Linux Audio

Check our new training course

Loading...
v5.4
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 1996, 1997, 1998, 1999, 2000, 03, 04 by Ralf Baechle
  7 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
  8 * Copyright (C) 2007  Maciej W. Rozycki
  9 * Copyright (C) 2014, Imagination Technologies Ltd.
 10 */
 11#ifndef _ASM_UACCESS_H
 12#define _ASM_UACCESS_H
 13
 14#include <linux/kernel.h>
 15#include <linux/string.h>
 16#include <asm/asm-eva.h>
 17#include <asm/extable.h>
 18
 19/*
 20 * The fs value determines whether argument validity checking should be
 21 * performed or not.  If get_fs() == USER_DS, checking is performed, with
 22 * get_fs() == KERNEL_DS, checking is bypassed.
 23 *
 24 * For historical reasons, these macros are grossly misnamed.
 25 */
 26#ifdef CONFIG_32BIT
 27
 28#ifdef CONFIG_KVM_GUEST
 29#define __UA_LIMIT 0x40000000UL
 30#else
 31#define __UA_LIMIT 0x80000000UL
 32#endif
 33
 34#define __UA_ADDR	".word"
 35#define __UA_LA		"la"
 36#define __UA_ADDU	"addu"
 37#define __UA_t0		"$8"
 38#define __UA_t1		"$9"
 39
 40#endif /* CONFIG_32BIT */
 41
 42#ifdef CONFIG_64BIT
 43
 44extern u64 __ua_limit;
 45
 46#define __UA_LIMIT	__ua_limit
 47
 48#define __UA_ADDR	".dword"
 49#define __UA_LA		"dla"
 50#define __UA_ADDU	"daddu"
 51#define __UA_t0		"$12"
 52#define __UA_t1		"$13"
 53
 54#endif /* CONFIG_64BIT */
 55
 56/*
 57 * USER_DS is a bitmask that has the bits set that may not be set in a valid
 58 * userspace address.  Note that we limit 32-bit userspace to 0x7fff8000 but
 59 * the arithmetic we're doing only works if the limit is a power of two, so
 60 * we use 0x80000000 here on 32-bit kernels.  If a process passes an invalid
 61 * address in this range it's the process's problem, not ours :-)
 62 */
 63
 64#ifdef CONFIG_KVM_GUEST
 65#define KERNEL_DS	((mm_segment_t) { 0x80000000UL })
 66#define USER_DS		((mm_segment_t) { 0xC0000000UL })
 67#else
 68#define KERNEL_DS	((mm_segment_t) { 0UL })
 69#define USER_DS		((mm_segment_t) { __UA_LIMIT })
 70#endif
 71
 
 72#define get_fs()	(current_thread_info()->addr_limit)
 73#define set_fs(x)	(current_thread_info()->addr_limit = (x))
 74
 75#define segment_eq(a, b)	((a).seg == (b).seg)
 76
 77/*
 78 * eva_kernel_access() - determine whether kernel memory access on an EVA system
 79 *
 80 * Determines whether memory accesses should be performed to kernel memory
 81 * on a system using Extended Virtual Addressing (EVA).
 82 *
 83 * Return: true if a kernel memory access on an EVA system, else false.
 84 */
 85static inline bool eva_kernel_access(void)
 86{
 87	if (!IS_ENABLED(CONFIG_EVA))
 88		return false;
 89
 90	return uaccess_kernel();
 91}
 92
 93/*
 94 * Is a address valid? This does a straightforward calculation rather
 95 * than tests.
 96 *
 97 * Address valid if:
 98 *  - "addr" doesn't have any high-bits set
 99 *  - AND "size" doesn't have any high-bits set
100 *  - AND "addr+size" doesn't have any high-bits set
101 *  - OR we are in kernel mode.
102 *
103 * __ua_size() is a trick to avoid runtime checking of positive constant
104 * sizes; for those we already know at compile time that the size is ok.
105 */
106#define __ua_size(size)							\
107	((__builtin_constant_p(size) && (signed long) (size) > 0) ? 0 : (size))
108
109/*
110 * access_ok: - Checks if a user space pointer is valid
 
 
 
111 * @addr: User space pointer to start of block to check
112 * @size: Size of block to check
113 *
114 * Context: User context only. This function may sleep if pagefaults are
115 *          enabled.
116 *
117 * Checks if a pointer to a block of memory in user space is valid.
118 *
119 * Returns true (nonzero) if the memory block may be valid, false (zero)
120 * if it is definitely invalid.
121 *
122 * Note that, depending on architecture, this function probably just
123 * checks that the pointer is in the user space range - after calling
124 * this function, memory access functions may still return -EFAULT.
125 */
126
127static inline int __access_ok(const void __user *p, unsigned long size)
128{
129	unsigned long addr = (unsigned long)p;
130	return (get_fs().seg & (addr | (addr + size) | __ua_size(size))) == 0;
131}
132
133#define access_ok(addr, size)					\
134	likely(__access_ok((addr), (size)))
135
136/*
137 * put_user: - Write a simple value into user space.
138 * @x:	 Value to copy to user space.
139 * @ptr: Destination address, in user space.
140 *
141 * Context: User context only. This function may sleep if pagefaults are
142 *          enabled.
143 *
144 * This macro copies a single simple value from kernel space to user
145 * space.  It supports simple types like char and int, but not larger
146 * data types like structures or arrays.
147 *
148 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
149 * to the result of dereferencing @ptr.
150 *
151 * Returns zero on success, or -EFAULT on error.
152 */
153#define put_user(x,ptr) \
154	__put_user_check((x), (ptr), sizeof(*(ptr)))
155
156/*
157 * get_user: - Get a simple variable from user space.
158 * @x:	 Variable to store result.
159 * @ptr: Source address, in user space.
160 *
161 * Context: User context only. This function may sleep if pagefaults are
162 *          enabled.
163 *
164 * This macro copies a single simple variable from user space to kernel
165 * space.  It supports simple types like char and int, but not larger
166 * data types like structures or arrays.
167 *
168 * @ptr must have pointer-to-simple-variable type, and the result of
169 * dereferencing @ptr must be assignable to @x without a cast.
170 *
171 * Returns zero on success, or -EFAULT on error.
172 * On error, the variable @x is set to zero.
173 */
174#define get_user(x,ptr) \
175	__get_user_check((x), (ptr), sizeof(*(ptr)))
176
177/*
178 * __put_user: - Write a simple value into user space, with less checking.
179 * @x:	 Value to copy to user space.
180 * @ptr: Destination address, in user space.
181 *
182 * Context: User context only. This function may sleep if pagefaults are
183 *          enabled.
184 *
185 * This macro copies a single simple value from kernel space to user
186 * space.  It supports simple types like char and int, but not larger
187 * data types like structures or arrays.
188 *
189 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
190 * to the result of dereferencing @ptr.
191 *
192 * Caller must check the pointer with access_ok() before calling this
193 * function.
194 *
195 * Returns zero on success, or -EFAULT on error.
196 */
197#define __put_user(x,ptr) \
198	__put_user_nocheck((x), (ptr), sizeof(*(ptr)))
199
200/*
201 * __get_user: - Get a simple variable from user space, with less checking.
202 * @x:	 Variable to store result.
203 * @ptr: Source address, in user space.
