Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244#define pr_fmt(fmt) "TCP: " fmt
245
246#include <crypto/hash.h>
247#include <linux/kernel.h>
248#include <linux/module.h>
249#include <linux/types.h>
250#include <linux/fcntl.h>
251#include <linux/poll.h>
252#include <linux/inet_diag.h>
253#include <linux/init.h>
254#include <linux/fs.h>
255#include <linux/skbuff.h>
256#include <linux/scatterlist.h>
257#include <linux/splice.h>
258#include <linux/net.h>
259#include <linux/socket.h>
260#include <linux/random.h>
261#include <linux/memblock.h>
262#include <linux/highmem.h>
263#include <linux/swap.h>
264#include <linux/cache.h>
265#include <linux/err.h>
266#include <linux/time.h>
267#include <linux/slab.h>
268#include <linux/errqueue.h>
269#include <linux/static_key.h>
270
271#include <net/icmp.h>
272#include <net/inet_common.h>
273#include <net/tcp.h>
274#include <net/xfrm.h>
275#include <net/ip.h>
276#include <net/sock.h>
277
278#include <linux/uaccess.h>
279#include <asm/ioctls.h>
280#include <net/busy_poll.h>
281
282struct percpu_counter tcp_orphan_count;
283EXPORT_SYMBOL_GPL(tcp_orphan_count);
284
285long sysctl_tcp_mem[3] __read_mostly;
286EXPORT_SYMBOL(sysctl_tcp_mem);
287
288atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
289EXPORT_SYMBOL(tcp_memory_allocated);
290
291#if IS_ENABLED(CONFIG_SMC)
292DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
293EXPORT_SYMBOL(tcp_have_smc);
294#endif
295
296/*
297 * Current number of TCP sockets.
298 */
299struct percpu_counter tcp_sockets_allocated;
300EXPORT_SYMBOL(tcp_sockets_allocated);
301
302/*
303 * TCP splice context
304 */
305struct tcp_splice_state {
306 struct pipe_inode_info *pipe;
307 size_t len;
308 unsigned int flags;
309};
310
311/*
312 * Pressure flag: try to collapse.
313 * Technical note: it is used by multiple contexts non atomically.
314 * All the __sk_mem_schedule() is of this nature: accounting
315 * is strict, actions are advisory and have some latency.
316 */
317unsigned long tcp_memory_pressure __read_mostly;
318EXPORT_SYMBOL_GPL(tcp_memory_pressure);
319
320DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
321EXPORT_SYMBOL(tcp_rx_skb_cache_key);
322
323DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
324
325void tcp_enter_memory_pressure(struct sock *sk)
326{
327 unsigned long val;
328
329 if (READ_ONCE(tcp_memory_pressure))
330 return;
331 val = jiffies;
332
333 if (!val)
334 val--;
335 if (!cmpxchg(&tcp_memory_pressure, 0, val))
336 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
337}
338EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
339
340void tcp_leave_memory_pressure(struct sock *sk)
341{
342 unsigned long val;
343
344 if (!READ_ONCE(tcp_memory_pressure))
345 return;
346 val = xchg(&tcp_memory_pressure, 0);
347 if (val)
348 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
349 jiffies_to_msecs(jiffies - val));
350}
351EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
352
353/* Convert seconds to retransmits based on initial and max timeout */
354static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
355{
356 u8 res = 0;
357
358 if (seconds > 0) {
359 int period = timeout;
360
361 res = 1;
362 while (seconds > period && res < 255) {
363 res++;
364 timeout <<= 1;
365 if (timeout > rto_max)
366 timeout = rto_max;
367 period += timeout;
368 }
369 }
370 return res;
371}
372
373/* Convert retransmits to seconds based on initial and max timeout */
374static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
375{
376 int period = 0;
377
378 if (retrans > 0) {
379 period = timeout;
380 while (--retrans) {
381 timeout <<= 1;
382 if (timeout > rto_max)
383 timeout = rto_max;
384 period += timeout;
385 }
386 }
387 return period;
388}
389
390static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
391{
392 u32 rate = READ_ONCE(tp->rate_delivered);
393 u32 intv = READ_ONCE(tp->rate_interval_us);
394 u64 rate64 = 0;
395
396 if (rate && intv) {
397 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
398 do_div(rate64, intv);
399 }
400 return rate64;
401}
402
403/* Address-family independent initialization for a tcp_sock.
404 *
405 * NOTE: A lot of things set to zero explicitly by call to
406 * sk_alloc() so need not be done here.
407 */
408void tcp_init_sock(struct sock *sk)
409{
410 struct inet_connection_sock *icsk = inet_csk(sk);
411 struct tcp_sock *tp = tcp_sk(sk);
412
413 tp->out_of_order_queue = RB_ROOT;
414 sk->tcp_rtx_queue = RB_ROOT;
415 tcp_init_xmit_timers(sk);
416 INIT_LIST_HEAD(&tp->tsq_node);
417 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
418
419 icsk->icsk_rto = TCP_TIMEOUT_INIT;
420 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
421 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
422
423 /* So many TCP implementations out there (incorrectly) count the
424 * initial SYN frame in their delayed-ACK and congestion control
425 * algorithms that we must have the following bandaid to talk
426 * efficiently to them. -DaveM
427 */
428 tp->snd_cwnd = TCP_INIT_CWND;
429
430 /* There's a bubble in the pipe until at least the first ACK. */
431 tp->app_limited = ~0U;
432
433 /* See draft-stevens-tcpca-spec-01 for discussion of the
434 * initialization of these values.
435 */
436 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
437 tp->snd_cwnd_clamp = ~0;
438 tp->mss_cache = TCP_MSS_DEFAULT;
439
440 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
441 tcp_assign_congestion_control(sk);
442
443 tp->tsoffset = 0;
444 tp->rack.reo_wnd_steps = 1;
445
446 sk->sk_state = TCP_CLOSE;
447
448 sk->sk_write_space = sk_stream_write_space;
449 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
450
451 icsk->icsk_sync_mss = tcp_sync_mss;
452
453 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
454 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
455
456 sk_sockets_allocated_inc(sk);
457 sk->sk_route_forced_caps = NETIF_F_GSO;
458}
459EXPORT_SYMBOL(tcp_init_sock);
460
461static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
462{
463 struct sk_buff *skb = tcp_write_queue_tail(sk);
464
465 if (tsflags && skb) {
466 struct skb_shared_info *shinfo = skb_shinfo(skb);
467 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
468
469 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
470 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
471 tcb->txstamp_ack = 1;
472 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
473 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
474 }
475}
476
477static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
478 int target, struct sock *sk)
479{
480 return (READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq) >= target) ||
481 (sk->sk_prot->stream_memory_read ?
482 sk->sk_prot->stream_memory_read(sk) : false);
483}
484
485/*
486 * Wait for a TCP event.
487 *
488 * Note that we don't need to lock the socket, as the upper poll layers
489 * take care of normal races (between the test and the event) and we don't
490 * go look at any of the socket buffers directly.
491 */
492__poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
493{
494 __poll_t mask;
495 struct sock *sk = sock->sk;
496 const struct tcp_sock *tp = tcp_sk(sk);
497 int state;
498
499 sock_poll_wait(file, sock, wait);
500
501 state = inet_sk_state_load(sk);
502 if (state == TCP_LISTEN)
503 return inet_csk_listen_poll(sk);
504
505 /* Socket is not locked. We are protected from async events
506 * by poll logic and correct handling of state changes
507 * made by other threads is impossible in any case.
508 */
509
510 mask = 0;
511
512 /*
513 * EPOLLHUP is certainly not done right. But poll() doesn't
514 * have a notion of HUP in just one direction, and for a
515 * socket the read side is more interesting.
516 *
517 * Some poll() documentation says that EPOLLHUP is incompatible
518 * with the EPOLLOUT/POLLWR flags, so somebody should check this
519 * all. But careful, it tends to be safer to return too many
520 * bits than too few, and you can easily break real applications
521 * if you don't tell them that something has hung up!
522 *
523 * Check-me.
524 *
525 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
526 * our fs/select.c). It means that after we received EOF,
527 * poll always returns immediately, making impossible poll() on write()
528 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
529 * if and only if shutdown has been made in both directions.
530 * Actually, it is interesting to look how Solaris and DUX
531 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
532 * then we could set it on SND_SHUTDOWN. BTW examples given
533 * in Stevens' books assume exactly this behaviour, it explains
534 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
535 *
536 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
537 * blocking on fresh not-connected or disconnected socket. --ANK
538 */
539 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
540 mask |= EPOLLHUP;
541 if (sk->sk_shutdown & RCV_SHUTDOWN)
542 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
543
544 /* Connected or passive Fast Open socket? */
545 if (state != TCP_SYN_SENT &&
546 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
547 int target = sock_rcvlowat(sk, 0, INT_MAX);
548
549 if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
550 !sock_flag(sk, SOCK_URGINLINE) &&
551 tp->urg_data)
552 target++;
553
554 if (tcp_stream_is_readable(tp, target, sk))
555 mask |= EPOLLIN | EPOLLRDNORM;
556
557 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
558 if (sk_stream_is_writeable(sk)) {
559 mask |= EPOLLOUT | EPOLLWRNORM;
560 } else { /* send SIGIO later */
561 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
562 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
563
564 /* Race breaker. If space is freed after
565 * wspace test but before the flags are set,
566 * IO signal will be lost. Memory barrier
567 * pairs with the input side.
568 */
569 smp_mb__after_atomic();
570 if (sk_stream_is_writeable(sk))
571 mask |= EPOLLOUT | EPOLLWRNORM;
572 }
573 } else
574 mask |= EPOLLOUT | EPOLLWRNORM;
575
576 if (tp->urg_data & TCP_URG_VALID)
577 mask |= EPOLLPRI;
578 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
579 /* Active TCP fastopen socket with defer_connect
580 * Return EPOLLOUT so application can call write()
581 * in order for kernel to generate SYN+data
582 */
583 mask |= EPOLLOUT | EPOLLWRNORM;
584 }
585 /* This barrier is coupled with smp_wmb() in tcp_reset() */
586 smp_rmb();
587 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
588 mask |= EPOLLERR;
589
590 return mask;
591}
592EXPORT_SYMBOL(tcp_poll);
593
594int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
595{
596 struct tcp_sock *tp = tcp_sk(sk);
597 int answ;
598 bool slow;
599
600 switch (cmd) {
601 case SIOCINQ:
602 if (sk->sk_state == TCP_LISTEN)
603 return -EINVAL;
604
605 slow = lock_sock_fast(sk);
606 answ = tcp_inq(sk);
607 unlock_sock_fast(sk, slow);
608 break;
609 case SIOCATMARK:
610 answ = tp->urg_data &&
611 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
612 break;
613 case SIOCOUTQ:
614 if (sk->sk_state == TCP_LISTEN)
615 return -EINVAL;
616
617 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
618 answ = 0;
619 else
620 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
621 break;
622 case SIOCOUTQNSD:
623 if (sk->sk_state == TCP_LISTEN)
624 return -EINVAL;
625
626 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
627 answ = 0;
628 else
629 answ = READ_ONCE(tp->write_seq) -
630 READ_ONCE(tp->snd_nxt);
631 break;
632 default:
633 return -ENOIOCTLCMD;
634 }
635
636 return put_user(answ, (int __user *)arg);
637}
638EXPORT_SYMBOL(tcp_ioctl);
639
640static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
641{
642 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
643 tp->pushed_seq = tp->write_seq;
644}
645
646static inline bool forced_push(const struct tcp_sock *tp)
647{
648 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
649}
650
651static void skb_entail(struct sock *sk, struct sk_buff *skb)
652{
653 struct tcp_sock *tp = tcp_sk(sk);
654 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
655
656 skb->csum = 0;
657 tcb->seq = tcb->end_seq = tp->write_seq;
658 tcb->tcp_flags = TCPHDR_ACK;
659 tcb->sacked = 0;
660 __skb_header_release(skb);
661 tcp_add_write_queue_tail(sk, skb);
662 sk_wmem_queued_add(sk, skb->truesize);
663 sk_mem_charge(sk, skb->truesize);
664 if (tp->nonagle & TCP_NAGLE_PUSH)
665 tp->nonagle &= ~TCP_NAGLE_PUSH;
666
667 tcp_slow_start_after_idle_check(sk);
668}
669
670static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
671{
672 if (flags & MSG_OOB)
673 tp->snd_up = tp->write_seq;
674}
675
676/* If a not yet filled skb is pushed, do not send it if
677 * we have data packets in Qdisc or NIC queues :
678 * Because TX completion will happen shortly, it gives a chance
679 * to coalesce future sendmsg() payload into this skb, without
680 * need for a timer, and with no latency trade off.
681 * As packets containing data payload have a bigger truesize
682 * than pure acks (dataless) packets, the last checks prevent
683 * autocorking if we only have an ACK in Qdisc/NIC queues,
684 * or if TX completion was delayed after we processed ACK packet.
685 */
686static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
687 int size_goal)
688{
689 return skb->len < size_goal &&
690 sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
691 !tcp_rtx_queue_empty(sk) &&
692 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
693}
694
695static void tcp_push(struct sock *sk, int flags, int mss_now,
696 int nonagle, int size_goal)
697{
698 struct tcp_sock *tp = tcp_sk(sk);
699 struct sk_buff *skb;
700
701 skb = tcp_write_queue_tail(sk);
702 if (!skb)
703 return;
704 if (!(flags & MSG_MORE) || forced_push(tp))
705 tcp_mark_push(tp, skb);
706
707 tcp_mark_urg(tp, flags);
708
709 if (tcp_should_autocork(sk, skb, size_goal)) {
710
711 /* avoid atomic op if TSQ_THROTTLED bit is already set */
712 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
713 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
714 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
715 }
716 /* It is possible TX completion already happened
717 * before we set TSQ_THROTTLED.
718 */
719 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
720 return;
721 }
722
723 if (flags & MSG_MORE)
724 nonagle = TCP_NAGLE_CORK;
725
726 __tcp_push_pending_frames(sk, mss_now, nonagle);
727}
728
729static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
730 unsigned int offset, size_t len)
731{
732 struct tcp_splice_state *tss = rd_desc->arg.data;
733 int ret;
734
735 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
736 min(rd_desc->count, len), tss->flags);
737 if (ret > 0)
738 rd_desc->count -= ret;
739 return ret;
740}
741
742static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
743{
744 /* Store TCP splice context information in read_descriptor_t. */
745 read_descriptor_t rd_desc = {
746 .arg.data = tss,
747 .count = tss->len,
748 };
749
750 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
751}
752
753/**
754 * tcp_splice_read - splice data from TCP socket to a pipe
755 * @sock: socket to splice from
756 * @ppos: position (not valid)
757 * @pipe: pipe to splice to
758 * @len: number of bytes to splice
759 * @flags: splice modifier flags
760 *
761 * Description:
762 * Will read pages from given socket and fill them into a pipe.
763 *
764 **/
765ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
766 struct pipe_inode_info *pipe, size_t len,
767 unsigned int flags)
768{
769 struct sock *sk = sock->sk;
770 struct tcp_splice_state tss = {
771 .pipe = pipe,
772 .len = len,
773 .flags = flags,
774 };
775 long timeo;
776 ssize_t spliced;
777 int ret;
778
779 sock_rps_record_flow(sk);
780 /*
781 * We can't seek on a socket input
782 */
783 if (unlikely(*ppos))
784 return -ESPIPE;
785
786 ret = spliced = 0;
787
788 lock_sock(sk);
789
790 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
791 while (tss.len) {
792 ret = __tcp_splice_read(sk, &tss);
793 if (ret < 0)
794 break;
795 else if (!ret) {
796 if (spliced)
797 break;
798 if (sock_flag(sk, SOCK_DONE))
799 break;
800 if (sk->sk_err) {
801 ret = sock_error(sk);
802 break;
803 }
804 if (sk->sk_shutdown & RCV_SHUTDOWN)
805 break;
806 if (sk->sk_state == TCP_CLOSE) {
807 /*
808 * This occurs when user tries to read
809 * from never connected socket.
810 */
811 ret = -ENOTCONN;
812 break;
813 }
814 if (!timeo) {
815 ret = -EAGAIN;
816 break;
817 }
818 /* if __tcp_splice_read() got nothing while we have
819 * an skb in receive queue, we do not want to loop.
820 * This might happen with URG data.
821 */
822 if (!skb_queue_empty(&sk->sk_receive_queue))
823 break;
824 sk_wait_data(sk, &timeo, NULL);
825 if (signal_pending(current)) {
826 ret = sock_intr_errno(timeo);
827 break;
828 }
829 continue;
830 }
831 tss.len -= ret;
832 spliced += ret;
833
834 if (!timeo)
835 break;
836 release_sock(sk);
837 lock_sock(sk);
838
839 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
840 (sk->sk_shutdown & RCV_SHUTDOWN) ||
841 signal_pending(current))
842 break;
843 }
844
845 release_sock(sk);
846
847 if (spliced)
848 return spliced;
849
850 return ret;
851}
852EXPORT_SYMBOL(tcp_splice_read);
853
854struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
855 bool force_schedule)
856{
857 struct sk_buff *skb;
858
859 if (likely(!size)) {
860 skb = sk->sk_tx_skb_cache;
861 if (skb) {
862 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
863 sk->sk_tx_skb_cache = NULL;
864 pskb_trim(skb, 0);
865 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
866 skb_shinfo(skb)->tx_flags = 0;
867 memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb));
868 return skb;
869 }
870 }
871 /* The TCP header must be at least 32-bit aligned. */
872 size = ALIGN(size, 4);
873
874 if (unlikely(tcp_under_memory_pressure(sk)))
875 sk_mem_reclaim_partial(sk);
876
877 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
878 if (likely(skb)) {
879 bool mem_scheduled;
880
881 if (force_schedule) {
882 mem_scheduled = true;
883 sk_forced_mem_schedule(sk, skb->truesize);
884 } else {
885 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
886 }
887 if (likely(mem_scheduled)) {
888 skb_reserve(skb, sk->sk_prot->max_header);
889 /*
890 * Make sure that we have exactly size bytes
891 * available to the caller, no more, no less.
892 */
893 skb->reserved_tailroom = skb->end - skb->tail - size;
894 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
895 return skb;
896 }
897 __kfree_skb(skb);
898 } else {
899 sk->sk_prot->enter_memory_pressure(sk);
900 sk_stream_moderate_sndbuf(sk);
901 }
902 return NULL;
903}
904
905static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
906 int large_allowed)
907{
908 struct tcp_sock *tp = tcp_sk(sk);
909 u32 new_size_goal, size_goal;
910
911 if (!large_allowed)
912 return mss_now;
913
914 /* Note : tcp_tso_autosize() will eventually split this later */
915 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
916 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
917
918 /* We try hard to avoid divides here */
919 size_goal = tp->gso_segs * mss_now;
920 if (unlikely(new_size_goal < size_goal ||
921 new_size_goal >= size_goal + mss_now)) {
922 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
923 sk->sk_gso_max_segs);
924 size_goal = tp->gso_segs * mss_now;
925 }
926
927 return max(size_goal, mss_now);
928}
929
930static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
931{
932 int mss_now;
933
934 mss_now = tcp_current_mss(sk);
935 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
936
937 return mss_now;
938}
939
940/* In some cases, both sendpage() and sendmsg() could have added
941 * an skb to the write queue, but failed adding payload on it.
942 * We need to remove it to consume less memory, but more
943 * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
944 * users.
945 */
946static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)
947{
948 if (skb && !skb->len) {
949 tcp_unlink_write_queue(skb, sk);
950 if (tcp_write_queue_empty(sk))
951 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
952 sk_wmem_free_skb(sk, skb);
953 }
954}
955
956ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
957 size_t size, int flags)
958{
959 struct tcp_sock *tp = tcp_sk(sk);
960 int mss_now, size_goal;
961 int err;
962 ssize_t copied;
963 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
964
965 if (IS_ENABLED(CONFIG_DEBUG_VM) &&
966 WARN_ONCE(PageSlab(page), "page must not be a Slab one"))
967 return -EINVAL;
968
969 /* Wait for a connection to finish. One exception is TCP Fast Open
970 * (passive side) where data is allowed to be sent before a connection
971 * is fully established.
972 */
973 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
974 !tcp_passive_fastopen(sk)) {
975 err = sk_stream_wait_connect(sk, &timeo);
976 if (err != 0)
977 goto out_err;
978 }
979
980 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
981
982 mss_now = tcp_send_mss(sk, &size_goal, flags);
983 copied = 0;
984
985 err = -EPIPE;
986 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
987 goto out_err;
988
989 while (size > 0) {
990 struct sk_buff *skb = tcp_write_queue_tail(sk);
991 int copy, i;
992 bool can_coalesce;
993
994 if (!skb || (copy = size_goal - skb->len) <= 0 ||
995 !tcp_skb_can_collapse_to(skb)) {
996new_segment:
997 if (!sk_stream_memory_free(sk))
998 goto wait_for_sndbuf;
999
1000 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1001 tcp_rtx_and_write_queues_empty(sk));
1002 if (!skb)
1003 goto wait_for_memory;
1004
1005#ifdef CONFIG_TLS_DEVICE
1006 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1007#endif
1008 skb_entail(sk, skb);
1009 copy = size_goal;
1010 }
1011
1012 if (copy > size)
1013 copy = size;
1014
1015 i = skb_shinfo(skb)->nr_frags;
1016 can_coalesce = skb_can_coalesce(skb, i, page, offset);
1017 if (!can_coalesce && i >= sysctl_max_skb_frags) {
1018 tcp_mark_push(tp, skb);
1019 goto new_segment;
1020 }
1021 if (!sk_wmem_schedule(sk, copy))
1022 goto wait_for_memory;
1023
1024 if (can_coalesce) {
1025 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1026 } else {
1027 get_page(page);
1028 skb_fill_page_desc(skb, i, page, offset, copy);
1029 }
1030
1031 if (!(flags & MSG_NO_SHARED_FRAGS))
1032 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1033
1034 skb->len += copy;
1035 skb->data_len += copy;
1036 skb->truesize += copy;
1037 sk_wmem_queued_add(sk, copy);
1038 sk_mem_charge(sk, copy);
1039 skb->ip_summed = CHECKSUM_PARTIAL;
1040 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1041 TCP_SKB_CB(skb)->end_seq += copy;
1042 tcp_skb_pcount_set(skb, 0);
1043
1044 if (!copied)
1045 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1046
1047 copied += copy;
1048 offset += copy;
1049 size -= copy;
1050 if (!size)
1051 goto out;
1052
1053 if (skb->len < size_goal || (flags & MSG_OOB))
1054 continue;
1055
1056 if (forced_push(tp)) {
1057 tcp_mark_push(tp, skb);
1058 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1059 } else if (skb == tcp_send_head(sk))
1060 tcp_push_one(sk, mss_now);
1061 continue;
1062
1063wait_for_sndbuf:
1064 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1065wait_for_memory:
1066 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1067 TCP_NAGLE_PUSH, size_goal);
1068
1069 err = sk_stream_wait_memory(sk, &timeo);
1070 if (err != 0)
1071 goto do_error;
1072
1073 mss_now = tcp_send_mss(sk, &size_goal, flags);
1074 }
1075
1076out:
1077 if (copied) {
1078 tcp_tx_timestamp(sk, sk->sk_tsflags);
1079 if (!(flags & MSG_SENDPAGE_NOTLAST))
1080 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1081 }
1082 return copied;
1083
1084do_error:
1085 tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk));
1086 if (copied)
1087 goto out;
1088out_err:
1089 /* make sure we wake any epoll edge trigger waiter */
1090 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1091 err == -EAGAIN)) {
1092 sk->sk_write_space(sk);
1093 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1094 }
1095 return sk_stream_error(sk, flags, err);
1096}
1097EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1098
1099int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1100 size_t size, int flags)
1101{
1102 if (!(sk->sk_route_caps & NETIF_F_SG))
1103 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1104
1105 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1106
1107 return do_tcp_sendpages(sk, page, offset, size, flags);
1108}
1109EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1110
1111int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1112 size_t size, int flags)
1113{
1114 int ret;
1115
1116 lock_sock(sk);
1117 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1118 release_sock(sk);
1119
1120 return ret;
1121}
1122EXPORT_SYMBOL(tcp_sendpage);
1123
1124void tcp_free_fastopen_req(struct tcp_sock *tp)
1125{
1126 if (tp->fastopen_req) {
1127 kfree(tp->fastopen_req);
1128 tp->fastopen_req = NULL;
1129 }
1130}
1131
1132static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1133 int *copied, size_t size,
1134 struct ubuf_info *uarg)
1135{
1136 struct tcp_sock *tp = tcp_sk(sk);
1137 struct inet_sock *inet = inet_sk(sk);
1138 struct sockaddr *uaddr = msg->msg_name;
1139 int err, flags;
1140
1141 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1142 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1143 uaddr->sa_family == AF_UNSPEC))
1144 return -EOPNOTSUPP;
1145 if (tp->fastopen_req)
1146 return -EALREADY; /* Another Fast Open is in progress */
1147
1148 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1149 sk->sk_allocation);
1150 if (unlikely(!tp->fastopen_req))
1151 return -ENOBUFS;
1152 tp->fastopen_req->data = msg;
1153 tp->fastopen_req->size = size;
1154 tp->fastopen_req->uarg = uarg;
1155
1156 if (inet->defer_connect) {
1157 err = tcp_connect(sk);
1158 /* Same failure procedure as in tcp_v4/6_connect */
1159 if (err) {
1160 tcp_set_state(sk, TCP_CLOSE);
1161 inet->inet_dport = 0;
1162 sk->sk_route_caps = 0;
1163 }
1164 }
1165 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1166 err = __inet_stream_connect(sk->sk_socket, uaddr,
1167 msg->msg_namelen, flags, 1);
1168 /* fastopen_req could already be freed in __inet_stream_connect
1169 * if the connection times out or gets rst
1170 */
1171 if (tp->fastopen_req) {
1172 *copied = tp->fastopen_req->copied;
1173 tcp_free_fastopen_req(tp);
1174 inet->defer_connect = 0;
1175 }
1176 return err;
1177}
1178
1179int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1180{
1181 struct tcp_sock *tp = tcp_sk(sk);
1182 struct ubuf_info *uarg = NULL;
1183 struct sk_buff *skb;
1184 struct sockcm_cookie sockc;
1185 int flags, err, copied = 0;
1186 int mss_now = 0, size_goal, copied_syn = 0;
1187 int process_backlog = 0;
1188 bool zc = false;
1189 long timeo;
1190
1191 flags = msg->msg_flags;
1192
1193 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1194 skb = tcp_write_queue_tail(sk);
1195 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1196 if (!uarg) {
1197 err = -ENOBUFS;
1198 goto out_err;
1199 }
1200
1201 zc = sk->sk_route_caps & NETIF_F_SG;
1202 if (!zc)
1203 uarg->zerocopy = 0;
1204 }
1205
1206 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1207 !tp->repair) {
1208 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1209 if (err == -EINPROGRESS && copied_syn > 0)
1210 goto out;
1211 else if (err)
1212 goto out_err;
1213 }
1214
1215 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1216
1217 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1218
1219 /* Wait for a connection to finish. One exception is TCP Fast Open
1220 * (passive side) where data is allowed to be sent before a connection
1221 * is fully established.
