Linux Audio

Check our new training course

Loading...
v5.4
   1/*
   2 * Copyright (C) 2001 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9
  10#include <linux/module.h>
  11#include <linux/vmalloc.h>
  12#include <linux/blkdev.h>
  13#include <linux/namei.h>
  14#include <linux/ctype.h>
  15#include <linux/string.h>
  16#include <linux/slab.h>
  17#include <linux/interrupt.h>
  18#include <linux/mutex.h>
  19#include <linux/delay.h>
  20#include <linux/atomic.h>
  21#include <linux/blk-mq.h>
  22#include <linux/mount.h>
  23#include <linux/dax.h>
  24
  25#define DM_MSG_PREFIX "table"
  26
  27#define MAX_DEPTH 16
  28#define NODE_SIZE L1_CACHE_BYTES
  29#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
  30#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
  31
  32struct dm_table {
  33	struct mapped_device *md;
  34	enum dm_queue_mode type;
  35
  36	/* btree table */
  37	unsigned int depth;
  38	unsigned int counts[MAX_DEPTH];	/* in nodes */
  39	sector_t *index[MAX_DEPTH];
  40
  41	unsigned int num_targets;
  42	unsigned int num_allocated;
  43	sector_t *highs;
  44	struct dm_target *targets;
  45
  46	struct target_type *immutable_target_type;
  47
  48	bool integrity_supported:1;
  49	bool singleton:1;
  50	unsigned integrity_added:1;
  51
  52	/*
  53	 * Indicates the rw permissions for the new logical
  54	 * device.  This should be a combination of FMODE_READ
  55	 * and FMODE_WRITE.
  56	 */
  57	fmode_t mode;
  58
  59	/* a list of devices used by this table */
  60	struct list_head devices;
  61
  62	/* events get handed up using this callback */
  63	void (*event_fn)(void *);
  64	void *event_context;
  65
  66	struct dm_md_mempools *mempools;
  67
  68	struct list_head target_callbacks;
  69};
  70
  71/*
  72 * Similar to ceiling(log_size(n))
  73 */
  74static unsigned int int_log(unsigned int n, unsigned int base)
  75{
  76	int result = 0;
  77
  78	while (n > 1) {
  79		n = dm_div_up(n, base);
  80		result++;
  81	}
  82
  83	return result;
  84}
  85
  86/*
  87 * Calculate the index of the child node of the n'th node k'th key.
  88 */
  89static inline unsigned int get_child(unsigned int n, unsigned int k)
  90{
  91	return (n * CHILDREN_PER_NODE) + k;
  92}
  93
  94/*
  95 * Return the n'th node of level l from table t.
  96 */
  97static inline sector_t *get_node(struct dm_table *t,
  98				 unsigned int l, unsigned int n)
  99{
 100	return t->index[l] + (n * KEYS_PER_NODE);
 101}
 102
 103/*
 104 * Return the highest key that you could lookup from the n'th
 105 * node on level l of the btree.
 106 */
 107static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
 108{
 109	for (; l < t->depth - 1; l++)
 110		n = get_child(n, CHILDREN_PER_NODE - 1);
 111
 112	if (n >= t->counts[l])
 113		return (sector_t) - 1;
 114
 115	return get_node(t, l, n)[KEYS_PER_NODE - 1];
 116}
 117
 118/*
 119 * Fills in a level of the btree based on the highs of the level
 120 * below it.
 121 */
 122static int setup_btree_index(unsigned int l, struct dm_table *t)
 123{
 124	unsigned int n, k;
 125	sector_t *node;
 126
 127	for (n = 0U; n < t->counts[l]; n++) {
 128		node = get_node(t, l, n);
 129
 130		for (k = 0U; k < KEYS_PER_NODE; k++)
 131			node[k] = high(t, l + 1, get_child(n, k));
 132	}
 133
 134	return 0;
 135}
 136
 137void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
 138{
 139	unsigned long size;
 140	void *addr;
 141
 142	/*
 143	 * Check that we're not going to overflow.
 144	 */
 145	if (nmemb > (ULONG_MAX / elem_size))
 146		return NULL;
 147
 148	size = nmemb * elem_size;
 149	addr = vzalloc(size);
 150
 151	return addr;
 152}
 153EXPORT_SYMBOL(dm_vcalloc);
 154
 155/*
 156 * highs, and targets are managed as dynamic arrays during a
 157 * table load.
 158 */
 159static int alloc_targets(struct dm_table *t, unsigned int num)
 160{
 161	sector_t *n_highs;
 162	struct dm_target *n_targets;
 163
 164	/*
 165	 * Allocate both the target array and offset array at once.
 
 
 166	 */
 167	n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
 168					  sizeof(sector_t));
 169	if (!n_highs)
 170		return -ENOMEM;
 171
 172	n_targets = (struct dm_target *) (n_highs + num);
 173
 174	memset(n_highs, -1, sizeof(*n_highs) * num);
 175	vfree(t->highs);
 176
 177	t->num_allocated = num;
 178	t->highs = n_highs;
 179	t->targets = n_targets;
 180
 181	return 0;
 182}
 183
 184int dm_table_create(struct dm_table **result, fmode_t mode,
 185		    unsigned num_targets, struct mapped_device *md)
 186{
 187	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
 188
 189	if (!t)
 190		return -ENOMEM;
 191
 192	INIT_LIST_HEAD(&t->devices);
 193	INIT_LIST_HEAD(&t->target_callbacks);
 194
 195	if (!num_targets)
 196		num_targets = KEYS_PER_NODE;
 197
 198	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
 199
 200	if (!num_targets) {
 201		kfree(t);
 202		return -ENOMEM;
 203	}
 204
 205	if (alloc_targets(t, num_targets)) {
 206		kfree(t);
 207		return -ENOMEM;
 208	}
 209
 210	t->type = DM_TYPE_NONE;
 211	t->mode = mode;
 212	t->md = md;
 213	*result = t;
 214	return 0;
 215}
 216
 217static void free_devices(struct list_head *devices, struct mapped_device *md)
 218{
 219	struct list_head *tmp, *next;
 220
 221	list_for_each_safe(tmp, next, devices) {
 222		struct dm_dev_internal *dd =
 223		    list_entry(tmp, struct dm_dev_internal, list);
 224		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
 225		       dm_device_name(md), dd->dm_dev->name);
 226		dm_put_table_device(md, dd->dm_dev);
 227		kfree(dd);
 228	}
 229}
 230
 231void dm_table_destroy(struct dm_table *t)
 232{
 233	unsigned int i;
 234
 235	if (!t)
 236		return;
 237
 238	/* free the indexes */
 239	if (t->depth >= 2)
 240		vfree(t->index[t->depth - 2]);
 241
 242	/* free the targets */
 243	for (i = 0; i < t->num_targets; i++) {
 244		struct dm_target *tgt = t->targets + i;
 245
 246		if (tgt->type->dtr)
 247			tgt->type->dtr(tgt);
 248
 249		dm_put_target_type(tgt->type);
 250	}
 251
 252	vfree(t->highs);
 253
 254	/* free the device list */
 255	free_devices(&t->devices, t->md);
 256
 257	dm_free_md_mempools(t->mempools);
 258
 259	kfree(t);
 260}
 261
 262/*
 263 * See if we've already got a device in the list.
 264 */
 265static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
 266{
 267	struct dm_dev_internal *dd;
 268
 269	list_for_each_entry (dd, l, list)
 270		if (dd->dm_dev->bdev->bd_dev == dev)
 271			return dd;
 272
 273	return NULL;
 274}
 275
 276/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 277 * If possible, this checks an area of a destination device is invalid.
 278 */
 279static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
 280				  sector_t start, sector_t len, void *data)
 281{
 282	struct request_queue *q;
 283	struct queue_limits *limits = data;
 284	struct block_device *bdev = dev->bdev;
 285	sector_t dev_size =
 286		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
 287	unsigned short logical_block_size_sectors =
 288		limits->logical_block_size >> SECTOR_SHIFT;
 289	char b[BDEVNAME_SIZE];
 290
 291	/*
 292	 * Some devices exist without request functions,
 293	 * such as loop devices not yet bound to backing files.
 294	 * Forbid the use of such devices.
 295	 */
 296	q = bdev_get_queue(bdev);
 297	if (!q || !q->make_request_fn) {
 298		DMWARN("%s: %s is not yet initialised: "
 299		       "start=%llu, len=%llu, dev_size=%llu",
 300		       dm_device_name(ti->table->md), bdevname(bdev, b),
 301		       (unsigned long long)start,
 302		       (unsigned long long)len,
 303		       (unsigned long long)dev_size);
 304		return 1;
 305	}
 306
 307	if (!dev_size)
 308		return 0;
 309
 310	if ((start >= dev_size) || (start + len > dev_size)) {
 311		DMWARN("%s: %s too small for target: "
 312		       "start=%llu, len=%llu, dev_size=%llu",
 313		       dm_device_name(ti->table->md), bdevname(bdev, b),
 314		       (unsigned long long)start,
 315		       (unsigned long long)len,
 316		       (unsigned long long)dev_size);
 317		return 1;
 318	}
 319
 320	/*
 321	 * If the target is mapped to zoned block device(s), check
 322	 * that the zones are not partially mapped.
 323	 */
 324	if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
 325		unsigned int zone_sectors = bdev_zone_sectors(bdev);
 326
 327		if (start & (zone_sectors - 1)) {
 328			DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
 329			       dm_device_name(ti->table->md),
 330			       (unsigned long long)start,
 331			       zone_sectors, bdevname(bdev, b));
 332			return 1;
 333		}
 334
 335		/*
 336		 * Note: The last zone of a zoned block device may be smaller
 337		 * than other zones. So for a target mapping the end of a
 338		 * zoned block device with such a zone, len would not be zone
 339		 * aligned. We do not allow such last smaller zone to be part
 340		 * of the mapping here to ensure that mappings with multiple
 341		 * devices do not end up with a smaller zone in the middle of
 342		 * the sector range.
 343		 */
 344		if (len & (zone_sectors - 1)) {
 345			DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
 346			       dm_device_name(ti->table->md),
 347			       (unsigned long long)len,
 348			       zone_sectors, bdevname(bdev, b));
 349			return 1;
 350		}
 351	}
 352
 353	if (logical_block_size_sectors <= 1)
 354		return 0;
 355
 356	if (start & (logical_block_size_sectors - 1)) {
 357		DMWARN("%s: start=%llu not aligned to h/w "
 358		       "logical block size %u of %s",
 359		       dm_device_name(ti->table->md),
 360		       (unsigned long long)start,
 361		       limits->logical_block_size, bdevname(bdev, b));
 362		return 1;
 363	}
 364
 365	if (len & (logical_block_size_sectors - 1)) {
 366		DMWARN("%s: len=%llu not aligned to h/w "
 367		       "logical block size %u of %s",
 368		       dm_device_name(ti->table->md),
 369		       (unsigned long long)len,
 370		       limits->logical_block_size, bdevname(bdev, b));
 371		return 1;
 372	}
 373
 374	return 0;
 375}
 376
 377/*
 378 * This upgrades the mode on an already open dm_dev, being
 379 * careful to leave things as they were if we fail to reopen the
 380 * device and not to touch the existing bdev field in case
 381 * it is accessed concurrently inside dm_table_any_congested().
 382 */
 383static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
 384			struct mapped_device *md)
 385{
 386	int r;
 387	struct dm_dev *old_dev, *new_dev;
 
 
 388
 389	old_dev = dd->dm_dev;
 
 390
 391	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
 392				dd->dm_dev->mode | new_mode, &new_dev);
 393	if (r)
 394		return r;
 395
 396	dd->dm_dev = new_dev;
 397	dm_put_table_device(md, old_dev);
 398
 399	return 0;
 400}
 401
 402/*
 403 * Convert the path to a device
 404 */
 405dev_t dm_get_dev_t(const char *path)
 406{
 407	dev_t dev;
 408	struct block_device *bdev;
 409
 410	bdev = lookup_bdev(path);
 411	if (IS_ERR(bdev))
 412		dev = name_to_dev_t(path);
 413	else {
 414		dev = bdev->bd_dev;
 415		bdput(bdev);
 416	}
 417
 418	return dev;
 419}
 420EXPORT_SYMBOL_GPL(dm_get_dev_t);
 421
 422/*
 423 * Add a device to the list, or just increment the usage count if
 424 * it's already present.
 425 */
 426int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
 427		  struct dm_dev **result)
 428{
 429	int r;
 430	dev_t dev;
 431	struct dm_dev_internal *dd;
 
 432	struct dm_table *t = ti->table;
 
 433
 434	BUG_ON(!t);
 435
 436	dev = dm_get_dev_t(path);
 437	if (!dev)
 438		return -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 439
 440	dd = find_device(&t->devices, dev);
 441	if (!dd) {
 442		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
 443		if (!dd)
 444			return -ENOMEM;
 445
 446		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
 
 
 
 447			kfree(dd);
 448			return r;
 449		}
 450
 451		refcount_set(&dd->count, 1);
 
 
 452		list_add(&dd->list, &t->devices);
 453		goto out;
 454
 455	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
 456		r = upgrade_mode(dd, mode, t->md);
 457		if (r)
 458			return r;
 459	}
 460	refcount_inc(&dd->count);
 461out:
 462	*result = dd->dm_dev;
 463	return 0;
 464}
 465EXPORT_SYMBOL(dm_get_device);
 466
 467static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
 468				sector_t start, sector_t len, void *data)
 469{
 470	struct queue_limits *limits = data;
 471	struct block_device *bdev = dev->bdev;
 472	struct request_queue *q = bdev_get_queue(bdev);
 473	char b[BDEVNAME_SIZE];
 474
 475	if (unlikely(!q)) {
 476		DMWARN("%s: Cannot set limits for nonexistent device %s",
 477		       dm_device_name(ti->table->md), bdevname(bdev, b));
 478		return 0;
 479	}
 480
 481	if (bdev_stack_limits(limits, bdev, start) < 0)
 482		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
 483		       "physical_block_size=%u, logical_block_size=%u, "
 484		       "alignment_offset=%u, start=%llu",
 485		       dm_device_name(ti->table->md), bdevname(bdev, b),
 486		       q->limits.physical_block_size,
 487		       q->limits.logical_block_size,
 488		       q->limits.alignment_offset,
 489		       (unsigned long long) start << SECTOR_SHIFT);
 490
 491	limits->zoned = blk_queue_zoned_model(q);
 492
 
