Linux Audio

Check our new training course

Loading...
v5.4
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 1996, 1997, 1998, 1999, 2000, 03, 04 by Ralf Baechle
  7 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
  8 * Copyright (C) 2007  Maciej W. Rozycki
  9 * Copyright (C) 2014, Imagination Technologies Ltd.
 10 */
 11#ifndef _ASM_UACCESS_H
 12#define _ASM_UACCESS_H
 13
 14#include <linux/kernel.h>
 
 
 15#include <linux/string.h>
 16#include <asm/asm-eva.h>
 17#include <asm/extable.h>
 18
 19/*
 20 * The fs value determines whether argument validity checking should be
 21 * performed or not.  If get_fs() == USER_DS, checking is performed, with
 22 * get_fs() == KERNEL_DS, checking is bypassed.
 23 *
 24 * For historical reasons, these macros are grossly misnamed.
 25 */
 26#ifdef CONFIG_32BIT
 27
 28#ifdef CONFIG_KVM_GUEST
 29#define __UA_LIMIT 0x40000000UL
 30#else
 31#define __UA_LIMIT 0x80000000UL
 32#endif
 33
 34#define __UA_ADDR	".word"
 35#define __UA_LA		"la"
 36#define __UA_ADDU	"addu"
 37#define __UA_t0		"$8"
 38#define __UA_t1		"$9"
 39
 40#endif /* CONFIG_32BIT */
 41
 42#ifdef CONFIG_64BIT
 43
 44extern u64 __ua_limit;
 45
 46#define __UA_LIMIT	__ua_limit
 47
 48#define __UA_ADDR	".dword"
 49#define __UA_LA		"dla"
 50#define __UA_ADDU	"daddu"
 51#define __UA_t0		"$12"
 52#define __UA_t1		"$13"
 53
 54#endif /* CONFIG_64BIT */
 55
 56/*
 57 * USER_DS is a bitmask that has the bits set that may not be set in a valid
 58 * userspace address.  Note that we limit 32-bit userspace to 0x7fff8000 but
 59 * the arithmetic we're doing only works if the limit is a power of two, so
 60 * we use 0x80000000 here on 32-bit kernels.  If a process passes an invalid
 61 * address in this range it's the process's problem, not ours :-)
 62 */
 63
 64#ifdef CONFIG_KVM_GUEST
 65#define KERNEL_DS	((mm_segment_t) { 0x80000000UL })
 66#define USER_DS		((mm_segment_t) { 0xC0000000UL })
 67#else
 68#define KERNEL_DS	((mm_segment_t) { 0UL })
 69#define USER_DS		((mm_segment_t) { __UA_LIMIT })
 70#endif
 71
 
 
 
 
 72#define get_fs()	(current_thread_info()->addr_limit)
 73#define set_fs(x)	(current_thread_info()->addr_limit = (x))
 74
 75#define segment_eq(a, b)	((a).seg == (b).seg)
 76
 77/*
 78 * eva_kernel_access() - determine whether kernel memory access on an EVA system
 79 *
 80 * Determines whether memory accesses should be performed to kernel memory
 81 * on a system using Extended Virtual Addressing (EVA).
 82 *
 83 * Return: true if a kernel memory access on an EVA system, else false.
 84 */
 85static inline bool eva_kernel_access(void)
 86{
 87	if (!IS_ENABLED(CONFIG_EVA))
 88		return false;
 89
 90	return uaccess_kernel();
 91}
 92
 93/*
 94 * Is a address valid? This does a straightforward calculation rather
 95 * than tests.
 96 *
 97 * Address valid if:
 98 *  - "addr" doesn't have any high-bits set
 99 *  - AND "size" doesn't have any high-bits set
100 *  - AND "addr+size" doesn't have any high-bits set
101 *  - OR we are in kernel mode.
102 *
103 * __ua_size() is a trick to avoid runtime checking of positive constant
104 * sizes; for those we already know at compile time that the size is ok.
105 */
106#define __ua_size(size)							\
107	((__builtin_constant_p(size) && (signed long) (size) > 0) ? 0 : (size))
108
109/*
110 * access_ok: - Checks if a user space pointer is valid
 
 
 
111 * @addr: User space pointer to start of block to check
112 * @size: Size of block to check
113 *
114 * Context: User context only. This function may sleep if pagefaults are
115 *          enabled.
116 *
117 * Checks if a pointer to a block of memory in user space is valid.
118 *
119 * Returns true (nonzero) if the memory block may be valid, false (zero)
120 * if it is definitely invalid.
121 *
122 * Note that, depending on architecture, this function probably just
123 * checks that the pointer is in the user space range - after calling
124 * this function, memory access functions may still return -EFAULT.
125 */
126
127static inline int __access_ok(const void __user *p, unsigned long size)
128{
129	unsigned long addr = (unsigned long)p;
130	return (get_fs().seg & (addr | (addr + size) | __ua_size(size))) == 0;
131}
132
133#define access_ok(addr, size)					\
134	likely(__access_ok((addr), (size)))
 
 
 
 
 
 
 
 
 
 
 
 
 
