Loading...
1/*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm-core.h"
9
10#include <linux/module.h>
11#include <linux/vmalloc.h>
12#include <linux/blkdev.h>
13#include <linux/namei.h>
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/slab.h>
17#include <linux/interrupt.h>
18#include <linux/mutex.h>
19#include <linux/delay.h>
20#include <linux/atomic.h>
21#include <linux/blk-mq.h>
22#include <linux/mount.h>
23#include <linux/dax.h>
24
25#define DM_MSG_PREFIX "table"
26
27#define MAX_DEPTH 16
28#define NODE_SIZE L1_CACHE_BYTES
29#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31
32struct dm_table {
33 struct mapped_device *md;
34 enum dm_queue_mode type;
35
36 /* btree table */
37 unsigned int depth;
38 unsigned int counts[MAX_DEPTH]; /* in nodes */
39 sector_t *index[MAX_DEPTH];
40
41 unsigned int num_targets;
42 unsigned int num_allocated;
43 sector_t *highs;
44 struct dm_target *targets;
45
46 struct target_type *immutable_target_type;
47
48 bool integrity_supported:1;
49 bool singleton:1;
50 unsigned integrity_added:1;
51
52 /*
53 * Indicates the rw permissions for the new logical
54 * device. This should be a combination of FMODE_READ
55 * and FMODE_WRITE.
56 */
57 fmode_t mode;
58
59 /* a list of devices used by this table */
60 struct list_head devices;
61
62 /* events get handed up using this callback */
63 void (*event_fn)(void *);
64 void *event_context;
65
66 struct dm_md_mempools *mempools;
67
68 struct list_head target_callbacks;
69};
70
71/*
72 * Similar to ceiling(log_size(n))
73 */
74static unsigned int int_log(unsigned int n, unsigned int base)
75{
76 int result = 0;
77
78 while (n > 1) {
79 n = dm_div_up(n, base);
80 result++;
81 }
82
83 return result;
84}
85
86/*
87 * Calculate the index of the child node of the n'th node k'th key.
88 */
89static inline unsigned int get_child(unsigned int n, unsigned int k)
90{
91 return (n * CHILDREN_PER_NODE) + k;
92}
93
94/*
95 * Return the n'th node of level l from table t.
96 */
97static inline sector_t *get_node(struct dm_table *t,
98 unsigned int l, unsigned int n)
99{
100 return t->index[l] + (n * KEYS_PER_NODE);
101}
102
103/*
104 * Return the highest key that you could lookup from the n'th
105 * node on level l of the btree.
106 */
107static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
108{
109 for (; l < t->depth - 1; l++)
110 n = get_child(n, CHILDREN_PER_NODE - 1);
111
112 if (n >= t->counts[l])
113 return (sector_t) - 1;
114
115 return get_node(t, l, n)[KEYS_PER_NODE - 1];
116}
117
118/*
119 * Fills in a level of the btree based on the highs of the level
120 * below it.
121 */
122static int setup_btree_index(unsigned int l, struct dm_table *t)
123{
124 unsigned int n, k;
125 sector_t *node;
126
127 for (n = 0U; n < t->counts[l]; n++) {
128 node = get_node(t, l, n);
129
130 for (k = 0U; k < KEYS_PER_NODE; k++)
131 node[k] = high(t, l + 1, get_child(n, k));
132 }
133
134 return 0;
135}
136
137void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
138{
139 unsigned long size;
140 void *addr;
141
142 /*
143 * Check that we're not going to overflow.
144 */
145 if (nmemb > (ULONG_MAX / elem_size))
146 return NULL;
147
148 size = nmemb * elem_size;
149 addr = vzalloc(size);
150
151 return addr;
152}
153EXPORT_SYMBOL(dm_vcalloc);
154
155/*
156 * highs, and targets are managed as dynamic arrays during a
157 * table load.
158 */
159static int alloc_targets(struct dm_table *t, unsigned int num)
160{
161 sector_t *n_highs;
162 struct dm_target *n_targets;
163
164 /*
165 * Allocate both the target array and offset array at once.
166 */
167 n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
168 sizeof(sector_t));
169 if (!n_highs)
170 return -ENOMEM;
171
172 n_targets = (struct dm_target *) (n_highs + num);
173
174 memset(n_highs, -1, sizeof(*n_highs) * num);
175 vfree(t->highs);
176
177 t->num_allocated = num;
178 t->highs = n_highs;
179 t->targets = n_targets;
180
181 return 0;
182}
183
184int dm_table_create(struct dm_table **result, fmode_t mode,
185 unsigned num_targets, struct mapped_device *md)
186{
187 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
188
189 if (!t)
190 return -ENOMEM;
191
192 INIT_LIST_HEAD(&t->devices);
193 INIT_LIST_HEAD(&t->target_callbacks);
194
195 if (!num_targets)
196 num_targets = KEYS_PER_NODE;
197
198 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
199
200 if (!num_targets) {
201 kfree(t);
202 return -ENOMEM;
203 }
204
205 if (alloc_targets(t, num_targets)) {
206 kfree(t);
207 return -ENOMEM;
208 }
209
210 t->type = DM_TYPE_NONE;
211 t->mode = mode;
212 t->md = md;
213 *result = t;
214 return 0;
215}
216
217static void free_devices(struct list_head *devices, struct mapped_device *md)
218{
219 struct list_head *tmp, *next;
220
221 list_for_each_safe(tmp, next, devices) {
222 struct dm_dev_internal *dd =
223 list_entry(tmp, struct dm_dev_internal, list);
224 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
225 dm_device_name(md), dd->dm_dev->name);
226 dm_put_table_device(md, dd->dm_dev);
227 kfree(dd);
228 }
229}
230
231void dm_table_destroy(struct dm_table *t)
232{
233 unsigned int i;
234
235 if (!t)
236 return;
237
238 /* free the indexes */
239 if (t->depth >= 2)
240 vfree(t->index[t->depth - 2]);
241
242 /* free the targets */
243 for (i = 0; i < t->num_targets; i++) {
244 struct dm_target *tgt = t->targets + i;
245
246 if (tgt->type->dtr)
247 tgt->type->dtr(tgt);
248
249 dm_put_target_type(tgt->type);
250 }
251
252 vfree(t->highs);
253
254 /* free the device list */
255 free_devices(&t->devices, t->md);
256
257 dm_free_md_mempools(t->mempools);
258
259 kfree(t);
260}
261
262/*
263 * See if we've already got a device in the list.
264 */
265static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
266{
267 struct dm_dev_internal *dd;
268
269 list_for_each_entry (dd, l, list)
270 if (dd->dm_dev->bdev->bd_dev == dev)
271 return dd;
272
273 return NULL;
274}
275
276/*
277 * If possible, this checks an area of a destination device is invalid.
278 */
279static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
280 sector_t start, sector_t len, void *data)
281{
282 struct request_queue *q;
283 struct queue_limits *limits = data;
284 struct block_device *bdev = dev->bdev;
285 sector_t dev_size =
286 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
287 unsigned short logical_block_size_sectors =
288 limits->logical_block_size >> SECTOR_SHIFT;
289 char b[BDEVNAME_SIZE];
290
291 /*
292 * Some devices exist without request functions,
293 * such as loop devices not yet bound to backing files.
294 * Forbid the use of such devices.
295 */
296 q = bdev_get_queue(bdev);
297 if (!q || !q->make_request_fn) {
298 DMWARN("%s: %s is not yet initialised: "
299 "start=%llu, len=%llu, dev_size=%llu",
300 dm_device_name(ti->table->md), bdevname(bdev, b),
301 (unsigned long long)start,
302 (unsigned long long)len,
303 (unsigned long long)dev_size);
304 return 1;
305 }
306
307 if (!dev_size)
308 return 0;
309
310 if ((start >= dev_size) || (start + len > dev_size)) {
311 DMWARN("%s: %s too small for target: "
312 "start=%llu, len=%llu, dev_size=%llu",
313 dm_device_name(ti->table->md), bdevname(bdev, b),
314 (unsigned long long)start,
315 (unsigned long long)len,
316 (unsigned long long)dev_size);
317 return 1;
318 }
319
320 /*
321 * If the target is mapped to zoned block device(s), check
322 * that the zones are not partially mapped.
323 */
324 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
325 unsigned int zone_sectors = bdev_zone_sectors(bdev);
326
327 if (start & (zone_sectors - 1)) {
328 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
329 dm_device_name(ti->table->md),
330 (unsigned long long)start,
331 zone_sectors, bdevname(bdev, b));
332 return 1;
333 }
334
335 /*
336 * Note: The last zone of a zoned block device may be smaller
337 * than other zones. So for a target mapping the end of a
338 * zoned block device with such a zone, len would not be zone
339 * aligned. We do not allow such last smaller zone to be part
340 * of the mapping here to ensure that mappings with multiple
341 * devices do not end up with a smaller zone in the middle of
342 * the sector range.
343 */
344 if (len & (zone_sectors - 1)) {
345 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
346 dm_device_name(ti->table->md),
347 (unsigned long long)len,
348 zone_sectors, bdevname(bdev, b));
349 return 1;
350 }
351 }
352
353 if (logical_block_size_sectors <= 1)
354 return 0;
355
356 if (start & (logical_block_size_sectors - 1)) {
357 DMWARN("%s: start=%llu not aligned to h/w "
358 "logical block size %u of %s",
359 dm_device_name(ti->table->md),
360 (unsigned long long)start,
361 limits->logical_block_size, bdevname(bdev, b));
362 return 1;
363 }
364
365 if (len & (logical_block_size_sectors - 1)) {
366 DMWARN("%s: len=%llu not aligned to h/w "
367 "logical block size %u of %s",
368 dm_device_name(ti->table->md),
369 (unsigned long long)len,
370 limits->logical_block_size, bdevname(bdev, b));
371 return 1;
372 }
373
374 return 0;
375}
376
377/*
378 * This upgrades the mode on an already open dm_dev, being
379 * careful to leave things as they were if we fail to reopen the
380 * device and not to touch the existing bdev field in case
381 * it is accessed concurrently inside dm_table_any_congested().
382 */
383static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
384 struct mapped_device *md)
385{
386 int r;
387 struct dm_dev *old_dev, *new_dev;
388
389 old_dev = dd->dm_dev;
390
391 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
392 dd->dm_dev->mode | new_mode, &new_dev);
393 if (r)
394 return r;
395
396 dd->dm_dev = new_dev;
397 dm_put_table_device(md, old_dev);
398
399 return 0;
400}
401
402/*
403 * Convert the path to a device
404 */
405dev_t dm_get_dev_t(const char *path)
406{
407 dev_t dev;
408 struct block_device *bdev;
409
410 bdev = lookup_bdev(path);
411 if (IS_ERR(bdev))
412 dev = name_to_dev_t(path);
413 else {
414 dev = bdev->bd_dev;
415 bdput(bdev);
416 }
417
418 return dev;
419}
420EXPORT_SYMBOL_GPL(dm_get_dev_t);
421
422/*
423 * Add a device to the list, or just increment the usage count if
424 * it's already present.
425 */
426int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
427 struct dm_dev **result)
428{
429 int r;
430 dev_t dev;
431 struct dm_dev_internal *dd;
432 struct dm_table *t = ti->table;
433
434 BUG_ON(!t);
435
436 dev = dm_get_dev_t(path);
437 if (!dev)
438 return -ENODEV;
439
440 dd = find_device(&t->devices, dev);
441 if (!dd) {
442 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
443 if (!dd)
444 return -ENOMEM;
445
446 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
447 kfree(dd);
448 return r;
449 }
450
451 refcount_set(&dd->count, 1);
452 list_add(&dd->list, &t->devices);
453 goto out;
454
455 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
456 r = upgrade_mode(dd, mode, t->md);
457 if (r)
458 return r;
459 }
460 refcount_inc(&dd->count);
461out:
462 *result = dd->dm_dev;
463 return 0;
464}
465EXPORT_SYMBOL(dm_get_device);
466
467static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
468 sector_t start, sector_t len, void *data)
469{
470 struct queue_limits *limits = data;
471 struct block_device *bdev = dev->bdev;
472 struct request_queue *q = bdev_get_queue(bdev);
473 char b[BDEVNAME_SIZE];
474
475 if (unlikely(!q)) {
476 DMWARN("%s: Cannot set limits for nonexistent device %s",
477 dm_device_name(ti->table->md), bdevname(bdev, b));
478 return 0;
479 }
480
481 if (bdev_stack_limits(limits, bdev, start) < 0)
482 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
483 "physical_block_size=%u, logical_block_size=%u, "
484 "alignment_offset=%u, start=%llu",
485 dm_device_name(ti->table->md), bdevname(bdev, b),
486 q->limits.physical_block_size,
487 q->limits.logical_block_size,
488 q->limits.alignment_offset,
489 (unsigned long long) start << SECTOR_SHIFT);
490
491 limits->zoned = blk_queue_zoned_model(q);
492
493 return 0;
494}
495
496/*
497 * Decrement a device's use count and remove it if necessary.
498 */
499void dm_put_device(struct dm_target *ti, struct dm_dev *d)
500{
501 int found = 0;
502 struct list_head *devices = &ti->table->devices;
503 struct dm_dev_internal *dd;
504
505 list_for_each_entry(dd, devices, list) {
506 if (dd->dm_dev == d) {
507 found = 1;
508 break;
509 }
510 }
511 if (!found) {
512 DMWARN("%s: device %s not in table devices list",
513 dm_device_name(ti->table->md), d->name);
514 return;
515 }
516 if (refcount_dec_and_test(&dd->count)) {
517 dm_put_table_device(ti->table->md, d);
518 list_del(&dd->list);
519 kfree(dd);
520 }
521}
522EXPORT_SYMBOL(dm_put_device);
523
524/*
525 * Checks to see if the target joins onto the end of the table.
526 */
527static int adjoin(struct dm_table *table, struct dm_target *ti)
528{
529 struct dm_target *prev;
530
531 if (!table->num_targets)
532 return !ti->begin;
533
534 prev = &table->targets[table->num_targets - 1];
535 return (ti->begin == (prev->begin + prev->len));
536}
537
538/*
539 * Used to dynamically allocate the arg array.
540 *
541 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
542 * process messages even if some device is suspended. These messages have a
543 * small fixed number of arguments.
544 *
545 * On the other hand, dm-switch needs to process bulk data using messages and
546 * excessive use of GFP_NOIO could cause trouble.
