 462		if (!device->name || of_node_cmp(name, device->name))
 463			return 0;
 464		score++;
 465	}
 466
 467	return score;
 468}
 469
 470/** Checks if the given "compat" string matches one of the strings in
 471 * the device's "compatible" property
 472 */
 473int of_device_is_compatible(const struct device_node *device,
 474		const char *compat)
 475{
 476	unsigned long flags;
 477	int res;
 478
 479	raw_spin_lock_irqsave(&devtree_lock, flags);
 480	res = __of_device_is_compatible(device, compat, NULL, NULL);
 481	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 482	return res;
 483}
 484EXPORT_SYMBOL(of_device_is_compatible);
 485
 486/** Checks if the device is compatible with any of the entries in
 487 *  a NULL terminated array of strings. Returns the best match
 488 *  score or 0.
 489 */
 490int of_device_compatible_match(struct device_node *device,
 491			       const char *const *compat)
 492{
 493	unsigned int tmp, score = 0;
 494
 495	if (!compat)
 496		return 0;
 497
 498	while (*compat) {
 499		tmp = of_device_is_compatible(device, *compat);
 500		if (tmp > score)
 501			score = tmp;
 502		compat++;
 503	}
 504
 505	return score;
 506}
 507
 508/**
 509 * of_machine_is_compatible - Test root of device tree for a given compatible value
 510 * @compat: compatible string to look for in root node's compatible property.
 511 *
 512 * Returns a positive integer if the root node has the given value in its
 513 * compatible property.
 514 */
 515int of_machine_is_compatible(const char *compat)
 516{
 517	struct device_node *root;
 518	int rc = 0;
 519
 520	root = of_find_node_by_path("/");
 521	if (root) {
 522		rc = of_device_is_compatible(root, compat);
 523		of_node_put(root);
 524	}
 525	return rc;
 526}
 527EXPORT_SYMBOL(of_machine_is_compatible);
 528
 529/**
 530 *  __of_device_is_available - check if a device is available for use
 531 *
 532 *  @device: Node to check for availability, with locks already held
 533 *
 534 *  Returns true if the status property is absent or set to "okay" or "ok",
 535 *  false otherwise
 536 */
 537static bool __of_device_is_available(const struct device_node *device)
 538{
 539	const char *status;
 540	int statlen;
 541
 542	if (!device)
 543		return false;
 544
 545	status = __of_get_property(device, "status", &statlen);
 546	if (status == NULL)
 547		return true;
 548
 549	if (statlen > 0) {
 550		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
 551			return true;
 552	}
 553
 554	return false;
 555}
 556
 557/**
 558 *  of_device_is_available - check if a device is available for use
 559 *
 560 *  @device: Node to check for availability
 561 *
 562 *  Returns true if the status property is absent or set to "okay" or "ok",
 563 *  false otherwise
 564 */
 565bool of_device_is_available(const struct device_node *device)
 566{
 567	unsigned long flags;
 568	bool res;
 569
 570	raw_spin_lock_irqsave(&devtree_lock, flags);
 571	res = __of_device_is_available(device);
 572	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 573	return res;
 574
 575}
 576EXPORT_SYMBOL(of_device_is_available);
 577
 578/**
 579 *  of_device_is_big_endian - check if a device has BE registers
 580 *
 581 *  @device: Node to check for endianness
 582 *
 583 *  Returns true if the device has a "big-endian" property, or if the kernel
 584 *  was compiled for BE *and* the device has a "native-endian" property.
 585 *  Returns false otherwise.
 586 *
 587 *  Callers would nominally use ioread32be/iowrite32be if
 588 *  of_device_is_big_endian() == true, or readl/writel otherwise.
 589 */
 590bool of_device_is_big_endian(const struct device_node *device)
 591{
 592	if (of_property_read_bool(device, "big-endian"))
 593		return true;
 594	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
 595	    of_property_read_bool(device, "native-endian"))
 596		return true;
 597	return false;
 598}
 599EXPORT_SYMBOL(of_device_is_big_endian);
 600
 601/**
 602 *	of_get_parent - Get a node's parent if any
 603 *	@node:	Node to get parent
 604 *
 605 *	Returns a node pointer with refcount incremented, use
 606 *	of_node_put() on it when done.
 607 */
 608struct device_node *of_get_parent(const struct device_node *node)
 609{
 610	struct device_node *np;
 611	unsigned long flags;
 612
 613	if (!node)
 614		return NULL;
 615
 616	raw_spin_lock_irqsave(&devtree_lock, flags);
 617	np = of_node_get(node->parent);
 618	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 619	return np;
 620}
 621EXPORT_SYMBOL(of_get_parent);
 622
 623/**
 624 *	of_get_next_parent - Iterate to a node's parent
 625 *	@node:	Node to get parent of
 626 *
 627 *	This is like of_get_parent() except that it drops the
 628 *	refcount on the passed node, making it suitable for iterating
 629 *	through a node's parents.
 630 *
 631 *	Returns a node pointer with refcount incremented, use
 632 *	of_node_put() on it when done.
 633 */
 634struct device_node *of_get_next_parent(struct device_node *node)
 635{
 636	struct device_node *parent;
 637	unsigned long flags;
 638
 639	if (!node)
 640		return NULL;
 641
 642	raw_spin_lock_irqsave(&devtree_lock, flags);
 643	parent = of_node_get(node->parent);
 644	of_node_put(node);
 645	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 646	return parent;
 647}
 648EXPORT_SYMBOL(of_get_next_parent);
 649
 650static struct device_node *__of_get_next_child(const struct device_node *node,
 651						struct device_node *prev)
 652{
 653	struct device_node *next;
 654
 655	if (!node)
 656		return NULL;
 657
 658	next = prev ? prev->sibling : node->child;
 659	for (; next; next = next->sibling)
 660		if (of_node_get(next))
 661			break;
 662	of_node_put(prev);
 663	return next;
 664}
 665#define __for_each_child_of_node(parent, child) \
 666	for (child = __of_get_next_child(parent, NULL); child != NULL; \
 667	     child = __of_get_next_child(parent, child))
 668
 669/**
 670 *	of_get_next_child - Iterate a node childs
 671 *	@node:	parent node
 672 *	@prev:	previous child of the parent node, or NULL to get first
 673 *
 674 *	Returns a node pointer with refcount incremented, use of_node_put() on
 675 *	it when done. Returns NULL when prev is the last child. Decrements the
 676 *	refcount of prev.
 677 */
 678struct device_node *of_get_next_child(const struct device_node *node,
 679	struct device_node *prev)
 680{
 681	struct device_node *next;
 682	unsigned long flags;
 683
 684	raw_spin_lock_irqsave(&devtree_lock, flags);
 685	next = __of_get_next_child(node, prev);
 686	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 687	return next;
 688}
 689EXPORT_SYMBOL(of_get_next_child);
 690
 691/**