204 *
205 * Context: User context only. This function may sleep if pagefaults are
206 *          enabled.
207 *
208 * This macro copies a single simple variable from user space to kernel
209 * space.  It supports simple types like char and int, but not larger
210 * data types like structures or arrays.
211 *
212 * @ptr must have pointer-to-simple-variable type, and the result of
213 * dereferencing @ptr must be assignable to @x without a cast.
214 *
215 * Caller must check the pointer with access_ok() before calling this
216 * function.
217 *
218 * Returns zero on success, or -EFAULT on error.
219 * On error, the variable @x is set to zero.
220 */
221#define __get_user(x,ptr) \
222	__get_user_nocheck((x), (ptr), sizeof(*(ptr)))
223
224struct __large_struct { unsigned long buf[100]; };
225#define __m(x) (*(struct __large_struct __user *)(x))
226
227/*
228 * Yuck.  We need two variants, one for 64bit operation and one
229 * for 32 bit mode and old iron.
230 */
231#ifndef CONFIG_EVA
232#define __get_kernel_common(val, size, ptr) __get_user_common(val, size, ptr)
233#else
234/*
235 * Kernel specific functions for EVA. We need to use normal load instructions
236 * to read data from kernel when operating in EVA mode. We use these macros to
237 * avoid redefining __get_user_asm for EVA.
238 */
239#undef _loadd
240#undef _loadw
241#undef _loadh
242#undef _loadb
243#ifdef CONFIG_32BIT
244#define _loadd			_loadw
245#else
246#define _loadd(reg, addr)	"ld " reg ", " addr
247#endif
248#define _loadw(reg, addr)	"lw " reg ", " addr
249#define _loadh(reg, addr)	"lh " reg ", " addr
250#define _loadb(reg, addr)	"lb " reg ", " addr
251
252#define __get_kernel_common(val, size, ptr)				\
253do {									\
254	switch (size) {							\
255	case 1: __get_data_asm(val, _loadb, ptr); break;		\
256	case 2: __get_data_asm(val, _loadh, ptr); break;		\
257	case 4: __get_data_asm(val, _loadw, ptr); break;		\
258	case 8: __GET_DW(val, _loadd, ptr); break;			\
259	default: __get_user_unknown(); break;				\
260	}								\
261} while (0)
262#endif
263
264#ifdef CONFIG_32BIT
265#define __GET_DW(val, insn, ptr) __get_data_asm_ll32(val, insn, ptr)
266#endif
267#ifdef CONFIG_64BIT
268#define __GET_DW(val, insn, ptr) __get_data_asm(val, insn, ptr)
269#endif
270
271extern void __get_user_unknown(void);
272
273#define __get_user_common(val, size, ptr)				\
274do {									\
275	switch (size) {							\
276	case 1: __get_data_asm(val, user_lb, ptr); break;		\
277	case 2: __get_data_asm(val, user_lh, ptr); break;		\
278	case 4: __get_data_asm(val, user_lw, ptr); break;		\
279	case 8: __GET_DW(val, user_ld, ptr); break;			\
280	default: __get_user_unknown(); break;				\
281	}								\
282} while (0)
283
284#define __get_user_nocheck(x, ptr, size)				\
285({									\
286	int __gu_err;							\
287									\
288	if (eva_kernel_access()) {					\
289		__get_kernel_common((x), size, ptr);			\
290	} else {							\
291		__chk_user_ptr(ptr);					\
292		__get_user_common((x), size, ptr);			\
293	}								\
294	__gu_err;							\
295})
296
297#define __get_user_check(x, ptr, size)					\
298({									\
299	int __gu_err = -EFAULT;						\
300	const __typeof__(*(ptr)) __user * __gu_ptr = (ptr);		\
301									\
302	might_fault();							\
303	if (likely(access_ok( __gu_ptr, size))) {		\
304		if (eva_kernel_access())				\
305			__get_kernel_common((x), size, __gu_ptr);	\
306		else							\
307			__get_user_common((x), size, __gu_ptr);		\
308	} else								\
309		(x) = 0;						\
310									\
311	__gu_err;							\
312})
313
314#define __get_data_asm(val, insn, addr)					\
315{									\
316	long __gu_tmp;							\
317									\
318	__asm__ __volatile__(						\
319	"1:	"insn("%1", "%3")"				\n"	\
320	"2:							\n"	\
321	"	.insn						\n"	\
322	"	.section .fixup,\"ax\"				\n"	\
323	"3:	li	%0, %4					\n"	\
324	"	move	%1, $0					\n"	\
325	"	j	2b					\n"	\
326	"	.previous					\n"	\
327	"	.section __ex_table,\"a\"			\n"	\
328	"	"__UA_ADDR "\t1b, 3b				\n"	\
329	"	.previous					\n"	\
330	: "=r" (__gu_err), "=r" (__gu_tmp)				\
331	: "0" (0), "o" (__m(addr)), "i" (-EFAULT));			\
332									\
333	(val) = (__typeof__(*(addr))) __gu_tmp;				\
334}
335
336/*
337 * Get a long long 64 using 32 bit registers.
338 */
339#define __get_data_asm_ll32(val, insn, addr)				\
340{									\
341	union {								\
342		unsigned long long	l;				\
343		__typeof__(*(addr))	t;				\
344	} __gu_tmp;							\
345									\
346	__asm__ __volatile__(						\
347	"1:	" insn("%1", "(%3)")"				\n"	\
348	"2:	" insn("%D1", "4(%3)")"				\n"	\
349	"3:							\n"	\
350	"	.insn						\n"	\
351	"	.section	.fixup,\"ax\"			\n"	\
352	"4:	li	%0, %4					\n"	\
353	"	move	%1, $0					\n"	\
354	"	move	%D1, $0					\n"	\
355	"	j	3b					\n"	\
356	"	.previous					\n"	\
357	"	.section	__ex_table,\"a\"		\n"	\
358	"	" __UA_ADDR "	1b, 4b				\n"	\
359	"	" __UA_ADDR "	2b, 4b				\n"	\
360	"	.previous					\n"	\
361	: "=r" (__gu_err), "=&r" (__gu_tmp.l)				\
362	: "0" (0), "r" (addr), "i" (-EFAULT));				\
363									\
364	(val) = __gu_tmp.t;						\
365}
366
367#ifndef CONFIG_EVA
368#define __put_kernel_common(ptr, size) __put_user_common(ptr, size)
369#else
370/*
371 * Kernel specific functions for EVA. We need to use normal load instructions
372 * to read data from kernel when operating in EVA mode. We use these macros to
373 * avoid redefining __get_data_asm for EVA.
374 */
375#undef _stored
376#undef _storew
377#undef _storeh
378#undef _storeb
379#ifdef CONFIG_32BIT
380#define _stored			_storew
381#else
382#define _stored(reg, addr)	"ld " reg ", " addr
383#endif
384
385#define _storew(reg, addr)	"sw " reg ", " addr
386#define _storeh(reg, addr)	"sh " reg ", " addr
387#define _storeb(reg, addr)	"sb " reg ", " addr
388
389#define __put_kernel_common(ptr, size)					\
390do {									\
391	switch (size) {							\
392	case 1: __put_data_asm(_storeb, ptr); break;			\
393	case 2: __put_data_asm(_storeh, ptr); break;			\
394	case 4: __put_data_asm(_storew, ptr); break;			\
395	case 8: __PUT_DW(_stored, ptr); break;				\
396	default: __put_user_unknown(); break;				\
397	}								\
398} while(0)
399#endif
400
401/*
402 * Yuck.  We need two variants, one for 64bit operation and one
403 * for 32 bit mode and old iron.