547 */
548static char **realloc_argv(unsigned *size, char **old_argv)
549{
550 char **argv;
551 unsigned new_size;
552 gfp_t gfp;
553
554 if (*size) {
555 new_size = *size * 2;
556 gfp = GFP_KERNEL;
557 } else {
558 new_size = 8;
559 gfp = GFP_NOIO;
560 }
561 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
562 if (argv && old_argv) {
563 memcpy(argv, old_argv, *size * sizeof(*argv));
564 *size = new_size;
565 }
566
567 kfree(old_argv);
568 return argv;
569}
570
571/*
572 * Destructively splits up the argument list to pass to ctr.
573 */
574int dm_split_args(int *argc, char ***argvp, char *input)
575{
576 char *start, *end = input, *out, **argv = NULL;
577 unsigned array_size = 0;
578
579 *argc = 0;
580
581 if (!input) {
582 *argvp = NULL;
583 return 0;
584 }
585
586 argv = realloc_argv(&array_size, argv);
587 if (!argv)
588 return -ENOMEM;
589
590 while (1) {
591 /* Skip whitespace */
592 start = skip_spaces(end);
593
594 if (!*start)
595 break; /* success, we hit the end */
596
597 /* 'out' is used to remove any back-quotes */
598 end = out = start;
599 while (*end) {
600 /* Everything apart from '\0' can be quoted */
601 if (*end == '\\' && *(end + 1)) {
602 *out++ = *(end + 1);
603 end += 2;
604 continue;
605 }
606
607 if (isspace(*end))
608 break; /* end of token */
609
610 *out++ = *end++;
611 }
612
613 /* have we already filled the array ? */
614 if ((*argc + 1) > array_size) {
615 argv = realloc_argv(&array_size, argv);
616 if (!argv)
617 return -ENOMEM;
618 }
619
620 /* we know this is whitespace */
621 if (*end)
622 end++;
623
624 /* terminate the string and put it in the array */
625 *out = '\0';
626 argv[*argc] = start;
627 (*argc)++;
628 }
629
630 *argvp = argv;
631 return 0;
632}
633
634/*
635 * Impose necessary and sufficient conditions on a devices's table such
636 * that any incoming bio which respects its logical_block_size can be
637 * processed successfully. If it falls across the boundary between
638 * two or more targets, the size of each piece it gets split into must
639 * be compatible with the logical_block_size of the target processing it.
640 */
641static int validate_hardware_logical_block_alignment(struct dm_table *table,
642 struct queue_limits *limits)
643{
644 /*
645 * This function uses arithmetic modulo the logical_block_size
646 * (in units of 512-byte sectors).
647 */
648 unsigned short device_logical_block_size_sects =
649 limits->logical_block_size >> SECTOR_SHIFT;
650
651 /*
652 * Offset of the start of the next table entry, mod logical_block_size.
653 */
654 unsigned short next_target_start = 0;
655
656 /*
657 * Given an aligned bio that extends beyond the end of a
658 * target, how many sectors must the next target handle?
659 */
660 unsigned short remaining = 0;
661
662 struct dm_target *uninitialized_var(ti);
663 struct queue_limits ti_limits;
664 unsigned i;
665
666 /*
667 * Check each entry in the table in turn.
668 */
669 for (i = 0; i < dm_table_get_num_targets(table); i++) {
670 ti = dm_table_get_target(table, i);
671
672 blk_set_stacking_limits(&ti_limits);
673
674 /* combine all target devices' limits */
675 if (ti->type->iterate_devices)
676 ti->type->iterate_devices(ti, dm_set_device_limits,
677 &ti_limits);
678
679 /*
680 * If the remaining sectors fall entirely within this
681 * table entry are they compatible with its logical_block_size?
682 */
683 if (remaining < ti->len &&
684 remaining & ((ti_limits.logical_block_size >>
685 SECTOR_SHIFT) - 1))
686 break; /* Error */
687
688 next_target_start =
689 (unsigned short) ((next_target_start + ti->len) &
690 (device_logical_block_size_sects - 1));
691 remaining = next_target_start ?
692 device_logical_block_size_sects - next_target_start : 0;
693 }
694
695 if (remaining) {
696 DMWARN("%s: table line %u (start sect %llu len %llu) "
697 "not aligned to h/w logical block size %u",
698 dm_device_name(table->md), i,
699 (unsigned long long) ti->begin,
700 (unsigned long long) ti->len,
701 limits->logical_block_size);
702 return -EINVAL;
703 }
704
705 return 0;
706}
707
708int dm_table_add_target(struct dm_table *t, const char *type,
709 sector_t start, sector_t len, char *params)
710{
711 int r = -EINVAL, argc;
712 char **argv;
713 struct dm_target *tgt;
714
715 if (t->singleton) {
716 DMERR("%s: target type %s must appear alone in table",
717 dm_device_name(t->md), t->targets->type->name);
718 return -EINVAL;
719 }
720
721 BUG_ON(t->num_targets >= t->num_allocated);
722
723 tgt = t->targets + t->num_targets;
724 memset(tgt, 0, sizeof(*tgt));
725
726 if (!len) {
727 DMERR("%s: zero-length target", dm_device_name(t->md));
728 return -EINVAL;
729 }
730
731 tgt->type = dm_get_target_type(type);
732 if (!tgt->type) {
733 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
734 return -EINVAL;
735 }
736
737 if (dm_target_needs_singleton(tgt->type)) {
738 if (t->num_targets) {
739 tgt->error = "singleton target type must appear alone in table";
740 goto bad;
741 }
742 t->singleton = true;
743 }
744
745 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
746 tgt->error = "target type may not be included in a read-only table";
747 goto bad;
748 }
749
750 if (t->immutable_target_type) {
751 if (t->immutable_target_type != tgt->type) {
752 tgt->error = "immutable target type cannot be mixed with other target types";
753 goto bad;
754 }
755 } else if (dm_target_is_immutable(tgt->type)) {
756 if (t->num_targets) {
757 tgt->error = "immutable target type cannot be mixed with other target types";
758 goto bad;
759 }
760 t->immutable_target_type = tgt->type;
761 }
762
763 if (dm_target_has_integrity(tgt->type))
764 t->integrity_added = 1;
765
766 tgt->table = t;
767 tgt->begin = start;
768 tgt->len = len;
769 tgt->error = "Unknown error";
770
771 /*
772 * Does this target adjoin the previous one ?
773 */
774 if (!adjoin(t, tgt)) {
775 tgt->error = "Gap in table";
776 goto bad;
777 }
778
779 r = dm_split_args(&argc, &argv, params);
780 if (r) {
781 tgt->error = "couldn't split parameters (insufficient memory)";
782 goto bad;
783 }
784
785 r = tgt->type->ctr(tgt, argc, argv);
786 kfree(argv);
787 if (r)
788 goto bad;
789
790 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
791
792 if (!tgt->num_discard_bios && tgt->discards_supported)
793 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
794 dm_device_name(t->md), type);
795
796 return 0;
797
798 bad:
799 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
800 dm_put_target_type(tgt->type);
801 return r;
802}
803
804/*
805 * Target argument parsing helpers.
806 */
807static int validate_next_arg(const struct dm_arg *arg,
808 struct dm_arg_set *arg_set,
809 unsigned *value, char **error, unsigned grouped)
810{
811 const char *arg_str = dm_shift_arg(arg_set);
812 char dummy;
813
814 if (!arg_str ||
815 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
816 (*value < arg->min) ||
817 (*value > arg->max) ||
818 (grouped && arg_set->argc < *value)) {
819 *error = arg->error;
820 return -EINVAL;
821 }
822
823 return 0;
824}
825
826int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
827 unsigned *value, char **error)
828{
829 return validate_next_arg(arg, arg_set, value, error, 0);
830}
831EXPORT_SYMBOL(dm_read_arg);
832
833int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
834 unsigned *value, char **error)
835{
836 return validate_next_arg(arg, arg_set, value, error, 1);
837}
838EXPORT_SYMBOL(dm_read_arg_group);
839
840const char *dm_shift_arg(struct dm_arg_set *as)
841{
842 char *r;
843
844 if (as->argc) {
845 as->argc--;
846 r = *as->argv;
847 as->argv++;
848 return r;
849 }
850
851 return NULL;
852}
853EXPORT_SYMBOL(dm_shift_arg);
854
855void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
856{
857 BUG_ON(as->argc < num_args);
858 as->argc -= num_args;
859 as->argv += num_args;
860}
861EXPORT_SYMBOL(dm_consume_args);
862
863static bool __table_type_bio_based(enum dm_queue_mode table_type)
864{
865 return (table_type == DM_TYPE_BIO_BASED ||
866 table_type == DM_TYPE_DAX_BIO_BASED ||
867 table_type == DM_TYPE_NVME_BIO_BASED);
868}
869
870static bool __table_type_request_based(enum dm_queue_mode table_type)
871{
872 return table_type == DM_TYPE_REQUEST_BASED;
873}
874
875void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
876{
877 t->type = type;
878}
879EXPORT_SYMBOL_GPL(dm_table_set_type);
880
881/* validate the dax capability of the target device span */
882int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
883 sector_t start, sector_t len, void *data)
884{
885 int blocksize = *(int *) data;
886
887 return generic_fsdax_supported(dev->dax_dev, dev->bdev, blocksize,
888 start, len);
889}
890
891/* Check devices support synchronous DAX */
892static int device_dax_synchronous(struct dm_target *ti, struct dm_dev *dev,
893 sector_t start, sector_t len, void *data)
894{
895 return dev->dax_dev && dax_synchronous(dev->dax_dev);
896}
897
898bool dm_table_supports_dax(struct dm_table *t,
899 iterate_devices_callout_fn iterate_fn, int *blocksize)
900{
901 struct dm_target *ti;
902 unsigned i;
903
904 /* Ensure that all targets support DAX. */
905 for (i = 0; i < dm_table_get_num_targets(t); i++) {
906 ti = dm_table_get_target(t, i);
907
908 if (!ti->type->direct_access)
909 return false;
910
911 if (!ti->type->iterate_devices ||
912 !ti->type->iterate_devices(ti, iterate_fn, blocksize))
913 return false;
914 }
915
916 return true;
917}
918
919static bool dm_table_does_not_support_partial_completion(struct dm_table *t);
920
921struct verify_rq_based_data {
922 unsigned sq_count;
923 unsigned mq_count;
924};
925
926static int device_is_rq_based(struct dm_target *ti, struct dm_dev *dev,
927 sector_t start, sector_t len, void *data)
928{
929 struct request_queue *q = bdev_get_queue(dev->bdev);
930 struct verify_rq_based_data *v = data;
931
932 if (queue_is_mq(q))
933 v->mq_count++;
934 else
935 v->sq_count++;
936
937 return queue_is_mq(q);
938}
939
940static int dm_table_determine_type(struct dm_table *t)
941{
942 unsigned i;
943 unsigned bio_based = 0, request_based = 0, hybrid = 0;
944 struct verify_rq_based_data v = {.sq_count = 0, .mq_count = 0};
945 struct dm_target *tgt;
946 struct list_head *devices = dm_table_get_devices(t);
947 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
948 int page_size = PAGE_SIZE;
949
950 if (t->type != DM_TYPE_NONE) {
951 /* target already set the table's type */
952 if (t->type == DM_TYPE_BIO_BASED) {
953 /* possibly upgrade to a variant of bio-based */
954 goto verify_bio_based;
955 }
956 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
957 BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED);
958 goto verify_rq_based;
959 }
960
961 for (i = 0; i < t->num_targets; i++) {
962 tgt = t->targets + i;
963 if (dm_target_hybrid(tgt))
964 hybrid = 1;
965 else if (dm_target_request_based(tgt))
966 request_based = 1;
967 else
968 bio_based = 1;
969
970 if (bio_based && request_based) {
971 DMERR("Inconsistent table: different target types"
972 " can't be mixed up");
973 return -EINVAL;
974 }
975 }
976
977 if (hybrid && !bio_based && !request_based) {
978 /*
979 * The targets can work either way.
980 * Determine the type from the live device.
981 * Default to bio-based if device is new.
982 */
983 if (__table_type_request_based(live_md_type))
984 request_based = 1;
985 else
986 bio_based = 1;
987 }
988
989 if (bio_based) {
990verify_bio_based:
991 /* We must use this table as bio-based */
992 t->type = DM_TYPE_BIO_BASED;
993 if (dm_table_supports_dax(t, device_supports_dax, &page_size) ||
994 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
995 t->type = DM_TYPE_DAX_BIO_BASED;
996 } else {
997 /* Check if upgrading to NVMe bio-based is valid or required */
998 tgt = dm_table_get_immutable_target(t);
999 if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) {
1000 t->type = DM_TYPE_NVME_BIO_BASED;
1001 goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */
1002 } else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) {
1003 t->type = DM_TYPE_NVME_BIO_BASED;
1004 }
1005 }
1006 return 0;
1007 }
1008
1009 BUG_ON(!request_based); /* No targets in this table */
1010
1011 t->type = DM_TYPE_REQUEST_BASED;
1012
1013verify_rq_based:
1014 /*
1015 * Request-based dm supports only tables that have a single target now.
1016 * To support multiple targets, request splitting support is needed,
1017 * and that needs lots of changes in the block-layer.
1018 * (e.g. request completion process for partial completion.)
