Loading...
1/*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm-core.h"
9
10#include <linux/module.h>
11#include <linux/vmalloc.h>
12#include <linux/blkdev.h>
13#include <linux/namei.h>
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/slab.h>
17#include <linux/interrupt.h>
18#include <linux/mutex.h>
19#include <linux/delay.h>
20#include <linux/atomic.h>
21#include <linux/blk-mq.h>
22#include <linux/mount.h>
23#include <linux/dax.h>
24
25#define DM_MSG_PREFIX "table"
26
27#define MAX_DEPTH 16
28#define NODE_SIZE L1_CACHE_BYTES
29#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31
32struct dm_table {
33 struct mapped_device *md;
34 enum dm_queue_mode type;
35
36 /* btree table */
37 unsigned int depth;
38 unsigned int counts[MAX_DEPTH]; /* in nodes */
39 sector_t *index[MAX_DEPTH];
40
41 unsigned int num_targets;
42 unsigned int num_allocated;
43 sector_t *highs;
44 struct dm_target *targets;
45
46 struct target_type *immutable_target_type;
47
48 bool integrity_supported:1;
49 bool singleton:1;
50 unsigned integrity_added:1;
51
52 /*
53 * Indicates the rw permissions for the new logical
54 * device. This should be a combination of FMODE_READ
55 * and FMODE_WRITE.
56 */
57 fmode_t mode;
58
59 /* a list of devices used by this table */
60 struct list_head devices;
61
62 /* events get handed up using this callback */
63 void (*event_fn)(void *);
64 void *event_context;
65
66 struct dm_md_mempools *mempools;
67
68 struct list_head target_callbacks;
69};
70
71/*
72 * Similar to ceiling(log_size(n))
73 */
74static unsigned int int_log(unsigned int n, unsigned int base)
75{
76 int result = 0;
77
78 while (n > 1) {
79 n = dm_div_up(n, base);
80 result++;
81 }
82
83 return result;
84}
85
86/*
87 * Calculate the index of the child node of the n'th node k'th key.
88 */
89static inline unsigned int get_child(unsigned int n, unsigned int k)
90{
91 return (n * CHILDREN_PER_NODE) + k;
92}
93
94/*
95 * Return the n'th node of level l from table t.
96 */
97static inline sector_t *get_node(struct dm_table *t,
98 unsigned int l, unsigned int n)
99{
100 return t->index[l] + (n * KEYS_PER_NODE);
101}
102
103/*
104 * Return the highest key that you could lookup from the n'th
105 * node on level l of the btree.
106 */
107static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
108{
109 for (; l < t->depth - 1; l++)
110 n = get_child(n, CHILDREN_PER_NODE - 1);
111
112 if (n >= t->counts[l])
113 return (sector_t) - 1;
114
115 return get_node(t, l, n)[KEYS_PER_NODE - 1];
116}
117
118/*
119 * Fills in a level of the btree based on the highs of the level
120 * below it.
121 */
122static int setup_btree_index(unsigned int l, struct dm_table *t)
123{
124 unsigned int n, k;
125 sector_t *node;
126
127 for (n = 0U; n < t->counts[l]; n++) {
128 node = get_node(t, l, n);
129
130 for (k = 0U; k < KEYS_PER_NODE; k++)
131 node[k] = high(t, l + 1, get_child(n, k));
132 }
133
134 return 0;
135}
136
137void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
138{
139 unsigned long size;
140 void *addr;
141
142 /*
143 * Check that we're not going to overflow.
144 */
145 if (nmemb > (ULONG_MAX / elem_size))
146 return NULL;
147
148 size = nmemb * elem_size;
149 addr = vzalloc(size);
150
151 return addr;
152}
153EXPORT_SYMBOL(dm_vcalloc);
154
155/*
156 * highs, and targets are managed as dynamic arrays during a
157 * table load.
158 */
159static int alloc_targets(struct dm_table *t, unsigned int num)
160{
161 sector_t *n_highs;
162 struct dm_target *n_targets;
163
164 /*
165 * Allocate both the target array and offset array at once.
166 */
167 n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
168 sizeof(sector_t));
169 if (!n_highs)
170 return -ENOMEM;
171
172 n_targets = (struct dm_target *) (n_highs + num);
173
174 memset(n_highs, -1, sizeof(*n_highs) * num);
175 vfree(t->highs);
176
177 t->num_allocated = num;
178 t->highs = n_highs;
179 t->targets = n_targets;
180
181 return 0;
182}
183
184int dm_table_create(struct dm_table **result, fmode_t mode,
185 unsigned num_targets, struct mapped_device *md)
186{
187 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
188
189 if (!t)
190 return -ENOMEM;
191
192 INIT_LIST_HEAD(&t->devices);
193 INIT_LIST_HEAD(&t->target_callbacks);
194
195 if (!num_targets)
196 num_targets = KEYS_PER_NODE;
197
198 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
199
200 if (!num_targets) {
201 kfree(t);
202 return -ENOMEM;
203 }
204
205 if (alloc_targets(t, num_targets)) {
206 kfree(t);
207 return -ENOMEM;
208 }
209
210 t->type = DM_TYPE_NONE;
211 t->mode = mode;
212 t->md = md;
213 *result = t;
214 return 0;
215}
216
217static void free_devices(struct list_head *devices, struct mapped_device *md)
218{
219 struct list_head *tmp, *next;
220
221 list_for_each_safe(tmp, next, devices) {
222 struct dm_dev_internal *dd =
223 list_entry(tmp, struct dm_dev_internal, list);
224 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
225 dm_device_name(md), dd->dm_dev->name);
226 dm_put_table_device(md, dd->dm_dev);
227 kfree(dd);
228 }
229}
230
231void dm_table_destroy(struct dm_table *t)
232{
233 unsigned int i;
234
235 if (!t)
236 return;
237
238 /* free the indexes */
239 if (t->depth >= 2)
240 vfree(t->index[t->depth - 2]);
241
242 /* free the targets */
243 for (i = 0; i < t->num_targets; i++) {
244 struct dm_target *tgt = t->targets + i;
245
246 if (tgt->type->dtr)
247 tgt->type->dtr(tgt);
248
249 dm_put_target_type(tgt->type);
250 }
251
252 vfree(t->highs);
253
254 /* free the device list */
255 free_devices(&t->devices, t->md);
256
257 dm_free_md_mempools(t->mempools);
258
259 kfree(t);
260}
261
262/*
263 * See if we've already got a device in the list.
264 */
265static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
266{
267 struct dm_dev_internal *dd;
268
269 list_for_each_entry (dd, l, list)
270 if (dd->dm_dev->bdev->bd_dev == dev)
271 return dd;
272
273 return NULL;
274}
275
276/*
277 * If possible, this checks an area of a destination device is invalid.
278 */
279static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
280 sector_t start, sector_t len, void *data)
281{
282 struct request_queue *q;
283 struct queue_limits *limits = data;
284 struct block_device *bdev = dev->bdev;
285 sector_t dev_size =
286 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
287 unsigned short logical_block_size_sectors =
288 limits->logical_block_size >> SECTOR_SHIFT;
289 char b[BDEVNAME_SIZE];
290
291 /*
292 * Some devices exist without request functions,
293 * such as loop devices not yet bound to backing files.
294 * Forbid the use of such devices.
295 */
296 q = bdev_get_queue(bdev);
297 if (!q || !q->make_request_fn) {
298 DMWARN("%s: %s is not yet initialised: "
299 "start=%llu, len=%llu, dev_size=%llu",
300 dm_device_name(ti->table->md), bdevname(bdev, b),
301 (unsigned long long)start,
302 (unsigned long long)len,
303 (unsigned long long)dev_size);
304 return 1;
305 }
306
307 if (!dev_size)
308 return 0;
309
310 if ((start >= dev_size) || (start + len > dev_size)) {
311 DMWARN("%s: %s too small for target: "
312 "start=%llu, len=%llu, dev_size=%llu",
313 dm_device_name(ti->table->md), bdevname(bdev, b),
314 (unsigned long long)start,
315 (unsigned long long)len,
316 (unsigned long long)dev_size);
317 return 1;
318 }
319
320 /*
321 * If the target is mapped to zoned block device(s), check
322 * that the zones are not partially mapped.
323 */
324 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
325 unsigned int zone_sectors = bdev_zone_sectors(bdev);
326
327 if (start & (zone_sectors - 1)) {
328 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
329 dm_device_name(ti->table->md),
330 (unsigned long long)start,
331 zone_sectors, bdevname(bdev, b));
332 return 1;
333 }
334
335 /*
336 * Note: The last zone of a zoned block device may be smaller
337 * than other zones. So for a target mapping the end of a
338 * zoned block device with such a zone, len would not be zone
339 * aligned. We do not allow such last smaller zone to be part
340 * of the mapping here to ensure that mappings with multiple
341 * devices do not end up with a smaller zone in the middle of
342 * the sector range.
343 */
344 if (len & (zone_sectors - 1)) {
345 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
346 dm_device_name(ti->table->md),
347 (unsigned long long)len,
348 zone_sectors, bdevname(bdev, b));
349 return 1;
350 }
351 }
352
353 if (logical_block_size_sectors <= 1)
354 return 0;
355
356 if (start & (logical_block_size_sectors - 1)) {
357 DMWARN("%s: start=%llu not aligned to h/w "
358 "logical block size %u of %s",
359 dm_device_name(ti->table->md),
360 (unsigned long long)start,
361 limits->logical_block_size, bdevname(bdev, b));
362 return 1;
363 }
364
365 if (len & (logical_block_size_sectors - 1)) {
366 DMWARN("%s: len=%llu not aligned to h/w "
367 "logical block size %u of %s",
368 dm_device_name(ti->table->md),
369 (unsigned long long)len,
370 limits->logical_block_size, bdevname(bdev, b));
371 return 1;
372 }
373
374 return 0;
375}
376
377/*
378 * This upgrades the mode on an already open dm_dev, being
379 * careful to leave things as they were if we fail to reopen the
380 * device and not to touch the existing bdev field in case
381 * it is accessed concurrently inside dm_table_any_congested().
382 */
383static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
384 struct mapped_device *md)
385{
386 int r;
387 struct dm_dev *old_dev, *new_dev;
388
389 old_dev = dd->dm_dev;
390
391 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
392 dd->dm_dev->mode | new_mode, &new_dev);
393 if (r)
394 return r;
395
396 dd->dm_dev = new_dev;
397 dm_put_table_device(md, old_dev);
398
399 return 0;
400}
401
402/*
403 * Convert the path to a device
404 */
405dev_t dm_get_dev_t(const char *path)
406{
407 dev_t dev;
408 struct block_device *bdev;
409
410 bdev = lookup_bdev(path);
411 if (IS_ERR(bdev))
412 dev = name_to_dev_t(path);
413 else {
414 dev = bdev->bd_dev;
415 bdput(bdev);
416 }
417
418 return dev;
419}
420EXPORT_SYMBOL_GPL(dm_get_dev_t);
421
422/*
423 * Add a device to the list, or just increment the usage count if
424 * it's already present.
425 */
426int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
427 struct dm_dev **result)
428{
429 int r;
430 dev_t dev;
431 struct dm_dev_internal *dd;
432 struct dm_table *t = ti->table;
433
434 BUG_ON(!t);
435
436 dev = dm_get_dev_t(path);
437 if (!dev)
438 return -ENODEV;
439
440 dd = find_device(&t->devices, dev);
441 if (!dd) {
442 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
443 if (!dd)
444 return -ENOMEM;
445
446 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
447 kfree(dd);
448 return r;
449 }
450
451 refcount_set(&dd->count, 1);
452 list_add(&dd->list, &t->devices);
453 goto out;
454
455 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
456 r = upgrade_mode(dd, mode, t->md);
457 if (r)
458 return r;
459 }
460 refcount_inc(&dd->count);
461out:
462 *result = dd->dm_dev;
463 return 0;
464}
465EXPORT_SYMBOL(dm_get_device);
466
467static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
468 sector_t start, sector_t len, void *data)
469{
470 struct queue_limits *limits = data;
471 struct block_device *bdev = dev->bdev;
472 struct request_queue *q = bdev_get_queue(bdev);
473 char b[BDEVNAME_SIZE];
474
475 if (unlikely(!q)) {
476 DMWARN("%s: Cannot set limits for nonexistent device %s",
477 dm_device_name(ti->table->md), bdevname(bdev, b));
478 return 0;
479 }
480
481 if (bdev_stack_limits(limits, bdev, start) < 0)
482 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
483 "physical_block_size=%u, logical_block_size=%u, "
484 "alignment_offset=%u, start=%llu",
485 dm_device_name(ti->table->md), bdevname(bdev, b),
486 q->limits.physical_block_size,
487 q->limits.logical_block_size,
488 q->limits.alignment_offset,
489 (unsigned long long) start << SECTOR_SHIFT);
490
491 limits->zoned = blk_queue_zoned_model(q);
492
493 return 0;
494}
495
496/*
497 * Decrement a device's use count and remove it if necessary.
