Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Procedures for creating, accessing and interpreting the device tree.
4 *
5 * Paul Mackerras August 1996.
6 * Copyright (C) 1996-2005 Paul Mackerras.
7 *
8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9 * {engebret|bergner}@us.ibm.com
10 *
11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12 *
13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14 * Grant Likely.
15 */
16
17#define pr_fmt(fmt) "OF: " fmt
18
19#include <linux/bitmap.h>
20#include <linux/console.h>
21#include <linux/ctype.h>
22#include <linux/cpu.h>
23#include <linux/module.h>
24#include <linux/of.h>
25#include <linux/of_device.h>
26#include <linux/of_graph.h>
27#include <linux/spinlock.h>
28#include <linux/slab.h>
29#include <linux/string.h>
30#include <linux/proc_fs.h>
31
32#include "of_private.h"
33
34LIST_HEAD(aliases_lookup);
35
36struct device_node *of_root;
37EXPORT_SYMBOL(of_root);
38struct device_node *of_chosen;
39struct device_node *of_aliases;
40struct device_node *of_stdout;
41static const char *of_stdout_options;
42
43struct kset *of_kset;
44
45/*
46 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
47 * This mutex must be held whenever modifications are being made to the
48 * device tree. The of_{attach,detach}_node() and
49 * of_{add,remove,update}_property() helpers make sure this happens.
50 */
51DEFINE_MUTEX(of_mutex);
52
53/* use when traversing tree through the child, sibling,
54 * or parent members of struct device_node.
55 */
56DEFINE_RAW_SPINLOCK(devtree_lock);
57
58bool of_node_name_eq(const struct device_node *np, const char *name)
59{
60 const char *node_name;
61 size_t len;
62
63 if (!np)
64 return false;
65
66 node_name = kbasename(np->full_name);
67 len = strchrnul(node_name, '@') - node_name;
68
69 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
70}
71EXPORT_SYMBOL(of_node_name_eq);
72
73bool of_node_name_prefix(const struct device_node *np, const char *prefix)
74{
75 if (!np)
76 return false;
77
78 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
79}
80EXPORT_SYMBOL(of_node_name_prefix);
81
82static bool __of_node_is_type(const struct device_node *np, const char *type)
83{
84 const char *match = __of_get_property(np, "device_type", NULL);
85
86 return np && match && type && !strcmp(match, type);
87}
88
89int of_n_addr_cells(struct device_node *np)
90{
91 u32 cells;
92
93 do {
94 if (np->parent)
95 np = np->parent;
96 if (!of_property_read_u32(np, "#address-cells", &cells))
97 return cells;
98 } while (np->parent);
99 /* No #address-cells property for the root node */
100 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
101}
102EXPORT_SYMBOL(of_n_addr_cells);
103
104int of_n_size_cells(struct device_node *np)
105{
106 u32 cells;
107
108 do {
109 if (np->parent)
110 np = np->parent;
111 if (!of_property_read_u32(np, "#size-cells", &cells))
112 return cells;
113 } while (np->parent);
114 /* No #size-cells property for the root node */
115 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
116}
117EXPORT_SYMBOL(of_n_size_cells);
118
119#ifdef CONFIG_NUMA
120int __weak of_node_to_nid(struct device_node *np)
121{
122 return NUMA_NO_NODE;
123}
124#endif
125
126/*
127 * Assumptions behind phandle_cache implementation:
128 * - phandle property values are in a contiguous range of 1..n
129 *
130 * If the assumptions do not hold, then
131 * - the phandle lookup overhead reduction provided by the cache
132 * will likely be less
133 */
134
135static struct device_node **phandle_cache;
136static u32 phandle_cache_mask;
137
138/*
139 * Caller must hold devtree_lock.
140 */
141static void __of_free_phandle_cache(void)
142{
143 u32 cache_entries = phandle_cache_mask + 1;
144 u32 k;
145
146 if (!phandle_cache)
147 return;
148
149 for (k = 0; k < cache_entries; k++)
150 of_node_put(phandle_cache[k]);
151
152 kfree(phandle_cache);
153 phandle_cache = NULL;
154}
155
156int of_free_phandle_cache(void)
157{
158 unsigned long flags;
159
160 raw_spin_lock_irqsave(&devtree_lock, flags);
161
162 __of_free_phandle_cache();
163
164 raw_spin_unlock_irqrestore(&devtree_lock, flags);
165
166 return 0;
167}
168#if !defined(CONFIG_MODULES)
169late_initcall_sync(of_free_phandle_cache);
170#endif
171
172/*
173 * Caller must hold devtree_lock.
174 */
175void __of_free_phandle_cache_entry(phandle handle)
176{
177 phandle masked_handle;
178 struct device_node *np;
179
180 if (!handle)
181 return;
182
183 masked_handle = handle & phandle_cache_mask;
184
185 if (phandle_cache) {
186 np = phandle_cache[masked_handle];
187 if (np && handle == np->phandle) {
188 of_node_put(np);
189 phandle_cache[masked_handle] = NULL;
190 }
191 }
192}
193
194void of_populate_phandle_cache(void)
195{
196 unsigned long flags;
197 u32 cache_entries;
198 struct device_node *np;
199 u32 phandles = 0;
200
201 raw_spin_lock_irqsave(&devtree_lock, flags);
202
203 __of_free_phandle_cache();
204
205 for_each_of_allnodes(np)
206 if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
207 phandles++;
208
209 if (!phandles)
210 goto out;
211
212 cache_entries = roundup_pow_of_two(phandles);
213 phandle_cache_mask = cache_entries - 1;
214
215 phandle_cache = kcalloc(cache_entries, sizeof(*phandle_cache),
216 GFP_ATOMIC);
217 if (!phandle_cache)
218 goto out;
219
220 for_each_of_allnodes(np)
221 if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL) {
222 of_node_get(np);
223 phandle_cache[np->phandle & phandle_cache_mask] = np;
224 }
225
226out:
227 raw_spin_unlock_irqrestore(&devtree_lock, flags);
228}
229
230void __init of_core_init(void)
231{
232 struct device_node *np;
233
234 of_populate_phandle_cache();
235
236 /* Create the kset, and register existing nodes */
237 mutex_lock(&of_mutex);
238 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
239 if (!of_kset) {
240 mutex_unlock(&of_mutex);
241 pr_err("failed to register existing nodes\n");
242 return;
243 }
244 for_each_of_allnodes(np)
245 __of_attach_node_sysfs(np);
246 mutex_unlock(&of_mutex);
247
248 /* Symlink in /proc as required by userspace ABI */
249 if (of_root)
250 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
251}
252
253static struct property *__of_find_property(const struct device_node *np,
254 const char *name, int *lenp)
255{
256 struct property *pp;
257
258 if (!np)
259 return NULL;
260
261 for (pp = np->properties; pp; pp = pp->next) {
262 if (of_prop_cmp(pp->name, name) == 0) {
263 if (lenp)
264 *lenp = pp->length;
265 break;
266 }
267 }
268
269 return pp;
270}
271
272struct property *of_find_property(const struct device_node *np,
273 const char *name,
274 int *lenp)
275{
276 struct property *pp;
277 unsigned long flags;
278
279 raw_spin_lock_irqsave(&devtree_lock, flags);
280 pp = __of_find_property(np, name, lenp);
281 raw_spin_unlock_irqrestore(&devtree_lock, flags);
282
283 return pp;
284}
285EXPORT_SYMBOL(of_find_property);
286
287struct device_node *__of_find_all_nodes(struct device_node *prev)
288{
289 struct device_node *np;
290 if (!prev) {
291 np = of_root;
292 } else if (prev->child) {
293 np = prev->child;
294 } else {
295 /* Walk back up looking for a sibling, or the end of the structure */
296 np = prev;
297 while (np->parent && !np->sibling)
298 np = np->parent;
299 np = np->sibling; /* Might be null at the end of the tree */
300 }
301 return np;
302}
303
304/**
305 * of_find_all_nodes - Get next node in global list
306 * @prev: Previous node or NULL to start iteration
307 * of_node_put() will be called on it
308 *
309 * Returns a node pointer with refcount incremented, use
310 * of_node_put() on it when done.
311 */
312struct device_node *of_find_all_nodes(struct device_node *prev)
313{
314 struct device_node *np;
315 unsigned long flags;
316
317 raw_spin_lock_irqsave(&devtree_lock, flags);
318 np = __of_find_all_nodes(prev);
319 of_node_get(np);
320 of_node_put(prev);
321 raw_spin_unlock_irqrestore(&devtree_lock, flags);
322 return np;
323}
324EXPORT_SYMBOL(of_find_all_nodes);
325
326/*
327 * Find a property with a given name for a given node
328 * and return the value.
329 */
330const void *__of_get_property(const struct device_node *np,
331 const char *name, int *lenp)
332{
333 struct property *pp = __of_find_property(np, name, lenp);
334
335 return pp ? pp->value : NULL;
336}
337
338/*
339 * Find a property with a given name for a given node
340 * and return the value.
341 */
342const void *of_get_property(const struct device_node *np, const char *name,
343 int *lenp)
344{
345 struct property *pp = of_find_property(np, name, lenp);
346
347 return pp ? pp->value : NULL;
348}
349EXPORT_SYMBOL(of_get_property);
350
351/*
352 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
353 *
354 * @cpu: logical cpu index of a core/thread
355 * @phys_id: physical identifier of a core/thread
356 *
357 * CPU logical to physical index mapping is architecture specific.
358 * However this __weak function provides a default match of physical
359 * id to logical cpu index. phys_id provided here is usually values read
360 * from the device tree which must match the hardware internal registers.
361 *
362 * Returns true if the physical identifier and the logical cpu index
363 * correspond to the same core/thread, false otherwise.
364 */
365bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
366{
367 return (u32)phys_id == cpu;
368}
369
370/**
371 * Checks if the given "prop_name" property holds the physical id of the
372 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
373 * NULL, local thread number within the core is returned in it.
374 */
375static bool __of_find_n_match_cpu_property(struct device_node *cpun,
376 const char *prop_name, int cpu, unsigned int *thread)
377{
378 const __be32 *cell;
379 int ac, prop_len, tid;
380 u64 hwid;
381
382 ac = of_n_addr_cells(cpun);
383 cell = of_get_property(cpun, prop_name, &prop_len);
384 if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
385 return true;
386 if (!cell || !ac)
387 return false;
388 prop_len /= sizeof(*cell) * ac;
389 for (tid = 0; tid < prop_len; tid++) {
390 hwid = of_read_number(cell, ac);
391 if (arch_match_cpu_phys_id(cpu, hwid)) {
392 if (thread)
393 *thread = tid;
394 return true;
395 }
396 cell += ac;
397 }
398 return false;
399}
400
401/*
402 * arch_find_n_match_cpu_physical_id - See if the given device node is
403 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
404 * else false. If 'thread' is non-NULL, the local thread number within the
405 * core is returned in it.
406 */
407bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
408 int cpu, unsigned int *thread)
409{
410 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
411 * for thread ids on PowerPC. If it doesn't exist fallback to
412 * standard "reg" property.
413 */
414 if (IS_ENABLED(CONFIG_PPC) &&
415 __of_find_n_match_cpu_property(cpun,
416 "ibm,ppc-interrupt-server#s",
417 cpu, thread))
418 return true;
419
420 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
421}
422
423/**
424 * of_get_cpu_node - Get device node associated with the given logical CPU
425 *
426 * @cpu: CPU number(logical index) for which device node is required
427 * @thread: if not NULL, local thread number within the physical core is
428 * returned
429 *
430 * The main purpose of this function is to retrieve the device node for the
431 * given logical CPU index. It should be used to initialize the of_node in
432 * cpu device. Once of_node in cpu device is populated, all the further
433 * references can use that instead.
434 *
435 * CPU logical to physical index mapping is architecture specific and is built
436 * before booting secondary cores. This function uses arch_match_cpu_phys_id
437 * which can be overridden by architecture specific implementation.
438 *
439 * Returns a node pointer for the logical cpu with refcount incremented, use
440 * of_node_put() on it when done. Returns NULL if not found.
441 */
442struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
443{
444 struct device_node *cpun;
445
446 for_each_of_cpu_node(cpun) {
447 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
448 return cpun;
449 }
450 return NULL;
451}
452EXPORT_SYMBOL(of_get_cpu_node);
453
454/**
455 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
456 *
457 * @cpu_node: Pointer to the device_node for CPU.