135
136/*
137 * put_user: - Write a simple value into user space.
138 * @x:	 Value to copy to user space.
139 * @ptr: Destination address, in user space.
140 *
141 * Context: User context only. This function may sleep if pagefaults are
142 *          enabled.
143 *
144 * This macro copies a single simple value from kernel space to user
145 * space.  It supports simple types like char and int, but not larger
146 * data types like structures or arrays.
147 *
148 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
149 * to the result of dereferencing @ptr.
150 *
151 * Returns zero on success, or -EFAULT on error.
152 */
153#define put_user(x,ptr) \
154	__put_user_check((x), (ptr), sizeof(*(ptr)))
155
156/*
157 * get_user: - Get a simple variable from user space.
158 * @x:	 Variable to store result.
159 * @ptr: Source address, in user space.
160 *
161 * Context: User context only. This function may sleep if pagefaults are
162 *          enabled.
163 *
164 * This macro copies a single simple variable from user space to kernel
165 * space.  It supports simple types like char and int, but not larger
166 * data types like structures or arrays.
167 *
168 * @ptr must have pointer-to-simple-variable type, and the result of
169 * dereferencing @ptr must be assignable to @x without a cast.
170 *
171 * Returns zero on success, or -EFAULT on error.
172 * On error, the variable @x is set to zero.
173 */
174#define get_user(x,ptr) \
175	__get_user_check((x), (ptr), sizeof(*(ptr)))
176
177/*
178 * __put_user: - Write a simple value into user space, with less checking.
179 * @x:	 Value to copy to user space.
180 * @ptr: Destination address, in user space.
181 *
182 * Context: User context only. This function may sleep if pagefaults are
183 *          enabled.
184 *
185 * This macro copies a single simple value from kernel space to user
186 * space.  It supports simple types like char and int, but not larger
187 * data types like structures or arrays.
188 *
189 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
190 * to the result of dereferencing @ptr.
191 *
192 * Caller must check the pointer with access_ok() before calling this
193 * function.
194 *
195 * Returns zero on success, or -EFAULT on error.
196 */
197#define __put_user(x,ptr) \
198	__put_user_nocheck((x), (ptr), sizeof(*(ptr)))
199
200/*
201 * __get_user: - Get a simple variable from user space, with less checking.
202 * @x:	 Variable to store result.
203 * @ptr: Source address, in user space.
204 *
205 * Context: User context only. This function may sleep if pagefaults are
206 *          enabled.
207 *
208 * This macro copies a single simple variable from user space to kernel
209 * space.  It supports simple types like char and int, but not larger
210 * data types like structures or arrays.
211 *
212 * @ptr must have pointer-to-simple-variable type, and the result of
213 * dereferencing @ptr must be assignable to @x without a cast.
214 *
215 * Caller must check the pointer with access_ok() before calling this
216 * function.
217 *
218 * Returns zero on success, or -EFAULT on error.
219 * On error, the variable @x is set to zero.
220 */
221#define __get_user(x,ptr) \
222	__get_user_nocheck((x), (ptr), sizeof(*(ptr)))
223
224struct __large_struct { unsigned long buf[100]; };
225#define __m(x) (*(struct __large_struct __user *)(x))
226
227/*
228 * Yuck.  We need two variants, one for 64bit operation and one
229 * for 32 bit mode and old iron.
230 */
231#ifndef CONFIG_EVA
232#define __get_kernel_common(val, size, ptr) __get_user_common(val, size, ptr)
233#else
234/*
235 * Kernel specific functions for EVA. We need to use normal load instructions
236 * to read data from kernel when operating in EVA mode. We use these macros to
237 * avoid redefining __get_user_asm for EVA.
238 */
239#undef _loadd
240#undef _loadw
241#undef _loadh
242#undef _loadb
243#ifdef CONFIG_32BIT
244#define _loadd			_loadw
245#else
246#define _loadd(reg, addr)	"ld " reg ", " addr
247#endif
248#define _loadw(reg, addr)	"lw " reg ", " addr
249#define _loadh(reg, addr)	"lh " reg ", " addr
250#define _loadb(reg, addr)	"lb " reg ", " addr
251
252#define __get_kernel_common(val, size, ptr)				\
253do {									\
254	switch (size) {							\
255	case 1: __get_data_asm(val, _loadb, ptr); break;		\
256	case 2: __get_data_asm(val, _loadh, ptr); break;		\
257	case 4: __get_data_asm(val, _loadw, ptr); break;		\
258	case 8: __GET_DW(val, _loadd, ptr); break;			\
259	default: __get_user_unknown(); break;				\
260	}								\
261} while (0)
262#endif
263
264#ifdef CONFIG_32BIT
265#define __GET_DW(val, insn, ptr) __get_data_asm_ll32(val, insn, ptr)
266#endif
267#ifdef CONFIG_64BIT
268#define __GET_DW(val, insn, ptr) __get_data_asm(val, insn, ptr)
269#endif
270
271extern void __get_user_unknown(void);
272
273#define __get_user_common(val, size, ptr)				\
274do {									\
275	switch (size) {							\
276	case 1: __get_data_asm(val, user_lb, ptr); break;		\
277	case 2: __get_data_asm(val, user_lh, ptr); break;		\
278	case 4: __get_data_asm(val, user_lw, ptr); break;		\
279	case 8: __GET_DW(val, user_ld, ptr); break;			\
280	default: __get_user_unknown(); break;				\
281	}								\
282} while (0)
283
284#define __get_user_nocheck(x, ptr, size)				\
285({									\
286	int __gu_err;							\
287									\
288	if (eva_kernel_access()) {					\
289		__get_kernel_common((x), size, ptr);			\
290	} else {							\
291		__chk_user_ptr(ptr);					\
292		__get_user_common((x), size, ptr);			\
293	}								\
294	__gu_err;							\
295})
296
297#define __get_user_check(x, ptr, size)					\
298({									\
299	int __gu_err = -EFAULT;						\
300	const __typeof__(*(ptr)) __user * __gu_ptr = (ptr);		\
301									\
302	might_fault();							\
303	if (likely(access_ok( __gu_ptr, size))) {		\
304		if (eva_kernel_access())				\
305			__get_kernel_common((x), size, __gu_ptr);	\
306		else							\
307			__get_user_common((x), size, __gu_ptr);		\
308	} else								\
309		(x) = 0;						\
310									\
311	__gu_err;							\
312})
313
314#define __get_data_asm(val, insn, addr)					\
315{									\
316	long __gu_tmp;							\
317									\
318	__asm__ __volatile__(						\
319	"1:	"insn("%1", "%3")"				\n"	\
320	"2:							\n"	\
321	"	.insn						\n"	\
322	"	.section .fixup,\"ax\"				\n"	\
323	"3:	li	%0, %4					\n"	\
324	"	move	%1, $0					\n"	\
325	"	j	2b					\n"	\
326	"	.previous					\n"	\
327	"	.section __ex_table,\"a\"			\n"	\
328	"	"__UA_ADDR "\t1b, 3b				\n"	\
329	"	.previous					\n"	\
330	: "=r" (__gu_err), "=r" (__gu_tmp)				\
331	: "0" (0), "o" (__m(addr)), "i" (-EFAULT));			\
332									\
333	(val) = (__typeof__(*(addr))) __gu_tmp;				\
334}
335
336/*
337 * Get a long long 64 using 32 bit registers.
338 */
339#define __get_data_asm_ll32(val, insn, addr)				\
340{									\
341	union {								\
342		unsigned long long	l;				\
343		__typeof__(*(addr))	t;				\
344	} __gu_tmp;							\
345									\
346	__asm__ __volatile__(						\
347	"1:	" insn("%1", "(%3)")"				\n"	\
348	"2:	" insn("%D1", "4(%3)")"				\n"	\
349	"3:							\n"	\
350	"	.insn						\n"	\
351	"	.section	.fixup,\"ax\"			\n"	\
352	"4:	li	%0, %4					\n"	\
353	"	move	%1, $0					\n"	\
354	"	move	%D1, $0					\n"	\
355	"	j	3b					\n"	\
356	"	.previous					\n"	\
357	"	.section	__ex_table,\"a\"		\n"	\
358	"	" __UA_ADDR "	1b, 4b				\n"	\
359	"	" __UA_ADDR "	2b, 4b				\n"	\
360	"	.previous					\n"	\
361	: "=r" (__gu_err), "=&r" (__gu_tmp.l)				\
362	: "0" (0), "r" (addr), "i" (-EFAULT));				\
363									\
364	(val) = __gu_tmp.t;						\
365}
366
367#ifndef CONFIG_EVA
368#define __put_kernel_common(ptr, size) __put_user_common(ptr, size)
369#else
370/*
371 * Kernel specific functions for EVA. We need to use normal load instructions
372 * to read data from kernel when operating in EVA mode. We use these macros to
373 * avoid redefining __get_data_asm for EVA.
374 */
375#undef _stored
376#undef _storew
377#undef _storeh
378#undef _storeb
379#ifdef CONFIG_32BIT
380#define _stored			_storew
381#else
382#define _stored(reg, addr)	"ld " reg ", " addr
383#endif
384
385#define _storew(reg, addr)	"sw " reg ", " addr
386#define _storeh(reg, addr)	"sh " reg ", " addr
387#define _storeb(reg, addr)	"sb " reg ", " addr
388
389#define __put_kernel_common(ptr, size)					\
390do {									\
391	switch (size) {							\
392	case 1: __put_data_asm(_storeb, ptr); break;			\
393	case 2: __put_data_asm(_storeh, ptr); break;			\
394	case 4: __put_data_asm(_storew, ptr); break;			\
395	case 8: __PUT_DW(_stored, ptr); break;				\
396	default: __put_user_unknown(); break;				\
397	}								\
398} while(0)
399#endif
400
401/*
402 * Yuck.  We need two variants, one for 64bit operation and one
403 * for 32 bit mode and old iron.
404 */
405#ifdef CONFIG_32BIT
406#define __PUT_DW(insn, ptr) __put_data_asm_ll32(insn, ptr)
407#endif
408#ifdef CONFIG_64BIT
409#define __PUT_DW(insn, ptr) __put_data_asm(insn, ptr)
410#endif
411
412#define __put_user_common(ptr, size)					\
413do {									\
414	switch (size) {							\
415	case 1: __put_data_asm(user_sb, ptr); break;			\
416	case 2: __put_data_asm(user_sh, ptr); break;			\
417	case 4: __put_data_asm(user_sw, ptr); break;			\
418	case 8: __PUT_DW(user_sd, ptr); break;				\
419	default: __put_user_unknown(); break;				\
420	}								\
421} while (0)
422
423#define __put_user_nocheck(x, ptr, size)				\
424({									\
425	__typeof__(*(ptr)) __pu_val;					\
426	int __pu_err = 0;						\
427									\
428	__pu_val = (x);							\
429	if (eva_kernel_access()) {					\
430		__put_kernel_common(ptr, size);				\
431	} else {							\
432		__chk_user_ptr(ptr);					\
433		__put_user_common(ptr, size);				\
434	}								\
435	__pu_err;							\
436})
437
438#define __put_user_check(x, ptr, size)					\
439({									\
440	__typeof__(*(ptr)) __user *__pu_addr = (ptr);			\
441	__typeof__(*(ptr)) __pu_val = (x);				\
442	int __pu_err = -EFAULT;						\
443									\
444	might_fault();							\
445	if (likely(access_ok( __pu_addr, size))) {	\
446		if (eva_kernel_access())				\
447			__put_kernel_common(__pu_addr, size);		\
448		else							\
449			__put_user_common(__pu_addr, size);		\
450	}								\
451									\
452	__pu_err;							\
453})
454
455#define __put_data_asm(insn, ptr)					\
456{									\
457	__asm__ __volatile__(						\
458	"1:	"insn("%z2", "%3")"	# __put_data_asm	\n"	\
459	"2:							\n"	\
460	"	.insn						\n"	\
461	"	.section	.fixup,\"ax\"			\n"	\
462	"3:	li	%0, %4					\n"	\
463	"	j	2b					\n"	\
464	"	.previous					\n"	\
465	"	.section	__ex_table,\"a\"		\n"	\
466	"	" __UA_ADDR "	1b, 3b				\n"	\
467	"	.previous					\n"	\
468	: "=r" (__pu_err)						\
469	: "0" (0), "Jr" (__pu_val), "o" (__m(ptr)),			\
470	  "i" (-EFAULT));						\
471}
472
473#define __put_data_asm_ll32(insn, ptr)					\
474{									\
475	__asm__ __volatile__(						\
476	"1:	"insn("%2", "(%3)")"	# __put_data_asm_ll32	\n"	\
477	"2:	"insn("%D2", "4(%3)")"				\n"	\
478	"3:							\n"	\
479	"	.insn						\n"	\
480	"	.section	.fixup,\"ax\"			\n"	\
481	"4:	li	%0, %4					\n"	\
482	"	j	3b					\n"	\
483	"	.previous					\n"	\
484	"	.section	__ex_table,\"a\"		\n"	\
485	"	" __UA_ADDR "	1b, 4b				\n"	\
486	"	" __UA_ADDR "	2b, 4b				\n"	\
487	"	.previous"						\
488	: "=r" (__pu_err)						\
489	: "0" (0), "r" (__pu_val), "r" (ptr),				\
490	  "i" (-EFAULT));						\
491}
492
493extern void __put_user_unknown(void);
494
495/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
496 * We're generating jump to subroutines which will be outside the range of
497 * jump instructions
498 */
499#ifdef MODULE
500#define __MODULE_JAL(destination)					\
501	".set\tnoat\n\t"						\
502	__UA_LA "\t$1, " #destination "\n\t"				\
503	"jalr\t$1\n\t"							\
504	".set\tat\n\t"
505#else
506#define __MODULE_JAL(destination)					\
507	"jal\t" #destination "\n\t"
508#endif
509
510#if defined(CONFIG_CPU_DADDI_WORKAROUNDS) || (defined(CONFIG_EVA) &&	\
511					      defined(CONFIG_CPU_HAS_PREFETCH))
512#define DADDI_SCRATCH "$3"
513#else
514#define DADDI_SCRATCH "$0"
515#endif
516
517extern size_t __copy_user(void *__to, const void *__from, size_t __n);
518
519#define __invoke_copy_from(func, to, from, n)				\
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
520({									\
521	register void *__cu_to_r __asm__("$4");				\
522	register const void __user *__cu_from_r __asm__("$5");		\
523	register long __cu_len_r __asm__("$6");				\
524									\
525	__cu_to_r = (to);						\
526	__cu_from_r = (from);						\
527	__cu_len_r = (n);						\
528	__asm__ __volatile__(						\
529	".set\tnoreorder\n\t"						\
530	__MODULE_JAL(func)						\
531	".set\tnoat\n\t"						\
532	__UA_ADDU "\t$1, %1, %2\n\t"					\
533	".set\tat\n\t"							\
534	".set\treorder"							\
535	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
536	:								\
537	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
538	  DADDI_SCRATCH, "memory");					\
539	__cu_len_r;							\
540})
541
542#define __invoke_copy_to(func, to, from, n)				\
 
 
 
 
 
 
 
 
 
 
 
543({									\
544	register void __user *__cu_to_r __asm__("$4");			\
545	register const void *__cu_from_r __asm__("$5");			\
546	register long __cu_len_r __asm__("$6");				\
547									\
548	__cu_to_r = (to);						\
549	__cu_from_r = (from);						\
550	__cu_len_r = (n);						\
551	__asm__ __volatile__(						\
552	__MODULE_JAL(func)						\
 
 
 
 
 
553	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
554	:								\
555	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
556	  DADDI_SCRATCH, "memory");					\
557	__cu_len_r;							\
558})
559
560#define __invoke_copy_from_kernel(to, from, n)				\
561	__invoke_copy_from(__copy_user, to, from, n)
562
563#define __invoke_copy_to_kernel(to, from, n)				\
564	__invoke_copy_to(__copy_user, to, from, n)
565
566#define ___invoke_copy_in_kernel(to, from, n)				\
567	__invoke_copy_from(__copy_user, to, from, n)
568
569#ifndef CONFIG_EVA
570#define __invoke_copy_from_user(to, from, n)				\
571	__invoke_copy_from(__copy_user, to, from, n)
572
573#define __invoke_copy_to_user(to, from, n)				\
574	__invoke_copy_to(__copy_user, to, from, n)
575
576#define ___invoke_copy_in_user(to, from, n)				\
577	__invoke_copy_from(__copy_user, to, from, n)
578
579#else
580
581/* EVA specific functions */
582
 