 692 *	of_get_next_available_child - Find the next available child node
 693 *	@node:	parent node
 694 *	@prev:	previous child of the parent node, or NULL to get first
 695 *
 696 *      This function is like of_get_next_child(), except that it
 697 *      automatically skips any disabled nodes (i.e. status = "disabled").
 698 */
 699struct device_node *of_get_next_available_child(const struct device_node *node,
 700	struct device_node *prev)
 701{
 702	struct device_node *next;
 703	unsigned long flags;
 704
 705	if (!node)
 706		return NULL;
 707
 708	raw_spin_lock_irqsave(&devtree_lock, flags);
 709	next = prev ? prev->sibling : node->child;
 710	for (; next; next = next->sibling) {
 711		if (!__of_device_is_available(next))
 712			continue;
 713		if (of_node_get(next))
 714			break;
 715	}
 716	of_node_put(prev);
 717	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 718	return next;
 719}
 720EXPORT_SYMBOL(of_get_next_available_child);
 721
 722/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 723 *	of_get_child_by_name - Find the child node by name for a given parent
 724 *	@node:	parent node
 725 *	@name:	child name to look for.
 726 *
 727 *      This function looks for child node for given matching name
 728 *
 729 *	Returns a node pointer if found, with refcount incremented, use
 730 *	of_node_put() on it when done.
 731 *	Returns NULL if node is not found.
 732 */
 733struct device_node *of_get_child_by_name(const struct device_node *node,
 734				const char *name)
 735{
 736	struct device_node *child;
 737
 738	for_each_child_of_node(node, child)
 739		if (child->name && (of_node_cmp(child->name, name) == 0))
 740			break;
 741	return child;
 742}
 743EXPORT_SYMBOL(of_get_child_by_name);
 744
 745struct device_node *__of_find_node_by_path(struct device_node *parent,
 746						const char *path)
 747{
 748	struct device_node *child;
 749	int len;
 750
 751	len = strcspn(path, "/:");
 752	if (!len)
 753		return NULL;
 754
 755	__for_each_child_of_node(parent, child) {
 756		const char *name = kbasename(child->full_name);
 757		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
 758			return child;
 759	}
 760	return NULL;
 761}
 762
 763struct device_node *__of_find_node_by_full_path(struct device_node *node,
 764						const char *path)
 765{
 766	const char *separator = strchr(path, ':');
 767
 768	while (node && *path == '/') {
 769		struct device_node *tmp = node;
 770
 771		path++; /* Increment past '/' delimiter */
 772		node = __of_find_node_by_path(node, path);
 773		of_node_put(tmp);
 774		path = strchrnul(path, '/');
 775		if (separator && separator < path)
 776			break;
 777	}
 778	return node;
 779}
 780
 781/**
 782 *	of_find_node_opts_by_path - Find a node matching a full OF path
 783 *	@path: Either the full path to match, or if the path does not
 784 *	       start with '/', the name of a property of the /aliases
 785 *	       node (an alias).  In the case of an alias, the node
 786 *	       matching the alias' value will be returned.
 787 *	@opts: Address of a pointer into which to store the start of
 788 *	       an options string appended to the end of the path with
 789 *	       a ':' separator.
 790 *
 791 *	Valid paths:
 792 *		/foo/bar	Full path
 793 *		foo		Valid alias
 794 *		foo/bar		Valid alias + relative path
 795 *
 796 *	Returns a node pointer with refcount incremented, use
 797 *	of_node_put() on it when done.
 798 */
 799struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
 800{
 801	struct device_node *np = NULL;
 802	struct property *pp;
 803	unsigned long flags;
 804	const char *separator = strchr(path, ':');
 805
 806	if (opts)
 807		*opts = separator ? separator + 1 : NULL;
 808
 809	if (strcmp(path, "/") == 0)
 810		return of_node_get(of_root);
 811
 812	/* The path could begin with an alias */
 813	if (*path != '/') {
 814		int len;
 815		const char *p = separator;
 816
 817		if (!p)
 818			p = strchrnul(path, '/');
 819		len = p - path;
 820
 821		/* of_aliases must not be NULL */
 822		if (!of_aliases)
 823			return NULL;
 824
 825		for_each_property_of_node(of_aliases, pp) {
 826			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
 827				np = of_find_node_by_path(pp->value);
 828				break;
 829			}
 830		}
 831		if (!np)
 832			return NULL;
 833		path = p;
 834	}
 835
 836	/* Step down the tree matching path components */
 837	raw_spin_lock_irqsave(&devtree_lock, flags);
 838	if (!np)
 839		np = of_node_get(of_root);
 840	np = __of_find_node_by_full_path(np, path);
 841	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 842	return np;
 843}
 844EXPORT_SYMBOL(of_find_node_opts_by_path);
 845
 846/**
 847 *	of_find_node_by_name - Find a node by its "name" property
 848 *	@from:	The node to start searching from or NULL; the node
 849 *		you pass will not be searched, only the next one
 850 *		will. Typically, you pass what the previous call
 851 *		returned. of_node_put() will be called on @from.
 852 *	@name:	The name string to match against
 853 *
 854 *	Returns a node pointer with refcount incremented, use
 855 *	of_node_put() on it when done.
 856 */
 857struct device_node *of_find_node_by_name(struct device_node *from,
 858	const char *name)
 859{
 860	struct device_node *np;
 861	unsigned long flags;
 862
 863	raw_spin_lock_irqsave(&devtree_lock, flags);
 864	for_each_of_allnodes_from(from, np)
 865		if (np->name && (of_node_cmp(np->name, name) == 0)
 866		    && of_node_get(np))
 867			break;
 868	of_node_put(from);
 869	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 870	return np;
 871}
 872EXPORT_SYMBOL(of_find_node_by_name);
 873
 874/**
 875 *	of_find_node_by_type - Find a node by its "device_type" property
 876 *	@from:	The node to start searching from, or NULL to start searching
 877 *		the entire device tree. The node you pass will not be
 878 *		searched, only the next one will; typically, you pass
 879 *		what the previous call returned. of_node_put() will be
 880 *		called on from for you.
 881 *	@type:	The type string to match against
 882 *
 883 *	Returns a node pointer with refcount incremented, use
 884 *	of_node_put() on it when done.
 885 */
 886struct device_node *of_find_node_by_type(struct device_node *from,
 887	const char *type)
 888{
 889	struct device_node *np;
 890	unsigned long flags;
 891
 892	raw_spin_lock_irqsave(&devtree_lock, flags);
 893	for_each_of_allnodes_from(from, np)
 894		if (np->type && (of_node_cmp(np->type, type) == 0)
 895		    && of_node_get(np))
 896			break;
 897	of_node_put(from);
 898	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 899	return np;
 900}
 901EXPORT_SYMBOL(of_find_node_by_type);
 902
 903/**
 904 *	of_find_compatible_node - Find a node based on type and one of the