404 */
405#ifdef CONFIG_32BIT
406#define __PUT_DW(insn, ptr) __put_data_asm_ll32(insn, ptr)
407#endif
408#ifdef CONFIG_64BIT
409#define __PUT_DW(insn, ptr) __put_data_asm(insn, ptr)
410#endif
411
412#define __put_user_common(ptr, size)					\
413do {									\
414	switch (size) {							\
415	case 1: __put_data_asm(user_sb, ptr); break;			\
416	case 2: __put_data_asm(user_sh, ptr); break;			\
417	case 4: __put_data_asm(user_sw, ptr); break;			\
418	case 8: __PUT_DW(user_sd, ptr); break;				\
419	default: __put_user_unknown(); break;				\
420	}								\
421} while (0)
422
423#define __put_user_nocheck(x, ptr, size)				\
424({									\
425	__typeof__(*(ptr)) __pu_val;					\
426	int __pu_err = 0;						\
427									\
428	__pu_val = (x);							\
429	if (eva_kernel_access()) {					\
430		__put_kernel_common(ptr, size);				\
431	} else {							\
432		__chk_user_ptr(ptr);					\
433		__put_user_common(ptr, size);				\
434	}								\
435	__pu_err;							\
436})
437
438#define __put_user_check(x, ptr, size)					\
439({									\
440	__typeof__(*(ptr)) __user *__pu_addr = (ptr);			\
441	__typeof__(*(ptr)) __pu_val = (x);				\
442	int __pu_err = -EFAULT;						\
443									\
444	might_fault();							\
445	if (likely(access_ok( __pu_addr, size))) {	\
446		if (eva_kernel_access())				\
447			__put_kernel_common(__pu_addr, size);		\
448		else							\
449			__put_user_common(__pu_addr, size);		\
450	}								\
451									\
452	__pu_err;							\
453})
454
455#define __put_data_asm(insn, ptr)					\
456{									\
457	__asm__ __volatile__(						\
458	"1:	"insn("%z2", "%3")"	# __put_data_asm	\n"	\
459	"2:							\n"	\
460	"	.insn						\n"	\
461	"	.section	.fixup,\"ax\"			\n"	\
462	"3:	li	%0, %4					\n"	\
463	"	j	2b					\n"	\
464	"	.previous					\n"	\
465	"	.section	__ex_table,\"a\"		\n"	\
466	"	" __UA_ADDR "	1b, 3b				\n"	\
467	"	.previous					\n"	\
468	: "=r" (__pu_err)						\
469	: "0" (0), "Jr" (__pu_val), "o" (__m(ptr)),			\
470	  "i" (-EFAULT));						\
471}
472
473#define __put_data_asm_ll32(insn, ptr)					\
474{									\
475	__asm__ __volatile__(						\
476	"1:	"insn("%2", "(%3)")"	# __put_data_asm_ll32	\n"	\
477	"2:	"insn("%D2", "4(%3)")"				\n"	\
478	"3:							\n"	\
479	"	.insn						\n"	\
480	"	.section	.fixup,\"ax\"			\n"	\
481	"4:	li	%0, %4					\n"	\
482	"	j	3b					\n"	\
483	"	.previous					\n"	\
484	"	.section	__ex_table,\"a\"		\n"	\
485	"	" __UA_ADDR "	1b, 4b				\n"	\
486	"	" __UA_ADDR "	2b, 4b				\n"	\
487	"	.previous"						\
488	: "=r" (__pu_err)						\
489	: "0" (0), "r" (__pu_val), "r" (ptr),				\
490	  "i" (-EFAULT));						\
491}
492
493extern void __put_user_unknown(void);
494
495/*
496 * We're generating jump to subroutines which will be outside the range of
497 * jump instructions
498 */
499#ifdef MODULE
500#define __MODULE_JAL(destination)					\
501	".set\tnoat\n\t"						\
502	__UA_LA "\t$1, " #destination "\n\t"				\
503	"jalr\t$1\n\t"							\
504	".set\tat\n\t"
505#else
506#define __MODULE_JAL(destination)					\
507	"jal\t" #destination "\n\t"
508#endif
509
510#if defined(CONFIG_CPU_DADDI_WORKAROUNDS) || (defined(CONFIG_EVA) &&	\
511					      defined(CONFIG_CPU_HAS_PREFETCH))
512#define DADDI_SCRATCH "$3"
513#else
514#define DADDI_SCRATCH "$0"
515#endif
516
517extern size_t __copy_user(void *__to, const void *__from, size_t __n);
518
519#define __invoke_copy_from(func, to, from, n)				\
520({									\
521	register void *__cu_to_r __asm__("$4");				\
522	register const void __user *__cu_from_r __asm__("$5");		\
523	register long __cu_len_r __asm__("$6");				\
524									\
525	__cu_to_r = (to);						\
526	__cu_from_r = (from);						\
527	__cu_len_r = (n);						\
528	__asm__ __volatile__(						\
529	".set\tnoreorder\n\t"						\
530	__MODULE_JAL(func)						\
531	".set\tnoat\n\t"						\
532	__UA_ADDU "\t$1, %1, %2\n\t"					\
533	".set\tat\n\t"							\
534	".set\treorder"							\
535	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
536	:								\
537	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
538	  DADDI_SCRATCH, "memory");					\
539	__cu_len_r;							\
540})
541
542#define __invoke_copy_to(func, to, from, n)				\
543({									\
544	register void __user *__cu_to_r __asm__("$4");			\
545	register const void *__cu_from_r __asm__("$5");			\
546	register long __cu_len_r __asm__("$6");				\
547									\
548	__cu_to_r = (to);						\
549	__cu_from_r = (from);						\
550	__cu_len_r = (n);						\
551	__asm__ __volatile__(						\
552	__MODULE_JAL(func)						\
553	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
554	:								\
555	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
556	  DADDI_SCRATCH, "memory");					\
557	__cu_len_r;							\
558})
559
560#define __invoke_copy_from_kernel(to, from, n)				\
561	__invoke_copy_from(__copy_user, to, from, n)
562
563#define __invoke_copy_to_kernel(to, from, n)				\
564	__invoke_copy_to(__copy_user, to, from, n)
565
566#define ___invoke_copy_in_kernel(to, from, n)				\
567	__invoke_copy_from(__copy_user, to, from, n)
568
569#ifndef CONFIG_EVA
570#define __invoke_copy_from_user(to, from, n)				\
571	__invoke_copy_from(__copy_user, to, from, n)
572
573#define __invoke_copy_to_user(to, from, n)				\
574	__invoke_copy_to(__copy_user, to, from, n)
575
576#define ___invoke_copy_in_user(to, from, n)				\
577	__invoke_copy_from(__copy_user, to, from, n)
578
579#else
580
581/* EVA specific functions */
582
583extern size_t __copy_from_user_eva(void *__to, const void *__from,
584				   size_t __n);
585extern size_t __copy_to_user_eva(void *__to, const void *__from,
586				 size_t __n);
587extern size_t __copy_in_user_eva(void *__to, const void *__from, size_t __n);
588
589/*
590 * Source or destination address is in userland. We need to go through
591 * the TLB
592 */
593#define __invoke_copy_from_user(to, from, n)				\
594	__invoke_copy_from(__copy_from_user_eva, to, from, n)
595
596#define __invoke_copy_to_user(to, from, n)				\
597	__invoke_copy_to(__copy_to_user_eva, to, from, n)
598
599#define ___invoke_copy_in_user(to, from, n)				\
600	__invoke_copy_from(__copy_in_user_eva, to, from, n)
601
602#endif /* CONFIG_EVA */
603
604static inline unsigned long
605raw_copy_to_user(void __user *to, const void *from, unsigned long n)
606{
607	if (eva_kernel_access())
608		return __invoke_copy_to_kernel(to, from, n);
609	else
610		return __invoke_copy_to_user(to, from, n);
611}
612
613static inline unsigned long
614raw_copy_from_user(void *to, const void __user *from, unsigned long n)
615{
616	if (eva_kernel_access())
617		return __invoke_copy_from_kernel(to, from, n);
618	else
619		return __invoke_copy_from_user(to, from, n);
620}
621
622#define INLINE_COPY_FROM_USER
623#define INLINE_COPY_TO_USER
624
625static inline unsigned long
626raw_copy_in_user(void __user*to, const void __user *from, unsigned long n)
627{
628	if (eva_kernel_access())
629		return ___invoke_copy_in_kernel(to, from, n);
630	else
631		return ___invoke_copy_in_user(to, from,	n);
632}
633
634extern __kernel_size_t __bzero_kernel(void __user *addr, __kernel_size_t size);
635extern __kernel_size_t __bzero(void __user *addr, __kernel_size_t size);
636
637/*
638 * __clear_user: - Zero a block of memory in user space, with less checking.