498 */
499void dm_put_device(struct dm_target *ti, struct dm_dev *d)
500{
501 int found = 0;
502 struct list_head *devices = &ti->table->devices;
503 struct dm_dev_internal *dd;
504
505 list_for_each_entry(dd, devices, list) {
506 if (dd->dm_dev == d) {
507 found = 1;
508 break;
509 }
510 }
511 if (!found) {
512 DMWARN("%s: device %s not in table devices list",
513 dm_device_name(ti->table->md), d->name);
514 return;
515 }
516 if (refcount_dec_and_test(&dd->count)) {
517 dm_put_table_device(ti->table->md, d);
518 list_del(&dd->list);
519 kfree(dd);
520 }
521}
522EXPORT_SYMBOL(dm_put_device);
523
524/*
525 * Checks to see if the target joins onto the end of the table.
526 */
527static int adjoin(struct dm_table *table, struct dm_target *ti)
528{
529 struct dm_target *prev;
530
531 if (!table->num_targets)
532 return !ti->begin;
533
534 prev = &table->targets[table->num_targets - 1];
535 return (ti->begin == (prev->begin + prev->len));
536}
537
538/*
539 * Used to dynamically allocate the arg array.
540 *
541 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
542 * process messages even if some device is suspended. These messages have a
543 * small fixed number of arguments.
544 *
545 * On the other hand, dm-switch needs to process bulk data using messages and
546 * excessive use of GFP_NOIO could cause trouble.
547 */
548static char **realloc_argv(unsigned *size, char **old_argv)
549{
550 char **argv;
551 unsigned new_size;
552 gfp_t gfp;
553
554 if (*size) {
555 new_size = *size * 2;
556 gfp = GFP_KERNEL;
557 } else {
558 new_size = 8;
559 gfp = GFP_NOIO;
560 }
561 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
562 if (argv && old_argv) {
563 memcpy(argv, old_argv, *size * sizeof(*argv));
564 *size = new_size;
565 }
566
567 kfree(old_argv);
568 return argv;
569}
570
571/*
572 * Destructively splits up the argument list to pass to ctr.
573 */
574int dm_split_args(int *argc, char ***argvp, char *input)
575{
576 char *start, *end = input, *out, **argv = NULL;
577 unsigned array_size = 0;
578
579 *argc = 0;
580
581 if (!input) {
582 *argvp = NULL;
583 return 0;
584 }
585
586 argv = realloc_argv(&array_size, argv);
587 if (!argv)
588 return -ENOMEM;
589
590 while (1) {
591 /* Skip whitespace */
592 start = skip_spaces(end);
593
594 if (!*start)
595 break; /* success, we hit the end */
596
597 /* 'out' is used to remove any back-quotes */
598 end = out = start;
599 while (*end) {
600 /* Everything apart from '\0' can be quoted */
601 if (*end == '\\' && *(end + 1)) {
602 *out++ = *(end + 1);
603 end += 2;
604 continue;
605 }
606
607 if (isspace(*end))
608 break; /* end of token */
609
610 *out++ = *end++;
611 }
612
613 /* have we already filled the array ? */
614 if ((*argc + 1) > array_size) {
615 argv = realloc_argv(&array_size, argv);
616 if (!argv)
617 return -ENOMEM;
618 }
619
620 /* we know this is whitespace */
621 if (*end)
622 end++;
623
624 /* terminate the string and put it in the array */
625 *out = '\0';
626 argv[*argc] = start;
627 (*argc)++;
628 }
629
630 *argvp = argv;
631 return 0;
632}
633
634/*
635 * Impose necessary and sufficient conditions on a devices's table such
636 * that any incoming bio which respects its logical_block_size can be
637 * processed successfully. If it falls across the boundary between
638 * two or more targets, the size of each piece it gets split into must
639 * be compatible with the logical_block_size of the target processing it.
640 */
641static int validate_hardware_logical_block_alignment(struct dm_table *table,
642 struct queue_limits *limits)
643{
644 /*
645 * This function uses arithmetic modulo the logical_block_size
646 * (in units of 512-byte sectors).
647 */
648 unsigned short device_logical_block_size_sects =
649 limits->logical_block_size >> SECTOR_SHIFT;
650
651 /*
652 * Offset of the start of the next table entry, mod logical_block_size.
653 */
654 unsigned short next_target_start = 0;
655
656 /*
657 * Given an aligned bio that extends beyond the end of a
658 * target, how many sectors must the next target handle?
659 */
660 unsigned short remaining = 0;
661
662 struct dm_target *uninitialized_var(ti);
663 struct queue_limits ti_limits;
664 unsigned i;
665
666 /*
667 * Check each entry in the table in turn.
668 */
669 for (i = 0; i < dm_table_get_num_targets(table); i++) {
670 ti = dm_table_get_target(table, i);
671
672 blk_set_stacking_limits(&ti_limits);
673
674 /* combine all target devices' limits */
675 if (ti->type->iterate_devices)
676 ti->type->iterate_devices(ti, dm_set_device_limits,
677 &ti_limits);
678
679 /*
680 * If the remaining sectors fall entirely within this
681 * table entry are they compatible with its logical_block_size?
682 */
683 if (remaining < ti->len &&
684 remaining & ((ti_limits.logical_block_size >>
685 SECTOR_SHIFT) - 1))
686 break; /* Error */
687
688 next_target_start =
689 (unsigned short) ((next_target_start + ti->len) &
690 (device_logical_block_size_sects - 1));
691 remaining = next_target_start ?
692 device_logical_block_size_sects - next_target_start : 0;
693 }
694
695 if (remaining) {
696 DMWARN("%s: table line %u (start sect %llu len %llu) "
697 "not aligned to h/w logical block size %u",
698 dm_device_name(table->md), i,
699 (unsigned long long) ti->begin,
700 (unsigned long long) ti->len,
701 limits->logical_block_size);
702 return -EINVAL;
703 }
704
705 return 0;
706}
707
708int dm_table_add_target(struct dm_table *t, const char *type,
709 sector_t start, sector_t len, char *params)
710{
711 int r = -EINVAL, argc;
712 char **argv;
713 struct dm_target *tgt;
714
715 if (t->singleton) {
716 DMERR("%s: target type %s must appear alone in table",
717 dm_device_name(t->md), t->targets->type->name);
718 return -EINVAL;
719 }
720
721 BUG_ON(t->num_targets >= t->num_allocated);
722
723 tgt = t->targets + t->num_targets;
724 memset(tgt, 0, sizeof(*tgt));
725
726 if (!len) {
727 DMERR("%s: zero-length target", dm_device_name(t->md));
728 return -EINVAL;
729 }
730
731 tgt->type = dm_get_target_type(type);
732 if (!tgt->type) {
733 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
734 return -EINVAL;
735 }
736
737 if (dm_target_needs_singleton(tgt->type)) {
738 if (t->num_targets) {
739 tgt->error = "singleton target type must appear alone in table";
740 goto bad;
741 }
742 t->singleton = true;
743 }
744
745 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
746 tgt->error = "target type may not be included in a read-only table";
747 goto bad;
748 }
749
750 if (t->immutable_target_type) {
751 if (t->immutable_target_type != tgt->type) {
752 tgt->error = "immutable target type cannot be mixed with other target types";
753 goto bad;
754 }
755 } else if (dm_target_is_immutable(tgt->type)) {
756 if (t->num_targets) {
757 tgt->error = "immutable target type cannot be mixed with other target types";
758 goto bad;
759 }
760 t->immutable_target_type = tgt->type;
761 }
762
763 if (dm_target_has_integrity(tgt->type))
764 t->integrity_added = 1;
765
766 tgt->table = t;
767 tgt->begin = start;
768 tgt->len = len;
769 tgt->error = "Unknown error";
770
771 /*
772 * Does this target adjoin the previous one ?
773 */
774 if (!adjoin(t, tgt)) {
775 tgt->error = "Gap in table";
776 goto bad;
777 }
778
779 r = dm_split_args(&argc, &argv, params);
780 if (r) {
781 tgt->error = "couldn't split parameters (insufficient memory)";
782 goto bad;
783 }
784
785 r = tgt->type->ctr(tgt, argc, argv);
786 kfree(argv);
787 if (r)
788 goto bad;
789
790 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
791
792 if (!tgt->num_discard_bios && tgt->discards_supported)
793 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
794 dm_device_name(t->md), type);
795
796 return 0;
797
798 bad:
799 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
800 dm_put_target_type(tgt->type);
801 return r;
802}
803
804/*
805 * Target argument parsing helpers.
806 */
807static int validate_next_arg(const struct dm_arg *arg,
808 struct dm_arg_set *arg_set,
809 unsigned *value, char **error, unsigned grouped)
810{
811 const char *arg_str = dm_shift_arg(arg_set);
812 char dummy;
813
814 if (!arg_str ||
815 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
816 (*value < arg->min) ||
817 (*value > arg->max) ||
818 (grouped && arg_set->argc < *value)) {
819 *error = arg->error;
820 return -EINVAL;
821 }
822
823 return 0;
824}
825
826int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
827 unsigned *value, char **error)
828{
829 return validate_next_arg(arg, arg_set, value, error, 0);
830}
831EXPORT_SYMBOL(dm_read_arg);
832
833int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
834 unsigned *value, char **error)
835{
836 return validate_next_arg(arg, arg_set, value, error, 1);
837}
838EXPORT_SYMBOL(dm_read_arg_group);
839
840const char *dm_shift_arg(struct dm_arg_set *as)
841{
842 char *r;
843
844 if (as->argc) {
845 as->argc--;
846 r = *as->argv;
847 as->argv++;
848 return r;
849 }
850
851 return NULL;
852}
853EXPORT_SYMBOL(dm_shift_arg);
854
855void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
856{
857 BUG_ON(as->argc < num_args);
858 as->argc -= num_args;
859 as->argv += num_args;
860}
861EXPORT_SYMBOL(dm_consume_args);
862
863static bool __table_type_bio_based(enum dm_queue_mode table_type)
864{
865 return (table_type == DM_TYPE_BIO_BASED ||
866 table_type == DM_TYPE_DAX_BIO_BASED ||
867 table_type == DM_TYPE_NVME_BIO_BASED);
868}
869
870static bool __table_type_request_based(enum dm_queue_mode table_type)
871{
872 return table_type == DM_TYPE_REQUEST_BASED;
873}
874
875void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
876{
877 t->type = type;
878}
879EXPORT_SYMBOL_GPL(dm_table_set_type);
880
881/* validate the dax capability of the target device span */
882int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
883 sector_t start, sector_t len, void *data)
884{
885 int blocksize = *(int *) data;
886
887 return generic_fsdax_supported(dev->dax_dev, dev->bdev, blocksize,
888 start, len);
889}
890
891/* Check devices support synchronous DAX */
892static int device_dax_synchronous(struct dm_target *ti, struct dm_dev *dev,
893 sector_t start, sector_t len, void *data)
894{
895 return dev->dax_dev && dax_synchronous(dev->dax_dev);
896}
897
898bool dm_table_supports_dax(struct dm_table *t,
899 iterate_devices_callout_fn iterate_fn, int *blocksize)
900{
901 struct dm_target *ti;
902 unsigned i;
903
904 /* Ensure that all targets support DAX. */
905 for (i = 0; i < dm_table_get_num_targets(t); i++) {
906 ti = dm_table_get_target(t, i);
907
908 if (!ti->type->direct_access)
909 return false;
910
911 if (!ti->type->iterate_devices ||
912 !ti->type->iterate_devices(ti, iterate_fn, blocksize))
913 return false;
914 }
915
916 return true;
917}
918
919static bool dm_table_does_not_support_partial_completion(struct dm_table *t);
920
921struct verify_rq_based_data {
922 unsigned sq_count;
923 unsigned mq_count;
924};
925
926static int device_is_rq_based(struct dm_target *ti, struct dm_dev *dev,
927 sector_t start, sector_t len, void *data)
928{
929 struct request_queue *q = bdev_get_queue(dev->bdev);
930 struct verify_rq_based_data *v = data;
931
932 if (queue_is_mq(q))
933 v->mq_count++;
934 else
935 v->sq_count++;
936
937 return queue_is_mq(q);
938}
939
940static int dm_table_determine_type(struct dm_table *t)
941{
942 unsigned i;
943 unsigned bio_based = 0, request_based = 0, hybrid = 0;
944 struct verify_rq_based_data v = {.sq_count = 0, .mq_count = 0};
945 struct dm_target *tgt;
946 struct list_head *devices = dm_table_get_devices(t);
947 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
948 int page_size = PAGE_SIZE;
949
950 if (t->type != DM_TYPE_NONE) {
951 /* target already set the table's type */
952 if (t->type == DM_TYPE_BIO_BASED) {
953 /* possibly upgrade to a variant of bio-based */
954 goto verify_bio_based;
955 }
956 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
957 BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED);
958 goto verify_rq_based;
959 }
960
961 for (i = 0; i < t->num_targets; i++) {
962 tgt = t->targets + i;
963 if (dm_target_hybrid(tgt))
964 hybrid = 1;
965 else if (dm_target_request_based(tgt))
966 request_based = 1;
967 else
968 bio_based = 1;
969
970 if (bio_based && request_based) {
971 DMERR("Inconsistent table: different target types"
972 " can't be mixed up");
973 return -EINVAL;
974 }
975 }
976
977 if (hybrid && !bio_based && !request_based) {
978 /*
979 * The targets can work either way.