458 *
459 * Returns the logical CPU number of the given CPU device_node.
460 * Returns -ENODEV if the CPU is not found.
461 */
462int of_cpu_node_to_id(struct device_node *cpu_node)
463{
464 int cpu;
465 bool found = false;
466 struct device_node *np;
467
468 for_each_possible_cpu(cpu) {
469 np = of_cpu_device_node_get(cpu);
470 found = (cpu_node == np);
471 of_node_put(np);
472 if (found)
473 return cpu;
474 }
475
476 return -ENODEV;
477}
478EXPORT_SYMBOL(of_cpu_node_to_id);
479
480/**
481 * __of_device_is_compatible() - Check if the node matches given constraints
482 * @device: pointer to node
483 * @compat: required compatible string, NULL or "" for any match
484 * @type: required device_type value, NULL or "" for any match
485 * @name: required node name, NULL or "" for any match
486 *
487 * Checks if the given @compat, @type and @name strings match the
488 * properties of the given @device. A constraints can be skipped by
489 * passing NULL or an empty string as the constraint.
490 *
491 * Returns 0 for no match, and a positive integer on match. The return
492 * value is a relative score with larger values indicating better
493 * matches. The score is weighted for the most specific compatible value
494 * to get the highest score. Matching type is next, followed by matching
495 * name. Practically speaking, this results in the following priority
496 * order for matches:
497 *
498 * 1. specific compatible && type && name
499 * 2. specific compatible && type
500 * 3. specific compatible && name
501 * 4. specific compatible
502 * 5. general compatible && type && name
503 * 6. general compatible && type
504 * 7. general compatible && name
505 * 8. general compatible
506 * 9. type && name
507 * 10. type
508 * 11. name
509 */
510static int __of_device_is_compatible(const struct device_node *device,
511 const char *compat, const char *type, const char *name)
512{
513 struct property *prop;
514 const char *cp;
515 int index = 0, score = 0;
516
517 /* Compatible match has highest priority */
518 if (compat && compat[0]) {
519 prop = __of_find_property(device, "compatible", NULL);
520 for (cp = of_prop_next_string(prop, NULL); cp;
521 cp = of_prop_next_string(prop, cp), index++) {
522 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
523 score = INT_MAX/2 - (index << 2);
524 break;
525 }
526 }
527 if (!score)
528 return 0;
529 }
530
531 /* Matching type is better than matching name */
532 if (type && type[0]) {
533 if (!__of_node_is_type(device, type))
534 return 0;
535 score += 2;
536 }
537
538 /* Matching name is a bit better than not */
539 if (name && name[0]) {
540 if (!of_node_name_eq(device, name))
541 return 0;
542 score++;
543 }
544
545 return score;
546}
547
548/** Checks if the given "compat" string matches one of the strings in
549 * the device's "compatible" property
550 */
551int of_device_is_compatible(const struct device_node *device,
552 const char *compat)
553{
554 unsigned long flags;
555 int res;
556
557 raw_spin_lock_irqsave(&devtree_lock, flags);
558 res = __of_device_is_compatible(device, compat, NULL, NULL);
559 raw_spin_unlock_irqrestore(&devtree_lock, flags);
560 return res;
561}
562EXPORT_SYMBOL(of_device_is_compatible);
563
564/** Checks if the device is compatible with any of the entries in
565 * a NULL terminated array of strings. Returns the best match
566 * score or 0.
567 */
568int of_device_compatible_match(struct device_node *device,
569 const char *const *compat)
570{
571 unsigned int tmp, score = 0;
572
573 if (!compat)
574 return 0;
575
576 while (*compat) {
577 tmp = of_device_is_compatible(device, *compat);
578 if (tmp > score)
579 score = tmp;
580 compat++;
581 }
582
583 return score;
584}
585
586/**
587 * of_machine_is_compatible - Test root of device tree for a given compatible value
588 * @compat: compatible string to look for in root node's compatible property.
589 *
590 * Returns a positive integer if the root node has the given value in its
591 * compatible property.
592 */
593int of_machine_is_compatible(const char *compat)
594{
595 struct device_node *root;
596 int rc = 0;
597
598 root = of_find_node_by_path("/");
599 if (root) {
600 rc = of_device_is_compatible(root, compat);
601 of_node_put(root);
602 }
603 return rc;
604}
605EXPORT_SYMBOL(of_machine_is_compatible);
606
607/**
608 * __of_device_is_available - check if a device is available for use
609 *
610 * @device: Node to check for availability, with locks already held
611 *
612 * Returns true if the status property is absent or set to "okay" or "ok",
613 * false otherwise
614 */
615static bool __of_device_is_available(const struct device_node *device)
616{
617 const char *status;
618 int statlen;
619
620 if (!device)
621 return false;
622
623 status = __of_get_property(device, "status", &statlen);
624 if (status == NULL)
625 return true;
626
627 if (statlen > 0) {
628 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
629 return true;
630 }
631
632 return false;
633}
634
635/**
636 * of_device_is_available - check if a device is available for use
637 *
638 * @device: Node to check for availability
639 *
640 * Returns true if the status property is absent or set to "okay" or "ok",
641 * false otherwise
642 */
643bool of_device_is_available(const struct device_node *device)
644{
645 unsigned long flags;
646 bool res;
647
648 raw_spin_lock_irqsave(&devtree_lock, flags);
649 res = __of_device_is_available(device);
650 raw_spin_unlock_irqrestore(&devtree_lock, flags);
651 return res;
652
653}
654EXPORT_SYMBOL(of_device_is_available);
655
656/**
657 * of_device_is_big_endian - check if a device has BE registers
658 *
659 * @device: Node to check for endianness
660 *
661 * Returns true if the device has a "big-endian" property, or if the kernel
662 * was compiled for BE *and* the device has a "native-endian" property.
663 * Returns false otherwise.
664 *
665 * Callers would nominally use ioread32be/iowrite32be if
666 * of_device_is_big_endian() == true, or readl/writel otherwise.
667 */
668bool of_device_is_big_endian(const struct device_node *device)
669{
670 if (of_property_read_bool(device, "big-endian"))
671 return true;
672 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
673 of_property_read_bool(device, "native-endian"))
674 return true;
675 return false;
676}
677EXPORT_SYMBOL(of_device_is_big_endian);
678
679/**
680 * of_get_parent - Get a node's parent if any
681 * @node: Node to get parent
682 *
683 * Returns a node pointer with refcount incremented, use
684 * of_node_put() on it when done.
685 */
686struct device_node *of_get_parent(const struct device_node *node)
687{
688 struct device_node *np;
689 unsigned long flags;
690
691 if (!node)
692 return NULL;
693
694 raw_spin_lock_irqsave(&devtree_lock, flags);
695 np = of_node_get(node->parent);
696 raw_spin_unlock_irqrestore(&devtree_lock, flags);
697 return np;
698}
699EXPORT_SYMBOL(of_get_parent);
700
701/**
702 * of_get_next_parent - Iterate to a node's parent
703 * @node: Node to get parent of
704 *
705 * This is like of_get_parent() except that it drops the
706 * refcount on the passed node, making it suitable for iterating
707 * through a node's parents.
708 *
709 * Returns a node pointer with refcount incremented, use
710 * of_node_put() on it when done.
711 */
712struct device_node *of_get_next_parent(struct device_node *node)
713{
714 struct device_node *parent;
715 unsigned long flags;
716
717 if (!node)
718 return NULL;
719
720 raw_spin_lock_irqsave(&devtree_lock, flags);
721 parent = of_node_get(node->parent);
722 of_node_put(node);
723 raw_spin_unlock_irqrestore(&devtree_lock, flags);
724 return parent;
725}
726EXPORT_SYMBOL(of_get_next_parent);
727
728static struct device_node *__of_get_next_child(const struct device_node *node,
729 struct device_node *prev)
730{
731 struct device_node *next;
732
733 if (!node)
734 return NULL;
735
736 next = prev ? prev->sibling : node->child;
737 for (; next; next = next->sibling)
738 if (of_node_get(next))
739 break;
740 of_node_put(prev);
741 return next;
742}
743#define __for_each_child_of_node(parent, child) \
744 for (child = __of_get_next_child(parent, NULL); child != NULL; \
745 child = __of_get_next_child(parent, child))
746
747/**
748 * of_get_next_child - Iterate a node childs
749 * @node: parent node
750 * @prev: previous child of the parent node, or NULL to get first
751 *
752 * Returns a node pointer with refcount incremented, use of_node_put() on
753 * it when done. Returns NULL when prev is the last child. Decrements the
754 * refcount of prev.
755 */
756struct device_node *of_get_next_child(const struct device_node *node,
757 struct device_node *prev)
758{
759 struct device_node *next;
760 unsigned long flags;
761
762 raw_spin_lock_irqsave(&devtree_lock, flags);
763 next = __of_get_next_child(node, prev);
764 raw_spin_unlock_irqrestore(&devtree_lock, flags);
765 return next;
766}
767EXPORT_SYMBOL(of_get_next_child);
768
769/**
770 * of_get_next_available_child - Find the next available child node
771 * @node: parent node
772 * @prev: previous child of the parent node, or NULL to get first
773 *
774 * This function is like of_get_next_child(), except that it
775 * automatically skips any disabled nodes (i.e. status = "disabled").
776 */
777struct device_node *of_get_next_available_child(const struct device_node *node,
778 struct device_node *prev)
779{
780 struct device_node *next;
781 unsigned long flags;
782
783 if (!node)
784 return NULL;
785
786 raw_spin_lock_irqsave(&devtree_lock, flags);
787 next = prev ? prev->sibling : node->child;
788 for (; next; next = next->sibling) {
789 if (!__of_device_is_available(next))
790 continue;
791 if (of_node_get(next))
792 break;
793 }
794 of_node_put(prev);
795 raw_spin_unlock_irqrestore(&devtree_lock, flags);
796 return next;
797}
798EXPORT_SYMBOL(of_get_next_available_child);
799
800/**
801 * of_get_next_cpu_node - Iterate on cpu nodes
802 * @prev: previous child of the /cpus node, or NULL to get first
803 *
804 * Returns a cpu node pointer with refcount incremented, use of_node_put()
805 * on it when done. Returns NULL when prev is the last child. Decrements
806 * the refcount of prev.
807 */
808struct device_node *of_get_next_cpu_node(struct device_node *prev)
809{
810 struct device_node *next = NULL;
811 unsigned long flags;
812 struct device_node *node;
813
814 if (!prev)
815 node = of_find_node_by_path("/cpus");
816
817 raw_spin_lock_irqsave(&devtree_lock, flags);
818 if (prev)
819 next = prev->sibling;
820 else if (node) {
821 next = node->child;
822 of_node_put(node);
823 }
824 for (; next; next = next->sibling) {
825 if (!(of_node_name_eq(next, "cpu") ||
826 __of_node_is_type(next, "cpu")))
827 continue;
828 if (of_node_get(next))
829 break;
830 }
831 of_node_put(prev);
832 raw_spin_unlock_irqrestore(&devtree_lock, flags);
833 return next;
834}
835EXPORT_SYMBOL(of_get_next_cpu_node);
836
837/**
838 * of_get_compatible_child - Find compatible child node
839 * @parent: parent node
840 * @compatible: compatible string
841 *
842 * Lookup child node whose compatible property contains the given compatible
843 * string.
844 *
845 * Returns a node pointer with refcount incremented, use of_node_put() on it
846 * when done; or NULL if not found.
847 */
848struct device_node *of_get_compatible_child(const struct device_node *parent,
849 const char *compatible)
850{
851 struct device_node *child;
852
853 for_each_child_of_node(parent, child) {
854 if (of_device_is_compatible(child, compatible))
855 break;
856 }
857
858 return child;
859}
860EXPORT_SYMBOL(of_get_compatible_child);
861
862/**
863 * of_get_child_by_name - Find the child node by name for a given parent
864 * @node: parent node
865 * @name: child name to look for.
866 *
867 * This function looks for child node for given matching name
868 *
869 * Returns a node pointer if found, with refcount incremented, use
870 * of_node_put() on it when done.
871 * Returns NULL if node is not found.