639 * @to:	  Destination address, in user space.
640 * @n:	  Number of bytes to zero.
641 *
642 * Zero a block of memory in user space.  Caller must check
643 * the specified block with access_ok() before calling this function.
644 *
645 * Returns number of bytes that could not be cleared.
646 * On success, this will be zero.
647 */
648static inline __kernel_size_t
649__clear_user(void __user *addr, __kernel_size_t size)
650{
651	__kernel_size_t res;
652
653#ifdef CONFIG_CPU_MICROMIPS
654/* micromips memset / bzero also clobbers t7 & t8 */
655#define bzero_clobbers "$4", "$5", "$6", __UA_t0, __UA_t1, "$15", "$24", "$31"
656#else
657#define bzero_clobbers "$4", "$5", "$6", __UA_t0, __UA_t1, "$31"
658#endif /* CONFIG_CPU_MICROMIPS */
659
660	if (eva_kernel_access()) {
661		__asm__ __volatile__(
662			"move\t$4, %1\n\t"
663			"move\t$5, $0\n\t"
664			"move\t$6, %2\n\t"
665			__MODULE_JAL(__bzero_kernel)
666			"move\t%0, $6"
667			: "=r" (res)
668			: "r" (addr), "r" (size)
669			: bzero_clobbers);
670	} else {
671		might_fault();
672		__asm__ __volatile__(
673			"move\t$4, %1\n\t"
674			"move\t$5, $0\n\t"
675			"move\t$6, %2\n\t"
676			__MODULE_JAL(__bzero)
677			"move\t%0, $6"
678			: "=r" (res)
679			: "r" (addr), "r" (size)
680			: bzero_clobbers);
681	}
682
683	return res;
684}
685
686#define clear_user(addr,n)						\
687({									\
688	void __user * __cl_addr = (addr);				\
689	unsigned long __cl_size = (n);					\
690	if (__cl_size && access_ok(__cl_addr, __cl_size))		\
 
691		__cl_size = __clear_user(__cl_addr, __cl_size);		\
692	__cl_size;							\
693})
694
695extern long __strncpy_from_kernel_asm(char *__to, const char __user *__from, long __len);
696extern long __strncpy_from_user_asm(char *__to, const char __user *__from, long __len);
697
698/*
699 * strncpy_from_user: - Copy a NUL terminated string from userspace.
700 * @dst:   Destination address, in kernel space.  This buffer must be at
701 *	   least @count bytes long.
702 * @src:   Source address, in user space.
703 * @count: Maximum number of bytes to copy, including the trailing NUL.
704 *
705 * Copies a NUL-terminated string from userspace to kernel space.
706 *
707 * On success, returns the length of the string (not including the trailing
708 * NUL).
709 *
710 * If access to userspace fails, returns -EFAULT (some data may have been
711 * copied).
712 *
713 * If @count is smaller than the length of the string, copies @count bytes
714 * and returns @count.
715 */
716static inline long
717strncpy_from_user(char *__to, const char __user *__from, long __len)
718{
719	long res;
720
721	if (eva_kernel_access()) {
722		__asm__ __volatile__(
723			"move\t$4, %1\n\t"
724			"move\t$5, %2\n\t"
725			"move\t$6, %3\n\t"
726			__MODULE_JAL(__strncpy_from_kernel_asm)
727			"move\t%0, $2"
728			: "=r" (res)
729			: "r" (__to), "r" (__from), "r" (__len)
730			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
731	} else {
732		might_fault();
733		__asm__ __volatile__(
734			"move\t$4, %1\n\t"
735			"move\t$5, %2\n\t"
736			"move\t$6, %3\n\t"
737			__MODULE_JAL(__strncpy_from_user_asm)
738			"move\t%0, $2"
739			: "=r" (res)
740			: "r" (__to), "r" (__from), "r" (__len)
741			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
742	}
743
744	return res;
745}
746
747extern long __strnlen_kernel_asm(const char __user *s, long n);
748extern long __strnlen_user_asm(const char __user *s, long n);
749
750/*
751 * strnlen_user: - Get the size of a string in user space.
752 * @str: The string to measure.
753 *
754 * Context: User context only. This function may sleep if pagefaults are
755 *          enabled.
756 *
757 * Get the size of a NUL-terminated string in user space.
758 *
759 * Returns the size of the string INCLUDING the terminating NUL.
760 * On exception, returns 0.
761 * If the string is too long, returns a value greater than @n.
762 */
763static inline long strnlen_user(const char __user *s, long n)
764{
765	long res;
766
767	might_fault();
768	if (eva_kernel_access()) {
769		__asm__ __volatile__(
770			"move\t$4, %1\n\t"
771			"move\t$5, %2\n\t"
772			__MODULE_JAL(__strnlen_kernel_asm)
773			"move\t%0, $2"
774			: "=r" (res)
775			: "r" (s), "r" (n)
776			: "$2", "$4", "$5", __UA_t0, "$31");
777	} else {
778		__asm__ __volatile__(
779			"move\t$4, %1\n\t"
780			"move\t$5, %2\n\t"
781			__MODULE_JAL(__strnlen_user_asm)
782			"move\t%0, $2"
783			: "=r" (res)
784			: "r" (s), "r" (n)
785			: "$2", "$4", "$5", __UA_t0, "$31");
786	}
787
788	return res;
789}
790
791#endif /* _ASM_UACCESS_H */
v4.17
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 1996, 1997, 1998, 1999, 2000, 03, 04 by Ralf Baechle
  7 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
  8 * Copyright (C) 2007  Maciej W. Rozycki
  9 * Copyright (C) 2014, Imagination Technologies Ltd.