980 * Determine the type from the live device.
981 * Default to bio-based if device is new.
982 */
983 if (__table_type_request_based(live_md_type))
984 request_based = 1;
985 else
986 bio_based = 1;
987 }
988
989 if (bio_based) {
990verify_bio_based:
991 /* We must use this table as bio-based */
992 t->type = DM_TYPE_BIO_BASED;
993 if (dm_table_supports_dax(t, device_supports_dax, &page_size) ||
994 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
995 t->type = DM_TYPE_DAX_BIO_BASED;
996 } else {
997 /* Check if upgrading to NVMe bio-based is valid or required */
998 tgt = dm_table_get_immutable_target(t);
999 if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) {
1000 t->type = DM_TYPE_NVME_BIO_BASED;
1001 goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */
1002 } else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) {
1003 t->type = DM_TYPE_NVME_BIO_BASED;
1004 }
1005 }
1006 return 0;
1007 }
1008
1009 BUG_ON(!request_based); /* No targets in this table */
1010
1011 t->type = DM_TYPE_REQUEST_BASED;
1012
1013verify_rq_based:
1014 /*
1015 * Request-based dm supports only tables that have a single target now.
1016 * To support multiple targets, request splitting support is needed,
1017 * and that needs lots of changes in the block-layer.
1018 * (e.g. request completion process for partial completion.)
1019 */
1020 if (t->num_targets > 1) {
1021 DMERR("%s DM doesn't support multiple targets",
1022 t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based");
1023 return -EINVAL;
1024 }
1025
1026 if (list_empty(devices)) {
1027 int srcu_idx;
1028 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
1029
1030 /* inherit live table's type */
1031 if (live_table)
1032 t->type = live_table->type;
1033 dm_put_live_table(t->md, srcu_idx);
1034 return 0;
1035 }
1036
1037 tgt = dm_table_get_immutable_target(t);
1038 if (!tgt) {
1039 DMERR("table load rejected: immutable target is required");
1040 return -EINVAL;
1041 } else if (tgt->max_io_len) {
1042 DMERR("table load rejected: immutable target that splits IO is not supported");
1043 return -EINVAL;
1044 }
1045
1046 /* Non-request-stackable devices can't be used for request-based dm */
1047 if (!tgt->type->iterate_devices ||
1048 !tgt->type->iterate_devices(tgt, device_is_rq_based, &v)) {
1049 DMERR("table load rejected: including non-request-stackable devices");
1050 return -EINVAL;
1051 }
1052 if (v.sq_count > 0) {
1053 DMERR("table load rejected: not all devices are blk-mq request-stackable");
1054 return -EINVAL;
1055 }
1056
1057 return 0;
1058}
1059
1060enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1061{
1062 return t->type;
1063}
1064
1065struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1066{
1067 return t->immutable_target_type;
1068}
1069
1070struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1071{
1072 /* Immutable target is implicitly a singleton */
1073 if (t->num_targets > 1 ||
1074 !dm_target_is_immutable(t->targets[0].type))
1075 return NULL;
1076
1077 return t->targets;
1078}
1079
1080struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1081{
1082 struct dm_target *ti;
1083 unsigned i;
1084
1085 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1086 ti = dm_table_get_target(t, i);
1087 if (dm_target_is_wildcard(ti->type))
1088 return ti;
1089 }
1090
1091 return NULL;
1092}
1093
1094bool dm_table_bio_based(struct dm_table *t)
1095{
1096 return __table_type_bio_based(dm_table_get_type(t));
1097}
1098
1099bool dm_table_request_based(struct dm_table *t)
1100{
1101 return __table_type_request_based(dm_table_get_type(t));
1102}
1103
1104static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1105{
1106 enum dm_queue_mode type = dm_table_get_type(t);
1107 unsigned per_io_data_size = 0;
1108 unsigned min_pool_size = 0;
1109 struct dm_target *ti;
1110 unsigned i;
1111
1112 if (unlikely(type == DM_TYPE_NONE)) {
1113 DMWARN("no table type is set, can't allocate mempools");
1114 return -EINVAL;
1115 }
1116
1117 if (__table_type_bio_based(type))
1118 for (i = 0; i < t->num_targets; i++) {
1119 ti = t->targets + i;
1120 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1121 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1122 }
1123
1124 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1125 per_io_data_size, min_pool_size);
1126 if (!t->mempools)
1127 return -ENOMEM;
1128
1129 return 0;
1130}
1131
1132void dm_table_free_md_mempools(struct dm_table *t)
1133{
1134 dm_free_md_mempools(t->mempools);
1135 t->mempools = NULL;
1136}
1137
1138struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1139{
1140 return t->mempools;
1141}
1142
1143static int setup_indexes(struct dm_table *t)
1144{
1145 int i;
1146 unsigned int total = 0;
1147 sector_t *indexes;
1148
1149 /* allocate the space for *all* the indexes */
1150 for (i = t->depth - 2; i >= 0; i--) {
1151 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1152 total += t->counts[i];
1153 }
1154
1155 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1156 if (!indexes)
1157 return -ENOMEM;
1158
1159 /* set up internal nodes, bottom-up */
1160 for (i = t->depth - 2; i >= 0; i--) {
1161 t->index[i] = indexes;
1162 indexes += (KEYS_PER_NODE * t->counts[i]);
1163 setup_btree_index(i, t);
1164 }
1165
1166 return 0;
1167}
1168
1169/*
1170 * Builds the btree to index the map.
1171 */
1172static int dm_table_build_index(struct dm_table *t)
1173{
1174 int r = 0;
1175 unsigned int leaf_nodes;
1176
1177 /* how many indexes will the btree have ? */
1178 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1179 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1180
1181 /* leaf layer has already been set up */
1182 t->counts[t->depth - 1] = leaf_nodes;
1183 t->index[t->depth - 1] = t->highs;
1184
1185 if (t->depth >= 2)
1186 r = setup_indexes(t);
1187
1188 return r;
1189}
1190
1191static bool integrity_profile_exists(struct gendisk *disk)
1192{
1193 return !!blk_get_integrity(disk);
1194}
1195
1196/*
1197 * Get a disk whose integrity profile reflects the table's profile.
1198 * Returns NULL if integrity support was inconsistent or unavailable.
1199 */
1200static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1201{
1202 struct list_head *devices = dm_table_get_devices(t);
1203 struct dm_dev_internal *dd = NULL;
1204 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1205 unsigned i;
1206
1207 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1208 struct dm_target *ti = dm_table_get_target(t, i);
1209 if (!dm_target_passes_integrity(ti->type))
1210 goto no_integrity;
1211 }
1212
1213 list_for_each_entry(dd, devices, list) {
1214 template_disk = dd->dm_dev->bdev->bd_disk;
1215 if (!integrity_profile_exists(template_disk))
1216 goto no_integrity;
1217 else if (prev_disk &&
1218 blk_integrity_compare(prev_disk, template_disk) < 0)
1219 goto no_integrity;
1220 prev_disk = template_disk;
1221 }
1222
1223 return template_disk;
1224
1225no_integrity:
1226 if (prev_disk)
1227 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1228 dm_device_name(t->md),
1229 prev_disk->disk_name,
1230 template_disk->disk_name);
1231 return NULL;
1232}
1233
1234/*
1235 * Register the mapped device for blk_integrity support if the
1236 * underlying devices have an integrity profile. But all devices may
1237 * not have matching profiles (checking all devices isn't reliable
1238 * during table load because this table may use other DM device(s) which
1239 * must be resumed before they will have an initialized integity
1240 * profile). Consequently, stacked DM devices force a 2 stage integrity
1241 * profile validation: First pass during table load, final pass during
1242 * resume.
1243 */
1244static int dm_table_register_integrity(struct dm_table *t)
1245{
1246 struct mapped_device *md = t->md;
1247 struct gendisk *template_disk = NULL;
1248
1249 /* If target handles integrity itself do not register it here. */
1250 if (t->integrity_added)
1251 return 0;
1252
1253 template_disk = dm_table_get_integrity_disk(t);
1254 if (!template_disk)
1255 return 0;
1256
1257 if (!integrity_profile_exists(dm_disk(md))) {
1258 t->integrity_supported = true;
1259 /*
1260 * Register integrity profile during table load; we can do
1261 * this because the final profile must match during resume.
1262 */
1263 blk_integrity_register(dm_disk(md),
1264 blk_get_integrity(template_disk));
1265 return 0;
1266 }
1267
1268 /*
1269 * If DM device already has an initialized integrity
1270 * profile the new profile should not conflict.
1271 */
1272 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1273 DMWARN("%s: conflict with existing integrity profile: "
1274 "%s profile mismatch",
1275 dm_device_name(t->md),
1276 template_disk->disk_name);
1277 return 1;
1278 }
1279
1280 /* Preserve existing integrity profile */
1281 t->integrity_supported = true;
1282 return 0;
1283}
1284
1285/*
1286 * Prepares the table for use by building the indices,
1287 * setting the type, and allocating mempools.
1288 */
1289int dm_table_complete(struct dm_table *t)
1290{
1291 int r;
1292
1293 r = dm_table_determine_type(t);
1294 if (r) {
1295 DMERR("unable to determine table type");
1296 return r;
1297 }
1298
1299 r = dm_table_build_index(t);
1300 if (r) {
1301 DMERR("unable to build btrees");
1302 return r;
1303 }
1304
1305 r = dm_table_register_integrity(t);
1306 if (r) {
1307 DMERR("could not register integrity profile.");
1308 return r;
1309 }
1310
1311 r = dm_table_alloc_md_mempools(t, t->md);
1312 if (r)
1313 DMERR("unable to allocate mempools");
1314
1315 return r;
1316}
1317
1318static DEFINE_MUTEX(_event_lock);
1319void dm_table_event_callback(struct dm_table *t,
1320 void (*fn)(void *), void *context)
1321{
1322 mutex_lock(&_event_lock);
1323 t->event_fn = fn;
1324 t->event_context = context;
1325 mutex_unlock(&_event_lock);
1326}
1327
1328void dm_table_event(struct dm_table *t)
1329{
1330 /*
1331 * You can no longer call dm_table_event() from interrupt
1332 * context, use a bottom half instead.
1333 */
1334 BUG_ON(in_interrupt());
1335
1336 mutex_lock(&_event_lock);
1337 if (t->event_fn)
1338 t->event_fn(t->event_context);
1339 mutex_unlock(&_event_lock);
1340}
1341EXPORT_SYMBOL(dm_table_event);
1342
1343inline sector_t dm_table_get_size(struct dm_table *t)
1344{
1345 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1346}
1347EXPORT_SYMBOL(dm_table_get_size);
1348
1349struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1350{
1351 if (index >= t->num_targets)
1352 return NULL;
1353
1354 return t->targets + index;
1355}
1356
1357/*
1358 * Search the btree for the correct target.
1359 *
1360 * Caller should check returned pointer for NULL
1361 * to trap I/O beyond end of device.
1362 */
1363struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1364{
1365 unsigned int l, n = 0, k = 0;
1366 sector_t *node;
1367
1368 if (unlikely(sector >= dm_table_get_size(t)))
1369 return NULL;
1370
1371 for (l = 0; l < t->depth; l++) {
1372 n = get_child(n, k);
1373 node = get_node(t, l, n);
1374
1375 for (k = 0; k < KEYS_PER_NODE; k++)
1376 if (node[k] >= sector)
1377 break;
1378 }
1379
1380 return &t->targets[(KEYS_PER_NODE * n) + k];
1381}
1382
1383static int count_device(struct dm_target *ti, struct dm_dev *dev,
1384 sector_t start, sector_t len, void *data)
1385{
1386 unsigned *num_devices = data;
1387
1388 (*num_devices)++;
1389
1390 return 0;
1391}
1392
1393/*
1394 * Check whether a table has no data devices attached using each
1395 * target's iterate_devices method.
1396 * Returns false if the result is unknown because a target doesn't
1397 * support iterate_devices.