 905 *                                tokens in its "compatible" property
 906 *	@from:		The node to start searching from or NULL, the node
 907 *			you pass will not be searched, only the next one
 908 *			will; typically, you pass what the previous call
 909 *			returned. of_node_put() will be called on it
 910 *	@type:		The type string to match "device_type" or NULL to ignore
 911 *	@compatible:	The string to match to one of the tokens in the device
 912 *			"compatible" list.
 913 *
 914 *	Returns a node pointer with refcount incremented, use
 915 *	of_node_put() on it when done.
 916 */
 917struct device_node *of_find_compatible_node(struct device_node *from,
 918	const char *type, const char *compatible)
 919{
 920	struct device_node *np;
 921	unsigned long flags;
 922
 923	raw_spin_lock_irqsave(&devtree_lock, flags);
 924	for_each_of_allnodes_from(from, np)
 925		if (__of_device_is_compatible(np, compatible, type, NULL) &&
 926		    of_node_get(np))
 927			break;
 928	of_node_put(from);
 929	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 930	return np;
 931}
 932EXPORT_SYMBOL(of_find_compatible_node);
 933
 934/**
 935 *	of_find_node_with_property - Find a node which has a property with
 936 *                                   the given name.
 937 *	@from:		The node to start searching from or NULL, the node
 938 *			you pass will not be searched, only the next one
 939 *			will; typically, you pass what the previous call
 940 *			returned. of_node_put() will be called on it
 941 *	@prop_name:	The name of the property to look for.
 942 *
 943 *	Returns a node pointer with refcount incremented, use
 944 *	of_node_put() on it when done.
 945 */
 946struct device_node *of_find_node_with_property(struct device_node *from,
 947	const char *prop_name)
 948{
 949	struct device_node *np;
 950	struct property *pp;
 951	unsigned long flags;
 952
 953	raw_spin_lock_irqsave(&devtree_lock, flags);
 954	for_each_of_allnodes_from(from, np) {
 955		for (pp = np->properties; pp; pp = pp->next) {
 956			if (of_prop_cmp(pp->name, prop_name) == 0) {
 957				of_node_get(np);
 958				goto out;
 959			}
 960		}
 961	}
 962out:
 963	of_node_put(from);
 964	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 965	return np;
 966}
 967EXPORT_SYMBOL(of_find_node_with_property);
 968
 969static
 970const struct of_device_id *__of_match_node(const struct of_device_id *matches,
 971					   const struct device_node *node)
 972{
 973	const struct of_device_id *best_match = NULL;
 974	int score, best_score = 0;
 975
 976	if (!matches)
 977		return NULL;
 978
 979	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
 980		score = __of_device_is_compatible(node, matches->compatible,
 981						  matches->type, matches->name);
 982		if (score > best_score) {
 983			best_match = matches;
 984			best_score = score;
 985		}
 986	}
 987
 988	return best_match;
 989}
 990
 991/**
 992 * of_match_node - Tell if a device_node has a matching of_match structure
 993 *	@matches:	array of of device match structures to search in
 994 *	@node:		the of device structure to match against
 995 *
 996 *	Low level utility function used by device matching.
 997 */
 998const struct of_device_id *of_match_node(const struct of_device_id *matches,
 999					 const struct device_node *node)
1000{
1001	const struct of_device_id *match;
1002	unsigned long flags;
1003
1004	raw_spin_lock_irqsave(&devtree_lock, flags);
1005	match = __of_match_node(matches, node);
1006	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1007	return match;
1008}
1009EXPORT_SYMBOL(of_match_node);
1010
1011/**
1012 *	of_find_matching_node_and_match - Find a node based on an of_device_id
1013 *					  match table.
1014 *	@from:		The node to start searching from or NULL, the node
1015 *			you pass will not be searched, only the next one
1016 *			will; typically, you pass what the previous call
1017 *			returned. of_node_put() will be called on it
1018 *	@matches:	array of of device match structures to search in
1019 *	@match		Updated to point at the matches entry which matched
1020 *
1021 *	Returns a node pointer with refcount incremented, use
1022 *	of_node_put() on it when done.
1023 */
1024struct device_node *of_find_matching_node_and_match(struct device_node *from,
1025					const struct of_device_id *matches,
1026					const struct of_device_id **match)
1027{
1028	struct device_node *np;
1029	const struct of_device_id *m;
1030	unsigned long flags;
1031
1032	if (match)
1033		*match = NULL;
1034
1035	raw_spin_lock_irqsave(&devtree_lock, flags);
1036	for_each_of_allnodes_from(from, np) {
1037		m = __of_match_node(matches, np);
1038		if (m && of_node_get(np)) {
1039			if (match)
1040				*match = m;
1041			break;
1042		}
1043	}
1044	of_node_put(from);
1045	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1046	return np;
1047}
1048EXPORT_SYMBOL(of_find_matching_node_and_match);
1049
1050/**
1051 * of_modalias_node - Lookup appropriate modalias for a device node
1052 * @node:	pointer to a device tree node
1053 * @modalias:	Pointer to buffer that modalias value will be copied into
1054 * @len:	Length of modalias value
1055 *
1056 * Based on the value of the compatible property, this routine will attempt
1057 * to choose an appropriate modalias value for a particular device tree node.
1058 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1059 * from the first entry in the compatible list property.
1060 *
1061 * This routine returns 0 on success, <0 on failure.
1062 */
1063int of_modalias_node(struct device_node *node, char *modalias, int len)
1064{
1065	const char *compatible, *p;
1066	int cplen;
1067
1068	compatible = of_get_property(node, "compatible", &cplen);
1069	if (!compatible || strlen(compatible) > cplen)
1070		return -ENODEV;
1071	p = strchr(compatible, ',');
1072	strlcpy(modalias, p ? p + 1 : compatible, len);
1073	return 0;
1074}
1075EXPORT_SYMBOL_GPL(of_modalias_node);
1076
1077/**
1078 * of_find_node_by_phandle - Find a node given a phandle
1079 * @handle:	phandle of the node to find
1080 *
1081 * Returns a node pointer with refcount incremented, use
1082 * of_node_put() on it when done.
1083 */
1084struct device_node *of_find_node_by_phandle(phandle handle)
1085{
1086	struct device_node *np = NULL;
1087	unsigned long flags;
1088	phandle masked_handle;
1089
1090	if (!handle)
1091		return NULL;
1092
1093	raw_spin_lock_irqsave(&devtree_lock, flags);
1094
1095	masked_handle = handle & phandle_cache_mask;
1096
1097	if (phandle_cache) {
1098		if (phandle_cache[masked_handle] &&
1099		    handle == phandle_cache[masked_handle]->phandle)
1100			np = phandle_cache[masked_handle];
 