 10 */
 11#ifndef _ASM_UACCESS_H
 12#define _ASM_UACCESS_H
 13
 14#include <linux/kernel.h>
 15#include <linux/string.h>
 16#include <asm/asm-eva.h>
 17#include <asm/extable.h>
 18
 19/*
 20 * The fs value determines whether argument validity checking should be
 21 * performed or not.  If get_fs() == USER_DS, checking is performed, with
 22 * get_fs() == KERNEL_DS, checking is bypassed.
 23 *
 24 * For historical reasons, these macros are grossly misnamed.
 25 */
 26#ifdef CONFIG_32BIT
 27
 28#ifdef CONFIG_KVM_GUEST
 29#define __UA_LIMIT 0x40000000UL
 30#else
 31#define __UA_LIMIT 0x80000000UL
 32#endif
 33
 34#define __UA_ADDR	".word"
 35#define __UA_LA		"la"
 36#define __UA_ADDU	"addu"
 37#define __UA_t0		"$8"
 38#define __UA_t1		"$9"
 39
 40#endif /* CONFIG_32BIT */
 41
 42#ifdef CONFIG_64BIT
 43
 44extern u64 __ua_limit;
 45
 46#define __UA_LIMIT	__ua_limit
 47
 48#define __UA_ADDR	".dword"
 49#define __UA_LA		"dla"
 50#define __UA_ADDU	"daddu"
 51#define __UA_t0		"$12"
 52#define __UA_t1		"$13"
 53
 54#endif /* CONFIG_64BIT */
 55
 56/*
 57 * USER_DS is a bitmask that has the bits set that may not be set in a valid
 58 * userspace address.  Note that we limit 32-bit userspace to 0x7fff8000 but
 59 * the arithmetic we're doing only works if the limit is a power of two, so
 60 * we use 0x80000000 here on 32-bit kernels.  If a process passes an invalid
 61 * address in this range it's the process's problem, not ours :-)
 62 */
 63
 64#ifdef CONFIG_KVM_GUEST
 65#define KERNEL_DS	((mm_segment_t) { 0x80000000UL })
 66#define USER_DS		((mm_segment_t) { 0xC0000000UL })
 67#else
 68#define KERNEL_DS	((mm_segment_t) { 0UL })
 69#define USER_DS		((mm_segment_t) { __UA_LIMIT })
 70#endif
 71
 72#define get_ds()	(KERNEL_DS)
 73#define get_fs()	(current_thread_info()->addr_limit)
 74#define set_fs(x)	(current_thread_info()->addr_limit = (x))
 75
 76#define segment_eq(a, b)	((a).seg == (b).seg)
 77
 78/*
 79 * eva_kernel_access() - determine whether kernel memory access on an EVA system
 80 *
 81 * Determines whether memory accesses should be performed to kernel memory
 82 * on a system using Extended Virtual Addressing (EVA).
 83 *
 84 * Return: true if a kernel memory access on an EVA system, else false.
 85 */
 86static inline bool eva_kernel_access(void)
 87{
 88	if (!IS_ENABLED(CONFIG_EVA))
 89		return false;
 90
 91	return uaccess_kernel();
 92}
 93
 94/*
 95 * Is a address valid? This does a straightforward calculation rather
 96 * than tests.
 97 *
 98 * Address valid if:
 99 *  - "addr" doesn't have any high-bits set
100 *  - AND "size" doesn't have any high-bits set
101 *  - AND "addr+size" doesn't have any high-bits set
102 *  - OR we are in kernel mode.
103 *
104 * __ua_size() is a trick to avoid runtime checking of positive constant
105 * sizes; for those we already know at compile time that the size is ok.
106 */
107#define __ua_size(size)							\
108	((__builtin_constant_p(size) && (signed long) (size) > 0) ? 0 : (size))
109
110/*
111 * access_ok: - Checks if a user space pointer is valid
112 * @type: Type of access: %VERIFY_READ or %VERIFY_WRITE.  Note that
113 *	  %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe
114 *	  to write to a block, it is always safe to read from it.
115 * @addr: User space pointer to start of block to check
116 * @size: Size of block to check
117 *
118 * Context: User context only. This function may sleep if pagefaults are
119 *          enabled.
120 *
121 * Checks if a pointer to a block of memory in user space is valid.
122 *
123 * Returns true (nonzero) if the memory block may be valid, false (zero)
124 * if it is definitely invalid.
125 *
126 * Note that, depending on architecture, this function probably just
127 * checks that the pointer is in the user space range - after calling
128 * this function, memory access functions may still return -EFAULT.
129 */
130
131static inline int __access_ok(const void __user *p, unsigned long size)
132{
133	unsigned long addr = (unsigned long)p;
134	return (get_fs().seg & (addr | (addr + size) | __ua_size(size))) == 0;
135}
136
137#define access_ok(type, addr, size)					\
138	likely(__access_ok((addr), (size)))
139
140/*
141 * put_user: - Write a simple value into user space.
142 * @x:	 Value to copy to user space.
143 * @ptr: Destination address, in user space.
144 *
145 * Context: User context only. This function may sleep if pagefaults are
146 *          enabled.
147 *
148 * This macro copies a single simple value from kernel space to user
149 * space.  It supports simple types like char and int, but not larger
150 * data types like structures or arrays.
151 *
152 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
153 * to the result of dereferencing @ptr.
154 *
155 * Returns zero on success, or -EFAULT on error.
156 */
157#define put_user(x,ptr) \
158	__put_user_check((x), (ptr), sizeof(*(ptr)))
159
160/*
161 * get_user: - Get a simple variable from user space.
162 * @x:	 Variable to store result.
163 * @ptr: Source address, in user space.
164 *
165 * Context: User context only. This function may sleep if pagefaults are
166 *          enabled.
167 *
168 * This macro copies a single simple variable from user space to kernel
169 * space.  It supports simple types like char and int, but not larger
170 * data types like structures or arrays.
171 *
172 * @ptr must have pointer-to-simple-variable type, and the result of
173 * dereferencing @ptr must be assignable to @x without a cast.
174 *
175 * Returns zero on success, or -EFAULT on error.
176 * On error, the variable @x is set to zero.
177 */
178#define get_user(x,ptr) \
179	__get_user_check((x), (ptr), sizeof(*(ptr)))
180
181/*
182 * __put_user: - Write a simple value into user space, with less checking.
183 * @x:	 Value to copy to user space.
184 * @ptr: Destination address, in user space.
185 *
186 * Context: User context only. This function may sleep if pagefaults are
187 *          enabled.
188 *
189 * This macro copies a single simple value from kernel space to user
190 * space.  It supports simple types like char and int, but not larger
191 * data types like structures or arrays.
192 *
193 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
194 * to the result of dereferencing @ptr.
195 *
196 * Caller must check the pointer with access_ok() before calling this
197 * function.
198 *
199 * Returns zero on success, or -EFAULT on error.
200 */
201#define __put_user(x,ptr) \
202	__put_user_nocheck((x), (ptr), sizeof(*(ptr)))
203
204/*
205 * __get_user: - Get a simple variable from user space, with less checking.
206 * @x:	 Variable to store result.
207 * @ptr: Source address, in user space.