1222 */
1223 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1224 !tcp_passive_fastopen(sk)) {
1225 err = sk_stream_wait_connect(sk, &timeo);
1226 if (err != 0)
1227 goto do_error;
1228 }
1229
1230 if (unlikely(tp->repair)) {
1231 if (tp->repair_queue == TCP_RECV_QUEUE) {
1232 copied = tcp_send_rcvq(sk, msg, size);
1233 goto out_nopush;
1234 }
1235
1236 err = -EINVAL;
1237 if (tp->repair_queue == TCP_NO_QUEUE)
1238 goto out_err;
1239
1240 /* 'common' sending to sendq */
1241 }
1242
1243 sockcm_init(&sockc, sk);
1244 if (msg->msg_controllen) {
1245 err = sock_cmsg_send(sk, msg, &sockc);
1246 if (unlikely(err)) {
1247 err = -EINVAL;
1248 goto out_err;
1249 }
1250 }
1251
1252 /* This should be in poll */
1253 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1254
1255 /* Ok commence sending. */
1256 copied = 0;
1257
1258restart:
1259 mss_now = tcp_send_mss(sk, &size_goal, flags);
1260
1261 err = -EPIPE;
1262 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1263 goto do_error;
1264
1265 while (msg_data_left(msg)) {
1266 int copy = 0;
1267
1268 skb = tcp_write_queue_tail(sk);
1269 if (skb)
1270 copy = size_goal - skb->len;
1271
1272 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1273 bool first_skb;
1274
1275new_segment:
1276 if (!sk_stream_memory_free(sk))
1277 goto wait_for_sndbuf;
1278
1279 if (unlikely(process_backlog >= 16)) {
1280 process_backlog = 0;
1281 if (sk_flush_backlog(sk))
1282 goto restart;
1283 }
1284 first_skb = tcp_rtx_and_write_queues_empty(sk);
1285 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1286 first_skb);
1287 if (!skb)
1288 goto wait_for_memory;
1289
1290 process_backlog++;
1291 skb->ip_summed = CHECKSUM_PARTIAL;
1292
1293 skb_entail(sk, skb);
1294 copy = size_goal;
1295
1296 /* All packets are restored as if they have
1297 * already been sent. skb_mstamp_ns isn't set to
1298 * avoid wrong rtt estimation.
1299 */
1300 if (tp->repair)
1301 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1302 }
1303
1304 /* Try to append data to the end of skb. */
1305 if (copy > msg_data_left(msg))
1306 copy = msg_data_left(msg);
1307
1308 /* Where to copy to? */
1309 if (skb_availroom(skb) > 0 && !zc) {
1310 /* We have some space in skb head. Superb! */
1311 copy = min_t(int, copy, skb_availroom(skb));
1312 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1313 if (err)
1314 goto do_fault;
1315 } else if (!zc) {
1316 bool merge = true;
1317 int i = skb_shinfo(skb)->nr_frags;
1318 struct page_frag *pfrag = sk_page_frag(sk);
1319
1320 if (!sk_page_frag_refill(sk, pfrag))
1321 goto wait_for_memory;
1322
1323 if (!skb_can_coalesce(skb, i, pfrag->page,
1324 pfrag->offset)) {
1325 if (i >= sysctl_max_skb_frags) {
1326 tcp_mark_push(tp, skb);
1327 goto new_segment;
1328 }
1329 merge = false;
1330 }
1331
1332 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1333
1334 if (!sk_wmem_schedule(sk, copy))
1335 goto wait_for_memory;
1336
1337 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1338 pfrag->page,
1339 pfrag->offset,
1340 copy);
1341 if (err)
1342 goto do_error;
1343
1344 /* Update the skb. */
1345 if (merge) {
1346 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1347 } else {
1348 skb_fill_page_desc(skb, i, pfrag->page,
1349 pfrag->offset, copy);
1350 page_ref_inc(pfrag->page);
1351 }
1352 pfrag->offset += copy;
1353 } else {
1354 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1355 if (err == -EMSGSIZE || err == -EEXIST) {
1356 tcp_mark_push(tp, skb);
1357 goto new_segment;
1358 }
1359 if (err < 0)
1360 goto do_error;
1361 copy = err;
1362 }
1363
1364 if (!copied)
1365 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1366
1367 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1368 TCP_SKB_CB(skb)->end_seq += copy;
1369 tcp_skb_pcount_set(skb, 0);
1370
1371 copied += copy;
1372 if (!msg_data_left(msg)) {
1373 if (unlikely(flags & MSG_EOR))
1374 TCP_SKB_CB(skb)->eor = 1;
1375 goto out;
1376 }
1377
1378 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1379 continue;
1380
1381 if (forced_push(tp)) {
1382 tcp_mark_push(tp, skb);
1383 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1384 } else if (skb == tcp_send_head(sk))
1385 tcp_push_one(sk, mss_now);
1386 continue;
1387
1388wait_for_sndbuf:
1389 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1390wait_for_memory:
1391 if (copied)
1392 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1393 TCP_NAGLE_PUSH, size_goal);
1394
1395 err = sk_stream_wait_memory(sk, &timeo);
1396 if (err != 0)
1397 goto do_error;
1398
1399 mss_now = tcp_send_mss(sk, &size_goal, flags);
1400 }
1401
1402out:
1403 if (copied) {
1404 tcp_tx_timestamp(sk, sockc.tsflags);
1405 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1406 }
1407out_nopush:
1408 sock_zerocopy_put(uarg);
1409 return copied + copied_syn;
1410
1411do_error:
1412 skb = tcp_write_queue_tail(sk);
1413do_fault:
1414 tcp_remove_empty_skb(sk, skb);
1415
1416 if (copied + copied_syn)
1417 goto out;
1418out_err:
1419 sock_zerocopy_put_abort(uarg, true);
1420 err = sk_stream_error(sk, flags, err);
1421 /* make sure we wake any epoll edge trigger waiter */
1422 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1423 err == -EAGAIN)) {
1424 sk->sk_write_space(sk);
1425 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1426 }
1427 return err;
1428}
1429EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1430
1431int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1432{
1433 int ret;
1434
1435 lock_sock(sk);
1436 ret = tcp_sendmsg_locked(sk, msg, size);
1437 release_sock(sk);
1438
1439 return ret;
1440}
1441EXPORT_SYMBOL(tcp_sendmsg);
1442
1443/*
1444 * Handle reading urgent data. BSD has very simple semantics for
1445 * this, no blocking and very strange errors 8)
1446 */
1447
1448static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1449{
1450 struct tcp_sock *tp = tcp_sk(sk);
1451
1452 /* No URG data to read. */
1453 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1454 tp->urg_data == TCP_URG_READ)
1455 return -EINVAL; /* Yes this is right ! */
1456
1457 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1458 return -ENOTCONN;
1459
1460 if (tp->urg_data & TCP_URG_VALID) {
1461 int err = 0;
1462 char c = tp->urg_data;
1463
1464 if (!(flags & MSG_PEEK))
1465 tp->urg_data = TCP_URG_READ;
1466
1467 /* Read urgent data. */
1468 msg->msg_flags |= MSG_OOB;
1469
1470 if (len > 0) {
1471 if (!(flags & MSG_TRUNC))
1472 err = memcpy_to_msg(msg, &c, 1);
1473 len = 1;
1474 } else
1475 msg->msg_flags |= MSG_TRUNC;
1476
1477 return err ? -EFAULT : len;
1478 }
1479
1480 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1481 return 0;
1482
1483 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1484 * the available implementations agree in this case:
1485 * this call should never block, independent of the
1486 * blocking state of the socket.
1487 * Mike <pall@rz.uni-karlsruhe.de>
1488 */
1489 return -EAGAIN;
1490}
1491
1492static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1493{
1494 struct sk_buff *skb;
1495 int copied = 0, err = 0;
1496
1497 /* XXX -- need to support SO_PEEK_OFF */
1498
1499 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1500 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1501 if (err)
1502 return err;
1503 copied += skb->len;
1504 }
1505
1506 skb_queue_walk(&sk->sk_write_queue, skb) {
1507 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1508 if (err)
1509 break;
1510
1511 copied += skb->len;
1512 }
1513
1514 return err ?: copied;
1515}
1516
1517/* Clean up the receive buffer for full frames taken by the user,
1518 * then send an ACK if necessary. COPIED is the number of bytes
1519 * tcp_recvmsg has given to the user so far, it speeds up the
1520 * calculation of whether or not we must ACK for the sake of
1521 * a window update.
1522 */
1523static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1524{
1525 struct tcp_sock *tp = tcp_sk(sk);
1526 bool time_to_ack = false;
1527
1528 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1529
1530 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1531 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1532 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1533
1534 if (inet_csk_ack_scheduled(sk)) {
1535 const struct inet_connection_sock *icsk = inet_csk(sk);
1536 /* Delayed ACKs frequently hit locked sockets during bulk
1537 * receive. */
1538 if (icsk->icsk_ack.blocked ||
1539 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1540 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1541 /*
1542 * If this read emptied read buffer, we send ACK, if
1543 * connection is not bidirectional, user drained
1544 * receive buffer and there was a small segment
1545 * in queue.
1546 */
1547 (copied > 0 &&
1548 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1549 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1550 !inet_csk_in_pingpong_mode(sk))) &&
1551 !atomic_read(&sk->sk_rmem_alloc)))
1552 time_to_ack = true;
1553 }
1554
1555 /* We send an ACK if we can now advertise a non-zero window
1556 * which has been raised "significantly".
1557 *
1558 * Even if window raised up to infinity, do not send window open ACK
1559 * in states, where we will not receive more. It is useless.
1560 */
1561 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1562 __u32 rcv_window_now = tcp_receive_window(tp);
1563
1564 /* Optimize, __tcp_select_window() is not cheap. */
1565 if (2*rcv_window_now <= tp->window_clamp) {
1566 __u32 new_window = __tcp_select_window(sk);
1567
1568 /* Send ACK now, if this read freed lots of space
1569 * in our buffer. Certainly, new_window is new window.
1570 * We can advertise it now, if it is not less than current one.
1571 * "Lots" means "at least twice" here.
1572 */
1573 if (new_window && new_window >= 2 * rcv_window_now)
1574 time_to_ack = true;
1575 }
1576 }
1577 if (time_to_ack)
1578 tcp_send_ack(sk);
1579}
1580
1581static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1582{
1583 struct sk_buff *skb;
1584 u32 offset;
1585
1586 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1587 offset = seq - TCP_SKB_CB(skb)->seq;
1588 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1589 pr_err_once("%s: found a SYN, please report !\n", __func__);
1590 offset--;
1591 }
1592 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1593 *off = offset;
1594 return skb;
1595 }
1596 /* This looks weird, but this can happen if TCP collapsing
1597 * splitted a fat GRO packet, while we released socket lock
1598 * in skb_splice_bits()
1599 */
1600 sk_eat_skb(sk, skb);
1601 }
1602 return NULL;
1603}
1604
1605/*
1606 * This routine provides an alternative to tcp_recvmsg() for routines
1607 * that would like to handle copying from skbuffs directly in 'sendfile'
1608 * fashion.
1609 * Note:
1610 * - It is assumed that the socket was locked by the caller.
1611 * - The routine does not block.
1612 * - At present, there is no support for reading OOB data
1613 * or for 'peeking' the socket using this routine
1614 * (although both would be easy to implement).
1615 */
1616int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1617 sk_read_actor_t recv_actor)
1618{
1619 struct sk_buff *skb;
1620 struct tcp_sock *tp = tcp_sk(sk);
1621 u32 seq = tp->copied_seq;
1622 u32 offset;
1623 int copied = 0;
1624
1625 if (sk->sk_state == TCP_LISTEN)
1626 return -ENOTCONN;
1627 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1628 if (offset < skb->len) {
1629 int used;
1630 size_t len;
1631
1632 len = skb->len - offset;
1633 /* Stop reading if we hit a patch of urgent data */
1634 if (tp->urg_data) {
1635 u32 urg_offset = tp->urg_seq - seq;
1636 if (urg_offset < len)
1637 len = urg_offset;
1638 if (!len)
1639 break;
1640 }
1641 used = recv_actor(desc, skb, offset, len);
1642 if (used <= 0) {
1643 if (!copied)
1644 copied = used;
1645 break;
1646 } else if (used <= len) {
1647 seq += used;
1648 copied += used;
1649 offset += used;
1650 }
1651 /* If recv_actor drops the lock (e.g. TCP splice
1652 * receive) the skb pointer might be invalid when
1653 * getting here: tcp_collapse might have deleted it
1654 * while aggregating skbs from the socket queue.
1655 */
1656 skb = tcp_recv_skb(sk, seq - 1, &offset);
1657 if (!skb)
1658 break;
1659 /* TCP coalescing might have appended data to the skb.
1660 * Try to splice more frags
1661 */
1662 if (offset + 1 != skb->len)
1663 continue;
1664 }
1665 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1666 sk_eat_skb(sk, skb);
1667 ++seq;
1668 break;
1669 }
1670 sk_eat_skb(sk, skb);
1671 if (!desc->count)
1672 break;
1673 WRITE_ONCE(tp->copied_seq, seq);
1674 }
1675 WRITE_ONCE(tp->copied_seq, seq);
1676
1677 tcp_rcv_space_adjust(sk);
1678
1679 /* Clean up data we have read: This will do ACK frames. */
1680 if (copied > 0) {
1681 tcp_recv_skb(sk, seq, &offset);
1682 tcp_cleanup_rbuf(sk, copied);
1683 }
1684 return copied;
1685}
1686EXPORT_SYMBOL(tcp_read_sock);
1687
1688int tcp_peek_len(struct socket *sock)
1689{
1690 return tcp_inq(sock->sk);
1691}
1692EXPORT_SYMBOL(tcp_peek_len);
1693
1694/* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1695int tcp_set_rcvlowat(struct sock *sk, int val)
1696{
1697 int cap;
1698
1699 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1700 cap = sk->sk_rcvbuf >> 1;
1701 else
1702 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1703 val = min(val, cap);
1704 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1705
1706 /* Check if we need to signal EPOLLIN right now */
1707 tcp_data_ready(sk);
1708
1709 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1710 return 0;
1711
1712 val <<= 1;
1713 if (val > sk->sk_rcvbuf) {
1714 WRITE_ONCE(sk->sk_rcvbuf, val);
1715 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1716 }
1717 return 0;
1718}
1719EXPORT_SYMBOL(tcp_set_rcvlowat);
1720
1721#ifdef CONFIG_MMU
1722static const struct vm_operations_struct tcp_vm_ops = {
1723};
1724
1725int tcp_mmap(struct file *file, struct socket *sock,
1726 struct vm_area_struct *vma)
1727{
1728 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1729 return -EPERM;
1730 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1731
1732 /* Instruct vm_insert_page() to not down_read(mmap_sem) */
1733 vma->vm_flags |= VM_MIXEDMAP;
1734
1735 vma->vm_ops = &tcp_vm_ops;
1736 return 0;
1737}
1738EXPORT_SYMBOL(tcp_mmap);
1739
1740static int tcp_zerocopy_receive(struct sock *sk,
1741 struct tcp_zerocopy_receive *zc)
1742{
1743 unsigned long address = (unsigned long)zc->address;
1744 const skb_frag_t *frags = NULL;
1745 u32 length = 0, seq, offset;
1746 struct vm_area_struct *vma;
1747 struct sk_buff *skb = NULL;
1748 struct tcp_sock *tp;
1749 int inq;
1750 int ret;
1751
1752 if (address & (PAGE_SIZE - 1) || address != zc->address)
1753 return -EINVAL;
1754
1755 if (sk->sk_state == TCP_LISTEN)
1756 return -ENOTCONN;
1757
1758 sock_rps_record_flow(sk);
1759
1760 down_read(¤t->mm->mmap_sem);
1761
1762 ret = -EINVAL;
1763 vma = find_vma(current->mm, address);
1764 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops)
1765 goto out;
1766 zc->length = min_t(unsigned long, zc->length, vma->vm_end - address);
1767
1768 tp = tcp_sk(sk);
1769 seq = tp->copied_seq;
1770 inq = tcp_inq(sk);
1771 zc->length = min_t(u32, zc->length, inq);
1772 zc->length &= ~(PAGE_SIZE - 1);
1773 if (zc->length) {
1774 zap_page_range(vma, address, zc->length);
1775 zc->recv_skip_hint = 0;
1776 } else {
1777 zc->recv_skip_hint = inq;
1778 }
1779 ret = 0;
1780 while (length + PAGE_SIZE <= zc->length) {
1781 if (zc->recv_skip_hint < PAGE_SIZE) {
1782 if (skb) {
1783 skb = skb->next;
1784 offset = seq - TCP_SKB_CB(skb)->seq;
1785 } else {
1786 skb = tcp_recv_skb(sk, seq, &offset);
1787 }
1788
1789 zc->recv_skip_hint = skb->len - offset;
1790 offset -= skb_headlen(skb);
1791 if ((int)offset < 0 || skb_has_frag_list(skb))
1792 break;
1793 frags = skb_shinfo(skb)->frags;
1794 while (offset) {
1795 if (skb_frag_size(frags) > offset)
1796 goto out;
1797 offset -= skb_frag_size(frags);
1798 frags++;
1799 }
1800 }
1801 if (skb_frag_size(frags) != PAGE_SIZE || skb_frag_off(frags)) {
1802 int remaining = zc->recv_skip_hint;
1803
1804 while (remaining && (skb_frag_size(frags) != PAGE_SIZE ||
1805 skb_frag_off(frags))) {
1806 remaining -= skb_frag_size(frags);
1807 frags++;
1808 }
1809 zc->recv_skip_hint -= remaining;
1810 break;
1811 }
1812 ret = vm_insert_page(vma, address + length,
1813 skb_frag_page(frags));
1814 if (ret)
1815 break;
1816 length += PAGE_SIZE;
1817 seq += PAGE_SIZE;
1818 zc->recv_skip_hint -= PAGE_SIZE;
1819 frags++;
1820 }
1821out:
1822 up_read(¤t->mm->mmap_sem);
1823 if (length) {
1824 WRITE_ONCE(tp->copied_seq, seq);
1825 tcp_rcv_space_adjust(sk);
1826
1827 /* Clean up data we have read: This will do ACK frames. */
1828 tcp_recv_skb(sk, seq, &offset);
1829 tcp_cleanup_rbuf(sk, length);
1830 ret = 0;
1831 if (length == zc->length)
1832 zc->recv_skip_hint = 0;
1833 } else {
1834 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
1835 ret = -EIO;
1836 }
1837 zc->length = length;
1838 return ret;
1839}
1840#endif
1841
1842static void tcp_update_recv_tstamps(struct sk_buff *skb,
1843 struct scm_timestamping_internal *tss)
1844{
1845 if (skb->tstamp)
1846 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1847 else
1848 tss->ts[0] = (struct timespec64) {0};
1849
1850 if (skb_hwtstamps(skb)->hwtstamp)
1851 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1852 else
1853 tss->ts[2] = (struct timespec64) {0};
1854}
1855
1856/* Similar to __sock_recv_timestamp, but does not require an skb */
1857static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1858 struct scm_timestamping_internal *tss)
1859{
1860 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
1861 bool has_timestamping = false;
1862
1863 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1864 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1865 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1866 if (new_tstamp) {
1867 struct __kernel_timespec kts = {tss->ts[0].tv_sec, tss->ts[0].tv_nsec};
1868
1869 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
1870 sizeof(kts), &kts);
1871 } else {
1872 struct timespec ts_old = timespec64_to_timespec(tss->ts[0]);
1873
1874 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
1875 sizeof(ts_old), &ts_old);
1876 }
1877 } else {
1878 if (new_tstamp) {
1879 struct __kernel_sock_timeval stv;
1880
1881 stv.tv_sec = tss->ts[0].tv_sec;
1882 stv.tv_usec = tss->ts[0].tv_nsec / 1000;
1883 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
1884 sizeof(stv), &stv);
1885 } else {
1886 struct __kernel_old_timeval tv;
1887
1888 tv.tv_sec = tss->ts[0].tv_sec;
1889 tv.tv_usec = tss->ts[0].tv_nsec / 1000;
1890 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
1891 sizeof(tv), &tv);
1892 }
1893 }
1894 }
1895
1896 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1897 has_timestamping = true;
1898 else
1899 tss->ts[0] = (struct timespec64) {0};
1900 }
1901
1902 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1903 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1904 has_timestamping = true;
1905 else
1906 tss->ts[2] = (struct timespec64) {0};
1907 }
1908
1909 if (has_timestamping) {
1910 tss->ts[1] = (struct timespec64) {0};
1911 if (sock_flag(sk, SOCK_TSTAMP_NEW))
1912 put_cmsg_scm_timestamping64(msg, tss);
1913 else
1914 put_cmsg_scm_timestamping(msg, tss);
1915 }
1916}
1917
1918static int tcp_inq_hint(struct sock *sk)
1919{
1920 const struct tcp_sock *tp = tcp_sk(sk);
1921 u32 copied_seq = READ_ONCE(tp->copied_seq);
1922 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
1923 int inq;
1924
1925 inq = rcv_nxt - copied_seq;
1926 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
1927 lock_sock(sk);
1928 inq = tp->rcv_nxt - tp->copied_seq;
1929 release_sock(sk);
1930 }
1931 /* After receiving a FIN, tell the user-space to continue reading
1932 * by returning a non-zero inq.