1019 */
1020 if (t->num_targets > 1) {
1021 DMERR("%s DM doesn't support multiple targets",
1022 t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based");
1023 return -EINVAL;
1024 }
1025
1026 if (list_empty(devices)) {
1027 int srcu_idx;
1028 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
1029
1030 /* inherit live table's type */
1031 if (live_table)
1032 t->type = live_table->type;
1033 dm_put_live_table(t->md, srcu_idx);
1034 return 0;
1035 }
1036
1037 tgt = dm_table_get_immutable_target(t);
1038 if (!tgt) {
1039 DMERR("table load rejected: immutable target is required");
1040 return -EINVAL;
1041 } else if (tgt->max_io_len) {
1042 DMERR("table load rejected: immutable target that splits IO is not supported");
1043 return -EINVAL;
1044 }
1045
1046 /* Non-request-stackable devices can't be used for request-based dm */
1047 if (!tgt->type->iterate_devices ||
1048 !tgt->type->iterate_devices(tgt, device_is_rq_based, &v)) {
1049 DMERR("table load rejected: including non-request-stackable devices");
1050 return -EINVAL;
1051 }
1052 if (v.sq_count > 0) {
1053 DMERR("table load rejected: not all devices are blk-mq request-stackable");
1054 return -EINVAL;
1055 }
1056
1057 return 0;
1058}
1059
1060enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1061{
1062 return t->type;
1063}
1064
1065struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1066{
1067 return t->immutable_target_type;
1068}
1069
1070struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1071{
1072 /* Immutable target is implicitly a singleton */
1073 if (t->num_targets > 1 ||
1074 !dm_target_is_immutable(t->targets[0].type))
1075 return NULL;
1076
1077 return t->targets;
1078}
1079
1080struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1081{
1082 struct dm_target *ti;
1083 unsigned i;
1084
1085 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1086 ti = dm_table_get_target(t, i);
1087 if (dm_target_is_wildcard(ti->type))
1088 return ti;
1089 }
1090
1091 return NULL;
1092}
1093
1094bool dm_table_bio_based(struct dm_table *t)
1095{
1096 return __table_type_bio_based(dm_table_get_type(t));
1097}
1098
1099bool dm_table_request_based(struct dm_table *t)
1100{
1101 return __table_type_request_based(dm_table_get_type(t));
1102}
1103
1104static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1105{
1106 enum dm_queue_mode type = dm_table_get_type(t);
1107 unsigned per_io_data_size = 0;
1108 unsigned min_pool_size = 0;
1109 struct dm_target *ti;
1110 unsigned i;
1111
1112 if (unlikely(type == DM_TYPE_NONE)) {
1113 DMWARN("no table type is set, can't allocate mempools");
1114 return -EINVAL;
1115 }
1116
1117 if (__table_type_bio_based(type))
1118 for (i = 0; i < t->num_targets; i++) {
1119 ti = t->targets + i;
1120 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1121 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1122 }
1123
1124 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1125 per_io_data_size, min_pool_size);
1126 if (!t->mempools)
1127 return -ENOMEM;
1128
1129 return 0;
1130}
1131
1132void dm_table_free_md_mempools(struct dm_table *t)
1133{
1134 dm_free_md_mempools(t->mempools);
1135 t->mempools = NULL;
1136}
1137
1138struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1139{
1140 return t->mempools;
1141}
1142
1143static int setup_indexes(struct dm_table *t)
1144{
1145 int i;
1146 unsigned int total = 0;
1147 sector_t *indexes;
1148
1149 /* allocate the space for *all* the indexes */
1150 for (i = t->depth - 2; i >= 0; i--) {
1151 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1152 total += t->counts[i];
1153 }
1154
1155 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1156 if (!indexes)
1157 return -ENOMEM;
1158
1159 /* set up internal nodes, bottom-up */
1160 for (i = t->depth - 2; i >= 0; i--) {
1161 t->index[i] = indexes;
1162 indexes += (KEYS_PER_NODE * t->counts[i]);
1163 setup_btree_index(i, t);
1164 }
1165
1166 return 0;
1167}
1168
1169/*
1170 * Builds the btree to index the map.
1171 */
1172static int dm_table_build_index(struct dm_table *t)
1173{
1174 int r = 0;
1175 unsigned int leaf_nodes;
1176
1177 /* how many indexes will the btree have ? */
1178 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1179 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1180
1181 /* leaf layer has already been set up */
1182 t->counts[t->depth - 1] = leaf_nodes;
1183 t->index[t->depth - 1] = t->highs;
1184
1185 if (t->depth >= 2)
1186 r = setup_indexes(t);
1187
1188 return r;
1189}
1190
1191static bool integrity_profile_exists(struct gendisk *disk)
1192{
1193 return !!blk_get_integrity(disk);
1194}
1195
1196/*
1197 * Get a disk whose integrity profile reflects the table's profile.
1198 * Returns NULL if integrity support was inconsistent or unavailable.
1199 */
1200static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1201{
1202 struct list_head *devices = dm_table_get_devices(t);
1203 struct dm_dev_internal *dd = NULL;
1204 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1205 unsigned i;
1206
1207 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1208 struct dm_target *ti = dm_table_get_target(t, i);
1209 if (!dm_target_passes_integrity(ti->type))
1210 goto no_integrity;
1211 }
1212
1213 list_for_each_entry(dd, devices, list) {
1214 template_disk = dd->dm_dev->bdev->bd_disk;
1215 if (!integrity_profile_exists(template_disk))
1216 goto no_integrity;
1217 else if (prev_disk &&
1218 blk_integrity_compare(prev_disk, template_disk) < 0)
1219 goto no_integrity;
1220 prev_disk = template_disk;
1221 }
1222
1223 return template_disk;
1224
1225no_integrity:
1226 if (prev_disk)
1227 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1228 dm_device_name(t->md),
1229 prev_disk->disk_name,
1230 template_disk->disk_name);
1231 return NULL;
1232}
1233
1234/*
1235 * Register the mapped device for blk_integrity support if the
1236 * underlying devices have an integrity profile. But all devices may
1237 * not have matching profiles (checking all devices isn't reliable
1238 * during table load because this table may use other DM device(s) which
1239 * must be resumed before they will have an initialized integity
1240 * profile). Consequently, stacked DM devices force a 2 stage integrity
1241 * profile validation: First pass during table load, final pass during
1242 * resume.
1243 */
1244static int dm_table_register_integrity(struct dm_table *t)
1245{
1246 struct mapped_device *md = t->md;
1247 struct gendisk *template_disk = NULL;
1248
1249 /* If target handles integrity itself do not register it here. */
1250 if (t->integrity_added)
1251 return 0;
1252
1253 template_disk = dm_table_get_integrity_disk(t);
1254 if (!template_disk)
1255 return 0;
1256
1257 if (!integrity_profile_exists(dm_disk(md))) {
1258 t->integrity_supported = true;
1259 /*
1260 * Register integrity profile during table load; we can do
1261 * this because the final profile must match during resume.
1262 */
1263 blk_integrity_register(dm_disk(md),
1264 blk_get_integrity(template_disk));
1265 return 0;
1266 }
1267
1268 /*
1269 * If DM device already has an initialized integrity
1270 * profile the new profile should not conflict.
1271 */
1272 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1273 DMWARN("%s: conflict with existing integrity profile: "
1274 "%s profile mismatch",
1275 dm_device_name(t->md),
1276 template_disk->disk_name);
1277 return 1;
1278 }
1279
1280 /* Preserve existing integrity profile */
1281 t->integrity_supported = true;
1282 return 0;
1283}
1284
1285/*
1286 * Prepares the table for use by building the indices,
1287 * setting the type, and allocating mempools.
1288 */
1289int dm_table_complete(struct dm_table *t)
1290{
1291 int r;
1292
1293 r = dm_table_determine_type(t);
1294 if (r) {
1295 DMERR("unable to determine table type");
1296 return r;
1297 }
1298
1299 r = dm_table_build_index(t);
1300 if (r) {
1301 DMERR("unable to build btrees");
1302 return r;
1303 }
1304
1305 r = dm_table_register_integrity(t);
1306 if (r) {
1307 DMERR("could not register integrity profile.");
1308 return r;
1309 }
1310
1311 r = dm_table_alloc_md_mempools(t, t->md);
1312 if (r)
1313 DMERR("unable to allocate mempools");
1314
1315 return r;
1316}
1317
1318static DEFINE_MUTEX(_event_lock);
1319void dm_table_event_callback(struct dm_table *t,
1320 void (*fn)(void *), void *context)
1321{
1322 mutex_lock(&_event_lock);
1323 t->event_fn = fn;
1324 t->event_context = context;
1325 mutex_unlock(&_event_lock);
1326}
1327
1328void dm_table_event(struct dm_table *t)
1329{
1330 /*
1331 * You can no longer call dm_table_event() from interrupt
1332 * context, use a bottom half instead.
1333 */
1334 BUG_ON(in_interrupt());
1335
1336 mutex_lock(&_event_lock);
1337 if (t->event_fn)
1338 t->event_fn(t->event_context);
1339 mutex_unlock(&_event_lock);
1340}
1341EXPORT_SYMBOL(dm_table_event);
1342
1343inline sector_t dm_table_get_size(struct dm_table *t)
1344{
1345 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1346}
1347EXPORT_SYMBOL(dm_table_get_size);
1348
1349struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1350{
1351 if (index >= t->num_targets)
1352 return NULL;
1353
1354 return t->targets + index;
1355}
1356
1357/*
1358 * Search the btree for the correct target.
1359 *
1360 * Caller should check returned pointer for NULL
1361 * to trap I/O beyond end of device.
1362 */
1363struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1364{
1365 unsigned int l, n = 0, k = 0;
1366 sector_t *node;
1367
1368 if (unlikely(sector >= dm_table_get_size(t)))
1369 return NULL;
1370
1371 for (l = 0; l < t->depth; l++) {
1372 n = get_child(n, k);
1373 node = get_node(t, l, n);
1374
1375 for (k = 0; k < KEYS_PER_NODE; k++)
1376 if (node[k] >= sector)
1377 break;
1378 }
1379
1380 return &t->targets[(KEYS_PER_NODE * n) + k];
1381}
1382
1383static int count_device(struct dm_target *ti, struct dm_dev *dev,
1384 sector_t start, sector_t len, void *data)
1385{
1386 unsigned *num_devices = data;
1387
1388 (*num_devices)++;
1389
1390 return 0;
1391}
1392
1393/*
1394 * Check whether a table has no data devices attached using each
1395 * target's iterate_devices method.
1396 * Returns false if the result is unknown because a target doesn't
1397 * support iterate_devices.
1398 */
1399bool dm_table_has_no_data_devices(struct dm_table *table)
1400{
1401 struct dm_target *ti;
1402 unsigned i, num_devices;
1403
1404 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1405 ti = dm_table_get_target(table, i);
1406
1407 if (!ti->type->iterate_devices)
1408 return false;
1409
1410 num_devices = 0;
1411 ti->type->iterate_devices(ti, count_device, &num_devices);
1412 if (num_devices)
1413 return false;
1414 }
1415
1416 return true;
1417}
1418
1419static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1420 sector_t start, sector_t len, void *data)
1421{
1422 struct request_queue *q = bdev_get_queue(dev->bdev);
1423 enum blk_zoned_model *zoned_model = data;
1424
1425 return q && blk_queue_zoned_model(q) == *zoned_model;
1426}
1427
1428static bool dm_table_supports_zoned_model(struct dm_table *t,
1429 enum blk_zoned_model zoned_model)
1430{
1431 struct dm_target *ti;
1432 unsigned i;
1433
1434 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1435 ti = dm_table_get_target(t, i);
1436
1437 if (zoned_model == BLK_ZONED_HM &&
1438 !dm_target_supports_zoned_hm(ti->type))
1439 return false;
1440
1441 if (!ti->type->iterate_devices ||
1442 !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1443 return false;
1444 }
1445
1446 return true;
1447}
1448
1449static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1450 sector_t start, sector_t len, void *data)
1451{
1452 struct request_queue *q = bdev_get_queue(dev->bdev);
1453 unsigned int *zone_sectors = data;
1454
1455 return q && blk_queue_zone_sectors(q) == *zone_sectors;
1456}
1457
1458static bool dm_table_matches_zone_sectors(struct dm_table *t,
1459 unsigned int zone_sectors)
1460{
1461 struct dm_target *ti;
1462 unsigned i;
1463
1464 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1465 ti = dm_table_get_target(t, i);
1466
1467 if (!ti->type->iterate_devices ||
1468 !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1469 return false;
1470 }
1471
1472 return true;
1473}
1474
1475static int validate_hardware_zoned_model(struct dm_table *table,
1476 enum blk_zoned_model zoned_model,
1477 unsigned int zone_sectors)
1478{
1479 if (zoned_model == BLK_ZONED_NONE)
1480 return 0;
1481
1482 if (!dm_table_supports_zoned_model(table, zoned_model)) {
1483 DMERR("%s: zoned model is not consistent across all devices",
1484 dm_device_name(table->md));
1485 return -EINVAL;
1486 }
1487
1488 /* Check zone size validity and compatibility */
1489 if (!zone_sectors || !is_power_of_2(zone_sectors))
1490 return -EINVAL;
1491
1492 if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1493 DMERR("%s: zone sectors is not consistent across all devices",
1494 dm_device_name(table->md));
1495 return -EINVAL;
1496 }
1497
1498 return 0;
1499}
1500
1501/*
1502 * Establish the new table's queue_limits and validate them.
1503 */
1504int dm_calculate_queue_limits(struct dm_table *table,
1505 struct queue_limits *limits)
1506{
1507 struct dm_target *ti;
1508 struct queue_limits ti_limits;
1509 unsigned i;
1510 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1511 unsigned int zone_sectors = 0;
1512
1513 blk_set_stacking_limits(limits);
1514
1515 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1516 blk_set_stacking_limits(&ti_limits);
1517
1518 ti = dm_table_get_target(table, i);
1519
1520 if (!ti->type->iterate_devices)
1521 goto combine_limits;
1522
1523 /*
1524 * Combine queue limits of all the devices this target uses.
1525 */
1526 ti->type->iterate_devices(ti, dm_set_device_limits,
1527 &ti_limits);
1528
1529 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1530 /*
1531 * After stacking all limits, validate all devices
1532 * in table support this zoned model and zone sectors.
1533 */
1534 zoned_model = ti_limits.zoned;
1535 zone_sectors = ti_limits.chunk_sectors;
1536 }
1537
1538 /* Set I/O hints portion of queue limits */
1539 if (ti->type->io_hints)
1540 ti->type->io_hints(ti, &ti_limits);
1541
1542 /*
1543 * Check each device area is consistent with the target's
1544 * overall queue limits.
1545 */
1546 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1547 &ti_limits))
1548 return -EINVAL;
1549
1550combine_limits:
1551 /*
1552 * Merge this target's queue limits into the overall limits
1553 * for the table.
1554 */
1555 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1556 DMWARN("%s: adding target device "
1557 "(start sect %llu len %llu) "
1558 "caused an alignment inconsistency",
1559 dm_device_name(table->md),
1560 (unsigned long long) ti->begin,
1561 (unsigned long long) ti->len);
1562
1563 /*
1564 * FIXME: this should likely be moved to blk_stack_limits(), would
1565 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1566 */
1567 if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1568 /*
1569 * By default, the stacked limits zoned model is set to
1570 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1571 * this model using the first target model reported
1572 * that is not BLK_ZONED_NONE. This will be either the
1573 * first target device zoned model or the model reported
1574 * by the target .io_hints.
1575 */
1576 limits->zoned = ti_limits.zoned;
1577 }
1578 }
1579
1580 /*
1581 * Verify that the zoned model and zone sectors, as determined before
1582 * any .io_hints override, are the same across all devices in the table.
1583 * - this is especially relevant if .io_hints is emulating a disk-managed
1584 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1585 * BUT...
1586 */
1587 if (limits->zoned != BLK_ZONED_NONE) {
1588 /*
1589 * ...IF the above limits stacking determined a zoned model
1590 * validate that all of the table's devices conform to it.