208 *
209 * Context: User context only. This function may sleep if pagefaults are
210 *          enabled.
211 *
212 * This macro copies a single simple variable from user space to kernel
213 * space.  It supports simple types like char and int, but not larger
214 * data types like structures or arrays.
215 *
216 * @ptr must have pointer-to-simple-variable type, and the result of
217 * dereferencing @ptr must be assignable to @x without a cast.
218 *
219 * Caller must check the pointer with access_ok() before calling this
220 * function.
221 *
222 * Returns zero on success, or -EFAULT on error.
223 * On error, the variable @x is set to zero.
224 */
225#define __get_user(x,ptr) \
226	__get_user_nocheck((x), (ptr), sizeof(*(ptr)))
227
228struct __large_struct { unsigned long buf[100]; };
229#define __m(x) (*(struct __large_struct __user *)(x))
230
231/*
232 * Yuck.  We need two variants, one for 64bit operation and one
233 * for 32 bit mode and old iron.
234 */
235#ifndef CONFIG_EVA
236#define __get_kernel_common(val, size, ptr) __get_user_common(val, size, ptr)
237#else
238/*
239 * Kernel specific functions for EVA. We need to use normal load instructions
240 * to read data from kernel when operating in EVA mode. We use these macros to
241 * avoid redefining __get_user_asm for EVA.
242 */
243#undef _loadd
244#undef _loadw
245#undef _loadh
246#undef _loadb
247#ifdef CONFIG_32BIT
248#define _loadd			_loadw
249#else
250#define _loadd(reg, addr)	"ld " reg ", " addr
251#endif
252#define _loadw(reg, addr)	"lw " reg ", " addr
253#define _loadh(reg, addr)	"lh " reg ", " addr
254#define _loadb(reg, addr)	"lb " reg ", " addr
255
256#define __get_kernel_common(val, size, ptr)				\
257do {									\
258	switch (size) {							\
259	case 1: __get_data_asm(val, _loadb, ptr); break;		\
260	case 2: __get_data_asm(val, _loadh, ptr); break;		\
261	case 4: __get_data_asm(val, _loadw, ptr); break;		\
262	case 8: __GET_DW(val, _loadd, ptr); break;			\
263	default: __get_user_unknown(); break;				\
264	}								\
265} while (0)
266#endif
267
268#ifdef CONFIG_32BIT
269#define __GET_DW(val, insn, ptr) __get_data_asm_ll32(val, insn, ptr)
270#endif
271#ifdef CONFIG_64BIT
272#define __GET_DW(val, insn, ptr) __get_data_asm(val, insn, ptr)
273#endif
274
275extern void __get_user_unknown(void);
276
277#define __get_user_common(val, size, ptr)				\
278do {									\
279	switch (size) {							\
280	case 1: __get_data_asm(val, user_lb, ptr); break;		\
281	case 2: __get_data_asm(val, user_lh, ptr); break;		\
282	case 4: __get_data_asm(val, user_lw, ptr); break;		\
283	case 8: __GET_DW(val, user_ld, ptr); break;			\
284	default: __get_user_unknown(); break;				\
285	}								\
286} while (0)
287
288#define __get_user_nocheck(x, ptr, size)				\
289({									\
290	int __gu_err;							\
291									\
292	if (eva_kernel_access()) {					\
293		__get_kernel_common((x), size, ptr);			\
294	} else {							\
295		__chk_user_ptr(ptr);					\
296		__get_user_common((x), size, ptr);			\
297	}								\
298	__gu_err;							\
299})
300
301#define __get_user_check(x, ptr, size)					\
302({									\
303	int __gu_err = -EFAULT;						\
304	const __typeof__(*(ptr)) __user * __gu_ptr = (ptr);		\
305									\
306	might_fault();							\
307	if (likely(access_ok(VERIFY_READ,  __gu_ptr, size))) {		\
308		if (eva_kernel_access())				\
309			__get_kernel_common((x), size, __gu_ptr);	\
310		else							\
311			__get_user_common((x), size, __gu_ptr);		\
312	} else								\
313		(x) = 0;						\
314									\
315	__gu_err;							\
316})
317
318#define __get_data_asm(val, insn, addr)					\
319{									\
320	long __gu_tmp;							\
321									\
322	__asm__ __volatile__(						\
323	"1:	"insn("%1", "%3")"				\n"	\
324	"2:							\n"	\
325	"	.insn						\n"	\
326	"	.section .fixup,\"ax\"				\n"	\
327	"3:	li	%0, %4					\n"	\
328	"	move	%1, $0					\n"	\
329	"	j	2b					\n"	\
330	"	.previous					\n"	\
331	"	.section __ex_table,\"a\"			\n"	\
332	"	"__UA_ADDR "\t1b, 3b				\n"	\
333	"	.previous					\n"	\
334	: "=r" (__gu_err), "=r" (__gu_tmp)				\
335	: "0" (0), "o" (__m(addr)), "i" (-EFAULT));			\
336									\
337	(val) = (__typeof__(*(addr))) __gu_tmp;				\
338}
339
340/*
341 * Get a long long 64 using 32 bit registers.
342 */
343#define __get_data_asm_ll32(val, insn, addr)				\
344{									\
345	union {								\
346		unsigned long long	l;				\
347		__typeof__(*(addr))	t;				\
348	} __gu_tmp;							\
349									\
350	__asm__ __volatile__(						\
351	"1:	" insn("%1", "(%3)")"				\n"	\
352	"2:	" insn("%D1", "4(%3)")"				\n"	\
353	"3:							\n"	\
354	"	.insn						\n"	\
355	"	.section	.fixup,\"ax\"			\n"	\
356	"4:	li	%0, %4					\n"	\
357	"	move	%1, $0					\n"	\
358	"	move	%D1, $0					\n"	\
359	"	j	3b					\n"	\
360	"	.previous					\n"	\
361	"	.section	__ex_table,\"a\"		\n"	\
362	"	" __UA_ADDR "	1b, 4b				\n"	\
363	"	" __UA_ADDR "	2b, 4b				\n"	\
364	"	.previous					\n"	\
365	: "=r" (__gu_err), "=&r" (__gu_tmp.l)				\
366	: "0" (0), "r" (addr), "i" (-EFAULT));				\
367									\
368	(val) = __gu_tmp.t;						\
369}
370
371#ifndef CONFIG_EVA
372#define __put_kernel_common(ptr, size) __put_user_common(ptr, size)
373#else
374/*
375 * Kernel specific functions for EVA. We need to use normal load instructions
376 * to read data from kernel when operating in EVA mode. We use these macros to
377 * avoid redefining __get_data_asm for EVA.
378 */
379#undef _stored
380#undef _storew
381#undef _storeh
382#undef _storeb
383#ifdef CONFIG_32BIT
384#define _stored			_storew
385#else
386#define _stored(reg, addr)	"ld " reg ", " addr
387#endif
388
389#define _storew(reg, addr)	"sw " reg ", " addr
390#define _storeh(reg, addr)	"sh " reg ", " addr
391#define _storeb(reg, addr)	"sb " reg ", " addr
392
393#define __put_kernel_common(ptr, size)					\
394do {									\
395	switch (size) {							\
396	case 1: __put_data_asm(_storeb, ptr); break;			\
397	case 2: __put_data_asm(_storeh, ptr); break;			\
398	case 4: __put_data_asm(_storew, ptr); break;			\
399	case 8: __PUT_DW(_stored, ptr); break;				\
400	default: __put_user_unknown(); break;				\
401	}								\
402} while(0)
403#endif
404
405/*
406 * Yuck.  We need two variants, one for 64bit operation and one
407 * for 32 bit mode and old iron.