1933 */
1934 if (inq == 0 && sock_flag(sk, SOCK_DONE))
1935 inq = 1;
1936 return inq;
1937}
1938
1939/*
1940 * This routine copies from a sock struct into the user buffer.
1941 *
1942 * Technical note: in 2.3 we work on _locked_ socket, so that
1943 * tricks with *seq access order and skb->users are not required.
1944 * Probably, code can be easily improved even more.
1945 */
1946
1947int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1948 int flags, int *addr_len)
1949{
1950 struct tcp_sock *tp = tcp_sk(sk);
1951 int copied = 0;
1952 u32 peek_seq;
1953 u32 *seq;
1954 unsigned long used;
1955 int err, inq;
1956 int target; /* Read at least this many bytes */
1957 long timeo;
1958 struct sk_buff *skb, *last;
1959 u32 urg_hole = 0;
1960 struct scm_timestamping_internal tss;
1961 bool has_tss = false;
1962 bool has_cmsg;
1963
1964 if (unlikely(flags & MSG_ERRQUEUE))
1965 return inet_recv_error(sk, msg, len, addr_len);
1966
1967 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) &&
1968 (sk->sk_state == TCP_ESTABLISHED))
1969 sk_busy_loop(sk, nonblock);
1970
1971 lock_sock(sk);
1972
1973 err = -ENOTCONN;
1974 if (sk->sk_state == TCP_LISTEN)
1975 goto out;
1976
1977 has_cmsg = tp->recvmsg_inq;
1978 timeo = sock_rcvtimeo(sk, nonblock);
1979
1980 /* Urgent data needs to be handled specially. */
1981 if (flags & MSG_OOB)
1982 goto recv_urg;
1983
1984 if (unlikely(tp->repair)) {
1985 err = -EPERM;
1986 if (!(flags & MSG_PEEK))
1987 goto out;
1988
1989 if (tp->repair_queue == TCP_SEND_QUEUE)
1990 goto recv_sndq;
1991
1992 err = -EINVAL;
1993 if (tp->repair_queue == TCP_NO_QUEUE)
1994 goto out;
1995
1996 /* 'common' recv queue MSG_PEEK-ing */
1997 }
1998
1999 seq = &tp->copied_seq;
2000 if (flags & MSG_PEEK) {
2001 peek_seq = tp->copied_seq;
2002 seq = &peek_seq;
2003 }
2004
2005 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2006
2007 do {
2008 u32 offset;
2009
2010 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2011 if (tp->urg_data && tp->urg_seq == *seq) {
2012 if (copied)
2013 break;
2014 if (signal_pending(current)) {
2015 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2016 break;
2017 }
2018 }
2019
2020 /* Next get a buffer. */
2021
2022 last = skb_peek_tail(&sk->sk_receive_queue);
2023 skb_queue_walk(&sk->sk_receive_queue, skb) {
2024 last = skb;
2025 /* Now that we have two receive queues this
2026 * shouldn't happen.
2027 */
2028 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2029 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2030 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2031 flags))
2032 break;
2033
2034 offset = *seq - TCP_SKB_CB(skb)->seq;
2035 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2036 pr_err_once("%s: found a SYN, please report !\n", __func__);
2037 offset--;
2038 }
2039 if (offset < skb->len)
2040 goto found_ok_skb;
2041 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2042 goto found_fin_ok;
2043 WARN(!(flags & MSG_PEEK),
2044 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2045 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2046 }
2047
2048 /* Well, if we have backlog, try to process it now yet. */
2049
2050 if (copied >= target && !sk->sk_backlog.tail)
2051 break;
2052
2053 if (copied) {
2054 if (sk->sk_err ||
2055 sk->sk_state == TCP_CLOSE ||
2056 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2057 !timeo ||
2058 signal_pending(current))
2059 break;
2060 } else {
2061 if (sock_flag(sk, SOCK_DONE))
2062 break;
2063
2064 if (sk->sk_err) {
2065 copied = sock_error(sk);
2066 break;
2067 }
2068
2069 if (sk->sk_shutdown & RCV_SHUTDOWN)
2070 break;
2071
2072 if (sk->sk_state == TCP_CLOSE) {
2073 /* This occurs when user tries to read
2074 * from never connected socket.
2075 */
2076 copied = -ENOTCONN;
2077 break;
2078 }
2079
2080 if (!timeo) {
2081 copied = -EAGAIN;
2082 break;
2083 }
2084
2085 if (signal_pending(current)) {
2086 copied = sock_intr_errno(timeo);
2087 break;
2088 }
2089 }
2090
2091 tcp_cleanup_rbuf(sk, copied);
2092
2093 if (copied >= target) {
2094 /* Do not sleep, just process backlog. */
2095 release_sock(sk);
2096 lock_sock(sk);
2097 } else {
2098 sk_wait_data(sk, &timeo, last);
2099 }
2100
2101 if ((flags & MSG_PEEK) &&
2102 (peek_seq - copied - urg_hole != tp->copied_seq)) {
2103 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2104 current->comm,
2105 task_pid_nr(current));
2106 peek_seq = tp->copied_seq;
2107 }
2108 continue;
2109
2110found_ok_skb:
2111 /* Ok so how much can we use? */
2112 used = skb->len - offset;
2113 if (len < used)
2114 used = len;
2115
2116 /* Do we have urgent data here? */
2117 if (tp->urg_data) {
2118 u32 urg_offset = tp->urg_seq - *seq;
2119 if (urg_offset < used) {
2120 if (!urg_offset) {
2121 if (!sock_flag(sk, SOCK_URGINLINE)) {
2122 WRITE_ONCE(*seq, *seq + 1);
2123 urg_hole++;
2124 offset++;
2125 used--;
2126 if (!used)
2127 goto skip_copy;
2128 }
2129 } else
2130 used = urg_offset;
2131 }
2132 }
2133
2134 if (!(flags & MSG_TRUNC)) {
2135 err = skb_copy_datagram_msg(skb, offset, msg, used);
2136 if (err) {
2137 /* Exception. Bailout! */
2138 if (!copied)
2139 copied = -EFAULT;
2140 break;
2141 }
2142 }
2143
2144 WRITE_ONCE(*seq, *seq + used);
2145 copied += used;
2146 len -= used;
2147
2148 tcp_rcv_space_adjust(sk);
2149
2150skip_copy:
2151 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2152 tp->urg_data = 0;
2153 tcp_fast_path_check(sk);
2154 }
2155 if (used + offset < skb->len)
2156 continue;
2157
2158 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2159 tcp_update_recv_tstamps(skb, &tss);
2160 has_tss = true;
2161 has_cmsg = true;
2162 }
2163 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2164 goto found_fin_ok;
2165 if (!(flags & MSG_PEEK))
2166 sk_eat_skb(sk, skb);
2167 continue;
2168
2169found_fin_ok:
2170 /* Process the FIN. */
2171 WRITE_ONCE(*seq, *seq + 1);
2172 if (!(flags & MSG_PEEK))
2173 sk_eat_skb(sk, skb);
2174 break;
2175 } while (len > 0);
2176
2177 /* According to UNIX98, msg_name/msg_namelen are ignored
2178 * on connected socket. I was just happy when found this 8) --ANK
2179 */
2180
2181 /* Clean up data we have read: This will do ACK frames. */
2182 tcp_cleanup_rbuf(sk, copied);
2183
2184 release_sock(sk);
2185
2186 if (has_cmsg) {
2187 if (has_tss)
2188 tcp_recv_timestamp(msg, sk, &tss);
2189 if (tp->recvmsg_inq) {
2190 inq = tcp_inq_hint(sk);
2191 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2192 }
2193 }
2194
2195 return copied;
2196
2197out:
2198 release_sock(sk);
2199 return err;
2200
2201recv_urg:
2202 err = tcp_recv_urg(sk, msg, len, flags);
2203 goto out;
2204
2205recv_sndq:
2206 err = tcp_peek_sndq(sk, msg, len);
2207 goto out;
2208}
2209EXPORT_SYMBOL(tcp_recvmsg);
2210
2211void tcp_set_state(struct sock *sk, int state)
2212{
2213 int oldstate = sk->sk_state;
2214
2215 /* We defined a new enum for TCP states that are exported in BPF
2216 * so as not force the internal TCP states to be frozen. The
2217 * following checks will detect if an internal state value ever
2218 * differs from the BPF value. If this ever happens, then we will
2219 * need to remap the internal value to the BPF value before calling
2220 * tcp_call_bpf_2arg.
2221 */
2222 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2223 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2224 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2225 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2226 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2227 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2228 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2229 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2230 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2231 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2232 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2233 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2234 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2235
2236 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2237 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2238
2239 switch (state) {
2240 case TCP_ESTABLISHED:
2241 if (oldstate != TCP_ESTABLISHED)
2242 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2243 break;
2244
2245 case TCP_CLOSE:
2246 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2247 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2248
2249 sk->sk_prot->unhash(sk);
2250 if (inet_csk(sk)->icsk_bind_hash &&
2251 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2252 inet_put_port(sk);
2253 /* fall through */
2254 default:
2255 if (oldstate == TCP_ESTABLISHED)
2256 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2257 }
2258
2259 /* Change state AFTER socket is unhashed to avoid closed
2260 * socket sitting in hash tables.
2261 */
2262 inet_sk_state_store(sk, state);
2263}
2264EXPORT_SYMBOL_GPL(tcp_set_state);
2265
2266/*
2267 * State processing on a close. This implements the state shift for
2268 * sending our FIN frame. Note that we only send a FIN for some
2269 * states. A shutdown() may have already sent the FIN, or we may be
2270 * closed.
2271 */
2272
2273static const unsigned char new_state[16] = {
2274 /* current state: new state: action: */
2275 [0 /* (Invalid) */] = TCP_CLOSE,
2276 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2277 [TCP_SYN_SENT] = TCP_CLOSE,
2278 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2279 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2280 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2281 [TCP_TIME_WAIT] = TCP_CLOSE,
2282 [TCP_CLOSE] = TCP_CLOSE,
2283 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2284 [TCP_LAST_ACK] = TCP_LAST_ACK,
2285 [TCP_LISTEN] = TCP_CLOSE,
2286 [TCP_CLOSING] = TCP_CLOSING,
2287 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2288};
2289
2290static int tcp_close_state(struct sock *sk)
2291{
2292 int next = (int)new_state[sk->sk_state];
2293 int ns = next & TCP_STATE_MASK;
2294
2295 tcp_set_state(sk, ns);
2296
2297 return next & TCP_ACTION_FIN;
2298}
2299
2300/*
2301 * Shutdown the sending side of a connection. Much like close except
2302 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2303 */
2304
2305void tcp_shutdown(struct sock *sk, int how)
2306{
2307 /* We need to grab some memory, and put together a FIN,
2308 * and then put it into the queue to be sent.
2309 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2310 */
2311 if (!(how & SEND_SHUTDOWN))
2312 return;
2313
2314 /* If we've already sent a FIN, or it's a closed state, skip this. */
2315 if ((1 << sk->sk_state) &
2316 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2317 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2318 /* Clear out any half completed packets. FIN if needed. */
2319 if (tcp_close_state(sk))
2320 tcp_send_fin(sk);
2321 }
2322}
2323EXPORT_SYMBOL(tcp_shutdown);
2324
2325bool tcp_check_oom(struct sock *sk, int shift)
2326{
2327 bool too_many_orphans, out_of_socket_memory;
2328
2329 too_many_orphans = tcp_too_many_orphans(sk, shift);
2330 out_of_socket_memory = tcp_out_of_memory(sk);
2331
2332 if (too_many_orphans)
2333 net_info_ratelimited("too many orphaned sockets\n");
2334 if (out_of_socket_memory)
2335 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2336 return too_many_orphans || out_of_socket_memory;
2337}
2338
2339void tcp_close(struct sock *sk, long timeout)
2340{
2341 struct sk_buff *skb;
2342 int data_was_unread = 0;
2343 int state;
2344
2345 lock_sock(sk);
2346 sk->sk_shutdown = SHUTDOWN_MASK;
2347
2348 if (sk->sk_state == TCP_LISTEN) {
2349 tcp_set_state(sk, TCP_CLOSE);
2350
2351 /* Special case. */
2352 inet_csk_listen_stop(sk);
2353
2354 goto adjudge_to_death;
2355 }
2356
2357 /* We need to flush the recv. buffs. We do this only on the
2358 * descriptor close, not protocol-sourced closes, because the
2359 * reader process may not have drained the data yet!
2360 */
2361 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2362 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2363
2364 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2365 len--;
2366 data_was_unread += len;
2367 __kfree_skb(skb);
2368 }
2369
2370 sk_mem_reclaim(sk);
2371
2372 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2373 if (sk->sk_state == TCP_CLOSE)
2374 goto adjudge_to_death;
2375
2376 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2377 * data was lost. To witness the awful effects of the old behavior of
2378 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2379 * GET in an FTP client, suspend the process, wait for the client to
2380 * advertise a zero window, then kill -9 the FTP client, wheee...
2381 * Note: timeout is always zero in such a case.
2382 */
2383 if (unlikely(tcp_sk(sk)->repair)) {
2384 sk->sk_prot->disconnect(sk, 0);
2385 } else if (data_was_unread) {
2386 /* Unread data was tossed, zap the connection. */
2387 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2388 tcp_set_state(sk, TCP_CLOSE);
2389 tcp_send_active_reset(sk, sk->sk_allocation);
2390 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2391 /* Check zero linger _after_ checking for unread data. */
2392 sk->sk_prot->disconnect(sk, 0);
2393 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2394 } else if (tcp_close_state(sk)) {
2395 /* We FIN if the application ate all the data before
2396 * zapping the connection.
2397 */
2398
2399 /* RED-PEN. Formally speaking, we have broken TCP state
2400 * machine. State transitions:
2401 *
2402 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2403 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2404 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2405 *
2406 * are legal only when FIN has been sent (i.e. in window),
2407 * rather than queued out of window. Purists blame.
2408 *
2409 * F.e. "RFC state" is ESTABLISHED,
2410 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2411 *
2412 * The visible declinations are that sometimes
2413 * we enter time-wait state, when it is not required really
2414 * (harmless), do not send active resets, when they are
2415 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2416 * they look as CLOSING or LAST_ACK for Linux)
2417 * Probably, I missed some more holelets.
2418 * --ANK
2419 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2420 * in a single packet! (May consider it later but will
2421 * probably need API support or TCP_CORK SYN-ACK until
2422 * data is written and socket is closed.)
2423 */
2424 tcp_send_fin(sk);
2425 }
2426
2427 sk_stream_wait_close(sk, timeout);
2428
2429adjudge_to_death:
2430 state = sk->sk_state;
2431 sock_hold(sk);
2432 sock_orphan(sk);
2433
2434 local_bh_disable();
2435 bh_lock_sock(sk);
2436 /* remove backlog if any, without releasing ownership. */
2437 __release_sock(sk);
2438
2439 percpu_counter_inc(sk->sk_prot->orphan_count);
2440
2441 /* Have we already been destroyed by a softirq or backlog? */
2442 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2443 goto out;
2444
2445 /* This is a (useful) BSD violating of the RFC. There is a
2446 * problem with TCP as specified in that the other end could
2447 * keep a socket open forever with no application left this end.
2448 * We use a 1 minute timeout (about the same as BSD) then kill
2449 * our end. If they send after that then tough - BUT: long enough
2450 * that we won't make the old 4*rto = almost no time - whoops
2451 * reset mistake.
2452 *
2453 * Nope, it was not mistake. It is really desired behaviour
2454 * f.e. on http servers, when such sockets are useless, but
2455 * consume significant resources. Let's do it with special
2456 * linger2 option. --ANK
2457 */
2458
2459 if (sk->sk_state == TCP_FIN_WAIT2) {
2460 struct tcp_sock *tp = tcp_sk(sk);
2461 if (tp->linger2 < 0) {
2462 tcp_set_state(sk, TCP_CLOSE);
2463 tcp_send_active_reset(sk, GFP_ATOMIC);
2464 __NET_INC_STATS(sock_net(sk),
2465 LINUX_MIB_TCPABORTONLINGER);
2466 } else {
2467 const int tmo = tcp_fin_time(sk);
2468
2469 if (tmo > TCP_TIMEWAIT_LEN) {
2470 inet_csk_reset_keepalive_timer(sk,
2471 tmo - TCP_TIMEWAIT_LEN);
2472 } else {
2473 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2474 goto out;
2475 }
2476 }
2477 }
2478 if (sk->sk_state != TCP_CLOSE) {
2479 sk_mem_reclaim(sk);
2480 if (tcp_check_oom(sk, 0)) {
2481 tcp_set_state(sk, TCP_CLOSE);
2482 tcp_send_active_reset(sk, GFP_ATOMIC);
2483 __NET_INC_STATS(sock_net(sk),
2484 LINUX_MIB_TCPABORTONMEMORY);
2485 } else if (!check_net(sock_net(sk))) {
2486 /* Not possible to send reset; just close */
2487 tcp_set_state(sk, TCP_CLOSE);
2488 }
2489 }
2490
2491 if (sk->sk_state == TCP_CLOSE) {
2492 struct request_sock *req;
2493
2494 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2495 lockdep_sock_is_held(sk));
2496 /* We could get here with a non-NULL req if the socket is
2497 * aborted (e.g., closed with unread data) before 3WHS
2498 * finishes.
2499 */
2500 if (req)
2501 reqsk_fastopen_remove(sk, req, false);
2502 inet_csk_destroy_sock(sk);
2503 }
2504 /* Otherwise, socket is reprieved until protocol close. */
2505
2506out:
2507 bh_unlock_sock(sk);
2508 local_bh_enable();
2509 release_sock(sk);
2510 sock_put(sk);
2511}
2512EXPORT_SYMBOL(tcp_close);
2513
2514/* These states need RST on ABORT according to RFC793 */
2515
2516static inline bool tcp_need_reset(int state)
2517{
2518 return (1 << state) &
2519 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2520 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2521}
2522
2523static void tcp_rtx_queue_purge(struct sock *sk)
2524{
2525 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2526
2527 while (p) {
2528 struct sk_buff *skb = rb_to_skb(p);
2529
2530 p = rb_next(p);
2531 /* Since we are deleting whole queue, no need to
2532 * list_del(&skb->tcp_tsorted_anchor)
2533 */
2534 tcp_rtx_queue_unlink(skb, sk);
2535 sk_wmem_free_skb(sk, skb);
2536 }
2537}
2538
2539void tcp_write_queue_purge(struct sock *sk)
2540{
2541 struct sk_buff *skb;
2542
2543 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2544 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2545 tcp_skb_tsorted_anchor_cleanup(skb);
2546 sk_wmem_free_skb(sk, skb);
2547 }
2548 tcp_rtx_queue_purge(sk);
2549 skb = sk->sk_tx_skb_cache;
2550 if (skb) {
2551 __kfree_skb(skb);
2552 sk->sk_tx_skb_cache = NULL;
2553 }
2554 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2555 sk_mem_reclaim(sk);
2556 tcp_clear_all_retrans_hints(tcp_sk(sk));
2557 tcp_sk(sk)->packets_out = 0;
2558 inet_csk(sk)->icsk_backoff = 0;
2559}
2560
2561int tcp_disconnect(struct sock *sk, int flags)
2562{
2563 struct inet_sock *inet = inet_sk(sk);
2564 struct inet_connection_sock *icsk = inet_csk(sk);
2565 struct tcp_sock *tp = tcp_sk(sk);
2566 int old_state = sk->sk_state;
2567 u32 seq;
2568
2569 if (old_state != TCP_CLOSE)
2570 tcp_set_state(sk, TCP_CLOSE);
2571
2572 /* ABORT function of RFC793 */
2573 if (old_state == TCP_LISTEN) {
2574 inet_csk_listen_stop(sk);
2575 } else if (unlikely(tp->repair)) {
2576 sk->sk_err = ECONNABORTED;
2577 } else if (tcp_need_reset(old_state) ||
2578 (tp->snd_nxt != tp->write_seq &&
2579 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2580 /* The last check adjusts for discrepancy of Linux wrt. RFC
2581 * states
2582 */
2583 tcp_send_active_reset(sk, gfp_any());
2584 sk->sk_err = ECONNRESET;
2585 } else if (old_state == TCP_SYN_SENT)
2586 sk->sk_err = ECONNRESET;
2587
2588 tcp_clear_xmit_timers(sk);
2589 __skb_queue_purge(&sk->sk_receive_queue);
2590 if (sk->sk_rx_skb_cache) {
2591 __kfree_skb(sk->sk_rx_skb_cache);
2592 sk->sk_rx_skb_cache = NULL;
2593 }
2594 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2595 tp->urg_data = 0;
2596 tcp_write_queue_purge(sk);
2597 tcp_fastopen_active_disable_ofo_check(sk);
2598 skb_rbtree_purge(&tp->out_of_order_queue);
2599
2600 inet->inet_dport = 0;
2601
2602 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2603 inet_reset_saddr(sk);
2604
2605 sk->sk_shutdown = 0;
2606 sock_reset_flag(sk, SOCK_DONE);
2607 tp->srtt_us = 0;
2608 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2609 tp->rcv_rtt_last_tsecr = 0;
2610
2611 seq = tp->write_seq + tp->max_window + 2;
2612 if (!seq)
2613 seq = 1;
2614 WRITE_ONCE(tp->write_seq, seq);
2615
2616 icsk->icsk_backoff = 0;
2617 tp->snd_cwnd = 2;
2618 icsk->icsk_probes_out = 0;
2619 icsk->icsk_rto = TCP_TIMEOUT_INIT;
2620 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2621 tp->snd_cwnd = TCP_INIT_CWND;
2622 tp->snd_cwnd_cnt = 0;
2623 tp->window_clamp = 0;
2624 tp->delivered_ce = 0;
2625 tcp_set_ca_state(sk, TCP_CA_Open);
2626 tp->is_sack_reneg = 0;
2627 tcp_clear_retrans(tp);
2628 inet_csk_delack_init(sk);
2629 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2630 * issue in __tcp_select_window()
2631 */
2632 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2633 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2634 __sk_dst_reset(sk);
2635 dst_release(sk->sk_rx_dst);
2636 sk->sk_rx_dst = NULL;
2637 tcp_saved_syn_free(tp);
2638 tp->compressed_ack = 0;
2639 tp->bytes_sent = 0;
2640 tp->bytes_acked = 0;
2641 tp->bytes_received = 0;
2642 tp->bytes_retrans = 0;
2643 tp->duplicate_sack[0].start_seq = 0;
2644 tp->duplicate_sack[0].end_seq = 0;
2645 tp->dsack_dups = 0;
2646 tp->reord_seen = 0;
2647 tp->retrans_out = 0;
2648 tp->sacked_out = 0;
2649 tp->tlp_high_seq = 0;
2650 tp->last_oow_ack_time = 0;
2651 /* There's a bubble in the pipe until at least the first ACK. */
2652 tp->app_limited = ~0U;
2653 tp->rack.mstamp = 0;
2654 tp->rack.advanced = 0;
2655 tp->rack.reo_wnd_steps = 1;
2656 tp->rack.last_delivered = 0;
2657 tp->rack.reo_wnd_persist = 0;
2658 tp->rack.dsack_seen = 0;
2659 tp->syn_data_acked = 0;
2660 tp->rx_opt.saw_tstamp = 0;
2661 tp->rx_opt.dsack = 0;
2662 tp->rx_opt.num_sacks = 0;
2663 tp->rcv_ooopack = 0;
2664
2665
2666 /* Clean up fastopen related fields */
2667 tcp_free_fastopen_req(tp);
2668 inet->defer_connect = 0;
2669
2670 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2671
2672 if (sk->sk_frag.page) {
2673 put_page(sk->sk_frag.page);
2674 sk->sk_frag.page = NULL;
2675 sk->sk_frag.offset = 0;
2676 }
2677
2678 sk->sk_error_report(sk);
2679 return 0;
2680}
2681EXPORT_SYMBOL(tcp_disconnect);
2682
2683static inline bool tcp_can_repair_sock(const struct sock *sk)
2684{
2685 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2686 (sk->sk_state != TCP_LISTEN);
2687}
2688
2689static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2690{
2691 struct tcp_repair_window opt;
2692
2693 if (!tp->repair)
2694 return -EPERM;
2695
2696 if (len != sizeof(opt))
2697 return -EINVAL;
2698
2699 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2700 return -EFAULT;
2701
2702 if (opt.max_window < opt.snd_wnd)
2703 return -EINVAL;
2704
2705 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2706 return -EINVAL;
2707
2708 if (after(opt.rcv_wup, tp->rcv_nxt))
2709 return -EINVAL;
2710
2711 tp->snd_wl1 = opt.snd_wl1;
2712 tp->snd_wnd = opt.snd_wnd;
2713 tp->max_window = opt.max_window;
2714
2715 tp->rcv_wnd = opt.rcv_wnd;
2716 tp->rcv_wup = opt.rcv_wup;
2717
2718 return 0;
2719}
2720
2721static int tcp_repair_options_est(struct sock *sk,
2722 struct tcp_repair_opt __user *optbuf, unsigned int len)
2723{
2724 struct tcp_sock *tp = tcp_sk(sk);
2725 struct tcp_repair_opt opt;
2726
2727 while (len >= sizeof(opt)) {
2728 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2729 return -EFAULT;
2730
2731 optbuf++;
2732 len -= sizeof(opt);
2733
2734 switch (opt.opt_code) {
2735 case TCPOPT_MSS:
2736 tp->rx_opt.mss_clamp = opt.opt_val;
2737 tcp_mtup_init(sk);
2738 break;
2739 case TCPOPT_WINDOW:
2740 {
2741 u16 snd_wscale = opt.opt_val & 0xFFFF;
2742 u16 rcv_wscale = opt.opt_val >> 16;
2743
2744 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2745 return -EFBIG;
2746
2747 tp->rx_opt.snd_wscale = snd_wscale;
2748 tp->rx_opt.rcv_wscale = rcv_wscale;
2749 tp->rx_opt.wscale_ok = 1;
2750 }
2751 break;
2752 case TCPOPT_SACK_PERM:
2753 if (opt.opt_val != 0)
2754 return -EINVAL;
2755
2756 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2757 break;
2758 case TCPOPT_TIMESTAMP:
2759 if (opt.opt_val != 0)
2760 return -EINVAL;
2761
2762 tp->rx_opt.tstamp_ok = 1;
2763 break;
2764 }
2765 }
2766
2767 return 0;
2768}
2769
2770DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2771EXPORT_SYMBOL(tcp_tx_delay_enabled);
2772
2773static void tcp_enable_tx_delay(void)
2774{
2775 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
2776 static int __tcp_tx_delay_enabled = 0;
2777
2778 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
2779 static_branch_enable(&tcp_tx_delay_enabled);
2780 pr_info("TCP_TX_DELAY enabled\n");
2781 }
2782 }
2783}
2784
2785/*
2786 * Socket option code for TCP.