1398 */
1399bool dm_table_has_no_data_devices(struct dm_table *table)
1400{
1401 struct dm_target *ti;
1402 unsigned i, num_devices;
1403
1404 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1405 ti = dm_table_get_target(table, i);
1406
1407 if (!ti->type->iterate_devices)
1408 return false;
1409
1410 num_devices = 0;
1411 ti->type->iterate_devices(ti, count_device, &num_devices);
1412 if (num_devices)
1413 return false;
1414 }
1415
1416 return true;
1417}
1418
1419static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1420 sector_t start, sector_t len, void *data)
1421{
1422 struct request_queue *q = bdev_get_queue(dev->bdev);
1423 enum blk_zoned_model *zoned_model = data;
1424
1425 return q && blk_queue_zoned_model(q) == *zoned_model;
1426}
1427
1428static bool dm_table_supports_zoned_model(struct dm_table *t,
1429 enum blk_zoned_model zoned_model)
1430{
1431 struct dm_target *ti;
1432 unsigned i;
1433
1434 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1435 ti = dm_table_get_target(t, i);
1436
1437 if (zoned_model == BLK_ZONED_HM &&
1438 !dm_target_supports_zoned_hm(ti->type))
1439 return false;
1440
1441 if (!ti->type->iterate_devices ||
1442 !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1443 return false;
1444 }
1445
1446 return true;
1447}
1448
1449static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1450 sector_t start, sector_t len, void *data)
1451{
1452 struct request_queue *q = bdev_get_queue(dev->bdev);
1453 unsigned int *zone_sectors = data;
1454
1455 return q && blk_queue_zone_sectors(q) == *zone_sectors;
1456}
1457
1458static bool dm_table_matches_zone_sectors(struct dm_table *t,
1459 unsigned int zone_sectors)
1460{
1461 struct dm_target *ti;
1462 unsigned i;
1463
1464 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1465 ti = dm_table_get_target(t, i);
1466
1467 if (!ti->type->iterate_devices ||
1468 !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1469 return false;
1470 }
1471
1472 return true;
1473}
1474
1475static int validate_hardware_zoned_model(struct dm_table *table,
1476 enum blk_zoned_model zoned_model,
1477 unsigned int zone_sectors)
1478{
1479 if (zoned_model == BLK_ZONED_NONE)
1480 return 0;
1481
1482 if (!dm_table_supports_zoned_model(table, zoned_model)) {
1483 DMERR("%s: zoned model is not consistent across all devices",
1484 dm_device_name(table->md));
1485 return -EINVAL;
1486 }
1487
1488 /* Check zone size validity and compatibility */
1489 if (!zone_sectors || !is_power_of_2(zone_sectors))
1490 return -EINVAL;
1491
1492 if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1493 DMERR("%s: zone sectors is not consistent across all devices",
1494 dm_device_name(table->md));
1495 return -EINVAL;
1496 }
1497
1498 return 0;
1499}
1500
1501/*
1502 * Establish the new table's queue_limits and validate them.
1503 */
1504int dm_calculate_queue_limits(struct dm_table *table,
1505 struct queue_limits *limits)
1506{
1507 struct dm_target *ti;
1508 struct queue_limits ti_limits;
1509 unsigned i;
1510 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1511 unsigned int zone_sectors = 0;
1512
1513 blk_set_stacking_limits(limits);
1514
1515 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1516 blk_set_stacking_limits(&ti_limits);
1517
1518 ti = dm_table_get_target(table, i);
1519
1520 if (!ti->type->iterate_devices)
1521 goto combine_limits;
1522
1523 /*
1524 * Combine queue limits of all the devices this target uses.
1525 */
1526 ti->type->iterate_devices(ti, dm_set_device_limits,
1527 &ti_limits);
1528
1529 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1530 /*
1531 * After stacking all limits, validate all devices
1532 * in table support this zoned model and zone sectors.
1533 */
1534 zoned_model = ti_limits.zoned;
1535 zone_sectors = ti_limits.chunk_sectors;
1536 }
1537
1538 /* Set I/O hints portion of queue limits */
1539 if (ti->type->io_hints)
1540 ti->type->io_hints(ti, &ti_limits);
1541
1542 /*
1543 * Check each device area is consistent with the target's
1544 * overall queue limits.
1545 */
1546 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1547 &ti_limits))
1548 return -EINVAL;
1549
1550combine_limits:
1551 /*
1552 * Merge this target's queue limits into the overall limits
1553 * for the table.
1554 */
1555 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1556 DMWARN("%s: adding target device "
1557 "(start sect %llu len %llu) "
1558 "caused an alignment inconsistency",
1559 dm_device_name(table->md),
1560 (unsigned long long) ti->begin,
1561 (unsigned long long) ti->len);
1562
1563 /*
1564 * FIXME: this should likely be moved to blk_stack_limits(), would
1565 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1566 */
1567 if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1568 /*
1569 * By default, the stacked limits zoned model is set to
1570 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1571 * this model using the first target model reported
1572 * that is not BLK_ZONED_NONE. This will be either the
1573 * first target device zoned model or the model reported
1574 * by the target .io_hints.
1575 */
1576 limits->zoned = ti_limits.zoned;
1577 }
1578 }
1579
1580 /*
1581 * Verify that the zoned model and zone sectors, as determined before
1582 * any .io_hints override, are the same across all devices in the table.
1583 * - this is especially relevant if .io_hints is emulating a disk-managed
1584 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1585 * BUT...
1586 */
1587 if (limits->zoned != BLK_ZONED_NONE) {
1588 /*
1589 * ...IF the above limits stacking determined a zoned model
1590 * validate that all of the table's devices conform to it.
1591 */
1592 zoned_model = limits->zoned;
1593 zone_sectors = limits->chunk_sectors;
1594 }
1595 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1596 return -EINVAL;
1597
1598 return validate_hardware_logical_block_alignment(table, limits);
1599}
1600
1601/*
1602 * Verify that all devices have an integrity profile that matches the
1603 * DM device's registered integrity profile. If the profiles don't
1604 * match then unregister the DM device's integrity profile.
1605 */
1606static void dm_table_verify_integrity(struct dm_table *t)
1607{
1608 struct gendisk *template_disk = NULL;
1609
1610 if (t->integrity_added)
1611 return;
1612
1613 if (t->integrity_supported) {
1614 /*
1615 * Verify that the original integrity profile
1616 * matches all the devices in this table.
1617 */
1618 template_disk = dm_table_get_integrity_disk(t);
1619 if (template_disk &&
1620 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1621 return;
1622 }
1623
1624 if (integrity_profile_exists(dm_disk(t->md))) {
1625 DMWARN("%s: unable to establish an integrity profile",
1626 dm_device_name(t->md));
1627 blk_integrity_unregister(dm_disk(t->md));
1628 }
1629}
1630
1631static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1632 sector_t start, sector_t len, void *data)
1633{
1634 unsigned long flush = (unsigned long) data;
1635 struct request_queue *q = bdev_get_queue(dev->bdev);
1636
1637 return q && (q->queue_flags & flush);
1638}
1639
1640static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1641{
1642 struct dm_target *ti;
1643 unsigned i;
1644
1645 /*
1646 * Require at least one underlying device to support flushes.
1647 * t->devices includes internal dm devices such as mirror logs
1648 * so we need to use iterate_devices here, which targets
1649 * supporting flushes must provide.
1650 */
1651 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1652 ti = dm_table_get_target(t, i);
1653
1654 if (!ti->num_flush_bios)
1655 continue;
1656
1657 if (ti->flush_supported)
1658 return true;
1659
1660 if (ti->type->iterate_devices &&
1661 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1662 return true;
1663 }
1664
1665 return false;
1666}
1667
1668static int device_dax_write_cache_enabled(struct dm_target *ti,
1669 struct dm_dev *dev, sector_t start,
1670 sector_t len, void *data)
1671{
1672 struct dax_device *dax_dev = dev->dax_dev;
1673
1674 if (!dax_dev)
1675 return false;
1676
1677 if (dax_write_cache_enabled(dax_dev))
1678 return true;
1679 return false;
1680}
1681
1682static int dm_table_supports_dax_write_cache(struct dm_table *t)
1683{
1684 struct dm_target *ti;
1685 unsigned i;
1686
1687 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1688 ti = dm_table_get_target(t, i);
1689
1690 if (ti->type->iterate_devices &&
1691 ti->type->iterate_devices(ti,
1692 device_dax_write_cache_enabled, NULL))
1693 return true;
1694 }
1695
1696 return false;
1697}
1698
1699static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1700 sector_t start, sector_t len, void *data)
1701{
1702 struct request_queue *q = bdev_get_queue(dev->bdev);
1703
1704 return q && blk_queue_nonrot(q);
1705}
1706
1707static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1708 sector_t start, sector_t len, void *data)
1709{
1710 struct request_queue *q = bdev_get_queue(dev->bdev);
1711
1712 return q && !blk_queue_add_random(q);
1713}
1714
1715static bool dm_table_all_devices_attribute(struct dm_table *t,
1716 iterate_devices_callout_fn func)
1717{
1718 struct dm_target *ti;
1719 unsigned i;
1720
1721 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1722 ti = dm_table_get_target(t, i);
1723
1724 if (!ti->type->iterate_devices ||
1725 !ti->type->iterate_devices(ti, func, NULL))
1726 return false;
1727 }
1728
1729 return true;
1730}
1731
1732static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev,
1733 sector_t start, sector_t len, void *data)
1734{
1735 char b[BDEVNAME_SIZE];
1736
1737 /* For now, NVMe devices are the only devices of this class */
1738 return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0);
1739}
1740
1741static bool dm_table_does_not_support_partial_completion(struct dm_table *t)
1742{
1743 return dm_table_all_devices_attribute(t, device_no_partial_completion);
1744}
1745
1746static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1747 sector_t start, sector_t len, void *data)
1748{
1749 struct request_queue *q = bdev_get_queue(dev->bdev);
1750
1751 return q && !q->limits.max_write_same_sectors;
1752}
1753
1754static bool dm_table_supports_write_same(struct dm_table *t)
1755{
1756 struct dm_target *ti;
1757 unsigned i;
1758
1759 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1760 ti = dm_table_get_target(t, i);
1761
1762 if (!ti->num_write_same_bios)
1763 return false;
1764
1765 if (!ti->type->iterate_devices ||
1766 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1767 return false;
1768 }
1769
1770 return true;
1771}
1772
1773static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1774 sector_t start, sector_t len, void *data)
1775{
1776 struct request_queue *q = bdev_get_queue(dev->bdev);
1777
1778 return q && !q->limits.max_write_zeroes_sectors;
1779}
1780
1781static bool dm_table_supports_write_zeroes(struct dm_table *t)
1782{
1783 struct dm_target *ti;
1784 unsigned i = 0;
1785
1786 while (i < dm_table_get_num_targets(t)) {
1787 ti = dm_table_get_target(t, i++);
1788
1789 if (!ti->num_write_zeroes_bios)
1790 return false;
1791
1792 if (!ti->type->iterate_devices ||
1793 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1794 return false;
1795 }
1796
1797 return true;
1798}
1799
1800static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1801 sector_t start, sector_t len, void *data)
1802{
1803 struct request_queue *q = bdev_get_queue(dev->bdev);
1804
1805 return q && !blk_queue_discard(q);
1806}
1807
1808static bool dm_table_supports_discards(struct dm_table *t)
1809{
1810 struct dm_target *ti;
1811 unsigned i;
1812
1813 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1814 ti = dm_table_get_target(t, i);
1815
1816 if (!ti->num_discard_bios)
1817 return false;
1818
1819 /*
1820 * Either the target provides discard support (as implied by setting
1821 * 'discards_supported') or it relies on _all_ data devices having
1822 * discard support.
1823 */
1824 if (!ti->discards_supported &&
1825 (!ti->type->iterate_devices ||
1826 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1827 return false;
1828 }
1829
1830 return true;
1831}
1832
1833static int device_not_secure_erase_capable(struct dm_target *ti,
1834 struct dm_dev *dev, sector_t start,
1835 sector_t len, void *data)
1836{
1837 struct request_queue *q = bdev_get_queue(dev->bdev);
1838
1839 return q && !blk_queue_secure_erase(q);
1840}
1841
1842static bool dm_table_supports_secure_erase(struct dm_table *t)
1843{
1844 struct dm_target *ti;
1845 unsigned int i;
1846
1847 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1848 ti = dm_table_get_target(t, i);
1849
1850 if (!ti->num_secure_erase_bios)
1851 return false;
1852
1853 if (!ti->type->iterate_devices ||
1854 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1855 return false;
1856 }
1857
1858 return true;
1859}
1860
1861static int device_requires_stable_pages(struct dm_target *ti,
1862 struct dm_dev *dev, sector_t start,
1863 sector_t len, void *data)
1864{
1865 struct request_queue *q = bdev_get_queue(dev->bdev);
1866
1867 return q && bdi_cap_stable_pages_required(q->backing_dev_info);
1868}
1869
1870/*
1871 * If any underlying device requires stable pages, a table must require
1872 * them as well. Only targets that support iterate_devices are considered:
1873 * don't want error, zero, etc to require stable pages.
1874 */
1875static bool dm_table_requires_stable_pages(struct dm_table *t)
1876{
1877 struct dm_target *ti;
1878 unsigned i;
1879
1880 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1881 ti = dm_table_get_target(t, i);
1882
1883 if (ti->type->iterate_devices &&
1884 ti->type->iterate_devices(ti, device_requires_stable_pages, NULL))
1885 return true;
1886 }
1887
1888 return false;
1889}
1890
1891void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1892 struct queue_limits *limits)
1893{
1894 bool wc = false, fua = false;
1895 int page_size = PAGE_SIZE;
1896
1897 /*
1898 * Copy table's limits to the DM device's request_queue
1899 */
1900 q->limits = *limits;
1901
1902 if (!dm_table_supports_discards(t)) {
1903 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1904 /* Must also clear discard limits... */
1905 q->limits.max_discard_sectors = 0;
1906 q->limits.max_hw_discard_sectors = 0;
1907 q->limits.discard_granularity = 0;
1908 q->limits.discard_alignment = 0;
1909 q->limits.discard_misaligned = 0;
1910 } else
1911 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1912
1913 if (dm_table_supports_secure_erase(t))
1914 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1915
1916 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1917 wc = true;
1918 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1919 fua = true;
1920 }
1921 blk_queue_write_cache(q, wc, fua);
1922
1923 if (dm_table_supports_dax(t, device_supports_dax, &page_size)) {
1924 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1925 if (dm_table_supports_dax(t, device_dax_synchronous, NULL))
1926 set_dax_synchronous(t->md->dax_dev);
1927 }
1928 else
1929 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1930
1931 if (dm_table_supports_dax_write_cache(t))
1932 dax_write_cache(t->md->dax_dev, true);
1933
1934 /* Ensure that all underlying devices are non-rotational. */
1935 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1936 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1937 else
1938 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1939
1940 if (!dm_table_supports_write_same(t))
1941 q->limits.max_write_same_sectors = 0;
1942 if (!dm_table_supports_write_zeroes(t))
1943 q->limits.max_write_zeroes_sectors = 0;
1944
1945 dm_table_verify_integrity(t);
1946
1947 /*
1948 * Some devices don't use blk_integrity but still want stable pages
1949 * because they do their own checksumming.