 
 
 
 
 
 493	return 0;
 494}
 
 495
 496/*
 497 * Decrement a device's use count and remove it if necessary.
 498 */
 499void dm_put_device(struct dm_target *ti, struct dm_dev *d)
 500{
 501	int found = 0;
 502	struct list_head *devices = &ti->table->devices;
 503	struct dm_dev_internal *dd;
 504
 505	list_for_each_entry(dd, devices, list) {
 506		if (dd->dm_dev == d) {
 507			found = 1;
 508			break;
 509		}
 510	}
 511	if (!found) {
 512		DMWARN("%s: device %s not in table devices list",
 513		       dm_device_name(ti->table->md), d->name);
 514		return;
 515	}
 516	if (refcount_dec_and_test(&dd->count)) {
 517		dm_put_table_device(ti->table->md, d);
 518		list_del(&dd->list);
 519		kfree(dd);
 520	}
 521}
 522EXPORT_SYMBOL(dm_put_device);
 523
 524/*
 525 * Checks to see if the target joins onto the end of the table.
 526 */
 527static int adjoin(struct dm_table *table, struct dm_target *ti)
 528{
 529	struct dm_target *prev;
 530
 531	if (!table->num_targets)
 532		return !ti->begin;
 533
 534	prev = &table->targets[table->num_targets - 1];
 535	return (ti->begin == (prev->begin + prev->len));
 536}
 537
 538/*
 539 * Used to dynamically allocate the arg array.
 540 *
 541 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
 542 * process messages even if some device is suspended. These messages have a
 543 * small fixed number of arguments.
 544 *
 545 * On the other hand, dm-switch needs to process bulk data using messages and
 546 * excessive use of GFP_NOIO could cause trouble.
 547 */
 548static char **realloc_argv(unsigned *size, char **old_argv)
 549{
 550	char **argv;
 551	unsigned new_size;
 552	gfp_t gfp;
 553
 554	if (*size) {
 555		new_size = *size * 2;
 556		gfp = GFP_KERNEL;
 557	} else {
 558		new_size = 8;
 559		gfp = GFP_NOIO;
 560	}
 561	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
 562	if (argv && old_argv) {
 563		memcpy(argv, old_argv, *size * sizeof(*argv));
 564		*size = new_size;
 565	}
 566
 567	kfree(old_argv);
 568	return argv;
 569}
 570
 571/*
 572 * Destructively splits up the argument list to pass to ctr.
 573 */
 574int dm_split_args(int *argc, char ***argvp, char *input)
 575{
 576	char *start, *end = input, *out, **argv = NULL;
 577	unsigned array_size = 0;
 578
 579	*argc = 0;
 580
 581	if (!input) {
 582		*argvp = NULL;
 583		return 0;
 584	}
 585
 586	argv = realloc_argv(&array_size, argv);
 587	if (!argv)
 588		return -ENOMEM;
 589
 590	while (1) {
 591		/* Skip whitespace */
 592		start = skip_spaces(end);
 593
 594		if (!*start)
 595			break;	/* success, we hit the end */
 596
 597		/* 'out' is used to remove any back-quotes */
 598		end = out = start;
 599		while (*end) {
 600			/* Everything apart from '\0' can be quoted */
 601			if (*end == '\\' && *(end + 1)) {
 602				*out++ = *(end + 1);
 603				end += 2;
 604				continue;
 605			}
 606
 607			if (isspace(*end))
 608				break;	/* end of token */
 609
 610			*out++ = *end++;
 611		}
 612
 613		/* have we already filled the array ? */
 614		if ((*argc + 1) > array_size) {
 615			argv = realloc_argv(&array_size, argv);
 616			if (!argv)
 617				return -ENOMEM;
 618		}
 619
 620		/* we know this is whitespace */
 621		if (*end)
 622			end++;
 623
 624		/* terminate the string and put it in the array */
 625		*out = '\0';
 626		argv[*argc] = start;
 627		(*argc)++;
 628	}
 629
 630	*argvp = argv;
 631	return 0;
 632}
 633
 634/*
 635 * Impose necessary and sufficient conditions on a devices's table such
 636 * that any incoming bio which respects its logical_block_size can be
 637 * processed successfully.  If it falls across the boundary between
 638 * two or more targets, the size of each piece it gets split into must
 639 * be compatible with the logical_block_size of the target processing it.
 640 */
 641static int validate_hardware_logical_block_alignment(struct dm_table *table,
 642						 struct queue_limits *limits)
 643{
 644	/*
 645	 * This function uses arithmetic modulo the logical_block_size
 646	 * (in units of 512-byte sectors).
 647	 */
 648	unsigned short device_logical_block_size_sects =
 649		limits->logical_block_size >> SECTOR_SHIFT;
 650
 651	/*
 652	 * Offset of the start of the next table entry, mod logical_block_size.
 653	 */
 654	unsigned short next_target_start = 0;
 655
 656	/*
 657	 * Given an aligned bio that extends beyond the end of a
 658	 * target, how many sectors must the next target handle?
 659	 */
 660	unsigned short remaining = 0;
 661
 662	struct dm_target *uninitialized_var(ti);
 663	struct queue_limits ti_limits;
 664	unsigned i;
 665
 666	/*
 667	 * Check each entry in the table in turn.
 668	 */
 669	for (i = 0; i < dm_table_get_num_targets(table); i++) {
 670		ti = dm_table_get_target(table, i);
 671
 672		blk_set_stacking_limits(&ti_limits);
 673
 674		/* combine all target devices' limits */
 675		if (ti->type->iterate_devices)
 676			ti->type->iterate_devices(ti, dm_set_device_limits,
 677						  &ti_limits);
 678
 679		/*
 680		 * If the remaining sectors fall entirely within this
 681		 * table entry are they compatible with its logical_block_size?
 682		 */
 683		if (remaining < ti->len &&
 684		    remaining & ((ti_limits.logical_block_size >>
 685				  SECTOR_SHIFT) - 1))
 686			break;	/* Error */
 687
 688		next_target_start =
 689		    (unsigned short) ((next_target_start + ti->len) &
 690				      (device_logical_block_size_sects - 1));
 691		remaining = next_target_start ?
 692		    device_logical_block_size_sects - next_target_start : 0;
 693	}
 694
 695	if (remaining) {
 696		DMWARN("%s: table line %u (start sect %llu len %llu) "
 697		       "not aligned to h/w logical block size %u",
 698		       dm_device_name(table->md), i,
 699		       (unsigned long long) ti->begin,
 700		       (unsigned long long) ti->len,
 701		       limits->logical_block_size);
 702		return -EINVAL;
 703	}
 704
 705	return 0;
 706}
 707
 708int dm_table_add_target(struct dm_table *t, const char *type,
 709			sector_t start, sector_t len, char *params)
 710{
 711	int r = -EINVAL, argc;
 712	char **argv;
 713	struct dm_target *tgt;
 714
 715	if (t->singleton) {
 716		DMERR("%s: target type %s must appear alone in table",
 717		      dm_device_name(t->md), t->targets->type->name);
 718		return -EINVAL;
 719	}
 720
 721	BUG_ON(t->num_targets >= t->num_allocated);
 722
 723	tgt = t->targets + t->num_targets;
 724	memset(tgt, 0, sizeof(*tgt));
 725
 726	if (!len) {
 727		DMERR("%s: zero-length target", dm_device_name(t->md));
 728		return -EINVAL;
 729	}
 730
 731	tgt->type = dm_get_target_type(type);
 732	if (!tgt->type) {
 733		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
 
 734		return -EINVAL;
 735	}
 736
 737	if (dm_target_needs_singleton(tgt->type)) {
 738		if (t->num_targets) {
 739			tgt->error = "singleton target type must appear alone in table";
 740			goto bad;
 
 741		}
 742		t->singleton = true;
 743	}
 744
 745	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
 746		tgt->error = "target type may not be included in a read-only table";
 747		goto bad;
 
 748	}
 749
 750	if (t->immutable_target_type) {
 751		if (t->immutable_target_type != tgt->type) {
 752			tgt->error = "immutable target type cannot be mixed with other target types";
 753			goto bad;
 
 754		}
 755	} else if (dm_target_is_immutable(tgt->type)) {
 756		if (t->num_targets) {
 757			tgt->error = "immutable target type cannot be mixed with other target types";
 758			goto bad;
 
 759		}
 760		t->immutable_target_type = tgt->type;
 761	}
 762
 763	if (dm_target_has_integrity(tgt->type))
 764		t->integrity_added = 1;
 765
 766	tgt->table = t;
 767	tgt->begin = start;
 768	tgt->len = len;
 769	tgt->error = "Unknown error";
 770
 771	/*
 772	 * Does this target adjoin the previous one ?
 773	 */
 774	if (!adjoin(t, tgt)) {
 775		tgt->error = "Gap in table";
 
 776		goto bad;
 777	}
 778
 779	r = dm_split_args(&argc, &argv, params);
 780	if (r) {
 781		tgt->error = "couldn't split parameters (insufficient memory)";
 782		goto bad;
 783	}
 784
 785	r = tgt->type->ctr(tgt, argc, argv);
 786	kfree(argv);
 787	if (r)
 788		goto bad;
 789
 790	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
 791
 792	if (!tgt->num_discard_bios && tgt->discards_supported)
 793		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
 794		       dm_device_name(t->md), type);
 795
 796	return 0;
 797
 798 bad:
 799	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
 800	dm_put_target_type(tgt->type);
 801	return r;
 802}
 803
 804/*
 805 * Target argument parsing helpers.
 806 */
 807static int validate_next_arg(const struct dm_arg *arg,
 808			     struct dm_arg_set *arg_set,
 809			     unsigned *value, char **error, unsigned grouped)
 810{
 811	const char *arg_str = dm_shift_arg(arg_set);
 812	char dummy;
 813
 814	if (!arg_str ||
 815	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
 816	    (*value < arg->min) ||
 817	    (*value > arg->max) ||
 818	    (grouped && arg_set->argc < *value)) {
 819		*error = arg->error;
 820		return -EINVAL;
 821	}
 822
 823	return 0;
 824}
 825
 826int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
 827		unsigned *value, char **error)
 828{
 829	return validate_next_arg(arg, arg_set, value, error, 0);
 830}
 831EXPORT_SYMBOL(dm_read_arg);
 832
 833int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
 834		      unsigned *value, char **error)
 835{
 836	return validate_next_arg(arg, arg_set, value, error, 1);
 837}
 838EXPORT_SYMBOL(dm_read_arg_group);
 839
 840const char *dm_shift_arg(struct dm_arg_set *as)
 841{
 842	char *r;
 843
 844	if (as->argc) {
 845		as->argc--;
 846		r = *as->argv;
 847		as->argv++;
 848		return r;
 849	}
 850
 851	return NULL;
 852}
 853EXPORT_SYMBOL(dm_shift_arg);
 854
 855void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
 856{
 857	BUG_ON(as->argc < num_args);
 858	as->argc -= num_args;
 859	as->argv += num_args;
 860}
 861EXPORT_SYMBOL(dm_consume_args);
 862
 863static bool __table_type_bio_based(enum dm_queue_mode table_type)
 864{
 865	return (table_type == DM_TYPE_BIO_BASED ||
 866		table_type == DM_TYPE_DAX_BIO_BASED ||
 867		table_type == DM_TYPE_NVME_BIO_BASED);
 868}
 869
 870static bool __table_type_request_based(enum dm_queue_mode table_type)
 871{
 872	return table_type == DM_TYPE_REQUEST_BASED;
 873}
 874
 875void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
 876{
 877	t->type = type;
 878}
 879EXPORT_SYMBOL_GPL(dm_table_set_type);
 880
 881/* validate the dax capability of the target device span */
 882int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
 883			sector_t start, sector_t len, void *data)
 884{
 885	int blocksize = *(int *) data;
 886
 887	return generic_fsdax_supported(dev->dax_dev, dev->bdev, blocksize,
 888				       start, len);
 889}
 890
 891/* Check devices support synchronous DAX */
 892static int device_dax_synchronous(struct dm_target *ti, struct dm_dev *dev,
 893				  sector_t start, sector_t len, void *data)
 894{
 895	return dev->dax_dev && dax_synchronous(dev->dax_dev);
 896}
 897
 898bool dm_table_supports_dax(struct dm_table *t,
 899			   iterate_devices_callout_fn iterate_fn, int *blocksize)
 900{
 901	struct dm_target *ti;
 902	unsigned i;
 903
 904	/* Ensure that all targets support DAX. */
 905	for (i = 0; i < dm_table_get_num_targets(t); i++) {
 906		ti = dm_table_get_target(t, i);
 907
 908		if (!ti->type->direct_access)
 909			return false;
 910
 911		if (!ti->type->iterate_devices ||
 912		    !ti->type->iterate_devices(ti, iterate_fn, blocksize))
 913			return false;
 914	}
 915
 916	return true;
 917}
 918
 919static bool dm_table_does_not_support_partial_completion(struct dm_table *t);
 920
 921struct verify_rq_based_data {
 922	unsigned sq_count;
 923	unsigned mq_count;
 924};
 925
 926static int device_is_rq_based(struct dm_target *ti, struct dm_dev *dev,
 927			      sector_t start, sector_t len, void *data)
 928{
 929	struct request_queue *q = bdev_get_queue(dev->bdev);
 930	struct verify_rq_based_data *v = data;
 931
 932	if (queue_is_mq(q))
 933		v->mq_count++;
 934	else
 935		v->sq_count++;
 936
 937	return queue_is_mq(q);
 938}
 939
 940static int dm_table_determine_type(struct dm_table *t)
 941{
 942	unsigned i;
 943	unsigned bio_based = 0, request_based = 0, hybrid = 0;
 944	struct verify_rq_based_data v = {.sq_count = 0, .mq_count = 0};
 945	struct dm_target *tgt;
 946	struct list_head *devices = dm_table_get_devices(t);
 947	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
 948	int page_size = PAGE_SIZE;
 949
 950	if (t->type != DM_TYPE_NONE) {
 951		/* target already set the table's type */
 952		if (t->type == DM_TYPE_BIO_BASED) {
 953			/* possibly upgrade to a variant of bio-based */
 954			goto verify_bio_based;
 955		}
 956		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
 957		BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED);
 958		goto verify_rq_based;
 959	}
 960
 961	for (i = 0; i < t->num_targets; i++) {
 962		tgt = t->targets + i;
 963		if (dm_target_hybrid(tgt))
 964			hybrid = 1;
 965		else if (dm_target_request_based(tgt))
 966			request_based = 1;
 967		else
 968			bio_based = 1;
 969
 970		if (bio_based && request_based) {
 971			DMERR("Inconsistent table: different target types"
 972			      " can't be mixed up");
 973			return -EINVAL;
 974		}
 975	}
 976
 977	if (hybrid && !bio_based && !request_based) {
 978		/*
 979		 * The targets can work either way.
 980		 * Determine the type from the live device.
 981		 * Default to bio-based if device is new.
 982		 */
 983		if (__table_type_request_based(live_md_type))
 