1591 */
1592 zoned_model = limits->zoned;
1593 zone_sectors = limits->chunk_sectors;
1594 }
1595 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1596 return -EINVAL;
1597
1598 return validate_hardware_logical_block_alignment(table, limits);
1599}
1600
1601/*
1602 * Verify that all devices have an integrity profile that matches the
1603 * DM device's registered integrity profile. If the profiles don't
1604 * match then unregister the DM device's integrity profile.
1605 */
1606static void dm_table_verify_integrity(struct dm_table *t)
1607{
1608 struct gendisk *template_disk = NULL;
1609
1610 if (t->integrity_added)
1611 return;
1612
1613 if (t->integrity_supported) {
1614 /*
1615 * Verify that the original integrity profile
1616 * matches all the devices in this table.
1617 */
1618 template_disk = dm_table_get_integrity_disk(t);
1619 if (template_disk &&
1620 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1621 return;
1622 }
1623
1624 if (integrity_profile_exists(dm_disk(t->md))) {
1625 DMWARN("%s: unable to establish an integrity profile",
1626 dm_device_name(t->md));
1627 blk_integrity_unregister(dm_disk(t->md));
1628 }
1629}
1630
1631static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1632 sector_t start, sector_t len, void *data)
1633{
1634 unsigned long flush = (unsigned long) data;
1635 struct request_queue *q = bdev_get_queue(dev->bdev);
1636
1637 return q && (q->queue_flags & flush);
1638}
1639
1640static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1641{
1642 struct dm_target *ti;
1643 unsigned i;
1644
1645 /*
1646 * Require at least one underlying device to support flushes.
1647 * t->devices includes internal dm devices such as mirror logs
1648 * so we need to use iterate_devices here, which targets
1649 * supporting flushes must provide.
1650 */
1651 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1652 ti = dm_table_get_target(t, i);
1653
1654 if (!ti->num_flush_bios)
1655 continue;
1656
1657 if (ti->flush_supported)
1658 return true;
1659
1660 if (ti->type->iterate_devices &&
1661 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1662 return true;
1663 }
1664
1665 return false;
1666}
1667
1668static int device_dax_write_cache_enabled(struct dm_target *ti,
1669 struct dm_dev *dev, sector_t start,
1670 sector_t len, void *data)
1671{
1672 struct dax_device *dax_dev = dev->dax_dev;
1673
1674 if (!dax_dev)
1675 return false;
1676
1677 if (dax_write_cache_enabled(dax_dev))
1678 return true;
1679 return false;
1680}
1681
1682static int dm_table_supports_dax_write_cache(struct dm_table *t)
1683{
1684 struct dm_target *ti;
1685 unsigned i;
1686
1687 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1688 ti = dm_table_get_target(t, i);
1689
1690 if (ti->type->iterate_devices &&
1691 ti->type->iterate_devices(ti,
1692 device_dax_write_cache_enabled, NULL))
1693 return true;
1694 }
1695
1696 return false;
1697}
1698
1699static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1700 sector_t start, sector_t len, void *data)
1701{
1702 struct request_queue *q = bdev_get_queue(dev->bdev);
1703
1704 return q && blk_queue_nonrot(q);
1705}
1706
1707static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1708 sector_t start, sector_t len, void *data)
1709{
1710 struct request_queue *q = bdev_get_queue(dev->bdev);
1711
1712 return q && !blk_queue_add_random(q);
1713}
1714
1715static bool dm_table_all_devices_attribute(struct dm_table *t,
1716 iterate_devices_callout_fn func)
1717{
1718 struct dm_target *ti;
1719 unsigned i;
1720
1721 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1722 ti = dm_table_get_target(t, i);
1723
1724 if (!ti->type->iterate_devices ||
1725 !ti->type->iterate_devices(ti, func, NULL))
1726 return false;
1727 }
1728
1729 return true;
1730}
1731
1732static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev,
1733 sector_t start, sector_t len, void *data)
1734{
1735 char b[BDEVNAME_SIZE];
1736
1737 /* For now, NVMe devices are the only devices of this class */
1738 return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0);
1739}
1740
1741static bool dm_table_does_not_support_partial_completion(struct dm_table *t)
1742{
1743 return dm_table_all_devices_attribute(t, device_no_partial_completion);
1744}
1745
1746static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1747 sector_t start, sector_t len, void *data)
1748{
1749 struct request_queue *q = bdev_get_queue(dev->bdev);
1750
1751 return q && !q->limits.max_write_same_sectors;
1752}
1753
1754static bool dm_table_supports_write_same(struct dm_table *t)
1755{
1756 struct dm_target *ti;
1757 unsigned i;
1758
1759 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1760 ti = dm_table_get_target(t, i);
1761
1762 if (!ti->num_write_same_bios)
1763 return false;
1764
1765 if (!ti->type->iterate_devices ||
1766 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1767 return false;
1768 }
1769
1770 return true;
1771}
1772
1773static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1774 sector_t start, sector_t len, void *data)
1775{
1776 struct request_queue *q = bdev_get_queue(dev->bdev);
1777
1778 return q && !q->limits.max_write_zeroes_sectors;
1779}
1780
1781static bool dm_table_supports_write_zeroes(struct dm_table *t)
1782{
1783 struct dm_target *ti;
1784 unsigned i = 0;
1785
1786 while (i < dm_table_get_num_targets(t)) {
1787 ti = dm_table_get_target(t, i++);
1788
1789 if (!ti->num_write_zeroes_bios)
1790 return false;
1791
1792 if (!ti->type->iterate_devices ||
1793 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1794 return false;
1795 }
1796
1797 return true;
1798}
1799
1800static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1801 sector_t start, sector_t len, void *data)
1802{
1803 struct request_queue *q = bdev_get_queue(dev->bdev);
1804
1805 return q && !blk_queue_discard(q);
1806}
1807
1808static bool dm_table_supports_discards(struct dm_table *t)
1809{
1810 struct dm_target *ti;
1811 unsigned i;
1812
1813 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1814 ti = dm_table_get_target(t, i);
1815
1816 if (!ti->num_discard_bios)
1817 return false;
1818
1819 /*
1820 * Either the target provides discard support (as implied by setting
1821 * 'discards_supported') or it relies on _all_ data devices having
1822 * discard support.
1823 */
1824 if (!ti->discards_supported &&
1825 (!ti->type->iterate_devices ||
1826 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1827 return false;
1828 }
1829
1830 return true;
1831}
1832
1833static int device_not_secure_erase_capable(struct dm_target *ti,
1834 struct dm_dev *dev, sector_t start,
1835 sector_t len, void *data)
1836{
1837 struct request_queue *q = bdev_get_queue(dev->bdev);
1838
1839 return q && !blk_queue_secure_erase(q);
1840}
1841
1842static bool dm_table_supports_secure_erase(struct dm_table *t)
1843{
1844 struct dm_target *ti;
1845 unsigned int i;
1846
1847 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1848 ti = dm_table_get_target(t, i);
1849
1850 if (!ti->num_secure_erase_bios)
1851 return false;
1852
1853 if (!ti->type->iterate_devices ||
1854 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1855 return false;
1856 }
1857
1858 return true;
1859}
1860
1861static int device_requires_stable_pages(struct dm_target *ti,
1862 struct dm_dev *dev, sector_t start,
1863 sector_t len, void *data)
1864{
1865 struct request_queue *q = bdev_get_queue(dev->bdev);
1866
1867 return q && bdi_cap_stable_pages_required(q->backing_dev_info);
1868}
1869
1870/*
1871 * If any underlying device requires stable pages, a table must require
1872 * them as well. Only targets that support iterate_devices are considered:
1873 * don't want error, zero, etc to require stable pages.
1874 */
1875static bool dm_table_requires_stable_pages(struct dm_table *t)
1876{
1877 struct dm_target *ti;
1878 unsigned i;
1879
1880 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1881 ti = dm_table_get_target(t, i);
1882
1883 if (ti->type->iterate_devices &&
1884 ti->type->iterate_devices(ti, device_requires_stable_pages, NULL))
1885 return true;
1886 }
1887
1888 return false;
1889}
1890
1891void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1892 struct queue_limits *limits)
1893{
1894 bool wc = false, fua = false;
1895 int page_size = PAGE_SIZE;
1896
1897 /*
1898 * Copy table's limits to the DM device's request_queue
1899 */
1900 q->limits = *limits;
1901
1902 if (!dm_table_supports_discards(t)) {
1903 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1904 /* Must also clear discard limits... */
1905 q->limits.max_discard_sectors = 0;
1906 q->limits.max_hw_discard_sectors = 0;
1907 q->limits.discard_granularity = 0;
1908 q->limits.discard_alignment = 0;
1909 q->limits.discard_misaligned = 0;
1910 } else
1911 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1912
1913 if (dm_table_supports_secure_erase(t))
1914 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1915
1916 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1917 wc = true;
1918 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1919 fua = true;
1920 }
1921 blk_queue_write_cache(q, wc, fua);
1922
1923 if (dm_table_supports_dax(t, device_supports_dax, &page_size)) {
1924 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1925 if (dm_table_supports_dax(t, device_dax_synchronous, NULL))
1926 set_dax_synchronous(t->md->dax_dev);
1927 }
1928 else
1929 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1930
1931 if (dm_table_supports_dax_write_cache(t))
1932 dax_write_cache(t->md->dax_dev, true);
1933
1934 /* Ensure that all underlying devices are non-rotational. */
1935 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1936 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1937 else
1938 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1939
1940 if (!dm_table_supports_write_same(t))
1941 q->limits.max_write_same_sectors = 0;
1942 if (!dm_table_supports_write_zeroes(t))
1943 q->limits.max_write_zeroes_sectors = 0;
1944
1945 dm_table_verify_integrity(t);
1946
1947 /*
1948 * Some devices don't use blk_integrity but still want stable pages
1949 * because they do their own checksumming.
1950 */
1951 if (dm_table_requires_stable_pages(t))
1952 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
1953 else
1954 q->backing_dev_info->capabilities &= ~BDI_CAP_STABLE_WRITES;
1955
1956 /*
1957 * Determine whether or not this queue's I/O timings contribute
1958 * to the entropy pool, Only request-based targets use this.
1959 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1960 * have it set.
1961 */
1962 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1963 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1964
1965 /*
1966 * For a zoned target, the number of zones should be updated for the
1967 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
1968 * target, this is all that is needed. For a request based target, the
1969 * queue zone bitmaps must also be updated.
1970 * Use blk_revalidate_disk_zones() to handle this.
1971 */
1972 if (blk_queue_is_zoned(q))
1973 blk_revalidate_disk_zones(t->md->disk);
1974
1975 /* Allow reads to exceed readahead limits */
1976 q->backing_dev_info->io_pages = limits->max_sectors >> (PAGE_SHIFT - 9);
1977}
1978
1979unsigned int dm_table_get_num_targets(struct dm_table *t)
1980{
1981 return t->num_targets;
1982}
1983
1984struct list_head *dm_table_get_devices(struct dm_table *t)
1985{
1986 return &t->devices;
1987}
1988
1989fmode_t dm_table_get_mode(struct dm_table *t)
1990{
1991 return t->mode;
1992}
1993EXPORT_SYMBOL(dm_table_get_mode);
1994
1995enum suspend_mode {
1996 PRESUSPEND,
1997 PRESUSPEND_UNDO,
1998 POSTSUSPEND,
1999};
2000
2001static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2002{
2003 int i = t->num_targets;
2004 struct dm_target *ti = t->targets;
2005
2006 lockdep_assert_held(&t->md->suspend_lock);
2007
2008 while (i--) {
2009 switch (mode) {
2010 case PRESUSPEND:
2011 if (ti->type->presuspend)
2012 ti->type->presuspend(ti);
2013 break;
2014 case PRESUSPEND_UNDO:
2015 if (ti->type->presuspend_undo)
2016 ti->type->presuspend_undo(ti);
2017 break;
2018 case POSTSUSPEND:
2019 if (ti->type->postsuspend)
2020 ti->type->postsuspend(ti);
2021 break;
2022 }
2023 ti++;
2024 }
2025}
2026
2027void dm_table_presuspend_targets(struct dm_table *t)
2028{
2029 if (!t)
2030 return;
2031
2032 suspend_targets(t, PRESUSPEND);
2033}
2034
2035void dm_table_presuspend_undo_targets(struct dm_table *t)
2036{
2037 if (!t)
2038 return;
2039
2040 suspend_targets(t, PRESUSPEND_UNDO);
2041}
2042
2043void dm_table_postsuspend_targets(struct dm_table *t)
2044{
2045 if (!t)
2046 return;
2047
2048 suspend_targets(t, POSTSUSPEND);
2049}
2050
2051int dm_table_resume_targets(struct dm_table *t)
2052{
2053 int i, r = 0;
2054
2055 lockdep_assert_held(&t->md->suspend_lock);
2056
2057 for (i = 0; i < t->num_targets; i++) {
2058 struct dm_target *ti = t->targets + i;
2059
2060 if (!ti->type->preresume)
2061 continue;
2062
2063 r = ti->type->preresume(ti);
2064 if (r) {
2065 DMERR("%s: %s: preresume failed, error = %d",
2066 dm_device_name(t->md), ti->type->name, r);
2067 return r;
2068 }
2069 }
2070
2071 for (i = 0; i < t->num_targets; i++) {
2072 struct dm_target *ti = t->targets + i;
2073
2074 if (ti->type->resume)
2075 ti->type->resume(ti);
2076 }
2077
2078 return 0;
2079}
2080
2081void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
2082{
2083 list_add(&cb->list, &t->target_callbacks);
2084}
2085EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
2086
2087int dm_table_any_congested(struct dm_table *t, int bdi_bits)
2088{
2089 struct dm_dev_internal *dd;
2090 struct list_head *devices = dm_table_get_devices(t);
2091 struct dm_target_callbacks *cb;
2092 int r = 0;
2093
2094 list_for_each_entry(dd, devices, list) {
2095 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
2096 char b[BDEVNAME_SIZE];
2097
2098 if (likely(q))
2099 r |= bdi_congested(q->backing_dev_info, bdi_bits);
2100 else
2101 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
2102 dm_device_name(t->md),
2103 bdevname(dd->dm_dev->bdev, b));
2104 }
2105
2106 list_for_each_entry(cb, &t->target_callbacks, list)
2107 if (cb->congested_fn)
2108 r |= cb->congested_fn(cb, bdi_bits);
2109
2110 return r;
2111}
2112
2113struct mapped_device *dm_table_get_md(struct dm_table *t)
2114{
2115 return t->md;
2116}
2117EXPORT_SYMBOL(dm_table_get_md);
2118
2119const char *dm_table_device_name(struct dm_table *t)
2120{
2121 return dm_device_name(t->md);
2122}
2123EXPORT_SYMBOL_GPL(dm_table_device_name);
2124
2125void dm_table_run_md_queue_async(struct dm_table *t)
2126{
2127 struct mapped_device *md;
2128 struct request_queue *queue;
2129
2130 if (!dm_table_request_based(t))
2131 return;
2132
2133 md = dm_table_get_md(t);
2134 queue = dm_get_md_queue(md);
2135 if (queue)
2136 blk_mq_run_hw_queues(queue, true);
2137}
2138EXPORT_SYMBOL(dm_table_run_md_queue_async);
2139
1/*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm-core.h"
9
10#include <linux/module.h>
11#include <linux/vmalloc.h>
12#include <linux/blkdev.h>
13#include <linux/namei.h>
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/slab.h>
17#include <linux/interrupt.h>
18#include <linux/mutex.h>
19#include <linux/delay.h>
20#include <linux/atomic.h>
21#include <linux/blk-mq.h>
22#include <linux/mount.h>
23#include <linux/dax.h>
24
25#define DM_MSG_PREFIX "table"
26
27#define MAX_DEPTH 16
28#define NODE_SIZE L1_CACHE_BYTES
29#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31
32struct dm_table {
33 struct mapped_device *md;
34 enum dm_queue_mode type;
35
36 /* btree table */
37 unsigned int depth;
38 unsigned int counts[MAX_DEPTH]; /* in nodes */
39 sector_t *index[MAX_DEPTH];
40
41 unsigned int num_targets;
42 unsigned int num_allocated;
43 sector_t *highs;
44 struct dm_target *targets;
45
46 struct target_type *immutable_target_type;
47
48 bool integrity_supported:1;
49 bool singleton:1;
50 bool all_blk_mq:1;
51 unsigned integrity_added:1;
52
53 /*
54 * Indicates the rw permissions for the new logical
55 * device. This should be a combination of FMODE_READ
56 * and FMODE_WRITE.