1950 */
1951 if (dm_table_requires_stable_pages(t))
1952 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
1953 else
1954 q->backing_dev_info->capabilities &= ~BDI_CAP_STABLE_WRITES;
1955
1956 /*
1957 * Determine whether or not this queue's I/O timings contribute
1958 * to the entropy pool, Only request-based targets use this.
1959 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1960 * have it set.
1961 */
1962 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1963 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1964
1965 /*
1966 * For a zoned target, the number of zones should be updated for the
1967 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
1968 * target, this is all that is needed. For a request based target, the
1969 * queue zone bitmaps must also be updated.
1970 * Use blk_revalidate_disk_zones() to handle this.
1971 */
1972 if (blk_queue_is_zoned(q))
1973 blk_revalidate_disk_zones(t->md->disk);
1974
1975 /* Allow reads to exceed readahead limits */
1976 q->backing_dev_info->io_pages = limits->max_sectors >> (PAGE_SHIFT - 9);
1977}
1978
1979unsigned int dm_table_get_num_targets(struct dm_table *t)
1980{
1981 return t->num_targets;
1982}
1983
1984struct list_head *dm_table_get_devices(struct dm_table *t)
1985{
1986 return &t->devices;
1987}
1988
1989fmode_t dm_table_get_mode(struct dm_table *t)
1990{
1991 return t->mode;
1992}
1993EXPORT_SYMBOL(dm_table_get_mode);
1994
1995enum suspend_mode {
1996 PRESUSPEND,
1997 PRESUSPEND_UNDO,
1998 POSTSUSPEND,
1999};
2000
2001static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2002{
2003 int i = t->num_targets;
2004 struct dm_target *ti = t->targets;
2005
2006 lockdep_assert_held(&t->md->suspend_lock);
2007
2008 while (i--) {
2009 switch (mode) {
2010 case PRESUSPEND:
2011 if (ti->type->presuspend)
2012 ti->type->presuspend(ti);
2013 break;
2014 case PRESUSPEND_UNDO:
2015 if (ti->type->presuspend_undo)
2016 ti->type->presuspend_undo(ti);
2017 break;
2018 case POSTSUSPEND:
2019 if (ti->type->postsuspend)
2020 ti->type->postsuspend(ti);
2021 break;
2022 }
2023 ti++;
2024 }
2025}
2026
2027void dm_table_presuspend_targets(struct dm_table *t)
2028{
2029 if (!t)
2030 return;
2031
2032 suspend_targets(t, PRESUSPEND);
2033}
2034
2035void dm_table_presuspend_undo_targets(struct dm_table *t)
2036{
2037 if (!t)
2038 return;
2039
2040 suspend_targets(t, PRESUSPEND_UNDO);
2041}
2042
2043void dm_table_postsuspend_targets(struct dm_table *t)
2044{
2045 if (!t)
2046 return;
2047
2048 suspend_targets(t, POSTSUSPEND);
2049}
2050
2051int dm_table_resume_targets(struct dm_table *t)
2052{
2053 int i, r = 0;
2054
2055 lockdep_assert_held(&t->md->suspend_lock);
2056
2057 for (i = 0; i < t->num_targets; i++) {
2058 struct dm_target *ti = t->targets + i;
2059
2060 if (!ti->type->preresume)
2061 continue;
2062
2063 r = ti->type->preresume(ti);
2064 if (r) {
2065 DMERR("%s: %s: preresume failed, error = %d",
2066 dm_device_name(t->md), ti->type->name, r);
2067 return r;
2068 }
2069 }
2070
2071 for (i = 0; i < t->num_targets; i++) {
2072 struct dm_target *ti = t->targets + i;
2073
2074 if (ti->type->resume)
2075 ti->type->resume(ti);
2076 }
2077
2078 return 0;
2079}
2080
2081void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
2082{
2083 list_add(&cb->list, &t->target_callbacks);
2084}
2085EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
2086
2087int dm_table_any_congested(struct dm_table *t, int bdi_bits)
2088{
2089 struct dm_dev_internal *dd;
2090 struct list_head *devices = dm_table_get_devices(t);
2091 struct dm_target_callbacks *cb;
2092 int r = 0;
2093
2094 list_for_each_entry(dd, devices, list) {
2095 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
2096 char b[BDEVNAME_SIZE];
2097
2098 if (likely(q))
2099 r |= bdi_congested(q->backing_dev_info, bdi_bits);
2100 else
2101 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
2102 dm_device_name(t->md),
2103 bdevname(dd->dm_dev->bdev, b));
2104 }
2105
2106 list_for_each_entry(cb, &t->target_callbacks, list)
2107 if (cb->congested_fn)
2108 r |= cb->congested_fn(cb, bdi_bits);
2109
2110 return r;
2111}
2112
2113struct mapped_device *dm_table_get_md(struct dm_table *t)
2114{
2115 return t->md;
2116}
2117EXPORT_SYMBOL(dm_table_get_md);
2118
2119const char *dm_table_device_name(struct dm_table *t)
2120{
2121 return dm_device_name(t->md);
2122}
2123EXPORT_SYMBOL_GPL(dm_table_device_name);
2124
2125void dm_table_run_md_queue_async(struct dm_table *t)
2126{
2127 struct mapped_device *md;
2128 struct request_queue *queue;
2129
2130 if (!dm_table_request_based(t))
2131 return;
2132
2133 md = dm_table_get_md(t);
2134 queue = dm_get_md_queue(md);
2135 if (queue)
2136 blk_mq_run_hw_queues(queue, true);
2137}
2138EXPORT_SYMBOL(dm_table_run_md_queue_async);
2139
1/*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm.h"
9
10#include <linux/module.h>
11#include <linux/vmalloc.h>
12#include <linux/blkdev.h>
13#include <linux/namei.h>
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/slab.h>
17#include <linux/interrupt.h>
18#include <linux/mutex.h>
19#include <linux/delay.h>
20#include <linux/atomic.h>
21
22#define DM_MSG_PREFIX "table"
23
24#define MAX_DEPTH 16
25#define NODE_SIZE L1_CACHE_BYTES
26#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
28
29struct dm_table {
30 struct mapped_device *md;
31 unsigned type;
32
33 /* btree table */
34 unsigned int depth;
35 unsigned int counts[MAX_DEPTH]; /* in nodes */
36 sector_t *index[MAX_DEPTH];
37
38 unsigned int num_targets;
39 unsigned int num_allocated;
40 sector_t *highs;
41 struct dm_target *targets;
42
43 struct target_type *immutable_target_type;
44 unsigned integrity_supported:1;
45 unsigned singleton:1;
46
47 /*
48 * Indicates the rw permissions for the new logical
49 * device. This should be a combination of FMODE_READ
50 * and FMODE_WRITE.
51 */
52 fmode_t mode;
53
54 /* a list of devices used by this table */
55 struct list_head devices;
56
57 /* events get handed up using this callback */
58 void (*event_fn)(void *);
59 void *event_context;
60
61 struct dm_md_mempools *mempools;
62
63 struct list_head target_callbacks;
64};
65
66/*
67 * Similar to ceiling(log_size(n))
68 */
69static unsigned int int_log(unsigned int n, unsigned int base)
70{
71 int result = 0;
72
73 while (n > 1) {
74 n = dm_div_up(n, base);
75 result++;
76 }
77
78 return result;
79}
80
81/*
82 * Calculate the index of the child node of the n'th node k'th key.
83 */
84static inline unsigned int get_child(unsigned int n, unsigned int k)
85{
86 return (n * CHILDREN_PER_NODE) + k;
87}
88
89/*
90 * Return the n'th node of level l from table t.
91 */
92static inline sector_t *get_node(struct dm_table *t,
93 unsigned int l, unsigned int n)
94{
95 return t->index[l] + (n * KEYS_PER_NODE);
96}
97
98/*
99 * Return the highest key that you could lookup from the n'th
100 * node on level l of the btree.
101 */
102static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
103{
104 for (; l < t->depth - 1; l++)
105 n = get_child(n, CHILDREN_PER_NODE - 1);
106
107 if (n >= t->counts[l])
108 return (sector_t) - 1;
109
110 return get_node(t, l, n)[KEYS_PER_NODE - 1];
111}
112
113/*
114 * Fills in a level of the btree based on the highs of the level
115 * below it.
116 */
117static int setup_btree_index(unsigned int l, struct dm_table *t)
118{
119 unsigned int n, k;
120 sector_t *node;
121
122 for (n = 0U; n < t->counts[l]; n++) {
123 node = get_node(t, l, n);
124
125 for (k = 0U; k < KEYS_PER_NODE; k++)
126 node[k] = high(t, l + 1, get_child(n, k));
127 }
128
129 return 0;
130}
131
132void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
133{
134 unsigned long size;
135 void *addr;
136
137 /*
138 * Check that we're not going to overflow.
139 */
140 if (nmemb > (ULONG_MAX / elem_size))
141 return NULL;
142
143 size = nmemb * elem_size;
144 addr = vzalloc(size);
145
146 return addr;
147}
148EXPORT_SYMBOL(dm_vcalloc);
149
150/*
151 * highs, and targets are managed as dynamic arrays during a
152 * table load.
153 */
154static int alloc_targets(struct dm_table *t, unsigned int num)
155{
156 sector_t *n_highs;
157 struct dm_target *n_targets;
158
159 /*
160 * Allocate both the target array and offset array at once.
161 * Append an empty entry to catch sectors beyond the end of
162 * the device.
163 */
164 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
165 sizeof(sector_t));
166 if (!n_highs)
167 return -ENOMEM;
168
169 n_targets = (struct dm_target *) (n_highs + num);
170
171 memset(n_highs, -1, sizeof(*n_highs) * num);
172 vfree(t->highs);
173
174 t->num_allocated = num;
175 t->highs = n_highs;
176 t->targets = n_targets;
177
178 return 0;
179}
180
181int dm_table_create(struct dm_table **result, fmode_t mode,
182 unsigned num_targets, struct mapped_device *md)
183{
184 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
185
186 if (!t)
187 return -ENOMEM;
188
189 INIT_LIST_HEAD(&t->devices);
190 INIT_LIST_HEAD(&t->target_callbacks);
191
192 if (!num_targets)
193 num_targets = KEYS_PER_NODE;
194
195 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
196
197 if (!num_targets) {
198 kfree(t);
199 return -ENOMEM;
200 }
201
202 if (alloc_targets(t, num_targets)) {
203 kfree(t);
204 return -ENOMEM;
205 }
206
207 t->mode = mode;
208 t->md = md;
209 *result = t;
210 return 0;
211}
212
213static void free_devices(struct list_head *devices)
214{
215 struct list_head *tmp, *next;
216
217 list_for_each_safe(tmp, next, devices) {
218 struct dm_dev_internal *dd =
219 list_entry(tmp, struct dm_dev_internal, list);
220 DMWARN("dm_table_destroy: dm_put_device call missing for %s",
221 dd->dm_dev.name);
222 kfree(dd);
223 }
224}
225
226void dm_table_destroy(struct dm_table *t)
227{
228 unsigned int i;
229
230 if (!t)
231 return;
232
233 /* free the indexes */
234 if (t->depth >= 2)
235 vfree(t->index[t->depth - 2]);
236
237 /* free the targets */
238 for (i = 0; i < t->num_targets; i++) {
239 struct dm_target *tgt = t->targets + i;
240
241 if (tgt->type->dtr)
242 tgt->type->dtr(tgt);
243
244 dm_put_target_type(tgt->type);
245 }
246
247 vfree(t->highs);
248
249 /* free the device list */
250 free_devices(&t->devices);
251
252 dm_free_md_mempools(t->mempools);
253
254 kfree(t);
255}
256
257/*
258 * See if we've already got a device in the list.
259 */
260static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
261{
262 struct dm_dev_internal *dd;
263
264 list_for_each_entry (dd, l, list)
265 if (dd->dm_dev.bdev->bd_dev == dev)
266 return dd;
267
268 return NULL;
269}
270
271/*
272 * Open a device so we can use it as a map destination.