 984			request_based = 1;
 985		else
 986			bio_based = 1;
 987	}
 988
 989	if (bio_based) {
 990verify_bio_based:
 991		/* We must use this table as bio-based */
 992		t->type = DM_TYPE_BIO_BASED;
 993		if (dm_table_supports_dax(t, device_supports_dax, &page_size) ||
 994		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
 995			t->type = DM_TYPE_DAX_BIO_BASED;
 996		} else {
 997			/* Check if upgrading to NVMe bio-based is valid or required */
 998			tgt = dm_table_get_immutable_target(t);
 999			if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) {
1000				t->type = DM_TYPE_NVME_BIO_BASED;
1001				goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */
1002			} else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) {
1003				t->type = DM_TYPE_NVME_BIO_BASED;
1004			}
1005		}
1006		return 0;
1007	}
1008
1009	BUG_ON(!request_based); /* No targets in this table */
1010
1011	t->type = DM_TYPE_REQUEST_BASED;
 
 
 
 
 
 
 
 
1012
1013verify_rq_based:
1014	/*
1015	 * Request-based dm supports only tables that have a single target now.
1016	 * To support multiple targets, request splitting support is needed,
1017	 * and that needs lots of changes in the block-layer.
1018	 * (e.g. request completion process for partial completion.)
1019	 */
1020	if (t->num_targets > 1) {
1021		DMERR("%s DM doesn't support multiple targets",
1022		      t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based");
1023		return -EINVAL;
1024	}
1025
1026	if (list_empty(devices)) {
1027		int srcu_idx;
1028		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
1029
1030		/* inherit live table's type */
1031		if (live_table)
1032			t->type = live_table->type;
1033		dm_put_live_table(t->md, srcu_idx);
1034		return 0;
1035	}
1036
1037	tgt = dm_table_get_immutable_target(t);
1038	if (!tgt) {
1039		DMERR("table load rejected: immutable target is required");
1040		return -EINVAL;
1041	} else if (tgt->max_io_len) {
1042		DMERR("table load rejected: immutable target that splits IO is not supported");
1043		return -EINVAL;
1044	}
1045
1046	/* Non-request-stackable devices can't be used for request-based dm */
1047	if (!tgt->type->iterate_devices ||
1048	    !tgt->type->iterate_devices(tgt, device_is_rq_based, &v)) {
1049		DMERR("table load rejected: including non-request-stackable devices");
1050		return -EINVAL;
1051	}
1052	if (v.sq_count > 0) {
1053		DMERR("table load rejected: not all devices are blk-mq request-stackable");
1054		return -EINVAL;
1055	}
1056
1057	return 0;
1058}
1059
1060enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1061{
1062	return t->type;
1063}
1064
1065struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1066{
1067	return t->immutable_target_type;
1068}
1069
1070struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1071{
1072	/* Immutable target is implicitly a singleton */
1073	if (t->num_targets > 1 ||
1074	    !dm_target_is_immutable(t->targets[0].type))
1075		return NULL;
1076
1077	return t->targets;
1078}
1079
1080struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1081{
1082	struct dm_target *ti;
1083	unsigned i;
1084
1085	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1086		ti = dm_table_get_target(t, i);
1087		if (dm_target_is_wildcard(ti->type))
1088			return ti;
1089	}
1090
1091	return NULL;
1092}
1093
1094bool dm_table_bio_based(struct dm_table *t)
1095{
1096	return __table_type_bio_based(dm_table_get_type(t));
1097}
1098
1099bool dm_table_request_based(struct dm_table *t)
1100{
1101	return __table_type_request_based(dm_table_get_type(t));
1102}
1103
1104static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1105{
1106	enum dm_queue_mode type = dm_table_get_type(t);
1107	unsigned per_io_data_size = 0;
1108	unsigned min_pool_size = 0;
1109	struct dm_target *ti;
1110	unsigned i;
1111
1112	if (unlikely(type == DM_TYPE_NONE)) {
1113		DMWARN("no table type is set, can't allocate mempools");
1114		return -EINVAL;
1115	}
1116
1117	if (__table_type_bio_based(type))
1118		for (i = 0; i < t->num_targets; i++) {
1119			ti = t->targets + i;
1120			per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1121			min_pool_size = max(min_pool_size, ti->num_flush_bios);
1122		}
1123
1124	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1125					   per_io_data_size, min_pool_size);
1126	if (!t->mempools)
1127		return -ENOMEM;
1128
1129	return 0;
1130}
1131
1132void dm_table_free_md_mempools(struct dm_table *t)
1133{
1134	dm_free_md_mempools(t->mempools);
1135	t->mempools = NULL;
1136}
1137
1138struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1139{
1140	return t->mempools;
1141}
1142
1143static int setup_indexes(struct dm_table *t)
1144{
1145	int i;
1146	unsigned int total = 0;
1147	sector_t *indexes;
1148
1149	/* allocate the space for *all* the indexes */
1150	for (i = t->depth - 2; i >= 0; i--) {
1151		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1152		total += t->counts[i];
1153	}
1154
1155	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1156	if (!indexes)
1157		return -ENOMEM;
1158
1159	/* set up internal nodes, bottom-up */
1160	for (i = t->depth - 2; i >= 0; i--) {
1161		t->index[i] = indexes;
1162		indexes += (KEYS_PER_NODE * t->counts[i]);
1163		setup_btree_index(i, t);
1164	}
1165
1166	return 0;
1167}
1168
1169/*
1170 * Builds the btree to index the map.
1171 */
1172static int dm_table_build_index(struct dm_table *t)
1173{
1174	int r = 0;
1175	unsigned int leaf_nodes;
1176
1177	/* how many indexes will the btree have ? */
1178	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1179	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1180
1181	/* leaf layer has already been set up */
1182	t->counts[t->depth - 1] = leaf_nodes;
1183	t->index[t->depth - 1] = t->highs;
1184
1185	if (t->depth >= 2)
1186		r = setup_indexes(t);
1187
1188	return r;
1189}
1190
1191static bool integrity_profile_exists(struct gendisk *disk)
1192{
1193	return !!blk_get_integrity(disk);
1194}
1195
1196/*
1197 * Get a disk whose integrity profile reflects the table's profile.
 
 
 
1198 * Returns NULL if integrity support was inconsistent or unavailable.
1199 */
1200static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
 
1201{
1202	struct list_head *devices = dm_table_get_devices(t);
1203	struct dm_dev_internal *dd = NULL;
1204	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1205	unsigned i;
1206
1207	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1208		struct dm_target *ti = dm_table_get_target(t, i);
1209		if (!dm_target_passes_integrity(ti->type))
1210			goto no_integrity;
1211	}
1212
1213	list_for_each_entry(dd, devices, list) {
1214		template_disk = dd->dm_dev->bdev->bd_disk;
1215		if (!integrity_profile_exists(template_disk))
1216			goto no_integrity;
 
 
1217		else if (prev_disk &&
1218			 blk_integrity_compare(prev_disk, template_disk) < 0)
1219			goto no_integrity;
1220		prev_disk = template_disk;
1221	}
1222
1223	return template_disk;
1224
1225no_integrity:
1226	if (prev_disk)
1227		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1228		       dm_device_name(t->md),
1229		       prev_disk->disk_name,
1230		       template_disk->disk_name);
1231	return NULL;
1232}
1233
1234/*
1235 * Register the mapped device for blk_integrity support if the
1236 * underlying devices have an integrity profile.  But all devices may
1237 * not have matching profiles (checking all devices isn't reliable
1238 * during table load because this table may use other DM device(s) which
1239 * must be resumed before they will have an initialized integity
1240 * profile).  Consequently, stacked DM devices force a 2 stage integrity
1241 * profile validation: First pass during table load, final pass during
1242 * resume.
1243 */
1244static int dm_table_register_integrity(struct dm_table *t)
1245{
1246	struct mapped_device *md = t->md;
1247	struct gendisk *template_disk = NULL;
1248
1249	/* If target handles integrity itself do not register it here. */
1250	if (t->integrity_added)
1251		return 0;
1252
1253	template_disk = dm_table_get_integrity_disk(t);
1254	if (!template_disk)
1255		return 0;
1256
1257	if (!integrity_profile_exists(dm_disk(md))) {
1258		t->integrity_supported = true;
1259		/*
1260		 * Register integrity profile during table load; we can do
1261		 * this because the final profile must match during resume.
1262		 */
1263		blk_integrity_register(dm_disk(md),
1264				       blk_get_integrity(template_disk));
1265		return 0;
1266	}
1267
1268	/*
1269	 * If DM device already has an initialized integrity
1270	 * profile the new profile should not conflict.
1271	 */
1272	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
 