 
583extern size_t __copy_from_user_eva(void *__to, const void *__from,
584				   size_t __n);
585extern size_t __copy_to_user_eva(void *__to, const void *__from,
586				 size_t __n);
587extern size_t __copy_in_user_eva(void *__to, const void *__from, size_t __n);
588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
589/*
590 * Source or destination address is in userland. We need to go through
591 * the TLB
592 */
593#define __invoke_copy_from_user(to, from, n)				\
594	__invoke_copy_from(__copy_from_user_eva, to, from, n)
 
 
 
 
595
596#define __invoke_copy_to_user(to, from, n)				\
597	__invoke_copy_to(__copy_to_user_eva, to, from, n)
598
599#define ___invoke_copy_in_user(to, from, n)				\
600	__invoke_copy_from(__copy_in_user_eva, to, from, n)
601
602#endif /* CONFIG_EVA */
 
 
 
 
 
603
604static inline unsigned long
605raw_copy_to_user(void __user *to, const void *from, unsigned long n)
606{
607	if (eva_kernel_access())
608		return __invoke_copy_to_kernel(to, from, n);
609	else
610		return __invoke_copy_to_user(to, from, n);
611}
612
613static inline unsigned long
614raw_copy_from_user(void *to, const void __user *from, unsigned long n)
615{
616	if (eva_kernel_access())
617		return __invoke_copy_from_kernel(to, from, n);
618	else
619		return __invoke_copy_from_user(to, from, n);
620}
621
622#define INLINE_COPY_FROM_USER
623#define INLINE_COPY_TO_USER
624
625static inline unsigned long
626raw_copy_in_user(void __user*to, const void __user *from, unsigned long n)
627{
628	if (eva_kernel_access())
629		return ___invoke_copy_in_kernel(to, from, n);
630	else
631		return ___invoke_copy_in_user(to, from,	n);
632}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
633
634extern __kernel_size_t __bzero_kernel(void __user *addr, __kernel_size_t size);
635extern __kernel_size_t __bzero(void __user *addr, __kernel_size_t size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
636
637/*
638 * __clear_user: - Zero a block of memory in user space, with less checking.
639 * @to:	  Destination address, in user space.
640 * @n:	  Number of bytes to zero.
641 *
642 * Zero a block of memory in user space.  Caller must check
643 * the specified block with access_ok() before calling this function.
644 *
645 * Returns number of bytes that could not be cleared.
646 * On success, this will be zero.
647 */
648static inline __kernel_size_t
649__clear_user(void __user *addr, __kernel_size_t size)
650{
651	__kernel_size_t res;
652
653#ifdef CONFIG_CPU_MICROMIPS
654/* micromips memset / bzero also clobbers t7 & t8 */
655#define bzero_clobbers "$4", "$5", "$6", __UA_t0, __UA_t1, "$15", "$24", "$31"
656#else
657#define bzero_clobbers "$4", "$5", "$6", __UA_t0, __UA_t1, "$31"
658#endif /* CONFIG_CPU_MICROMIPS */
659
660	if (eva_kernel_access()) {
661		__asm__ __volatile__(
662			"move\t$4, %1\n\t"
663			"move\t$5, $0\n\t"
664			"move\t$6, %2\n\t"
665			__MODULE_JAL(__bzero_kernel)
666			"move\t%0, $6"
667			: "=r" (res)
668			: "r" (addr), "r" (size)
669			: bzero_clobbers);
670	} else {
671		might_fault();
672		__asm__ __volatile__(
673			"move\t$4, %1\n\t"
674			"move\t$5, $0\n\t"
675			"move\t$6, %2\n\t"
676			__MODULE_JAL(__bzero)
677			"move\t%0, $6"
678			: "=r" (res)
679			: "r" (addr), "r" (size)
680			: bzero_clobbers);
681	}
682
683	return res;
684}
685
686#define clear_user(addr,n)						\
687({									\
688	void __user * __cl_addr = (addr);				\
689	unsigned long __cl_size = (n);					\
690	if (__cl_size && access_ok(__cl_addr, __cl_size))		\
 
691		__cl_size = __clear_user(__cl_addr, __cl_size);		\
692	__cl_size;							\
693})
694
695extern long __strncpy_from_kernel_asm(char *__to, const char __user *__from, long __len);
696extern long __strncpy_from_user_asm(char *__to, const char __user *__from, long __len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
697
698/*
699 * strncpy_from_user: - Copy a NUL terminated string from userspace.
700 * @dst:   Destination address, in kernel space.  This buffer must be at
701 *	   least @count bytes long.
702 * @src:   Source address, in user space.
703 * @count: Maximum number of bytes to copy, including the trailing NUL.
704 *
705 * Copies a NUL-terminated string from userspace to kernel space.
706 *
707 * On success, returns the length of the string (not including the trailing
708 * NUL).
709 *
710 * If access to userspace fails, returns -EFAULT (some data may have been
711 * copied).
712 *
713 * If @count is smaller than the length of the string, copies @count bytes
714 * and returns @count.
715 */
716static inline long
717strncpy_from_user(char *__to, const char __user *__from, long __len)
718{
719	long res;
720
721	if (eva_kernel_access()) {
722		__asm__ __volatile__(
723			"move\t$4, %1\n\t"
724			"move\t$5, %2\n\t"
725			"move\t$6, %3\n\t"
726			__MODULE_JAL(__strncpy_from_kernel_asm)
727			"move\t%0, $2"
728			: "=r" (res)
729			: "r" (__to), "r" (__from), "r" (__len)
730			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
731	} else {
732		might_fault();
733		__asm__ __volatile__(
734			"move\t$4, %1\n\t"
735			"move\t$5, %2\n\t"
736			"move\t$6, %3\n\t"
737			__MODULE_JAL(__strncpy_from_user_asm)
738			"move\t%0, $2"
739			: "=r" (res)
740			: "r" (__to), "r" (__from), "r" (__len)
741			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
742	}
743
744	return res;
745}
746
747extern long __strnlen_kernel_asm(const char __user *s, long n);
748extern long __strnlen_user_asm(const char __user *s, long n);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
749
750/*
751 * strnlen_user: - Get the size of a string in user space.
752 * @str: The string to measure.
753 *
754 * Context: User context only. This function may sleep if pagefaults are
755 *          enabled.
756 *
757 * Get the size of a NUL-terminated string in user space.
758 *
759 * Returns the size of the string INCLUDING the terminating NUL.
760 * On exception, returns 0.
761 * If the string is too long, returns a value greater than @n.
762 */
763static inline long strnlen_user(const char __user *s, long n)
764{
765	long res;
766
767	might_fault();
768	if (eva_kernel_access()) {
769		__asm__ __volatile__(
770			"move\t$4, %1\n\t"
771			"move\t$5, %2\n\t"
772			__MODULE_JAL(__strnlen_kernel_asm)
773			"move\t%0, $2"
774			: "=r" (res)
775			: "r" (s), "r" (n)
776			: "$2", "$4", "$5", __UA_t0, "$31");
777	} else {
778		__asm__ __volatile__(
779			"move\t$4, %1\n\t"
780			"move\t$5, %2\n\t"
781			__MODULE_JAL(__strnlen_user_asm)
782			"move\t%0, $2"
783			: "=r" (res)
784			: "r" (s), "r" (n)
785			: "$2", "$4", "$5", __UA_t0, "$31");
786	}
787
788	return res;
789}
790
791#endif /* _ASM_UACCESS_H */
v4.10.11
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1996, 1997, 1998, 1999, 2000, 03, 04 by Ralf Baechle
   7 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
   8 * Copyright (C) 2007  Maciej W. Rozycki
   9 * Copyright (C) 2014, Imagination Technologies Ltd.
  10 */
  11#ifndef _ASM_UACCESS_H
  12#define _ASM_UACCESS_H
  13
  14#include <linux/kernel.h>
  15#include <linux/errno.h>
  16#include <linux/thread_info.h>
  17#include <linux/string.h>
  18#include <asm/asm-eva.h>
  19#include <asm/extable.h>
  20
  21/*
  22 * The fs value determines whether argument validity checking should be
  23 * performed or not.  If get_fs() == USER_DS, checking is performed, with
  24 * get_fs() == KERNEL_DS, checking is bypassed.
  25 *
  26 * For historical reasons, these macros are grossly misnamed.
  27 */
  28#ifdef CONFIG_32BIT
  29
  30#ifdef CONFIG_KVM_GUEST
  31#define __UA_LIMIT 0x40000000UL
  32#else
  33#define __UA_LIMIT 0x80000000UL
  34#endif
  35
  36#define __UA_ADDR	".word"
  37#define __UA_LA		"la"
  38#define __UA_ADDU	"addu"
  39#define __UA_t0		"$8"
  40#define __UA_t1		"$9"
  41
  42#endif /* CONFIG_32BIT */
  43
  44#ifdef CONFIG_64BIT
  45
  46extern u64 __ua_limit;
  47
  48#define __UA_LIMIT	__ua_limit
  49
  50#define __UA_ADDR	".dword"
  51#define __UA_LA		"dla"
  52#define __UA_ADDU	"daddu"
  53#define __UA_t0		"$12"
  54#define __UA_t1		"$13"
  55
  56#endif /* CONFIG_64BIT */
  57
  58/*
  59 * USER_DS is a bitmask that has the bits set that may not be set in a valid
  60 * userspace address.  Note that we limit 32-bit userspace to 0x7fff8000 but
  61 * the arithmetic we're doing only works if the limit is a power of two, so
  62 * we use 0x80000000 here on 32-bit kernels.  If a process passes an invalid
  63 * address in this range it's the process's problem, not ours :-)
  64 */
  65
  66#ifdef CONFIG_KVM_GUEST
  67#define KERNEL_DS	((mm_segment_t) { 0x80000000UL })
  68#define USER_DS		((mm_segment_t) { 0xC0000000UL })
  69#else
  70#define KERNEL_DS	((mm_segment_t) { 0UL })
  71#define USER_DS		((mm_segment_t) { __UA_LIMIT })
  72#endif
  73
  74#define VERIFY_READ    0
  75#define VERIFY_WRITE   1
  76
  77#define get_ds()	(KERNEL_DS)
  78#define get_fs()	(current_thread_info()->addr_limit)
  79#define set_fs(x)	(current_thread_info()->addr_limit = (x))
  80
  81#define segment_eq(a, b)	((a).seg == (b).seg)
  82
  83/*
  84 * eva_kernel_access() - determine whether kernel memory access on an EVA system
  85 *
  86 * Determines whether memory accesses should be performed to kernel memory
  87 * on a system using Extended Virtual Addressing (EVA).
  88 *
  89 * Return: true if a kernel memory access on an EVA system, else false.
  90 */
  91static inline bool eva_kernel_access(void)
  92{
  93	if (!IS_ENABLED(CONFIG_EVA))
  94		return false;
  95
  96	return segment_eq(get_fs(), get_ds());
  97}
  98
  99/*
 100 * Is a address valid? This does a straightforward calculation rather
 101 * than tests.
 102 *
 103 * Address valid if:
 104 *  - "addr" doesn't have any high-bits set
 105 *  - AND "size" doesn't have any high-bits set
 106 *  - AND "addr+size" doesn't have any high-bits set
 107 *  - OR we are in kernel mode.
 108 *
 109 * __ua_size() is a trick to avoid runtime checking of positive constant
 110 * sizes; for those we already know at compile time that the size is ok.
 111 */
 112#define __ua_size(size)							\
 113	((__builtin_constant_p(size) && (signed long) (size) > 0) ? 0 : (size))
 114
 115/*
 116 * access_ok: - Checks if a user space pointer is valid
 117 * @type: Type of access: %VERIFY_READ or %VERIFY_WRITE.  Note that
 118 *	  %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe
 119 *	  to write to a block, it is always safe to read from it.
 120 * @addr: User space pointer to start of block to check
 121 * @size: Size of block to check
 122 *
 123 * Context: User context only. This function may sleep if pagefaults are
 124 *          enabled.
 125 *
 126 * Checks if a pointer to a block of memory in user space is valid.
 127 *
 128 * Returns true (nonzero) if the memory block may be valid, false (zero)
 129 * if it is definitely invalid.
 130 *
 131 * Note that, depending on architecture, this function probably just
 132 * checks that the pointer is in the user space range - after calling
 133 * this function, memory access functions may still return -EFAULT.
 134 */
 135
 136#define __access_mask get_fs().seg
 