273 */
274static int open_dev(struct dm_dev_internal *d, dev_t dev,
275 struct mapped_device *md)
276{
277 static char *_claim_ptr = "I belong to device-mapper";
278 struct block_device *bdev;
279
280 int r;
281
282 BUG_ON(d->dm_dev.bdev);
283
284 bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
285 if (IS_ERR(bdev))
286 return PTR_ERR(bdev);
287
288 r = bd_link_disk_holder(bdev, dm_disk(md));
289 if (r) {
290 blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
291 return r;
292 }
293
294 d->dm_dev.bdev = bdev;
295 return 0;
296}
297
298/*
299 * Close a device that we've been using.
300 */
301static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
302{
303 if (!d->dm_dev.bdev)
304 return;
305
306 bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
307 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
308 d->dm_dev.bdev = NULL;
309}
310
311/*
312 * If possible, this checks an area of a destination device is invalid.
313 */
314static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
315 sector_t start, sector_t len, void *data)
316{
317 struct request_queue *q;
318 struct queue_limits *limits = data;
319 struct block_device *bdev = dev->bdev;
320 sector_t dev_size =
321 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
322 unsigned short logical_block_size_sectors =
323 limits->logical_block_size >> SECTOR_SHIFT;
324 char b[BDEVNAME_SIZE];
325
326 /*
327 * Some devices exist without request functions,
328 * such as loop devices not yet bound to backing files.
329 * Forbid the use of such devices.
330 */
331 q = bdev_get_queue(bdev);
332 if (!q || !q->make_request_fn) {
333 DMWARN("%s: %s is not yet initialised: "
334 "start=%llu, len=%llu, dev_size=%llu",
335 dm_device_name(ti->table->md), bdevname(bdev, b),
336 (unsigned long long)start,
337 (unsigned long long)len,
338 (unsigned long long)dev_size);
339 return 1;
340 }
341
342 if (!dev_size)
343 return 0;
344
345 if ((start >= dev_size) || (start + len > dev_size)) {
346 DMWARN("%s: %s too small for target: "
347 "start=%llu, len=%llu, dev_size=%llu",
348 dm_device_name(ti->table->md), bdevname(bdev, b),
349 (unsigned long long)start,
350 (unsigned long long)len,
351 (unsigned long long)dev_size);
352 return 1;
353 }
354
355 if (logical_block_size_sectors <= 1)
356 return 0;
357
358 if (start & (logical_block_size_sectors - 1)) {
359 DMWARN("%s: start=%llu not aligned to h/w "
360 "logical block size %u of %s",
361 dm_device_name(ti->table->md),
362 (unsigned long long)start,
363 limits->logical_block_size, bdevname(bdev, b));
364 return 1;
365 }
366
367 if (len & (logical_block_size_sectors - 1)) {
368 DMWARN("%s: len=%llu not aligned to h/w "
369 "logical block size %u of %s",
370 dm_device_name(ti->table->md),
371 (unsigned long long)len,
372 limits->logical_block_size, bdevname(bdev, b));
373 return 1;
374 }
375
376 return 0;
377}
378
379/*
380 * This upgrades the mode on an already open dm_dev, being
381 * careful to leave things as they were if we fail to reopen the
382 * device and not to touch the existing bdev field in case
383 * it is accessed concurrently inside dm_table_any_congested().
384 */
385static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
386 struct mapped_device *md)
387{
388 int r;
389 struct dm_dev_internal dd_new, dd_old;
390
391 dd_new = dd_old = *dd;
392
393 dd_new.dm_dev.mode |= new_mode;
394 dd_new.dm_dev.bdev = NULL;
395
396 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
397 if (r)
398 return r;
399
400 dd->dm_dev.mode |= new_mode;
401 close_dev(&dd_old, md);
402
403 return 0;
404}
405
406/*
407 * Add a device to the list, or just increment the usage count if
408 * it's already present.
409 */
410int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
411 struct dm_dev **result)
412{
413 int r;
414 dev_t uninitialized_var(dev);
415 struct dm_dev_internal *dd;
416 unsigned int major, minor;
417 struct dm_table *t = ti->table;
418 char dummy;
419
420 BUG_ON(!t);
421
422 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
423 /* Extract the major/minor numbers */
424 dev = MKDEV(major, minor);
425 if (MAJOR(dev) != major || MINOR(dev) != minor)
426 return -EOVERFLOW;
427 } else {
428 /* convert the path to a device */
429 struct block_device *bdev = lookup_bdev(path);
430
431 if (IS_ERR(bdev))
432 return PTR_ERR(bdev);
433 dev = bdev->bd_dev;
434 bdput(bdev);
435 }
436
437 dd = find_device(&t->devices, dev);
438 if (!dd) {
439 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
440 if (!dd)
441 return -ENOMEM;
442
443 dd->dm_dev.mode = mode;
444 dd->dm_dev.bdev = NULL;
445
446 if ((r = open_dev(dd, dev, t->md))) {
447 kfree(dd);
448 return r;
449 }
450
451 format_dev_t(dd->dm_dev.name, dev);
452
453 atomic_set(&dd->count, 0);
454 list_add(&dd->list, &t->devices);
455
456 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
457 r = upgrade_mode(dd, mode, t->md);
458 if (r)
459 return r;
460 }
461 atomic_inc(&dd->count);
462
463 *result = &dd->dm_dev;
464 return 0;
465}
466EXPORT_SYMBOL(dm_get_device);
467
468int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
469 sector_t start, sector_t len, void *data)
470{
471 struct queue_limits *limits = data;
472 struct block_device *bdev = dev->bdev;
473 struct request_queue *q = bdev_get_queue(bdev);
474 char b[BDEVNAME_SIZE];
475
476 if (unlikely(!q)) {
477 DMWARN("%s: Cannot set limits for nonexistent device %s",
478 dm_device_name(ti->table->md), bdevname(bdev, b));
479 return 0;
480 }
481
482 if (bdev_stack_limits(limits, bdev, start) < 0)
483 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
484 "physical_block_size=%u, logical_block_size=%u, "
485 "alignment_offset=%u, start=%llu",
486 dm_device_name(ti->table->md), bdevname(bdev, b),
487 q->limits.physical_block_size,
488 q->limits.logical_block_size,
489 q->limits.alignment_offset,
490 (unsigned long long) start << SECTOR_SHIFT);
491
492 /*
493 * Check if merge fn is supported.
494 * If not we'll force DM to use PAGE_SIZE or
495 * smaller I/O, just to be safe.
496 */
497 if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
498 blk_limits_max_hw_sectors(limits,
499 (unsigned int) (PAGE_SIZE >> 9));
500 return 0;
501}
502EXPORT_SYMBOL_GPL(dm_set_device_limits);
503
504/*
505 * Decrement a device's use count and remove it if necessary.
506 */
507void dm_put_device(struct dm_target *ti, struct dm_dev *d)
508{
509 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
510 dm_dev);
511
512 if (atomic_dec_and_test(&dd->count)) {
513 close_dev(dd, ti->table->md);
514 list_del(&dd->list);
515 kfree(dd);
516 }
517}
518EXPORT_SYMBOL(dm_put_device);
519
520/*
521 * Checks to see if the target joins onto the end of the table.
522 */
523static int adjoin(struct dm_table *table, struct dm_target *ti)
524{
525 struct dm_target *prev;
526
527 if (!table->num_targets)
528 return !ti->begin;
529
530 prev = &table->targets[table->num_targets - 1];
531 return (ti->begin == (prev->begin + prev->len));
532}
533
534/*
535 * Used to dynamically allocate the arg array.
536 *
537 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
538 * process messages even if some device is suspended. These messages have a
539 * small fixed number of arguments.
540 *
541 * On the other hand, dm-switch needs to process bulk data using messages and
542 * excessive use of GFP_NOIO could cause trouble.
543 */
544static char **realloc_argv(unsigned *array_size, char **old_argv)
545{
546 char **argv;
547 unsigned new_size;
548 gfp_t gfp;
549
550 if (*array_size) {
551 new_size = *array_size * 2;
552 gfp = GFP_KERNEL;
553 } else {
554 new_size = 8;
555 gfp = GFP_NOIO;
556 }
557 argv = kmalloc(new_size * sizeof(*argv), gfp);
558 if (argv) {
559 memcpy(argv, old_argv, *array_size * sizeof(*argv));
560 *array_size = new_size;
561 }
562
563 kfree(old_argv);
564 return argv;
565}
566
567/*
568 * Destructively splits up the argument list to pass to ctr.
569 */
570int dm_split_args(int *argc, char ***argvp, char *input)
571{
572 char *start, *end = input, *out, **argv = NULL;
573 unsigned array_size = 0;
574
575 *argc = 0;
576
577 if (!input) {
578 *argvp = NULL;
579 return 0;
580 }
581
582 argv = realloc_argv(&array_size, argv);
583 if (!argv)
584 return -ENOMEM;
585
586 while (1) {
587 /* Skip whitespace */
588 start = skip_spaces(end);
589
590 if (!*start)
591 break; /* success, we hit the end */
592
593 /* 'out' is used to remove any back-quotes */
594 end = out = start;
595 while (*end) {
596 /* Everything apart from '\0' can be quoted */
597 if (*end == '\\' && *(end + 1)) {
598 *out++ = *(end + 1);
599 end += 2;
600 continue;
601 }
602
603 if (isspace(*end))
604 break; /* end of token */
605
606 *out++ = *end++;
607 }
608
609 /* have we already filled the array ? */
610 if ((*argc + 1) > array_size) {
611 argv = realloc_argv(&array_size, argv);
612 if (!argv)
613 return -ENOMEM;
614 }
615
616 /* we know this is whitespace */
617 if (*end)
618 end++;
619
620 /* terminate the string and put it in the array */
621 *out = '\0';
622 argv[*argc] = start;
623 (*argc)++;
624 }
625
626 *argvp = argv;
627 return 0;
628}
629
630/*
631 * Impose necessary and sufficient conditions on a devices's table such
632 * that any incoming bio which respects its logical_block_size can be
633 * processed successfully. If it falls across the boundary between
634 * two or more targets, the size of each piece it gets split into must
635 * be compatible with the logical_block_size of the target processing it.
636 */
637static int validate_hardware_logical_block_alignment(struct dm_table *table,
638 struct queue_limits *limits)
639{
640 /*
641 * This function uses arithmetic modulo the logical_block_size
642 * (in units of 512-byte sectors).
643 */
644 unsigned short device_logical_block_size_sects =
645 limits->logical_block_size >> SECTOR_SHIFT;
646
647 /*
648 * Offset of the start of the next table entry, mod logical_block_size.
649 */
650 unsigned short next_target_start = 0;
651
652 /*
653 * Given an aligned bio that extends beyond the end of a
654 * target, how many sectors must the next target handle?
655 */
656 unsigned short remaining = 0;
657
658 struct dm_target *uninitialized_var(ti);
659 struct queue_limits ti_limits;
660 unsigned i = 0;
661
662 /*
663 * Check each entry in the table in turn.
664 */
665 while (i < dm_table_get_num_targets(table)) {
666 ti = dm_table_get_target(table, i++);
667
668 blk_set_stacking_limits(&ti_limits);
669
670 /* combine all target devices' limits */
671 if (ti->type->iterate_devices)
672 ti->type->iterate_devices(ti, dm_set_device_limits,
673 &ti_limits);
674
675 /*
676 * If the remaining sectors fall entirely within this
677 * table entry are they compatible with its logical_block_size?
678 */
679 if (remaining < ti->len &&
680 remaining & ((ti_limits.logical_block_size >>
681 SECTOR_SHIFT) - 1))
682 break; /* Error */
683
684 next_target_start =
685 (unsigned short) ((next_target_start + ti->len) &
686 (device_logical_block_size_sects - 1));
687 remaining = next_target_start ?
688 device_logical_block_size_sects - next_target_start : 0;
689 }
690
691 if (remaining) {
692 DMWARN("%s: table line %u (start sect %llu len %llu) "
693 "not aligned to h/w logical block size %u",
694 dm_device_name(table->md), i,
695 (unsigned long long) ti->begin,
696 (unsigned long long) ti->len,
697 limits->logical_block_size);
698 return -EINVAL;
699 }
700
701 return 0;
702}
703
704int dm_table_add_target(struct dm_table *t, const char *type,
705 sector_t start, sector_t len, char *params)
706{
707 int r = -EINVAL, argc;
708 char **argv;
709 struct dm_target *tgt;
710
711 if (t->singleton) {
712 DMERR("%s: target type %s must appear alone in table",
713 dm_device_name(t->md), t->targets->type->name);
714 return -EINVAL;
715 }
716
717 BUG_ON(t->num_targets >= t->num_allocated);
718
719 tgt = t->targets + t->num_targets;
720 memset(tgt, 0, sizeof(*tgt));
721
722 if (!len) {
723 DMERR("%s: zero-length target", dm_device_name(t->md));
724 return -EINVAL;
725 }
726
727 tgt->type = dm_get_target_type(type);
728 if (!tgt->type) {
729 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
730 type);
731 return -EINVAL;
732 }
733
734 if (dm_target_needs_singleton(tgt->type)) {
735 if (t->num_targets) {
736 DMERR("%s: target type %s must appear alone in table",
737 dm_device_name(t->md), type);
738 return -EINVAL;
739 }
740 t->singleton = 1;
741 }
742
743 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
744 DMERR("%s: target type %s may not be included in read-only tables",
745 dm_device_name(t->md), type);
746 return -EINVAL;
747 }
748
749 if (t->immutable_target_type) {
750 if (t->immutable_target_type != tgt->type) {
751 DMERR("%s: immutable target type %s cannot be mixed with other target types",
752 dm_device_name(t->md), t->immutable_target_type->name);
753 return -EINVAL;
754 }
755 } else if (dm_target_is_immutable(tgt->type)) {
756 if (t->num_targets) {
757 DMERR("%s: immutable target type %s cannot be mixed with other target types",
758 dm_device_name(t->md), tgt->type->name);
759 return -EINVAL;
760 }
761 t->immutable_target_type = tgt->type;
762 }
763
764 tgt->table = t;
765 tgt->begin = start;
766 tgt->len = len;
767 tgt->error = "Unknown error";
768
769 /*
770 * Does this target adjoin the previous one ?