1273		DMWARN("%s: conflict with existing integrity profile: "
1274		       "%s profile mismatch",
1275		       dm_device_name(t->md),
1276		       template_disk->disk_name);
1277		return 1;
1278	}
1279
1280	/* Preserve existing integrity profile */
1281	t->integrity_supported = true;
1282	return 0;
1283}
1284
1285/*
1286 * Prepares the table for use by building the indices,
1287 * setting the type, and allocating mempools.
1288 */
1289int dm_table_complete(struct dm_table *t)
1290{
1291	int r;
1292
1293	r = dm_table_determine_type(t);
1294	if (r) {
1295		DMERR("unable to determine table type");
1296		return r;
1297	}
1298
1299	r = dm_table_build_index(t);
1300	if (r) {
1301		DMERR("unable to build btrees");
1302		return r;
1303	}
1304
1305	r = dm_table_register_integrity(t);
1306	if (r) {
1307		DMERR("could not register integrity profile.");
1308		return r;
1309	}
1310
1311	r = dm_table_alloc_md_mempools(t, t->md);
1312	if (r)
1313		DMERR("unable to allocate mempools");
1314
1315	return r;
1316}
1317
1318static DEFINE_MUTEX(_event_lock);
1319void dm_table_event_callback(struct dm_table *t,
1320			     void (*fn)(void *), void *context)
1321{
1322	mutex_lock(&_event_lock);
1323	t->event_fn = fn;
1324	t->event_context = context;
1325	mutex_unlock(&_event_lock);
1326}
1327
1328void dm_table_event(struct dm_table *t)
1329{
1330	/*
1331	 * You can no longer call dm_table_event() from interrupt
1332	 * context, use a bottom half instead.
1333	 */
1334	BUG_ON(in_interrupt());
1335
1336	mutex_lock(&_event_lock);
1337	if (t->event_fn)
1338		t->event_fn(t->event_context);
1339	mutex_unlock(&_event_lock);
1340}
1341EXPORT_SYMBOL(dm_table_event);
1342
1343inline sector_t dm_table_get_size(struct dm_table *t)
1344{
1345	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1346}
1347EXPORT_SYMBOL(dm_table_get_size);
1348
1349struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1350{
1351	if (index >= t->num_targets)
1352		return NULL;
1353
1354	return t->targets + index;
1355}
1356
1357/*
1358 * Search the btree for the correct target.
1359 *
1360 * Caller should check returned pointer for NULL
1361 * to trap I/O beyond end of device.
1362 */
1363struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1364{
1365	unsigned int l, n = 0, k = 0;
1366	sector_t *node;
1367
1368	if (unlikely(sector >= dm_table_get_size(t)))
1369		return NULL;
1370
1371	for (l = 0; l < t->depth; l++) {
1372		n = get_child(n, k);
1373		node = get_node(t, l, n);
1374
1375		for (k = 0; k < KEYS_PER_NODE; k++)
1376			if (node[k] >= sector)
1377				break;
1378	}
1379
1380	return &t->targets[(KEYS_PER_NODE * n) + k];
1381}
1382
1383static int count_device(struct dm_target *ti, struct dm_dev *dev,
1384			sector_t start, sector_t len, void *data)
1385{
1386	unsigned *num_devices = data;
1387
1388	(*num_devices)++;
1389
1390	return 0;
1391}
1392
1393/*
1394 * Check whether a table has no data devices attached using each
1395 * target's iterate_devices method.
1396 * Returns false if the result is unknown because a target doesn't
1397 * support iterate_devices.
1398 */
1399bool dm_table_has_no_data_devices(struct dm_table *table)
1400{
1401	struct dm_target *ti;
1402	unsigned i, num_devices;
1403
1404	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1405		ti = dm_table_get_target(table, i);
1406
1407		if (!ti->type->iterate_devices)
1408			return false;
1409
1410		num_devices = 0;
1411		ti->type->iterate_devices(ti, count_device, &num_devices);
1412		if (num_devices)
1413			return false;
1414	}
1415
1416	return true;
1417}
1418
1419static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1420				 sector_t start, sector_t len, void *data)
1421{
1422	struct request_queue *q = bdev_get_queue(dev->bdev);
1423	enum blk_zoned_model *zoned_model = data;
1424
1425	return q && blk_queue_zoned_model(q) == *zoned_model;
1426}
1427
1428static bool dm_table_supports_zoned_model(struct dm_table *t,
1429					  enum blk_zoned_model zoned_model)
1430{
1431	struct dm_target *ti;
1432	unsigned i;
1433
1434	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1435		ti = dm_table_get_target(t, i);
1436
1437		if (zoned_model == BLK_ZONED_HM &&
1438		    !dm_target_supports_zoned_hm(ti->type))
1439			return false;
1440
1441		if (!ti->type->iterate_devices ||
1442		    !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1443			return false;
1444	}
1445
1446	return true;
1447}
1448
1449static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1450				       sector_t start, sector_t len, void *data)
1451{
1452	struct request_queue *q = bdev_get_queue(dev->bdev);
1453	unsigned int *zone_sectors = data;
1454
1455	return q && blk_queue_zone_sectors(q) == *zone_sectors;
1456}
1457
1458static bool dm_table_matches_zone_sectors(struct dm_table *t,
1459					  unsigned int zone_sectors)
1460{
1461	struct dm_target *ti;
1462	unsigned i;
1463
1464	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1465		ti = dm_table_get_target(t, i);
1466
1467		if (!ti->type->iterate_devices ||
1468		    !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1469			return false;
1470	}
1471
1472	return true;
1473}
1474
1475static int validate_hardware_zoned_model(struct dm_table *table,
1476					 enum blk_zoned_model zoned_model,
1477					 unsigned int zone_sectors)
1478{
1479	if (zoned_model == BLK_ZONED_NONE)
1480		return 0;
1481
1482	if (!dm_table_supports_zoned_model(table, zoned_model)) {
1483		DMERR("%s: zoned model is not consistent across all devices",
1484		      dm_device_name(table->md));
1485		return -EINVAL;
1486	}
1487
1488	/* Check zone size validity and compatibility */
1489	if (!zone_sectors || !is_power_of_2(zone_sectors))
1490		return -EINVAL;
1491
1492	if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1493		DMERR("%s: zone sectors is not consistent across all devices",
1494		      dm_device_name(table->md));
1495		return -EINVAL;
1496	}
1497
1498	return 0;
1499}
1500
1501/*
1502 * Establish the new table's queue_limits and validate them.
1503 */
1504int dm_calculate_queue_limits(struct dm_table *table,
1505			      struct queue_limits *limits)
1506{
1507	struct dm_target *ti;
1508	struct queue_limits ti_limits;
1509	unsigned i;
1510	enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1511	unsigned int zone_sectors = 0;
1512
1513	blk_set_stacking_limits(limits);
1514
1515	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1516		blk_set_stacking_limits(&ti_limits);
1517
1518		ti = dm_table_get_target(table, i);
1519
1520		if (!ti->type->iterate_devices)
1521			goto combine_limits;
1522
1523		/*
1524		 * Combine queue limits of all the devices this target uses.
1525		 */
1526		ti->type->iterate_devices(ti, dm_set_device_limits,
1527					  &ti_limits);
1528
1529		if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1530			/*
1531			 * After stacking all limits, validate all devices
1532			 * in table support this zoned model and zone sectors.
1533			 */
1534			zoned_model = ti_limits.zoned;
1535			zone_sectors = ti_limits.chunk_sectors;
1536		}
1537
1538		/* Set I/O hints portion of queue limits */
1539		if (ti->type->io_hints)
1540			ti->type->io_hints(ti, &ti_limits);
1541
1542		/*
1543		 * Check each device area is consistent with the target's
1544		 * overall queue limits.
1545		 */
1546		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1547					      &ti_limits))
1548			return -EINVAL;
1549
1550combine_limits:
1551		/*
1552		 * Merge this target's queue limits into the overall limits
1553		 * for the table.
1554		 */
1555		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1556			DMWARN("%s: adding target device "
1557			       "(start sect %llu len %llu) "
1558			       "caused an alignment inconsistency",
1559			       dm_device_name(table->md),
1560			       (unsigned long long) ti->begin,
1561			       (unsigned long long) ti->len);
1562
1563		/*
1564		 * FIXME: this should likely be moved to blk_stack_limits(), would
1565		 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1566		 */
1567		if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1568			/*
1569			 * By default, the stacked limits zoned model is set to
1570			 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1571			 * this model using the first target model reported
1572			 * that is not BLK_ZONED_NONE. This will be either the
1573			 * first target device zoned model or the model reported
1574			 * by the target .io_hints.
1575			 */
1576			limits->zoned = ti_limits.zoned;
1577		}
1578	}
1579
1580	/*
1581	 * Verify that the zoned model and zone sectors, as determined before
1582	 * any .io_hints override, are the same across all devices in the table.
1583	 * - this is especially relevant if .io_hints is emulating a disk-managed
1584	 *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1585	 * BUT...
1586	 */
1587	if (limits->zoned != BLK_ZONED_NONE) {
1588		/*
1589		 * ...IF the above limits stacking determined a zoned model
1590		 * validate that all of the table's devices conform to it.
1591		 */
1592		zoned_model = limits->zoned;
1593		zone_sectors = limits->chunk_sectors;
1594	}
1595	if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1596		return -EINVAL;
1597
1598	return validate_hardware_logical_block_alignment(table, limits);
1599}
1600
1601/*
1602 * Verify that all devices have an integrity profile that matches the
1603 * DM device's registered integrity profile.  If the profiles don't
1604 * match then unregister the DM device's integrity profile.
 
 
1605 */
1606static void dm_table_verify_integrity(struct dm_table *t)
1607{
1608	struct gendisk *template_disk = NULL;
1609
1610	if (t->integrity_added)
1611		return;
1612
1613	if (t->integrity_supported) {
1614		/*
1615		 * Verify that the original integrity profile
1616		 * matches all the devices in this table.
1617		 */
1618		template_disk = dm_table_get_integrity_disk(t);
1619		if (template_disk &&
1620		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1621			return;
1622	}
1623
1624	if (integrity_profile_exists(dm_disk(t->md))) {
1625		DMWARN("%s: unable to establish an integrity profile",
1626		       dm_device_name(t->md));
1627		blk_integrity_unregister(dm_disk(t->md));
1628	}
1629}
1630
1631static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1632				sector_t start, sector_t len, void *data)
1633{
1634	unsigned long flush = (unsigned long) data;
1635	struct request_queue *q = bdev_get_queue(dev->bdev);
1636
1637	return q && (q->queue_flags & flush);
1638}
1639
1640static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1641{
1642	struct dm_target *ti;
1643	unsigned i;
1644
1645	/*
1646	 * Require at least one underlying device to support flushes.
1647	 * t->devices includes internal dm devices such as mirror logs
1648	 * so we need to use iterate_devices here, which targets
1649	 * supporting flushes must provide.
1650	 */
1651	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1652		ti = dm_table_get_target(t, i);
1653
1654		if (!ti->num_flush_bios)
1655			continue;
1656
1657		if (ti->flush_supported)
1658			return true;
1659
1660		if (ti->type->iterate_devices &&
1661		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1662			return true;
1663	}
1664
1665	return false;
1666}
1667
1668static int device_dax_write_cache_enabled(struct dm_target *ti,
1669					  struct dm_dev *dev, sector_t start,
1670					  sector_t len, void *data)
1671{
1672	struct dax_device *dax_dev = dev->dax_dev;
1673
1674	if (!dax_dev)
1675		return false;
1676
1677	if (dax_write_cache_enabled(dax_dev))
1678		return true;
1679	return false;
1680}
1681
1682static int dm_table_supports_dax_write_cache(struct dm_table *t)
1683{
1684	struct dm_target *ti;
1685	unsigned i;
1686
1687	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1688		ti = dm_table_get_target(t, i);
 
1689
1690		if (ti->type->iterate_devices &&
1691		    ti->type->iterate_devices(ti,
1692				device_dax_write_cache_enabled, NULL))
1693			return true;
1694	}
1695
1696	return false;
1697}
1698
1699static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1700			    sector_t start, sector_t len, void *data)
1701{
1702	struct request_queue *q = bdev_get_queue(dev->bdev);
1703
1704	return q && blk_queue_nonrot(q);
1705}
1706
1707static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1708			     sector_t start, sector_t len, void *data)
1709{
1710	struct request_queue *q = bdev_get_queue(dev->bdev);
1711
1712	return q && !blk_queue_add_random(q);
1713}
1714
1715static bool dm_table_all_devices_attribute(struct dm_table *t,
1716					   iterate_devices_callout_fn func)
1717{
1718	struct dm_target *ti;
1719	unsigned i;
1720
1721	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1722		ti = dm_table_get_target(t, i);
1723
1724		if (!ti->type->iterate_devices ||
1725		    !ti->type->iterate_devices(ti, func, NULL))
1726			return false;
1727	}
1728
1729	return true;
1730}
1731
1732static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev,
1733					sector_t start, sector_t len, void *data)
1734{
1735	char b[BDEVNAME_SIZE];
1736
1737	/* For now, NVMe devices are the only devices of this class */
1738	return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0);
1739}
1740
1741static bool dm_table_does_not_support_partial_completion(struct dm_table *t)
1742{
1743	return dm_table_all_devices_attribute(t, device_no_partial_completion);
1744}
1745
1746static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1747					 sector_t start, sector_t len, void *data)
1748{
1749	struct request_queue *q = bdev_get_queue(dev->bdev);
1750
1751	return q && !q->limits.max_write_same_sectors;
1752}
1753
1754static bool dm_table_supports_write_same(struct dm_table *t)
1755{
1756	struct dm_target *ti;
1757	unsigned i;
1758
1759	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1760		ti = dm_table_get_target(t, i);
1761
1762		if (!ti->num_write_same_bios)
1763			return false;
1764
1765		if (!ti->type->iterate_devices ||
1766		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1767			return false;
1768	}
1769
1770	return true;
1771}
1772
1773static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1774					   sector_t start, sector_t len, void *data)
1775{
1776	struct request_queue *q = bdev_get_queue(dev->bdev);
1777
1778	return q && !q->limits.max_write_zeroes_sectors;
1779}
1780
1781static bool dm_table_supports_write_zeroes(struct dm_table *t)
1782{
1783	struct dm_target *ti;
1784	unsigned i = 0;
1785
1786	while (i < dm_table_get_num_targets(t)) {
1787		ti = dm_table_get_target(t, i++);
1788
1789		if (!ti->num_write_zeroes_bios)
1790			return false;
1791
1792		if (!ti->type->iterate_devices ||
1793		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1794			return false;
1795	}
1796
1797	return true;
1798}
1799
1800static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1801				      sector_t start, sector_t len, void *data)
1802{
1803	struct request_queue *q = bdev_get_queue(dev->bdev);
1804
1805	return q && !blk_queue_discard(q);
1806}
1807
1808static bool dm_table_supports_discards(struct dm_table *t)
1809{
1810	struct dm_target *ti;
1811	unsigned i;
1812
1813	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1814		ti = dm_table_get_target(t, i);
1815
1816		if (!ti->num_discard_bios)
1817			return false;
1818
1819		/*
1820		 * Either the target provides discard support (as implied by setting
1821		 * 'discards_supported') or it relies on _all_ data devices having
1822		 * discard support.
1823		 */
1824		if (!ti->discards_supported &&
1825		    (!ti->type->iterate_devices ||
1826		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1827			return false;
1828	}
1829
1830	return true;
1831}
1832
1833static int device_not_secure_erase_capable(struct dm_target *ti,
1834					   struct dm_dev *dev, sector_t start,
1835					   sector_t len, void *data)
1836{
1837	struct request_queue *q = bdev_get_queue(dev->bdev);
1838
1839	return q && !blk_queue_secure_erase(q);
1840}
1841
1842static bool dm_table_supports_secure_erase(struct dm_table *t)
1843{
1844	struct dm_target *ti;
1845	unsigned int i;
1846
1847	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1848		ti = dm_table_get_target(t, i);
1849
1850		if (!ti->num_secure_erase_bios)
1851			return false;
1852
1853		if (!ti->type->iterate_devices ||
1854		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1855			return false;
1856	}
1857
1858	return true;
1859}
1860
1861static int device_requires_stable_pages(struct dm_target *ti,
1862					struct dm_dev *dev, sector_t start,
1863					sector_t len, void *data)
1864{
1865	struct request_queue *q = bdev_get_queue(dev->bdev);
1866
1867	return q && bdi_cap_stable_pages_required(q->backing_dev_info);
1868}
1869
1870/*
1871 * If any underlying device requires stable pages, a table must require
1872 * them as well.  Only targets that support iterate_devices are considered:
1873 * don't want error, zero, etc to require stable pages.
1874 */
1875static bool dm_table_requires_stable_pages(struct dm_table *t)
1876{
1877	struct dm_target *ti;
1878	unsigned i;
1879
1880	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1881		ti = dm_table_get_target(t, i);
1882
1883		if (ti->type->iterate_devices &&
1884		    ti->type->iterate_devices(ti, device_requires_stable_pages, NULL))
1885			return true;
1886	}
1887
1888	return false;
1889}
1890
1891void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1892			       struct queue_limits *limits)
1893{
1894	bool wc = false, fua = false;
1895	int page_size = PAGE_SIZE;
1896
1897	/*
1898	 * Copy table's limits to the DM device's request_queue
1899	 */
1900	q->limits = *limits;
1901
1902	if (!dm_table_supports_discards(t)) {
1903		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1904		/* Must also clear discard limits... */
1905		q->limits.max_discard_sectors = 0;
1906		q->limits.max_hw_discard_sectors = 0;
1907		q->limits.discard_granularity = 0;
1908		q->limits.discard_alignment = 0;
1909		q->limits.discard_misaligned = 0;
1910	} else
1911		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1912
1913	if (dm_table_supports_secure_erase(t))
1914		blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1915
1916	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1917		wc = true;
1918		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1919			fua = true;
1920	}
1921	blk_queue_write_cache(q, wc, fua);
1922
1923	if (dm_table_supports_dax(t, device_supports_dax, &page_size)) {
1924		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1925		if (dm_table_supports_dax(t, device_dax_synchronous, NULL))
1926			set_dax_synchronous(t->md->dax_dev);
1927	}
1928	else
1929		blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1930
1931	if (dm_table_supports_dax_write_cache(t))
1932		dax_write_cache(t->md->dax_dev, true);
 
 
 
 
 
 
 
1933
1934	/* Ensure that all underlying devices are non-rotational. */
1935	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1936		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1937	else
1938		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1939
1940	if (!dm_table_supports_write_same(t))
1941		q->limits.max_write_same_sectors = 0;
1942	if (!dm_table_supports_write_zeroes(t))
1943		q->limits.max_write_zeroes_sectors = 0;
1944
1945	dm_table_verify_integrity(t);
1946
1947	/*
1948	 * Some devices don't use blk_integrity but still want stable pages
1949	 * because they do their own checksumming.
1950	 */
1951	if (dm_table_requires_stable_pages(t))
1952		q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
1953	else
1954		q->backing_dev_info->capabilities &= ~BDI_CAP_STABLE_WRITES;
1955
1956	/*
1957	 * Determine whether or not this queue's I/O timings contribute
1958	 * to the entropy pool, Only request-based targets use this.
1959	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1960	 * have it set.
1961	 */
1962	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1963		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1964
1965	/*
1966	 * For a zoned target, the number of zones should be updated for the
1967	 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
1968	 * target, this is all that is needed. For a request based target, the
1969	 * queue zone bitmaps must also be updated.
1970	 * Use blk_revalidate_disk_zones() to handle this.
 