872 */
873struct device_node *of_get_child_by_name(const struct device_node *node,
874 const char *name)
875{
876 struct device_node *child;
877
878 for_each_child_of_node(node, child)
879 if (of_node_name_eq(child, name))
880 break;
881 return child;
882}
883EXPORT_SYMBOL(of_get_child_by_name);
884
885struct device_node *__of_find_node_by_path(struct device_node *parent,
886 const char *path)
887{
888 struct device_node *child;
889 int len;
890
891 len = strcspn(path, "/:");
892 if (!len)
893 return NULL;
894
895 __for_each_child_of_node(parent, child) {
896 const char *name = kbasename(child->full_name);
897 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
898 return child;
899 }
900 return NULL;
901}
902
903struct device_node *__of_find_node_by_full_path(struct device_node *node,
904 const char *path)
905{
906 const char *separator = strchr(path, ':');
907
908 while (node && *path == '/') {
909 struct device_node *tmp = node;
910
911 path++; /* Increment past '/' delimiter */
912 node = __of_find_node_by_path(node, path);
913 of_node_put(tmp);
914 path = strchrnul(path, '/');
915 if (separator && separator < path)
916 break;
917 }
918 return node;
919}
920
921/**
922 * of_find_node_opts_by_path - Find a node matching a full OF path
923 * @path: Either the full path to match, or if the path does not
924 * start with '/', the name of a property of the /aliases
925 * node (an alias). In the case of an alias, the node
926 * matching the alias' value will be returned.
927 * @opts: Address of a pointer into which to store the start of
928 * an options string appended to the end of the path with
929 * a ':' separator.
930 *
931 * Valid paths:
932 * /foo/bar Full path
933 * foo Valid alias
934 * foo/bar Valid alias + relative path
935 *
936 * Returns a node pointer with refcount incremented, use
937 * of_node_put() on it when done.
938 */
939struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
940{
941 struct device_node *np = NULL;
942 struct property *pp;
943 unsigned long flags;
944 const char *separator = strchr(path, ':');
945
946 if (opts)
947 *opts = separator ? separator + 1 : NULL;
948
949 if (strcmp(path, "/") == 0)
950 return of_node_get(of_root);
951
952 /* The path could begin with an alias */
953 if (*path != '/') {
954 int len;
955 const char *p = separator;
956
957 if (!p)
958 p = strchrnul(path, '/');
959 len = p - path;
960
961 /* of_aliases must not be NULL */
962 if (!of_aliases)
963 return NULL;
964
965 for_each_property_of_node(of_aliases, pp) {
966 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
967 np = of_find_node_by_path(pp->value);
968 break;
969 }
970 }
971 if (!np)
972 return NULL;
973 path = p;
974 }
975
976 /* Step down the tree matching path components */
977 raw_spin_lock_irqsave(&devtree_lock, flags);
978 if (!np)
979 np = of_node_get(of_root);
980 np = __of_find_node_by_full_path(np, path);
981 raw_spin_unlock_irqrestore(&devtree_lock, flags);
982 return np;
983}
984EXPORT_SYMBOL(of_find_node_opts_by_path);
985
986/**
987 * of_find_node_by_name - Find a node by its "name" property
988 * @from: The node to start searching from or NULL; the node
989 * you pass will not be searched, only the next one
990 * will. Typically, you pass what the previous call
991 * returned. of_node_put() will be called on @from.
992 * @name: The name string to match against
993 *
994 * Returns a node pointer with refcount incremented, use
995 * of_node_put() on it when done.
996 */
997struct device_node *of_find_node_by_name(struct device_node *from,
998 const char *name)
999{
1000 struct device_node *np;
1001 unsigned long flags;
1002
1003 raw_spin_lock_irqsave(&devtree_lock, flags);
1004 for_each_of_allnodes_from(from, np)
1005 if (of_node_name_eq(np, name) && of_node_get(np))
1006 break;
1007 of_node_put(from);
1008 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1009 return np;
1010}
1011EXPORT_SYMBOL(of_find_node_by_name);
1012
1013/**
1014 * of_find_node_by_type - Find a node by its "device_type" property
1015 * @from: The node to start searching from, or NULL to start searching
1016 * the entire device tree. The node you pass will not be
1017 * searched, only the next one will; typically, you pass
1018 * what the previous call returned. of_node_put() will be
1019 * called on from for you.
1020 * @type: The type string to match against
1021 *
1022 * Returns a node pointer with refcount incremented, use
1023 * of_node_put() on it when done.
1024 */
1025struct device_node *of_find_node_by_type(struct device_node *from,
1026 const char *type)
1027{
1028 struct device_node *np;
1029 unsigned long flags;
1030
1031 raw_spin_lock_irqsave(&devtree_lock, flags);
1032 for_each_of_allnodes_from(from, np)
1033 if (__of_node_is_type(np, type) && of_node_get(np))
1034 break;
1035 of_node_put(from);
1036 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1037 return np;
1038}
1039EXPORT_SYMBOL(of_find_node_by_type);
1040
1041/**
1042 * of_find_compatible_node - Find a node based on type and one of the
1043 * tokens in its "compatible" property
1044 * @from: The node to start searching from or NULL, the node
1045 * you pass will not be searched, only the next one
1046 * will; typically, you pass what the previous call
1047 * returned. of_node_put() will be called on it
1048 * @type: The type string to match "device_type" or NULL to ignore
1049 * @compatible: The string to match to one of the tokens in the device
1050 * "compatible" list.
1051 *
1052 * Returns a node pointer with refcount incremented, use
1053 * of_node_put() on it when done.
1054 */
1055struct device_node *of_find_compatible_node(struct device_node *from,
1056 const char *type, const char *compatible)
1057{
1058 struct device_node *np;
1059 unsigned long flags;
1060
1061 raw_spin_lock_irqsave(&devtree_lock, flags);
1062 for_each_of_allnodes_from(from, np)
1063 if (__of_device_is_compatible(np, compatible, type, NULL) &&
1064 of_node_get(np))
1065 break;
1066 of_node_put(from);
1067 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1068 return np;
1069}
1070EXPORT_SYMBOL(of_find_compatible_node);
1071
1072/**
1073 * of_find_node_with_property - Find a node which has a property with
1074 * the given name.
1075 * @from: The node to start searching from or NULL, the node
1076 * you pass will not be searched, only the next one
1077 * will; typically, you pass what the previous call
1078 * returned. of_node_put() will be called on it
1079 * @prop_name: The name of the property to look for.
1080 *
1081 * Returns a node pointer with refcount incremented, use
1082 * of_node_put() on it when done.
1083 */
1084struct device_node *of_find_node_with_property(struct device_node *from,
1085 const char *prop_name)
1086{
1087 struct device_node *np;
1088 struct property *pp;
1089 unsigned long flags;
1090
1091 raw_spin_lock_irqsave(&devtree_lock, flags);
1092 for_each_of_allnodes_from(from, np) {
1093 for (pp = np->properties; pp; pp = pp->next) {
1094 if (of_prop_cmp(pp->name, prop_name) == 0) {
1095 of_node_get(np);
1096 goto out;
1097 }
1098 }
1099 }
1100out:
1101 of_node_put(from);
1102 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1103 return np;
1104}
1105EXPORT_SYMBOL(of_find_node_with_property);
1106
1107static
1108const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1109 const struct device_node *node)
1110{
1111 const struct of_device_id *best_match = NULL;
1112 int score, best_score = 0;
1113
1114 if (!matches)
1115 return NULL;
1116
1117 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1118 score = __of_device_is_compatible(node, matches->compatible,
1119 matches->type, matches->name);
1120 if (score > best_score) {
1121 best_match = matches;
1122 best_score = score;
1123 }
1124 }
1125
1126 return best_match;
1127}
1128
1129/**
1130 * of_match_node - Tell if a device_node has a matching of_match structure
1131 * @matches: array of of device match structures to search in
1132 * @node: the of device structure to match against
1133 *
1134 * Low level utility function used by device matching.
1135 */
1136const struct of_device_id *of_match_node(const struct of_device_id *matches,
1137 const struct device_node *node)
1138{
1139 const struct of_device_id *match;
1140 unsigned long flags;
1141
1142 raw_spin_lock_irqsave(&devtree_lock, flags);
1143 match = __of_match_node(matches, node);
1144 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1145 return match;
1146}
1147EXPORT_SYMBOL(of_match_node);
1148
1149/**
1150 * of_find_matching_node_and_match - Find a node based on an of_device_id
1151 * match table.
1152 * @from: The node to start searching from or NULL, the node
1153 * you pass will not be searched, only the next one
1154 * will; typically, you pass what the previous call
1155 * returned. of_node_put() will be called on it
1156 * @matches: array of of device match structures to search in
1157 * @match Updated to point at the matches entry which matched
1158 *
1159 * Returns a node pointer with refcount incremented, use
1160 * of_node_put() on it when done.
1161 */
1162struct device_node *of_find_matching_node_and_match(struct device_node *from,
1163 const struct of_device_id *matches,
1164 const struct of_device_id **match)
1165{
1166 struct device_node *np;
1167 const struct of_device_id *m;
1168 unsigned long flags;
1169
1170 if (match)
1171 *match = NULL;
1172
1173 raw_spin_lock_irqsave(&devtree_lock, flags);
1174 for_each_of_allnodes_from(from, np) {
1175 m = __of_match_node(matches, np);
1176 if (m && of_node_get(np)) {
1177 if (match)
1178 *match = m;
1179 break;
1180 }
1181 }
1182 of_node_put(from);
1183 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1184 return np;
1185}
1186EXPORT_SYMBOL(of_find_matching_node_and_match);
1187
1188/**
1189 * of_modalias_node - Lookup appropriate modalias for a device node
1190 * @node: pointer to a device tree node
1191 * @modalias: Pointer to buffer that modalias value will be copied into
1192 * @len: Length of modalias value
1193 *
1194 * Based on the value of the compatible property, this routine will attempt
1195 * to choose an appropriate modalias value for a particular device tree node.
1196 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1197 * from the first entry in the compatible list property.
1198 *
1199 * This routine returns 0 on success, <0 on failure.
1200 */
1201int of_modalias_node(struct device_node *node, char *modalias, int len)
1202{
1203 const char *compatible, *p;
1204 int cplen;
1205
1206 compatible = of_get_property(node, "compatible", &cplen);
1207 if (!compatible || strlen(compatible) > cplen)
1208 return -ENODEV;
1209 p = strchr(compatible, ',');
1210 strlcpy(modalias, p ? p + 1 : compatible, len);
1211 return 0;
1212}
1213EXPORT_SYMBOL_GPL(of_modalias_node);
1214
1215/**
1216 * of_find_node_by_phandle - Find a node given a phandle
1217 * @handle: phandle of the node to find
1218 *
1219 * Returns a node pointer with refcount incremented, use
1220 * of_node_put() on it when done.
1221 */
1222struct device_node *of_find_node_by_phandle(phandle handle)
1223{
1224 struct device_node *np = NULL;
1225 unsigned long flags;
1226 phandle masked_handle;
1227
1228 if (!handle)
1229 return NULL;
1230
1231 raw_spin_lock_irqsave(&devtree_lock, flags);
1232
1233 masked_handle = handle & phandle_cache_mask;
1234
1235 if (phandle_cache) {
1236 if (phandle_cache[masked_handle] &&
1237 handle == phandle_cache[masked_handle]->phandle)
1238 np = phandle_cache[masked_handle];
1239 if (np && of_node_check_flag(np, OF_DETACHED)) {
1240 WARN_ON(1); /* did not uncache np on node removal */
1241 of_node_put(np);
1242 phandle_cache[masked_handle] = NULL;
1243 np = NULL;
1244 }
1245 }
1246
1247 if (!np) {
1248 for_each_of_allnodes(np)
1249 if (np->phandle == handle &&
1250 !of_node_check_flag(np, OF_DETACHED)) {
1251 if (phandle_cache) {
1252 /* will put when removed from cache */
1253 of_node_get(np);
1254 phandle_cache[masked_handle] = np;
1255 }
1256 break;
1257 }
1258 }
1259
1260 of_node_get(np);
1261 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1262 return np;
1263}
1264EXPORT_SYMBOL(of_find_node_by_phandle);
1265
1266void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1267{
1268 int i;
1269 printk("%s %pOF", msg, args->np);
1270 for (i = 0; i < args->args_count; i++) {
1271 const char delim = i ? ',' : ':';
1272
1273 pr_cont("%c%08x", delim, args->args[i]);
1274 }
1275 pr_cont("\n");
1276}
1277
1278int of_phandle_iterator_init(struct of_phandle_iterator *it,
1279 const struct device_node *np,
1280 const char *list_name,
1281 const char *cells_name,
1282 int cell_count)
1283{
1284 const __be32 *list;
1285 int size;
1286
1287 memset(it, 0, sizeof(*it));
1288
1289 /*
1290 * one of cell_count or cells_name must be provided to determine the
1291 * argument length.