771 */
772 if (!adjoin(t, tgt)) {
773 tgt->error = "Gap in table";
774 r = -EINVAL;
775 goto bad;
776 }
777
778 r = dm_split_args(&argc, &argv, params);
779 if (r) {
780 tgt->error = "couldn't split parameters (insufficient memory)";
781 goto bad;
782 }
783
784 r = tgt->type->ctr(tgt, argc, argv);
785 kfree(argv);
786 if (r)
787 goto bad;
788
789 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
790
791 if (!tgt->num_discard_bios && tgt->discards_supported)
792 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
793 dm_device_name(t->md), type);
794
795 return 0;
796
797 bad:
798 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
799 dm_put_target_type(tgt->type);
800 return r;
801}
802
803/*
804 * Target argument parsing helpers.
805 */
806static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
807 unsigned *value, char **error, unsigned grouped)
808{
809 const char *arg_str = dm_shift_arg(arg_set);
810 char dummy;
811
812 if (!arg_str ||
813 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
814 (*value < arg->min) ||
815 (*value > arg->max) ||
816 (grouped && arg_set->argc < *value)) {
817 *error = arg->error;
818 return -EINVAL;
819 }
820
821 return 0;
822}
823
824int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
825 unsigned *value, char **error)
826{
827 return validate_next_arg(arg, arg_set, value, error, 0);
828}
829EXPORT_SYMBOL(dm_read_arg);
830
831int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
832 unsigned *value, char **error)
833{
834 return validate_next_arg(arg, arg_set, value, error, 1);
835}
836EXPORT_SYMBOL(dm_read_arg_group);
837
838const char *dm_shift_arg(struct dm_arg_set *as)
839{
840 char *r;
841
842 if (as->argc) {
843 as->argc--;
844 r = *as->argv;
845 as->argv++;
846 return r;
847 }
848
849 return NULL;
850}
851EXPORT_SYMBOL(dm_shift_arg);
852
853void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
854{
855 BUG_ON(as->argc < num_args);
856 as->argc -= num_args;
857 as->argv += num_args;
858}
859EXPORT_SYMBOL(dm_consume_args);
860
861static int dm_table_set_type(struct dm_table *t)
862{
863 unsigned i;
864 unsigned bio_based = 0, request_based = 0, hybrid = 0;
865 struct dm_target *tgt;
866 struct dm_dev_internal *dd;
867 struct list_head *devices;
868 unsigned live_md_type;
869
870 for (i = 0; i < t->num_targets; i++) {
871 tgt = t->targets + i;
872 if (dm_target_hybrid(tgt))
873 hybrid = 1;
874 else if (dm_target_request_based(tgt))
875 request_based = 1;
876 else
877 bio_based = 1;
878
879 if (bio_based && request_based) {
880 DMWARN("Inconsistent table: different target types"
881 " can't be mixed up");
882 return -EINVAL;
883 }
884 }
885
886 if (hybrid && !bio_based && !request_based) {
887 /*
888 * The targets can work either way.
889 * Determine the type from the live device.
890 * Default to bio-based if device is new.
891 */
892 live_md_type = dm_get_md_type(t->md);
893 if (live_md_type == DM_TYPE_REQUEST_BASED)
894 request_based = 1;
895 else
896 bio_based = 1;
897 }
898
899 if (bio_based) {
900 /* We must use this table as bio-based */
901 t->type = DM_TYPE_BIO_BASED;
902 return 0;
903 }
904
905 BUG_ON(!request_based); /* No targets in this table */
906
907 /* Non-request-stackable devices can't be used for request-based dm */
908 devices = dm_table_get_devices(t);
909 list_for_each_entry(dd, devices, list) {
910 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
911 DMWARN("table load rejected: including"
912 " non-request-stackable devices");
913 return -EINVAL;
914 }
915 }
916
917 /*
918 * Request-based dm supports only tables that have a single target now.
919 * To support multiple targets, request splitting support is needed,
920 * and that needs lots of changes in the block-layer.
921 * (e.g. request completion process for partial completion.)
922 */
923 if (t->num_targets > 1) {
924 DMWARN("Request-based dm doesn't support multiple targets yet");
925 return -EINVAL;
926 }
927
928 t->type = DM_TYPE_REQUEST_BASED;
929
930 return 0;
931}
932
933unsigned dm_table_get_type(struct dm_table *t)
934{
935 return t->type;
936}
937
938struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
939{
940 return t->immutable_target_type;
941}
942
943bool dm_table_request_based(struct dm_table *t)
944{
945 return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
946}
947
948static int dm_table_alloc_md_mempools(struct dm_table *t)
949{
950 unsigned type = dm_table_get_type(t);
951 unsigned per_bio_data_size = 0;
952 struct dm_target *tgt;
953 unsigned i;
954
955 if (unlikely(type == DM_TYPE_NONE)) {
956 DMWARN("no table type is set, can't allocate mempools");
957 return -EINVAL;
958 }
959
960 if (type == DM_TYPE_BIO_BASED)
961 for (i = 0; i < t->num_targets; i++) {
962 tgt = t->targets + i;
963 per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
964 }
965
966 t->mempools = dm_alloc_md_mempools(type, t->integrity_supported, per_bio_data_size);
967 if (!t->mempools)
968 return -ENOMEM;
969
970 return 0;
971}
972
973void dm_table_free_md_mempools(struct dm_table *t)
974{
975 dm_free_md_mempools(t->mempools);
976 t->mempools = NULL;
977}
978
979struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
980{
981 return t->mempools;
982}
983
984static int setup_indexes(struct dm_table *t)
985{
986 int i;
987 unsigned int total = 0;
988 sector_t *indexes;
989
990 /* allocate the space for *all* the indexes */
991 for (i = t->depth - 2; i >= 0; i--) {
992 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
993 total += t->counts[i];
994 }
995
996 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
997 if (!indexes)
998 return -ENOMEM;
999
1000 /* set up internal nodes, bottom-up */
1001 for (i = t->depth - 2; i >= 0; i--) {
1002 t->index[i] = indexes;
1003 indexes += (KEYS_PER_NODE * t->counts[i]);
1004 setup_btree_index(i, t);
1005 }
1006
1007 return 0;
1008}
1009
1010/*
1011 * Builds the btree to index the map.
1012 */
1013static int dm_table_build_index(struct dm_table *t)
1014{
1015 int r = 0;
1016 unsigned int leaf_nodes;
1017
1018 /* how many indexes will the btree have ? */
1019 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1020 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1021
1022 /* leaf layer has already been set up */
1023 t->counts[t->depth - 1] = leaf_nodes;
1024 t->index[t->depth - 1] = t->highs;
1025
1026 if (t->depth >= 2)
1027 r = setup_indexes(t);
1028
1029 return r;
1030}
1031
1032/*
1033 * Get a disk whose integrity profile reflects the table's profile.
1034 * If %match_all is true, all devices' profiles must match.
1035 * If %match_all is false, all devices must at least have an
1036 * allocated integrity profile; but uninitialized is ok.
1037 * Returns NULL if integrity support was inconsistent or unavailable.
1038 */
1039static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1040 bool match_all)
1041{
1042 struct list_head *devices = dm_table_get_devices(t);
1043 struct dm_dev_internal *dd = NULL;
1044 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1045
1046 list_for_each_entry(dd, devices, list) {
1047 template_disk = dd->dm_dev.bdev->bd_disk;
1048 if (!blk_get_integrity(template_disk))
1049 goto no_integrity;
1050 if (!match_all && !blk_integrity_is_initialized(template_disk))
1051 continue; /* skip uninitialized profiles */
1052 else if (prev_disk &&
1053 blk_integrity_compare(prev_disk, template_disk) < 0)
1054 goto no_integrity;
1055 prev_disk = template_disk;
1056 }
1057
1058 return template_disk;
1059
1060no_integrity:
1061 if (prev_disk)
1062 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1063 dm_device_name(t->md),
1064 prev_disk->disk_name,
1065 template_disk->disk_name);
1066 return NULL;
1067}
1068
1069/*
1070 * Register the mapped device for blk_integrity support if
1071 * the underlying devices have an integrity profile. But all devices
1072 * may not have matching profiles (checking all devices isn't reliable
1073 * during table load because this table may use other DM device(s) which
1074 * must be resumed before they will have an initialized integity profile).
1075 * Stacked DM devices force a 2 stage integrity profile validation:
1076 * 1 - during load, validate all initialized integrity profiles match
1077 * 2 - during resume, validate all integrity profiles match
1078 */
1079static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1080{
1081 struct gendisk *template_disk = NULL;
1082
1083 template_disk = dm_table_get_integrity_disk(t, false);
1084 if (!template_disk)
1085 return 0;
1086
1087 if (!blk_integrity_is_initialized(dm_disk(md))) {
1088 t->integrity_supported = 1;
1089 return blk_integrity_register(dm_disk(md), NULL);
1090 }
1091
1092 /*
1093 * If DM device already has an initalized integrity
1094 * profile the new profile should not conflict.
1095 */
1096 if (blk_integrity_is_initialized(template_disk) &&
1097 blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1098 DMWARN("%s: conflict with existing integrity profile: "
1099 "%s profile mismatch",
1100 dm_device_name(t->md),
1101 template_disk->disk_name);
1102 return 1;
1103 }
1104
1105 /* Preserve existing initialized integrity profile */
1106 t->integrity_supported = 1;
1107 return 0;
1108}
1109
1110/*
1111 * Prepares the table for use by building the indices,
1112 * setting the type, and allocating mempools.
1113 */
1114int dm_table_complete(struct dm_table *t)
1115{
1116 int r;
1117
1118 r = dm_table_set_type(t);
1119 if (r) {
1120 DMERR("unable to set table type");
1121 return r;
1122 }
1123
1124 r = dm_table_build_index(t);
1125 if (r) {
1126 DMERR("unable to build btrees");
1127 return r;
1128 }
1129
1130 r = dm_table_prealloc_integrity(t, t->md);
1131 if (r) {
1132 DMERR("could not register integrity profile.");
1133 return r;
1134 }
1135
1136 r = dm_table_alloc_md_mempools(t);
1137 if (r)
1138 DMERR("unable to allocate mempools");
1139
1140 return r;
1141}
1142
1143static DEFINE_MUTEX(_event_lock);
1144void dm_table_event_callback(struct dm_table *t,
1145 void (*fn)(void *), void *context)
1146{
1147 mutex_lock(&_event_lock);
1148 t->event_fn = fn;
1149 t->event_context = context;
1150 mutex_unlock(&_event_lock);
1151}
1152
1153void dm_table_event(struct dm_table *t)
1154{
1155 /*
1156 * You can no longer call dm_table_event() from interrupt
1157 * context, use a bottom half instead.
1158 */
1159 BUG_ON(in_interrupt());
1160
1161 mutex_lock(&_event_lock);
1162 if (t->event_fn)
1163 t->event_fn(t->event_context);
1164 mutex_unlock(&_event_lock);
1165}
1166EXPORT_SYMBOL(dm_table_event);
1167
1168sector_t dm_table_get_size(struct dm_table *t)
1169{
1170 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1171}
1172EXPORT_SYMBOL(dm_table_get_size);
1173
1174struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1175{
1176 if (index >= t->num_targets)
1177 return NULL;
1178
1179 return t->targets + index;
1180}
1181
1182/*
1183 * Search the btree for the correct target.
1184 *
1185 * Caller should check returned pointer with dm_target_is_valid()
1186 * to trap I/O beyond end of device.
1187 */
1188struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1189{
1190 unsigned int l, n = 0, k = 0;
1191 sector_t *node;
1192
1193 for (l = 0; l < t->depth; l++) {
1194 n = get_child(n, k);
1195 node = get_node(t, l, n);
1196
1197 for (k = 0; k < KEYS_PER_NODE; k++)
1198 if (node[k] >= sector)
1199 break;
1200 }
1201
1202 return &t->targets[(KEYS_PER_NODE * n) + k];
1203}
1204
1205static int count_device(struct dm_target *ti, struct dm_dev *dev,
1206 sector_t start, sector_t len, void *data)
1207{
1208 unsigned *num_devices = data;
1209
1210 (*num_devices)++;
1211
1212 return 0;
1213}
1214
1215/*
1216 * Check whether a table has no data devices attached using each
1217 * target's iterate_devices method.