 
 
 
 137
 138#define __access_ok(addr, size, mask)					\
 139({									\
 140	unsigned long __addr = (unsigned long) (addr);			\
 141	unsigned long __size = size;					\
 142	unsigned long __mask = mask;					\
 143	unsigned long __ok;						\
 144									\
 145	__chk_user_ptr(addr);						\
 146	__ok = (signed long)(__mask & (__addr | (__addr + __size) |	\
 147		__ua_size(__size)));					\
 148	__ok == 0;							\
 149})
 150
 151#define access_ok(type, addr, size)					\
 152	likely(__access_ok((addr), (size), __access_mask))
 153
 154/*
 155 * put_user: - Write a simple value into user space.
 156 * @x:	 Value to copy to user space.
 157 * @ptr: Destination address, in user space.
 158 *
 159 * Context: User context only. This function may sleep if pagefaults are
 160 *          enabled.
 161 *
 162 * This macro copies a single simple value from kernel space to user
 163 * space.  It supports simple types like char and int, but not larger
 164 * data types like structures or arrays.
 165 *
 166 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 167 * to the result of dereferencing @ptr.
 168 *
 169 * Returns zero on success, or -EFAULT on error.
 170 */
 171#define put_user(x,ptr) \
 172	__put_user_check((x), (ptr), sizeof(*(ptr)))
 173
 174/*
 175 * get_user: - Get a simple variable from user space.
 176 * @x:	 Variable to store result.
 177 * @ptr: Source address, in user space.
 178 *
 179 * Context: User context only. This function may sleep if pagefaults are
 180 *          enabled.
 181 *
 182 * This macro copies a single simple variable from user space to kernel
 183 * space.  It supports simple types like char and int, but not larger
 184 * data types like structures or arrays.
 185 *
 186 * @ptr must have pointer-to-simple-variable type, and the result of
 187 * dereferencing @ptr must be assignable to @x without a cast.
 188 *
 189 * Returns zero on success, or -EFAULT on error.
 190 * On error, the variable @x is set to zero.
 191 */
 192#define get_user(x,ptr) \
 193	__get_user_check((x), (ptr), sizeof(*(ptr)))
 194
 195/*
 196 * __put_user: - Write a simple value into user space, with less checking.
 197 * @x:	 Value to copy to user space.
 198 * @ptr: Destination address, in user space.
 199 *
 200 * Context: User context only. This function may sleep if pagefaults are
 201 *          enabled.
 202 *
 203 * This macro copies a single simple value from kernel space to user
 204 * space.  It supports simple types like char and int, but not larger
 205 * data types like structures or arrays.
 206 *
 207 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 208 * to the result of dereferencing @ptr.
 209 *
 210 * Caller must check the pointer with access_ok() before calling this
 211 * function.
 212 *
 213 * Returns zero on success, or -EFAULT on error.
 214 */
 215#define __put_user(x,ptr) \
 216	__put_user_nocheck((x), (ptr), sizeof(*(ptr)))
 217
 218/*
 219 * __get_user: - Get a simple variable from user space, with less checking.
 220 * @x:	 Variable to store result.
 221 * @ptr: Source address, in user space.
 222 *
 223 * Context: User context only. This function may sleep if pagefaults are
 224 *          enabled.
 225 *
 226 * This macro copies a single simple variable from user space to kernel
 227 * space.  It supports simple types like char and int, but not larger
 228 * data types like structures or arrays.
 229 *
 230 * @ptr must have pointer-to-simple-variable type, and the result of
 231 * dereferencing @ptr must be assignable to @x without a cast.
 232 *
 233 * Caller must check the pointer with access_ok() before calling this
 234 * function.
 235 *
 236 * Returns zero on success, or -EFAULT on error.
 237 * On error, the variable @x is set to zero.
 238 */
 239#define __get_user(x,ptr) \
 240	__get_user_nocheck((x), (ptr), sizeof(*(ptr)))
 241
 242struct __large_struct { unsigned long buf[100]; };
 243#define __m(x) (*(struct __large_struct __user *)(x))
 244
 245/*
 246 * Yuck.  We need two variants, one for 64bit operation and one
 247 * for 32 bit mode and old iron.
 248 */
 249#ifndef CONFIG_EVA
 250#define __get_kernel_common(val, size, ptr) __get_user_common(val, size, ptr)
 251#else
 252/*
 253 * Kernel specific functions for EVA. We need to use normal load instructions
 254 * to read data from kernel when operating in EVA mode. We use these macros to
 255 * avoid redefining __get_user_asm for EVA.
 256 */
 257#undef _loadd
 258#undef _loadw
 259#undef _loadh
 260#undef _loadb
 261#ifdef CONFIG_32BIT
 262#define _loadd			_loadw
 263#else
 264#define _loadd(reg, addr)	"ld " reg ", " addr
 265#endif
 266#define _loadw(reg, addr)	"lw " reg ", " addr
 267#define _loadh(reg, addr)	"lh " reg ", " addr
 268#define _loadb(reg, addr)	"lb " reg ", " addr
 269
 270#define __get_kernel_common(val, size, ptr)				\
 271do {									\
 272	switch (size) {							\
 273	case 1: __get_data_asm(val, _loadb, ptr); break;		\
 274	case 2: __get_data_asm(val, _loadh, ptr); break;		\
 275	case 4: __get_data_asm(val, _loadw, ptr); break;		\
 276	case 8: __GET_DW(val, _loadd, ptr); break;			\
 277	default: __get_user_unknown(); break;				\
 278	}								\
 279} while (0)
 280#endif
 281
 282#ifdef CONFIG_32BIT
 283#define __GET_DW(val, insn, ptr) __get_data_asm_ll32(val, insn, ptr)
 284#endif
 285#ifdef CONFIG_64BIT
 286#define __GET_DW(val, insn, ptr) __get_data_asm(val, insn, ptr)
 287#endif
 288
 289extern void __get_user_unknown(void);
 290
 291#define __get_user_common(val, size, ptr)				\
 292do {									\
 293	switch (size) {							\
 294	case 1: __get_data_asm(val, user_lb, ptr); break;		\
 295	case 2: __get_data_asm(val, user_lh, ptr); break;		\
 296	case 4: __get_data_asm(val, user_lw, ptr); break;		\
 297	case 8: __GET_DW(val, user_ld, ptr); break;			\
 298	default: __get_user_unknown(); break;				\
 299	}								\
 300} while (0)
 301
 302#define __get_user_nocheck(x, ptr, size)				\
 303({									\
 304	int __gu_err;							\
 305									\
 306	if (eva_kernel_access()) {					\
 307		__get_kernel_common((x), size, ptr);			\
 308	} else {							\
 309		__chk_user_ptr(ptr);					\
 310		__get_user_common((x), size, ptr);			\
 311	}								\
 312	__gu_err;							\
 313})
 314
 315#define __get_user_check(x, ptr, size)					\
 316({									\
 317	int __gu_err = -EFAULT;						\
 318	const __typeof__(*(ptr)) __user * __gu_ptr = (ptr);		\
 319									\
 320	might_fault();							\
 321	if (likely(access_ok(VERIFY_READ,  __gu_ptr, size))) {		\
 322		if (eva_kernel_access())				\
 323			__get_kernel_common((x), size, __gu_ptr);	\
 324		else							\
 325			__get_user_common((x), size, __gu_ptr);		\
 326	} else								\
 327		(x) = 0;						\
 328									\
 329	__gu_err;							\
 330})
 331
 332#define __get_data_asm(val, insn, addr)					\
 333{									\
 334	long __gu_tmp;							\
 335									\
 336	__asm__ __volatile__(						\
 337	"1:	"insn("%1", "%3")"				\n"	\
 338	"2:							\n"	\
 339	"	.insn						\n"	\
 340	"	.section .fixup,\"ax\"				\n"	\
 341	"3:	li	%0, %4					\n"	\
 342	"	move	%1, $0					\n"	\
 343	"	j	2b					\n"	\
 344	"	.previous					\n"	\
 345	"	.section __ex_table,\"a\"			\n"	\
 346	"	"__UA_ADDR "\t1b, 3b				\n"	\
 347	"	.previous					\n"	\
 348	: "=r" (__gu_err), "=r" (__gu_tmp)				\
 349	: "0" (0), "o" (__m(addr)), "i" (-EFAULT));			\
 350									\
 351	(val) = (__typeof__(*(addr))) __gu_tmp;				\
 352}
 353
 354/*
 355 * Get a long long 64 using 32 bit registers.
 356 */
 357#define __get_data_asm_ll32(val, insn, addr)				\
 358{									\
 359	union {								\
 360		unsigned long long	l;				\
 361		__typeof__(*(addr))	t;				\
 362	} __gu_tmp;							\
 363									\
 364	__asm__ __volatile__(						\
 365	"1:	" insn("%1", "(%3)")"				\n"	\
 366	"2:	" insn("%D1", "4(%3)")"				\n"	\
 367	"3:							\n"	\
 368	"	.insn						\n"	\
 369	"	.section	.fixup,\"ax\"			\n"	\
 370	"4:	li	%0, %4					\n"	\
 371	"	move	%1, $0					\n"	\
 372	"	move	%D1, $0					\n"	\
 373	"	j	3b					\n"	\
 374	"	.previous					\n"	\
 375	"	.section	__ex_table,\"a\"		\n"	\
 376	"	" __UA_ADDR "	1b, 4b				\n"	\
 377	"	" __UA_ADDR "	2b, 4b				\n"	\
 378	"	.previous					\n"	\
 379	: "=r" (__gu_err), "=&r" (__gu_tmp.l)				\
 380	: "0" (0), "r" (addr), "i" (-EFAULT));				\
 381									\
 382	(val) = __gu_tmp.t;						\
 383}
 384
 385#ifndef CONFIG_EVA
 386#define __put_kernel_common(ptr, size) __put_user_common(ptr, size)
 387#else
 388/*
 389 * Kernel specific functions for EVA. We need to use normal load instructions
 390 * to read data from kernel when operating in EVA mode. We use these macros to
 391 * avoid redefining __get_data_asm for EVA.
 392 */
 393#undef _stored
 394#undef _storew
 395#undef _storeh
 396#undef _storeb
 397#ifdef CONFIG_32BIT
 398#define _stored			_storew
 399#else
 400#define _stored(reg, addr)	"ld " reg ", " addr
 401#endif
 402
 403#define _storew(reg, addr)	"sw " reg ", " addr
 404#define _storeh(reg, addr)	"sh " reg ", " addr
 405#define _storeb(reg, addr)	"sb " reg ", " addr
 406
 407#define __put_kernel_common(ptr, size)					\
 408do {									\
 409	switch (size) {							\
 410	case 1: __put_data_asm(_storeb, ptr); break;			\
 411	case 2: __put_data_asm(_storeh, ptr); break;			\
 412	case 4: __put_data_asm(_storew, ptr); break;			\
 413	case 8: __PUT_DW(_stored, ptr); break;				\
 414	default: __put_user_unknown(); break;				\
 415	}								\
 416} while(0)
 417#endif
 418
 419/*
 420 * Yuck.  We need two variants, one for 64bit operation and one
 421 * for 32 bit mode and old iron.
 422 */
 423#ifdef CONFIG_32BIT
 424#define __PUT_DW(insn, ptr) __put_data_asm_ll32(insn, ptr)
 425#endif
 426#ifdef CONFIG_64BIT
 427#define __PUT_DW(insn, ptr) __put_data_asm(insn, ptr)
 428#endif
 429
 430#define __put_user_common(ptr, size)					\
 431do {									\
 432	switch (size) {							\
 433	case 1: __put_data_asm(user_sb, ptr); break;			\
 434	case 2: __put_data_asm(user_sh, ptr); break;			\
 435	case 4: __put_data_asm(user_sw, ptr); break;			\
 436	case 8: __PUT_DW(user_sd, ptr); break;				\
 437	default: __put_user_unknown(); break;				\
 438	}								\
 439} while (0)
 440
 441#define __put_user_nocheck(x, ptr, size)				\
 442({									\
 443	__typeof__(*(ptr)) __pu_val;					\
 444	int __pu_err = 0;						\
 445									\
 446	__pu_val = (x);							\
 447	if (eva_kernel_access()) {					\
 448		__put_kernel_common(ptr, size);				\
 449	} else {							\
 450		__chk_user_ptr(ptr);					\
 451		__put_user_common(ptr, size);				\
 452	}								\
 453	__pu_err;							\
 454})
 455
 456#define __put_user_check(x, ptr, size)					\
 457({									\
 458	__typeof__(*(ptr)) __user *__pu_addr = (ptr);			\
 459	__typeof__(*(ptr)) __pu_val = (x);				\
 460	int __pu_err = -EFAULT;						\