1292 */
1293 if (cell_count < 0 && !cells_name)
1294 return -EINVAL;
1295
1296 list = of_get_property(np, list_name, &size);
1297 if (!list)
1298 return -ENOENT;
1299
1300 it->cells_name = cells_name;
1301 it->cell_count = cell_count;
1302 it->parent = np;
1303 it->list_end = list + size / sizeof(*list);
1304 it->phandle_end = list;
1305 it->cur = list;
1306
1307 return 0;
1308}
1309EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1310
1311int of_phandle_iterator_next(struct of_phandle_iterator *it)
1312{
1313 uint32_t count = 0;
1314
1315 if (it->node) {
1316 of_node_put(it->node);
1317 it->node = NULL;
1318 }
1319
1320 if (!it->cur || it->phandle_end >= it->list_end)
1321 return -ENOENT;
1322
1323 it->cur = it->phandle_end;
1324
1325 /* If phandle is 0, then it is an empty entry with no arguments. */
1326 it->phandle = be32_to_cpup(it->cur++);
1327
1328 if (it->phandle) {
1329
1330 /*
1331 * Find the provider node and parse the #*-cells property to
1332 * determine the argument length.
1333 */
1334 it->node = of_find_node_by_phandle(it->phandle);
1335
1336 if (it->cells_name) {
1337 if (!it->node) {
1338 pr_err("%pOF: could not find phandle\n",
1339 it->parent);
1340 goto err;
1341 }
1342
1343 if (of_property_read_u32(it->node, it->cells_name,
1344 &count)) {
1345 /*
1346 * If both cell_count and cells_name is given,
1347 * fall back to cell_count in absence
1348 * of the cells_name property
1349 */
1350 if (it->cell_count >= 0) {
1351 count = it->cell_count;
1352 } else {
1353 pr_err("%pOF: could not get %s for %pOF\n",
1354 it->parent,
1355 it->cells_name,
1356 it->node);
1357 goto err;
1358 }
1359 }
1360 } else {
1361 count = it->cell_count;
1362 }
1363
1364 /*
1365 * Make sure that the arguments actually fit in the remaining
1366 * property data length
1367 */
1368 if (it->cur + count > it->list_end) {
1369 pr_err("%pOF: %s = %d found %d\n",
1370 it->parent, it->cells_name,
1371 count, it->cell_count);
1372 goto err;
1373 }
1374 }
1375
1376 it->phandle_end = it->cur + count;
1377 it->cur_count = count;
1378
1379 return 0;
1380
1381err:
1382 if (it->node) {
1383 of_node_put(it->node);
1384 it->node = NULL;
1385 }
1386
1387 return -EINVAL;
1388}
1389EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1390
1391int of_phandle_iterator_args(struct of_phandle_iterator *it,
1392 uint32_t *args,
1393 int size)
1394{
1395 int i, count;
1396
1397 count = it->cur_count;
1398
1399 if (WARN_ON(size < count))
1400 count = size;
1401
1402 for (i = 0; i < count; i++)
1403 args[i] = be32_to_cpup(it->cur++);
1404
1405 return count;
1406}
1407
1408static int __of_parse_phandle_with_args(const struct device_node *np,
1409 const char *list_name,
1410 const char *cells_name,
1411 int cell_count, int index,
1412 struct of_phandle_args *out_args)
1413{
1414 struct of_phandle_iterator it;
1415 int rc, cur_index = 0;
1416
1417 /* Loop over the phandles until all the requested entry is found */
1418 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1419 /*
1420 * All of the error cases bail out of the loop, so at
1421 * this point, the parsing is successful. If the requested
1422 * index matches, then fill the out_args structure and return,
1423 * or return -ENOENT for an empty entry.
1424 */
1425 rc = -ENOENT;
1426 if (cur_index == index) {
1427 if (!it.phandle)
1428 goto err;
1429
1430 if (out_args) {
1431 int c;
1432
1433 c = of_phandle_iterator_args(&it,
1434 out_args->args,
1435 MAX_PHANDLE_ARGS);
1436 out_args->np = it.node;
1437 out_args->args_count = c;
1438 } else {
1439 of_node_put(it.node);
1440 }
1441
1442 /* Found it! return success */
1443 return 0;
1444 }
1445
1446 cur_index++;
1447 }
1448
1449 /*
1450 * Unlock node before returning result; will be one of:
1451 * -ENOENT : index is for empty phandle
1452 * -EINVAL : parsing error on data
1453 */
1454
1455 err:
1456 of_node_put(it.node);
1457 return rc;
1458}
1459
1460/**
1461 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1462 * @np: Pointer to device node holding phandle property
1463 * @phandle_name: Name of property holding a phandle value
1464 * @index: For properties holding a table of phandles, this is the index into
1465 * the table
1466 *
1467 * Returns the device_node pointer with refcount incremented. Use
1468 * of_node_put() on it when done.
1469 */
1470struct device_node *of_parse_phandle(const struct device_node *np,
1471 const char *phandle_name, int index)
1472{
1473 struct of_phandle_args args;
1474
1475 if (index < 0)
1476 return NULL;
1477
1478 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1479 index, &args))
1480 return NULL;
1481
1482 return args.np;
1483}
1484EXPORT_SYMBOL(of_parse_phandle);
1485
1486/**
1487 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1488 * @np: pointer to a device tree node containing a list
1489 * @list_name: property name that contains a list
1490 * @cells_name: property name that specifies phandles' arguments count
1491 * @index: index of a phandle to parse out
1492 * @out_args: optional pointer to output arguments structure (will be filled)
1493 *
1494 * This function is useful to parse lists of phandles and their arguments.
1495 * Returns 0 on success and fills out_args, on error returns appropriate
1496 * errno value.
1497 *
1498 * Caller is responsible to call of_node_put() on the returned out_args->np
1499 * pointer.
1500 *
1501 * Example:
1502 *
1503 * phandle1: node1 {
1504 * #list-cells = <2>;
1505 * }
1506 *
1507 * phandle2: node2 {
1508 * #list-cells = <1>;
1509 * }
1510 *
1511 * node3 {
1512 * list = <&phandle1 1 2 &phandle2 3>;
1513 * }
1514 *
1515 * To get a device_node of the `node2' node you may call this:
1516 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1517 */
1518int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1519 const char *cells_name, int index,
1520 struct of_phandle_args *out_args)
1521{
1522 int cell_count = -1;
1523
1524 if (index < 0)
1525 return -EINVAL;
1526
1527 /* If cells_name is NULL we assume a cell count of 0 */
1528 if (!cells_name)
1529 cell_count = 0;
1530
1531 return __of_parse_phandle_with_args(np, list_name, cells_name,
1532 cell_count, index, out_args);
1533}
1534EXPORT_SYMBOL(of_parse_phandle_with_args);
1535
1536/**
1537 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1538 * @np: pointer to a device tree node containing a list
1539 * @list_name: property name that contains a list
1540 * @stem_name: stem of property names that specify phandles' arguments count
1541 * @index: index of a phandle to parse out
1542 * @out_args: optional pointer to output arguments structure (will be filled)
1543 *
1544 * This function is useful to parse lists of phandles and their arguments.
1545 * Returns 0 on success and fills out_args, on error returns appropriate errno
1546 * value. The difference between this function and of_parse_phandle_with_args()
1547 * is that this API remaps a phandle if the node the phandle points to has
1548 * a <@stem_name>-map property.
1549 *
1550 * Caller is responsible to call of_node_put() on the returned out_args->np
1551 * pointer.
1552 *
1553 * Example:
1554 *
1555 * phandle1: node1 {
1556 * #list-cells = <2>;
1557 * }
1558 *
1559 * phandle2: node2 {
1560 * #list-cells = <1>;
1561 * }
1562 *
1563 * phandle3: node3 {
1564 * #list-cells = <1>;
1565 * list-map = <0 &phandle2 3>,
1566 * <1 &phandle2 2>,
1567 * <2 &phandle1 5 1>;
1568 * list-map-mask = <0x3>;
1569 * };
1570 *
1571 * node4 {
1572 * list = <&phandle1 1 2 &phandle3 0>;
1573 * }
1574 *
1575 * To get a device_node of the `node2' node you may call this:
1576 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1577 */
1578int of_parse_phandle_with_args_map(const struct device_node *np,
1579 const char *list_name,
1580 const char *stem_name,
1581 int index, struct of_phandle_args *out_args)
1582{
1583 char *cells_name, *map_name = NULL, *mask_name = NULL;
1584 char *pass_name = NULL;
1585 struct device_node *cur, *new = NULL;
1586 const __be32 *map, *mask, *pass;
1587 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1588 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1589 __be32 initial_match_array[MAX_PHANDLE_ARGS];
1590 const __be32 *match_array = initial_match_array;
1591 int i, ret, map_len, match;
1592 u32 list_size, new_size;
1593
1594 if (index < 0)
1595 return -EINVAL;
1596
1597 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1598 if (!cells_name)
1599 return -ENOMEM;
1600
1601 ret = -ENOMEM;
1602 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1603 if (!map_name)
1604 goto free;
1605
1606 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1607 if (!mask_name)
1608 goto free;
1609
1610 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1611 if (!pass_name)
1612 goto free;
1613
1614 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1615 out_args);
1616 if (ret)
1617 goto free;
1618
1619 /* Get the #<list>-cells property */
1620 cur = out_args->np;
1621 ret = of_property_read_u32(cur, cells_name, &list_size);
1622 if (ret < 0)
1623 goto put;
1624
1625 /* Precalculate the match array - this simplifies match loop */
1626 for (i = 0; i < list_size; i++)
1627 initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1628
1629 ret = -EINVAL;
1630 while (cur) {
1631 /* Get the <list>-map property */
1632 map = of_get_property(cur, map_name, &map_len);
1633 if (!map) {
1634 ret = 0;
1635 goto free;
1636 }
1637 map_len /= sizeof(u32);
1638
1639 /* Get the <list>-map-mask property (optional) */
1640 mask = of_get_property(cur, mask_name, NULL);
1641 if (!mask)
1642 mask = dummy_mask;
1643 /* Iterate through <list>-map property */
1644 match = 0;
1645 while (map_len > (list_size + 1) && !match) {
1646 /* Compare specifiers */
1647 match = 1;
1648 for (i = 0; i < list_size; i++, map_len--)
1649 match &= !((match_array[i] ^ *map++) & mask[i]);
1650
1651 of_node_put(new);
1652 new = of_find_node_by_phandle(be32_to_cpup(map));
1653 map++;
1654 map_len--;
1655
1656 /* Check if not found */
1657 if (!new)
1658 goto put;
1659
1660 if (!of_device_is_available(new))
1661 match = 0;
1662
1663 ret = of_property_read_u32(new, cells_name, &new_size);
1664 if (ret)
1665 goto put;
1666
1667 /* Check for malformed properties */
1668 if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1669 goto put;
1670 if (map_len < new_size)
1671 goto put;
1672
1673 /* Move forward by new node's #<list>-cells amount */
1674 map += new_size;
1675 map_len -= new_size;
1676 }
1677 if (!match)
1678 goto put;
1679
1680 /* Get the <list>-map-pass-thru property (optional) */
1681 pass = of_get_property(cur, pass_name, NULL);
1682 if (!pass)
1683 pass = dummy_pass;
1684
1685 /*
1686 * Successfully parsed a <list>-map translation; copy new
1687 * specifier into the out_args structure, keeping the
1688 * bits specified in <list>-map-pass-thru.