2787 */
2788static int do_tcp_setsockopt(struct sock *sk, int level,
2789 int optname, char __user *optval, unsigned int optlen)
2790{
2791 struct tcp_sock *tp = tcp_sk(sk);
2792 struct inet_connection_sock *icsk = inet_csk(sk);
2793 struct net *net = sock_net(sk);
2794 int val;
2795 int err = 0;
2796
2797 /* These are data/string values, all the others are ints */
2798 switch (optname) {
2799 case TCP_CONGESTION: {
2800 char name[TCP_CA_NAME_MAX];
2801
2802 if (optlen < 1)
2803 return -EINVAL;
2804
2805 val = strncpy_from_user(name, optval,
2806 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2807 if (val < 0)
2808 return -EFAULT;
2809 name[val] = 0;
2810
2811 lock_sock(sk);
2812 err = tcp_set_congestion_control(sk, name, true, true,
2813 ns_capable(sock_net(sk)->user_ns,
2814 CAP_NET_ADMIN));
2815 release_sock(sk);
2816 return err;
2817 }
2818 case TCP_ULP: {
2819 char name[TCP_ULP_NAME_MAX];
2820
2821 if (optlen < 1)
2822 return -EINVAL;
2823
2824 val = strncpy_from_user(name, optval,
2825 min_t(long, TCP_ULP_NAME_MAX - 1,
2826 optlen));
2827 if (val < 0)
2828 return -EFAULT;
2829 name[val] = 0;
2830
2831 lock_sock(sk);
2832 err = tcp_set_ulp(sk, name);
2833 release_sock(sk);
2834 return err;
2835 }
2836 case TCP_FASTOPEN_KEY: {
2837 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
2838 __u8 *backup_key = NULL;
2839
2840 /* Allow a backup key as well to facilitate key rotation
2841 * First key is the active one.
2842 */
2843 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
2844 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
2845 return -EINVAL;
2846
2847 if (copy_from_user(key, optval, optlen))
2848 return -EFAULT;
2849
2850 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
2851 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
2852
2853 return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
2854 }
2855 default:
2856 /* fallthru */
2857 break;
2858 }
2859
2860 if (optlen < sizeof(int))
2861 return -EINVAL;
2862
2863 if (get_user(val, (int __user *)optval))
2864 return -EFAULT;
2865
2866 lock_sock(sk);
2867
2868 switch (optname) {
2869 case TCP_MAXSEG:
2870 /* Values greater than interface MTU won't take effect. However
2871 * at the point when this call is done we typically don't yet
2872 * know which interface is going to be used
2873 */
2874 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2875 err = -EINVAL;
2876 break;
2877 }
2878 tp->rx_opt.user_mss = val;
2879 break;
2880
2881 case TCP_NODELAY:
2882 if (val) {
2883 /* TCP_NODELAY is weaker than TCP_CORK, so that
2884 * this option on corked socket is remembered, but
2885 * it is not activated until cork is cleared.
2886 *
2887 * However, when TCP_NODELAY is set we make
2888 * an explicit push, which overrides even TCP_CORK
2889 * for currently queued segments.
2890 */
2891 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2892 tcp_push_pending_frames(sk);
2893 } else {
2894 tp->nonagle &= ~TCP_NAGLE_OFF;
2895 }
2896 break;
2897
2898 case TCP_THIN_LINEAR_TIMEOUTS:
2899 if (val < 0 || val > 1)
2900 err = -EINVAL;
2901 else
2902 tp->thin_lto = val;
2903 break;
2904
2905 case TCP_THIN_DUPACK:
2906 if (val < 0 || val > 1)
2907 err = -EINVAL;
2908 break;
2909
2910 case TCP_REPAIR:
2911 if (!tcp_can_repair_sock(sk))
2912 err = -EPERM;
2913 else if (val == TCP_REPAIR_ON) {
2914 tp->repair = 1;
2915 sk->sk_reuse = SK_FORCE_REUSE;
2916 tp->repair_queue = TCP_NO_QUEUE;
2917 } else if (val == TCP_REPAIR_OFF) {
2918 tp->repair = 0;
2919 sk->sk_reuse = SK_NO_REUSE;
2920 tcp_send_window_probe(sk);
2921 } else if (val == TCP_REPAIR_OFF_NO_WP) {
2922 tp->repair = 0;
2923 sk->sk_reuse = SK_NO_REUSE;
2924 } else
2925 err = -EINVAL;
2926
2927 break;
2928
2929 case TCP_REPAIR_QUEUE:
2930 if (!tp->repair)
2931 err = -EPERM;
2932 else if ((unsigned int)val < TCP_QUEUES_NR)
2933 tp->repair_queue = val;
2934 else
2935 err = -EINVAL;
2936 break;
2937
2938 case TCP_QUEUE_SEQ:
2939 if (sk->sk_state != TCP_CLOSE)
2940 err = -EPERM;
2941 else if (tp->repair_queue == TCP_SEND_QUEUE)
2942 WRITE_ONCE(tp->write_seq, val);
2943 else if (tp->repair_queue == TCP_RECV_QUEUE)
2944 WRITE_ONCE(tp->rcv_nxt, val);
2945 else
2946 err = -EINVAL;
2947 break;
2948
2949 case TCP_REPAIR_OPTIONS:
2950 if (!tp->repair)
2951 err = -EINVAL;
2952 else if (sk->sk_state == TCP_ESTABLISHED)
2953 err = tcp_repair_options_est(sk,
2954 (struct tcp_repair_opt __user *)optval,
2955 optlen);
2956 else
2957 err = -EPERM;
2958 break;
2959
2960 case TCP_CORK:
2961 /* When set indicates to always queue non-full frames.
2962 * Later the user clears this option and we transmit
2963 * any pending partial frames in the queue. This is
2964 * meant to be used alongside sendfile() to get properly
2965 * filled frames when the user (for example) must write
2966 * out headers with a write() call first and then use
2967 * sendfile to send out the data parts.
2968 *
2969 * TCP_CORK can be set together with TCP_NODELAY and it is
2970 * stronger than TCP_NODELAY.
2971 */
2972 if (val) {
2973 tp->nonagle |= TCP_NAGLE_CORK;
2974 } else {
2975 tp->nonagle &= ~TCP_NAGLE_CORK;
2976 if (tp->nonagle&TCP_NAGLE_OFF)
2977 tp->nonagle |= TCP_NAGLE_PUSH;
2978 tcp_push_pending_frames(sk);
2979 }
2980 break;
2981
2982 case TCP_KEEPIDLE:
2983 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2984 err = -EINVAL;
2985 else {
2986 tp->keepalive_time = val * HZ;
2987 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2988 !((1 << sk->sk_state) &
2989 (TCPF_CLOSE | TCPF_LISTEN))) {
2990 u32 elapsed = keepalive_time_elapsed(tp);
2991 if (tp->keepalive_time > elapsed)
2992 elapsed = tp->keepalive_time - elapsed;
2993 else
2994 elapsed = 0;
2995 inet_csk_reset_keepalive_timer(sk, elapsed);
2996 }
2997 }
2998 break;
2999 case TCP_KEEPINTVL:
3000 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3001 err = -EINVAL;
3002 else
3003 tp->keepalive_intvl = val * HZ;
3004 break;
3005 case TCP_KEEPCNT:
3006 if (val < 1 || val > MAX_TCP_KEEPCNT)
3007 err = -EINVAL;
3008 else
3009 tp->keepalive_probes = val;
3010 break;
3011 case TCP_SYNCNT:
3012 if (val < 1 || val > MAX_TCP_SYNCNT)
3013 err = -EINVAL;
3014 else
3015 icsk->icsk_syn_retries = val;
3016 break;
3017
3018 case TCP_SAVE_SYN:
3019 if (val < 0 || val > 1)
3020 err = -EINVAL;
3021 else
3022 tp->save_syn = val;
3023 break;
3024
3025 case TCP_LINGER2:
3026 if (val < 0)
3027 tp->linger2 = -1;
3028 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
3029 tp->linger2 = 0;
3030 else
3031 tp->linger2 = val * HZ;
3032 break;
3033
3034 case TCP_DEFER_ACCEPT:
3035 /* Translate value in seconds to number of retransmits */
3036 icsk->icsk_accept_queue.rskq_defer_accept =
3037 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3038 TCP_RTO_MAX / HZ);
3039 break;
3040
3041 case TCP_WINDOW_CLAMP:
3042 if (!val) {
3043 if (sk->sk_state != TCP_CLOSE) {
3044 err = -EINVAL;
3045 break;
3046 }
3047 tp->window_clamp = 0;
3048 } else
3049 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3050 SOCK_MIN_RCVBUF / 2 : val;
3051 break;
3052
3053 case TCP_QUICKACK:
3054 if (!val) {
3055 inet_csk_enter_pingpong_mode(sk);
3056 } else {
3057 inet_csk_exit_pingpong_mode(sk);
3058 if ((1 << sk->sk_state) &
3059 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3060 inet_csk_ack_scheduled(sk)) {
3061 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
3062 tcp_cleanup_rbuf(sk, 1);
3063 if (!(val & 1))
3064 inet_csk_enter_pingpong_mode(sk);
3065 }
3066 }
3067 break;
3068
3069#ifdef CONFIG_TCP_MD5SIG
3070 case TCP_MD5SIG:
3071 case TCP_MD5SIG_EXT:
3072 if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))
3073 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3074 else
3075 err = -EINVAL;
3076 break;
3077#endif
3078 case TCP_USER_TIMEOUT:
3079 /* Cap the max time in ms TCP will retry or probe the window
3080 * before giving up and aborting (ETIMEDOUT) a connection.
3081 */
3082 if (val < 0)
3083 err = -EINVAL;
3084 else
3085 icsk->icsk_user_timeout = val;
3086 break;
3087
3088 case TCP_FASTOPEN:
3089 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3090 TCPF_LISTEN))) {
3091 tcp_fastopen_init_key_once(net);
3092
3093 fastopen_queue_tune(sk, val);
3094 } else {
3095 err = -EINVAL;
3096 }
3097 break;
3098 case TCP_FASTOPEN_CONNECT:
3099 if (val > 1 || val < 0) {
3100 err = -EINVAL;
3101 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
3102 if (sk->sk_state == TCP_CLOSE)
3103 tp->fastopen_connect = val;
3104 else
3105 err = -EINVAL;
3106 } else {
3107 err = -EOPNOTSUPP;
3108 }
3109 break;
3110 case TCP_FASTOPEN_NO_COOKIE:
3111 if (val > 1 || val < 0)
3112 err = -EINVAL;
3113 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3114 err = -EINVAL;
3115 else
3116 tp->fastopen_no_cookie = val;
3117 break;
3118 case TCP_TIMESTAMP:
3119 if (!tp->repair)
3120 err = -EPERM;
3121 else
3122 tp->tsoffset = val - tcp_time_stamp_raw();
3123 break;
3124 case TCP_REPAIR_WINDOW:
3125 err = tcp_repair_set_window(tp, optval, optlen);
3126 break;
3127 case TCP_NOTSENT_LOWAT:
3128 tp->notsent_lowat = val;
3129 sk->sk_write_space(sk);
3130 break;
3131 case TCP_INQ:
3132 if (val > 1 || val < 0)
3133 err = -EINVAL;
3134 else
3135 tp->recvmsg_inq = val;
3136 break;
3137 case TCP_TX_DELAY:
3138 if (val)
3139 tcp_enable_tx_delay();
3140 tp->tcp_tx_delay = val;
3141 break;
3142 default:
3143 err = -ENOPROTOOPT;
3144 break;
3145 }
3146
3147 release_sock(sk);
3148 return err;
3149}
3150
3151int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
3152 unsigned int optlen)
3153{
3154 const struct inet_connection_sock *icsk = inet_csk(sk);
3155
3156 if (level != SOL_TCP)
3157 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3158 optval, optlen);
3159 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3160}
3161EXPORT_SYMBOL(tcp_setsockopt);
3162
3163#ifdef CONFIG_COMPAT
3164int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
3165 char __user *optval, unsigned int optlen)
3166{
3167 if (level != SOL_TCP)
3168 return inet_csk_compat_setsockopt(sk, level, optname,
3169 optval, optlen);
3170 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3171}
3172EXPORT_SYMBOL(compat_tcp_setsockopt);
3173#endif
3174
3175static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3176 struct tcp_info *info)
3177{
3178 u64 stats[__TCP_CHRONO_MAX], total = 0;
3179 enum tcp_chrono i;
3180
3181 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3182 stats[i] = tp->chrono_stat[i - 1];
3183 if (i == tp->chrono_type)
3184 stats[i] += tcp_jiffies32 - tp->chrono_start;
3185 stats[i] *= USEC_PER_SEC / HZ;
3186 total += stats[i];
3187 }
3188
3189 info->tcpi_busy_time = total;
3190 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3191 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3192}
3193
3194/* Return information about state of tcp endpoint in API format. */
3195void tcp_get_info(struct sock *sk, struct tcp_info *info)
3196{
3197 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3198 const struct inet_connection_sock *icsk = inet_csk(sk);
3199 unsigned long rate;
3200 u32 now;
3201 u64 rate64;
3202 bool slow;
3203
3204 memset(info, 0, sizeof(*info));
3205 if (sk->sk_type != SOCK_STREAM)
3206 return;
3207
3208 info->tcpi_state = inet_sk_state_load(sk);
3209
3210 /* Report meaningful fields for all TCP states, including listeners */
3211 rate = READ_ONCE(sk->sk_pacing_rate);
3212 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3213 info->tcpi_pacing_rate = rate64;
3214
3215 rate = READ_ONCE(sk->sk_max_pacing_rate);
3216 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3217 info->tcpi_max_pacing_rate = rate64;
3218
3219 info->tcpi_reordering = tp->reordering;
3220 info->tcpi_snd_cwnd = tp->snd_cwnd;
3221
3222 if (info->tcpi_state == TCP_LISTEN) {
3223 /* listeners aliased fields :
3224 * tcpi_unacked -> Number of children ready for accept()
3225 * tcpi_sacked -> max backlog
3226 */
3227 info->tcpi_unacked = sk->sk_ack_backlog;
3228 info->tcpi_sacked = sk->sk_max_ack_backlog;
3229 return;
3230 }
3231
3232 slow = lock_sock_fast(sk);
3233
3234 info->tcpi_ca_state = icsk->icsk_ca_state;
3235 info->tcpi_retransmits = icsk->icsk_retransmits;
3236 info->tcpi_probes = icsk->icsk_probes_out;
3237 info->tcpi_backoff = icsk->icsk_backoff;
3238
3239 if (tp->rx_opt.tstamp_ok)
3240 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3241 if (tcp_is_sack(tp))
3242 info->tcpi_options |= TCPI_OPT_SACK;
3243 if (tp->rx_opt.wscale_ok) {
3244 info->tcpi_options |= TCPI_OPT_WSCALE;
3245 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3246 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3247 }
3248
3249 if (tp->ecn_flags & TCP_ECN_OK)
3250 info->tcpi_options |= TCPI_OPT_ECN;
3251 if (tp->ecn_flags & TCP_ECN_SEEN)
3252 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3253 if (tp->syn_data_acked)
3254 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3255
3256 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3257 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3258 info->tcpi_snd_mss = tp->mss_cache;
3259 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3260
3261 info->tcpi_unacked = tp->packets_out;
3262 info->tcpi_sacked = tp->sacked_out;
3263
3264 info->tcpi_lost = tp->lost_out;
3265 info->tcpi_retrans = tp->retrans_out;
3266
3267 now = tcp_jiffies32;
3268 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3269 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3270 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3271
3272 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3273 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3274 info->tcpi_rtt = tp->srtt_us >> 3;
3275 info->tcpi_rttvar = tp->mdev_us >> 2;
3276 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3277 info->tcpi_advmss = tp->advmss;
3278
3279 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3280 info->tcpi_rcv_space = tp->rcvq_space.space;
3281
3282 info->tcpi_total_retrans = tp->total_retrans;
3283
3284 info->tcpi_bytes_acked = tp->bytes_acked;
3285 info->tcpi_bytes_received = tp->bytes_received;
3286 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3287 tcp_get_info_chrono_stats(tp, info);
3288
3289 info->tcpi_segs_out = tp->segs_out;
3290 info->tcpi_segs_in = tp->segs_in;
3291
3292 info->tcpi_min_rtt = tcp_min_rtt(tp);
3293 info->tcpi_data_segs_in = tp->data_segs_in;
3294 info->tcpi_data_segs_out = tp->data_segs_out;
3295
3296 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3297 rate64 = tcp_compute_delivery_rate(tp);
3298 if (rate64)
3299 info->tcpi_delivery_rate = rate64;
3300 info->tcpi_delivered = tp->delivered;
3301 info->tcpi_delivered_ce = tp->delivered_ce;
3302 info->tcpi_bytes_sent = tp->bytes_sent;
3303 info->tcpi_bytes_retrans = tp->bytes_retrans;
3304 info->tcpi_dsack_dups = tp->dsack_dups;
3305 info->tcpi_reord_seen = tp->reord_seen;
3306 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3307 info->tcpi_snd_wnd = tp->snd_wnd;
3308 unlock_sock_fast(sk, slow);
3309}
3310EXPORT_SYMBOL_GPL(tcp_get_info);
3311
3312static size_t tcp_opt_stats_get_size(void)
3313{
3314 return
3315 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3316 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3317 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3318 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3319 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3320 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3321 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3322 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3323 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3324 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3325 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3326 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3327 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3328 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3329 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3330 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3331 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3332 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3333 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3334 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3335 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3336 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3337 0;
3338}
3339
3340struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
3341{
3342 const struct tcp_sock *tp = tcp_sk(sk);
3343 struct sk_buff *stats;
3344 struct tcp_info info;
3345 unsigned long rate;
3346 u64 rate64;
3347
3348 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3349 if (!stats)
3350 return NULL;
3351
3352 tcp_get_info_chrono_stats(tp, &info);
3353 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3354 info.tcpi_busy_time, TCP_NLA_PAD);
3355 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3356 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3357 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3358 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3359 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3360 tp->data_segs_out, TCP_NLA_PAD);
3361 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3362 tp->total_retrans, TCP_NLA_PAD);
3363
3364 rate = READ_ONCE(sk->sk_pacing_rate);
3365 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3366 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3367
3368 rate64 = tcp_compute_delivery_rate(tp);
3369 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3370
3371 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3372 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3373 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3374
3375 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3376 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3377 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3378 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3379 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3380
3381 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3382 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3383
3384 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3385 TCP_NLA_PAD);
3386 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3387 TCP_NLA_PAD);
3388 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3389 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3390 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3391
3392 return stats;
3393}
3394
3395static int do_tcp_getsockopt(struct sock *sk, int level,
3396 int optname, char __user *optval, int __user *optlen)
3397{
3398 struct inet_connection_sock *icsk = inet_csk(sk);
3399 struct tcp_sock *tp = tcp_sk(sk);
3400 struct net *net = sock_net(sk);
3401 int val, len;
3402
3403 if (get_user(len, optlen))
3404 return -EFAULT;
3405
3406 len = min_t(unsigned int, len, sizeof(int));
3407
3408 if (len < 0)
3409 return -EINVAL;
3410
3411 switch (optname) {
3412 case TCP_MAXSEG:
3413 val = tp->mss_cache;
3414 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3415 val = tp->rx_opt.user_mss;
3416 if (tp->repair)
3417 val = tp->rx_opt.mss_clamp;
3418 break;
3419 case TCP_NODELAY:
3420 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3421 break;
3422 case TCP_CORK:
3423 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3424 break;
3425 case TCP_KEEPIDLE:
3426 val = keepalive_time_when(tp) / HZ;
3427 break;
3428 case TCP_KEEPINTVL:
3429 val = keepalive_intvl_when(tp) / HZ;
3430 break;
3431 case TCP_KEEPCNT:
3432 val = keepalive_probes(tp);
3433 break;
3434 case TCP_SYNCNT:
3435 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3436 break;
3437 case TCP_LINGER2:
3438 val = tp->linger2;
3439 if (val >= 0)
3440 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3441 break;
3442 case TCP_DEFER_ACCEPT:
3443 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3444 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3445 break;
3446 case TCP_WINDOW_CLAMP:
3447 val = tp->window_clamp;
3448 break;
3449 case TCP_INFO: {
3450 struct tcp_info info;
3451
3452 if (get_user(len, optlen))
3453 return -EFAULT;
3454
3455 tcp_get_info(sk, &info);
3456
3457 len = min_t(unsigned int, len, sizeof(info));
3458 if (put_user(len, optlen))
3459 return -EFAULT;
3460 if (copy_to_user(optval, &info, len))
3461 return -EFAULT;
3462 return 0;
3463 }
3464 case TCP_CC_INFO: {
3465 const struct tcp_congestion_ops *ca_ops;
3466 union tcp_cc_info info;
3467 size_t sz = 0;
3468 int attr;
3469
3470 if (get_user(len, optlen))
3471 return -EFAULT;
3472
3473 ca_ops = icsk->icsk_ca_ops;
3474 if (ca_ops && ca_ops->get_info)
3475 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3476
3477 len = min_t(unsigned int, len, sz);
3478 if (put_user(len, optlen))
3479 return -EFAULT;
3480 if (copy_to_user(optval, &info, len))
3481 return -EFAULT;
3482 return 0;
3483 }
3484 case TCP_QUICKACK:
3485 val = !inet_csk_in_pingpong_mode(sk);
3486 break;
3487
3488 case TCP_CONGESTION:
3489 if (get_user(len, optlen))
3490 return -EFAULT;
3491 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3492 if (put_user(len, optlen))
3493 return -EFAULT;
3494 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3495 return -EFAULT;
3496 return 0;
3497
3498 case TCP_ULP:
3499 if (get_user(len, optlen))
3500 return -EFAULT;
3501 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3502 if (!icsk->icsk_ulp_ops) {
3503 if (put_user(0, optlen))
3504 return -EFAULT;
3505 return 0;
3506 }
3507 if (put_user(len, optlen))
3508 return -EFAULT;
3509 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3510 return -EFAULT;
3511 return 0;
3512
3513 case TCP_FASTOPEN_KEY: {
3514 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3515 struct tcp_fastopen_context *ctx;
3516 unsigned int key_len = 0;
3517
3518 if (get_user(len, optlen))
3519 return -EFAULT;
3520
3521 rcu_read_lock();
3522 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
3523 if (ctx) {
3524 key_len = tcp_fastopen_context_len(ctx) *
3525 TCP_FASTOPEN_KEY_LENGTH;