 461									\
 462	might_fault();							\
 463	if (likely(access_ok(VERIFY_WRITE,  __pu_addr, size))) {	\
 464		if (eva_kernel_access())				\
 465			__put_kernel_common(__pu_addr, size);		\
 466		else							\
 467			__put_user_common(__pu_addr, size);		\
 468	}								\
 469									\
 470	__pu_err;							\
 471})
 472
 473#define __put_data_asm(insn, ptr)					\
 474{									\
 475	__asm__ __volatile__(						\
 476	"1:	"insn("%z2", "%3")"	# __put_data_asm	\n"	\
 477	"2:							\n"	\
 478	"	.insn						\n"	\
 479	"	.section	.fixup,\"ax\"			\n"	\
 480	"3:	li	%0, %4					\n"	\
 481	"	j	2b					\n"	\
 482	"	.previous					\n"	\
 483	"	.section	__ex_table,\"a\"		\n"	\
 484	"	" __UA_ADDR "	1b, 3b				\n"	\
 485	"	.previous					\n"	\
 486	: "=r" (__pu_err)						\
 487	: "0" (0), "Jr" (__pu_val), "o" (__m(ptr)),			\
 488	  "i" (-EFAULT));						\
 489}
 490
 491#define __put_data_asm_ll32(insn, ptr)					\
 492{									\
 493	__asm__ __volatile__(						\
 494	"1:	"insn("%2", "(%3)")"	# __put_data_asm_ll32	\n"	\
 495	"2:	"insn("%D2", "4(%3)")"				\n"	\
 496	"3:							\n"	\
 497	"	.insn						\n"	\
 498	"	.section	.fixup,\"ax\"			\n"	\
 499	"4:	li	%0, %4					\n"	\
 500	"	j	3b					\n"	\
 501	"	.previous					\n"	\
 502	"	.section	__ex_table,\"a\"		\n"	\
 503	"	" __UA_ADDR "	1b, 4b				\n"	\
 504	"	" __UA_ADDR "	2b, 4b				\n"	\
 505	"	.previous"						\
 506	: "=r" (__pu_err)						\
 507	: "0" (0), "r" (__pu_val), "r" (ptr),				\
 508	  "i" (-EFAULT));						\
 509}
 510
 511extern void __put_user_unknown(void);
 512
 513/*
 514 * ul{b,h,w} are macros and there are no equivalent macros for EVA.
 515 * EVA unaligned access is handled in the ADE exception handler.
 516 */
 517#ifndef CONFIG_EVA
 518/*
 519 * put_user_unaligned: - Write a simple value into user space.
 520 * @x:	 Value to copy to user space.
 521 * @ptr: Destination address, in user space.
 522 *
 523 * Context: User context only. This function may sleep if pagefaults are
 524 *          enabled.
 525 *
 526 * This macro copies a single simple value from kernel space to user
 527 * space.  It supports simple types like char and int, but not larger
 528 * data types like structures or arrays.
 529 *
 530 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 531 * to the result of dereferencing @ptr.
 532 *
 533 * Returns zero on success, or -EFAULT on error.
 534 */
 535#define put_user_unaligned(x,ptr)	\
 536	__put_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
 537
 538/*
 539 * get_user_unaligned: - Get a simple variable from user space.
 540 * @x:	 Variable to store result.
 541 * @ptr: Source address, in user space.
 542 *
 543 * Context: User context only. This function may sleep if pagefaults are
 544 *          enabled.
 545 *
 546 * This macro copies a single simple variable from user space to kernel
 547 * space.  It supports simple types like char and int, but not larger
 548 * data types like structures or arrays.
 549 *
 550 * @ptr must have pointer-to-simple-variable type, and the result of
 551 * dereferencing @ptr must be assignable to @x without a cast.
 552 *
 553 * Returns zero on success, or -EFAULT on error.
 554 * On error, the variable @x is set to zero.
 555 */
 556#define get_user_unaligned(x,ptr) \
 557	__get_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
 558
 559/*
 560 * __put_user_unaligned: - Write a simple value into user space, with less checking.
 561 * @x:	 Value to copy to user space.
 562 * @ptr: Destination address, in user space.
 563 *
 564 * Context: User context only. This function may sleep if pagefaults are
 565 *          enabled.
 566 *
 567 * This macro copies a single simple value from kernel space to user
 568 * space.  It supports simple types like char and int, but not larger
 569 * data types like structures or arrays.
 570 *
 571 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 572 * to the result of dereferencing @ptr.
 573 *
 574 * Caller must check the pointer with access_ok() before calling this
 575 * function.
 576 *
 577 * Returns zero on success, or -EFAULT on error.
 578 */
 579#define __put_user_unaligned(x,ptr) \
 580	__put_user_unaligned_nocheck((x),(ptr),sizeof(*(ptr)))
 581
 582/*
 583 * __get_user_unaligned: - Get a simple variable from user space, with less checking.
 584 * @x:	 Variable to store result.
 585 * @ptr: Source address, in user space.
 586 *
 587 * Context: User context only. This function may sleep if pagefaults are
 588 *          enabled.
 589 *
 590 * This macro copies a single simple variable from user space to kernel
 591 * space.  It supports simple types like char and int, but not larger
 592 * data types like structures or arrays.
 593 *
 594 * @ptr must have pointer-to-simple-variable type, and the result of
 595 * dereferencing @ptr must be assignable to @x without a cast.
 596 *
 597 * Caller must check the pointer with access_ok() before calling this
 598 * function.
 599 *
 600 * Returns zero on success, or -EFAULT on error.
 601 * On error, the variable @x is set to zero.
 602 */
 603#define __get_user_unaligned(x,ptr) \
 604	__get_user_unaligned_nocheck((x),(ptr),sizeof(*(ptr)))
 605
 606/*
 607 * Yuck.  We need two variants, one for 64bit operation and one
 608 * for 32 bit mode and old iron.
 609 */
 610#ifdef CONFIG_32BIT
 611#define __GET_USER_UNALIGNED_DW(val, ptr)				\
 612	__get_user_unaligned_asm_ll32(val, ptr)
 613#endif
 614#ifdef CONFIG_64BIT
 615#define __GET_USER_UNALIGNED_DW(val, ptr)				\
 616	__get_user_unaligned_asm(val, "uld", ptr)
 617#endif
 618
 619extern void __get_user_unaligned_unknown(void);
 620
 621#define __get_user_unaligned_common(val, size, ptr)			\
 622do {									\
 623	switch (size) {							\
 624	case 1: __get_data_asm(val, "lb", ptr); break;			\
 625	case 2: __get_data_unaligned_asm(val, "ulh", ptr); break;	\
 626	case 4: __get_data_unaligned_asm(val, "ulw", ptr); break;	\
 627	case 8: __GET_USER_UNALIGNED_DW(val, ptr); break;		\
 628	default: __get_user_unaligned_unknown(); break;			\
 629	}								\
 630} while (0)
 631
 632#define __get_user_unaligned_nocheck(x,ptr,size)			\
 633({									\
 634	int __gu_err;							\
 635									\
 636	__get_user_unaligned_common((x), size, ptr);			\
 637	__gu_err;							\
 638})
 639
 640#define __get_user_unaligned_check(x,ptr,size)				\
 641({									\
 642	int __gu_err = -EFAULT;						\
 643	const __typeof__(*(ptr)) __user * __gu_ptr = (ptr);		\
 644									\
 645	if (likely(access_ok(VERIFY_READ,  __gu_ptr, size)))		\
 646		__get_user_unaligned_common((x), size, __gu_ptr);	\
 647									\
 648	__gu_err;							\
 649})
 650
 651#define __get_data_unaligned_asm(val, insn, addr)			\
 652{									\
 653	long __gu_tmp;							\
 654									\
 655	__asm__ __volatile__(						\
 656	"1:	" insn "	%1, %3				\n"	\
 657	"2:							\n"	\
 658	"	.insn						\n"	\
 659	"	.section .fixup,\"ax\"				\n"	\
 660	"3:	li	%0, %4					\n"	\
 661	"	move	%1, $0					\n"	\
 662	"	j	2b					\n"	\
 663	"	.previous					\n"	\
 664	"	.section __ex_table,\"a\"			\n"	\
 665	"	"__UA_ADDR "\t1b, 3b				\n"	\
 666	"	"__UA_ADDR "\t1b + 4, 3b			\n"	\
 667	"	.previous					\n"	\
 668	: "=r" (__gu_err), "=r" (__gu_tmp)				\
 669	: "0" (0), "o" (__m(addr)), "i" (-EFAULT));			\
 670									\
 671	(val) = (__typeof__(*(addr))) __gu_tmp;				\
 672}
 673
 674/*
 675 * Get a long long 64 using 32 bit registers.
 676 */
 677#define __get_user_unaligned_asm_ll32(val, addr)			\
 678{									\
 679	unsigned long long __gu_tmp;					\
 680									\
 681	__asm__ __volatile__(						\
 682	"1:	ulw	%1, (%3)				\n"	\
 683	"2:	ulw	%D1, 4(%3)				\n"	\
 684	"	move	%0, $0					\n"	\
 685	"3:							\n"	\
 686	"	.insn						\n"	\
 687	"	.section	.fixup,\"ax\"			\n"	\
 688	"4:	li	%0, %4					\n"	\
 689	"	move	%1, $0					\n"	\
 690	"	move	%D1, $0					\n"	\
 691	"	j	3b					\n"	\
 692	"	.previous					\n"	\
 693	"	.section	__ex_table,\"a\"		\n"	\
 694	"	" __UA_ADDR "	1b, 4b				\n"	\
 695	"	" __UA_ADDR "	1b + 4, 4b			\n"	\
 696	"	" __UA_ADDR "	2b, 4b				\n"	\
 697	"	" __UA_ADDR "	2b + 4, 4b			\n"	\
 698	"	.previous					\n"	\
 699	: "=r" (__gu_err), "=&r" (__gu_tmp)				\
 700	: "0" (0), "r" (addr), "i" (-EFAULT));				\
 701	(val) = (__typeof__(*(addr))) __gu_tmp;				\
 702}
 703
 704/*
 705 * Yuck.  We need two variants, one for 64bit operation and one
 706 * for 32 bit mode and old iron.
 707 */
 708#ifdef CONFIG_32BIT
 709#define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm_ll32(ptr)
 710#endif
 711#ifdef CONFIG_64BIT
 712#define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm("usd", ptr)
 713#endif
 714
 715#define __put_user_unaligned_common(ptr, size)				\
 716do {									\
 717	switch (size) {							\
 718	case 1: __put_data_asm("sb", ptr); break;			\
 719	case 2: __put_user_unaligned_asm("ush", ptr); break;		\
 720	case 4: __put_user_unaligned_asm("usw", ptr); break;		\
 721	case 8: __PUT_USER_UNALIGNED_DW(ptr); break;			\
 722	default: __put_user_unaligned_unknown(); break;			\
 723} while (0)
 724
 725#define __put_user_unaligned_nocheck(x,ptr,size)			\
 726({									\
 727	__typeof__(*(ptr)) __pu_val;					\
 728	int __pu_err = 0;						\
 729									\
 730	__pu_val = (x);							\
 731	__put_user_unaligned_common(ptr, size);				\
 732	__pu_err;							\
 733})
 734
 735#define __put_user_unaligned_check(x,ptr,size)				\
 736({									\
 737	__typeof__(*(ptr)) __user *__pu_addr = (ptr);			\
 738	__typeof__(*(ptr)) __pu_val = (x);				\
 739	int __pu_err = -EFAULT;						\
 740									\
 741	if (likely(access_ok(VERIFY_WRITE,  __pu_addr, size)))		\
 742		__put_user_unaligned_common(__pu_addr, size);		\
 743									\
 744	__pu_err;							\
 745})
 746
 747#define __put_user_unaligned_asm(insn, ptr)				\
 748{									\
 749	__asm__ __volatile__(						\
 750	"1:	" insn "	%z2, %3		# __put_user_unaligned_asm\n" \
 751	"2:							\n"	\
 752	"	.insn						\n"	\
 753	"	.section	.fixup,\"ax\"			\n"	\
 754	"3:	li	%0, %4					\n"	\
 755	"	j	2b					\n"	\
 756	"	.previous					\n"	\
 757	"	.section	__ex_table,\"a\"		\n"	\
 758	"	" __UA_ADDR "	1b, 3b				\n"	\
 759	"	.previous					\n"	\
 760	: "=r" (__pu_err)						\
 761	: "0" (0), "Jr" (__pu_val), "o" (__m(ptr)),			\
 762	  "i" (-EFAULT));						\
 763}
 764
 765#define __put_user_unaligned_asm_ll32(ptr)				\
 766{									\
 767	__asm__ __volatile__(						\
 768	"1:	sw	%2, (%3)	# __put_user_unaligned_asm_ll32 \n" \
 769	"2:	sw	%D2, 4(%3)				\n"	\
 770	"3:							\n"	\
 771	"	.insn						\n"	\
 772	"	.section	.fixup,\"ax\"			\n"	\
 773	"4:	li	%0, %4					\n"	\
 774	"	j	3b					\n"	\
 775	"	.previous					\n"	\
 776	"	.section	__ex_table,\"a\"		\n"	\
 777	"	" __UA_ADDR "	1b, 4b				\n"	\
 778	"	" __UA_ADDR "	1b + 4, 4b			\n"	\
 779	"	" __UA_ADDR "	2b, 4b				\n"	\
 780	"	" __UA_ADDR "	2b + 4, 4b			\n"	\