1689 */
1690 match_array = map - new_size;
1691 for (i = 0; i < new_size; i++) {
1692 __be32 val = *(map - new_size + i);
1693
1694 if (i < list_size) {
1695 val &= ~pass[i];
1696 val |= cpu_to_be32(out_args->args[i]) & pass[i];
1697 }
1698
1699 out_args->args[i] = be32_to_cpu(val);
1700 }
1701 out_args->args_count = list_size = new_size;
1702 /* Iterate again with new provider */
1703 out_args->np = new;
1704 of_node_put(cur);
1705 cur = new;
1706 }
1707put:
1708 of_node_put(cur);
1709 of_node_put(new);
1710free:
1711 kfree(mask_name);
1712 kfree(map_name);
1713 kfree(cells_name);
1714 kfree(pass_name);
1715
1716 return ret;
1717}
1718EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1719
1720/**
1721 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1722 * @np: pointer to a device tree node containing a list
1723 * @list_name: property name that contains a list
1724 * @cell_count: number of argument cells following the phandle
1725 * @index: index of a phandle to parse out
1726 * @out_args: optional pointer to output arguments structure (will be filled)
1727 *
1728 * This function is useful to parse lists of phandles and their arguments.
1729 * Returns 0 on success and fills out_args, on error returns appropriate
1730 * errno value.
1731 *
1732 * Caller is responsible to call of_node_put() on the returned out_args->np
1733 * pointer.
1734 *
1735 * Example:
1736 *
1737 * phandle1: node1 {
1738 * }
1739 *
1740 * phandle2: node2 {
1741 * }
1742 *
1743 * node3 {
1744 * list = <&phandle1 0 2 &phandle2 2 3>;
1745 * }
1746 *
1747 * To get a device_node of the `node2' node you may call this:
1748 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1749 */
1750int of_parse_phandle_with_fixed_args(const struct device_node *np,
1751 const char *list_name, int cell_count,
1752 int index, struct of_phandle_args *out_args)
1753{
1754 if (index < 0)
1755 return -EINVAL;
1756 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1757 index, out_args);
1758}
1759EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1760
1761/**
1762 * of_count_phandle_with_args() - Find the number of phandles references in a property
1763 * @np: pointer to a device tree node containing a list
1764 * @list_name: property name that contains a list
1765 * @cells_name: property name that specifies phandles' arguments count
1766 *
1767 * Returns the number of phandle + argument tuples within a property. It
1768 * is a typical pattern to encode a list of phandle and variable
1769 * arguments into a single property. The number of arguments is encoded
1770 * by a property in the phandle-target node. For example, a gpios
1771 * property would contain a list of GPIO specifies consisting of a
1772 * phandle and 1 or more arguments. The number of arguments are
1773 * determined by the #gpio-cells property in the node pointed to by the
1774 * phandle.
1775 */
1776int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1777 const char *cells_name)
1778{
1779 struct of_phandle_iterator it;
1780 int rc, cur_index = 0;
1781
1782 /*
1783 * If cells_name is NULL we assume a cell count of 0. This makes
1784 * counting the phandles trivial as each 32bit word in the list is a
1785 * phandle and no arguments are to consider. So we don't iterate through
1786 * the list but just use the length to determine the phandle count.
1787 */
1788 if (!cells_name) {
1789 const __be32 *list;
1790 int size;
1791
1792 list = of_get_property(np, list_name, &size);
1793 if (!list)
1794 return -ENOENT;
1795
1796 return size / sizeof(*list);
1797 }
1798
1799 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1800 if (rc)
1801 return rc;
1802
1803 while ((rc = of_phandle_iterator_next(&it)) == 0)
1804 cur_index += 1;
1805
1806 if (rc != -ENOENT)
1807 return rc;
1808
1809 return cur_index;
1810}
1811EXPORT_SYMBOL(of_count_phandle_with_args);
1812
1813/**
1814 * __of_add_property - Add a property to a node without lock operations
1815 */
1816int __of_add_property(struct device_node *np, struct property *prop)
1817{
1818 struct property **next;
1819
1820 prop->next = NULL;
1821 next = &np->properties;
1822 while (*next) {
1823 if (strcmp(prop->name, (*next)->name) == 0)
1824 /* duplicate ! don't insert it */
1825 return -EEXIST;
1826
1827 next = &(*next)->next;
1828 }
1829 *next = prop;
1830
1831 return 0;
1832}
1833
1834/**
1835 * of_add_property - Add a property to a node
1836 */
1837int of_add_property(struct device_node *np, struct property *prop)
1838{
1839 unsigned long flags;
1840 int rc;
1841
1842 mutex_lock(&of_mutex);
1843
1844 raw_spin_lock_irqsave(&devtree_lock, flags);
1845 rc = __of_add_property(np, prop);
1846 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1847
1848 if (!rc)
1849 __of_add_property_sysfs(np, prop);
1850
1851 mutex_unlock(&of_mutex);
1852
1853 if (!rc)
1854 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1855
1856 return rc;
1857}
1858
1859int __of_remove_property(struct device_node *np, struct property *prop)
1860{
1861 struct property **next;
1862
1863 for (next = &np->properties; *next; next = &(*next)->next) {
1864 if (*next == prop)
1865 break;
1866 }
1867 if (*next == NULL)
1868 return -ENODEV;
1869
1870 /* found the node */
1871 *next = prop->next;
1872 prop->next = np->deadprops;
1873 np->deadprops = prop;
1874
1875 return 0;
1876}
1877
1878/**
1879 * of_remove_property - Remove a property from a node.
1880 *
1881 * Note that we don't actually remove it, since we have given out
1882 * who-knows-how-many pointers to the data using get-property.
1883 * Instead we just move the property to the "dead properties"
1884 * list, so it won't be found any more.
1885 */
1886int of_remove_property(struct device_node *np, struct property *prop)
1887{
1888 unsigned long flags;
1889 int rc;
1890
1891 if (!prop)
1892 return -ENODEV;
1893
1894 mutex_lock(&of_mutex);
1895
1896 raw_spin_lock_irqsave(&devtree_lock, flags);
1897 rc = __of_remove_property(np, prop);
1898 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1899
1900 if (!rc)
1901 __of_remove_property_sysfs(np, prop);
1902
1903 mutex_unlock(&of_mutex);
1904
1905 if (!rc)
1906 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1907
1908 return rc;
1909}
1910
1911int __of_update_property(struct device_node *np, struct property *newprop,
1912 struct property **oldpropp)
1913{
1914 struct property **next, *oldprop;
1915
1916 for (next = &np->properties; *next; next = &(*next)->next) {
1917 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1918 break;
1919 }
1920 *oldpropp = oldprop = *next;
1921
1922 if (oldprop) {
1923 /* replace the node */
1924 newprop->next = oldprop->next;
1925 *next = newprop;
1926 oldprop->next = np->deadprops;
1927 np->deadprops = oldprop;
1928 } else {
1929 /* new node */
1930 newprop->next = NULL;
1931 *next = newprop;
1932 }
1933
1934 return 0;
1935}
1936
1937/*
1938 * of_update_property - Update a property in a node, if the property does
1939 * not exist, add it.
1940 *
1941 * Note that we don't actually remove it, since we have given out
1942 * who-knows-how-many pointers to the data using get-property.
1943 * Instead we just move the property to the "dead properties" list,
1944 * and add the new property to the property list
1945 */
1946int of_update_property(struct device_node *np, struct property *newprop)
1947{
1948 struct property *oldprop;
1949 unsigned long flags;
1950 int rc;
1951
1952 if (!newprop->name)
1953 return -EINVAL;
1954
1955 mutex_lock(&of_mutex);
1956
1957 raw_spin_lock_irqsave(&devtree_lock, flags);
1958 rc = __of_update_property(np, newprop, &oldprop);
1959 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1960
1961 if (!rc)
1962 __of_update_property_sysfs(np, newprop, oldprop);
1963
1964 mutex_unlock(&of_mutex);
1965
1966 if (!rc)
1967 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1968
1969 return rc;
1970}
1971
1972static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1973 int id, const char *stem, int stem_len)
1974{
1975 ap->np = np;
1976 ap->id = id;
1977 strncpy(ap->stem, stem, stem_len);
1978 ap->stem[stem_len] = 0;
1979 list_add_tail(&ap->link, &aliases_lookup);
1980 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1981 ap->alias, ap->stem, ap->id, np);
1982}
1983
1984/**
1985 * of_alias_scan - Scan all properties of the 'aliases' node
1986 *
1987 * The function scans all the properties of the 'aliases' node and populates
1988 * the global lookup table with the properties. It returns the
1989 * number of alias properties found, or an error code in case of failure.
1990 *
1991 * @dt_alloc: An allocator that provides a virtual address to memory
1992 * for storing the resulting tree
1993 */
1994void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1995{
1996 struct property *pp;
1997
1998 of_aliases = of_find_node_by_path("/aliases");
1999 of_chosen = of_find_node_by_path("/chosen");
2000 if (of_chosen == NULL)
2001 of_chosen = of_find_node_by_path("/chosen@0");
2002
2003 if (of_chosen) {
2004 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
2005 const char *name = NULL;
2006
2007 if (of_property_read_string(of_chosen, "stdout-path", &name))
2008 of_property_read_string(of_chosen, "linux,stdout-path",
2009 &name);
2010 if (IS_ENABLED(CONFIG_PPC) && !name)
2011 of_property_read_string(of_aliases, "stdout", &name);
2012 if (name)
2013 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
2014 }
2015
2016 if (!of_aliases)
2017 return;
2018
2019 for_each_property_of_node(of_aliases, pp) {
2020 const char *start = pp->name;
2021 const char *end = start + strlen(start);
2022 struct device_node *np;
2023 struct alias_prop *ap;
2024 int id, len;
2025
2026 /* Skip those we do not want to proceed */
2027 if (!strcmp(pp->name, "name") ||
2028 !strcmp(pp->name, "phandle") ||
2029 !strcmp(pp->name, "linux,phandle"))
2030 continue;
2031
2032 np = of_find_node_by_path(pp->value);
2033 if (!np)
2034 continue;
2035
2036 /* walk the alias backwards to extract the id and work out
2037 * the 'stem' string */
2038 while (isdigit(*(end-1)) && end > start)
2039 end--;
2040 len = end - start;
2041
2042 if (kstrtoint(end, 10, &id) < 0)
2043 continue;
2044
2045 /* Allocate an alias_prop with enough space for the stem */
2046 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2047 if (!ap)
2048 continue;
2049 memset(ap, 0, sizeof(*ap) + len + 1);
2050 ap->alias = start;
2051 of_alias_add(ap, np, id, start, len);
2052 }
2053}
2054
2055/**
2056 * of_alias_get_id - Get alias id for the given device_node
2057 * @np: Pointer to the given device_node
2058 * @stem: Alias stem of the given device_node
2059 *
2060 * The function travels the lookup table to get the alias id for the given
2061 * device_node and alias stem. It returns the alias id if found.
2062 */
2063int of_alias_get_id(struct device_node *np, const char *stem)
2064{
2065 struct alias_prop *app;
2066 int id = -ENODEV;
2067
2068 mutex_lock(&of_mutex);
2069 list_for_each_entry(app, &aliases_lookup, link) {
2070 if (strcmp(app->stem, stem) != 0)
2071 continue;
2072
2073 if (np == app->np) {
2074 id = app->id;
2075 break;
2076 }
2077 }
2078 mutex_unlock(&of_mutex);
2079
2080 return id;
2081}
2082EXPORT_SYMBOL_GPL(of_alias_get_id);
2083
2084/**
2085 * of_alias_get_alias_list - Get alias list for the given device driver
2086 * @matches: Array of OF device match structures to search in
2087 * @stem: Alias stem of the given device_node
2088 * @bitmap: Bitmap field pointer
2089 * @nbits: Maximum number of alias IDs which can be recorded in bitmap
2090 *
2091 * The function travels the lookup table to record alias ids for the given
2092 * device match structures and alias stem.