 
 
 
 
 
1101	}
1102
1103	if (!np) {
1104		for_each_of_allnodes(np)
1105			if (np->phandle == handle) {
1106				if (phandle_cache)
 
 
 
1107					phandle_cache[masked_handle] = np;
 
1108				break;
1109			}
1110	}
1111
1112	of_node_get(np);
1113	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1114	return np;
1115}
1116EXPORT_SYMBOL(of_find_node_by_phandle);
1117
1118void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1119{
1120	int i;
1121	printk("%s %pOF", msg, args->np);
1122	for (i = 0; i < args->args_count; i++) {
1123		const char delim = i ? ',' : ':';
1124
1125		pr_cont("%c%08x", delim, args->args[i]);
1126	}
1127	pr_cont("\n");
1128}
1129
1130int of_phandle_iterator_init(struct of_phandle_iterator *it,
1131		const struct device_node *np,
1132		const char *list_name,
1133		const char *cells_name,
1134		int cell_count)
1135{
1136	const __be32 *list;
1137	int size;
1138
1139	memset(it, 0, sizeof(*it));
1140
 
 
 
 
 
 
 
1141	list = of_get_property(np, list_name, &size);
1142	if (!list)
1143		return -ENOENT;
1144
1145	it->cells_name = cells_name;
1146	it->cell_count = cell_count;
1147	it->parent = np;
1148	it->list_end = list + size / sizeof(*list);
1149	it->phandle_end = list;
1150	it->cur = list;
1151
1152	return 0;
1153}
1154EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1155
1156int of_phandle_iterator_next(struct of_phandle_iterator *it)
1157{
1158	uint32_t count = 0;
1159
1160	if (it->node) {
1161		of_node_put(it->node);
1162		it->node = NULL;
1163	}
1164
1165	if (!it->cur || it->phandle_end >= it->list_end)
1166		return -ENOENT;
1167
1168	it->cur = it->phandle_end;
1169
1170	/* If phandle is 0, then it is an empty entry with no arguments. */
1171	it->phandle = be32_to_cpup(it->cur++);
1172
1173	if (it->phandle) {
1174
1175		/*
1176		 * Find the provider node and parse the #*-cells property to
1177		 * determine the argument length.
1178		 */
1179		it->node = of_find_node_by_phandle(it->phandle);
1180
1181		if (it->cells_name) {
1182			if (!it->node) {
1183				pr_err("%pOF: could not find phandle\n",
1184				       it->parent);
1185				goto err;
1186			}
1187
1188			if (of_property_read_u32(it->node, it->cells_name,
1189						 &count)) {
1190				pr_err("%pOF: could not get %s for %pOF\n",
1191				       it->parent,
1192				       it->cells_name,
1193				       it->node);
1194				goto err;
 
 
 
 
 
 
 
 
 
1195			}
1196		} else {
1197			count = it->cell_count;
1198		}
1199
1200		/*
1201		 * Make sure that the arguments actually fit in the remaining
1202		 * property data length
1203		 */
1204		if (it->cur + count > it->list_end) {
1205			pr_err("%pOF: arguments longer than property\n",
1206			       it->parent);
 