 
1971	 */
1972	if (blk_queue_is_zoned(q))
1973		blk_revalidate_disk_zones(t->md->disk);
1974
1975	/* Allow reads to exceed readahead limits */
1976	q->backing_dev_info->io_pages = limits->max_sectors >> (PAGE_SHIFT - 9);
1977}
1978
1979unsigned int dm_table_get_num_targets(struct dm_table *t)
1980{
1981	return t->num_targets;
1982}
1983
1984struct list_head *dm_table_get_devices(struct dm_table *t)
1985{
1986	return &t->devices;
1987}
1988
1989fmode_t dm_table_get_mode(struct dm_table *t)
1990{
1991	return t->mode;
1992}
1993EXPORT_SYMBOL(dm_table_get_mode);
1994
1995enum suspend_mode {
1996	PRESUSPEND,
1997	PRESUSPEND_UNDO,
1998	POSTSUSPEND,
1999};
2000
2001static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2002{
2003	int i = t->num_targets;
2004	struct dm_target *ti = t->targets;
2005
2006	lockdep_assert_held(&t->md->suspend_lock);
2007
2008	while (i--) {
2009		switch (mode) {
2010		case PRESUSPEND:
2011			if (ti->type->presuspend)
2012				ti->type->presuspend(ti);
2013			break;
2014		case PRESUSPEND_UNDO:
2015			if (ti->type->presuspend_undo)
2016				ti->type->presuspend_undo(ti);
2017			break;
2018		case POSTSUSPEND:
2019			if (ti->type->postsuspend)
2020				ti->type->postsuspend(ti);
2021			break;
2022		}
 
2023		ti++;
2024	}
2025}
2026
2027void dm_table_presuspend_targets(struct dm_table *t)
2028{
2029	if (!t)
2030		return;
2031
2032	suspend_targets(t, PRESUSPEND);
2033}
2034
2035void dm_table_presuspend_undo_targets(struct dm_table *t)
2036{
2037	if (!t)
2038		return;
2039
2040	suspend_targets(t, PRESUSPEND_UNDO);
2041}
2042
2043void dm_table_postsuspend_targets(struct dm_table *t)
2044{
2045	if (!t)
2046		return;
2047
2048	suspend_targets(t, POSTSUSPEND);
2049}
2050
2051int dm_table_resume_targets(struct dm_table *t)
2052{
2053	int i, r = 0;
2054
2055	lockdep_assert_held(&t->md->suspend_lock);
2056
2057	for (i = 0; i < t->num_targets; i++) {
2058		struct dm_target *ti = t->targets + i;
2059
2060		if (!ti->type->preresume)
2061			continue;
2062
2063		r = ti->type->preresume(ti);
2064		if (r) {
2065			DMERR("%s: %s: preresume failed, error = %d",
2066			      dm_device_name(t->md), ti->type->name, r);
2067			return r;
2068		}
2069	}
2070
2071	for (i = 0; i < t->num_targets; i++) {
2072		struct dm_target *ti = t->targets + i;
2073
2074		if (ti->type->resume)
2075			ti->type->resume(ti);
2076	}
2077
2078	return 0;
2079}
2080
2081void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
2082{
2083	list_add(&cb->list, &t->target_callbacks);
2084}
2085EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
2086
2087int dm_table_any_congested(struct dm_table *t, int bdi_bits)
2088{
2089	struct dm_dev_internal *dd;
2090	struct list_head *devices = dm_table_get_devices(t);
2091	struct dm_target_callbacks *cb;
2092	int r = 0;
2093
2094	list_for_each_entry(dd, devices, list) {
2095		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
2096		char b[BDEVNAME_SIZE];
2097
2098		if (likely(q))
2099			r |= bdi_congested(q->backing_dev_info, bdi_bits);
2100		else
2101			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
2102				     dm_device_name(t->md),
2103				     bdevname(dd->dm_dev->bdev, b));
2104	}
2105
2106	list_for_each_entry(cb, &t->target_callbacks, list)
2107		if (cb->congested_fn)
2108			r |= cb->congested_fn(cb, bdi_bits);
2109
2110	return r;
2111}
2112
2113struct mapped_device *dm_table_get_md(struct dm_table *t)
2114{
2115	return t->md;
 
 
 
 
 
 
 
 
 
2116}
2117EXPORT_SYMBOL(dm_table_get_md);
2118
2119const char *dm_table_device_name(struct dm_table *t)
2120{
2121	return dm_device_name(t->md);
2122}
2123EXPORT_SYMBOL_GPL(dm_table_device_name);
2124
2125void dm_table_run_md_queue_async(struct dm_table *t)
2126{
2127	struct mapped_device *md;
2128	struct request_queue *queue;
 
2129
2130	if (!dm_table_request_based(t))
2131		return;
2132
2133	md = dm_table_get_md(t);
2134	queue = dm_get_md_queue(md);
2135	if (queue)
2136		blk_mq_run_hw_queues(queue, true);
 
 
 
2137}
2138EXPORT_SYMBOL(dm_table_run_md_queue_async);
2139
v3.15
   1/*
   2 * Copyright (C) 2001 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm.h"
   9
  10#include <linux/module.h>
  11#include <linux/vmalloc.h>
  12#include <linux/blkdev.h>
  13#include <linux/namei.h>
  14#include <linux/ctype.h>
  15#include <linux/string.h>
  16#include <linux/slab.h>
  17#include <linux/interrupt.h>
  18#include <linux/mutex.h>
  19#include <linux/delay.h>
  20#include <linux/atomic.h>
 
 
 
  21
  22#define DM_MSG_PREFIX "table"
  23
  24#define MAX_DEPTH 16
  25#define NODE_SIZE L1_CACHE_BYTES
  26#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
  27#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
  28
  29struct dm_table {
  30	struct mapped_device *md;
  31	unsigned type;
  32
  33	/* btree table */
  34	unsigned int depth;
  35	unsigned int counts[MAX_DEPTH];	/* in nodes */
  36	sector_t *index[MAX_DEPTH];
  37
  38	unsigned int num_targets;
  39	unsigned int num_allocated;
  40	sector_t *highs;
  41	struct dm_target *targets;
  42
  43	struct target_type *immutable_target_type;
  44	unsigned integrity_supported:1;
  45	unsigned singleton:1;
 
 
  46
  47	/*
  48	 * Indicates the rw permissions for the new logical
  49	 * device.  This should be a combination of FMODE_READ
  50	 * and FMODE_WRITE.
  51	 */
  52	fmode_t mode;
  53
  54	/* a list of devices used by this table */
  55	struct list_head devices;
  56
  57	/* events get handed up using this callback */
  58	void (*event_fn)(void *);
  59	void *event_context;
  60
  61	struct dm_md_mempools *mempools;
  62
  63	struct list_head target_callbacks;
  64};
  65
  66/*
  67 * Similar to ceiling(log_size(n))
  68 */
  69static unsigned int int_log(unsigned int n, unsigned int base)
  70{
  71	int result = 0;
  72
  73	while (n > 1) {
  74		n = dm_div_up(n, base);
  75		result++;
  76	}
  77
  78	return result;
  79}
  80
  81/*
  82 * Calculate the index of the child node of the n'th node k'th key.
  83 */
  84static inline unsigned int get_child(unsigned int n, unsigned int k)
  85{
  86	return (n * CHILDREN_PER_NODE) + k;
  87}
  88
  89/*
  90 * Return the n'th node of level l from table t.
  91 */
  92static inline sector_t *get_node(struct dm_table *t,
  93				 unsigned int l, unsigned int n)
  94{
  95	return t->index[l] + (n * KEYS_PER_NODE);
  96}
  97
  98/*
  99 * Return the highest key that you could lookup from the n'th
 100 * node on level l of the btree.
 101 */
 102static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
 103{
 104	for (; l < t->depth - 1; l++)
 105		n = get_child(n, CHILDREN_PER_NODE - 1);
 106
 107	if (n >= t->counts[l])
 108		return (sector_t) - 1;
 109
 110	return get_node(t, l, n)[KEYS_PER_NODE - 1];
 111}
 112
 113/*
 114 * Fills in a level of the btree based on the highs of the level
 115 * below it.
 116 */
 117static int setup_btree_index(unsigned int l, struct dm_table *t)
 118{
 119	unsigned int n, k;
 120	sector_t *node;
 121
 122	for (n = 0U; n < t->counts[l]; n++) {
 123		node = get_node(t, l, n);
 124
 125		for (k = 0U; k < KEYS_PER_NODE; k++)
 126			node[k] = high(t, l + 1, get_child(n, k));
 127	}
 128
 129	return 0;
 130}
 131
 132void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
 133{
 134	unsigned long size;
 135	void *addr;
 136
 137	/*
 138	 * Check that we're not going to overflow.
 139	 */
 140	if (nmemb > (ULONG_MAX / elem_size))
 141		return NULL;
 142
 143	size = nmemb * elem_size;
 144	addr = vzalloc(size);
 145
 146	return addr;
 147}
 148EXPORT_SYMBOL(dm_vcalloc);
 149
 150/*
 151 * highs, and targets are managed as dynamic arrays during a
 152 * table load.
 153 */
 154static int alloc_targets(struct dm_table *t, unsigned int num)
 155{
 156	sector_t *n_highs;
 157	struct dm_target *n_targets;
 158
 159	/*
 160	 * Allocate both the target array and offset array at once.
 161	 * Append an empty entry to catch sectors beyond the end of
 162	 * the device.
 163	 */
 164	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
 165					  sizeof(sector_t));
 166	if (!n_highs)
 167		return -ENOMEM;
 168
 169	n_targets = (struct dm_target *) (n_highs + num);
 170
 171	memset(n_highs, -1, sizeof(*n_highs) * num);
 172	vfree(t->highs);
 173
 174	t->num_allocated = num;
 175	t->highs = n_highs;
 176	t->targets = n_targets;
 177
 178	return 0;
 179}
 180
 181int dm_table_create(struct dm_table **result, fmode_t mode,
 182		    unsigned num_targets, struct mapped_device *md)
 183{
 184	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
 185
 186	if (!t)
 187		return -ENOMEM;
 188
 189	INIT_LIST_HEAD(&t->devices);
 190	INIT_LIST_HEAD(&t->target_callbacks);
 191
 192	if (!num_targets)
 193		num_targets = KEYS_PER_NODE;
 194
 195	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
 196
 197	if (!num_targets) {
 198		kfree(t);
 199		return -ENOMEM;
 200	}
 201
 202	if (alloc_targets(t, num_targets)) {
 203		kfree(t);
 204		return -ENOMEM;
 205	}
 206
 
 207	t->mode = mode;
 208	t->md = md;
 209	*result = t;
 210	return 0;
 211}
 212
 213static void free_devices(struct list_head *devices)
 214{
 215	struct list_head *tmp, *next;
 216
 217	list_for_each_safe(tmp, next, devices) {
 218		struct dm_dev_internal *dd =
 219		    list_entry(tmp, struct dm_dev_internal, list);
 220		DMWARN("dm_table_destroy: dm_put_device call missing for %s",
 221		       dd->dm_dev.name);
 