2093 *
2094 * Return: 0 or -ENOSYS when !CONFIG_OF or
2095 * -EOVERFLOW if alias ID is greater then allocated nbits
2096 */
2097int of_alias_get_alias_list(const struct of_device_id *matches,
2098 const char *stem, unsigned long *bitmap,
2099 unsigned int nbits)
2100{
2101 struct alias_prop *app;
2102 int ret = 0;
2103
2104 /* Zero bitmap field to make sure that all the time it is clean */
2105 bitmap_zero(bitmap, nbits);
2106
2107 mutex_lock(&of_mutex);
2108 pr_debug("%s: Looking for stem: %s\n", __func__, stem);
2109 list_for_each_entry(app, &aliases_lookup, link) {
2110 pr_debug("%s: stem: %s, id: %d\n",
2111 __func__, app->stem, app->id);
2112
2113 if (strcmp(app->stem, stem) != 0) {
2114 pr_debug("%s: stem comparison didn't pass %s\n",
2115 __func__, app->stem);
2116 continue;
2117 }
2118
2119 if (of_match_node(matches, app->np)) {
2120 pr_debug("%s: Allocated ID %d\n", __func__, app->id);
2121
2122 if (app->id >= nbits) {
2123 pr_warn("%s: ID %d >= than bitmap field %d\n",
2124 __func__, app->id, nbits);
2125 ret = -EOVERFLOW;
2126 } else {
2127 set_bit(app->id, bitmap);
2128 }
2129 }
2130 }
2131 mutex_unlock(&of_mutex);
2132
2133 return ret;
2134}
2135EXPORT_SYMBOL_GPL(of_alias_get_alias_list);
2136
2137/**
2138 * of_alias_get_highest_id - Get highest alias id for the given stem
2139 * @stem: Alias stem to be examined
2140 *
2141 * The function travels the lookup table to get the highest alias id for the
2142 * given alias stem. It returns the alias id if found.
2143 */
2144int of_alias_get_highest_id(const char *stem)
2145{
2146 struct alias_prop *app;
2147 int id = -ENODEV;
2148
2149 mutex_lock(&of_mutex);
2150 list_for_each_entry(app, &aliases_lookup, link) {
2151 if (strcmp(app->stem, stem) != 0)
2152 continue;
2153
2154 if (app->id > id)
2155 id = app->id;
2156 }
2157 mutex_unlock(&of_mutex);
2158
2159 return id;
2160}
2161EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2162
2163/**
2164 * of_console_check() - Test and setup console for DT setup
2165 * @dn - Pointer to device node
2166 * @name - Name to use for preferred console without index. ex. "ttyS"
2167 * @index - Index to use for preferred console.
2168 *
2169 * Check if the given device node matches the stdout-path property in the
2170 * /chosen node. If it does then register it as the preferred console and return
2171 * TRUE. Otherwise return FALSE.
2172 */
2173bool of_console_check(struct device_node *dn, char *name, int index)
2174{
2175 if (!dn || dn != of_stdout || console_set_on_cmdline)
2176 return false;
2177
2178 /*
2179 * XXX: cast `options' to char pointer to suppress complication
2180 * warnings: printk, UART and console drivers expect char pointer.
2181 */
2182 return !add_preferred_console(name, index, (char *)of_stdout_options);
2183}
2184EXPORT_SYMBOL_GPL(of_console_check);
2185
2186/**
2187 * of_find_next_cache_node - Find a node's subsidiary cache
2188 * @np: node of type "cpu" or "cache"
2189 *
2190 * Returns a node pointer with refcount incremented, use
2191 * of_node_put() on it when done. Caller should hold a reference
2192 * to np.
2193 */
2194struct device_node *of_find_next_cache_node(const struct device_node *np)
2195{
2196 struct device_node *child, *cache_node;
2197
2198 cache_node = of_parse_phandle(np, "l2-cache", 0);
2199 if (!cache_node)
2200 cache_node = of_parse_phandle(np, "next-level-cache", 0);
2201
2202 if (cache_node)
2203 return cache_node;
2204
2205 /* OF on pmac has nodes instead of properties named "l2-cache"
2206 * beneath CPU nodes.
2207 */
2208 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2209 for_each_child_of_node(np, child)
2210 if (of_node_is_type(child, "cache"))
2211 return child;
2212
2213 return NULL;
2214}
2215
2216/**
2217 * of_find_last_cache_level - Find the level at which the last cache is
2218 * present for the given logical cpu
2219 *
2220 * @cpu: cpu number(logical index) for which the last cache level is needed
2221 *
2222 * Returns the the level at which the last cache is present. It is exactly
2223 * same as the total number of cache levels for the given logical cpu.
2224 */
2225int of_find_last_cache_level(unsigned int cpu)
2226{
2227 u32 cache_level = 0;
2228 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2229
2230 while (np) {
2231 prev = np;
2232 of_node_put(np);
2233 np = of_find_next_cache_node(np);
2234 }
2235
2236 of_property_read_u32(prev, "cache-level", &cache_level);
2237
2238 return cache_level;
2239}
2240
2241/**
2242 * of_map_rid - Translate a requester ID through a downstream mapping.
2243 * @np: root complex device node.
2244 * @rid: device requester ID to map.
2245 * @map_name: property name of the map to use.
2246 * @map_mask_name: optional property name of the mask to use.
2247 * @target: optional pointer to a target device node.
2248 * @id_out: optional pointer to receive the translated ID.
2249 *
2250 * Given a device requester ID, look up the appropriate implementation-defined
2251 * platform ID and/or the target device which receives transactions on that
2252 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2253 * @id_out may be NULL if only the other is required. If @target points to
2254 * a non-NULL device node pointer, only entries targeting that node will be
2255 * matched; if it points to a NULL value, it will receive the device node of
2256 * the first matching target phandle, with a reference held.
2257 *
2258 * Return: 0 on success or a standard error code on failure.
2259 */
2260int of_map_rid(struct device_node *np, u32 rid,
2261 const char *map_name, const char *map_mask_name,
2262 struct device_node **target, u32 *id_out)
2263{
2264 u32 map_mask, masked_rid;
2265 int map_len;
2266 const __be32 *map = NULL;
2267
2268 if (!np || !map_name || (!target && !id_out))
2269 return -EINVAL;
2270
2271 map = of_get_property(np, map_name, &map_len);
2272 if (!map) {
2273 if (target)
2274 return -ENODEV;
2275 /* Otherwise, no map implies no translation */
2276 *id_out = rid;
2277 return 0;
2278 }
2279
2280 if (!map_len || map_len % (4 * sizeof(*map))) {
2281 pr_err("%pOF: Error: Bad %s length: %d\n", np,
2282 map_name, map_len);
2283 return -EINVAL;
2284 }
2285
2286 /* The default is to select all bits. */
2287 map_mask = 0xffffffff;
2288
2289 /*
2290 * Can be overridden by "{iommu,msi}-map-mask" property.
2291 * If of_property_read_u32() fails, the default is used.
2292 */
2293 if (map_mask_name)
2294 of_property_read_u32(np, map_mask_name, &map_mask);
2295
2296 masked_rid = map_mask & rid;
2297 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2298 struct device_node *phandle_node;
2299 u32 rid_base = be32_to_cpup(map + 0);
2300 u32 phandle = be32_to_cpup(map + 1);
2301 u32 out_base = be32_to_cpup(map + 2);
2302 u32 rid_len = be32_to_cpup(map + 3);
2303
2304 if (rid_base & ~map_mask) {
2305 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores rid-base (0x%x)\n",
2306 np, map_name, map_name,
2307 map_mask, rid_base);
2308 return -EFAULT;
2309 }
2310
2311 if (masked_rid < rid_base || masked_rid >= rid_base + rid_len)
2312 continue;
2313
2314 phandle_node = of_find_node_by_phandle(phandle);
2315 if (!phandle_node)
2316 return -ENODEV;
2317
2318 if (target) {
2319 if (*target)
2320 of_node_put(phandle_node);
2321 else
2322 *target = phandle_node;
2323
2324 if (*target != phandle_node)
2325 continue;
2326 }
2327
2328 if (id_out)
2329 *id_out = masked_rid - rid_base + out_base;
2330
2331 pr_debug("%pOF: %s, using mask %08x, rid-base: %08x, out-base: %08x, length: %08x, rid: %08x -> %08x\n",
2332 np, map_name, map_mask, rid_base, out_base,
2333 rid_len, rid, masked_rid - rid_base + out_base);
2334 return 0;
2335 }
2336
2337 pr_info("%pOF: no %s translation for rid 0x%x on %pOF\n", np, map_name,
2338 rid, target && *target ? *target : NULL);
2339
2340 /* Bypasses translation */
2341 if (id_out)
2342 *id_out = rid;
2343 return 0;
2344}
2345EXPORT_SYMBOL_GPL(of_map_rid);
1/*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11 *
12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 * Grant Likely.
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20#include <linux/module.h>
21#include <linux/of.h>
22#include <linux/spinlock.h>
23#include <linux/slab.h>
24#include <linux/proc_fs.h>
25
26struct device_node *allnodes;
27struct device_node *of_chosen;
28
29/* use when traversing tree through the allnext, child, sibling,
30 * or parent members of struct device_node.
31 */
32DEFINE_RWLOCK(devtree_lock);
33
34int of_n_addr_cells(struct device_node *np)
35{
36 const __be32 *ip;
37
38 do {
39 if (np->parent)
40 np = np->parent;
41 ip = of_get_property(np, "#address-cells", NULL);
42 if (ip)
43 return be32_to_cpup(ip);
44 } while (np->parent);
45 /* No #address-cells property for the root node */
46 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
47}
48EXPORT_SYMBOL(of_n_addr_cells);
49
50int of_n_size_cells(struct device_node *np)
51{
52 const __be32 *ip;
53
54 do {
55 if (np->parent)
56 np = np->parent;
57 ip = of_get_property(np, "#size-cells", NULL);
58 if (ip)
59 return be32_to_cpup(ip);
60 } while (np->parent);
61 /* No #size-cells property for the root node */
62 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
63}
64EXPORT_SYMBOL(of_n_size_cells);
65
66#if !defined(CONFIG_SPARC) /* SPARC doesn't do ref counting (yet) */
67/**
68 * of_node_get - Increment refcount of a node
69 * @node: Node to inc refcount, NULL is supported to
70 * simplify writing of callers
71 *
72 * Returns node.
73 */
74struct device_node *of_node_get(struct device_node *node)
75{
76 if (node)
77 kref_get(&node->kref);
78 return node;
79}
80EXPORT_SYMBOL(of_node_get);
81
82static inline struct device_node *kref_to_device_node(struct kref *kref)
83{
84 return container_of(kref, struct device_node, kref);
85}
86
87/**
88 * of_node_release - release a dynamically allocated node
89 * @kref: kref element of the node to be released
90 *
91 * In of_node_put() this function is passed to kref_put()
92 * as the destructor.
93 */
94static void of_node_release(struct kref *kref)
95{
96 struct device_node *node = kref_to_device_node(kref);
97 struct property *prop = node->properties;
98
99 /* We should never be releasing nodes that haven't been detached. */
100 if (!of_node_check_flag(node, OF_DETACHED)) {
101 pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name);
102 dump_stack();
103 kref_init(&node->kref);
104 return;
105 }
106
107 if (!of_node_check_flag(node, OF_DYNAMIC))
108 return;
109
110 while (prop) {
111 struct property *next = prop->next;
112 kfree(prop->name);
113 kfree(prop->value);
114 kfree(prop);
115 prop = next;
116
117 if (!prop) {
118 prop = node->deadprops;
119 node->deadprops = NULL;
120 }
121 }
122 kfree(node->full_name);
123 kfree(node->data);
124 kfree(node);
125}
126
127/**
128 * of_node_put - Decrement refcount of a node
129 * @node: Node to dec refcount, NULL is supported to
130 * simplify writing of callers
131 *
132 */
133void of_node_put(struct device_node *node)
134{
135 if (node)
136 kref_put(&node->kref, of_node_release);
137}
138EXPORT_SYMBOL(of_node_put);
139#endif /* !CONFIG_SPARC */
140
141struct property *of_find_property(const struct device_node *np,
142 const char *name,
143 int *lenp)
144{
145 struct property *pp;
146
147 if (!np)
148 return NULL;
149
150 read_lock(&devtree_lock);
151 for (pp = np->properties; pp != 0; pp = pp->next) {
152 if (of_prop_cmp(pp->name, name) == 0) {
153 if (lenp != 0)
154 *lenp = pp->length;
155 break;
156 }
157 }
158 read_unlock(&devtree_lock);
159
160 return pp;
161}
162EXPORT_SYMBOL(of_find_property);
163
164/**
165 * of_find_all_nodes - Get next node in global list
166 * @prev: Previous node or NULL to start iteration
167 * of_node_put() will be called on it
168 *
169 * Returns a node pointer with refcount incremented, use
170 * of_node_put() on it when done.