1207			goto err;
1208		}
1209	}
1210
1211	it->phandle_end = it->cur + count;
1212	it->cur_count = count;
1213
1214	return 0;
1215
1216err:
1217	if (it->node) {
1218		of_node_put(it->node);
1219		it->node = NULL;
1220	}
1221
1222	return -EINVAL;
1223}
1224EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1225
1226int of_phandle_iterator_args(struct of_phandle_iterator *it,
1227			     uint32_t *args,
1228			     int size)
1229{
1230	int i, count;
1231
1232	count = it->cur_count;
1233
1234	if (WARN_ON(size < count))
1235		count = size;
1236
1237	for (i = 0; i < count; i++)
1238		args[i] = be32_to_cpup(it->cur++);
1239
1240	return count;
1241}
1242
1243static int __of_parse_phandle_with_args(const struct device_node *np,
1244					const char *list_name,
1245					const char *cells_name,
1246					int cell_count, int index,
1247					struct of_phandle_args *out_args)
1248{
1249	struct of_phandle_iterator it;
1250	int rc, cur_index = 0;
1251
1252	/* Loop over the phandles until all the requested entry is found */
1253	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1254		/*
1255		 * All of the error cases bail out of the loop, so at
1256		 * this point, the parsing is successful. If the requested
1257		 * index matches, then fill the out_args structure and return,
1258		 * or return -ENOENT for an empty entry.
1259		 */
1260		rc = -ENOENT;
1261		if (cur_index == index) {
1262			if (!it.phandle)
1263				goto err;
1264
1265			if (out_args) {
1266				int c;
1267
1268				c = of_phandle_iterator_args(&it,
1269							     out_args->args,
1270							     MAX_PHANDLE_ARGS);
1271				out_args->np = it.node;
1272				out_args->args_count = c;
1273			} else {
1274				of_node_put(it.node);
1275			}
1276
1277			/* Found it! return success */
1278			return 0;
1279		}
1280
1281		cur_index++;
1282	}
1283
1284	/*
1285	 * Unlock node before returning result; will be one of:
1286	 * -ENOENT : index is for empty phandle
1287	 * -EINVAL : parsing error on data
1288	 */
1289
1290 err:
1291	of_node_put(it.node);
1292	return rc;
1293}
1294
1295/**
1296 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1297 * @np: Pointer to device node holding phandle property
1298 * @phandle_name: Name of property holding a phandle value
1299 * @index: For properties holding a table of phandles, this is the index into
1300 *         the table
1301 *
1302 * Returns the device_node pointer with refcount incremented.  Use
1303 * of_node_put() on it when done.
1304 */
1305struct device_node *of_parse_phandle(const struct device_node *np,
1306				     const char *phandle_name, int index)
1307{
1308	struct of_phandle_args args;
1309
1310	if (index < 0)
1311		return NULL;
1312
1313	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1314					 index, &args))
1315		return NULL;
1316
1317	return args.np;
1318}
1319EXPORT_SYMBOL(of_parse_phandle);
1320
1321/**
1322 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1323 * @np:		pointer to a device tree node containing a list
1324 * @list_name:	property name that contains a list
1325 * @cells_name:	property name that specifies phandles' arguments count
1326 * @index:	index of a phandle to parse out
1327 * @out_args:	optional pointer to output arguments structure (will be filled)
1328 *
1329 * This function is useful to parse lists of phandles and their arguments.
1330 * Returns 0 on success and fills out_args, on error returns appropriate
1331 * errno value.
1332 *
1333 * Caller is responsible to call of_node_put() on the returned out_args->np
1334 * pointer.
1335 *
1336 * Example:
1337 *
1338 * phandle1: node1 {
1339 *	#list-cells = <2>;
1340 * }
1341 *
1342 * phandle2: node2 {
1343 *	#list-cells = <1>;
1344 * }
1345 *
1346 * node3 {
1347 *	list = <&phandle1 1 2 &phandle2 3>;
1348 * }
1349 *
1350 * To get a device_node of the `node2' node you may call this:
1351 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1352 */
1353int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1354				const char *cells_name, int index,
1355				struct of_phandle_args *out_args)
1356{
 
 
1357	if (index < 0)
1358		return -EINVAL;
1359	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1360					    index, out_args);
 
 
 
 
 