 222		kfree(dd);
 223	}
 224}
 225
 226void dm_table_destroy(struct dm_table *t)
 227{
 228	unsigned int i;
 229
 230	if (!t)
 231		return;
 232
 233	/* free the indexes */
 234	if (t->depth >= 2)
 235		vfree(t->index[t->depth - 2]);
 236
 237	/* free the targets */
 238	for (i = 0; i < t->num_targets; i++) {
 239		struct dm_target *tgt = t->targets + i;
 240
 241		if (tgt->type->dtr)
 242			tgt->type->dtr(tgt);
 243
 244		dm_put_target_type(tgt->type);
 245	}
 246
 247	vfree(t->highs);
 248
 249	/* free the device list */
 250	free_devices(&t->devices);
 251
 252	dm_free_md_mempools(t->mempools);
 253
 254	kfree(t);
 255}
 256
 257/*
 258 * See if we've already got a device in the list.
 259 */
 260static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
 261{
 262	struct dm_dev_internal *dd;
 263
 264	list_for_each_entry (dd, l, list)
 265		if (dd->dm_dev.bdev->bd_dev == dev)
 266			return dd;
 267
 268	return NULL;
 269}
 270
 271/*
 272 * Open a device so we can use it as a map destination.
 273 */
 274static int open_dev(struct dm_dev_internal *d, dev_t dev,
 275		    struct mapped_device *md)
 276{
 277	static char *_claim_ptr = "I belong to device-mapper";
 278	struct block_device *bdev;
 279
 280	int r;
 281
 282	BUG_ON(d->dm_dev.bdev);
 283
 284	bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
 285	if (IS_ERR(bdev))
 286		return PTR_ERR(bdev);
 287
 288	r = bd_link_disk_holder(bdev, dm_disk(md));
 289	if (r) {
 290		blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
 291		return r;
 292	}
 293
 294	d->dm_dev.bdev = bdev;
 295	return 0;
 296}
 297
 298/*
 299 * Close a device that we've been using.
 300 */
 301static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
 302{
 303	if (!d->dm_dev.bdev)
 304		return;
 305
 306	bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
 307	blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
 308	d->dm_dev.bdev = NULL;
 309}
 310
 311/*
 312 * If possible, this checks an area of a destination device is invalid.
 313 */
 314static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
 315				  sector_t start, sector_t len, void *data)
 316{
 317	struct request_queue *q;
 318	struct queue_limits *limits = data;
 319	struct block_device *bdev = dev->bdev;
 320	sector_t dev_size =
 321		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
 322	unsigned short logical_block_size_sectors =
 323		limits->logical_block_size >> SECTOR_SHIFT;
 324	char b[BDEVNAME_SIZE];
 325
 326	/*
 327	 * Some devices exist without request functions,
 328	 * such as loop devices not yet bound to backing files.
 329	 * Forbid the use of such devices.
 330	 */
 331	q = bdev_get_queue(bdev);
 332	if (!q || !q->make_request_fn) {
 333		DMWARN("%s: %s is not yet initialised: "
 334		       "start=%llu, len=%llu, dev_size=%llu",
 335		       dm_device_name(ti->table->md), bdevname(bdev, b),
 336		       (unsigned long long)start,
 337		       (unsigned long long)len,
 338		       (unsigned long long)dev_size);
 339		return 1;
 340	}
 341
 342	if (!dev_size)
 343		return 0;
 344
 345	if ((start >= dev_size) || (start + len > dev_size)) {
 346		DMWARN("%s: %s too small for target: "
 347		       "start=%llu, len=%llu, dev_size=%llu",
 348		       dm_device_name(ti->table->md), bdevname(bdev, b),
 349		       (unsigned long long)start,
 350		       (unsigned long long)len,
 351		       (unsigned long long)dev_size);
 352		return 1;
 353	}
 354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 355	if (logical_block_size_sectors <= 1)
 356		return 0;
 357
 358	if (start & (logical_block_size_sectors - 1)) {
 359		DMWARN("%s: start=%llu not aligned to h/w "
 360		       "logical block size %u of %s",
 361		       dm_device_name(ti->table->md),
 362		       (unsigned long long)start,
 363		       limits->logical_block_size, bdevname(bdev, b));
 364		return 1;
 365	}
 366
 367	if (len & (logical_block_size_sectors - 1)) {
 368		DMWARN("%s: len=%llu not aligned to h/w "
 369		       "logical block size %u of %s",
 370		       dm_device_name(ti->table->md),
 371		       (unsigned long long)len,
 372		       limits->logical_block_size, bdevname(bdev, b));
 373		return 1;
 374	}
 375
 376	return 0;
 377}
 378
 379/*
 380 * This upgrades the mode on an already open dm_dev, being
 381 * careful to leave things as they were if we fail to reopen the
 382 * device and not to touch the existing bdev field in case
 383 * it is accessed concurrently inside dm_table_any_congested().
 384 */
 385static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
 386			struct mapped_device *md)
 387{
 388	int r;
 389	struct dm_dev_internal dd_new, dd_old;
 390
 391	dd_new = dd_old = *dd;
 392
 393	dd_new.dm_dev.mode |= new_mode;
 394	dd_new.dm_dev.bdev = NULL;
 395
 396	r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
 
 397	if (r)
 398		return r;
 399
 400	dd->dm_dev.mode |= new_mode;
 401	close_dev(&dd_old, md);
 402
 403	return 0;
 404}
 405
 406/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 407 * Add a device to the list, or just increment the usage count if
 408 * it's already present.
 409 */
 410int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
 411		  struct dm_dev **result)
 412{
 413	int r;
 414	dev_t uninitialized_var(dev);
 415	struct dm_dev_internal *dd;
 416	unsigned int major, minor;
 417	struct dm_table *t = ti->table;
 418	char dummy;
 419
 420	BUG_ON(!t);
 421
 422	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
 423		/* Extract the major/minor numbers */
 424		dev = MKDEV(major, minor);
 425		if (MAJOR(dev) != major || MINOR(dev) != minor)
 426			return -EOVERFLOW;
 427	} else {
 428		/* convert the path to a device */
 429		struct block_device *bdev = lookup_bdev(path);
 430
 431		if (IS_ERR(bdev))
 432			return PTR_ERR(bdev);
 433		dev = bdev->bd_dev;
 434		bdput(bdev);
 435	}
 436
 437	dd = find_device(&t->devices, dev);
 438	if (!dd) {
 439		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
 440		if (!dd)
 441			return -ENOMEM;
 442
 443		dd->dm_dev.mode = mode;
 444		dd->dm_dev.bdev = NULL;
 445
 446		if ((r = open_dev(dd, dev, t->md))) {
 447			kfree(dd);
 448			return r;
 449		}
 450
 451		format_dev_t(dd->dm_dev.name, dev);
 452
 453		atomic_set(&dd->count, 0);
 454		list_add(&dd->list, &t->devices);
 
 455
 456	} else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
 457		r = upgrade_mode(dd, mode, t->md);
 458		if (r)
 459			return r;
 460	}
 461	atomic_inc(&dd->count);
 462
 463	*result = &dd->dm_dev;
 464	return 0;
 465}
 466EXPORT_SYMBOL(dm_get_device);
 467
 468int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
 469			 sector_t start, sector_t len, void *data)
 470{
 471	struct queue_limits *limits = data;
 472	struct block_device *bdev = dev->bdev;
 473	struct request_queue *q = bdev_get_queue(bdev);
 474	char b[BDEVNAME_SIZE];
 475
 476	if (unlikely(!q)) {
 477		DMWARN("%s: Cannot set limits for nonexistent device %s",
 478		       dm_device_name(ti->table->md), bdevname(bdev, b));
 479		return 0;
 480	}
 481
 482	if (bdev_stack_limits(limits, bdev, start) < 0)
 483		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
 484		       "physical_block_size=%u, logical_block_size=%u, "
 485		       "alignment_offset=%u, start=%llu",
 486		       dm_device_name(ti->table->md), bdevname(bdev, b),
 487		       q->limits.physical_block_size,
 488		       q->limits.logical_block_size,
 489		       q->limits.alignment_offset,
 490		       (unsigned long long) start << SECTOR_SHIFT);
 491
 492	/*
 493	 * Check if merge fn is supported.
 494	 * If not we'll force DM to use PAGE_SIZE or
 495	 * smaller I/O, just to be safe.
 496	 */
 497	if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
 498		blk_limits_max_hw_sectors(limits,
 499					  (unsigned int) (PAGE_SIZE >> 9));
 500	return 0;
 501}
 502EXPORT_SYMBOL_GPL(dm_set_device_limits);
 503
 504/*
 505 * Decrement a device's use count and remove it if necessary.
 506 */
 507void dm_put_device(struct dm_target *ti, struct dm_dev *d)
 508{
 509	struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
 510						  dm_dev);
 
 511
 512	if (atomic_dec_and_test(&dd->count)) {
 513		close_dev(dd, ti->table->md);
 
 
 
 
 
 
 
 
 
 
 
 514		list_del(&dd->list);
 515		kfree(dd);
 516	}
 517}
 518EXPORT_SYMBOL(dm_put_device);
 519
 520/*
 521 * Checks to see if the target joins onto the end of the table.
 522 */
 523static int adjoin(struct dm_table *table, struct dm_target *ti)
 524{
 525	struct dm_target *prev;
 526
 527	if (!table->num_targets)
 528		return !ti->begin;
 529
 530	prev = &table->targets[table->num_targets - 1];
 531	return (ti->begin == (prev->begin + prev->len));
 532}
 533
 534/*
 535 * Used to dynamically allocate the arg array.
 536 *
 537 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
 538 * process messages even if some device is suspended. These messages have a
 539 * small fixed number of arguments.
 540 *
 541 * On the other hand, dm-switch needs to process bulk data using messages and
 542 * excessive use of GFP_NOIO could cause trouble.
 543 */
 544static char **realloc_argv(unsigned *array_size, char **old_argv)
 545{
 546	char **argv;
 547	unsigned new_size;
 548	gfp_t gfp;
 549
 550	if (*array_size) {
 551		new_size = *array_size * 2;
 552		gfp = GFP_KERNEL;
 553	} else {
 554		new_size = 8;
 555		gfp = GFP_NOIO;
 556	}
 557	argv = kmalloc(new_size * sizeof(*argv), gfp);
 558	if (argv) {
 559		memcpy(argv, old_argv, *array_size * sizeof(*argv));
 560		*array_size = new_size;
 561	}
 562
 563	kfree(old_argv);
 564	return argv;
 565}
 566
 567/*
 568 * Destructively splits up the argument list to pass to ctr.
 569 */
 570int dm_split_args(int *argc, char ***argvp, char *input)
 571{
 572	char *start, *end = input, *out, **argv = NULL;
 573	unsigned array_size = 0;
 574
 575	*argc = 0;
 576
 577	if (!input) {
 578		*argvp = NULL;
 579		return 0;
 580	}
 581
 582	argv = realloc_argv(&array_size, argv);
 583	if (!argv)
 584		return -ENOMEM;
 585
 586	while (1) {
 587		/* Skip whitespace */
 588		start = skip_spaces(end);
 589
 590		if (!*start)
 591			break;	/* success, we hit the end */
 592
 593		/* 'out' is used to remove any back-quotes */
 594		end = out = start;
 595		while (*end) {
 596			/* Everything apart from '\0' can be quoted */
 597			if (*end == '\\' && *(end + 1)) {
 598				*out++ = *(end + 1);
 599				end += 2;
 600				continue;
 601			}
 602
 603			if (isspace(*end))
 604				break;	/* end of token */
 605
 606			*out++ = *end++;
 607		}
 608
 609		/* have we already filled the array ? */
 610		if ((*argc + 1) > array_size) {
 611			argv = realloc_argv(&array_size, argv);
 612			if (!argv)
 613				return -ENOMEM;
 614		}
 615
 616		/* we know this is whitespace */
 617		if (*end)
 618			end++;
 619
 620		/* terminate the string and put it in the array */
 621		*out = '\0';
 622		argv[*argc] = start;
 623		(*argc)++;
 624	}
 625
 626	*argvp = argv;
 627	return 0;
 628}
 629
 630/*
 631 * Impose necessary and sufficient conditions on a devices's table such
 632 * that any incoming bio which respects its logical_block_size can be
 633 * processed successfully.  If it falls across the boundary between
 634 * two or more targets, the size of each piece it gets split into must
 635 * be compatible with the logical_block_size of the target processing it.
 636 */
 637static int validate_hardware_logical_block_alignment(struct dm_table *table,
 638						 struct queue_limits *limits)
 639{
 640	/*
 641	 * This function uses arithmetic modulo the logical_block_size
 642	 * (in units of 512-byte sectors).
 643	 */
 644	unsigned short device_logical_block_size_sects =
 645		limits->logical_block_size >> SECTOR_SHIFT;
 646
 647	/*
 648	 * Offset of the start of the next table entry, mod logical_block_size.
 649	 */
 650	unsigned short next_target_start = 0;
 651
 652	/*
 653	 * Given an aligned bio that extends beyond the end of a
 654	 * target, how many sectors must the next target handle?
 655	 */
 656	unsigned short remaining = 0;
 657
 658	struct dm_target *uninitialized_var(ti);
 659	struct queue_limits ti_limits;
 660	unsigned i = 0;
 661
 662	/*
 663	 * Check each entry in the table in turn.
 664	 */
 665	while (i < dm_table_get_num_targets(table)) {
 666		ti = dm_table_get_target(table, i++);
 667
 668		blk_set_stacking_limits(&ti_limits);
 669
 670		/* combine all target devices' limits */
 671		if (ti->type->iterate_devices)
 672			ti->type->iterate_devices(ti, dm_set_device_limits,
 673						  &ti_limits);
 674
 675		/*
 676		 * If the remaining sectors fall entirely within this
 677		 * table entry are they compatible with its logical_block_size?
 678		 */
 679		if (remaining < ti->len &&
 680		    remaining & ((ti_limits.logical_block_size >>
 681				  SECTOR_SHIFT) - 1))
 682			break;	/* Error */
 683
 684		next_target_start =
 685		    (unsigned short) ((next_target_start + ti->len) &
 686				      (device_logical_block_size_sects - 1));
 687		remaining = next_target_start ?
 688		    device_logical_block_size_sects - next_target_start : 0;
 689	}
 690
 691	if (remaining) {
 692		DMWARN("%s: table line %u (start sect %llu len %llu) "
 693		       "not aligned to h/w logical block size %u",
 694		       dm_device_name(table->md), i,
 695		       (unsigned long long) ti->begin,
 696		       (unsigned long long) ti->len,
 697		       limits->logical_block_size);
 698		return -EINVAL;
 699	}
 700
 701	return 0;
 702}
 703
 704int dm_table_add_target(struct dm_table *t, const char *type,
 705			sector_t start, sector_t len, char *params)
 706{
 707	int r = -EINVAL, argc;
 708	char **argv;
 709	struct dm_target *tgt;
 710
 711	if (t->singleton) {
 712		DMERR("%s: target type %s must appear alone in table",
 713		      dm_device_name(t->md), t->targets->type->name);
 714		return -EINVAL;
 715	}
 716
 717	BUG_ON(t->num_targets >= t->num_allocated);
 718
 719	tgt = t->targets + t->num_targets;
 720	memset(tgt, 0, sizeof(*tgt));
 721
 722	if (!len) {
 723		DMERR("%s: zero-length target", dm_device_name(t->md));
 724		return -EINVAL;
 725	}
 726
 727	tgt->type = dm_get_target_type(type);
 728	if (!tgt->type) {
 729		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
 730		      type);
 731		return -EINVAL;
 732	}
 733
 734	if (dm_target_needs_singleton(tgt->type)) {
 735		if (t->num_targets) {
 736			DMERR("%s: target type %s must appear alone in table",
 737			      dm_device_name(t->md), type);
 738			return -EINVAL;
 739		}
 740		t->singleton = 1;
 741	}
 742
 743	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
 744		DMERR("%s: target type %s may not be included in read-only tables",
 745		      dm_device_name(t->md), type);
 746		return -EINVAL;
 747	}
 748
 749	if (t->immutable_target_type) {
 750		if (t->immutable_target_type != tgt->type) {
 751			DMERR("%s: immutable target type %s cannot be mixed with other target types",
 752			      dm_device_name(t->md), t->immutable_target_type->name);
 753			return -EINVAL;
 754		}
 755	} else if (dm_target_is_immutable(tgt->type)) {
 756		if (t->num_targets) {
 757			DMERR("%s: immutable target type %s cannot be mixed with other target types",
 758			      dm_device_name(t->md), tgt->type->name);
 759			return -EINVAL;
 760		}
 761		t->immutable_target_type = tgt->type;
 762	}
 763
 