3526 memcpy(&key[0], &ctx->key[0], key_len);
3527 }
3528 rcu_read_unlock();
3529
3530 len = min_t(unsigned int, len, key_len);
3531 if (put_user(len, optlen))
3532 return -EFAULT;
3533 if (copy_to_user(optval, key, len))
3534 return -EFAULT;
3535 return 0;
3536 }
3537 case TCP_THIN_LINEAR_TIMEOUTS:
3538 val = tp->thin_lto;
3539 break;
3540
3541 case TCP_THIN_DUPACK:
3542 val = 0;
3543 break;
3544
3545 case TCP_REPAIR:
3546 val = tp->repair;
3547 break;
3548
3549 case TCP_REPAIR_QUEUE:
3550 if (tp->repair)
3551 val = tp->repair_queue;
3552 else
3553 return -EINVAL;
3554 break;
3555
3556 case TCP_REPAIR_WINDOW: {
3557 struct tcp_repair_window opt;
3558
3559 if (get_user(len, optlen))
3560 return -EFAULT;
3561
3562 if (len != sizeof(opt))
3563 return -EINVAL;
3564
3565 if (!tp->repair)
3566 return -EPERM;
3567
3568 opt.snd_wl1 = tp->snd_wl1;
3569 opt.snd_wnd = tp->snd_wnd;
3570 opt.max_window = tp->max_window;
3571 opt.rcv_wnd = tp->rcv_wnd;
3572 opt.rcv_wup = tp->rcv_wup;
3573
3574 if (copy_to_user(optval, &opt, len))
3575 return -EFAULT;
3576 return 0;
3577 }
3578 case TCP_QUEUE_SEQ:
3579 if (tp->repair_queue == TCP_SEND_QUEUE)
3580 val = tp->write_seq;
3581 else if (tp->repair_queue == TCP_RECV_QUEUE)
3582 val = tp->rcv_nxt;
3583 else
3584 return -EINVAL;
3585 break;
3586
3587 case TCP_USER_TIMEOUT:
3588 val = icsk->icsk_user_timeout;
3589 break;
3590
3591 case TCP_FASTOPEN:
3592 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3593 break;
3594
3595 case TCP_FASTOPEN_CONNECT:
3596 val = tp->fastopen_connect;
3597 break;
3598
3599 case TCP_FASTOPEN_NO_COOKIE:
3600 val = tp->fastopen_no_cookie;
3601 break;
3602
3603 case TCP_TX_DELAY:
3604 val = tp->tcp_tx_delay;
3605 break;
3606
3607 case TCP_TIMESTAMP:
3608 val = tcp_time_stamp_raw() + tp->tsoffset;
3609 break;
3610 case TCP_NOTSENT_LOWAT:
3611 val = tp->notsent_lowat;
3612 break;
3613 case TCP_INQ:
3614 val = tp->recvmsg_inq;
3615 break;
3616 case TCP_SAVE_SYN:
3617 val = tp->save_syn;
3618 break;
3619 case TCP_SAVED_SYN: {
3620 if (get_user(len, optlen))
3621 return -EFAULT;
3622
3623 lock_sock(sk);
3624 if (tp->saved_syn) {
3625 if (len < tp->saved_syn[0]) {
3626 if (put_user(tp->saved_syn[0], optlen)) {
3627 release_sock(sk);
3628 return -EFAULT;
3629 }
3630 release_sock(sk);
3631 return -EINVAL;
3632 }
3633 len = tp->saved_syn[0];
3634 if (put_user(len, optlen)) {
3635 release_sock(sk);
3636 return -EFAULT;
3637 }
3638 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3639 release_sock(sk);
3640 return -EFAULT;
3641 }
3642 tcp_saved_syn_free(tp);
3643 release_sock(sk);
3644 } else {
3645 release_sock(sk);
3646 len = 0;
3647 if (put_user(len, optlen))
3648 return -EFAULT;
3649 }
3650 return 0;
3651 }
3652#ifdef CONFIG_MMU
3653 case TCP_ZEROCOPY_RECEIVE: {
3654 struct tcp_zerocopy_receive zc;
3655 int err;
3656
3657 if (get_user(len, optlen))
3658 return -EFAULT;
3659 if (len != sizeof(zc))
3660 return -EINVAL;
3661 if (copy_from_user(&zc, optval, len))
3662 return -EFAULT;
3663 lock_sock(sk);
3664 err = tcp_zerocopy_receive(sk, &zc);
3665 release_sock(sk);
3666 if (!err && copy_to_user(optval, &zc, len))
3667 err = -EFAULT;
3668 return err;
3669 }
3670#endif
3671 default:
3672 return -ENOPROTOOPT;
3673 }
3674
3675 if (put_user(len, optlen))
3676 return -EFAULT;
3677 if (copy_to_user(optval, &val, len))
3678 return -EFAULT;
3679 return 0;
3680}
3681
3682int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3683 int __user *optlen)
3684{
3685 struct inet_connection_sock *icsk = inet_csk(sk);
3686
3687 if (level != SOL_TCP)
3688 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3689 optval, optlen);
3690 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3691}
3692EXPORT_SYMBOL(tcp_getsockopt);
3693
3694#ifdef CONFIG_COMPAT
3695int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3696 char __user *optval, int __user *optlen)
3697{
3698 if (level != SOL_TCP)
3699 return inet_csk_compat_getsockopt(sk, level, optname,
3700 optval, optlen);
3701 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3702}
3703EXPORT_SYMBOL(compat_tcp_getsockopt);
3704#endif
3705
3706#ifdef CONFIG_TCP_MD5SIG
3707static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3708static DEFINE_MUTEX(tcp_md5sig_mutex);
3709static bool tcp_md5sig_pool_populated = false;
3710
3711static void __tcp_alloc_md5sig_pool(void)
3712{
3713 struct crypto_ahash *hash;
3714 int cpu;
3715
3716 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3717 if (IS_ERR(hash))
3718 return;
3719
3720 for_each_possible_cpu(cpu) {
3721 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3722 struct ahash_request *req;
3723
3724 if (!scratch) {
3725 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3726 sizeof(struct tcphdr),
3727 GFP_KERNEL,
3728 cpu_to_node(cpu));
3729 if (!scratch)
3730 return;
3731 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3732 }
3733 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3734 continue;
3735
3736 req = ahash_request_alloc(hash, GFP_KERNEL);
3737 if (!req)
3738 return;
3739
3740 ahash_request_set_callback(req, 0, NULL, NULL);
3741
3742 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3743 }
3744 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3745 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3746 */
3747 smp_wmb();
3748 tcp_md5sig_pool_populated = true;
3749}
3750
3751bool tcp_alloc_md5sig_pool(void)
3752{
3753 if (unlikely(!tcp_md5sig_pool_populated)) {
3754 mutex_lock(&tcp_md5sig_mutex);
3755
3756 if (!tcp_md5sig_pool_populated) {
3757 __tcp_alloc_md5sig_pool();
3758 if (tcp_md5sig_pool_populated)
3759 static_branch_inc(&tcp_md5_needed);
3760 }
3761
3762 mutex_unlock(&tcp_md5sig_mutex);
3763 }
3764 return tcp_md5sig_pool_populated;
3765}
3766EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3767
3768
3769/**
3770 * tcp_get_md5sig_pool - get md5sig_pool for this user
3771 *
3772 * We use percpu structure, so if we succeed, we exit with preemption
3773 * and BH disabled, to make sure another thread or softirq handling
3774 * wont try to get same context.
3775 */
3776struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3777{
3778 local_bh_disable();
3779
3780 if (tcp_md5sig_pool_populated) {
3781 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3782 smp_rmb();
3783 return this_cpu_ptr(&tcp_md5sig_pool);
3784 }
3785 local_bh_enable();
3786 return NULL;
3787}
3788EXPORT_SYMBOL(tcp_get_md5sig_pool);
3789
3790int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3791 const struct sk_buff *skb, unsigned int header_len)
3792{
3793 struct scatterlist sg;
3794 const struct tcphdr *tp = tcp_hdr(skb);
3795 struct ahash_request *req = hp->md5_req;
3796 unsigned int i;
3797 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3798 skb_headlen(skb) - header_len : 0;
3799 const struct skb_shared_info *shi = skb_shinfo(skb);
3800 struct sk_buff *frag_iter;
3801
3802 sg_init_table(&sg, 1);
3803
3804 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3805 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3806 if (crypto_ahash_update(req))
3807 return 1;
3808
3809 for (i = 0; i < shi->nr_frags; ++i) {
3810 const skb_frag_t *f = &shi->frags[i];
3811 unsigned int offset = skb_frag_off(f);
3812 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3813
3814 sg_set_page(&sg, page, skb_frag_size(f),
3815 offset_in_page(offset));
3816 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3817 if (crypto_ahash_update(req))
3818 return 1;
3819 }
3820
3821 skb_walk_frags(skb, frag_iter)
3822 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3823 return 1;
3824
3825 return 0;
3826}
3827EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3828
3829int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3830{
3831 struct scatterlist sg;
3832
3833 sg_init_one(&sg, key->key, key->keylen);
3834 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3835 return crypto_ahash_update(hp->md5_req);
3836}
3837EXPORT_SYMBOL(tcp_md5_hash_key);
3838
3839#endif
3840
3841void tcp_done(struct sock *sk)
3842{
3843 struct request_sock *req;
3844
3845 /* We might be called with a new socket, after
3846 * inet_csk_prepare_forced_close() has been called
3847 * so we can not use lockdep_sock_is_held(sk)
3848 */
3849 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
3850
3851 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3852 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3853
3854 tcp_set_state(sk, TCP_CLOSE);
3855 tcp_clear_xmit_timers(sk);
3856 if (req)
3857 reqsk_fastopen_remove(sk, req, false);
3858
3859 sk->sk_shutdown = SHUTDOWN_MASK;
3860
3861 if (!sock_flag(sk, SOCK_DEAD))
3862 sk->sk_state_change(sk);
3863 else
3864 inet_csk_destroy_sock(sk);
3865}
3866EXPORT_SYMBOL_GPL(tcp_done);
3867
3868int tcp_abort(struct sock *sk, int err)
3869{
3870 if (!sk_fullsock(sk)) {
3871 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3872 struct request_sock *req = inet_reqsk(sk);
3873
3874 local_bh_disable();
3875 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
3876 local_bh_enable();
3877 return 0;
3878 }
3879 return -EOPNOTSUPP;
3880 }
3881
3882 /* Don't race with userspace socket closes such as tcp_close. */
3883 lock_sock(sk);
3884
3885 if (sk->sk_state == TCP_LISTEN) {
3886 tcp_set_state(sk, TCP_CLOSE);
3887 inet_csk_listen_stop(sk);
3888 }
3889
3890 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3891 local_bh_disable();
3892 bh_lock_sock(sk);
3893
3894 if (!sock_flag(sk, SOCK_DEAD)) {
3895 sk->sk_err = err;
3896 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3897 smp_wmb();
3898 sk->sk_error_report(sk);
3899 if (tcp_need_reset(sk->sk_state))
3900 tcp_send_active_reset(sk, GFP_ATOMIC);
3901 tcp_done(sk);
3902 }
3903
3904 bh_unlock_sock(sk);
3905 local_bh_enable();
3906 tcp_write_queue_purge(sk);
3907 release_sock(sk);
3908 return 0;
3909}
3910EXPORT_SYMBOL_GPL(tcp_abort);
3911
3912extern struct tcp_congestion_ops tcp_reno;
3913
3914static __initdata unsigned long thash_entries;
3915static int __init set_thash_entries(char *str)
3916{
3917 ssize_t ret;
3918
3919 if (!str)
3920 return 0;
3921
3922 ret = kstrtoul(str, 0, &thash_entries);
3923 if (ret)
3924 return 0;
3925
3926 return 1;
3927}
3928__setup("thash_entries=", set_thash_entries);
3929
3930static void __init tcp_init_mem(void)
3931{
3932 unsigned long limit = nr_free_buffer_pages() / 16;
3933
3934 limit = max(limit, 128UL);
3935 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3936 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3937 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3938}
3939
3940void __init tcp_init(void)
3941{
3942 int max_rshare, max_wshare, cnt;
3943 unsigned long limit;
3944 unsigned int i;
3945
3946 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
3947 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3948 FIELD_SIZEOF(struct sk_buff, cb));
3949
3950 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3951 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3952 inet_hashinfo_init(&tcp_hashinfo);
3953 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
3954 thash_entries, 21, /* one slot per 2 MB*/
3955 0, 64 * 1024);
3956 tcp_hashinfo.bind_bucket_cachep =
3957 kmem_cache_create("tcp_bind_bucket",
3958 sizeof(struct inet_bind_bucket), 0,
3959 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3960
3961 /* Size and allocate the main established and bind bucket
3962 * hash tables.
3963 *
3964 * The methodology is similar to that of the buffer cache.
3965 */
3966 tcp_hashinfo.ehash =
3967 alloc_large_system_hash("TCP established",
3968 sizeof(struct inet_ehash_bucket),
3969 thash_entries,
3970 17, /* one slot per 128 KB of memory */
3971 0,
3972 NULL,
3973 &tcp_hashinfo.ehash_mask,
3974 0,
3975 thash_entries ? 0 : 512 * 1024);
3976 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3977 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3978
3979 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3980 panic("TCP: failed to alloc ehash_locks");
3981 tcp_hashinfo.bhash =
3982 alloc_large_system_hash("TCP bind",
3983 sizeof(struct inet_bind_hashbucket),
3984 tcp_hashinfo.ehash_mask + 1,
3985 17, /* one slot per 128 KB of memory */
3986 0,
3987 &tcp_hashinfo.bhash_size,
3988 NULL,
3989 0,
3990 64 * 1024);
3991 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3992 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3993 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3994 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3995 }
3996
3997
3998 cnt = tcp_hashinfo.ehash_mask + 1;
3999 sysctl_tcp_max_orphans = cnt / 2;
4000
4001 tcp_init_mem();
4002 /* Set per-socket limits to no more than 1/128 the pressure threshold */
4003 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4004 max_wshare = min(4UL*1024*1024, limit);
4005 max_rshare = min(6UL*1024*1024, limit);
4006
4007 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4008 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4009 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4010
4011 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4012 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4013 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4014
4015 pr_info("Hash tables configured (established %u bind %u)\n",
4016 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4017
4018 tcp_v4_init();
4019 tcp_metrics_init();
4020 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4021 tcp_tasklet_init();
4022}
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248#define pr_fmt(fmt) "TCP: " fmt
249
250#include <crypto/hash.h>
251#include <linux/kernel.h>
252#include <linux/module.h>
253#include <linux/types.h>
254#include <linux/fcntl.h>
255#include <linux/poll.h>
256#include <linux/inet_diag.h>
257#include <linux/init.h>
258#include <linux/fs.h>
259#include <linux/skbuff.h>
260#include <linux/scatterlist.h>
261#include <linux/splice.h>
262#include <linux/net.h>
263#include <linux/socket.h>
264#include <linux/random.h>
265#include <linux/bootmem.h>
266#include <linux/highmem.h>
267#include <linux/swap.h>
268#include <linux/cache.h>
269#include <linux/err.h>
270#include <linux/time.h>
271#include <linux/slab.h>
272#include <linux/errqueue.h>
273#include <linux/static_key.h>
274
275#include <net/icmp.h>
276#include <net/inet_common.h>
277#include <net/tcp.h>
278#include <net/xfrm.h>
279#include <net/ip.h>
280#include <net/sock.h>
281
282#include <linux/uaccess.h>
283#include <asm/ioctls.h>
284#include <net/busy_poll.h>
285
286struct percpu_counter tcp_orphan_count;
287EXPORT_SYMBOL_GPL(tcp_orphan_count);
288
289long sysctl_tcp_mem[3] __read_mostly;
290EXPORT_SYMBOL(sysctl_tcp_mem);
291
292atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
293EXPORT_SYMBOL(tcp_memory_allocated);
294
295#if IS_ENABLED(CONFIG_SMC)
296DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
297EXPORT_SYMBOL(tcp_have_smc);
298#endif
299
300/*
301 * Current number of TCP sockets.
302 */
303struct percpu_counter tcp_sockets_allocated;
304EXPORT_SYMBOL(tcp_sockets_allocated);
305
306/*
307 * TCP splice context
308 */
309struct tcp_splice_state {
310 struct pipe_inode_info *pipe;
311 size_t len;
312 unsigned int flags;
313};
314
315/*
316 * Pressure flag: try to collapse.
317 * Technical note: it is used by multiple contexts non atomically.
318 * All the __sk_mem_schedule() is of this nature: accounting
319 * is strict, actions are advisory and have some latency.
320 */
321unsigned long tcp_memory_pressure __read_mostly;
322EXPORT_SYMBOL_GPL(tcp_memory_pressure);
323
324void tcp_enter_memory_pressure(struct sock *sk)
325{
326 unsigned long val;
327
328 if (tcp_memory_pressure)
329 return;
330 val = jiffies;
331
332 if (!val)
333 val--;
334 if (!cmpxchg(&tcp_memory_pressure, 0, val))
335 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
336}
337EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
338
339void tcp_leave_memory_pressure(struct sock *sk)
340{
341 unsigned long val;
342
343 if (!tcp_memory_pressure)
344 return;
345 val = xchg(&tcp_memory_pressure, 0);
346 if (val)
347 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
348 jiffies_to_msecs(jiffies - val));
349}
350EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
351
352/* Convert seconds to retransmits based on initial and max timeout */
353static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
354{
355 u8 res = 0;
356
357 if (seconds > 0) {
358 int period = timeout;
359
360 res = 1;
361 while (seconds > period && res < 255) {
362 res++;
363 timeout <<= 1;
364 if (timeout > rto_max)
365 timeout = rto_max;
366 period += timeout;
367 }
368 }
369 return res;
370}
371
372/* Convert retransmits to seconds based on initial and max timeout */
373static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
374{
375 int period = 0;
376
377 if (retrans > 0) {
378 period = timeout;
379 while (--retrans) {
380 timeout <<= 1;
381 if (timeout > rto_max)
382 timeout = rto_max;
383 period += timeout;
384 }
385 }
386 return period;
387}
388
389static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
390{
391 u32 rate = READ_ONCE(tp->rate_delivered);
392 u32 intv = READ_ONCE(tp->rate_interval_us);
393 u64 rate64 = 0;
394
395 if (rate && intv) {
396 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
397 do_div(rate64, intv);
398 }
399 return rate64;
400}
401
402/* Address-family independent initialization for a tcp_sock.
403 *
404 * NOTE: A lot of things set to zero explicitly by call to
405 * sk_alloc() so need not be done here.
406 */
407void tcp_init_sock(struct sock *sk)
408{
409 struct inet_connection_sock *icsk = inet_csk(sk);
410 struct tcp_sock *tp = tcp_sk(sk);
411
412 tp->out_of_order_queue = RB_ROOT;
413 sk->tcp_rtx_queue = RB_ROOT;
414 tcp_init_xmit_timers(sk);
415 INIT_LIST_HEAD(&tp->tsq_node);
416 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
417
418 icsk->icsk_rto = TCP_TIMEOUT_INIT;
419 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
420 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
421
422 /* So many TCP implementations out there (incorrectly) count the
423 * initial SYN frame in their delayed-ACK and congestion control
424 * algorithms that we must have the following bandaid to talk
425 * efficiently to them. -DaveM
426 */
427 tp->snd_cwnd = TCP_INIT_CWND;
428
429 /* There's a bubble in the pipe until at least the first ACK. */
430 tp->app_limited = ~0U;
431
432 /* See draft-stevens-tcpca-spec-01 for discussion of the
433 * initialization of these values.
434 */
435 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
436 tp->snd_cwnd_clamp = ~0;
437 tp->mss_cache = TCP_MSS_DEFAULT;
438
439 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
440 tcp_assign_congestion_control(sk);
441
442 tp->tsoffset = 0;
443 tp->rack.reo_wnd_steps = 1;
444
445 sk->sk_state = TCP_CLOSE;
446
447 sk->sk_write_space = sk_stream_write_space;
448 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
449
450 icsk->icsk_sync_mss = tcp_sync_mss;
451
452 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
453 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
454
455 sk_sockets_allocated_inc(sk);
456 sk->sk_route_forced_caps = NETIF_F_GSO;
457}
458EXPORT_SYMBOL(tcp_init_sock);
459
460void tcp_init_transfer(struct sock *sk, int bpf_op)
461{
462 struct inet_connection_sock *icsk = inet_csk(sk);
463
464 tcp_mtup_init(sk);
465 icsk->icsk_af_ops->rebuild_header(sk);
466 tcp_init_metrics(sk);
467 tcp_call_bpf(sk, bpf_op, 0, NULL);
468 tcp_init_congestion_control(sk);
469 tcp_init_buffer_space(sk);
470}
471
472static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
473{
474 struct sk_buff *skb = tcp_write_queue_tail(sk);
475
476 if (tsflags && skb) {
477 struct skb_shared_info *shinfo = skb_shinfo(skb);
478 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
479
480 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
481 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
482 tcb->txstamp_ack = 1;
483 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
484 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
485 }
486}
487
488static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
489 int target, struct sock *sk)
490{
491 return (tp->rcv_nxt - tp->copied_seq >= target) ||
492 (sk->sk_prot->stream_memory_read ?
493 sk->sk_prot->stream_memory_read(sk) : false);
494}
495
496/*
497 * Wait for a TCP event.
498 *
499 * Note that we don't need to lock the socket, as the upper poll layers
500 * take care of normal races (between the test and the event) and we don't
501 * go look at any of the socket buffers directly.
502 */
503__poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
504{
505 __poll_t mask;
506 struct sock *sk = sock->sk;
507 const struct tcp_sock *tp = tcp_sk(sk);
508 int state;
509
510 sock_poll_wait(file, sk_sleep(sk), wait);
511
512 state = inet_sk_state_load(sk);
513 if (state == TCP_LISTEN)
514 return inet_csk_listen_poll(sk);
515
516 /* Socket is not locked. We are protected from async events
517 * by poll logic and correct handling of state changes
518 * made by other threads is impossible in any case.
519 */
520
521 mask = 0;
522
523 /*
524 * EPOLLHUP is certainly not done right. But poll() doesn't
525 * have a notion of HUP in just one direction, and for a
526 * socket the read side is more interesting.
527 *
528 * Some poll() documentation says that EPOLLHUP is incompatible
529 * with the EPOLLOUT/POLLWR flags, so somebody should check this
530 * all. But careful, it tends to be safer to return too many
531 * bits than too few, and you can easily break real applications
532 * if you don't tell them that something has hung up!
533 *
534 * Check-me.
535 *
536 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
537 * our fs/select.c). It means that after we received EOF,
538 * poll always returns immediately, making impossible poll() on write()
539 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
540 * if and only if shutdown has been made in both directions.