57 */
58 fmode_t mode;
59
60 /* a list of devices used by this table */
61 struct list_head devices;
62
63 /* events get handed up using this callback */
64 void (*event_fn)(void *);
65 void *event_context;
66
67 struct dm_md_mempools *mempools;
68
69 struct list_head target_callbacks;
70};
71
72/*
73 * Similar to ceiling(log_size(n))
74 */
75static unsigned int int_log(unsigned int n, unsigned int base)
76{
77 int result = 0;
78
79 while (n > 1) {
80 n = dm_div_up(n, base);
81 result++;
82 }
83
84 return result;
85}
86
87/*
88 * Calculate the index of the child node of the n'th node k'th key.
89 */
90static inline unsigned int get_child(unsigned int n, unsigned int k)
91{
92 return (n * CHILDREN_PER_NODE) + k;
93}
94
95/*
96 * Return the n'th node of level l from table t.
97 */
98static inline sector_t *get_node(struct dm_table *t,
99 unsigned int l, unsigned int n)
100{
101 return t->index[l] + (n * KEYS_PER_NODE);
102}
103
104/*
105 * Return the highest key that you could lookup from the n'th
106 * node on level l of the btree.
107 */
108static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
109{
110 for (; l < t->depth - 1; l++)
111 n = get_child(n, CHILDREN_PER_NODE - 1);
112
113 if (n >= t->counts[l])
114 return (sector_t) - 1;
115
116 return get_node(t, l, n)[KEYS_PER_NODE - 1];
117}
118
119/*
120 * Fills in a level of the btree based on the highs of the level
121 * below it.
122 */
123static int setup_btree_index(unsigned int l, struct dm_table *t)
124{
125 unsigned int n, k;
126 sector_t *node;
127
128 for (n = 0U; n < t->counts[l]; n++) {
129 node = get_node(t, l, n);
130
131 for (k = 0U; k < KEYS_PER_NODE; k++)
132 node[k] = high(t, l + 1, get_child(n, k));
133 }
134
135 return 0;
136}
137
138void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
139{
140 unsigned long size;
141 void *addr;
142
143 /*
144 * Check that we're not going to overflow.
145 */
146 if (nmemb > (ULONG_MAX / elem_size))
147 return NULL;
148
149 size = nmemb * elem_size;
150 addr = vzalloc(size);
151
152 return addr;
153}
154EXPORT_SYMBOL(dm_vcalloc);
155
156/*
157 * highs, and targets are managed as dynamic arrays during a
158 * table load.
159 */
160static int alloc_targets(struct dm_table *t, unsigned int num)
161{
162 sector_t *n_highs;
163 struct dm_target *n_targets;
164
165 /*
166 * Allocate both the target array and offset array at once.
167 * Append an empty entry to catch sectors beyond the end of
168 * the device.
169 */
170 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
171 sizeof(sector_t));
172 if (!n_highs)
173 return -ENOMEM;
174
175 n_targets = (struct dm_target *) (n_highs + num);
176
177 memset(n_highs, -1, sizeof(*n_highs) * num);
178 vfree(t->highs);
179
180 t->num_allocated = num;
181 t->highs = n_highs;
182 t->targets = n_targets;
183
184 return 0;
185}
186
187int dm_table_create(struct dm_table **result, fmode_t mode,
188 unsigned num_targets, struct mapped_device *md)
189{
190 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
191
192 if (!t)
193 return -ENOMEM;
194
195 INIT_LIST_HEAD(&t->devices);
196 INIT_LIST_HEAD(&t->target_callbacks);
197
198 if (!num_targets)
199 num_targets = KEYS_PER_NODE;
200
201 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
202
203 if (!num_targets) {
204 kfree(t);
205 return -ENOMEM;
206 }
207
208 if (alloc_targets(t, num_targets)) {
209 kfree(t);
210 return -ENOMEM;
211 }
212
213 t->type = DM_TYPE_NONE;
214 t->mode = mode;
215 t->md = md;
216 *result = t;
217 return 0;
218}
219
220static void free_devices(struct list_head *devices, struct mapped_device *md)
221{
222 struct list_head *tmp, *next;
223
224 list_for_each_safe(tmp, next, devices) {
225 struct dm_dev_internal *dd =
226 list_entry(tmp, struct dm_dev_internal, list);
227 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
228 dm_device_name(md), dd->dm_dev->name);
229 dm_put_table_device(md, dd->dm_dev);
230 kfree(dd);
231 }
232}
233
234void dm_table_destroy(struct dm_table *t)
235{
236 unsigned int i;
237
238 if (!t)
239 return;
240
241 /* free the indexes */
242 if (t->depth >= 2)
243 vfree(t->index[t->depth - 2]);
244
245 /* free the targets */
246 for (i = 0; i < t->num_targets; i++) {
247 struct dm_target *tgt = t->targets + i;
248
249 if (tgt->type->dtr)
250 tgt->type->dtr(tgt);
251
252 dm_put_target_type(tgt->type);
253 }
254
255 vfree(t->highs);
256
257 /* free the device list */
258 free_devices(&t->devices, t->md);
259
260 dm_free_md_mempools(t->mempools);
261
262 kfree(t);
263}
264
265/*
266 * See if we've already got a device in the list.
267 */
268static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
269{
270 struct dm_dev_internal *dd;
271
272 list_for_each_entry (dd, l, list)
273 if (dd->dm_dev->bdev->bd_dev == dev)
274 return dd;
275
276 return NULL;
277}
278
279/*
280 * If possible, this checks an area of a destination device is invalid.
281 */
282static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
283 sector_t start, sector_t len, void *data)
284{
285 struct request_queue *q;
286 struct queue_limits *limits = data;
287 struct block_device *bdev = dev->bdev;
288 sector_t dev_size =
289 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
290 unsigned short logical_block_size_sectors =
291 limits->logical_block_size >> SECTOR_SHIFT;
292 char b[BDEVNAME_SIZE];
293
294 /*
295 * Some devices exist without request functions,
296 * such as loop devices not yet bound to backing files.
297 * Forbid the use of such devices.
298 */
299 q = bdev_get_queue(bdev);
300 if (!q || !q->make_request_fn) {
301 DMWARN("%s: %s is not yet initialised: "
302 "start=%llu, len=%llu, dev_size=%llu",
303 dm_device_name(ti->table->md), bdevname(bdev, b),
304 (unsigned long long)start,
305 (unsigned long long)len,
306 (unsigned long long)dev_size);
307 return 1;
308 }
309
310 if (!dev_size)
311 return 0;
312
313 if ((start >= dev_size) || (start + len > dev_size)) {
314 DMWARN("%s: %s too small for target: "
315 "start=%llu, len=%llu, dev_size=%llu",
316 dm_device_name(ti->table->md), bdevname(bdev, b),
317 (unsigned long long)start,
318 (unsigned long long)len,
319 (unsigned long long)dev_size);
320 return 1;
321 }
322
323 /*
324 * If the target is mapped to zoned block device(s), check
325 * that the zones are not partially mapped.
326 */
327 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
328 unsigned int zone_sectors = bdev_zone_sectors(bdev);
329
330 if (start & (zone_sectors - 1)) {
331 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
332 dm_device_name(ti->table->md),
333 (unsigned long long)start,
334 zone_sectors, bdevname(bdev, b));
335 return 1;
336 }
337
338 /*
339 * Note: The last zone of a zoned block device may be smaller
340 * than other zones. So for a target mapping the end of a
341 * zoned block device with such a zone, len would not be zone
342 * aligned. We do not allow such last smaller zone to be part
343 * of the mapping here to ensure that mappings with multiple
344 * devices do not end up with a smaller zone in the middle of
345 * the sector range.
346 */
347 if (len & (zone_sectors - 1)) {
348 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
349 dm_device_name(ti->table->md),
350 (unsigned long long)len,
351 zone_sectors, bdevname(bdev, b));
352 return 1;
353 }
354 }
355
356 if (logical_block_size_sectors <= 1)
357 return 0;
358
359 if (start & (logical_block_size_sectors - 1)) {
360 DMWARN("%s: start=%llu not aligned to h/w "
361 "logical block size %u of %s",
362 dm_device_name(ti->table->md),
363 (unsigned long long)start,
364 limits->logical_block_size, bdevname(bdev, b));
365 return 1;
366 }
367
368 if (len & (logical_block_size_sectors - 1)) {
369 DMWARN("%s: len=%llu not aligned to h/w "
370 "logical block size %u of %s",
371 dm_device_name(ti->table->md),
372 (unsigned long long)len,
373 limits->logical_block_size, bdevname(bdev, b));
374 return 1;
375 }
376
377 return 0;
378}
379
380/*
381 * This upgrades the mode on an already open dm_dev, being
382 * careful to leave things as they were if we fail to reopen the
383 * device and not to touch the existing bdev field in case
384 * it is accessed concurrently inside dm_table_any_congested().
385 */
386static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
387 struct mapped_device *md)
388{
389 int r;
390 struct dm_dev *old_dev, *new_dev;
391
392 old_dev = dd->dm_dev;
393
394 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
395 dd->dm_dev->mode | new_mode, &new_dev);
396 if (r)
397 return r;
398
399 dd->dm_dev = new_dev;
400 dm_put_table_device(md, old_dev);
401
402 return 0;
403}
404
405/*
406 * Convert the path to a device
407 */
408dev_t dm_get_dev_t(const char *path)
409{
410 dev_t dev;
411 struct block_device *bdev;
412
413 bdev = lookup_bdev(path);
414 if (IS_ERR(bdev))
415 dev = name_to_dev_t(path);
416 else {
417 dev = bdev->bd_dev;
418 bdput(bdev);
419 }
420
421 return dev;
422}
423EXPORT_SYMBOL_GPL(dm_get_dev_t);
424
425/*
426 * Add a device to the list, or just increment the usage count if
427 * it's already present.
428 */
429int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
430 struct dm_dev **result)
431{
432 int r;
433 dev_t dev;
434 struct dm_dev_internal *dd;
435 struct dm_table *t = ti->table;
436
437 BUG_ON(!t);
438
439 dev = dm_get_dev_t(path);
440 if (!dev)
441 return -ENODEV;
442
443 dd = find_device(&t->devices, dev);
444 if (!dd) {
445 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
446 if (!dd)
447 return -ENOMEM;
448
449 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
450 kfree(dd);
451 return r;
452 }
453
454 refcount_set(&dd->count, 1);
455 list_add(&dd->list, &t->devices);
456 goto out;
457
458 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
459 r = upgrade_mode(dd, mode, t->md);
460 if (r)
461 return r;
462 }
463 refcount_inc(&dd->count);
464out:
465 *result = dd->dm_dev;
466 return 0;
467}
468EXPORT_SYMBOL(dm_get_device);
469
470static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
471 sector_t start, sector_t len, void *data)
472{
473 struct queue_limits *limits = data;
474 struct block_device *bdev = dev->bdev;
475 struct request_queue *q = bdev_get_queue(bdev);
476 char b[BDEVNAME_SIZE];
477
478 if (unlikely(!q)) {
479 DMWARN("%s: Cannot set limits for nonexistent device %s",
480 dm_device_name(ti->table->md), bdevname(bdev, b));
481 return 0;
482 }
483
484 if (bdev_stack_limits(limits, bdev, start) < 0)
485 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
486 "physical_block_size=%u, logical_block_size=%u, "
487 "alignment_offset=%u, start=%llu",
488 dm_device_name(ti->table->md), bdevname(bdev, b),
489 q->limits.physical_block_size,
490 q->limits.logical_block_size,
491 q->limits.alignment_offset,
492 (unsigned long long) start << SECTOR_SHIFT);
493
494 limits->zoned = blk_queue_zoned_model(q);
495
496 return 0;
497}
498
499/*
500 * Decrement a device's use count and remove it if necessary.
501 */
502void dm_put_device(struct dm_target *ti, struct dm_dev *d)
503{
504 int found = 0;
505 struct list_head *devices = &ti->table->devices;
506 struct dm_dev_internal *dd;
507
508 list_for_each_entry(dd, devices, list) {
509 if (dd->dm_dev == d) {
510 found = 1;
511 break;
512 }
513 }
514 if (!found) {
515 DMWARN("%s: device %s not in table devices list",
516 dm_device_name(ti->table->md), d->name);
517 return;
518 }
519 if (refcount_dec_and_test(&dd->count)) {
520 dm_put_table_device(ti->table->md, d);
521 list_del(&dd->list);
522 kfree(dd);
523 }
524}
525EXPORT_SYMBOL(dm_put_device);
526
527/*
528 * Checks to see if the target joins onto the end of the table.