 
 
 764	tgt->table = t;
 765	tgt->begin = start;
 766	tgt->len = len;
 767	tgt->error = "Unknown error";
 768
 769	/*
 770	 * Does this target adjoin the previous one ?
 771	 */
 772	if (!adjoin(t, tgt)) {
 773		tgt->error = "Gap in table";
 774		r = -EINVAL;
 775		goto bad;
 776	}
 777
 778	r = dm_split_args(&argc, &argv, params);
 779	if (r) {
 780		tgt->error = "couldn't split parameters (insufficient memory)";
 781		goto bad;
 782	}
 783
 784	r = tgt->type->ctr(tgt, argc, argv);
 785	kfree(argv);
 786	if (r)
 787		goto bad;
 788
 789	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
 790
 791	if (!tgt->num_discard_bios && tgt->discards_supported)
 792		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
 793		       dm_device_name(t->md), type);
 794
 795	return 0;
 796
 797 bad:
 798	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
 799	dm_put_target_type(tgt->type);
 800	return r;
 801}
 802
 803/*
 804 * Target argument parsing helpers.
 805 */
 806static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
 
 807			     unsigned *value, char **error, unsigned grouped)
 808{
 809	const char *arg_str = dm_shift_arg(arg_set);
 810	char dummy;
 811
 812	if (!arg_str ||
 813	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
 814	    (*value < arg->min) ||
 815	    (*value > arg->max) ||
 816	    (grouped && arg_set->argc < *value)) {
 817		*error = arg->error;
 818		return -EINVAL;
 819	}
 820
 821	return 0;
 822}
 823
 824int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
 825		unsigned *value, char **error)
 826{
 827	return validate_next_arg(arg, arg_set, value, error, 0);
 828}
 829EXPORT_SYMBOL(dm_read_arg);
 830
 831int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
 832		      unsigned *value, char **error)
 833{
 834	return validate_next_arg(arg, arg_set, value, error, 1);
 835}
 836EXPORT_SYMBOL(dm_read_arg_group);
 837
 838const char *dm_shift_arg(struct dm_arg_set *as)
 839{
 840	char *r;
 841
 842	if (as->argc) {
 843		as->argc--;
 844		r = *as->argv;
 845		as->argv++;
 846		return r;
 847	}
 848
 849	return NULL;
 850}
 851EXPORT_SYMBOL(dm_shift_arg);
 852
 853void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
 854{
 855	BUG_ON(as->argc < num_args);
 856	as->argc -= num_args;
 857	as->argv += num_args;
 858}
 859EXPORT_SYMBOL(dm_consume_args);
 860
 861static int dm_table_set_type(struct dm_table *t)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 862{
 863	unsigned i;
 864	unsigned bio_based = 0, request_based = 0, hybrid = 0;
 
 865	struct dm_target *tgt;
 866	struct dm_dev_internal *dd;
 867	struct list_head *devices;
 868	unsigned live_md_type;
 
 
 
 
 
 
 
 
 
 
 
 869
 870	for (i = 0; i < t->num_targets; i++) {
 871		tgt = t->targets + i;
 872		if (dm_target_hybrid(tgt))
 873			hybrid = 1;
 874		else if (dm_target_request_based(tgt))
 875			request_based = 1;
 876		else
 877			bio_based = 1;
 878
 879		if (bio_based && request_based) {
 880			DMWARN("Inconsistent table: different target types"
 881			       " can't be mixed up");
 882			return -EINVAL;
 883		}
 884	}
 885
 886	if (hybrid && !bio_based && !request_based) {
 887		/*
 888		 * The targets can work either way.
 889		 * Determine the type from the live device.
 890		 * Default to bio-based if device is new.
 891		 */
 892		live_md_type = dm_get_md_type(t->md);
 893		if (live_md_type == DM_TYPE_REQUEST_BASED)
 894			request_based = 1;
 895		else
 896			bio_based = 1;
 897	}
 898
 899	if (bio_based) {
 
 900		/* We must use this table as bio-based */
 901		t->type = DM_TYPE_BIO_BASED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 902		return 0;
 903	}
 904
 905	BUG_ON(!request_based); /* No targets in this table */
 906
 907	/* Non-request-stackable devices can't be used for request-based dm */
 908	devices = dm_table_get_devices(t);
 909	list_for_each_entry(dd, devices, list) {
 910		if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
 911			DMWARN("table load rejected: including"
 912			       " non-request-stackable devices");
 913			return -EINVAL;
 914		}
 915	}
 916
 
 917	/*
 918	 * Request-based dm supports only tables that have a single target now.
 919	 * To support multiple targets, request splitting support is needed,
 920	 * and that needs lots of changes in the block-layer.
 921	 * (e.g. request completion process for partial completion.)
 922	 */
 923	if (t->num_targets > 1) {
 924		DMWARN("Request-based dm doesn't support multiple targets yet");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 925		return -EINVAL;
 926	}
 927
 928	t->type = DM_TYPE_REQUEST_BASED;
 
 
 
 
 
 
 
 
 
 929
 930	return 0;
 931}
 932
 933unsigned dm_table_get_type(struct dm_table *t)
 934{
 935	return t->type;
 936}
 937
 938struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
 939{
 940	return t->immutable_target_type;
 941}
 942
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 943bool dm_table_request_based(struct dm_table *t)
 944{
 945	return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
 946}
 947
 948static int dm_table_alloc_md_mempools(struct dm_table *t)
 949{
 950	unsigned type = dm_table_get_type(t);
 951	unsigned per_bio_data_size = 0;
 952	struct dm_target *tgt;
 
 953	unsigned i;
 954
 955	if (unlikely(type == DM_TYPE_NONE)) {
 956		DMWARN("no table type is set, can't allocate mempools");
 957		return -EINVAL;
 958	}
 959
 960	if (type == DM_TYPE_BIO_BASED)
 961		for (i = 0; i < t->num_targets; i++) {
 962			tgt = t->targets + i;
 963			per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
 
 964		}
 965
 966	t->mempools = dm_alloc_md_mempools(type, t->integrity_supported, per_bio_data_size);
 
 967	if (!t->mempools)
 968		return -ENOMEM;
 969
 970	return 0;
 971}
 972
 973void dm_table_free_md_mempools(struct dm_table *t)
 974{
 975	dm_free_md_mempools(t->mempools);
 976	t->mempools = NULL;
 977}
 978
 979struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
 980{
 981	return t->mempools;
 982}
 983
 984static int setup_indexes(struct dm_table *t)
 985{
 986	int i;
 987	unsigned int total = 0;
 988	sector_t *indexes;
 989
 990	/* allocate the space for *all* the indexes */
 991	for (i = t->depth - 2; i >= 0; i--) {
 992		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
 993		total += t->counts[i];
 994	}
 995
 996	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
 997	if (!indexes)
 998		return -ENOMEM;
 999
1000	/* set up internal nodes, bottom-up */
1001	for (i = t->depth - 2; i >= 0; i--) {
1002		t->index[i] = indexes;
1003		indexes += (KEYS_PER_NODE * t->counts[i]);
1004		setup_btree_index(i, t);
1005	}
1006
1007	return 0;
1008}
1009
1010/*
1011 * Builds the btree to index the map.
1012 */
1013static int dm_table_build_index(struct dm_table *t)
1014{
1015	int r = 0;
1016	unsigned int leaf_nodes;
1017
1018	/* how many indexes will the btree have ? */
1019	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1020	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1021
1022	/* leaf layer has already been set up */
1023	t->counts[t->depth - 1] = leaf_nodes;
1024	t->index[t->depth - 1] = t->highs;
1025
1026	if (t->depth >= 2)
1027		r = setup_indexes(t);
1028
1029	return r;
1030}
1031
 
 
 
 
 
1032/*
1033 * Get a disk whose integrity profile reflects the table's profile.
1034 * If %match_all is true, all devices' profiles must match.
1035 * If %match_all is false, all devices must at least have an
1036 * allocated integrity profile; but uninitialized is ok.
1037 * Returns NULL if integrity support was inconsistent or unavailable.
1038 */
1039static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1040						    bool match_all)
1041{
1042	struct list_head *devices = dm_table_get_devices(t);
1043	struct dm_dev_internal *dd = NULL;
1044	struct gendisk *prev_disk = NULL, *template_disk = NULL;
 
 
 
 
 
 
 
1045
1046	list_for_each_entry(dd, devices, list) {
1047		template_disk = dd->dm_dev.bdev->bd_disk;
1048		if (!blk_get_integrity(template_disk))
1049			goto no_integrity;
1050		if (!match_all && !blk_integrity_is_initialized(template_disk))
1051			continue; /* skip uninitialized profiles */
1052		else if (prev_disk &&
1053			 blk_integrity_compare(prev_disk, template_disk) < 0)
1054			goto no_integrity;
1055		prev_disk = template_disk;
1056	}
1057
1058	return template_disk;
1059
1060no_integrity:
1061	if (prev_disk)
1062		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1063		       dm_device_name(t->md),
1064		       prev_disk->disk_name,
1065		       template_disk->disk_name);
1066	return NULL;
1067}
1068
1069/*
1070 * Register the mapped device for blk_integrity support if
1071 * the underlying devices have an integrity profile.  But all devices
1072 * may not have matching profiles (checking all devices isn't reliable
1073 * during table load because this table may use other DM device(s) which
1074 * must be resumed before they will have an initialized integity profile).
1075 * Stacked DM devices force a 2 stage integrity profile validation:
1076 * 1 - during load, validate all initialized integrity profiles match
1077 * 2 - during resume, validate all integrity profiles match
1078 */
1079static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1080{
 
1081	struct gendisk *template_disk = NULL;
1082
1083	template_disk = dm_table_get_integrity_disk(t, false);
 
 
 
 
1084	if (!template_disk)
1085		return 0;
1086
1087	if (!blk_integrity_is_initialized(dm_disk(md))) {
1088		t->integrity_supported = 1;
1089		return blk_integrity_register(dm_disk(md), NULL);
 
 
 
 
 
 
1090	}
1091
1092	/*
1093	 * If DM device already has an initalized integrity
1094	 * profile the new profile should not conflict.
1095	 */
1096	if (blk_integrity_is_initialized(template_disk) &&
1097	    blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1098		DMWARN("%s: conflict with existing integrity profile: "
1099		       "%s profile mismatch",
1100		       dm_device_name(t->md),
1101		       template_disk->disk_name);
1102		return 1;
1103	}
1104
1105	/* Preserve existing initialized integrity profile */
1106	t->integrity_supported = 1;
1107	return 0;
1108}
1109
1110/*
1111 * Prepares the table for use by building the indices,
1112 * setting the type, and allocating mempools.
1113 */
1114int dm_table_complete(struct dm_table *t)
1115{
1116	int r;
1117
1118	r = dm_table_set_type(t);
1119	if (r) {
1120		DMERR("unable to set table type");
1121		return r;
1122	}
1123
1124	r = dm_table_build_index(t);
1125	if (r) {
1126		DMERR("unable to build btrees");
1127		return r;
1128	}
1129
1130	r = dm_table_prealloc_integrity(t, t->md);
1131	if (r) {
1132		DMERR("could not register integrity profile.");
1133		return r;
1134	}
1135
1136	r = dm_table_alloc_md_mempools(t);
1137	if (r)
1138		DMERR("unable to allocate mempools");
1139
1140	return r;
1141}
1142
1143static DEFINE_MUTEX(_event_lock);
1144void dm_table_event_callback(struct dm_table *t,
1145			     void (*fn)(void *), void *context)
1146{
1147	mutex_lock(&_event_lock);
1148	t->event_fn = fn;
1149	t->event_context = context;
1150	mutex_unlock(&_event_lock);
1151}
1152
1153void dm_table_event(struct dm_table *t)
1154{
1155	/*
1156	 * You can no longer call dm_table_event() from interrupt
1157	 * context, use a bottom half instead.
1158	 */
1159	BUG_ON(in_interrupt());
1160
1161	mutex_lock(&_event_lock);
1162	if (t->event_fn)
1163		t->event_fn(t->event_context);
1164	mutex_unlock(&_event_lock);
1165}
1166EXPORT_SYMBOL(dm_table_event);
1167
1168sector_t dm_table_get_size(struct dm_table *t)
1169{
1170	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1171}
1172EXPORT_SYMBOL(dm_table_get_size);
1173
1174struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1175{
1176	if (index >= t->num_targets)
1177		return NULL;
1178
1179	return t->targets + index;
1180}
1181
1182/*
1183 * Search the btree for the correct target.
1184 *
1185 * Caller should check returned pointer with dm_target_is_valid()
1186 * to trap I/O beyond end of device.
1187 */
1188struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1189{
1190	unsigned int l, n = 0, k = 0;
1191	sector_t *node;
1192
 
 
 