541 * Actually, it is interesting to look how Solaris and DUX
542 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
543 * then we could set it on SND_SHUTDOWN. BTW examples given
544 * in Stevens' books assume exactly this behaviour, it explains
545 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
546 *
547 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
548 * blocking on fresh not-connected or disconnected socket. --ANK
549 */
550 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
551 mask |= EPOLLHUP;
552 if (sk->sk_shutdown & RCV_SHUTDOWN)
553 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
554
555 /* Connected or passive Fast Open socket? */
556 if (state != TCP_SYN_SENT &&
557 (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
558 int target = sock_rcvlowat(sk, 0, INT_MAX);
559
560 if (tp->urg_seq == tp->copied_seq &&
561 !sock_flag(sk, SOCK_URGINLINE) &&
562 tp->urg_data)
563 target++;
564
565 if (tcp_stream_is_readable(tp, target, sk))
566 mask |= EPOLLIN | EPOLLRDNORM;
567
568 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
569 if (sk_stream_is_writeable(sk)) {
570 mask |= EPOLLOUT | EPOLLWRNORM;
571 } else { /* send SIGIO later */
572 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
573 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
574
575 /* Race breaker. If space is freed after
576 * wspace test but before the flags are set,
577 * IO signal will be lost. Memory barrier
578 * pairs with the input side.
579 */
580 smp_mb__after_atomic();
581 if (sk_stream_is_writeable(sk))
582 mask |= EPOLLOUT | EPOLLWRNORM;
583 }
584 } else
585 mask |= EPOLLOUT | EPOLLWRNORM;
586
587 if (tp->urg_data & TCP_URG_VALID)
588 mask |= EPOLLPRI;
589 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
590 /* Active TCP fastopen socket with defer_connect
591 * Return EPOLLOUT so application can call write()
592 * in order for kernel to generate SYN+data
593 */
594 mask |= EPOLLOUT | EPOLLWRNORM;
595 }
596 /* This barrier is coupled with smp_wmb() in tcp_reset() */
597 smp_rmb();
598 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
599 mask |= EPOLLERR;
600
601 return mask;
602}
603EXPORT_SYMBOL(tcp_poll);
604
605int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
606{
607 struct tcp_sock *tp = tcp_sk(sk);
608 int answ;
609 bool slow;
610
611 switch (cmd) {
612 case SIOCINQ:
613 if (sk->sk_state == TCP_LISTEN)
614 return -EINVAL;
615
616 slow = lock_sock_fast(sk);
617 answ = tcp_inq(sk);
618 unlock_sock_fast(sk, slow);
619 break;
620 case SIOCATMARK:
621 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
622 break;
623 case SIOCOUTQ:
624 if (sk->sk_state == TCP_LISTEN)
625 return -EINVAL;
626
627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
628 answ = 0;
629 else
630 answ = tp->write_seq - tp->snd_una;
631 break;
632 case SIOCOUTQNSD:
633 if (sk->sk_state == TCP_LISTEN)
634 return -EINVAL;
635
636 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
637 answ = 0;
638 else
639 answ = tp->write_seq - tp->snd_nxt;
640 break;
641 default:
642 return -ENOIOCTLCMD;
643 }
644
645 return put_user(answ, (int __user *)arg);
646}
647EXPORT_SYMBOL(tcp_ioctl);
648
649static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
650{
651 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
652 tp->pushed_seq = tp->write_seq;
653}
654
655static inline bool forced_push(const struct tcp_sock *tp)
656{
657 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
658}
659
660static void skb_entail(struct sock *sk, struct sk_buff *skb)
661{
662 struct tcp_sock *tp = tcp_sk(sk);
663 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
664
665 skb->csum = 0;
666 tcb->seq = tcb->end_seq = tp->write_seq;
667 tcb->tcp_flags = TCPHDR_ACK;
668 tcb->sacked = 0;
669 __skb_header_release(skb);
670 tcp_add_write_queue_tail(sk, skb);
671 sk->sk_wmem_queued += skb->truesize;
672 sk_mem_charge(sk, skb->truesize);
673 if (tp->nonagle & TCP_NAGLE_PUSH)
674 tp->nonagle &= ~TCP_NAGLE_PUSH;
675
676 tcp_slow_start_after_idle_check(sk);
677}
678
679static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
680{
681 if (flags & MSG_OOB)
682 tp->snd_up = tp->write_seq;
683}
684
685/* If a not yet filled skb is pushed, do not send it if
686 * we have data packets in Qdisc or NIC queues :
687 * Because TX completion will happen shortly, it gives a chance
688 * to coalesce future sendmsg() payload into this skb, without
689 * need for a timer, and with no latency trade off.
690 * As packets containing data payload have a bigger truesize
691 * than pure acks (dataless) packets, the last checks prevent
692 * autocorking if we only have an ACK in Qdisc/NIC queues,
693 * or if TX completion was delayed after we processed ACK packet.
694 */
695static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
696 int size_goal)
697{
698 return skb->len < size_goal &&
699 sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
700 !tcp_rtx_queue_empty(sk) &&
701 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
702}
703
704static void tcp_push(struct sock *sk, int flags, int mss_now,
705 int nonagle, int size_goal)
706{
707 struct tcp_sock *tp = tcp_sk(sk);
708 struct sk_buff *skb;
709
710 skb = tcp_write_queue_tail(sk);
711 if (!skb)
712 return;
713 if (!(flags & MSG_MORE) || forced_push(tp))
714 tcp_mark_push(tp, skb);
715
716 tcp_mark_urg(tp, flags);
717
718 if (tcp_should_autocork(sk, skb, size_goal)) {
719
720 /* avoid atomic op if TSQ_THROTTLED bit is already set */
721 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
722 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
723 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
724 }
725 /* It is possible TX completion already happened
726 * before we set TSQ_THROTTLED.
727 */
728 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
729 return;
730 }
731
732 if (flags & MSG_MORE)
733 nonagle = TCP_NAGLE_CORK;
734
735 __tcp_push_pending_frames(sk, mss_now, nonagle);
736}
737
738static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
739 unsigned int offset, size_t len)
740{
741 struct tcp_splice_state *tss = rd_desc->arg.data;
742 int ret;
743
744 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
745 min(rd_desc->count, len), tss->flags);
746 if (ret > 0)
747 rd_desc->count -= ret;
748 return ret;
749}
750
751static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
752{
753 /* Store TCP splice context information in read_descriptor_t. */
754 read_descriptor_t rd_desc = {
755 .arg.data = tss,
756 .count = tss->len,
757 };
758
759 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
760}
761
762/**
763 * tcp_splice_read - splice data from TCP socket to a pipe
764 * @sock: socket to splice from
765 * @ppos: position (not valid)
766 * @pipe: pipe to splice to
767 * @len: number of bytes to splice
768 * @flags: splice modifier flags
769 *
770 * Description:
771 * Will read pages from given socket and fill them into a pipe.
772 *
773 **/
774ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
775 struct pipe_inode_info *pipe, size_t len,
776 unsigned int flags)
777{
778 struct sock *sk = sock->sk;
779 struct tcp_splice_state tss = {
780 .pipe = pipe,
781 .len = len,
782 .flags = flags,
783 };
784 long timeo;
785 ssize_t spliced;
786 int ret;
787
788 sock_rps_record_flow(sk);
789 /*
790 * We can't seek on a socket input
791 */
792 if (unlikely(*ppos))
793 return -ESPIPE;
794
795 ret = spliced = 0;
796
797 lock_sock(sk);
798
799 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
800 while (tss.len) {
801 ret = __tcp_splice_read(sk, &tss);
802 if (ret < 0)
803 break;
804 else if (!ret) {
805 if (spliced)
806 break;
807 if (sock_flag(sk, SOCK_DONE))
808 break;
809 if (sk->sk_err) {
810 ret = sock_error(sk);
811 break;
812 }
813 if (sk->sk_shutdown & RCV_SHUTDOWN)
814 break;
815 if (sk->sk_state == TCP_CLOSE) {
816 /*
817 * This occurs when user tries to read
818 * from never connected socket.
819 */
820 if (!sock_flag(sk, SOCK_DONE))
821 ret = -ENOTCONN;
822 break;
823 }
824 if (!timeo) {
825 ret = -EAGAIN;
826 break;
827 }
828 /* if __tcp_splice_read() got nothing while we have
829 * an skb in receive queue, we do not want to loop.
830 * This might happen with URG data.
831 */
832 if (!skb_queue_empty(&sk->sk_receive_queue))
833 break;
834 sk_wait_data(sk, &timeo, NULL);
835 if (signal_pending(current)) {
836 ret = sock_intr_errno(timeo);
837 break;
838 }
839 continue;
840 }
841 tss.len -= ret;
842 spliced += ret;
843
844 if (!timeo)
845 break;
846 release_sock(sk);
847 lock_sock(sk);
848
849 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
850 (sk->sk_shutdown & RCV_SHUTDOWN) ||
851 signal_pending(current))
852 break;
853 }
854
855 release_sock(sk);
856
857 if (spliced)
858 return spliced;
859
860 return ret;
861}
862EXPORT_SYMBOL(tcp_splice_read);
863
864struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
865 bool force_schedule)
866{
867 struct sk_buff *skb;
868
869 /* The TCP header must be at least 32-bit aligned. */
870 size = ALIGN(size, 4);
871
872 if (unlikely(tcp_under_memory_pressure(sk)))
873 sk_mem_reclaim_partial(sk);
874
875 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
876 if (likely(skb)) {
877 bool mem_scheduled;
878
879 if (force_schedule) {
880 mem_scheduled = true;
881 sk_forced_mem_schedule(sk, skb->truesize);
882 } else {
883 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
884 }
885 if (likely(mem_scheduled)) {
886 skb_reserve(skb, sk->sk_prot->max_header);
887 /*
888 * Make sure that we have exactly size bytes
889 * available to the caller, no more, no less.
890 */
891 skb->reserved_tailroom = skb->end - skb->tail - size;
892 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
893 return skb;
894 }
895 __kfree_skb(skb);
896 } else {
897 sk->sk_prot->enter_memory_pressure(sk);
898 sk_stream_moderate_sndbuf(sk);
899 }
900 return NULL;
901}
902
903static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
904 int large_allowed)
905{
906 struct tcp_sock *tp = tcp_sk(sk);
907 u32 new_size_goal, size_goal;
908
909 if (!large_allowed)
910 return mss_now;
911
912 /* Note : tcp_tso_autosize() will eventually split this later */
913 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
914 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
915
916 /* We try hard to avoid divides here */
917 size_goal = tp->gso_segs * mss_now;
918 if (unlikely(new_size_goal < size_goal ||
919 new_size_goal >= size_goal + mss_now)) {
920 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
921 sk->sk_gso_max_segs);
922 size_goal = tp->gso_segs * mss_now;
923 }
924
925 return max(size_goal, mss_now);
926}
927
928static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
929{
930 int mss_now;
931
932 mss_now = tcp_current_mss(sk);
933 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
934
935 return mss_now;
936}
937
938ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
939 size_t size, int flags)
940{
941 struct tcp_sock *tp = tcp_sk(sk);
942 int mss_now, size_goal;
943 int err;
944 ssize_t copied;
945 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
946
947 /* Wait for a connection to finish. One exception is TCP Fast Open
948 * (passive side) where data is allowed to be sent before a connection
949 * is fully established.
950 */
951 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
952 !tcp_passive_fastopen(sk)) {
953 err = sk_stream_wait_connect(sk, &timeo);
954 if (err != 0)
955 goto out_err;
956 }
957
958 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
959
960 mss_now = tcp_send_mss(sk, &size_goal, flags);
961 copied = 0;
962
963 err = -EPIPE;
964 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
965 goto out_err;
966
967 while (size > 0) {
968 struct sk_buff *skb = tcp_write_queue_tail(sk);
969 int copy, i;
970 bool can_coalesce;
971
972 if (!skb || (copy = size_goal - skb->len) <= 0 ||
973 !tcp_skb_can_collapse_to(skb)) {
974new_segment:
975 if (!sk_stream_memory_free(sk))
976 goto wait_for_sndbuf;
977
978 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
979 tcp_rtx_and_write_queues_empty(sk));
980 if (!skb)
981 goto wait_for_memory;
982
983 skb_entail(sk, skb);
984 copy = size_goal;
985 }
986
987 if (copy > size)
988 copy = size;
989
990 i = skb_shinfo(skb)->nr_frags;
991 can_coalesce = skb_can_coalesce(skb, i, page, offset);
992 if (!can_coalesce && i >= sysctl_max_skb_frags) {
993 tcp_mark_push(tp, skb);
994 goto new_segment;
995 }
996 if (!sk_wmem_schedule(sk, copy))
997 goto wait_for_memory;
998
999 if (can_coalesce) {
1000 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1001 } else {
1002 get_page(page);
1003 skb_fill_page_desc(skb, i, page, offset, copy);
1004 }
1005
1006 if (!(flags & MSG_NO_SHARED_FRAGS))
1007 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1008
1009 skb->len += copy;
1010 skb->data_len += copy;
1011 skb->truesize += copy;
1012 sk->sk_wmem_queued += copy;
1013 sk_mem_charge(sk, copy);
1014 skb->ip_summed = CHECKSUM_PARTIAL;
1015 tp->write_seq += copy;
1016 TCP_SKB_CB(skb)->end_seq += copy;
1017 tcp_skb_pcount_set(skb, 0);
1018
1019 if (!copied)
1020 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1021
1022 copied += copy;
1023 offset += copy;
1024 size -= copy;
1025 if (!size)
1026 goto out;
1027
1028 if (skb->len < size_goal || (flags & MSG_OOB))
1029 continue;
1030
1031 if (forced_push(tp)) {
1032 tcp_mark_push(tp, skb);
1033 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1034 } else if (skb == tcp_send_head(sk))
1035 tcp_push_one(sk, mss_now);
1036 continue;
1037
1038wait_for_sndbuf:
1039 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1040wait_for_memory:
1041 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1042 TCP_NAGLE_PUSH, size_goal);
1043
1044 err = sk_stream_wait_memory(sk, &timeo);
1045 if (err != 0)
1046 goto do_error;
1047
1048 mss_now = tcp_send_mss(sk, &size_goal, flags);
1049 }
1050
1051out:
1052 if (copied) {
1053 tcp_tx_timestamp(sk, sk->sk_tsflags);
1054 if (!(flags & MSG_SENDPAGE_NOTLAST))
1055 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1056 }
1057 return copied;
1058
1059do_error:
1060 if (copied)
1061 goto out;
1062out_err:
1063 /* make sure we wake any epoll edge trigger waiter */
1064 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1065 err == -EAGAIN)) {
1066 sk->sk_write_space(sk);
1067 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1068 }
1069 return sk_stream_error(sk, flags, err);
1070}
1071EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1072
1073int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1074 size_t size, int flags)
1075{
1076 if (!(sk->sk_route_caps & NETIF_F_SG))
1077 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1078
1079 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1080
1081 return do_tcp_sendpages(sk, page, offset, size, flags);
1082}
1083EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1084
1085int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1086 size_t size, int flags)
1087{
1088 int ret;
1089
1090 lock_sock(sk);
1091 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1092 release_sock(sk);
1093
1094 return ret;
1095}
1096EXPORT_SYMBOL(tcp_sendpage);
1097
1098/* Do not bother using a page frag for very small frames.
1099 * But use this heuristic only for the first skb in write queue.
1100 *
1101 * Having no payload in skb->head allows better SACK shifting
1102 * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1103 * write queue has less skbs.
1104 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1105 * This also speeds up tso_fragment(), since it wont fallback
1106 * to tcp_fragment().
1107 */
1108static int linear_payload_sz(bool first_skb)
1109{
1110 if (first_skb)
1111 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1112 return 0;
1113}
1114
1115static int select_size(bool first_skb, bool zc)
1116{
1117 if (zc)
1118 return 0;
1119 return linear_payload_sz(first_skb);
1120}
1121
1122void tcp_free_fastopen_req(struct tcp_sock *tp)
1123{
1124 if (tp->fastopen_req) {
1125 kfree(tp->fastopen_req);
1126 tp->fastopen_req = NULL;
1127 }
1128}
1129
1130static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1131 int *copied, size_t size)
1132{
1133 struct tcp_sock *tp = tcp_sk(sk);
1134 struct inet_sock *inet = inet_sk(sk);
1135 struct sockaddr *uaddr = msg->msg_name;
1136 int err, flags;
1137
1138 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1139 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1140 uaddr->sa_family == AF_UNSPEC))
1141 return -EOPNOTSUPP;
1142 if (tp->fastopen_req)
1143 return -EALREADY; /* Another Fast Open is in progress */
1144
1145 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1146 sk->sk_allocation);
1147 if (unlikely(!tp->fastopen_req))
1148 return -ENOBUFS;
1149 tp->fastopen_req->data = msg;
1150 tp->fastopen_req->size = size;
1151
1152 if (inet->defer_connect) {
1153 err = tcp_connect(sk);
1154 /* Same failure procedure as in tcp_v4/6_connect */
1155 if (err) {
1156 tcp_set_state(sk, TCP_CLOSE);
1157 inet->inet_dport = 0;
1158 sk->sk_route_caps = 0;
1159 }
1160 }
1161 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1162 err = __inet_stream_connect(sk->sk_socket, uaddr,
1163 msg->msg_namelen, flags, 1);
1164 /* fastopen_req could already be freed in __inet_stream_connect
1165 * if the connection times out or gets rst
1166 */
1167 if (tp->fastopen_req) {
1168 *copied = tp->fastopen_req->copied;
1169 tcp_free_fastopen_req(tp);
1170 inet->defer_connect = 0;
1171 }
1172 return err;
1173}
1174
1175int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1176{
1177 struct tcp_sock *tp = tcp_sk(sk);
1178 struct ubuf_info *uarg = NULL;
1179 struct sk_buff *skb;
1180 struct sockcm_cookie sockc;
1181 int flags, err, copied = 0;
1182 int mss_now = 0, size_goal, copied_syn = 0;
1183 bool process_backlog = false;
1184 bool zc = false;
1185 long timeo;
1186
1187 flags = msg->msg_flags;
1188
1189 if (flags & MSG_ZEROCOPY && size) {
1190 if (sk->sk_state != TCP_ESTABLISHED) {
1191 err = -EINVAL;
1192 goto out_err;
1193 }
1194
1195 skb = tcp_write_queue_tail(sk);
1196 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1197 if (!uarg) {
1198 err = -ENOBUFS;
1199 goto out_err;
1200 }
1201
1202 zc = sk->sk_route_caps & NETIF_F_SG;
1203 if (!zc)
1204 uarg->zerocopy = 0;
1205 }
1206
1207 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1208 !tp->repair) {
1209 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1210 if (err == -EINPROGRESS && copied_syn > 0)
1211 goto out;
1212 else if (err)
1213 goto out_err;
1214 }
1215
1216 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1217
1218 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1219
1220 /* Wait for a connection to finish. One exception is TCP Fast Open
1221 * (passive side) where data is allowed to be sent before a connection
1222 * is fully established.
1223 */
1224 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1225 !tcp_passive_fastopen(sk)) {
1226 err = sk_stream_wait_connect(sk, &timeo);
1227 if (err != 0)
1228 goto do_error;
1229 }
1230
1231 if (unlikely(tp->repair)) {
1232 if (tp->repair_queue == TCP_RECV_QUEUE) {
1233 copied = tcp_send_rcvq(sk, msg, size);
1234 goto out_nopush;
1235 }
1236
1237 err = -EINVAL;
1238 if (tp->repair_queue == TCP_NO_QUEUE)
1239 goto out_err;
1240
1241 /* 'common' sending to sendq */
1242 }
1243
1244 sockc.tsflags = sk->sk_tsflags;
1245 if (msg->msg_controllen) {
1246 err = sock_cmsg_send(sk, msg, &sockc);
1247 if (unlikely(err)) {
1248 err = -EINVAL;
1249 goto out_err;
1250 }
1251 }
1252
1253 /* This should be in poll */
1254 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1255
1256 /* Ok commence sending. */
1257 copied = 0;
1258
1259restart:
1260 mss_now = tcp_send_mss(sk, &size_goal, flags);
1261
1262 err = -EPIPE;
1263 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1264 goto do_error;
1265
1266 while (msg_data_left(msg)) {
1267 int copy = 0;
1268
1269 skb = tcp_write_queue_tail(sk);
1270 if (skb)
1271 copy = size_goal - skb->len;
1272
1273 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1274 bool first_skb;
1275 int linear;
1276
1277new_segment:
1278 /* Allocate new segment. If the interface is SG,
1279 * allocate skb fitting to single page.
1280 */
1281 if (!sk_stream_memory_free(sk))
1282 goto wait_for_sndbuf;
1283
1284 if (process_backlog && sk_flush_backlog(sk)) {
1285 process_backlog = false;
1286 goto restart;
1287 }
1288 first_skb = tcp_rtx_and_write_queues_empty(sk);
1289 linear = select_size(first_skb, zc);
1290 skb = sk_stream_alloc_skb(sk, linear, sk->sk_allocation,
1291 first_skb);
1292 if (!skb)
1293 goto wait_for_memory;
1294
1295 process_backlog = true;
1296 skb->ip_summed = CHECKSUM_PARTIAL;
1297
1298 skb_entail(sk, skb);
1299 copy = size_goal;
1300
1301 /* All packets are restored as if they have
1302 * already been sent. skb_mstamp isn't set to
1303 * avoid wrong rtt estimation.
1304 */
1305 if (tp->repair)
1306 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1307 }
1308
1309 /* Try to append data to the end of skb. */
1310 if (copy > msg_data_left(msg))
1311 copy = msg_data_left(msg);
1312
1313 /* Where to copy to? */
1314 if (skb_availroom(skb) > 0 && !zc) {
1315 /* We have some space in skb head. Superb! */
1316 copy = min_t(int, copy, skb_availroom(skb));
1317 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1318 if (err)
1319 goto do_fault;
1320 } else if (!zc) {
1321 bool merge = true;
1322 int i = skb_shinfo(skb)->nr_frags;
1323 struct page_frag *pfrag = sk_page_frag(sk);
1324
1325 if (!sk_page_frag_refill(sk, pfrag))
1326 goto wait_for_memory;
1327
1328 if (!skb_can_coalesce(skb, i, pfrag->page,
1329 pfrag->offset)) {
1330 if (i >= sysctl_max_skb_frags) {
1331 tcp_mark_push(tp, skb);
1332 goto new_segment;
1333 }
1334 merge = false;
1335 }
1336
1337 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1338
1339 if (!sk_wmem_schedule(sk, copy))
1340 goto wait_for_memory;
1341
1342 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1343 pfrag->page,
1344 pfrag->offset,
1345 copy);
1346 if (err)
1347 goto do_error;
1348
1349 /* Update the skb. */
1350 if (merge) {
1351 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1352 } else {
1353 skb_fill_page_desc(skb, i, pfrag->page,
1354 pfrag->offset, copy);
1355 page_ref_inc(pfrag->page);
1356 }
1357 pfrag->offset += copy;
1358 } else {
1359 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1360 if (err == -EMSGSIZE || err == -EEXIST) {
1361 tcp_mark_push(tp, skb);
1362 goto new_segment;
1363 }
1364 if (err < 0)
1365 goto do_error;
1366 copy = err;
1367 }
1368
1369 if (!copied)
1370 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1371
1372 tp->write_seq += copy;
1373 TCP_SKB_CB(skb)->end_seq += copy;
1374 tcp_skb_pcount_set(skb, 0);
1375
1376 copied += copy;
1377 if (!msg_data_left(msg)) {
1378 if (unlikely(flags & MSG_EOR))
1379 TCP_SKB_CB(skb)->eor = 1;
1380 goto out;
1381 }
1382
1383 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1384 continue;
1385
1386 if (forced_push(tp)) {
1387 tcp_mark_push(tp, skb);
1388 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1389 } else if (skb == tcp_send_head(sk))
1390 tcp_push_one(sk, mss_now);
1391 continue;
1392
1393wait_for_sndbuf:
1394 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1395wait_for_memory:
1396 if (copied)
1397 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1398 TCP_NAGLE_PUSH, size_goal);
1399
1400 err = sk_stream_wait_memory(sk, &timeo);
1401 if (err != 0)
1402 goto do_error;
1403
1404 mss_now = tcp_send_mss(sk, &size_goal, flags);
1405 }
1406
1407out:
1408 if (copied) {
1409 tcp_tx_timestamp(sk, sockc.tsflags);
1410 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1411 }
1412out_nopush:
1413 sock_zerocopy_put(uarg);
1414 return copied + copied_syn;
1415
1416do_fault:
1417 if (!skb->len) {
1418 tcp_unlink_write_queue(skb, sk);
1419 /* It is the one place in all of TCP, except connection
1420 * reset, where we can be unlinking the send_head.