529 */
530static int adjoin(struct dm_table *table, struct dm_target *ti)
531{
532 struct dm_target *prev;
533
534 if (!table->num_targets)
535 return !ti->begin;
536
537 prev = &table->targets[table->num_targets - 1];
538 return (ti->begin == (prev->begin + prev->len));
539}
540
541/*
542 * Used to dynamically allocate the arg array.
543 *
544 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
545 * process messages even if some device is suspended. These messages have a
546 * small fixed number of arguments.
547 *
548 * On the other hand, dm-switch needs to process bulk data using messages and
549 * excessive use of GFP_NOIO could cause trouble.
550 */
551static char **realloc_argv(unsigned *array_size, char **old_argv)
552{
553 char **argv;
554 unsigned new_size;
555 gfp_t gfp;
556
557 if (*array_size) {
558 new_size = *array_size * 2;
559 gfp = GFP_KERNEL;
560 } else {
561 new_size = 8;
562 gfp = GFP_NOIO;
563 }
564 argv = kmalloc(new_size * sizeof(*argv), gfp);
565 if (argv) {
566 memcpy(argv, old_argv, *array_size * sizeof(*argv));
567 *array_size = new_size;
568 }
569
570 kfree(old_argv);
571 return argv;
572}
573
574/*
575 * Destructively splits up the argument list to pass to ctr.
576 */
577int dm_split_args(int *argc, char ***argvp, char *input)
578{
579 char *start, *end = input, *out, **argv = NULL;
580 unsigned array_size = 0;
581
582 *argc = 0;
583
584 if (!input) {
585 *argvp = NULL;
586 return 0;
587 }
588
589 argv = realloc_argv(&array_size, argv);
590 if (!argv)
591 return -ENOMEM;
592
593 while (1) {
594 /* Skip whitespace */
595 start = skip_spaces(end);
596
597 if (!*start)
598 break; /* success, we hit the end */
599
600 /* 'out' is used to remove any back-quotes */
601 end = out = start;
602 while (*end) {
603 /* Everything apart from '\0' can be quoted */
604 if (*end == '\\' && *(end + 1)) {
605 *out++ = *(end + 1);
606 end += 2;
607 continue;
608 }
609
610 if (isspace(*end))
611 break; /* end of token */
612
613 *out++ = *end++;
614 }
615
616 /* have we already filled the array ? */
617 if ((*argc + 1) > array_size) {
618 argv = realloc_argv(&array_size, argv);
619 if (!argv)
620 return -ENOMEM;
621 }
622
623 /* we know this is whitespace */
624 if (*end)
625 end++;
626
627 /* terminate the string and put it in the array */
628 *out = '\0';
629 argv[*argc] = start;
630 (*argc)++;
631 }
632
633 *argvp = argv;
634 return 0;
635}
636
637/*
638 * Impose necessary and sufficient conditions on a devices's table such
639 * that any incoming bio which respects its logical_block_size can be
640 * processed successfully. If it falls across the boundary between
641 * two or more targets, the size of each piece it gets split into must
642 * be compatible with the logical_block_size of the target processing it.
643 */
644static int validate_hardware_logical_block_alignment(struct dm_table *table,
645 struct queue_limits *limits)
646{
647 /*
648 * This function uses arithmetic modulo the logical_block_size
649 * (in units of 512-byte sectors).
650 */
651 unsigned short device_logical_block_size_sects =
652 limits->logical_block_size >> SECTOR_SHIFT;
653
654 /*
655 * Offset of the start of the next table entry, mod logical_block_size.
656 */
657 unsigned short next_target_start = 0;
658
659 /*
660 * Given an aligned bio that extends beyond the end of a
661 * target, how many sectors must the next target handle?
662 */
663 unsigned short remaining = 0;
664
665 struct dm_target *uninitialized_var(ti);
666 struct queue_limits ti_limits;
667 unsigned i;
668
669 /*
670 * Check each entry in the table in turn.
671 */
672 for (i = 0; i < dm_table_get_num_targets(table); i++) {
673 ti = dm_table_get_target(table, i);
674
675 blk_set_stacking_limits(&ti_limits);
676
677 /* combine all target devices' limits */
678 if (ti->type->iterate_devices)
679 ti->type->iterate_devices(ti, dm_set_device_limits,
680 &ti_limits);
681
682 /*
683 * If the remaining sectors fall entirely within this
684 * table entry are they compatible with its logical_block_size?
685 */
686 if (remaining < ti->len &&
687 remaining & ((ti_limits.logical_block_size >>
688 SECTOR_SHIFT) - 1))
689 break; /* Error */
690
691 next_target_start =
692 (unsigned short) ((next_target_start + ti->len) &
693 (device_logical_block_size_sects - 1));
694 remaining = next_target_start ?
695 device_logical_block_size_sects - next_target_start : 0;
696 }
697
698 if (remaining) {
699 DMWARN("%s: table line %u (start sect %llu len %llu) "
700 "not aligned to h/w logical block size %u",
701 dm_device_name(table->md), i,
702 (unsigned long long) ti->begin,
703 (unsigned long long) ti->len,
704 limits->logical_block_size);
705 return -EINVAL;
706 }
707
708 return 0;
709}
710
711int dm_table_add_target(struct dm_table *t, const char *type,
712 sector_t start, sector_t len, char *params)
713{
714 int r = -EINVAL, argc;
715 char **argv;
716 struct dm_target *tgt;
717
718 if (t->singleton) {
719 DMERR("%s: target type %s must appear alone in table",
720 dm_device_name(t->md), t->targets->type->name);
721 return -EINVAL;
722 }
723
724 BUG_ON(t->num_targets >= t->num_allocated);
725
726 tgt = t->targets + t->num_targets;
727 memset(tgt, 0, sizeof(*tgt));
728
729 if (!len) {
730 DMERR("%s: zero-length target", dm_device_name(t->md));
731 return -EINVAL;
732 }
733
734 tgt->type = dm_get_target_type(type);
735 if (!tgt->type) {
736 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
737 return -EINVAL;
738 }
739
740 if (dm_target_needs_singleton(tgt->type)) {
741 if (t->num_targets) {
742 tgt->error = "singleton target type must appear alone in table";
743 goto bad;
744 }
745 t->singleton = true;
746 }
747
748 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
749 tgt->error = "target type may not be included in a read-only table";
750 goto bad;
751 }
752
753 if (t->immutable_target_type) {
754 if (t->immutable_target_type != tgt->type) {
755 tgt->error = "immutable target type cannot be mixed with other target types";
756 goto bad;
757 }
758 } else if (dm_target_is_immutable(tgt->type)) {
759 if (t->num_targets) {
760 tgt->error = "immutable target type cannot be mixed with other target types";
761 goto bad;
762 }
763 t->immutable_target_type = tgt->type;
764 }
765
766 if (dm_target_has_integrity(tgt->type))
767 t->integrity_added = 1;
768
769 tgt->table = t;
770 tgt->begin = start;
771 tgt->len = len;
772 tgt->error = "Unknown error";
773
774 /*
775 * Does this target adjoin the previous one ?
776 */
777 if (!adjoin(t, tgt)) {
778 tgt->error = "Gap in table";
779 goto bad;
780 }
781
782 r = dm_split_args(&argc, &argv, params);
783 if (r) {
784 tgt->error = "couldn't split parameters (insufficient memory)";
785 goto bad;
786 }
787
788 r = tgt->type->ctr(tgt, argc, argv);
789 kfree(argv);
790 if (r)
791 goto bad;
792
793 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
794
795 if (!tgt->num_discard_bios && tgt->discards_supported)
796 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
797 dm_device_name(t->md), type);
798
799 return 0;
800
801 bad:
802 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
803 dm_put_target_type(tgt->type);
804 return r;
805}
806
807/*
808 * Target argument parsing helpers.
809 */
810static int validate_next_arg(const struct dm_arg *arg,
811 struct dm_arg_set *arg_set,
812 unsigned *value, char **error, unsigned grouped)
813{
814 const char *arg_str = dm_shift_arg(arg_set);
815 char dummy;
816
817 if (!arg_str ||
818 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
819 (*value < arg->min) ||
820 (*value > arg->max) ||
821 (grouped && arg_set->argc < *value)) {
822 *error = arg->error;
823 return -EINVAL;
824 }
825
826 return 0;
827}
828
829int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
830 unsigned *value, char **error)
831{
832 return validate_next_arg(arg, arg_set, value, error, 0);
833}
834EXPORT_SYMBOL(dm_read_arg);
835
836int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
837 unsigned *value, char **error)
838{
839 return validate_next_arg(arg, arg_set, value, error, 1);
840}
841EXPORT_SYMBOL(dm_read_arg_group);
842
843const char *dm_shift_arg(struct dm_arg_set *as)
844{
845 char *r;
846
847 if (as->argc) {
848 as->argc--;
849 r = *as->argv;
850 as->argv++;
851 return r;
852 }
853
854 return NULL;
855}
856EXPORT_SYMBOL(dm_shift_arg);
857
858void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
859{
860 BUG_ON(as->argc < num_args);
861 as->argc -= num_args;
862 as->argv += num_args;
863}
864EXPORT_SYMBOL(dm_consume_args);
865
866static bool __table_type_bio_based(enum dm_queue_mode table_type)
867{
868 return (table_type == DM_TYPE_BIO_BASED ||
869 table_type == DM_TYPE_DAX_BIO_BASED ||
870 table_type == DM_TYPE_NVME_BIO_BASED);
871}
872
873static bool __table_type_request_based(enum dm_queue_mode table_type)
874{
875 return (table_type == DM_TYPE_REQUEST_BASED ||
876 table_type == DM_TYPE_MQ_REQUEST_BASED);
877}
878
879void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
880{
881 t->type = type;
882}
883EXPORT_SYMBOL_GPL(dm_table_set_type);
884
885static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
886 sector_t start, sector_t len, void *data)
887{
888 struct request_queue *q = bdev_get_queue(dev->bdev);
889
890 return q && blk_queue_dax(q);
891}
892
893static bool dm_table_supports_dax(struct dm_table *t)
894{
895 struct dm_target *ti;
896 unsigned i;
897
898 /* Ensure that all targets support DAX. */
899 for (i = 0; i < dm_table_get_num_targets(t); i++) {
900 ti = dm_table_get_target(t, i);
901
902 if (!ti->type->direct_access)
903 return false;
904
905 if (!ti->type->iterate_devices ||
906 !ti->type->iterate_devices(ti, device_supports_dax, NULL))
907 return false;
908 }
909
910 return true;
911}
912
913static bool dm_table_does_not_support_partial_completion(struct dm_table *t);
914
915struct verify_rq_based_data {
916 unsigned sq_count;
917 unsigned mq_count;
918};
919
920static int device_is_rq_based(struct dm_target *ti, struct dm_dev *dev,
921 sector_t start, sector_t len, void *data)
922{
923 struct request_queue *q = bdev_get_queue(dev->bdev);
924 struct verify_rq_based_data *v = data;
925
926 if (q->mq_ops)
927 v->mq_count++;
928 else
929 v->sq_count++;
930
931 return queue_is_rq_based(q);
932}
933
934static int dm_table_determine_type(struct dm_table *t)
935{
936 unsigned i;
937 unsigned bio_based = 0, request_based = 0, hybrid = 0;
938 struct verify_rq_based_data v = {.sq_count = 0, .mq_count = 0};
939 struct dm_target *tgt;
940 struct list_head *devices = dm_table_get_devices(t);
941 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
942
943 if (t->type != DM_TYPE_NONE) {
944 /* target already set the table's type */
945 if (t->type == DM_TYPE_BIO_BASED) {
946 /* possibly upgrade to a variant of bio-based */
947 goto verify_bio_based;
948 }
949 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
950 BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED);
951 goto verify_rq_based;
952 }
953
954 for (i = 0; i < t->num_targets; i++) {
955 tgt = t->targets + i;
956 if (dm_target_hybrid(tgt))
957 hybrid = 1;
958 else if (dm_target_request_based(tgt))
959 request_based = 1;
960 else
961 bio_based = 1;
962
963 if (bio_based && request_based) {
964 DMERR("Inconsistent table: different target types"
965 " can't be mixed up");
966 return -EINVAL;
967 }
968 }
969
970 if (hybrid && !bio_based && !request_based) {
971 /*
972 * The targets can work either way.
973 * Determine the type from the live device.
974 * Default to bio-based if device is new.
975 */
976 if (__table_type_request_based(live_md_type))
977 request_based = 1;
978 else
979 bio_based = 1;
980 }
981
982 if (bio_based) {
983verify_bio_based:
984 /* We must use this table as bio-based */
985 t->type = DM_TYPE_BIO_BASED;
986 if (dm_table_supports_dax(t) ||
987 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
988 t->type = DM_TYPE_DAX_BIO_BASED;
989 } else {
990 /* Check if upgrading to NVMe bio-based is valid or required */
991 tgt = dm_table_get_immutable_target(t);
992 if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) {
993 t->type = DM_TYPE_NVME_BIO_BASED;
994 goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */
995 } else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) {
996 t->type = DM_TYPE_NVME_BIO_BASED;
997 }
998 }
999 return 0;
1000 }
1001
1002 BUG_ON(!request_based); /* No targets in this table */
1003
1004 /*
1005 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by
1006 * having a compatible target use dm_table_set_type.
1007 */
1008 t->type = DM_TYPE_REQUEST_BASED;
1009
1010verify_rq_based:
1011 /*
1012 * Request-based dm supports only tables that have a single target now.
1013 * To support multiple targets, request splitting support is needed,
1014 * and that needs lots of changes in the block-layer.
1015 * (e.g. request completion process for partial completion.)