1193	for (l = 0; l < t->depth; l++) {
1194		n = get_child(n, k);
1195		node = get_node(t, l, n);
1196
1197		for (k = 0; k < KEYS_PER_NODE; k++)
1198			if (node[k] >= sector)
1199				break;
1200	}
1201
1202	return &t->targets[(KEYS_PER_NODE * n) + k];
1203}
1204
1205static int count_device(struct dm_target *ti, struct dm_dev *dev,
1206			sector_t start, sector_t len, void *data)
1207{
1208	unsigned *num_devices = data;
1209
1210	(*num_devices)++;
1211
1212	return 0;
1213}
1214
1215/*
1216 * Check whether a table has no data devices attached using each
1217 * target's iterate_devices method.
1218 * Returns false if the result is unknown because a target doesn't
1219 * support iterate_devices.
1220 */
1221bool dm_table_has_no_data_devices(struct dm_table *table)
1222{
1223	struct dm_target *uninitialized_var(ti);
1224	unsigned i = 0, num_devices = 0;
1225
1226	while (i < dm_table_get_num_targets(table)) {
1227		ti = dm_table_get_target(table, i++);
1228
1229		if (!ti->type->iterate_devices)
1230			return false;
1231
 
1232		ti->type->iterate_devices(ti, count_device, &num_devices);
1233		if (num_devices)
1234			return false;
1235	}
1236
1237	return true;
1238}
1239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1240/*
1241 * Establish the new table's queue_limits and validate them.
1242 */
1243int dm_calculate_queue_limits(struct dm_table *table,
1244			      struct queue_limits *limits)
1245{
1246	struct dm_target *uninitialized_var(ti);
1247	struct queue_limits ti_limits;
1248	unsigned i = 0;
 
 
1249
1250	blk_set_stacking_limits(limits);
1251
1252	while (i < dm_table_get_num_targets(table)) {
1253		blk_set_stacking_limits(&ti_limits);
1254
1255		ti = dm_table_get_target(table, i++);
1256
1257		if (!ti->type->iterate_devices)
1258			goto combine_limits;
1259
1260		/*
1261		 * Combine queue limits of all the devices this target uses.
1262		 */
1263		ti->type->iterate_devices(ti, dm_set_device_limits,
1264					  &ti_limits);
1265
 
 
 
 
 
 
 
 
 
1266		/* Set I/O hints portion of queue limits */
1267		if (ti->type->io_hints)
1268			ti->type->io_hints(ti, &ti_limits);
1269
1270		/*
1271		 * Check each device area is consistent with the target's
1272		 * overall queue limits.
1273		 */
1274		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1275					      &ti_limits))
1276			return -EINVAL;
1277
1278combine_limits:
1279		/*
1280		 * Merge this target's queue limits into the overall limits
1281		 * for the table.
1282		 */
1283		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1284			DMWARN("%s: adding target device "
1285			       "(start sect %llu len %llu) "
1286			       "caused an alignment inconsistency",
1287			       dm_device_name(table->md),
1288			       (unsigned long long) ti->begin,
1289			       (unsigned long long) ti->len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1290	}
 
 
1291
1292	return validate_hardware_logical_block_alignment(table, limits);
1293}
1294
1295/*
1296 * Set the integrity profile for this device if all devices used have
1297 * matching profiles.  We're quite deep in the resume path but still
1298 * don't know if all devices (particularly DM devices this device
1299 * may be stacked on) have matching profiles.  Even if the profiles
1300 * don't match we have no way to fail (to resume) at this point.
1301 */
1302static void dm_table_set_integrity(struct dm_table *t)
1303{
1304	struct gendisk *template_disk = NULL;
1305
1306	if (!blk_get_integrity(dm_disk(t->md)))
1307		return;
1308
1309	template_disk = dm_table_get_integrity_disk(t, true);
1310	if (template_disk)
1311		blk_integrity_register(dm_disk(t->md),
1312				       blk_get_integrity(template_disk));
1313	else if (blk_integrity_is_initialized(dm_disk(t->md)))
1314		DMWARN("%s: device no longer has a valid integrity profile",
1315		       dm_device_name(t->md));
1316	else
 
 
 
 
1317		DMWARN("%s: unable to establish an integrity profile",
1318		       dm_device_name(t->md));
 
 
1319}
1320
1321static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1322				sector_t start, sector_t len, void *data)
1323{
1324	unsigned flush = (*(unsigned *)data);
1325	struct request_queue *q = bdev_get_queue(dev->bdev);
1326
1327	return q && (q->flush_flags & flush);
1328}
1329
1330static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1331{
1332	struct dm_target *ti;
1333	unsigned i = 0;
1334
1335	/*
1336	 * Require at least one underlying device to support flushes.
1337	 * t->devices includes internal dm devices such as mirror logs
1338	 * so we need to use iterate_devices here, which targets
1339	 * supporting flushes must provide.
1340	 */
1341	while (i < dm_table_get_num_targets(t)) {
1342		ti = dm_table_get_target(t, i++);
1343
1344		if (!ti->num_flush_bios)
1345			continue;
1346
1347		if (ti->flush_supported)
1348			return 1;
1349
1350		if (ti->type->iterate_devices &&
1351		    ti->type->iterate_devices(ti, device_flush_capable, &flush))
1352			return 1;
1353	}
1354
1355	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1356}
1357
1358static bool dm_table_discard_zeroes_data(struct dm_table *t)
1359{
1360	struct dm_target *ti;
1361	unsigned i = 0;
1362
1363	/* Ensure that all targets supports discard_zeroes_data. */
1364	while (i < dm_table_get_num_targets(t)) {
1365		ti = dm_table_get_target(t, i++);
1366
1367		if (ti->discard_zeroes_data_unsupported)
1368			return 0;
 
 
1369	}
1370
1371	return 1;
1372}
1373
1374static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1375			    sector_t start, sector_t len, void *data)
1376{
1377	struct request_queue *q = bdev_get_queue(dev->bdev);
1378
1379	return q && blk_queue_nonrot(q);
1380}
1381
1382static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1383			     sector_t start, sector_t len, void *data)
1384{
1385	struct request_queue *q = bdev_get_queue(dev->bdev);
1386
1387	return q && !blk_queue_add_random(q);
1388}
1389
1390static bool dm_table_all_devices_attribute(struct dm_table *t,
1391					   iterate_devices_callout_fn func)
1392{
1393	struct dm_target *ti;
1394	unsigned i = 0;
1395
1396	while (i < dm_table_get_num_targets(t)) {
1397		ti = dm_table_get_target(t, i++);
1398
1399		if (!ti->type->iterate_devices ||
1400		    !ti->type->iterate_devices(ti, func, NULL))
1401			return 0;
1402	}
1403
1404	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1405}
1406
1407static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1408					 sector_t start, sector_t len, void *data)
1409{
1410	struct request_queue *q = bdev_get_queue(dev->bdev);
1411
1412	return q && !q->limits.max_write_same_sectors;
1413}
1414
1415static bool dm_table_supports_write_same(struct dm_table *t)
1416{
1417	struct dm_target *ti;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1418	unsigned i = 0;
1419
1420	while (i < dm_table_get_num_targets(t)) {
1421		ti = dm_table_get_target(t, i++);
1422
1423		if (!ti->num_write_same_bios)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1424			return false;
1425
1426		if (!ti->type->iterate_devices ||
1427		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1428			return false;
1429	}
1430
1431	return true;
1432}
1433
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1434void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1435			       struct queue_limits *limits)
1436{
1437	unsigned flush = 0;
 
1438
1439	/*
1440	 * Copy table's limits to the DM device's request_queue
1441	 */
1442	q->limits = *limits;
1443
1444	if (!dm_table_supports_discards(t))
1445		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1446	else
1447		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1448
1449	if (dm_table_supports_flush(t, REQ_FLUSH)) {
1450		flush |= REQ_FLUSH;
1451		if (dm_table_supports_flush(t, REQ_FUA))
1452			flush |= REQ_FUA;
1453	}
1454	blk_queue_flush(q, flush);
1455
1456	if (!dm_table_discard_zeroes_data(t))
1457		q->limits.discard_zeroes_data = 0;
1458
1459	/* Ensure that all underlying devices are non-rotational. */
1460	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1461		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1462	else
1463		queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1464
1465	if (!dm_table_supports_write_same(t))
1466		q->limits.max_write_same_sectors = 0;
 
 
1467
1468	dm_table_set_integrity(t);
 
 
 
 
 
 
 
 
 
1469
1470	/*
1471	 * Determine whether or not this queue's I/O timings contribute
1472	 * to the entropy pool, Only request-based targets use this.
1473	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1474	 * have it set.
1475	 */
1476	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1477		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1478
1479	/*
1480	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1481	 * visible to other CPUs because, once the flag is set, incoming bios
1482	 * are processed by request-based dm, which refers to the queue
1483	 * settings.
1484	 * Until the flag set, bios are passed to bio-based dm and queued to
1485	 * md->deferred where queue settings are not needed yet.
1486	 * Those bios are passed to request-based dm at the resume time.
1487	 */
1488	smp_mb();
1489	if (dm_table_request_based(t))
1490		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
 
 
1491}
1492
1493unsigned int dm_table_get_num_targets(struct dm_table *t)
1494{
1495	return t->num_targets;
1496}
1497
1498struct list_head *dm_table_get_devices(struct dm_table *t)
1499{
1500	return &t->devices;
1501}
1502
1503fmode_t dm_table_get_mode(struct dm_table *t)
1504{
1505	return t->mode;
1506}
1507EXPORT_SYMBOL(dm_table_get_mode);
1508
1509static void suspend_targets(struct dm_table *t, unsigned postsuspend)
 
 
 
 
 
 
1510{
1511	int i = t->num_targets;
1512	struct dm_target *ti = t->targets;
1513
 
 
1514	while (i--) {
1515		if (postsuspend) {
 
 
 
 
 
 
 
 
 
1516			if (ti->type->postsuspend)
1517				ti->type->postsuspend(ti);
1518		} else if (ti->type->presuspend)
1519			ti->type->presuspend(ti);
1520
1521		ti++;
1522	}
1523}
1524
1525void dm_table_presuspend_targets(struct dm_table *t)
1526{
1527	if (!t)
1528		return;
1529
1530	suspend_targets(t, 0);
 
 
 
 
 
 
 
 
1531}
1532
1533void dm_table_postsuspend_targets(struct dm_table *t)
1534{
1535	if (!t)
1536		return;
1537
1538	suspend_targets(t, 1);
1539}
1540
1541int dm_table_resume_targets(struct dm_table *t)
1542{
1543	int i, r = 0;
1544
 
 
1545	for (i = 0; i < t->num_targets; i++) {
1546		struct dm_target *ti = t->targets + i;
1547
1548		if (!ti->type->preresume)
1549			continue;
1550
1551		r = ti->type->preresume(ti);
1552		if (r) {
1553			DMERR("%s: %s: preresume failed, error = %d",
1554			      dm_device_name(t->md), ti->type->name, r);
1555			return r;
1556		}
1557	}
1558
1559	for (i = 0; i < t->num_targets; i++) {
1560		struct dm_target *ti = t->targets + i;
1561
1562		if (ti->type->resume)
1563			ti->type->resume(ti);
1564	}
1565
1566	return 0;
1567}
1568
1569void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1570{
1571	list_add(&cb->list, &t->target_callbacks);
1572}
1573EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1574
1575int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1576{
1577	struct dm_dev_internal *dd;
1578	struct list_head *devices = dm_table_get_devices(t);
1579	struct dm_target_callbacks *cb;
1580	int r = 0;
1581
1582	list_for_each_entry(dd, devices, list) {
1583		struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1584		char b[BDEVNAME_SIZE];
1585
1586		if (likely(q))
1587			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1588		else
1589			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1590				     dm_device_name(t->md),
1591				     bdevname(dd->dm_dev.bdev, b));
1592	}
1593
1594	list_for_each_entry(cb, &t->target_callbacks, list)
1595		if (cb->congested_fn)
1596			r |= cb->congested_fn(cb, bdi_bits);
1597
1598	return r;
1599}
1600
1601int dm_table_any_busy_target(struct dm_table *t)
1602{
1603	unsigned i;
1604	struct dm_target *ti;
1605
1606	for (i = 0; i < t->num_targets; i++) {
1607		ti = t->targets + i;
1608		if (ti->type->busy && ti->type->busy(ti))
1609			return 1;
1610	}
1611
1612	return 0;
1613}
 
1614
1615struct mapped_device *dm_table_get_md(struct dm_table *t)
1616{
1617	return t->md;
1618}
1619EXPORT_SYMBOL(dm_table_get_md);
1620
1621void dm_table_run_md_queue_async(struct dm_table *t)
1622{
1623	struct mapped_device *md;
1624	struct request_queue *queue;
1625	unsigned long flags;
1626
1627	if (!dm_table_request_based(t))
1628		return;
1629
1630	md = dm_table_get_md(t);
1631	queue = dm_get_md_queue(md);
1632	if (queue) {
1633		spin_lock_irqsave(queue->queue_lock, flags);
1634		blk_run_queue_async(queue);
1635		spin_unlock_irqrestore(queue->queue_lock, flags);
1636	}
1637}
1638EXPORT_SYMBOL(dm_table_run_md_queue_async);
1639
1640static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1641				  sector_t start, sector_t len, void *data)
1642{
1643	struct request_queue *q = bdev_get_queue(dev->bdev);
1644
1645	return q && blk_queue_discard(q);
1646}
1647
1648bool dm_table_supports_discards(struct dm_table *t)
1649{
1650	struct dm_target *ti;
1651	unsigned i = 0;
1652
1653	/*
1654	 * Unless any target used by the table set discards_supported,
1655	 * require at least one underlying device to support discards.
1656	 * t->devices includes internal dm devices such as mirror logs
1657	 * so we need to use iterate_devices here, which targets
1658	 * supporting discard selectively must provide.
1659	 */
1660	while (i < dm_table_get_num_targets(t)) {
1661		ti = dm_table_get_target(t, i++);
1662
1663		if (!ti->num_discard_bios)
1664			continue;
1665
1666		if (ti->discards_supported)
1667			return 1;
1668
1669		if (ti->type->iterate_devices &&
1670		    ti->type->iterate_devices(ti, device_discard_capable, NULL))
1671			return 1;
1672	}
1673
1674	return 0;
1675}