408 */
409#ifdef CONFIG_32BIT
410#define __PUT_DW(insn, ptr) __put_data_asm_ll32(insn, ptr)
411#endif
412#ifdef CONFIG_64BIT
413#define __PUT_DW(insn, ptr) __put_data_asm(insn, ptr)
414#endif
415
416#define __put_user_common(ptr, size)					\
417do {									\
418	switch (size) {							\
419	case 1: __put_data_asm(user_sb, ptr); break;			\
420	case 2: __put_data_asm(user_sh, ptr); break;			\
421	case 4: __put_data_asm(user_sw, ptr); break;			\
422	case 8: __PUT_DW(user_sd, ptr); break;				\
423	default: __put_user_unknown(); break;				\
424	}								\
425} while (0)
426
427#define __put_user_nocheck(x, ptr, size)				\
428({									\
429	__typeof__(*(ptr)) __pu_val;					\
430	int __pu_err = 0;						\
431									\
432	__pu_val = (x);							\
433	if (eva_kernel_access()) {					\
434		__put_kernel_common(ptr, size);				\
435	} else {							\
436		__chk_user_ptr(ptr);					\
437		__put_user_common(ptr, size);				\
438	}								\
439	__pu_err;							\
440})
441
442#define __put_user_check(x, ptr, size)					\
443({									\
444	__typeof__(*(ptr)) __user *__pu_addr = (ptr);			\
445	__typeof__(*(ptr)) __pu_val = (x);				\
446	int __pu_err = -EFAULT;						\
447									\
448	might_fault();							\
449	if (likely(access_ok(VERIFY_WRITE,  __pu_addr, size))) {	\
450		if (eva_kernel_access())				\
451			__put_kernel_common(__pu_addr, size);		\
452		else							\
453			__put_user_common(__pu_addr, size);		\
454	}								\
455									\
456	__pu_err;							\
457})
458
459#define __put_data_asm(insn, ptr)					\
460{									\
461	__asm__ __volatile__(						\
462	"1:	"insn("%z2", "%3")"	# __put_data_asm	\n"	\
463	"2:							\n"	\
464	"	.insn						\n"	\
465	"	.section	.fixup,\"ax\"			\n"	\
466	"3:	li	%0, %4					\n"	\
467	"	j	2b					\n"	\
468	"	.previous					\n"	\
469	"	.section	__ex_table,\"a\"		\n"	\
470	"	" __UA_ADDR "	1b, 3b				\n"	\
471	"	.previous					\n"	\
472	: "=r" (__pu_err)						\
473	: "0" (0), "Jr" (__pu_val), "o" (__m(ptr)),			\
474	  "i" (-EFAULT));						\
475}
476
477#define __put_data_asm_ll32(insn, ptr)					\
478{									\
479	__asm__ __volatile__(						\
480	"1:	"insn("%2", "(%3)")"	# __put_data_asm_ll32	\n"	\
481	"2:	"insn("%D2", "4(%3)")"				\n"	\
482	"3:							\n"	\
483	"	.insn						\n"	\
484	"	.section	.fixup,\"ax\"			\n"	\
485	"4:	li	%0, %4					\n"	\
486	"	j	3b					\n"	\
487	"	.previous					\n"	\
488	"	.section	__ex_table,\"a\"		\n"	\
489	"	" __UA_ADDR "	1b, 4b				\n"	\
490	"	" __UA_ADDR "	2b, 4b				\n"	\
491	"	.previous"						\
492	: "=r" (__pu_err)						\
493	: "0" (0), "r" (__pu_val), "r" (ptr),				\
494	  "i" (-EFAULT));						\
495}
496
497extern void __put_user_unknown(void);
498
499/*
500 * We're generating jump to subroutines which will be outside the range of
501 * jump instructions
502 */
503#ifdef MODULE
504#define __MODULE_JAL(destination)					\
505	".set\tnoat\n\t"						\
506	__UA_LA "\t$1, " #destination "\n\t"				\
507	"jalr\t$1\n\t"							\
508	".set\tat\n\t"
509#else
510#define __MODULE_JAL(destination)					\
511	"jal\t" #destination "\n\t"
512#endif
513
514#if defined(CONFIG_CPU_DADDI_WORKAROUNDS) || (defined(CONFIG_EVA) &&	\
515					      defined(CONFIG_CPU_HAS_PREFETCH))
516#define DADDI_SCRATCH "$3"
517#else
518#define DADDI_SCRATCH "$0"
519#endif
520
521extern size_t __copy_user(void *__to, const void *__from, size_t __n);
522
523#define __invoke_copy_from(func, to, from, n)				\
524({									\
525	register void *__cu_to_r __asm__("$4");				\
526	register const void __user *__cu_from_r __asm__("$5");		\
527	register long __cu_len_r __asm__("$6");				\
528									\
529	__cu_to_r = (to);						\
530	__cu_from_r = (from);						\
531	__cu_len_r = (n);						\
532	__asm__ __volatile__(						\
533	".set\tnoreorder\n\t"						\
534	__MODULE_JAL(func)						\
535	".set\tnoat\n\t"						\
536	__UA_ADDU "\t$1, %1, %2\n\t"					\
537	".set\tat\n\t"							\
538	".set\treorder"							\
539	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
540	:								\
541	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
542	  DADDI_SCRATCH, "memory");					\
543	__cu_len_r;							\
544})
545
546#define __invoke_copy_to(func, to, from, n)				\
547({									\
548	register void __user *__cu_to_r __asm__("$4");			\
549	register const void *__cu_from_r __asm__("$5");			\
550	register long __cu_len_r __asm__("$6");				\
551									\
552	__cu_to_r = (to);						\
553	__cu_from_r = (from);						\
554	__cu_len_r = (n);						\
555	__asm__ __volatile__(						\
556	__MODULE_JAL(func)						\
557	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
558	:								\
559	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
560	  DADDI_SCRATCH, "memory");					\
561	__cu_len_r;							\
562})
563
564#define __invoke_copy_from_kernel(to, from, n)				\
565	__invoke_copy_from(__copy_user, to, from, n)
566
567#define __invoke_copy_to_kernel(to, from, n)				\
568	__invoke_copy_to(__copy_user, to, from, n)
569
570#define ___invoke_copy_in_kernel(to, from, n)				\
571	__invoke_copy_from(__copy_user, to, from, n)
572
573#ifndef CONFIG_EVA
574#define __invoke_copy_from_user(to, from, n)				\
575	__invoke_copy_from(__copy_user, to, from, n)
576
577#define __invoke_copy_to_user(to, from, n)				\
578	__invoke_copy_to(__copy_user, to, from, n)
579
580#define ___invoke_copy_in_user(to, from, n)				\
581	__invoke_copy_from(__copy_user, to, from, n)
582
583#else
584
585/* EVA specific functions */
586
587extern size_t __copy_from_user_eva(void *__to, const void *__from,
588				   size_t __n);
589extern size_t __copy_to_user_eva(void *__to, const void *__from,
590				 size_t __n);
591extern size_t __copy_in_user_eva(void *__to, const void *__from, size_t __n);
592
593/*
594 * Source or destination address is in userland. We need to go through
595 * the TLB
596 */
597#define __invoke_copy_from_user(to, from, n)				\
598	__invoke_copy_from(__copy_from_user_eva, to, from, n)
599
600#define __invoke_copy_to_user(to, from, n)				\
601	__invoke_copy_to(__copy_to_user_eva, to, from, n)
602
603#define ___invoke_copy_in_user(to, from, n)				\
604	__invoke_copy_from(__copy_in_user_eva, to, from, n)
605
606#endif /* CONFIG_EVA */
607
608static inline unsigned long
609raw_copy_to_user(void __user *to, const void *from, unsigned long n)
610{
611	if (eva_kernel_access())
612		return __invoke_copy_to_kernel(to, from, n);
613	else
614		return __invoke_copy_to_user(to, from, n);
615}
616
617static inline unsigned long
618raw_copy_from_user(void *to, const void __user *from, unsigned long n)
619{
620	if (eva_kernel_access())
621		return __invoke_copy_from_kernel(to, from, n);
622	else
623		return __invoke_copy_from_user(to, from, n);
624}
625
626#define INLINE_COPY_FROM_USER
627#define INLINE_COPY_TO_USER
628
629static inline unsigned long
630raw_copy_in_user(void __user*to, const void __user *from, unsigned long n)
631{
632	if (eva_kernel_access())
633		return ___invoke_copy_in_kernel(to, from, n);
634	else
635		return ___invoke_copy_in_user(to, from,	n);
636}
637
638extern __kernel_size_t __bzero_kernel(void __user *addr, __kernel_size_t size);
639extern __kernel_size_t __bzero(void __user *addr, __kernel_size_t size);
640
641/*
642 * __clear_user: - Zero a block of memory in user space, with less checking.