1361}
1362EXPORT_SYMBOL(of_parse_phandle_with_args);
1363
1364/**
1365 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1366 * @np:		pointer to a device tree node containing a list
1367 * @list_name:	property name that contains a list
1368 * @stem_name:	stem of property names that specify phandles' arguments count
1369 * @index:	index of a phandle to parse out
1370 * @out_args:	optional pointer to output arguments structure (will be filled)
1371 *
1372 * This function is useful to parse lists of phandles and their arguments.
1373 * Returns 0 on success and fills out_args, on error returns appropriate errno
1374 * value. The difference between this function and of_parse_phandle_with_args()
1375 * is that this API remaps a phandle if the node the phandle points to has
1376 * a <@stem_name>-map property.
1377 *
1378 * Caller is responsible to call of_node_put() on the returned out_args->np
1379 * pointer.
1380 *
1381 * Example:
1382 *
1383 * phandle1: node1 {
1384 *	#list-cells = <2>;
1385 * }
1386 *
1387 * phandle2: node2 {
1388 *	#list-cells = <1>;
1389 * }
1390 *
1391 * phandle3: node3 {
1392 * 	#list-cells = <1>;
1393 * 	list-map = <0 &phandle2 3>,
1394 * 		   <1 &phandle2 2>,
1395 * 		   <2 &phandle1 5 1>;
1396 *	list-map-mask = <0x3>;
1397 * };
1398 *
1399 * node4 {
1400 *	list = <&phandle1 1 2 &phandle3 0>;
1401 * }
1402 *
1403 * To get a device_node of the `node2' node you may call this:
1404 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1405 */
1406int of_parse_phandle_with_args_map(const struct device_node *np,
1407				   const char *list_name,
1408				   const char *stem_name,
1409				   int index, struct of_phandle_args *out_args)
1410{
1411	char *cells_name, *map_name = NULL, *mask_name = NULL;
1412	char *pass_name = NULL;
1413	struct device_node *cur, *new = NULL;
1414	const __be32 *map, *mask, *pass;
1415	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1416	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1417	__be32 initial_match_array[MAX_PHANDLE_ARGS];
1418	const __be32 *match_array = initial_match_array;
1419	int i, ret, map_len, match;
1420	u32 list_size, new_size;
1421
1422	if (index < 0)
1423		return -EINVAL;
1424
1425	cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1426	if (!cells_name)
1427		return -ENOMEM;
1428
1429	ret = -ENOMEM;
1430	map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1431	if (!map_name)
1432		goto free;
1433
1434	mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1435	if (!mask_name)
1436		goto free;
1437
1438	pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1439	if (!pass_name)
1440		goto free;
1441
1442	ret = __of_parse_phandle_with_args(np, list_name, cells_name, 0, index,
1443					   out_args);
1444	if (ret)
1445		goto free;
1446
1447	/* Get the #<list>-cells property */
1448	cur = out_args->np;
1449	ret = of_property_read_u32(cur, cells_name, &list_size);
1450	if (ret < 0)
1451		goto put;
1452
1453	/* Precalculate the match array - this simplifies match loop */
1454	for (i = 0; i < list_size; i++)
1455		initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1456
1457	ret = -EINVAL;
1458	while (cur) {
1459		/* Get the <list>-map property */
1460		map = of_get_property(cur, map_name, &map_len);
1461		if (!map) {
1462			ret = 0;
1463			goto free;
1464		}
1465		map_len /= sizeof(u32);
1466
1467		/* Get the <list>-map-mask property (optional) */
1468		mask = of_get_property(cur, mask_name, NULL);
1469		if (!mask)
1470			mask = dummy_mask;
1471		/* Iterate through <list>-map property */
1472		match = 0;
1473		while (map_len > (list_size + 1) && !match) {
1474			/* Compare specifiers */
1475			match = 1;
1476			for (i = 0; i < list_size; i++, map_len--)
1477				match &= !((match_array[i] ^ *map++) & mask[i]);
1478
1479			of_node_put(new);
1480			new = of_find_node_by_phandle(be32_to_cpup(map));
1481			map++;
1482			map_len--;
1483
1484			/* Check if not found */
1485			if (!new)
1486				goto put;
1487
1488			if (!of_device_is_available(new))
1489				match = 0;
1490
1491			ret = of_property_read_u32(new, cells_name, &new_size);
1492			if (ret)
1493				goto put;
1494
1495			/* Check for malformed properties */
1496			if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1497				goto put;
1498			if (map_len < new_size)
1499				goto put;
1500
1501			/* Move forward by new node's #<list>-cells amount */
1502			map += new_size;
1503			map_len -= new_size;
1504		}
1505		if (!match)
1506			goto put;
1507
1508		/* Get the <list>-map-pass-thru property (optional) */
1509		pass = of_get_property(cur, pass_name, NULL);
1510		if (!pass)
1511			pass = dummy_pass;
1512
1513		/*
1514		 * Successfully parsed a <list>-map translation; copy new
1515		 * specifier into the out_args structure, keeping the
1516		 * bits specified in <list>-map-pass-thru.
1517		 */
1518		match_array = map - new_size;
1519		for (i = 0; i < new_size; i++) {
1520			__be32 val = *(map - new_size + i);
1521
1522			if (i < list_size) {
1523				val &= ~pass[i];
1524				val |= cpu_to_be32(out_args->args[i]) & pass[i];
1525			}
1526
1527			out_args->args[i] = be32_to_cpu(val);
1528		}
1529		out_args->args_count = list_size = new_size;
1530		/* Iterate again with new provider */
1531		out_args->np = new;
1532		of_node_put(cur);
1533		cur = new;
1534	}
1535put:
1536	of_node_put(cur);
1537	of_node_put(new);
1538free:
1539	kfree(mask_name);
1540	kfree(map_name);
1541	kfree(cells_name);
1542	kfree(pass_name);
1543
1544	return ret;
1545}
1546EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1547
1548/**
1549 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1550 * @np:		pointer to a device tree node containing a list
1551 * @list_name:	property name that contains a list
1552 * @cell_count: number of argument cells following the phandle
1553 * @index:	index of a phandle to parse out
1554 * @out_args:	optional pointer to output arguments structure (will be filled)
1555 *
1556 * This function is useful to parse lists of phandles and their arguments.
1557 * Returns 0 on success and fills out_args, on error returns appropriate
1558 * errno value.
1559 *
1560 * Caller is responsible to call of_node_put() on the returned out_args->np
1561 * pointer.
1562 *
1563 * Example:
1564 *
1565 * phandle1: node1 {
1566 * }
1567 *
1568 * phandle2: node2 {
1569 * }
1570 *