171 */
172struct device_node *of_find_all_nodes(struct device_node *prev)
173{
174 struct device_node *np;
175
176 read_lock(&devtree_lock);
177 np = prev ? prev->allnext : allnodes;
178 for (; np != NULL; np = np->allnext)
179 if (of_node_get(np))
180 break;
181 of_node_put(prev);
182 read_unlock(&devtree_lock);
183 return np;
184}
185EXPORT_SYMBOL(of_find_all_nodes);
186
187/*
188 * Find a property with a given name for a given node
189 * and return the value.
190 */
191const void *of_get_property(const struct device_node *np, const char *name,
192 int *lenp)
193{
194 struct property *pp = of_find_property(np, name, lenp);
195
196 return pp ? pp->value : NULL;
197}
198EXPORT_SYMBOL(of_get_property);
199
200/** Checks if the given "compat" string matches one of the strings in
201 * the device's "compatible" property
202 */
203int of_device_is_compatible(const struct device_node *device,
204 const char *compat)
205{
206 const char* cp;
207 int cplen, l;
208
209 cp = of_get_property(device, "compatible", &cplen);
210 if (cp == NULL)
211 return 0;
212 while (cplen > 0) {
213 if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
214 return 1;
215 l = strlen(cp) + 1;
216 cp += l;
217 cplen -= l;
218 }
219
220 return 0;
221}
222EXPORT_SYMBOL(of_device_is_compatible);
223
224/**
225 * of_machine_is_compatible - Test root of device tree for a given compatible value
226 * @compat: compatible string to look for in root node's compatible property.
227 *
228 * Returns true if the root node has the given value in its
229 * compatible property.
230 */
231int of_machine_is_compatible(const char *compat)
232{
233 struct device_node *root;
234 int rc = 0;
235
236 root = of_find_node_by_path("/");
237 if (root) {
238 rc = of_device_is_compatible(root, compat);
239 of_node_put(root);
240 }
241 return rc;
242}
243EXPORT_SYMBOL(of_machine_is_compatible);
244
245/**
246 * of_device_is_available - check if a device is available for use
247 *
248 * @device: Node to check for availability
249 *
250 * Returns 1 if the status property is absent or set to "okay" or "ok",
251 * 0 otherwise
252 */
253int of_device_is_available(const struct device_node *device)
254{
255 const char *status;
256 int statlen;
257
258 status = of_get_property(device, "status", &statlen);
259 if (status == NULL)
260 return 1;
261
262 if (statlen > 0) {
263 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
264 return 1;
265 }
266
267 return 0;
268}
269EXPORT_SYMBOL(of_device_is_available);
270
271/**
272 * of_get_parent - Get a node's parent if any
273 * @node: Node to get parent
274 *
275 * Returns a node pointer with refcount incremented, use
276 * of_node_put() on it when done.
277 */
278struct device_node *of_get_parent(const struct device_node *node)
279{
280 struct device_node *np;
281
282 if (!node)
283 return NULL;
284
285 read_lock(&devtree_lock);
286 np = of_node_get(node->parent);
287 read_unlock(&devtree_lock);
288 return np;
289}
290EXPORT_SYMBOL(of_get_parent);
291
292/**
293 * of_get_next_parent - Iterate to a node's parent
294 * @node: Node to get parent of
295 *
296 * This is like of_get_parent() except that it drops the
297 * refcount on the passed node, making it suitable for iterating
298 * through a node's parents.
299 *
300 * Returns a node pointer with refcount incremented, use
301 * of_node_put() on it when done.
302 */
303struct device_node *of_get_next_parent(struct device_node *node)
304{
305 struct device_node *parent;
306
307 if (!node)
308 return NULL;
309
310 read_lock(&devtree_lock);
311 parent = of_node_get(node->parent);
312 of_node_put(node);
313 read_unlock(&devtree_lock);
314 return parent;
315}
316
317/**
318 * of_get_next_child - Iterate a node childs
319 * @node: parent node
320 * @prev: previous child of the parent node, or NULL to get first
321 *
322 * Returns a node pointer with refcount incremented, use
323 * of_node_put() on it when done.
324 */
325struct device_node *of_get_next_child(const struct device_node *node,
326 struct device_node *prev)
327{
328 struct device_node *next;
329
330 read_lock(&devtree_lock);
331 next = prev ? prev->sibling : node->child;
332 for (; next; next = next->sibling)
333 if (of_node_get(next))
334 break;
335 of_node_put(prev);
336 read_unlock(&devtree_lock);
337 return next;
338}
339EXPORT_SYMBOL(of_get_next_child);
340
341/**
342 * of_find_node_by_path - Find a node matching a full OF path
343 * @path: The full path to match
344 *
345 * Returns a node pointer with refcount incremented, use
346 * of_node_put() on it when done.
347 */
348struct device_node *of_find_node_by_path(const char *path)
349{
350 struct device_node *np = allnodes;
351
352 read_lock(&devtree_lock);
353 for (; np; np = np->allnext) {
354 if (np->full_name && (of_node_cmp(np->full_name, path) == 0)
355 && of_node_get(np))
356 break;
357 }
358 read_unlock(&devtree_lock);
359 return np;
360}
361EXPORT_SYMBOL(of_find_node_by_path);
362
363/**
364 * of_find_node_by_name - Find a node by its "name" property
365 * @from: The node to start searching from or NULL, the node
366 * you pass will not be searched, only the next one
367 * will; typically, you pass what the previous call
368 * returned. of_node_put() will be called on it
369 * @name: The name string to match against
370 *
371 * Returns a node pointer with refcount incremented, use
372 * of_node_put() on it when done.
373 */
374struct device_node *of_find_node_by_name(struct device_node *from,
375 const char *name)
376{
377 struct device_node *np;
378
379 read_lock(&devtree_lock);
380 np = from ? from->allnext : allnodes;
381 for (; np; np = np->allnext)
382 if (np->name && (of_node_cmp(np->name, name) == 0)
383 && of_node_get(np))
384 break;
385 of_node_put(from);
386 read_unlock(&devtree_lock);
387 return np;
388}
389EXPORT_SYMBOL(of_find_node_by_name);
390
391/**
392 * of_find_node_by_type - Find a node by its "device_type" property
393 * @from: The node to start searching from, or NULL to start searching
394 * the entire device tree. The node you pass will not be
395 * searched, only the next one will; typically, you pass
396 * what the previous call returned. of_node_put() will be
397 * called on from for you.
398 * @type: The type string to match against
399 *
400 * Returns a node pointer with refcount incremented, use
401 * of_node_put() on it when done.
402 */
403struct device_node *of_find_node_by_type(struct device_node *from,
404 const char *type)
405{
406 struct device_node *np;
407
408 read_lock(&devtree_lock);
409 np = from ? from->allnext : allnodes;
410 for (; np; np = np->allnext)
411 if (np->type && (of_node_cmp(np->type, type) == 0)
412 && of_node_get(np))
413 break;
414 of_node_put(from);
415 read_unlock(&devtree_lock);
416 return np;
417}
418EXPORT_SYMBOL(of_find_node_by_type);
419
420/**
421 * of_find_compatible_node - Find a node based on type and one of the
422 * tokens in its "compatible" property
423 * @from: The node to start searching from or NULL, the node
424 * you pass will not be searched, only the next one
425 * will; typically, you pass what the previous call
426 * returned. of_node_put() will be called on it
427 * @type: The type string to match "device_type" or NULL to ignore
428 * @compatible: The string to match to one of the tokens in the device
429 * "compatible" list.
430 *
431 * Returns a node pointer with refcount incremented, use
432 * of_node_put() on it when done.
433 */
434struct device_node *of_find_compatible_node(struct device_node *from,
435 const char *type, const char *compatible)
436{
437 struct device_node *np;
438
439 read_lock(&devtree_lock);
440 np = from ? from->allnext : allnodes;
441 for (; np; np = np->allnext) {
442 if (type
443 && !(np->type && (of_node_cmp(np->type, type) == 0)))
444 continue;
445 if (of_device_is_compatible(np, compatible) && of_node_get(np))
446 break;
447 }
448 of_node_put(from);
449 read_unlock(&devtree_lock);
450 return np;
451}
452EXPORT_SYMBOL(of_find_compatible_node);
453
454/**
455 * of_find_node_with_property - Find a node which has a property with
456 * the given name.
457 * @from: The node to start searching from or NULL, the node
458 * you pass will not be searched, only the next one
459 * will; typically, you pass what the previous call
460 * returned. of_node_put() will be called on it
461 * @prop_name: The name of the property to look for.
462 *
463 * Returns a node pointer with refcount incremented, use
464 * of_node_put() on it when done.
465 */
466struct device_node *of_find_node_with_property(struct device_node *from,
467 const char *prop_name)
468{
469 struct device_node *np;
470 struct property *pp;
471
472 read_lock(&devtree_lock);
473 np = from ? from->allnext : allnodes;
474 for (; np; np = np->allnext) {
475 for (pp = np->properties; pp != 0; pp = pp->next) {
476 if (of_prop_cmp(pp->name, prop_name) == 0) {
477 of_node_get(np);
478 goto out;
479 }
480 }
481 }
482out:
483 of_node_put(from);
484 read_unlock(&devtree_lock);
485 return np;
486}
487EXPORT_SYMBOL(of_find_node_with_property);
488
489/**
490 * of_match_node - Tell if an device_node has a matching of_match structure
491 * @matches: array of of device match structures to search in
492 * @node: the of device structure to match against
493 *
494 * Low level utility function used by device matching.
495 */
496const struct of_device_id *of_match_node(const struct of_device_id *matches,
497 const struct device_node *node)
498{
499 if (!matches)
500 return NULL;
501
502 while (matches->name[0] || matches->type[0] || matches->compatible[0]) {
503 int match = 1;
504 if (matches->name[0])
505 match &= node->name
506 && !strcmp(matches->name, node->name);
507 if (matches->type[0])
508 match &= node->type
509 && !strcmp(matches->type, node->type);
510 if (matches->compatible[0])
511 match &= of_device_is_compatible(node,
512 matches->compatible);
513 if (match)
514 return matches;
515 matches++;
516 }
517 return NULL;
518}
519EXPORT_SYMBOL(of_match_node);
520
521/**
522 * of_find_matching_node - Find a node based on an of_device_id match
523 * table.
524 * @from: The node to start searching from or NULL, the node
525 * you pass will not be searched, only the next one
526 * will; typically, you pass what the previous call
527 * returned. of_node_put() will be called on it
528 * @matches: array of of device match structures to search in
529 *
530 * Returns a node pointer with refcount incremented, use
531 * of_node_put() on it when done.
532 */
533struct device_node *of_find_matching_node(struct device_node *from,
534 const struct of_device_id *matches)
535{
536 struct device_node *np;
537
538 read_lock(&devtree_lock);
539 np = from ? from->allnext : allnodes;
540 for (; np; np = np->allnext) {
541 if (of_match_node(matches, np) && of_node_get(np))
542 break;
543 }
544 of_node_put(from);
545 read_unlock(&devtree_lock);
546 return np;
547}
548EXPORT_SYMBOL(of_find_matching_node);
549
550/**
551 * of_modalias_node - Lookup appropriate modalias for a device node
552 * @node: pointer to a device tree node
553 * @modalias: Pointer to buffer that modalias value will be copied into
554 * @len: Length of modalias value
555 *
556 * Based on the value of the compatible property, this routine will attempt
557 * to choose an appropriate modalias value for a particular device tree node.
558 * It does this by stripping the manufacturer prefix (as delimited by a ',')
559 * from the first entry in the compatible list property.
560 *
561 * This routine returns 0 on success, <0 on failure.
562 */
563int of_modalias_node(struct device_node *node, char *modalias, int len)
564{
565 const char *compatible, *p;
566 int cplen;
567
568 compatible = of_get_property(node, "compatible", &cplen);
569 if (!compatible || strlen(compatible) > cplen)
570 return -ENODEV;
571 p = strchr(compatible, ',');
572 strlcpy(modalias, p ? p + 1 : compatible, len);
573 return 0;
574}
575EXPORT_SYMBOL_GPL(of_modalias_node);
576
577/**
578 * of_find_node_by_phandle - Find a node given a phandle
579 * @handle: phandle of the node to find
580 *
581 * Returns a node pointer with refcount incremented, use
582 * of_node_put() on it when done.