643 * @to:	  Destination address, in user space.
644 * @n:	  Number of bytes to zero.
645 *
646 * Zero a block of memory in user space.  Caller must check
647 * the specified block with access_ok() before calling this function.
648 *
649 * Returns number of bytes that could not be cleared.
650 * On success, this will be zero.
651 */
652static inline __kernel_size_t
653__clear_user(void __user *addr, __kernel_size_t size)
654{
655	__kernel_size_t res;
656
657#ifdef CONFIG_CPU_MICROMIPS
658/* micromips memset / bzero also clobbers t7 & t8 */
659#define bzero_clobbers "$4", "$5", "$6", __UA_t0, __UA_t1, "$15", "$24", "$31"
660#else
661#define bzero_clobbers "$4", "$5", "$6", __UA_t0, __UA_t1, "$31"
662#endif /* CONFIG_CPU_MICROMIPS */
663
664	if (eva_kernel_access()) {
665		__asm__ __volatile__(
666			"move\t$4, %1\n\t"
667			"move\t$5, $0\n\t"
668			"move\t$6, %2\n\t"
669			__MODULE_JAL(__bzero_kernel)
670			"move\t%0, $6"
671			: "=r" (res)
672			: "r" (addr), "r" (size)
673			: bzero_clobbers);
674	} else {
675		might_fault();
676		__asm__ __volatile__(
677			"move\t$4, %1\n\t"
678			"move\t$5, $0\n\t"
679			"move\t$6, %2\n\t"
680			__MODULE_JAL(__bzero)
681			"move\t%0, $6"
682			: "=r" (res)
683			: "r" (addr), "r" (size)
684			: bzero_clobbers);
685	}
686
687	return res;
688}
689
690#define clear_user(addr,n)						\
691({									\
692	void __user * __cl_addr = (addr);				\
693	unsigned long __cl_size = (n);					\
694	if (__cl_size && access_ok(VERIFY_WRITE,			\
695					__cl_addr, __cl_size))		\
696		__cl_size = __clear_user(__cl_addr, __cl_size);		\
697	__cl_size;							\
698})
699
700extern long __strncpy_from_kernel_asm(char *__to, const char __user *__from, long __len);
701extern long __strncpy_from_user_asm(char *__to, const char __user *__from, long __len);
702
703/*
704 * strncpy_from_user: - Copy a NUL terminated string from userspace.
705 * @dst:   Destination address, in kernel space.  This buffer must be at
706 *	   least @count bytes long.
707 * @src:   Source address, in user space.
708 * @count: Maximum number of bytes to copy, including the trailing NUL.
709 *
710 * Copies a NUL-terminated string from userspace to kernel space.
711 *
712 * On success, returns the length of the string (not including the trailing
713 * NUL).
714 *
715 * If access to userspace fails, returns -EFAULT (some data may have been
716 * copied).
717 *
718 * If @count is smaller than the length of the string, copies @count bytes
719 * and returns @count.
720 */
721static inline long
722strncpy_from_user(char *__to, const char __user *__from, long __len)
723{
724	long res;
725
726	if (eva_kernel_access()) {
727		__asm__ __volatile__(
728			"move\t$4, %1\n\t"
729			"move\t$5, %2\n\t"
730			"move\t$6, %3\n\t"
731			__MODULE_JAL(__strncpy_from_kernel_asm)
732			"move\t%0, $2"
733			: "=r" (res)
734			: "r" (__to), "r" (__from), "r" (__len)
735			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
736	} else {
737		might_fault();
738		__asm__ __volatile__(
739			"move\t$4, %1\n\t"
740			"move\t$5, %2\n\t"
741			"move\t$6, %3\n\t"
742			__MODULE_JAL(__strncpy_from_user_asm)
743			"move\t%0, $2"
744			: "=r" (res)
745			: "r" (__to), "r" (__from), "r" (__len)
746			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
747	}
748
749	return res;
750}
751
752extern long __strnlen_kernel_asm(const char __user *s, long n);
753extern long __strnlen_user_asm(const char __user *s, long n);
754
755/*
756 * strnlen_user: - Get the size of a string in user space.
757 * @str: The string to measure.
758 *
759 * Context: User context only. This function may sleep if pagefaults are
760 *          enabled.
761 *
762 * Get the size of a NUL-terminated string in user space.
763 *
764 * Returns the size of the string INCLUDING the terminating NUL.
765 * On exception, returns 0.
766 * If the string is too long, returns a value greater than @n.
767 */
768static inline long strnlen_user(const char __user *s, long n)
769{
770	long res;
771
772	might_fault();
773	if (eva_kernel_access()) {
774		__asm__ __volatile__(
775			"move\t$4, %1\n\t"
776			"move\t$5, %2\n\t"
777			__MODULE_JAL(__strnlen_kernel_asm)
778			"move\t%0, $2"
779			: "=r" (res)
780			: "r" (s), "r" (n)
781			: "$2", "$4", "$5", __UA_t0, "$31");
782	} else {
783		__asm__ __volatile__(
784			"move\t$4, %1\n\t"
785			"move\t$5, %2\n\t"
786			__MODULE_JAL(__strnlen_user_asm)
787			"move\t%0, $2"
788			: "=r" (res)
789			: "r" (s), "r" (n)
790			: "$2", "$4", "$5", __UA_t0, "$31");
791	}
792
793	return res;
794}
795
796#endif /* _ASM_UACCESS_H */