1571 * node3 {
1572 *	list = <&phandle1 0 2 &phandle2 2 3>;
1573 * }
1574 *
1575 * To get a device_node of the `node2' node you may call this:
1576 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1577 */
1578int of_parse_phandle_with_fixed_args(const struct device_node *np,
1579				const char *list_name, int cell_count,
1580				int index, struct of_phandle_args *out_args)
1581{
1582	if (index < 0)
1583		return -EINVAL;
1584	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1585					   index, out_args);
1586}
1587EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1588
1589/**
1590 * of_count_phandle_with_args() - Find the number of phandles references in a property
1591 * @np:		pointer to a device tree node containing a list
1592 * @list_name:	property name that contains a list
1593 * @cells_name:	property name that specifies phandles' arguments count
1594 *
1595 * Returns the number of phandle + argument tuples within a property. It
1596 * is a typical pattern to encode a list of phandle and variable
1597 * arguments into a single property. The number of arguments is encoded
1598 * by a property in the phandle-target node. For example, a gpios
1599 * property would contain a list of GPIO specifies consisting of a
1600 * phandle and 1 or more arguments. The number of arguments are
1601 * determined by the #gpio-cells property in the node pointed to by the
1602 * phandle.
1603 */
1604int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1605				const char *cells_name)
1606{
1607	struct of_phandle_iterator it;
1608	int rc, cur_index = 0;
1609
1610	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1611	if (rc)
1612		return rc;
1613
1614	while ((rc = of_phandle_iterator_next(&it)) == 0)
1615		cur_index += 1;
1616
1617	if (rc != -ENOENT)
1618		return rc;
1619
1620	return cur_index;
1621}
1622EXPORT_SYMBOL(of_count_phandle_with_args);
1623
1624/**
1625 * __of_add_property - Add a property to a node without lock operations
1626 */
1627int __of_add_property(struct device_node *np, struct property *prop)
1628{
1629	struct property **next;
1630
1631	prop->next = NULL;
1632	next = &np->properties;
1633	while (*next) {
1634		if (strcmp(prop->name, (*next)->name) == 0)
1635			/* duplicate ! don't insert it */
1636			return -EEXIST;
1637
1638		next = &(*next)->next;
1639	}
1640	*next = prop;
1641
1642	return 0;
1643}
1644
1645/**
1646 * of_add_property - Add a property to a node
1647 */
1648int of_add_property(struct device_node *np, struct property *prop)
1649{
1650	unsigned long flags;
1651	int rc;
1652
1653	mutex_lock(&of_mutex);
1654
1655	raw_spin_lock_irqsave(&devtree_lock, flags);
1656	rc = __of_add_property(np, prop);
1657	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1658
1659	if (!rc)
1660		__of_add_property_sysfs(np, prop);
1661
1662	mutex_unlock(&of_mutex);
1663
1664	if (!rc)
1665		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1666
1667	return rc;
1668}
1669
1670int __of_remove_property(struct device_node *np, struct property *prop)
1671{
1672	struct property **next;
1673
1674	for (next = &np->properties; *next; next = &(*next)->next) {
1675		if (*next == prop)
1676			break;
1677	}
1678	if (*next == NULL)
1679		return -ENODEV;
1680
1681	/* found the node */
1682	*next = prop->next;
1683	prop->next = np->deadprops;
1684	np->deadprops = prop;
1685
1686	return 0;
1687}
1688
1689/**
1690 * of_remove_property - Remove a property from a node.
1691 *
1692 * Note that we don't actually remove it, since we have given out
1693 * who-knows-how-many pointers to the data using get-property.
1694 * Instead we just move the property to the "dead properties"
1695 * list, so it won't be found any more.
1696 */
1697int of_remove_property(struct device_node *np, struct property *prop)
1698{
1699	unsigned long flags;
1700	int rc;
1701
1702	if (!prop)
1703		return -ENODEV;
1704
1705	mutex_lock(&of_mutex);
1706
1707	raw_spin_lock_irqsave(&devtree_lock, flags);
1708	rc = __of_remove_property(np, prop);
1709	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1710
1711	if (!rc)
1712		__of_remove_property_sysfs(np, prop);
1713
1714	mutex_unlock(&of_mutex);
1715
1716	if (!rc)
1717		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1718
1719	return rc;
1720}
1721
1722int __of_update_property(struct device_node *np, struct property *newprop,
1723		struct property **oldpropp)
1724{
1725	struct property **next, *oldprop;
1726
1727	for (next = &np->properties; *next; next = &(*next)->next) {
1728		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1729			break;
1730	}
1731	*oldpropp = oldprop = *next;
1732
1733	if (oldprop) {
1734		/* replace the node */
1735		newprop->next = oldprop->next;
1736		*next = newprop;
1737		oldprop->next = np->deadprops;
1738		np->deadprops = oldprop;
1739	} else {
1740		/* new node */
1741		newprop->next = NULL;
1742		*next = newprop;
1743	}
1744
1745	return 0;
1746}
1747
1748/*
1749 * of_update_property - Update a property in a node, if the property does
1750 * not exist, add it.
1751 *
1752 * Note that we don't actually remove it, since we have given out
1753 * who-knows-how-many pointers to the data using get-property.
1754 * Instead we just move the property to the "dead properties" list,
1755 * and add the new property to the property list
1756 */
1757int of_update_property(struct device_node *np, struct property *newprop)
1758{
1759	struct property *oldprop;
1760	unsigned long flags;
1761	int rc;
1762
1763	if (!newprop->name)
1764		return -EINVAL;
1765
1766	mutex_lock(&of_mutex);
1767
1768	raw_spin_lock_irqsave(&devtree_lock, flags);
1769	rc = __of_update_property(np, newprop, &oldprop);
1770	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1771
1772	if (!rc)
1773		__of_update_property_sysfs(np, newprop, oldprop);
1774
1775	mutex_unlock(&of_mutex);
1776
1777	if (!rc)
1778		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1779
1780	return rc;
1781}
1782
1783static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1784			 int id, const char *stem, int stem_len)
1785{
1786	ap->np = np;
1787	ap->id = id;
1788	strncpy(ap->stem, stem, stem_len);
1789	ap->stem[stem_len] = 0;
1790	list_add_tail(&ap->link, &aliases_lookup);
1791	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1792		 ap->alias, ap->stem, ap->id, np);
1793}
1794
1795/**