1421 */
1422 tcp_check_send_head(sk, skb);
1423 sk_wmem_free_skb(sk, skb);
1424 }
1425
1426do_error:
1427 if (copied + copied_syn)
1428 goto out;
1429out_err:
1430 sock_zerocopy_put_abort(uarg);
1431 err = sk_stream_error(sk, flags, err);
1432 /* make sure we wake any epoll edge trigger waiter */
1433 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1434 err == -EAGAIN)) {
1435 sk->sk_write_space(sk);
1436 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1437 }
1438 return err;
1439}
1440EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1441
1442int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1443{
1444 int ret;
1445
1446 lock_sock(sk);
1447 ret = tcp_sendmsg_locked(sk, msg, size);
1448 release_sock(sk);
1449
1450 return ret;
1451}
1452EXPORT_SYMBOL(tcp_sendmsg);
1453
1454/*
1455 * Handle reading urgent data. BSD has very simple semantics for
1456 * this, no blocking and very strange errors 8)
1457 */
1458
1459static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1460{
1461 struct tcp_sock *tp = tcp_sk(sk);
1462
1463 /* No URG data to read. */
1464 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1465 tp->urg_data == TCP_URG_READ)
1466 return -EINVAL; /* Yes this is right ! */
1467
1468 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1469 return -ENOTCONN;
1470
1471 if (tp->urg_data & TCP_URG_VALID) {
1472 int err = 0;
1473 char c = tp->urg_data;
1474
1475 if (!(flags & MSG_PEEK))
1476 tp->urg_data = TCP_URG_READ;
1477
1478 /* Read urgent data. */
1479 msg->msg_flags |= MSG_OOB;
1480
1481 if (len > 0) {
1482 if (!(flags & MSG_TRUNC))
1483 err = memcpy_to_msg(msg, &c, 1);
1484 len = 1;
1485 } else
1486 msg->msg_flags |= MSG_TRUNC;
1487
1488 return err ? -EFAULT : len;
1489 }
1490
1491 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1492 return 0;
1493
1494 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1495 * the available implementations agree in this case:
1496 * this call should never block, independent of the
1497 * blocking state of the socket.
1498 * Mike <pall@rz.uni-karlsruhe.de>
1499 */
1500 return -EAGAIN;
1501}
1502
1503static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1504{
1505 struct sk_buff *skb;
1506 int copied = 0, err = 0;
1507
1508 /* XXX -- need to support SO_PEEK_OFF */
1509
1510 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1511 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1512 if (err)
1513 return err;
1514 copied += skb->len;
1515 }
1516
1517 skb_queue_walk(&sk->sk_write_queue, skb) {
1518 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1519 if (err)
1520 break;
1521
1522 copied += skb->len;
1523 }
1524
1525 return err ?: copied;
1526}
1527
1528/* Clean up the receive buffer for full frames taken by the user,
1529 * then send an ACK if necessary. COPIED is the number of bytes
1530 * tcp_recvmsg has given to the user so far, it speeds up the
1531 * calculation of whether or not we must ACK for the sake of
1532 * a window update.
1533 */
1534static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1535{
1536 struct tcp_sock *tp = tcp_sk(sk);
1537 bool time_to_ack = false;
1538
1539 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1540
1541 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1542 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1543 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1544
1545 if (inet_csk_ack_scheduled(sk)) {
1546 const struct inet_connection_sock *icsk = inet_csk(sk);
1547 /* Delayed ACKs frequently hit locked sockets during bulk
1548 * receive. */
1549 if (icsk->icsk_ack.blocked ||
1550 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1551 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1552 /*
1553 * If this read emptied read buffer, we send ACK, if
1554 * connection is not bidirectional, user drained
1555 * receive buffer and there was a small segment
1556 * in queue.
1557 */
1558 (copied > 0 &&
1559 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1560 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1561 !icsk->icsk_ack.pingpong)) &&
1562 !atomic_read(&sk->sk_rmem_alloc)))
1563 time_to_ack = true;
1564 }
1565
1566 /* We send an ACK if we can now advertise a non-zero window
1567 * which has been raised "significantly".
1568 *
1569 * Even if window raised up to infinity, do not send window open ACK
1570 * in states, where we will not receive more. It is useless.
1571 */
1572 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1573 __u32 rcv_window_now = tcp_receive_window(tp);
1574
1575 /* Optimize, __tcp_select_window() is not cheap. */
1576 if (2*rcv_window_now <= tp->window_clamp) {
1577 __u32 new_window = __tcp_select_window(sk);
1578
1579 /* Send ACK now, if this read freed lots of space
1580 * in our buffer. Certainly, new_window is new window.
1581 * We can advertise it now, if it is not less than current one.
1582 * "Lots" means "at least twice" here.
1583 */
1584 if (new_window && new_window >= 2 * rcv_window_now)
1585 time_to_ack = true;
1586 }
1587 }
1588 if (time_to_ack)
1589 tcp_send_ack(sk);
1590}
1591
1592static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1593{
1594 struct sk_buff *skb;
1595 u32 offset;
1596
1597 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1598 offset = seq - TCP_SKB_CB(skb)->seq;
1599 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1600 pr_err_once("%s: found a SYN, please report !\n", __func__);
1601 offset--;
1602 }
1603 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1604 *off = offset;
1605 return skb;
1606 }
1607 /* This looks weird, but this can happen if TCP collapsing
1608 * splitted a fat GRO packet, while we released socket lock
1609 * in skb_splice_bits()
1610 */
1611 sk_eat_skb(sk, skb);
1612 }
1613 return NULL;
1614}
1615
1616/*
1617 * This routine provides an alternative to tcp_recvmsg() for routines
1618 * that would like to handle copying from skbuffs directly in 'sendfile'
1619 * fashion.
1620 * Note:
1621 * - It is assumed that the socket was locked by the caller.
1622 * - The routine does not block.
1623 * - At present, there is no support for reading OOB data
1624 * or for 'peeking' the socket using this routine
1625 * (although both would be easy to implement).
1626 */
1627int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1628 sk_read_actor_t recv_actor)
1629{
1630 struct sk_buff *skb;
1631 struct tcp_sock *tp = tcp_sk(sk);
1632 u32 seq = tp->copied_seq;
1633 u32 offset;
1634 int copied = 0;
1635
1636 if (sk->sk_state == TCP_LISTEN)
1637 return -ENOTCONN;
1638 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1639 if (offset < skb->len) {
1640 int used;
1641 size_t len;
1642
1643 len = skb->len - offset;
1644 /* Stop reading if we hit a patch of urgent data */
1645 if (tp->urg_data) {
1646 u32 urg_offset = tp->urg_seq - seq;
1647 if (urg_offset < len)
1648 len = urg_offset;
1649 if (!len)
1650 break;
1651 }
1652 used = recv_actor(desc, skb, offset, len);
1653 if (used <= 0) {
1654 if (!copied)
1655 copied = used;
1656 break;
1657 } else if (used <= len) {
1658 seq += used;
1659 copied += used;
1660 offset += used;
1661 }
1662 /* If recv_actor drops the lock (e.g. TCP splice
1663 * receive) the skb pointer might be invalid when
1664 * getting here: tcp_collapse might have deleted it
1665 * while aggregating skbs from the socket queue.
1666 */
1667 skb = tcp_recv_skb(sk, seq - 1, &offset);
1668 if (!skb)
1669 break;
1670 /* TCP coalescing might have appended data to the skb.
1671 * Try to splice more frags
1672 */
1673 if (offset + 1 != skb->len)
1674 continue;
1675 }
1676 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1677 sk_eat_skb(sk, skb);
1678 ++seq;
1679 break;
1680 }
1681 sk_eat_skb(sk, skb);
1682 if (!desc->count)
1683 break;
1684 tp->copied_seq = seq;
1685 }
1686 tp->copied_seq = seq;
1687
1688 tcp_rcv_space_adjust(sk);
1689
1690 /* Clean up data we have read: This will do ACK frames. */
1691 if (copied > 0) {
1692 tcp_recv_skb(sk, seq, &offset);
1693 tcp_cleanup_rbuf(sk, copied);
1694 }
1695 return copied;
1696}
1697EXPORT_SYMBOL(tcp_read_sock);
1698
1699int tcp_peek_len(struct socket *sock)
1700{
1701 return tcp_inq(sock->sk);
1702}
1703EXPORT_SYMBOL(tcp_peek_len);
1704
1705static void tcp_update_recv_tstamps(struct sk_buff *skb,
1706 struct scm_timestamping *tss)
1707{
1708 if (skb->tstamp)
1709 tss->ts[0] = ktime_to_timespec(skb->tstamp);
1710 else
1711 tss->ts[0] = (struct timespec) {0};
1712
1713 if (skb_hwtstamps(skb)->hwtstamp)
1714 tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp);
1715 else
1716 tss->ts[2] = (struct timespec) {0};
1717}
1718
1719/* Similar to __sock_recv_timestamp, but does not require an skb */
1720static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1721 struct scm_timestamping *tss)
1722{
1723 struct timeval tv;
1724 bool has_timestamping = false;
1725
1726 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1727 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1728 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1729 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
1730 sizeof(tss->ts[0]), &tss->ts[0]);
1731 } else {
1732 tv.tv_sec = tss->ts[0].tv_sec;
1733 tv.tv_usec = tss->ts[0].tv_nsec / 1000;
1734
1735 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
1736 sizeof(tv), &tv);
1737 }
1738 }
1739
1740 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1741 has_timestamping = true;
1742 else
1743 tss->ts[0] = (struct timespec) {0};
1744 }
1745
1746 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1747 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1748 has_timestamping = true;
1749 else
1750 tss->ts[2] = (struct timespec) {0};
1751 }
1752
1753 if (has_timestamping) {
1754 tss->ts[1] = (struct timespec) {0};
1755 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING,
1756 sizeof(*tss), tss);
1757 }
1758}
1759
1760/*
1761 * This routine copies from a sock struct into the user buffer.
1762 *
1763 * Technical note: in 2.3 we work on _locked_ socket, so that
1764 * tricks with *seq access order and skb->users are not required.
1765 * Probably, code can be easily improved even more.
1766 */
1767
1768int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1769 int flags, int *addr_len)
1770{
1771 struct tcp_sock *tp = tcp_sk(sk);
1772 int copied = 0;
1773 u32 peek_seq;
1774 u32 *seq;
1775 unsigned long used;
1776 int err;
1777 int target; /* Read at least this many bytes */
1778 long timeo;
1779 struct sk_buff *skb, *last;
1780 u32 urg_hole = 0;
1781 struct scm_timestamping tss;
1782 bool has_tss = false;
1783
1784 if (unlikely(flags & MSG_ERRQUEUE))
1785 return inet_recv_error(sk, msg, len, addr_len);
1786
1787 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1788 (sk->sk_state == TCP_ESTABLISHED))
1789 sk_busy_loop(sk, nonblock);
1790
1791 lock_sock(sk);
1792
1793 err = -ENOTCONN;
1794 if (sk->sk_state == TCP_LISTEN)
1795 goto out;
1796
1797 timeo = sock_rcvtimeo(sk, nonblock);
1798
1799 /* Urgent data needs to be handled specially. */
1800 if (flags & MSG_OOB)
1801 goto recv_urg;
1802
1803 if (unlikely(tp->repair)) {
1804 err = -EPERM;
1805 if (!(flags & MSG_PEEK))
1806 goto out;
1807
1808 if (tp->repair_queue == TCP_SEND_QUEUE)
1809 goto recv_sndq;
1810
1811 err = -EINVAL;
1812 if (tp->repair_queue == TCP_NO_QUEUE)
1813 goto out;
1814
1815 /* 'common' recv queue MSG_PEEK-ing */
1816 }
1817
1818 seq = &tp->copied_seq;
1819 if (flags & MSG_PEEK) {
1820 peek_seq = tp->copied_seq;
1821 seq = &peek_seq;
1822 }
1823
1824 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1825
1826 do {
1827 u32 offset;
1828
1829 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1830 if (tp->urg_data && tp->urg_seq == *seq) {
1831 if (copied)
1832 break;
1833 if (signal_pending(current)) {
1834 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1835 break;
1836 }
1837 }
1838
1839 /* Next get a buffer. */
1840
1841 last = skb_peek_tail(&sk->sk_receive_queue);
1842 skb_queue_walk(&sk->sk_receive_queue, skb) {
1843 last = skb;
1844 /* Now that we have two receive queues this
1845 * shouldn't happen.
1846 */
1847 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1848 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1849 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1850 flags))
1851 break;
1852
1853 offset = *seq - TCP_SKB_CB(skb)->seq;
1854 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1855 pr_err_once("%s: found a SYN, please report !\n", __func__);
1856 offset--;
1857 }
1858 if (offset < skb->len)
1859 goto found_ok_skb;
1860 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1861 goto found_fin_ok;
1862 WARN(!(flags & MSG_PEEK),
1863 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1864 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1865 }
1866
1867 /* Well, if we have backlog, try to process it now yet. */
1868
1869 if (copied >= target && !sk->sk_backlog.tail)
1870 break;
1871
1872 if (copied) {
1873 if (sk->sk_err ||
1874 sk->sk_state == TCP_CLOSE ||
1875 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1876 !timeo ||
1877 signal_pending(current))
1878 break;
1879 } else {
1880 if (sock_flag(sk, SOCK_DONE))
1881 break;
1882
1883 if (sk->sk_err) {
1884 copied = sock_error(sk);
1885 break;
1886 }
1887
1888 if (sk->sk_shutdown & RCV_SHUTDOWN)
1889 break;
1890
1891 if (sk->sk_state == TCP_CLOSE) {
1892 if (!sock_flag(sk, SOCK_DONE)) {
1893 /* This occurs when user tries to read
1894 * from never connected socket.
1895 */
1896 copied = -ENOTCONN;
1897 break;
1898 }
1899 break;
1900 }
1901
1902 if (!timeo) {
1903 copied = -EAGAIN;
1904 break;
1905 }
1906
1907 if (signal_pending(current)) {
1908 copied = sock_intr_errno(timeo);
1909 break;
1910 }
1911 }
1912
1913 tcp_cleanup_rbuf(sk, copied);
1914
1915 if (copied >= target) {
1916 /* Do not sleep, just process backlog. */
1917 release_sock(sk);
1918 lock_sock(sk);
1919 } else {
1920 sk_wait_data(sk, &timeo, last);
1921 }
1922
1923 if ((flags & MSG_PEEK) &&
1924 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1925 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1926 current->comm,
1927 task_pid_nr(current));
1928 peek_seq = tp->copied_seq;
1929 }
1930 continue;
1931
1932 found_ok_skb:
1933 /* Ok so how much can we use? */
1934 used = skb->len - offset;
1935 if (len < used)
1936 used = len;
1937
1938 /* Do we have urgent data here? */
1939 if (tp->urg_data) {
1940 u32 urg_offset = tp->urg_seq - *seq;
1941 if (urg_offset < used) {
1942 if (!urg_offset) {
1943 if (!sock_flag(sk, SOCK_URGINLINE)) {
1944 ++*seq;
1945 urg_hole++;
1946 offset++;
1947 used--;
1948 if (!used)
1949 goto skip_copy;
1950 }
1951 } else
1952 used = urg_offset;
1953 }
1954 }
1955
1956 if (!(flags & MSG_TRUNC)) {
1957 err = skb_copy_datagram_msg(skb, offset, msg, used);
1958 if (err) {
1959 /* Exception. Bailout! */
1960 if (!copied)
1961 copied = -EFAULT;
1962 break;
1963 }
1964 }
1965
1966 *seq += used;
1967 copied += used;
1968 len -= used;
1969
1970 tcp_rcv_space_adjust(sk);
1971
1972skip_copy:
1973 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1974 tp->urg_data = 0;
1975 tcp_fast_path_check(sk);
1976 }
1977 if (used + offset < skb->len)
1978 continue;
1979
1980 if (TCP_SKB_CB(skb)->has_rxtstamp) {
1981 tcp_update_recv_tstamps(skb, &tss);
1982 has_tss = true;
1983 }
1984 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1985 goto found_fin_ok;
1986 if (!(flags & MSG_PEEK))
1987 sk_eat_skb(sk, skb);
1988 continue;
1989
1990 found_fin_ok:
1991 /* Process the FIN. */
1992 ++*seq;
1993 if (!(flags & MSG_PEEK))
1994 sk_eat_skb(sk, skb);
1995 break;
1996 } while (len > 0);
1997
1998 /* According to UNIX98, msg_name/msg_namelen are ignored
1999 * on connected socket. I was just happy when found this 8) --ANK
2000 */
2001
2002 if (has_tss)
2003 tcp_recv_timestamp(msg, sk, &tss);
2004
2005 /* Clean up data we have read: This will do ACK frames. */
2006 tcp_cleanup_rbuf(sk, copied);
2007
2008 release_sock(sk);
2009 return copied;
2010
2011out:
2012 release_sock(sk);
2013 return err;
2014
2015recv_urg:
2016 err = tcp_recv_urg(sk, msg, len, flags);
2017 goto out;
2018
2019recv_sndq:
2020 err = tcp_peek_sndq(sk, msg, len);
2021 goto out;
2022}
2023EXPORT_SYMBOL(tcp_recvmsg);
2024
2025void tcp_set_state(struct sock *sk, int state)
2026{
2027 int oldstate = sk->sk_state;
2028
2029 /* We defined a new enum for TCP states that are exported in BPF
2030 * so as not force the internal TCP states to be frozen. The
2031 * following checks will detect if an internal state value ever
2032 * differs from the BPF value. If this ever happens, then we will
2033 * need to remap the internal value to the BPF value before calling
2034 * tcp_call_bpf_2arg.
2035 */
2036 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2037 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2038 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2039 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2040 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2041 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2042 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2043 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2044 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2045 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2046 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2047 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2048 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2049
2050 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2051 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2052
2053 switch (state) {
2054 case TCP_ESTABLISHED:
2055 if (oldstate != TCP_ESTABLISHED)
2056 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2057 break;
2058
2059 case TCP_CLOSE:
2060 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2061 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2062
2063 sk->sk_prot->unhash(sk);
2064 if (inet_csk(sk)->icsk_bind_hash &&
2065 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2066 inet_put_port(sk);
2067 /* fall through */
2068 default:
2069 if (oldstate == TCP_ESTABLISHED)
2070 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2071 }
2072
2073 /* Change state AFTER socket is unhashed to avoid closed
2074 * socket sitting in hash tables.
2075 */
2076 inet_sk_state_store(sk, state);
2077
2078#ifdef STATE_TRACE
2079 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2080#endif
2081}
2082EXPORT_SYMBOL_GPL(tcp_set_state);
2083
2084/*
2085 * State processing on a close. This implements the state shift for
2086 * sending our FIN frame. Note that we only send a FIN for some
2087 * states. A shutdown() may have already sent the FIN, or we may be
2088 * closed.
2089 */
2090
2091static const unsigned char new_state[16] = {
2092 /* current state: new state: action: */
2093 [0 /* (Invalid) */] = TCP_CLOSE,
2094 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2095 [TCP_SYN_SENT] = TCP_CLOSE,
2096 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2097 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2098 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2099 [TCP_TIME_WAIT] = TCP_CLOSE,
2100 [TCP_CLOSE] = TCP_CLOSE,
2101 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2102 [TCP_LAST_ACK] = TCP_LAST_ACK,
2103 [TCP_LISTEN] = TCP_CLOSE,
2104 [TCP_CLOSING] = TCP_CLOSING,
2105 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2106};
2107
2108static int tcp_close_state(struct sock *sk)
2109{
2110 int next = (int)new_state[sk->sk_state];
2111 int ns = next & TCP_STATE_MASK;
2112
2113 tcp_set_state(sk, ns);
2114
2115 return next & TCP_ACTION_FIN;
2116}
2117
2118/*
2119 * Shutdown the sending side of a connection. Much like close except
2120 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2121 */
2122
2123void tcp_shutdown(struct sock *sk, int how)
2124{
2125 /* We need to grab some memory, and put together a FIN,
2126 * and then put it into the queue to be sent.
2127 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2128 */
2129 if (!(how & SEND_SHUTDOWN))
2130 return;
2131
2132 /* If we've already sent a FIN, or it's a closed state, skip this. */
2133 if ((1 << sk->sk_state) &
2134 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2135 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2136 /* Clear out any half completed packets. FIN if needed. */
2137 if (tcp_close_state(sk))
2138 tcp_send_fin(sk);
2139 }
2140}
2141EXPORT_SYMBOL(tcp_shutdown);
2142
2143bool tcp_check_oom(struct sock *sk, int shift)
2144{
2145 bool too_many_orphans, out_of_socket_memory;
2146
2147 too_many_orphans = tcp_too_many_orphans(sk, shift);
2148 out_of_socket_memory = tcp_out_of_memory(sk);
2149
2150 if (too_many_orphans)
2151 net_info_ratelimited("too many orphaned sockets\n");
2152 if (out_of_socket_memory)
2153 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2154 return too_many_orphans || out_of_socket_memory;
2155}
2156
2157void tcp_close(struct sock *sk, long timeout)
2158{
2159 struct sk_buff *skb;
2160 int data_was_unread = 0;
2161 int state;
2162
2163 lock_sock(sk);
2164 sk->sk_shutdown = SHUTDOWN_MASK;
2165
2166 if (sk->sk_state == TCP_LISTEN) {
2167 tcp_set_state(sk, TCP_CLOSE);
2168
2169 /* Special case. */
2170 inet_csk_listen_stop(sk);
2171
2172 goto adjudge_to_death;
2173 }
2174
2175 /* We need to flush the recv. buffs. We do this only on the
2176 * descriptor close, not protocol-sourced closes, because the
2177 * reader process may not have drained the data yet!
2178 */
2179 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2180 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2181
2182 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2183 len--;
2184 data_was_unread += len;
2185 __kfree_skb(skb);
2186 }
2187
2188 sk_mem_reclaim(sk);
2189
2190 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2191 if (sk->sk_state == TCP_CLOSE)
2192 goto adjudge_to_death;
2193
2194 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2195 * data was lost. To witness the awful effects of the old behavior of
2196 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2197 * GET in an FTP client, suspend the process, wait for the client to
2198 * advertise a zero window, then kill -9 the FTP client, wheee...
2199 * Note: timeout is always zero in such a case.
2200 */
2201 if (unlikely(tcp_sk(sk)->repair)) {
2202 sk->sk_prot->disconnect(sk, 0);
2203 } else if (data_was_unread) {
2204 /* Unread data was tossed, zap the connection. */
2205 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2206 tcp_set_state(sk, TCP_CLOSE);
2207 tcp_send_active_reset(sk, sk->sk_allocation);
2208 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2209 /* Check zero linger _after_ checking for unread data. */
2210 sk->sk_prot->disconnect(sk, 0);
2211 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2212 } else if (tcp_close_state(sk)) {
2213 /* We FIN if the application ate all the data before
2214 * zapping the connection.
2215 */
2216
2217 /* RED-PEN. Formally speaking, we have broken TCP state
2218 * machine. State transitions:
2219 *
2220 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2221 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2222 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2223 *
2224 * are legal only when FIN has been sent (i.e. in window),
2225 * rather than queued out of window. Purists blame.
2226 *
2227 * F.e. "RFC state" is ESTABLISHED,
2228 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2229 *
2230 * The visible declinations are that sometimes
2231 * we enter time-wait state, when it is not required really
2232 * (harmless), do not send active resets, when they are
2233 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2234 * they look as CLOSING or LAST_ACK for Linux)
2235 * Probably, I missed some more holelets.
2236 * --ANK
2237 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2238 * in a single packet! (May consider it later but will
2239 * probably need API support or TCP_CORK SYN-ACK until
2240 * data is written and socket is closed.)
2241 */
2242 tcp_send_fin(sk);
2243 }
2244
2245 sk_stream_wait_close(sk, timeout);
2246
2247adjudge_to_death:
2248 state = sk->sk_state;
2249 sock_hold(sk);
2250 sock_orphan(sk);
2251
2252 /* It is the last release_sock in its life. It will remove backlog. */
2253 release_sock(sk);
2254
2255
2256 /* Now socket is owned by kernel and we acquire BH lock
2257 * to finish close. No need to check for user refs.