 781	"	.previous"						\
 782	: "=r" (__pu_err)						\
 783	: "0" (0), "r" (__pu_val), "r" (ptr),				\
 784	  "i" (-EFAULT));						\
 785}
 786
 787extern void __put_user_unaligned_unknown(void);
 788#endif
 789
 790/*
 791 * We're generating jump to subroutines which will be outside the range of
 792 * jump instructions
 793 */
 794#ifdef MODULE
 795#define __MODULE_JAL(destination)					\
 796	".set\tnoat\n\t"						\
 797	__UA_LA "\t$1, " #destination "\n\t"				\
 798	"jalr\t$1\n\t"							\
 799	".set\tat\n\t"
 800#else
 801#define __MODULE_JAL(destination)					\
 802	"jal\t" #destination "\n\t"
 803#endif
 804
 805#if defined(CONFIG_CPU_DADDI_WORKAROUNDS) || (defined(CONFIG_EVA) &&	\
 806					      defined(CONFIG_CPU_HAS_PREFETCH))
 807#define DADDI_SCRATCH "$3"
 808#else
 809#define DADDI_SCRATCH "$0"
 810#endif
 811
 812extern size_t __copy_user(void *__to, const void *__from, size_t __n);
 813
 814#ifndef CONFIG_EVA
 815#define __invoke_copy_to_user(to, from, n)				\
 816({									\
 817	register void __user *__cu_to_r __asm__("$4");			\
 818	register const void *__cu_from_r __asm__("$5");			\
 819	register long __cu_len_r __asm__("$6");				\
 820									\
 821	__cu_to_r = (to);						\
 822	__cu_from_r = (from);						\
 823	__cu_len_r = (n);						\
 824	__asm__ __volatile__(						\
 825	__MODULE_JAL(__copy_user)					\
 826	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
 827	:								\
 828	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
 829	  DADDI_SCRATCH, "memory");					\
 830	__cu_len_r;							\
 831})
 832
 833#define __invoke_copy_to_kernel(to, from, n)				\
 834	__invoke_copy_to_user(to, from, n)
 835
 836#endif
 837
 838/*
 839 * __copy_to_user: - Copy a block of data into user space, with less checking.
 840 * @to:	  Destination address, in user space.
 841 * @from: Source address, in kernel space.
 842 * @n:	  Number of bytes to copy.
 843 *
 844 * Context: User context only. This function may sleep if pagefaults are
 845 *          enabled.
 846 *
 847 * Copy data from kernel space to user space.  Caller must check
 848 * the specified block with access_ok() before calling this function.
 849 *
 850 * Returns number of bytes that could not be copied.
 851 * On success, this will be zero.
 852 */
 853#define __copy_to_user(to, from, n)					\
 854({									\
 855	void __user *__cu_to;						\
 856	const void *__cu_from;						\
 857	long __cu_len;							\
 858									\
 859	__cu_to = (to);							\
 860	__cu_from = (from);						\
 861	__cu_len = (n);							\
 862									\
 863	check_object_size(__cu_from, __cu_len, true);			\
 864	might_fault();							\
 865									\
 866	if (eva_kernel_access())					\
 867		__cu_len = __invoke_copy_to_kernel(__cu_to, __cu_from,	\
 868						   __cu_len);		\
 869	else								\
 870		__cu_len = __invoke_copy_to_user(__cu_to, __cu_from,	\
 871						 __cu_len);		\
 872	__cu_len;							\
 873})
 874
 875extern size_t __copy_user_inatomic(void *__to, const void *__from, size_t __n);
 876
 877#define __copy_to_user_inatomic(to, from, n)				\
 878({									\
 879	void __user *__cu_to;						\
 880	const void *__cu_from;						\
 881	long __cu_len;							\
 882									\
 883	__cu_to = (to);							\
 884	__cu_from = (from);						\
 885	__cu_len = (n);							\
 886									\
 887	check_object_size(__cu_from, __cu_len, true);			\
 888									\
 889	if (eva_kernel_access())					\
 890		__cu_len = __invoke_copy_to_kernel(__cu_to, __cu_from,	\
 891						   __cu_len);		\
 892	else								\
 893		__cu_len = __invoke_copy_to_user(__cu_to, __cu_from,	\
 894						 __cu_len);		\
 895	__cu_len;							\
 896})
 897
 898#define __copy_from_user_inatomic(to, from, n)				\
 899({									\
 900	void *__cu_to;							\
 901	const void __user *__cu_from;					\
 902	long __cu_len;							\
 903									\
 904	__cu_to = (to);							\
 905	__cu_from = (from);						\
 906	__cu_len = (n);							\
 907									\
 908	check_object_size(__cu_to, __cu_len, false);			\
 909									\
 910	if (eva_kernel_access())					\
 911		__cu_len = __invoke_copy_from_kernel_inatomic(__cu_to,	\
 912							      __cu_from,\
 913							      __cu_len);\
 914	else								\
 915		__cu_len = __invoke_copy_from_user_inatomic(__cu_to,	\
 916							    __cu_from,	\
 917							    __cu_len);	\
 918	__cu_len;							\
 919})
 920
 921/*
 922 * copy_to_user: - Copy a block of data into user space.
 923 * @to:	  Destination address, in user space.
 924 * @from: Source address, in kernel space.
 925 * @n:	  Number of bytes to copy.
 926 *
 927 * Context: User context only. This function may sleep if pagefaults are
 928 *          enabled.
 929 *
 930 * Copy data from kernel space to user space.
 931 *
 932 * Returns number of bytes that could not be copied.
 933 * On success, this will be zero.
 934 */
 935#define copy_to_user(to, from, n)					\
 936({									\
 937	void __user *__cu_to;						\
 938	const void *__cu_from;						\
 939	long __cu_len;							\
 940									\
 941	__cu_to = (to);							\
 942	__cu_from = (from);						\
 943	__cu_len = (n);							\
 944									\
 945	check_object_size(__cu_from, __cu_len, true);			\
 946									\
 947	if (eva_kernel_access()) {					\
 948		__cu_len = __invoke_copy_to_kernel(__cu_to,		\
 949						   __cu_from,		\
 950						   __cu_len);		\
 951	} else {							\
 952		if (access_ok(VERIFY_WRITE, __cu_to, __cu_len)) {       \
 953			might_fault();                                  \
 954			__cu_len = __invoke_copy_to_user(__cu_to,	\
 955							 __cu_from,	\
 956							 __cu_len);     \
 957		}							\
 958	}								\
 959	__cu_len;							\
 960})
 961
 962#ifndef CONFIG_EVA
 963
 964#define __invoke_copy_from_user(to, from, n)				\
 965({									\
 966	register void *__cu_to_r __asm__("$4");				\
 967	register const void __user *__cu_from_r __asm__("$5");		\
 968	register long __cu_len_r __asm__("$6");				\
 969									\
 970	__cu_to_r = (to);						\
 971	__cu_from_r = (from);						\
 972	__cu_len_r = (n);						\
 973	__asm__ __volatile__(						\
 974	".set\tnoreorder\n\t"						\
 975	__MODULE_JAL(__copy_user)					\
 976	".set\tnoat\n\t"						\
 977	__UA_ADDU "\t$1, %1, %2\n\t"					\
 978	".set\tat\n\t"							\
 979	".set\treorder"							\
 980	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
 981	:								\
 982	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
 983	  DADDI_SCRATCH, "memory");					\
 984	__cu_len_r;							\
 985})
 986
 987#define __invoke_copy_from_kernel(to, from, n)				\
 988	__invoke_copy_from_user(to, from, n)
 989
 990/* For userland <-> userland operations */
 991#define ___invoke_copy_in_user(to, from, n)				\
 992	__invoke_copy_from_user(to, from, n)
 993
 994/* For kernel <-> kernel operations */
 995#define ___invoke_copy_in_kernel(to, from, n)				\
 996	__invoke_copy_from_user(to, from, n)
 997
 998#define __invoke_copy_from_user_inatomic(to, from, n)			\
 999({									\
1000	register void *__cu_to_r __asm__("$4");				\
1001	register const void __user *__cu_from_r __asm__("$5");		\
1002	register long __cu_len_r __asm__("$6");				\
1003									\
1004	__cu_to_r = (to);						\
1005	__cu_from_r = (from);						\
1006	__cu_len_r = (n);						\
1007	__asm__ __volatile__(						\
1008	".set\tnoreorder\n\t"						\
1009	__MODULE_JAL(__copy_user_inatomic)				\
1010	".set\tnoat\n\t"						\
1011	__UA_ADDU "\t$1, %1, %2\n\t"					\
1012	".set\tat\n\t"							\
1013	".set\treorder"							\
1014	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
1015	:								\
1016	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
1017	  DADDI_SCRATCH, "memory");					\
1018	__cu_len_r;							\
1019})
1020
1021#define __invoke_copy_from_kernel_inatomic(to, from, n)			\
1022	__invoke_copy_from_user_inatomic(to, from, n)			\
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1023
1024#else
1025
1026/* EVA specific functions */
1027
1028extern size_t __copy_user_inatomic_eva(void *__to, const void *__from,
1029				       size_t __n);
1030extern size_t __copy_from_user_eva(void *__to, const void *__from,
1031				   size_t __n);
1032extern size_t __copy_to_user_eva(void *__to, const void *__from,
1033				 size_t __n);
1034extern size_t __copy_in_user_eva(void *__to, const void *__from, size_t __n);
1035
1036#define __invoke_copy_from_user_eva_generic(to, from, n, func_ptr)	\
1037({									\
1038	register void *__cu_to_r __asm__("$4");				\
1039	register const void __user *__cu_from_r __asm__("$5");		\
1040	register long __cu_len_r __asm__("$6");				\
1041									\
1042	__cu_to_r = (to);						\
1043	__cu_from_r = (from);						\
1044	__cu_len_r = (n);						\
1045	__asm__ __volatile__(						\
1046	".set\tnoreorder\n\t"						\
1047	__MODULE_JAL(func_ptr)						\
1048	".set\tnoat\n\t"						\
1049	__UA_ADDU "\t$1, %1, %2\n\t"					\
1050	".set\tat\n\t"							\
1051	".set\treorder"							\
1052	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
1053	:								\
1054	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
1055	  DADDI_SCRATCH, "memory");					\
1056	__cu_len_r;							\
1057})
1058
1059#define __invoke_copy_to_user_eva_generic(to, from, n, func_ptr)	\
1060({									\
1061	register void *__cu_to_r __asm__("$4");				\
1062	register const void __user *__cu_from_r __asm__("$5");		\
1063	register long __cu_len_r __asm__("$6");				\
1064									\
1065	__cu_to_r = (to);						\
1066	__cu_from_r = (from);						\
1067	__cu_len_r = (n);						\
1068	__asm__ __volatile__(						\
1069	__MODULE_JAL(func_ptr)						\
1070	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
1071	:								\
1072	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
1073	  DADDI_SCRATCH, "memory");					\
1074	__cu_len_r;							\
1075})
1076
1077/*
1078 * Source or destination address is in userland. We need to go through
1079 * the TLB
1080 */
1081#define __invoke_copy_from_user(to, from, n)				\
1082	__invoke_copy_from_user_eva_generic(to, from, n, __copy_from_user_eva)
1083
1084#define __invoke_copy_from_user_inatomic(to, from, n)			\
1085	__invoke_copy_from_user_eva_generic(to, from, n,		\
1086					    __copy_user_inatomic_eva)
1087
1088#define __invoke_copy_to_user(to, from, n)				\
1089	__invoke_copy_to_user_eva_generic(to, from, n, __copy_to_user_eva)
1090
1091#define ___invoke_copy_in_user(to, from, n)				\
1092	__invoke_copy_from_user_eva_generic(to, from, n, __copy_in_user_eva)
1093
1094/*
1095 * Source or destination address in the kernel. We are not going through
1096 * the TLB
1097 */
1098#define __invoke_copy_from_kernel(to, from, n)				\
1099	__invoke_copy_from_user_eva_generic(to, from, n, __copy_user)
1100
1101#define __invoke_copy_from_kernel_inatomic(to, from, n)			\
1102	__invoke_copy_from_user_eva_generic(to, from, n, __copy_user_inatomic)
 