1796 * of_alias_scan - Scan all properties of the 'aliases' node
1797 *
1798 * The function scans all the properties of the 'aliases' node and populates
1799 * the global lookup table with the properties.  It returns the
1800 * number of alias properties found, or an error code in case of failure.
1801 *
1802 * @dt_alloc:	An allocator that provides a virtual address to memory
1803 *		for storing the resulting tree
1804 */
1805void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1806{
1807	struct property *pp;
1808
1809	of_aliases = of_find_node_by_path("/aliases");
1810	of_chosen = of_find_node_by_path("/chosen");
1811	if (of_chosen == NULL)
1812		of_chosen = of_find_node_by_path("/chosen@0");
1813
1814	if (of_chosen) {
1815		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1816		const char *name = NULL;
1817
1818		if (of_property_read_string(of_chosen, "stdout-path", &name))
1819			of_property_read_string(of_chosen, "linux,stdout-path",
1820						&name);
1821		if (IS_ENABLED(CONFIG_PPC) && !name)
1822			of_property_read_string(of_aliases, "stdout", &name);
1823		if (name)
1824			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1825	}
1826
1827	if (!of_aliases)
1828		return;
1829
1830	for_each_property_of_node(of_aliases, pp) {
1831		const char *start = pp->name;
1832		const char *end = start + strlen(start);
1833		struct device_node *np;
1834		struct alias_prop *ap;
1835		int id, len;
1836
1837		/* Skip those we do not want to proceed */
1838		if (!strcmp(pp->name, "name") ||
1839		    !strcmp(pp->name, "phandle") ||
1840		    !strcmp(pp->name, "linux,phandle"))
1841			continue;
1842
1843		np = of_find_node_by_path(pp->value);
1844		if (!np)
1845			continue;
1846
1847		/* walk the alias backwards to extract the id and work out
1848		 * the 'stem' string */
1849		while (isdigit(*(end-1)) && end > start)
1850			end--;
1851		len = end - start;
1852
1853		if (kstrtoint(end, 10, &id) < 0)
1854			continue;
1855
1856		/* Allocate an alias_prop with enough space for the stem */
1857		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1858		if (!ap)
1859			continue;
1860		memset(ap, 0, sizeof(*ap) + len + 1);
1861		ap->alias = start;
1862		of_alias_add(ap, np, id, start, len);
1863	}
1864}
1865
1866/**
1867 * of_alias_get_id - Get alias id for the given device_node
1868 * @np:		Pointer to the given device_node
1869 * @stem:	Alias stem of the given device_node
1870 *
1871 * The function travels the lookup table to get the alias id for the given
1872 * device_node and alias stem.  It returns the alias id if found.
1873 */
1874int of_alias_get_id(struct device_node *np, const char *stem)
1875{
1876	struct alias_prop *app;
1877	int id = -ENODEV;
1878
1879	mutex_lock(&of_mutex);
1880	list_for_each_entry(app, &aliases_lookup, link) {
1881		if (strcmp(app->stem, stem) != 0)
1882			continue;
1883
1884		if (np == app->np) {
1885			id = app->id;
1886			break;
1887		}
1888	}
1889	mutex_unlock(&of_mutex);
1890
1891	return id;
1892}
1893EXPORT_SYMBOL_GPL(of_alias_get_id);
1894
1895/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1896 * of_alias_get_highest_id - Get highest alias id for the given stem
1897 * @stem:	Alias stem to be examined
1898 *
1899 * The function travels the lookup table to get the highest alias id for the
1900 * given alias stem.  It returns the alias id if found.
1901 */
1902int of_alias_get_highest_id(const char *stem)
1903{
1904	struct alias_prop *app;
1905	int id = -ENODEV;
1906
1907	mutex_lock(&of_mutex);
1908	list_for_each_entry(app, &aliases_lookup, link) {
1909		if (strcmp(app->stem, stem) != 0)
1910			continue;
1911
1912		if (app->id > id)
1913			id = app->id;
1914	}
1915	mutex_unlock(&of_mutex);
1916
1917	return id;
1918}
1919EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
1920
1921/**
1922 * of_console_check() - Test and setup console for DT setup
1923 * @dn - Pointer to device node
1924 * @name - Name to use for preferred console without index. ex. "ttyS"
1925 * @index - Index to use for preferred console.
1926 *
1927 * Check if the given device node matches the stdout-path property in the
1928 * /chosen node. If it does then register it as the preferred console and return
1929 * TRUE. Otherwise return FALSE.
1930 */
1931bool of_console_check(struct device_node *dn, char *name, int index)
1932{
1933	if (!dn || dn != of_stdout || console_set_on_cmdline)
1934		return false;
1935
1936	/*
1937	 * XXX: cast `options' to char pointer to suppress complication
1938	 * warnings: printk, UART and console drivers expect char pointer.
1939	 */
1940	return !add_preferred_console(name, index, (char *)of_stdout_options);
1941}
1942EXPORT_SYMBOL_GPL(of_console_check);
1943
1944/**
1945 *	of_find_next_cache_node - Find a node's subsidiary cache
1946 *	@np:	node of type "cpu" or "cache"
1947 *
1948 *	Returns a node pointer with refcount incremented, use
1949 *	of_node_put() on it when done.  Caller should hold a reference
1950 *	to np.
1951 */
1952struct device_node *of_find_next_cache_node(const struct device_node *np)
1953{
1954	struct device_node *child, *cache_node;
1955
1956	cache_node = of_parse_phandle(np, "l2-cache", 0);
1957	if (!cache_node)
1958		cache_node = of_parse_phandle(np, "next-level-cache", 0);
1959
1960	if (cache_node)
1961		return cache_node;
1962
1963	/* OF on pmac has nodes instead of properties named "l2-cache"
1964	 * beneath CPU nodes.
1965	 */
1966	if (!strcmp(np->type, "cpu"))
1967		for_each_child_of_node(np, child)
1968			if (!strcmp(child->type, "cache"))
1969				return child;
1970
1971	return NULL;
1972}
1973
1974/**
1975 * of_find_last_cache_level - Find the level at which the last cache is
1976 * 		present for the given logical cpu
1977 *
1978 * @cpu: cpu number(logical index) for which the last cache level is needed
1979 *
1980 * Returns the the level at which the last cache is present. It is exactly
1981 * same as  the total number of cache levels for the given logical cpu.
1982 */
1983int of_find_last_cache_level(unsigned int cpu)
1984{
1985	u32 cache_level = 0;
1986	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
1987
1988	while (np) {
1989		prev = np;
1990		of_node_put(np);
1991		np = of_find_next_cache_node(np);
1992	}
1993
1994	of_property_read_u32(prev, "cache-level", &cache_level);
1995
1996	return cache_level;
1997}