1016 */
1017 if (t->num_targets > 1) {
1018 DMERR("%s DM doesn't support multiple targets",
1019 t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based");
1020 return -EINVAL;
1021 }
1022
1023 if (list_empty(devices)) {
1024 int srcu_idx;
1025 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
1026
1027 /* inherit live table's type and all_blk_mq */
1028 if (live_table) {
1029 t->type = live_table->type;
1030 t->all_blk_mq = live_table->all_blk_mq;
1031 }
1032 dm_put_live_table(t->md, srcu_idx);
1033 return 0;
1034 }
1035
1036 tgt = dm_table_get_immutable_target(t);
1037 if (!tgt) {
1038 DMERR("table load rejected: immutable target is required");
1039 return -EINVAL;
1040 } else if (tgt->max_io_len) {
1041 DMERR("table load rejected: immutable target that splits IO is not supported");
1042 return -EINVAL;
1043 }
1044
1045 /* Non-request-stackable devices can't be used for request-based dm */
1046 if (!tgt->type->iterate_devices ||
1047 !tgt->type->iterate_devices(tgt, device_is_rq_based, &v)) {
1048 DMERR("table load rejected: including non-request-stackable devices");
1049 return -EINVAL;
1050 }
1051 if (v.sq_count && v.mq_count) {
1052 DMERR("table load rejected: not all devices are blk-mq request-stackable");
1053 return -EINVAL;
1054 }
1055 t->all_blk_mq = v.mq_count > 0;
1056
1057 if (!t->all_blk_mq &&
1058 (t->type == DM_TYPE_MQ_REQUEST_BASED || t->type == DM_TYPE_NVME_BIO_BASED)) {
1059 DMERR("table load rejected: all devices are not blk-mq request-stackable");
1060 return -EINVAL;
1061 }
1062
1063 return 0;
1064}
1065
1066enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1067{
1068 return t->type;
1069}
1070
1071struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1072{
1073 return t->immutable_target_type;
1074}
1075
1076struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1077{
1078 /* Immutable target is implicitly a singleton */
1079 if (t->num_targets > 1 ||
1080 !dm_target_is_immutable(t->targets[0].type))
1081 return NULL;
1082
1083 return t->targets;
1084}
1085
1086struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1087{
1088 struct dm_target *ti;
1089 unsigned i;
1090
1091 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1092 ti = dm_table_get_target(t, i);
1093 if (dm_target_is_wildcard(ti->type))
1094 return ti;
1095 }
1096
1097 return NULL;
1098}
1099
1100bool dm_table_bio_based(struct dm_table *t)
1101{
1102 return __table_type_bio_based(dm_table_get_type(t));
1103}
1104
1105bool dm_table_request_based(struct dm_table *t)
1106{
1107 return __table_type_request_based(dm_table_get_type(t));
1108}
1109
1110bool dm_table_all_blk_mq_devices(struct dm_table *t)
1111{
1112 return t->all_blk_mq;
1113}
1114
1115static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1116{
1117 enum dm_queue_mode type = dm_table_get_type(t);
1118 unsigned per_io_data_size = 0;
1119 unsigned min_pool_size = 0;
1120 struct dm_target *ti;
1121 unsigned i;
1122
1123 if (unlikely(type == DM_TYPE_NONE)) {
1124 DMWARN("no table type is set, can't allocate mempools");
1125 return -EINVAL;
1126 }
1127
1128 if (__table_type_bio_based(type))
1129 for (i = 0; i < t->num_targets; i++) {
1130 ti = t->targets + i;
1131 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1132 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1133 }
1134
1135 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1136 per_io_data_size, min_pool_size);
1137 if (!t->mempools)
1138 return -ENOMEM;
1139
1140 return 0;
1141}
1142
1143void dm_table_free_md_mempools(struct dm_table *t)
1144{
1145 dm_free_md_mempools(t->mempools);
1146 t->mempools = NULL;
1147}
1148
1149struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1150{
1151 return t->mempools;
1152}
1153
1154static int setup_indexes(struct dm_table *t)
1155{
1156 int i;
1157 unsigned int total = 0;
1158 sector_t *indexes;
1159
1160 /* allocate the space for *all* the indexes */
1161 for (i = t->depth - 2; i >= 0; i--) {
1162 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1163 total += t->counts[i];
1164 }
1165
1166 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1167 if (!indexes)
1168 return -ENOMEM;
1169
1170 /* set up internal nodes, bottom-up */
1171 for (i = t->depth - 2; i >= 0; i--) {
1172 t->index[i] = indexes;
1173 indexes += (KEYS_PER_NODE * t->counts[i]);
1174 setup_btree_index(i, t);
1175 }
1176
1177 return 0;
1178}
1179
1180/*
1181 * Builds the btree to index the map.
1182 */
1183static int dm_table_build_index(struct dm_table *t)
1184{
1185 int r = 0;
1186 unsigned int leaf_nodes;
1187
1188 /* how many indexes will the btree have ? */
1189 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1190 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1191
1192 /* leaf layer has already been set up */
1193 t->counts[t->depth - 1] = leaf_nodes;
1194 t->index[t->depth - 1] = t->highs;
1195
1196 if (t->depth >= 2)
1197 r = setup_indexes(t);
1198
1199 return r;
1200}
1201
1202static bool integrity_profile_exists(struct gendisk *disk)
1203{
1204 return !!blk_get_integrity(disk);
1205}
1206
1207/*
1208 * Get a disk whose integrity profile reflects the table's profile.
1209 * Returns NULL if integrity support was inconsistent or unavailable.
1210 */
1211static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1212{
1213 struct list_head *devices = dm_table_get_devices(t);
1214 struct dm_dev_internal *dd = NULL;
1215 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1216 unsigned i;
1217
1218 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1219 struct dm_target *ti = dm_table_get_target(t, i);
1220 if (!dm_target_passes_integrity(ti->type))
1221 goto no_integrity;
1222 }
1223
1224 list_for_each_entry(dd, devices, list) {
1225 template_disk = dd->dm_dev->bdev->bd_disk;
1226 if (!integrity_profile_exists(template_disk))
1227 goto no_integrity;
1228 else if (prev_disk &&
1229 blk_integrity_compare(prev_disk, template_disk) < 0)
1230 goto no_integrity;
1231 prev_disk = template_disk;
1232 }
1233
1234 return template_disk;
1235
1236no_integrity:
1237 if (prev_disk)
1238 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1239 dm_device_name(t->md),
1240 prev_disk->disk_name,
1241 template_disk->disk_name);
1242 return NULL;
1243}
1244
1245/*
1246 * Register the mapped device for blk_integrity support if the
1247 * underlying devices have an integrity profile. But all devices may
1248 * not have matching profiles (checking all devices isn't reliable
1249 * during table load because this table may use other DM device(s) which
1250 * must be resumed before they will have an initialized integity
1251 * profile). Consequently, stacked DM devices force a 2 stage integrity
1252 * profile validation: First pass during table load, final pass during
1253 * resume.
1254 */
1255static int dm_table_register_integrity(struct dm_table *t)
1256{
1257 struct mapped_device *md = t->md;
1258 struct gendisk *template_disk = NULL;
1259
1260 /* If target handles integrity itself do not register it here. */
1261 if (t->integrity_added)
1262 return 0;
1263
1264 template_disk = dm_table_get_integrity_disk(t);
1265 if (!template_disk)
1266 return 0;
1267
1268 if (!integrity_profile_exists(dm_disk(md))) {
1269 t->integrity_supported = true;
1270 /*
1271 * Register integrity profile during table load; we can do
1272 * this because the final profile must match during resume.
1273 */
1274 blk_integrity_register(dm_disk(md),
1275 blk_get_integrity(template_disk));
1276 return 0;
1277 }
1278
1279 /*
1280 * If DM device already has an initialized integrity
1281 * profile the new profile should not conflict.
1282 */
1283 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1284 DMWARN("%s: conflict with existing integrity profile: "
1285 "%s profile mismatch",
1286 dm_device_name(t->md),
1287 template_disk->disk_name);
1288 return 1;
1289 }
1290
1291 /* Preserve existing integrity profile */
1292 t->integrity_supported = true;
1293 return 0;
1294}
1295
1296/*
1297 * Prepares the table for use by building the indices,
1298 * setting the type, and allocating mempools.
1299 */
1300int dm_table_complete(struct dm_table *t)
1301{
1302 int r;
1303
1304 r = dm_table_determine_type(t);
1305 if (r) {
1306 DMERR("unable to determine table type");
1307 return r;
1308 }
1309
1310 r = dm_table_build_index(t);
1311 if (r) {
1312 DMERR("unable to build btrees");
1313 return r;
1314 }
1315
1316 r = dm_table_register_integrity(t);
1317 if (r) {
1318 DMERR("could not register integrity profile.");
1319 return r;
1320 }
1321
1322 r = dm_table_alloc_md_mempools(t, t->md);
1323 if (r)
1324 DMERR("unable to allocate mempools");
1325
1326 return r;
1327}
1328
1329static DEFINE_MUTEX(_event_lock);
1330void dm_table_event_callback(struct dm_table *t,
1331 void (*fn)(void *), void *context)
1332{
1333 mutex_lock(&_event_lock);
1334 t->event_fn = fn;
1335 t->event_context = context;
1336 mutex_unlock(&_event_lock);
1337}
1338
1339void dm_table_event(struct dm_table *t)
1340{
1341 /*
1342 * You can no longer call dm_table_event() from interrupt
1343 * context, use a bottom half instead.
1344 */
1345 BUG_ON(in_interrupt());
1346
1347 mutex_lock(&_event_lock);
1348 if (t->event_fn)
1349 t->event_fn(t->event_context);
1350 mutex_unlock(&_event_lock);
1351}
1352EXPORT_SYMBOL(dm_table_event);
1353
1354sector_t dm_table_get_size(struct dm_table *t)
1355{
1356 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1357}
1358EXPORT_SYMBOL(dm_table_get_size);
1359
1360struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1361{
1362 if (index >= t->num_targets)
1363 return NULL;
1364
1365 return t->targets + index;
1366}
1367
1368/*
1369 * Search the btree for the correct target.
1370 *
1371 * Caller should check returned pointer with dm_target_is_valid()
1372 * to trap I/O beyond end of device.
1373 */
1374struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1375{
1376 unsigned int l, n = 0, k = 0;
1377 sector_t *node;
1378
1379 for (l = 0; l < t->depth; l++) {
1380 n = get_child(n, k);
1381 node = get_node(t, l, n);
1382
1383 for (k = 0; k < KEYS_PER_NODE; k++)
1384 if (node[k] >= sector)
1385 break;
1386 }
1387
1388 return &t->targets[(KEYS_PER_NODE * n) + k];
1389}
1390
1391static int count_device(struct dm_target *ti, struct dm_dev *dev,
1392 sector_t start, sector_t len, void *data)
1393{
1394 unsigned *num_devices = data;
1395
1396 (*num_devices)++;
1397
1398 return 0;
1399}
1400
1401/*
1402 * Check whether a table has no data devices attached using each
1403 * target's iterate_devices method.
1404 * Returns false if the result is unknown because a target doesn't
1405 * support iterate_devices.
1406 */
1407bool dm_table_has_no_data_devices(struct dm_table *table)
1408{
1409 struct dm_target *ti;
1410 unsigned i, num_devices;
1411
1412 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1413 ti = dm_table_get_target(table, i);
1414
1415 if (!ti->type->iterate_devices)
1416 return false;
1417
1418 num_devices = 0;
1419 ti->type->iterate_devices(ti, count_device, &num_devices);
1420 if (num_devices)
1421 return false;
1422 }
1423
1424 return true;
1425}
1426
1427static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1428 sector_t start, sector_t len, void *data)
1429{
1430 struct request_queue *q = bdev_get_queue(dev->bdev);
1431 enum blk_zoned_model *zoned_model = data;
1432
1433 return q && blk_queue_zoned_model(q) == *zoned_model;
1434}
1435
1436static bool dm_table_supports_zoned_model(struct dm_table *t,
1437 enum blk_zoned_model zoned_model)
1438{
1439 struct dm_target *ti;
1440 unsigned i;
1441
1442 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1443 ti = dm_table_get_target(t, i);
1444
1445 if (zoned_model == BLK_ZONED_HM &&
1446 !dm_target_supports_zoned_hm(ti->type))
1447 return false;
1448
1449 if (!ti->type->iterate_devices ||
1450 !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1451 return false;
1452 }
1453
1454 return true;
1455}
1456
1457static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1458 sector_t start, sector_t len, void *data)
1459{
1460 struct request_queue *q = bdev_get_queue(dev->bdev);
1461 unsigned int *zone_sectors = data;
1462
1463 return q && blk_queue_zone_sectors(q) == *zone_sectors;
1464}
1465
1466static bool dm_table_matches_zone_sectors(struct dm_table *t,
1467 unsigned int zone_sectors)
1468{
1469 struct dm_target *ti;
1470 unsigned i;
1471
1472 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1473 ti = dm_table_get_target(t, i);
1474
1475 if (!ti->type->iterate_devices ||
1476 !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1477 return false;
1478 }
1479
1480 return true;
1481}
1482
1483static int validate_hardware_zoned_model(struct dm_table *table,
1484 enum blk_zoned_model zoned_model,
1485 unsigned int zone_sectors)
1486{
1487 if (zoned_model == BLK_ZONED_NONE)
1488 return 0;
1489
1490 if (!dm_table_supports_zoned_model(table, zoned_model)) {
1491 DMERR("%s: zoned model is not consistent across all devices",
1492 dm_device_name(table->md));
1493 return -EINVAL;
1494 }
1495
1496 /* Check zone size validity and compatibility */
1497 if (!zone_sectors || !is_power_of_2(zone_sectors))
1498 return -EINVAL;
1499
1500 if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1501 DMERR("%s: zone sectors is not consistent across all devices",
1502 dm_device_name(table->md));
1503 return -EINVAL;
1504 }
1505
1506 return 0;
1507}
1508
1509/*
1510 * Establish the new table's queue_limits and validate them.
1511 */
1512int dm_calculate_queue_limits(struct dm_table *table,
1513 struct queue_limits *limits)
1514{
1515 struct dm_target *ti;
1516 struct queue_limits ti_limits;
1517 unsigned i;
1518 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1519 unsigned int zone_sectors = 0;
1520
1521 blk_set_stacking_limits(limits);
1522
1523 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1524 blk_set_stacking_limits(&ti_limits);
1525
1526 ti = dm_table_get_target(table, i);
1527
1528 if (!ti->type->iterate_devices)
1529 goto combine_limits;
1530
1531 /*
1532 * Combine queue limits of all the devices this target uses.
1533 */
1534 ti->type->iterate_devices(ti, dm_set_device_limits,
1535 &ti_limits);
1536
1537 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1538 /*
1539 * After stacking all limits, validate all devices
1540 * in table support this zoned model and zone sectors.
1541 */
1542 zoned_model = ti_limits.zoned;
1543 zone_sectors = ti_limits.chunk_sectors;
1544 }
1545
1546 /* Set I/O hints portion of queue limits */
1547 if (ti->type->io_hints)
1548 ti->type->io_hints(ti, &ti_limits);
1549
1550 /*
1551 * Check each device area is consistent with the target's
1552 * overall queue limits.
1553 */
1554 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1555 &ti_limits))
1556 return -EINVAL;
1557
1558combine_limits:
1559 /*
1560 * Merge this target's queue limits into the overall limits
1561 * for the table.