 
 
 
 
 
1103
1104#define __invoke_copy_to_kernel(to, from, n)				\
1105	__invoke_copy_to_user_eva_generic(to, from, n, __copy_user)
 
 
 
 
 
 
1106
1107#define ___invoke_copy_in_kernel(to, from, n)				\
1108	__invoke_copy_from_user_eva_generic(to, from, n, __copy_user)
1109
1110#endif /* CONFIG_EVA */
1111
1112/*
1113 * __copy_from_user: - Copy a block of data from user space, with less checking.
1114 * @to:	  Destination address, in kernel space.
1115 * @from: Source address, in user space.
1116 * @n:	  Number of bytes to copy.
1117 *
1118 * Context: User context only. This function may sleep if pagefaults are
1119 *          enabled.
1120 *
1121 * Copy data from user space to kernel space.  Caller must check
1122 * the specified block with access_ok() before calling this function.
1123 *
1124 * Returns number of bytes that could not be copied.
1125 * On success, this will be zero.
1126 *
1127 * If some data could not be copied, this function will pad the copied
1128 * data to the requested size using zero bytes.
1129 */
1130#define __copy_from_user(to, from, n)					\
1131({									\
1132	void *__cu_to;							\
1133	const void __user *__cu_from;					\
1134	long __cu_len;							\
1135									\
1136	__cu_to = (to);							\
1137	__cu_from = (from);						\
1138	__cu_len = (n);							\
1139									\
1140	check_object_size(__cu_to, __cu_len, false);			\
1141									\
1142	if (eva_kernel_access()) {					\
1143		__cu_len = __invoke_copy_from_kernel(__cu_to,		\
1144						     __cu_from,		\
1145						     __cu_len);		\
1146	} else {							\
1147		might_fault();						\
1148		__cu_len = __invoke_copy_from_user(__cu_to, __cu_from,	\
1149						   __cu_len);		\
1150	}								\
1151	__cu_len;							\
1152})
1153
1154/*
1155 * copy_from_user: - Copy a block of data from user space.
1156 * @to:	  Destination address, in kernel space.
1157 * @from: Source address, in user space.
1158 * @n:	  Number of bytes to copy.
1159 *
1160 * Context: User context only. This function may sleep if pagefaults are
1161 *          enabled.
1162 *
1163 * Copy data from user space to kernel space.
1164 *
1165 * Returns number of bytes that could not be copied.
1166 * On success, this will be zero.
1167 *
1168 * If some data could not be copied, this function will pad the copied
1169 * data to the requested size using zero bytes.
1170 */
1171#define copy_from_user(to, from, n)					\
1172({									\
1173	void *__cu_to;							\
1174	const void __user *__cu_from;					\
1175	long __cu_len;							\
1176									\
1177	__cu_to = (to);							\
1178	__cu_from = (from);						\
1179	__cu_len = (n);							\
1180									\
1181	check_object_size(__cu_to, __cu_len, false);			\
1182									\
1183	if (eva_kernel_access()) {					\
1184		__cu_len = __invoke_copy_from_kernel(__cu_to,		\
1185						     __cu_from,		\
1186						     __cu_len);		\
1187	} else {							\
1188		if (access_ok(VERIFY_READ, __cu_from, __cu_len)) {	\
1189			might_fault();                                  \
1190			__cu_len = __invoke_copy_from_user(__cu_to,	\
1191							   __cu_from,	\
1192							   __cu_len);   \
1193		} else {						\
1194			memset(__cu_to, 0, __cu_len);			\
1195		}							\
1196	}								\
1197	__cu_len;							\
1198})
1199
1200#define __copy_in_user(to, from, n)					\
1201({									\
1202	void __user *__cu_to;						\
1203	const void __user *__cu_from;					\
1204	long __cu_len;							\
1205									\
1206	__cu_to = (to);							\
1207	__cu_from = (from);						\
1208	__cu_len = (n);							\
1209	if (eva_kernel_access()) {					\
1210		__cu_len = ___invoke_copy_in_kernel(__cu_to, __cu_from,	\
1211						    __cu_len);		\
1212	} else {							\
1213		might_fault();						\
1214		__cu_len = ___invoke_copy_in_user(__cu_to, __cu_from,	\
1215						  __cu_len);		\
1216	}								\
1217	__cu_len;							\
1218})
1219
1220#define copy_in_user(to, from, n)					\
1221({									\
1222	void __user *__cu_to;						\
1223	const void __user *__cu_from;					\
1224	long __cu_len;							\
1225									\
1226	__cu_to = (to);							\
1227	__cu_from = (from);						\
1228	__cu_len = (n);							\
1229	if (eva_kernel_access()) {					\
1230		__cu_len = ___invoke_copy_in_kernel(__cu_to,__cu_from,	\
1231						    __cu_len);		\
1232	} else {							\
1233		if (likely(access_ok(VERIFY_READ, __cu_from, __cu_len) &&\
1234			   access_ok(VERIFY_WRITE, __cu_to, __cu_len))) {\
1235			might_fault();					\
1236			__cu_len = ___invoke_copy_in_user(__cu_to,	\
1237							  __cu_from,	\
1238							  __cu_len);	\
1239		}							\
1240	}								\
1241	__cu_len;							\
1242})
1243
1244/*
1245 * __clear_user: - Zero a block of memory in user space, with less checking.
1246 * @to:	  Destination address, in user space.
1247 * @n:	  Number of bytes to zero.
1248 *
1249 * Zero a block of memory in user space.  Caller must check
1250 * the specified block with access_ok() before calling this function.
1251 *
1252 * Returns number of bytes that could not be cleared.
1253 * On success, this will be zero.
1254 */
1255static inline __kernel_size_t
1256__clear_user(void __user *addr, __kernel_size_t size)
1257{
1258	__kernel_size_t res;
1259
 