1218 * Returns false if the result is unknown because a target doesn't
1219 * support iterate_devices.
1220 */
1221bool dm_table_has_no_data_devices(struct dm_table *table)
1222{
1223 struct dm_target *uninitialized_var(ti);
1224 unsigned i = 0, num_devices = 0;
1225
1226 while (i < dm_table_get_num_targets(table)) {
1227 ti = dm_table_get_target(table, i++);
1228
1229 if (!ti->type->iterate_devices)
1230 return false;
1231
1232 ti->type->iterate_devices(ti, count_device, &num_devices);
1233 if (num_devices)
1234 return false;
1235 }
1236
1237 return true;
1238}
1239
1240/*
1241 * Establish the new table's queue_limits and validate them.
1242 */
1243int dm_calculate_queue_limits(struct dm_table *table,
1244 struct queue_limits *limits)
1245{
1246 struct dm_target *uninitialized_var(ti);
1247 struct queue_limits ti_limits;
1248 unsigned i = 0;
1249
1250 blk_set_stacking_limits(limits);
1251
1252 while (i < dm_table_get_num_targets(table)) {
1253 blk_set_stacking_limits(&ti_limits);
1254
1255 ti = dm_table_get_target(table, i++);
1256
1257 if (!ti->type->iterate_devices)
1258 goto combine_limits;
1259
1260 /*
1261 * Combine queue limits of all the devices this target uses.
1262 */
1263 ti->type->iterate_devices(ti, dm_set_device_limits,
1264 &ti_limits);
1265
1266 /* Set I/O hints portion of queue limits */
1267 if (ti->type->io_hints)
1268 ti->type->io_hints(ti, &ti_limits);
1269
1270 /*
1271 * Check each device area is consistent with the target's
1272 * overall queue limits.
1273 */
1274 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1275 &ti_limits))
1276 return -EINVAL;
1277
1278combine_limits:
1279 /*
1280 * Merge this target's queue limits into the overall limits
1281 * for the table.
1282 */
1283 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1284 DMWARN("%s: adding target device "
1285 "(start sect %llu len %llu) "
1286 "caused an alignment inconsistency",
1287 dm_device_name(table->md),
1288 (unsigned long long) ti->begin,
1289 (unsigned long long) ti->len);
1290 }
1291
1292 return validate_hardware_logical_block_alignment(table, limits);
1293}
1294
1295/*
1296 * Set the integrity profile for this device if all devices used have
1297 * matching profiles. We're quite deep in the resume path but still
1298 * don't know if all devices (particularly DM devices this device
1299 * may be stacked on) have matching profiles. Even if the profiles
1300 * don't match we have no way to fail (to resume) at this point.
1301 */
1302static void dm_table_set_integrity(struct dm_table *t)
1303{
1304 struct gendisk *template_disk = NULL;
1305
1306 if (!blk_get_integrity(dm_disk(t->md)))
1307 return;
1308
1309 template_disk = dm_table_get_integrity_disk(t, true);
1310 if (template_disk)
1311 blk_integrity_register(dm_disk(t->md),
1312 blk_get_integrity(template_disk));
1313 else if (blk_integrity_is_initialized(dm_disk(t->md)))
1314 DMWARN("%s: device no longer has a valid integrity profile",
1315 dm_device_name(t->md));
1316 else
1317 DMWARN("%s: unable to establish an integrity profile",
1318 dm_device_name(t->md));
1319}
1320
1321static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1322 sector_t start, sector_t len, void *data)
1323{
1324 unsigned flush = (*(unsigned *)data);
1325 struct request_queue *q = bdev_get_queue(dev->bdev);
1326
1327 return q && (q->flush_flags & flush);
1328}
1329
1330static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1331{
1332 struct dm_target *ti;
1333 unsigned i = 0;
1334
1335 /*
1336 * Require at least one underlying device to support flushes.
1337 * t->devices includes internal dm devices such as mirror logs
1338 * so we need to use iterate_devices here, which targets
1339 * supporting flushes must provide.
1340 */
1341 while (i < dm_table_get_num_targets(t)) {
1342 ti = dm_table_get_target(t, i++);
1343
1344 if (!ti->num_flush_bios)
1345 continue;
1346
1347 if (ti->flush_supported)
1348 return 1;
1349
1350 if (ti->type->iterate_devices &&
1351 ti->type->iterate_devices(ti, device_flush_capable, &flush))
1352 return 1;
1353 }
1354
1355 return 0;
1356}
1357
1358static bool dm_table_discard_zeroes_data(struct dm_table *t)
1359{
1360 struct dm_target *ti;
1361 unsigned i = 0;
1362
1363 /* Ensure that all targets supports discard_zeroes_data. */
1364 while (i < dm_table_get_num_targets(t)) {
1365 ti = dm_table_get_target(t, i++);
1366
1367 if (ti->discard_zeroes_data_unsupported)
1368 return 0;
1369 }
1370
1371 return 1;
1372}
1373
1374static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1375 sector_t start, sector_t len, void *data)
1376{
1377 struct request_queue *q = bdev_get_queue(dev->bdev);
1378
1379 return q && blk_queue_nonrot(q);
1380}
1381
1382static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1383 sector_t start, sector_t len, void *data)
1384{
1385 struct request_queue *q = bdev_get_queue(dev->bdev);
1386
1387 return q && !blk_queue_add_random(q);
1388}
1389
1390static bool dm_table_all_devices_attribute(struct dm_table *t,
1391 iterate_devices_callout_fn func)
1392{
1393 struct dm_target *ti;
1394 unsigned i = 0;
1395
1396 while (i < dm_table_get_num_targets(t)) {
1397 ti = dm_table_get_target(t, i++);
1398
1399 if (!ti->type->iterate_devices ||
1400 !ti->type->iterate_devices(ti, func, NULL))
1401 return 0;
1402 }
1403
1404 return 1;
1405}
1406
1407static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1408 sector_t start, sector_t len, void *data)
1409{
1410 struct request_queue *q = bdev_get_queue(dev->bdev);
1411
1412 return q && !q->limits.max_write_same_sectors;
1413}
1414
1415static bool dm_table_supports_write_same(struct dm_table *t)
1416{
1417 struct dm_target *ti;
1418 unsigned i = 0;
1419
1420 while (i < dm_table_get_num_targets(t)) {
1421 ti = dm_table_get_target(t, i++);
1422
1423 if (!ti->num_write_same_bios)
1424 return false;
1425
1426 if (!ti->type->iterate_devices ||
1427 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1428 return false;
1429 }
1430
1431 return true;
1432}
1433
1434void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1435 struct queue_limits *limits)
1436{
1437 unsigned flush = 0;
1438
1439 /*
1440 * Copy table's limits to the DM device's request_queue
1441 */
1442 q->limits = *limits;
1443
1444 if (!dm_table_supports_discards(t))
1445 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1446 else
1447 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1448
1449 if (dm_table_supports_flush(t, REQ_FLUSH)) {
1450 flush |= REQ_FLUSH;
1451 if (dm_table_supports_flush(t, REQ_FUA))
1452 flush |= REQ_FUA;
1453 }
1454 blk_queue_flush(q, flush);
1455
1456 if (!dm_table_discard_zeroes_data(t))
1457 q->limits.discard_zeroes_data = 0;
1458
1459 /* Ensure that all underlying devices are non-rotational. */
1460 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1461 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1462 else
1463 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1464
1465 if (!dm_table_supports_write_same(t))
1466 q->limits.max_write_same_sectors = 0;
1467
1468 dm_table_set_integrity(t);
1469
1470 /*
1471 * Determine whether or not this queue's I/O timings contribute
1472 * to the entropy pool, Only request-based targets use this.
1473 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1474 * have it set.
1475 */
1476 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1477 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1478
1479 /*
1480 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1481 * visible to other CPUs because, once the flag is set, incoming bios
1482 * are processed by request-based dm, which refers to the queue
1483 * settings.
1484 * Until the flag set, bios are passed to bio-based dm and queued to
1485 * md->deferred where queue settings are not needed yet.
1486 * Those bios are passed to request-based dm at the resume time.
1487 */
1488 smp_mb();
1489 if (dm_table_request_based(t))
1490 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1491}
1492
1493unsigned int dm_table_get_num_targets(struct dm_table *t)
1494{
1495 return t->num_targets;
1496}
1497
1498struct list_head *dm_table_get_devices(struct dm_table *t)
1499{
1500 return &t->devices;
1501}
1502
1503fmode_t dm_table_get_mode(struct dm_table *t)
1504{
1505 return t->mode;
1506}
1507EXPORT_SYMBOL(dm_table_get_mode);
1508
1509static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1510{
1511 int i = t->num_targets;
1512 struct dm_target *ti = t->targets;
1513
1514 while (i--) {
1515 if (postsuspend) {
1516 if (ti->type->postsuspend)
1517 ti->type->postsuspend(ti);
1518 } else if (ti->type->presuspend)
1519 ti->type->presuspend(ti);
1520
1521 ti++;
1522 }
1523}
1524
1525void dm_table_presuspend_targets(struct dm_table *t)
1526{
1527 if (!t)
1528 return;
1529
1530 suspend_targets(t, 0);
1531}
1532
1533void dm_table_postsuspend_targets(struct dm_table *t)
1534{
1535 if (!t)
1536 return;
1537
1538 suspend_targets(t, 1);
1539}
1540
1541int dm_table_resume_targets(struct dm_table *t)
1542{
1543 int i, r = 0;
1544
1545 for (i = 0; i < t->num_targets; i++) {
1546 struct dm_target *ti = t->targets + i;
1547
1548 if (!ti->type->preresume)
1549 continue;
1550
1551 r = ti->type->preresume(ti);
1552 if (r) {
1553 DMERR("%s: %s: preresume failed, error = %d",
1554 dm_device_name(t->md), ti->type->name, r);
1555 return r;
1556 }
1557 }
1558
1559 for (i = 0; i < t->num_targets; i++) {
1560 struct dm_target *ti = t->targets + i;
1561
1562 if (ti->type->resume)
1563 ti->type->resume(ti);
1564 }
1565
1566 return 0;
1567}
1568
1569void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1570{
1571 list_add(&cb->list, &t->target_callbacks);
1572}
1573EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1574
1575int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1576{
1577 struct dm_dev_internal *dd;
1578 struct list_head *devices = dm_table_get_devices(t);
1579 struct dm_target_callbacks *cb;
1580 int r = 0;
1581
1582 list_for_each_entry(dd, devices, list) {
1583 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1584 char b[BDEVNAME_SIZE];
1585
1586 if (likely(q))
1587 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1588 else
1589 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1590 dm_device_name(t->md),
1591 bdevname(dd->dm_dev.bdev, b));
1592 }
1593
1594 list_for_each_entry(cb, &t->target_callbacks, list)
1595 if (cb->congested_fn)
1596 r |= cb->congested_fn(cb, bdi_bits);
1597
1598 return r;
1599}
1600
1601int dm_table_any_busy_target(struct dm_table *t)
1602{
1603 unsigned i;
1604 struct dm_target *ti;
1605
1606 for (i = 0; i < t->num_targets; i++) {
1607 ti = t->targets + i;
1608 if (ti->type->busy && ti->type->busy(ti))
1609 return 1;
1610 }
1611
1612 return 0;
1613}
1614
1615struct mapped_device *dm_table_get_md(struct dm_table *t)
1616{
1617 return t->md;
1618}
1619EXPORT_SYMBOL(dm_table_get_md);
1620
1621void dm_table_run_md_queue_async(struct dm_table *t)
1622{
1623 struct mapped_device *md;
1624 struct request_queue *queue;
1625 unsigned long flags;
1626
1627 if (!dm_table_request_based(t))
1628 return;
1629
1630 md = dm_table_get_md(t);
1631 queue = dm_get_md_queue(md);
1632 if (queue) {
1633 spin_lock_irqsave(queue->queue_lock, flags);
1634 blk_run_queue_async(queue);
1635 spin_unlock_irqrestore(queue->queue_lock, flags);
1636 }
1637}
1638EXPORT_SYMBOL(dm_table_run_md_queue_async);
1639
1640static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1641 sector_t start, sector_t len, void *data)
1642{
1643 struct request_queue *q = bdev_get_queue(dev->bdev);
1644
1645 return q && blk_queue_discard(q);
1646}
1647
1648bool dm_table_supports_discards(struct dm_table *t)
1649{
1650 struct dm_target *ti;
1651 unsigned i = 0;
1652
1653 /*
1654 * Unless any target used by the table set discards_supported,
1655 * require at least one underlying device to support discards.
1656 * t->devices includes internal dm devices such as mirror logs
1657 * so we need to use iterate_devices here, which targets
1658 * supporting discard selectively must provide.
1659 */
1660 while (i < dm_table_get_num_targets(t)) {
1661 ti = dm_table_get_target(t, i++);
1662
1663 if (!ti->num_discard_bios)
1664 continue;
1665
1666 if (ti->discards_supported)
1667 return 1;
1668
1669 if (ti->type->iterate_devices &&
1670 ti->type->iterate_devices(ti, device_discard_capable, NULL))
1671 return 1;
1672 }
1673
1674 return 0;
1675}