1562 */
1563 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1564 DMWARN("%s: adding target device "
1565 "(start sect %llu len %llu) "
1566 "caused an alignment inconsistency",
1567 dm_device_name(table->md),
1568 (unsigned long long) ti->begin,
1569 (unsigned long long) ti->len);
1570
1571 /*
1572 * FIXME: this should likely be moved to blk_stack_limits(), would
1573 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1574 */
1575 if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1576 /*
1577 * By default, the stacked limits zoned model is set to
1578 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1579 * this model using the first target model reported
1580 * that is not BLK_ZONED_NONE. This will be either the
1581 * first target device zoned model or the model reported
1582 * by the target .io_hints.
1583 */
1584 limits->zoned = ti_limits.zoned;
1585 }
1586 }
1587
1588 /*
1589 * Verify that the zoned model and zone sectors, as determined before
1590 * any .io_hints override, are the same across all devices in the table.
1591 * - this is especially relevant if .io_hints is emulating a disk-managed
1592 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1593 * BUT...
1594 */
1595 if (limits->zoned != BLK_ZONED_NONE) {
1596 /*
1597 * ...IF the above limits stacking determined a zoned model
1598 * validate that all of the table's devices conform to it.
1599 */
1600 zoned_model = limits->zoned;
1601 zone_sectors = limits->chunk_sectors;
1602 }
1603 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1604 return -EINVAL;
1605
1606 return validate_hardware_logical_block_alignment(table, limits);
1607}
1608
1609/*
1610 * Verify that all devices have an integrity profile that matches the
1611 * DM device's registered integrity profile. If the profiles don't
1612 * match then unregister the DM device's integrity profile.
1613 */
1614static void dm_table_verify_integrity(struct dm_table *t)
1615{
1616 struct gendisk *template_disk = NULL;
1617
1618 if (t->integrity_added)
1619 return;
1620
1621 if (t->integrity_supported) {
1622 /*
1623 * Verify that the original integrity profile
1624 * matches all the devices in this table.
1625 */
1626 template_disk = dm_table_get_integrity_disk(t);
1627 if (template_disk &&
1628 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1629 return;
1630 }
1631
1632 if (integrity_profile_exists(dm_disk(t->md))) {
1633 DMWARN("%s: unable to establish an integrity profile",
1634 dm_device_name(t->md));
1635 blk_integrity_unregister(dm_disk(t->md));
1636 }
1637}
1638
1639static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1640 sector_t start, sector_t len, void *data)
1641{
1642 unsigned long flush = (unsigned long) data;
1643 struct request_queue *q = bdev_get_queue(dev->bdev);
1644
1645 return q && (q->queue_flags & flush);
1646}
1647
1648static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1649{
1650 struct dm_target *ti;
1651 unsigned i;
1652
1653 /*
1654 * Require at least one underlying device to support flushes.
1655 * t->devices includes internal dm devices such as mirror logs
1656 * so we need to use iterate_devices here, which targets
1657 * supporting flushes must provide.
1658 */
1659 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1660 ti = dm_table_get_target(t, i);
1661
1662 if (!ti->num_flush_bios)
1663 continue;
1664
1665 if (ti->flush_supported)
1666 return true;
1667
1668 if (ti->type->iterate_devices &&
1669 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1670 return true;
1671 }
1672
1673 return false;
1674}
1675
1676static int device_dax_write_cache_enabled(struct dm_target *ti,
1677 struct dm_dev *dev, sector_t start,
1678 sector_t len, void *data)
1679{
1680 struct dax_device *dax_dev = dev->dax_dev;
1681
1682 if (!dax_dev)
1683 return false;
1684
1685 if (dax_write_cache_enabled(dax_dev))
1686 return true;
1687 return false;
1688}
1689
1690static int dm_table_supports_dax_write_cache(struct dm_table *t)
1691{
1692 struct dm_target *ti;
1693 unsigned i;
1694
1695 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1696 ti = dm_table_get_target(t, i);
1697
1698 if (ti->type->iterate_devices &&
1699 ti->type->iterate_devices(ti,
1700 device_dax_write_cache_enabled, NULL))
1701 return true;
1702 }
1703
1704 return false;
1705}
1706
1707static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1708 sector_t start, sector_t len, void *data)
1709{
1710 struct request_queue *q = bdev_get_queue(dev->bdev);
1711
1712 return q && blk_queue_nonrot(q);
1713}
1714
1715static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1716 sector_t start, sector_t len, void *data)
1717{
1718 struct request_queue *q = bdev_get_queue(dev->bdev);
1719
1720 return q && !blk_queue_add_random(q);
1721}
1722
1723static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1724 sector_t start, sector_t len, void *data)
1725{
1726 struct request_queue *q = bdev_get_queue(dev->bdev);
1727
1728 return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1729}
1730
1731static bool dm_table_all_devices_attribute(struct dm_table *t,
1732 iterate_devices_callout_fn func)
1733{
1734 struct dm_target *ti;
1735 unsigned i;
1736
1737 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1738 ti = dm_table_get_target(t, i);
1739
1740 if (!ti->type->iterate_devices ||
1741 !ti->type->iterate_devices(ti, func, NULL))
1742 return false;
1743 }
1744
1745 return true;
1746}
1747
1748static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev,
1749 sector_t start, sector_t len, void *data)
1750{
1751 char b[BDEVNAME_SIZE];
1752
1753 /* For now, NVMe devices are the only devices of this class */
1754 return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0);
1755}
1756
1757static bool dm_table_does_not_support_partial_completion(struct dm_table *t)
1758{
1759 return dm_table_all_devices_attribute(t, device_no_partial_completion);
1760}
1761
1762static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1763 sector_t start, sector_t len, void *data)
1764{
1765 struct request_queue *q = bdev_get_queue(dev->bdev);
1766
1767 return q && !q->limits.max_write_same_sectors;
1768}
1769
1770static bool dm_table_supports_write_same(struct dm_table *t)
1771{
1772 struct dm_target *ti;
1773 unsigned i;
1774
1775 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1776 ti = dm_table_get_target(t, i);
1777
1778 if (!ti->num_write_same_bios)
1779 return false;
1780
1781 if (!ti->type->iterate_devices ||
1782 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1783 return false;
1784 }
1785
1786 return true;
1787}
1788
1789static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1790 sector_t start, sector_t len, void *data)
1791{
1792 struct request_queue *q = bdev_get_queue(dev->bdev);
1793
1794 return q && !q->limits.max_write_zeroes_sectors;
1795}
1796
1797static bool dm_table_supports_write_zeroes(struct dm_table *t)
1798{
1799 struct dm_target *ti;
1800 unsigned i = 0;
1801
1802 while (i < dm_table_get_num_targets(t)) {
1803 ti = dm_table_get_target(t, i++);
1804
1805 if (!ti->num_write_zeroes_bios)
1806 return false;
1807
1808 if (!ti->type->iterate_devices ||
1809 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1810 return false;
1811 }
1812
1813 return true;
1814}
1815
1816static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1817 sector_t start, sector_t len, void *data)
1818{
1819 struct request_queue *q = bdev_get_queue(dev->bdev);
1820
1821 return q && !blk_queue_discard(q);
1822}
1823
1824static bool dm_table_supports_discards(struct dm_table *t)
1825{
1826 struct dm_target *ti;
1827 unsigned i;
1828
1829 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1830 ti = dm_table_get_target(t, i);
1831
1832 if (!ti->num_discard_bios)
1833 return false;
1834
1835 /*
1836 * Either the target provides discard support (as implied by setting
1837 * 'discards_supported') or it relies on _all_ data devices having
1838 * discard support.
1839 */
1840 if (!ti->discards_supported &&
1841 (!ti->type->iterate_devices ||
1842 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1843 return false;
1844 }
1845
1846 return true;
1847}
1848
1849static int device_not_secure_erase_capable(struct dm_target *ti,
1850 struct dm_dev *dev, sector_t start,
1851 sector_t len, void *data)
1852{
1853 struct request_queue *q = bdev_get_queue(dev->bdev);
1854
1855 return q && !blk_queue_secure_erase(q);
1856}
1857
1858static bool dm_table_supports_secure_erase(struct dm_table *t)
1859{
1860 struct dm_target *ti;
1861 unsigned int i;
1862
1863 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1864 ti = dm_table_get_target(t, i);
1865
1866 if (!ti->num_secure_erase_bios)
1867 return false;
1868
1869 if (!ti->type->iterate_devices ||
1870 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1871 return false;
1872 }
1873
1874 return true;
1875}
1876
1877void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1878 struct queue_limits *limits)
1879{
1880 bool wc = false, fua = false;
1881
1882 /*
1883 * Copy table's limits to the DM device's request_queue
1884 */
1885 q->limits = *limits;
1886
1887 if (!dm_table_supports_discards(t)) {
1888 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1889 /* Must also clear discard limits... */
1890 q->limits.max_discard_sectors = 0;
1891 q->limits.max_hw_discard_sectors = 0;
1892 q->limits.discard_granularity = 0;
1893 q->limits.discard_alignment = 0;
1894 q->limits.discard_misaligned = 0;
1895 } else
1896 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1897
1898 if (dm_table_supports_secure_erase(t))
1899 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1900
1901 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1902 wc = true;
1903 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1904 fua = true;
1905 }
1906 blk_queue_write_cache(q, wc, fua);
1907
1908 if (dm_table_supports_dax(t))
1909 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1910 if (dm_table_supports_dax_write_cache(t))
1911 dax_write_cache(t->md->dax_dev, true);
1912
1913 /* Ensure that all underlying devices are non-rotational. */
1914 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1915 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1916 else
1917 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1918
1919 if (!dm_table_supports_write_same(t))
1920 q->limits.max_write_same_sectors = 0;
1921 if (!dm_table_supports_write_zeroes(t))
1922 q->limits.max_write_zeroes_sectors = 0;
1923
1924 if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1925 blk_queue_flag_clear(QUEUE_FLAG_NO_SG_MERGE, q);
1926 else
1927 blk_queue_flag_set(QUEUE_FLAG_NO_SG_MERGE, q);
1928
1929 dm_table_verify_integrity(t);
1930
1931 /*
1932 * Determine whether or not this queue's I/O timings contribute
1933 * to the entropy pool, Only request-based targets use this.
1934 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1935 * have it set.
1936 */
1937 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1938 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1939}
1940
1941unsigned int dm_table_get_num_targets(struct dm_table *t)
1942{
1943 return t->num_targets;
1944}
1945
1946struct list_head *dm_table_get_devices(struct dm_table *t)
1947{
1948 return &t->devices;
1949}
1950
1951fmode_t dm_table_get_mode(struct dm_table *t)
1952{
1953 return t->mode;
1954}
1955EXPORT_SYMBOL(dm_table_get_mode);
1956
1957enum suspend_mode {
1958 PRESUSPEND,
1959 PRESUSPEND_UNDO,
1960 POSTSUSPEND,
1961};
1962
1963static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1964{
1965 int i = t->num_targets;
1966 struct dm_target *ti = t->targets;
1967
1968 lockdep_assert_held(&t->md->suspend_lock);
1969
1970 while (i--) {
1971 switch (mode) {
1972 case PRESUSPEND:
1973 if (ti->type->presuspend)
1974 ti->type->presuspend(ti);
1975 break;
1976 case PRESUSPEND_UNDO:
1977 if (ti->type->presuspend_undo)
1978 ti->type->presuspend_undo(ti);
1979 break;
1980 case POSTSUSPEND:
1981 if (ti->type->postsuspend)
1982 ti->type->postsuspend(ti);
1983 break;
1984 }
1985 ti++;
1986 }
1987}
1988
1989void dm_table_presuspend_targets(struct dm_table *t)
1990{
1991 if (!t)
1992 return;
1993
1994 suspend_targets(t, PRESUSPEND);
1995}
1996
1997void dm_table_presuspend_undo_targets(struct dm_table *t)
1998{
1999 if (!t)
2000 return;
2001
2002 suspend_targets(t, PRESUSPEND_UNDO);
2003}
2004
2005void dm_table_postsuspend_targets(struct dm_table *t)
2006{
2007 if (!t)
2008 return;
2009
2010 suspend_targets(t, POSTSUSPEND);
2011}
2012
2013int dm_table_resume_targets(struct dm_table *t)
2014{
2015 int i, r = 0;
2016
2017 lockdep_assert_held(&t->md->suspend_lock);
2018
2019 for (i = 0; i < t->num_targets; i++) {
2020 struct dm_target *ti = t->targets + i;
2021
2022 if (!ti->type->preresume)
2023 continue;
2024
2025 r = ti->type->preresume(ti);
2026 if (r) {
2027 DMERR("%s: %s: preresume failed, error = %d",
2028 dm_device_name(t->md), ti->type->name, r);
2029 return r;
2030 }
2031 }
2032
2033 for (i = 0; i < t->num_targets; i++) {
2034 struct dm_target *ti = t->targets + i;
2035
2036 if (ti->type->resume)
2037 ti->type->resume(ti);
2038 }
2039
2040 return 0;
2041}
2042
2043void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
2044{
2045 list_add(&cb->list, &t->target_callbacks);
2046}
2047EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
2048
2049int dm_table_any_congested(struct dm_table *t, int bdi_bits)
2050{
2051 struct dm_dev_internal *dd;
2052 struct list_head *devices = dm_table_get_devices(t);
2053 struct dm_target_callbacks *cb;
2054 int r = 0;
2055
2056 list_for_each_entry(dd, devices, list) {
2057 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
2058 char b[BDEVNAME_SIZE];
2059
2060 if (likely(q))
2061 r |= bdi_congested(q->backing_dev_info, bdi_bits);
2062 else
2063 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
2064 dm_device_name(t->md),
2065 bdevname(dd->dm_dev->bdev, b));
2066 }
2067
2068 list_for_each_entry(cb, &t->target_callbacks, list)
2069 if (cb->congested_fn)
2070 r |= cb->congested_fn(cb, bdi_bits);
2071
2072 return r;
2073}
2074
2075struct mapped_device *dm_table_get_md(struct dm_table *t)
2076{
2077 return t->md;
2078}
2079EXPORT_SYMBOL(dm_table_get_md);
2080
2081void dm_table_run_md_queue_async(struct dm_table *t)
2082{
2083 struct mapped_device *md;
2084 struct request_queue *queue;
2085 unsigned long flags;
2086
2087 if (!dm_table_request_based(t))
2088 return;
2089
2090 md = dm_table_get_md(t);
2091 queue = dm_get_md_queue(md);
2092 if (queue) {
2093 if (queue->mq_ops)
2094 blk_mq_run_hw_queues(queue, true);
2095 else {
2096 spin_lock_irqsave(queue->queue_lock, flags);
2097 blk_run_queue_async(queue);
2098 spin_unlock_irqrestore(queue->queue_lock, flags);
2099 }
2100 }
2101}
2102EXPORT_SYMBOL(dm_table_run_md_queue_async);
2103