 
 
 
 
 
 
1260	if (eva_kernel_access()) {
1261		__asm__ __volatile__(
1262			"move\t$4, %1\n\t"
1263			"move\t$5, $0\n\t"
1264			"move\t$6, %2\n\t"
1265			__MODULE_JAL(__bzero_kernel)
1266			"move\t%0, $6"
1267			: "=r" (res)
1268			: "r" (addr), "r" (size)
1269			: "$4", "$5", "$6", __UA_t0, __UA_t1, "$31");
1270	} else {
1271		might_fault();
1272		__asm__ __volatile__(
1273			"move\t$4, %1\n\t"
1274			"move\t$5, $0\n\t"
1275			"move\t$6, %2\n\t"
1276			__MODULE_JAL(__bzero)
1277			"move\t%0, $6"
1278			: "=r" (res)
1279			: "r" (addr), "r" (size)
1280			: "$4", "$5", "$6", __UA_t0, __UA_t1, "$31");
1281	}
1282
1283	return res;
1284}
1285
1286#define clear_user(addr,n)						\
1287({									\
1288	void __user * __cl_addr = (addr);				\
1289	unsigned long __cl_size = (n);					\
1290	if (__cl_size && access_ok(VERIFY_WRITE,			\
1291					__cl_addr, __cl_size))		\
1292		__cl_size = __clear_user(__cl_addr, __cl_size);		\
1293	__cl_size;							\
1294})
1295
1296/*
1297 * __strncpy_from_user: - Copy a NUL terminated string from userspace, with less checking.
1298 * @dst:   Destination address, in kernel space.  This buffer must be at
1299 *	   least @count bytes long.
1300 * @src:   Source address, in user space.
1301 * @count: Maximum number of bytes to copy, including the trailing NUL.
1302 *
1303 * Copies a NUL-terminated string from userspace to kernel space.
1304 * Caller must check the specified block with access_ok() before calling
1305 * this function.
1306 *
1307 * On success, returns the length of the string (not including the trailing
1308 * NUL).
1309 *
1310 * If access to userspace fails, returns -EFAULT (some data may have been
1311 * copied).
1312 *
1313 * If @count is smaller than the length of the string, copies @count bytes
1314 * and returns @count.
1315 */
1316static inline long
1317__strncpy_from_user(char *__to, const char __user *__from, long __len)
1318{
1319	long res;
1320
1321	if (eva_kernel_access()) {
1322		__asm__ __volatile__(
1323			"move\t$4, %1\n\t"
1324			"move\t$5, %2\n\t"
1325			"move\t$6, %3\n\t"
1326			__MODULE_JAL(__strncpy_from_kernel_nocheck_asm)
1327			"move\t%0, $2"
1328			: "=r" (res)
1329			: "r" (__to), "r" (__from), "r" (__len)
1330			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1331	} else {
1332		might_fault();
1333		__asm__ __volatile__(
1334			"move\t$4, %1\n\t"
1335			"move\t$5, %2\n\t"
1336			"move\t$6, %3\n\t"
1337			__MODULE_JAL(__strncpy_from_user_nocheck_asm)
1338			"move\t%0, $2"
1339			: "=r" (res)
1340			: "r" (__to), "r" (__from), "r" (__len)
1341			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1342	}
1343
1344	return res;
1345}
1346
1347/*
1348 * strncpy_from_user: - Copy a NUL terminated string from userspace.
1349 * @dst:   Destination address, in kernel space.  This buffer must be at
1350 *	   least @count bytes long.
1351 * @src:   Source address, in user space.
1352 * @count: Maximum number of bytes to copy, including the trailing NUL.
1353 *
1354 * Copies a NUL-terminated string from userspace to kernel space.
1355 *
1356 * On success, returns the length of the string (not including the trailing
1357 * NUL).
1358 *
1359 * If access to userspace fails, returns -EFAULT (some data may have been
1360 * copied).
1361 *
1362 * If @count is smaller than the length of the string, copies @count bytes
1363 * and returns @count.
1364 */
1365static inline long
1366strncpy_from_user(char *__to, const char __user *__from, long __len)
1367{
1368	long res;
1369
1370	if (eva_kernel_access()) {
1371		__asm__ __volatile__(
1372			"move\t$4, %1\n\t"
1373			"move\t$5, %2\n\t"
1374			"move\t$6, %3\n\t"
1375			__MODULE_JAL(__strncpy_from_kernel_asm)
1376			"move\t%0, $2"
1377			: "=r" (res)
1378			: "r" (__to), "r" (__from), "r" (__len)
1379			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1380	} else {
1381		might_fault();
1382		__asm__ __volatile__(
1383			"move\t$4, %1\n\t"
1384			"move\t$5, %2\n\t"
1385			"move\t$6, %3\n\t"
1386			__MODULE_JAL(__strncpy_from_user_asm)
1387			"move\t%0, $2"
1388			: "=r" (res)
1389			: "r" (__to), "r" (__from), "r" (__len)
1390			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1391	}
1392
1393	return res;
1394}
1395
1396/*
1397 * strlen_user: - Get the size of a string in user space.
1398 * @str: The string to measure.
1399 *
1400 * Context: User context only. This function may sleep if pagefaults are
1401 *          enabled.
1402 *
1403 * Get the size of a NUL-terminated string in user space.
1404 *
1405 * Returns the size of the string INCLUDING the terminating NUL.
1406 * On exception, returns 0.
1407 *
1408 * If there is a limit on the length of a valid string, you may wish to
1409 * consider using strnlen_user() instead.
1410 */
1411static inline long strlen_user(const char __user *s)
1412{
1413	long res;
1414
1415	if (eva_kernel_access()) {
1416		__asm__ __volatile__(
1417			"move\t$4, %1\n\t"
1418			__MODULE_JAL(__strlen_kernel_asm)
1419			"move\t%0, $2"
1420			: "=r" (res)
1421			: "r" (s)
1422			: "$2", "$4", __UA_t0, "$31");
1423	} else {
1424		might_fault();
1425		__asm__ __volatile__(
1426			"move\t$4, %1\n\t"
1427			__MODULE_JAL(__strlen_user_asm)
1428			"move\t%0, $2"
1429			: "=r" (res)
1430			: "r" (s)
1431			: "$2", "$4", __UA_t0, "$31");
1432	}
1433
1434	return res;
1435}
1436
1437/* Returns: 0 if bad, string length+1 (memory size) of string if ok */
1438static inline long __strnlen_user(const char __user *s, long n)
1439{
1440	long res;
1441
1442	if (eva_kernel_access()) {
1443		__asm__ __volatile__(
1444			"move\t$4, %1\n\t"
1445			"move\t$5, %2\n\t"
1446			__MODULE_JAL(__strnlen_kernel_nocheck_asm)
1447			"move\t%0, $2"
1448			: "=r" (res)
1449			: "r" (s), "r" (n)
1450			: "$2", "$4", "$5", __UA_t0, "$31");
1451	} else {
1452		might_fault();
1453		__asm__ __volatile__(
1454			"move\t$4, %1\n\t"
1455			"move\t$5, %2\n\t"
1456			__MODULE_JAL(__strnlen_user_nocheck_asm)
1457			"move\t%0, $2"
1458			: "=r" (res)
1459			: "r" (s), "r" (n)
1460			: "$2", "$4", "$5", __UA_t0, "$31");
1461	}
1462
1463	return res;
1464}
1465
1466/*
1467 * strnlen_user: - Get the size of a string in user space.
1468 * @str: The string to measure.
1469 *
1470 * Context: User context only. This function may sleep if pagefaults are
1471 *          enabled.
1472 *
1473 * Get the size of a NUL-terminated string in user space.
1474 *
1475 * Returns the size of the string INCLUDING the terminating NUL.
1476 * On exception, returns 0.
1477 * If the string is too long, returns a value greater than @n.
1478 */
1479static inline long strnlen_user(const char __user *s, long n)
1480{
1481	long res;
1482
1483	might_fault();
1484	if (eva_kernel_access()) {
1485		__asm__ __volatile__(
1486			"move\t$4, %1\n\t"
1487			"move\t$5, %2\n\t"
1488			__MODULE_JAL(__strnlen_kernel_asm)
1489			"move\t%0, $2"
1490			: "=r" (res)
1491			: "r" (s), "r" (n)
1492			: "$2", "$4", "$5", __UA_t0, "$31");
1493	} else {
1494		__asm__ __volatile__(
1495			"move\t$4, %1\n\t"
1496			"move\t$5, %2\n\t"
1497			__MODULE_JAL(__strnlen_user_asm)
1498			"move\t%0, $2"
1499			: "=r" (res)
1500			: "r" (s), "r" (n)
1501			: "$2", "$4", "$5", __UA_t0, "$31");
1502	}
1503
1504	return res;
1505}
1506
1507#endif /* _ASM_UACCESS_H */