583 */
584struct device_node *of_find_node_by_phandle(phandle handle)
585{
586 struct device_node *np;
587
588 read_lock(&devtree_lock);
589 for (np = allnodes; np; np = np->allnext)
590 if (np->phandle == handle)
591 break;
592 of_node_get(np);
593 read_unlock(&devtree_lock);
594 return np;
595}
596EXPORT_SYMBOL(of_find_node_by_phandle);
597
598/**
599 * of_property_read_u32_array - Find and read an array of 32 bit integers
600 * from a property.
601 *
602 * @np: device node from which the property value is to be read.
603 * @propname: name of the property to be searched.
604 * @out_value: pointer to return value, modified only if return value is 0.
605 *
606 * Search for a property in a device node and read 32-bit value(s) from
607 * it. Returns 0 on success, -EINVAL if the property does not exist,
608 * -ENODATA if property does not have a value, and -EOVERFLOW if the
609 * property data isn't large enough.
610 *
611 * The out_value is modified only if a valid u32 value can be decoded.
612 */
613int of_property_read_u32_array(const struct device_node *np,
614 const char *propname, u32 *out_values,
615 size_t sz)
616{
617 struct property *prop = of_find_property(np, propname, NULL);
618 const __be32 *val;
619
620 if (!prop)
621 return -EINVAL;
622 if (!prop->value)
623 return -ENODATA;
624 if ((sz * sizeof(*out_values)) > prop->length)
625 return -EOVERFLOW;
626
627 val = prop->value;
628 while (sz--)
629 *out_values++ = be32_to_cpup(val++);
630 return 0;
631}
632EXPORT_SYMBOL_GPL(of_property_read_u32_array);
633
634/**
635 * of_property_read_string - Find and read a string from a property
636 * @np: device node from which the property value is to be read.
637 * @propname: name of the property to be searched.
638 * @out_string: pointer to null terminated return string, modified only if
639 * return value is 0.
640 *
641 * Search for a property in a device tree node and retrieve a null
642 * terminated string value (pointer to data, not a copy). Returns 0 on
643 * success, -EINVAL if the property does not exist, -ENODATA if property
644 * does not have a value, and -EILSEQ if the string is not null-terminated
645 * within the length of the property data.
646 *
647 * The out_string pointer is modified only if a valid string can be decoded.
648 */
649int of_property_read_string(struct device_node *np, const char *propname,
650 const char **out_string)
651{
652 struct property *prop = of_find_property(np, propname, NULL);
653 if (!prop)
654 return -EINVAL;
655 if (!prop->value)
656 return -ENODATA;
657 if (strnlen(prop->value, prop->length) >= prop->length)
658 return -EILSEQ;
659 *out_string = prop->value;
660 return 0;
661}
662EXPORT_SYMBOL_GPL(of_property_read_string);
663
664/**
665 * of_parse_phandle - Resolve a phandle property to a device_node pointer
666 * @np: Pointer to device node holding phandle property
667 * @phandle_name: Name of property holding a phandle value
668 * @index: For properties holding a table of phandles, this is the index into
669 * the table
670 *
671 * Returns the device_node pointer with refcount incremented. Use
672 * of_node_put() on it when done.
673 */
674struct device_node *
675of_parse_phandle(struct device_node *np, const char *phandle_name, int index)
676{
677 const __be32 *phandle;
678 int size;
679
680 phandle = of_get_property(np, phandle_name, &size);
681 if ((!phandle) || (size < sizeof(*phandle) * (index + 1)))
682 return NULL;
683
684 return of_find_node_by_phandle(be32_to_cpup(phandle + index));
685}
686EXPORT_SYMBOL(of_parse_phandle);
687
688/**
689 * of_parse_phandles_with_args - Find a node pointed by phandle in a list
690 * @np: pointer to a device tree node containing a list
691 * @list_name: property name that contains a list
692 * @cells_name: property name that specifies phandles' arguments count
693 * @index: index of a phandle to parse out
694 * @out_node: optional pointer to device_node struct pointer (will be filled)
695 * @out_args: optional pointer to arguments pointer (will be filled)
696 *
697 * This function is useful to parse lists of phandles and their arguments.
698 * Returns 0 on success and fills out_node and out_args, on error returns
699 * appropriate errno value.
700 *
701 * Example:
702 *
703 * phandle1: node1 {
704 * #list-cells = <2>;
705 * }
706 *
707 * phandle2: node2 {
708 * #list-cells = <1>;
709 * }
710 *
711 * node3 {
712 * list = <&phandle1 1 2 &phandle2 3>;
713 * }
714 *
715 * To get a device_node of the `node2' node you may call this:
716 * of_parse_phandles_with_args(node3, "list", "#list-cells", 2, &node2, &args);
717 */
718int of_parse_phandles_with_args(struct device_node *np, const char *list_name,
719 const char *cells_name, int index,
720 struct device_node **out_node,
721 const void **out_args)
722{
723 int ret = -EINVAL;
724 const __be32 *list;
725 const __be32 *list_end;
726 int size;
727 int cur_index = 0;
728 struct device_node *node = NULL;
729 const void *args = NULL;
730
731 list = of_get_property(np, list_name, &size);
732 if (!list) {
733 ret = -ENOENT;
734 goto err0;
735 }
736 list_end = list + size / sizeof(*list);
737
738 while (list < list_end) {
739 const __be32 *cells;
740 phandle phandle;
741
742 phandle = be32_to_cpup(list++);
743 args = list;
744
745 /* one cell hole in the list = <>; */
746 if (!phandle)
747 goto next;
748
749 node = of_find_node_by_phandle(phandle);
750 if (!node) {
751 pr_debug("%s: could not find phandle\n",
752 np->full_name);
753 goto err0;
754 }
755
756 cells = of_get_property(node, cells_name, &size);
757 if (!cells || size != sizeof(*cells)) {
758 pr_debug("%s: could not get %s for %s\n",
759 np->full_name, cells_name, node->full_name);
760 goto err1;
761 }
762
763 list += be32_to_cpup(cells);
764 if (list > list_end) {
765 pr_debug("%s: insufficient arguments length\n",
766 np->full_name);
767 goto err1;
768 }
769next:
770 if (cur_index == index)
771 break;
772
773 of_node_put(node);
774 node = NULL;
775 args = NULL;
776 cur_index++;
777 }
778
779 if (!node) {
780 /*
781 * args w/o node indicates that the loop above has stopped at
782 * the 'hole' cell. Report this differently.
783 */
784 if (args)
785 ret = -EEXIST;
786 else
787 ret = -ENOENT;
788 goto err0;
789 }
790
791 if (out_node)
792 *out_node = node;
793 if (out_args)
794 *out_args = args;
795
796 return 0;
797err1:
798 of_node_put(node);
799err0:
800 pr_debug("%s failed with status %d\n", __func__, ret);
801 return ret;
802}
803EXPORT_SYMBOL(of_parse_phandles_with_args);
804
805/**
806 * prom_add_property - Add a property to a node
807 */
808int prom_add_property(struct device_node *np, struct property *prop)
809{
810 struct property **next;
811 unsigned long flags;
812
813 prop->next = NULL;
814 write_lock_irqsave(&devtree_lock, flags);
815 next = &np->properties;
816 while (*next) {
817 if (strcmp(prop->name, (*next)->name) == 0) {
818 /* duplicate ! don't insert it */
819 write_unlock_irqrestore(&devtree_lock, flags);
820 return -1;
821 }
822 next = &(*next)->next;
823 }
824 *next = prop;
825 write_unlock_irqrestore(&devtree_lock, flags);
826
827#ifdef CONFIG_PROC_DEVICETREE
828 /* try to add to proc as well if it was initialized */
829 if (np->pde)
830 proc_device_tree_add_prop(np->pde, prop);
831#endif /* CONFIG_PROC_DEVICETREE */
832
833 return 0;
834}
835
836/**
837 * prom_remove_property - Remove a property from a node.
838 *
839 * Note that we don't actually remove it, since we have given out
840 * who-knows-how-many pointers to the data using get-property.
841 * Instead we just move the property to the "dead properties"
842 * list, so it won't be found any more.
843 */
844int prom_remove_property(struct device_node *np, struct property *prop)
845{
846 struct property **next;
847 unsigned long flags;
848 int found = 0;
849
850 write_lock_irqsave(&devtree_lock, flags);
851 next = &np->properties;
852 while (*next) {
853 if (*next == prop) {
854 /* found the node */
855 *next = prop->next;
856 prop->next = np->deadprops;
857 np->deadprops = prop;
858 found = 1;
859 break;
860 }
861 next = &(*next)->next;
862 }
863 write_unlock_irqrestore(&devtree_lock, flags);
864
865 if (!found)
866 return -ENODEV;
867
868#ifdef CONFIG_PROC_DEVICETREE
869 /* try to remove the proc node as well */
870 if (np->pde)
871 proc_device_tree_remove_prop(np->pde, prop);
872#endif /* CONFIG_PROC_DEVICETREE */
873
874 return 0;
875}
876
877/*
878 * prom_update_property - Update a property in a node.
879 *
880 * Note that we don't actually remove it, since we have given out
881 * who-knows-how-many pointers to the data using get-property.
882 * Instead we just move the property to the "dead properties" list,
883 * and add the new property to the property list
884 */
885int prom_update_property(struct device_node *np,
886 struct property *newprop,
887 struct property *oldprop)
888{
889 struct property **next;
890 unsigned long flags;
891 int found = 0;
892
893 write_lock_irqsave(&devtree_lock, flags);
894 next = &np->properties;
895 while (*next) {
896 if (*next == oldprop) {
897 /* found the node */
898 newprop->next = oldprop->next;
899 *next = newprop;
900 oldprop->next = np->deadprops;
901 np->deadprops = oldprop;
902 found = 1;
903 break;
904 }
905 next = &(*next)->next;
906 }
907 write_unlock_irqrestore(&devtree_lock, flags);
908
909 if (!found)
910 return -ENODEV;
911
912#ifdef CONFIG_PROC_DEVICETREE
913 /* try to add to proc as well if it was initialized */
914 if (np->pde)
915 proc_device_tree_update_prop(np->pde, newprop, oldprop);
916#endif /* CONFIG_PROC_DEVICETREE */
917
918 return 0;
919}
920
921#if defined(CONFIG_OF_DYNAMIC)
922/*
923 * Support for dynamic device trees.
924 *
925 * On some platforms, the device tree can be manipulated at runtime.
926 * The routines in this section support adding, removing and changing
927 * device tree nodes.
928 */
929
930/**
931 * of_attach_node - Plug a device node into the tree and global list.
932 */
933void of_attach_node(struct device_node *np)
934{
935 unsigned long flags;
936
937 write_lock_irqsave(&devtree_lock, flags);
938 np->sibling = np->parent->child;
939 np->allnext = allnodes;
940 np->parent->child = np;
941 allnodes = np;
942 write_unlock_irqrestore(&devtree_lock, flags);
943}
944
945/**
946 * of_detach_node - "Unplug" a node from the device tree.
947 *
948 * The caller must hold a reference to the node. The memory associated with
949 * the node is not freed until its refcount goes to zero.
950 */
951void of_detach_node(struct device_node *np)
952{
953 struct device_node *parent;
954 unsigned long flags;
955
956 write_lock_irqsave(&devtree_lock, flags);
957
958 parent = np->parent;
959 if (!parent)
960 goto out_unlock;
961
962 if (allnodes == np)
963 allnodes = np->allnext;
964 else {
965 struct device_node *prev;
966 for (prev = allnodes;
967 prev->allnext != np;
968 prev = prev->allnext)
969 ;
970 prev->allnext = np->allnext;
971 }
972
973 if (parent->child == np)
974 parent->child = np->sibling;
975 else {
976 struct device_node *prevsib;
977 for (prevsib = np->parent->child;
978 prevsib->sibling != np;
979 prevsib = prevsib->sibling)
980 ;
981 prevsib->sibling = np->sibling;
982 }
983
984 of_node_set_flag(np, OF_DETACHED);
985
986out_unlock:
987 write_unlock_irqrestore(&devtree_lock, flags);
988}
989#endif /* defined(CONFIG_OF_DYNAMIC) */
990