2258 */
2259 local_bh_disable();
2260 bh_lock_sock(sk);
2261 WARN_ON(sock_owned_by_user(sk));
2262
2263 percpu_counter_inc(sk->sk_prot->orphan_count);
2264
2265 /* Have we already been destroyed by a softirq or backlog? */
2266 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2267 goto out;
2268
2269 /* This is a (useful) BSD violating of the RFC. There is a
2270 * problem with TCP as specified in that the other end could
2271 * keep a socket open forever with no application left this end.
2272 * We use a 1 minute timeout (about the same as BSD) then kill
2273 * our end. If they send after that then tough - BUT: long enough
2274 * that we won't make the old 4*rto = almost no time - whoops
2275 * reset mistake.
2276 *
2277 * Nope, it was not mistake. It is really desired behaviour
2278 * f.e. on http servers, when such sockets are useless, but
2279 * consume significant resources. Let's do it with special
2280 * linger2 option. --ANK
2281 */
2282
2283 if (sk->sk_state == TCP_FIN_WAIT2) {
2284 struct tcp_sock *tp = tcp_sk(sk);
2285 if (tp->linger2 < 0) {
2286 tcp_set_state(sk, TCP_CLOSE);
2287 tcp_send_active_reset(sk, GFP_ATOMIC);
2288 __NET_INC_STATS(sock_net(sk),
2289 LINUX_MIB_TCPABORTONLINGER);
2290 } else {
2291 const int tmo = tcp_fin_time(sk);
2292
2293 if (tmo > TCP_TIMEWAIT_LEN) {
2294 inet_csk_reset_keepalive_timer(sk,
2295 tmo - TCP_TIMEWAIT_LEN);
2296 } else {
2297 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2298 goto out;
2299 }
2300 }
2301 }
2302 if (sk->sk_state != TCP_CLOSE) {
2303 sk_mem_reclaim(sk);
2304 if (tcp_check_oom(sk, 0)) {
2305 tcp_set_state(sk, TCP_CLOSE);
2306 tcp_send_active_reset(sk, GFP_ATOMIC);
2307 __NET_INC_STATS(sock_net(sk),
2308 LINUX_MIB_TCPABORTONMEMORY);
2309 } else if (!check_net(sock_net(sk))) {
2310 /* Not possible to send reset; just close */
2311 tcp_set_state(sk, TCP_CLOSE);
2312 }
2313 }
2314
2315 if (sk->sk_state == TCP_CLOSE) {
2316 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2317 /* We could get here with a non-NULL req if the socket is
2318 * aborted (e.g., closed with unread data) before 3WHS
2319 * finishes.
2320 */
2321 if (req)
2322 reqsk_fastopen_remove(sk, req, false);
2323 inet_csk_destroy_sock(sk);
2324 }
2325 /* Otherwise, socket is reprieved until protocol close. */
2326
2327out:
2328 bh_unlock_sock(sk);
2329 local_bh_enable();
2330 sock_put(sk);
2331}
2332EXPORT_SYMBOL(tcp_close);
2333
2334/* These states need RST on ABORT according to RFC793 */
2335
2336static inline bool tcp_need_reset(int state)
2337{
2338 return (1 << state) &
2339 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2340 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2341}
2342
2343static void tcp_rtx_queue_purge(struct sock *sk)
2344{
2345 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2346
2347 while (p) {
2348 struct sk_buff *skb = rb_to_skb(p);
2349
2350 p = rb_next(p);
2351 /* Since we are deleting whole queue, no need to
2352 * list_del(&skb->tcp_tsorted_anchor)
2353 */
2354 tcp_rtx_queue_unlink(skb, sk);
2355 sk_wmem_free_skb(sk, skb);
2356 }
2357}
2358
2359void tcp_write_queue_purge(struct sock *sk)
2360{
2361 struct sk_buff *skb;
2362
2363 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2364 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2365 tcp_skb_tsorted_anchor_cleanup(skb);
2366 sk_wmem_free_skb(sk, skb);
2367 }
2368 tcp_rtx_queue_purge(sk);
2369 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2370 sk_mem_reclaim(sk);
2371 tcp_clear_all_retrans_hints(tcp_sk(sk));
2372 tcp_sk(sk)->packets_out = 0;
2373}
2374
2375int tcp_disconnect(struct sock *sk, int flags)
2376{
2377 struct inet_sock *inet = inet_sk(sk);
2378 struct inet_connection_sock *icsk = inet_csk(sk);
2379 struct tcp_sock *tp = tcp_sk(sk);
2380 int err = 0;
2381 int old_state = sk->sk_state;
2382
2383 if (old_state != TCP_CLOSE)
2384 tcp_set_state(sk, TCP_CLOSE);
2385
2386 /* ABORT function of RFC793 */
2387 if (old_state == TCP_LISTEN) {
2388 inet_csk_listen_stop(sk);
2389 } else if (unlikely(tp->repair)) {
2390 sk->sk_err = ECONNABORTED;
2391 } else if (tcp_need_reset(old_state) ||
2392 (tp->snd_nxt != tp->write_seq &&
2393 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2394 /* The last check adjusts for discrepancy of Linux wrt. RFC
2395 * states
2396 */
2397 tcp_send_active_reset(sk, gfp_any());
2398 sk->sk_err = ECONNRESET;
2399 } else if (old_state == TCP_SYN_SENT)
2400 sk->sk_err = ECONNRESET;
2401
2402 tcp_clear_xmit_timers(sk);
2403 __skb_queue_purge(&sk->sk_receive_queue);
2404 tcp_write_queue_purge(sk);
2405 tcp_fastopen_active_disable_ofo_check(sk);
2406 skb_rbtree_purge(&tp->out_of_order_queue);
2407
2408 inet->inet_dport = 0;
2409
2410 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2411 inet_reset_saddr(sk);
2412
2413 sk->sk_shutdown = 0;
2414 sock_reset_flag(sk, SOCK_DONE);
2415 tp->srtt_us = 0;
2416 tp->write_seq += tp->max_window + 2;
2417 if (tp->write_seq == 0)
2418 tp->write_seq = 1;
2419 icsk->icsk_backoff = 0;
2420 tp->snd_cwnd = 2;
2421 icsk->icsk_probes_out = 0;
2422 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2423 tp->snd_cwnd_cnt = 0;
2424 tp->window_clamp = 0;
2425 tcp_set_ca_state(sk, TCP_CA_Open);
2426 tp->is_sack_reneg = 0;
2427 tcp_clear_retrans(tp);
2428 inet_csk_delack_init(sk);
2429 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2430 * issue in __tcp_select_window()
2431 */
2432 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2433 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2434 __sk_dst_reset(sk);
2435 dst_release(sk->sk_rx_dst);
2436 sk->sk_rx_dst = NULL;
2437 tcp_saved_syn_free(tp);
2438
2439 /* Clean up fastopen related fields */
2440 tcp_free_fastopen_req(tp);
2441 inet->defer_connect = 0;
2442
2443 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2444
2445 if (sk->sk_frag.page) {
2446 put_page(sk->sk_frag.page);
2447 sk->sk_frag.page = NULL;
2448 sk->sk_frag.offset = 0;
2449 }
2450
2451 sk->sk_error_report(sk);
2452 return err;
2453}
2454EXPORT_SYMBOL(tcp_disconnect);
2455
2456static inline bool tcp_can_repair_sock(const struct sock *sk)
2457{
2458 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2459 (sk->sk_state != TCP_LISTEN);
2460}
2461
2462static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2463{
2464 struct tcp_repair_window opt;
2465
2466 if (!tp->repair)
2467 return -EPERM;
2468
2469 if (len != sizeof(opt))
2470 return -EINVAL;
2471
2472 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2473 return -EFAULT;
2474
2475 if (opt.max_window < opt.snd_wnd)
2476 return -EINVAL;
2477
2478 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2479 return -EINVAL;
2480
2481 if (after(opt.rcv_wup, tp->rcv_nxt))
2482 return -EINVAL;
2483
2484 tp->snd_wl1 = opt.snd_wl1;
2485 tp->snd_wnd = opt.snd_wnd;
2486 tp->max_window = opt.max_window;
2487
2488 tp->rcv_wnd = opt.rcv_wnd;
2489 tp->rcv_wup = opt.rcv_wup;
2490
2491 return 0;
2492}
2493
2494static int tcp_repair_options_est(struct sock *sk,
2495 struct tcp_repair_opt __user *optbuf, unsigned int len)
2496{
2497 struct tcp_sock *tp = tcp_sk(sk);
2498 struct tcp_repair_opt opt;
2499
2500 while (len >= sizeof(opt)) {
2501 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2502 return -EFAULT;
2503
2504 optbuf++;
2505 len -= sizeof(opt);
2506
2507 switch (opt.opt_code) {
2508 case TCPOPT_MSS:
2509 tp->rx_opt.mss_clamp = opt.opt_val;
2510 tcp_mtup_init(sk);
2511 break;
2512 case TCPOPT_WINDOW:
2513 {
2514 u16 snd_wscale = opt.opt_val & 0xFFFF;
2515 u16 rcv_wscale = opt.opt_val >> 16;
2516
2517 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2518 return -EFBIG;
2519
2520 tp->rx_opt.snd_wscale = snd_wscale;
2521 tp->rx_opt.rcv_wscale = rcv_wscale;
2522 tp->rx_opt.wscale_ok = 1;
2523 }
2524 break;
2525 case TCPOPT_SACK_PERM:
2526 if (opt.opt_val != 0)
2527 return -EINVAL;
2528
2529 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2530 break;
2531 case TCPOPT_TIMESTAMP:
2532 if (opt.opt_val != 0)
2533 return -EINVAL;
2534
2535 tp->rx_opt.tstamp_ok = 1;
2536 break;
2537 }
2538 }
2539
2540 return 0;
2541}
2542
2543/*
2544 * Socket option code for TCP.
2545 */
2546static int do_tcp_setsockopt(struct sock *sk, int level,
2547 int optname, char __user *optval, unsigned int optlen)
2548{
2549 struct tcp_sock *tp = tcp_sk(sk);
2550 struct inet_connection_sock *icsk = inet_csk(sk);
2551 struct net *net = sock_net(sk);
2552 int val;
2553 int err = 0;
2554
2555 /* These are data/string values, all the others are ints */
2556 switch (optname) {
2557 case TCP_CONGESTION: {
2558 char name[TCP_CA_NAME_MAX];
2559
2560 if (optlen < 1)
2561 return -EINVAL;
2562
2563 val = strncpy_from_user(name, optval,
2564 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2565 if (val < 0)
2566 return -EFAULT;
2567 name[val] = 0;
2568
2569 lock_sock(sk);
2570 err = tcp_set_congestion_control(sk, name, true, true);
2571 release_sock(sk);
2572 return err;
2573 }
2574 case TCP_ULP: {
2575 char name[TCP_ULP_NAME_MAX];
2576
2577 if (optlen < 1)
2578 return -EINVAL;
2579
2580 val = strncpy_from_user(name, optval,
2581 min_t(long, TCP_ULP_NAME_MAX - 1,
2582 optlen));
2583 if (val < 0)
2584 return -EFAULT;
2585 name[val] = 0;
2586
2587 lock_sock(sk);
2588 err = tcp_set_ulp(sk, name);
2589 release_sock(sk);
2590 return err;
2591 }
2592 case TCP_FASTOPEN_KEY: {
2593 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
2594
2595 if (optlen != sizeof(key))
2596 return -EINVAL;
2597
2598 if (copy_from_user(key, optval, optlen))
2599 return -EFAULT;
2600
2601 return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key));
2602 }
2603 default:
2604 /* fallthru */
2605 break;
2606 }
2607
2608 if (optlen < sizeof(int))
2609 return -EINVAL;
2610
2611 if (get_user(val, (int __user *)optval))
2612 return -EFAULT;
2613
2614 lock_sock(sk);
2615
2616 switch (optname) {
2617 case TCP_MAXSEG:
2618 /* Values greater than interface MTU won't take effect. However
2619 * at the point when this call is done we typically don't yet
2620 * know which interface is going to be used
2621 */
2622 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2623 err = -EINVAL;
2624 break;
2625 }
2626 tp->rx_opt.user_mss = val;
2627 break;
2628
2629 case TCP_NODELAY:
2630 if (val) {
2631 /* TCP_NODELAY is weaker than TCP_CORK, so that
2632 * this option on corked socket is remembered, but
2633 * it is not activated until cork is cleared.
2634 *
2635 * However, when TCP_NODELAY is set we make
2636 * an explicit push, which overrides even TCP_CORK
2637 * for currently queued segments.
2638 */
2639 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2640 tcp_push_pending_frames(sk);
2641 } else {
2642 tp->nonagle &= ~TCP_NAGLE_OFF;
2643 }
2644 break;
2645
2646 case TCP_THIN_LINEAR_TIMEOUTS:
2647 if (val < 0 || val > 1)
2648 err = -EINVAL;
2649 else
2650 tp->thin_lto = val;
2651 break;
2652
2653 case TCP_THIN_DUPACK:
2654 if (val < 0 || val > 1)
2655 err = -EINVAL;
2656 break;
2657
2658 case TCP_REPAIR:
2659 if (!tcp_can_repair_sock(sk))
2660 err = -EPERM;
2661 else if (val == 1) {
2662 tp->repair = 1;
2663 sk->sk_reuse = SK_FORCE_REUSE;
2664 tp->repair_queue = TCP_NO_QUEUE;
2665 } else if (val == 0) {
2666 tp->repair = 0;
2667 sk->sk_reuse = SK_NO_REUSE;
2668 tcp_send_window_probe(sk);
2669 } else
2670 err = -EINVAL;
2671
2672 break;
2673
2674 case TCP_REPAIR_QUEUE:
2675 if (!tp->repair)
2676 err = -EPERM;
2677 else if ((unsigned int)val < TCP_QUEUES_NR)
2678 tp->repair_queue = val;
2679 else
2680 err = -EINVAL;
2681 break;
2682
2683 case TCP_QUEUE_SEQ:
2684 if (sk->sk_state != TCP_CLOSE)
2685 err = -EPERM;
2686 else if (tp->repair_queue == TCP_SEND_QUEUE)
2687 tp->write_seq = val;
2688 else if (tp->repair_queue == TCP_RECV_QUEUE)
2689 tp->rcv_nxt = val;
2690 else
2691 err = -EINVAL;
2692 break;
2693
2694 case TCP_REPAIR_OPTIONS:
2695 if (!tp->repair)
2696 err = -EINVAL;
2697 else if (sk->sk_state == TCP_ESTABLISHED)
2698 err = tcp_repair_options_est(sk,
2699 (struct tcp_repair_opt __user *)optval,
2700 optlen);
2701 else
2702 err = -EPERM;
2703 break;
2704
2705 case TCP_CORK:
2706 /* When set indicates to always queue non-full frames.
2707 * Later the user clears this option and we transmit
2708 * any pending partial frames in the queue. This is
2709 * meant to be used alongside sendfile() to get properly
2710 * filled frames when the user (for example) must write
2711 * out headers with a write() call first and then use
2712 * sendfile to send out the data parts.
2713 *
2714 * TCP_CORK can be set together with TCP_NODELAY and it is
2715 * stronger than TCP_NODELAY.
2716 */
2717 if (val) {
2718 tp->nonagle |= TCP_NAGLE_CORK;
2719 } else {
2720 tp->nonagle &= ~TCP_NAGLE_CORK;
2721 if (tp->nonagle&TCP_NAGLE_OFF)
2722 tp->nonagle |= TCP_NAGLE_PUSH;
2723 tcp_push_pending_frames(sk);
2724 }
2725 break;
2726
2727 case TCP_KEEPIDLE:
2728 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2729 err = -EINVAL;
2730 else {
2731 tp->keepalive_time = val * HZ;
2732 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2733 !((1 << sk->sk_state) &
2734 (TCPF_CLOSE | TCPF_LISTEN))) {
2735 u32 elapsed = keepalive_time_elapsed(tp);
2736 if (tp->keepalive_time > elapsed)
2737 elapsed = tp->keepalive_time - elapsed;
2738 else
2739 elapsed = 0;
2740 inet_csk_reset_keepalive_timer(sk, elapsed);
2741 }
2742 }
2743 break;
2744 case TCP_KEEPINTVL:
2745 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2746 err = -EINVAL;
2747 else
2748 tp->keepalive_intvl = val * HZ;
2749 break;
2750 case TCP_KEEPCNT:
2751 if (val < 1 || val > MAX_TCP_KEEPCNT)
2752 err = -EINVAL;
2753 else
2754 tp->keepalive_probes = val;
2755 break;
2756 case TCP_SYNCNT:
2757 if (val < 1 || val > MAX_TCP_SYNCNT)
2758 err = -EINVAL;
2759 else
2760 icsk->icsk_syn_retries = val;
2761 break;
2762
2763 case TCP_SAVE_SYN:
2764 if (val < 0 || val > 1)
2765 err = -EINVAL;
2766 else
2767 tp->save_syn = val;
2768 break;
2769
2770 case TCP_LINGER2:
2771 if (val < 0)
2772 tp->linger2 = -1;
2773 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2774 tp->linger2 = 0;
2775 else
2776 tp->linger2 = val * HZ;
2777 break;
2778
2779 case TCP_DEFER_ACCEPT:
2780 /* Translate value in seconds to number of retransmits */
2781 icsk->icsk_accept_queue.rskq_defer_accept =
2782 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2783 TCP_RTO_MAX / HZ);
2784 break;
2785
2786 case TCP_WINDOW_CLAMP:
2787 if (!val) {
2788 if (sk->sk_state != TCP_CLOSE) {
2789 err = -EINVAL;
2790 break;
2791 }
2792 tp->window_clamp = 0;
2793 } else
2794 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2795 SOCK_MIN_RCVBUF / 2 : val;
2796 break;
2797
2798 case TCP_QUICKACK:
2799 if (!val) {
2800 icsk->icsk_ack.pingpong = 1;
2801 } else {
2802 icsk->icsk_ack.pingpong = 0;
2803 if ((1 << sk->sk_state) &
2804 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2805 inet_csk_ack_scheduled(sk)) {
2806 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2807 tcp_cleanup_rbuf(sk, 1);
2808 if (!(val & 1))
2809 icsk->icsk_ack.pingpong = 1;
2810 }
2811 }
2812 break;
2813
2814#ifdef CONFIG_TCP_MD5SIG
2815 case TCP_MD5SIG:
2816 case TCP_MD5SIG_EXT:
2817 if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))
2818 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
2819 else
2820 err = -EINVAL;
2821 break;
2822#endif
2823 case TCP_USER_TIMEOUT:
2824 /* Cap the max time in ms TCP will retry or probe the window
2825 * before giving up and aborting (ETIMEDOUT) a connection.
2826 */
2827 if (val < 0)
2828 err = -EINVAL;
2829 else
2830 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2831 break;
2832
2833 case TCP_FASTOPEN:
2834 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2835 TCPF_LISTEN))) {
2836 tcp_fastopen_init_key_once(net);
2837
2838 fastopen_queue_tune(sk, val);
2839 } else {
2840 err = -EINVAL;
2841 }
2842 break;
2843 case TCP_FASTOPEN_CONNECT:
2844 if (val > 1 || val < 0) {
2845 err = -EINVAL;
2846 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
2847 if (sk->sk_state == TCP_CLOSE)
2848 tp->fastopen_connect = val;
2849 else
2850 err = -EINVAL;
2851 } else {
2852 err = -EOPNOTSUPP;
2853 }
2854 break;
2855 case TCP_FASTOPEN_NO_COOKIE:
2856 if (val > 1 || val < 0)
2857 err = -EINVAL;
2858 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2859 err = -EINVAL;
2860 else
2861 tp->fastopen_no_cookie = val;
2862 break;
2863 case TCP_TIMESTAMP:
2864 if (!tp->repair)
2865 err = -EPERM;
2866 else
2867 tp->tsoffset = val - tcp_time_stamp_raw();
2868 break;
2869 case TCP_REPAIR_WINDOW:
2870 err = tcp_repair_set_window(tp, optval, optlen);
2871 break;
2872 case TCP_NOTSENT_LOWAT:
2873 tp->notsent_lowat = val;
2874 sk->sk_write_space(sk);
2875 break;
2876 default:
2877 err = -ENOPROTOOPT;
2878 break;
2879 }
2880
2881 release_sock(sk);
2882 return err;
2883}
2884
2885int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2886 unsigned int optlen)
2887{
2888 const struct inet_connection_sock *icsk = inet_csk(sk);
2889
2890 if (level != SOL_TCP)
2891 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2892 optval, optlen);
2893 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2894}
2895EXPORT_SYMBOL(tcp_setsockopt);
2896
2897#ifdef CONFIG_COMPAT
2898int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2899 char __user *optval, unsigned int optlen)
2900{
2901 if (level != SOL_TCP)
2902 return inet_csk_compat_setsockopt(sk, level, optname,
2903 optval, optlen);
2904 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2905}
2906EXPORT_SYMBOL(compat_tcp_setsockopt);
2907#endif
2908
2909static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
2910 struct tcp_info *info)
2911{
2912 u64 stats[__TCP_CHRONO_MAX], total = 0;
2913 enum tcp_chrono i;
2914
2915 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
2916 stats[i] = tp->chrono_stat[i - 1];
2917 if (i == tp->chrono_type)
2918 stats[i] += tcp_jiffies32 - tp->chrono_start;
2919 stats[i] *= USEC_PER_SEC / HZ;
2920 total += stats[i];
2921 }
2922
2923 info->tcpi_busy_time = total;
2924 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
2925 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
2926}
2927
2928/* Return information about state of tcp endpoint in API format. */
2929void tcp_get_info(struct sock *sk, struct tcp_info *info)
2930{
2931 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2932 const struct inet_connection_sock *icsk = inet_csk(sk);
2933 u32 now;
2934 u64 rate64;
2935 bool slow;
2936 u32 rate;
2937
2938 memset(info, 0, sizeof(*info));
2939 if (sk->sk_type != SOCK_STREAM)
2940 return;
2941
2942 info->tcpi_state = inet_sk_state_load(sk);
2943
2944 /* Report meaningful fields for all TCP states, including listeners */
2945 rate = READ_ONCE(sk->sk_pacing_rate);
2946 rate64 = rate != ~0U ? rate : ~0ULL;
2947 info->tcpi_pacing_rate = rate64;
2948
2949 rate = READ_ONCE(sk->sk_max_pacing_rate);
2950 rate64 = rate != ~0U ? rate : ~0ULL;
2951 info->tcpi_max_pacing_rate = rate64;
2952
2953 info->tcpi_reordering = tp->reordering;
2954 info->tcpi_snd_cwnd = tp->snd_cwnd;
2955
2956 if (info->tcpi_state == TCP_LISTEN) {
2957 /* listeners aliased fields :
2958 * tcpi_unacked -> Number of children ready for accept()
2959 * tcpi_sacked -> max backlog
2960 */
2961 info->tcpi_unacked = sk->sk_ack_backlog;
2962 info->tcpi_sacked = sk->sk_max_ack_backlog;
2963 return;
2964 }
2965
2966 slow = lock_sock_fast(sk);
2967
2968 info->tcpi_ca_state = icsk->icsk_ca_state;
2969 info->tcpi_retransmits = icsk->icsk_retransmits;
2970 info->tcpi_probes = icsk->icsk_probes_out;
2971 info->tcpi_backoff = icsk->icsk_backoff;
2972
2973 if (tp->rx_opt.tstamp_ok)
2974 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2975 if (tcp_is_sack(tp))
2976 info->tcpi_options |= TCPI_OPT_SACK;
2977 if (tp->rx_opt.wscale_ok) {
2978 info->tcpi_options |= TCPI_OPT_WSCALE;
2979 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2980 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2981 }
2982
2983 if (tp->ecn_flags & TCP_ECN_OK)
2984 info->tcpi_options |= TCPI_OPT_ECN;
2985 if (tp->ecn_flags & TCP_ECN_SEEN)
2986 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2987 if (tp->syn_data_acked)
2988 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2989
2990 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2991 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2992 info->tcpi_snd_mss = tp->mss_cache;
2993 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2994
2995 info->tcpi_unacked = tp->packets_out;
2996 info->tcpi_sacked = tp->sacked_out;
2997
2998 info->tcpi_lost = tp->lost_out;
2999 info->tcpi_retrans = tp->retrans_out;
3000
3001 now = tcp_jiffies32;
3002 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3003 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3004 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3005
3006 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3007 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3008 info->tcpi_rtt = tp->srtt_us >> 3;
3009 info->tcpi_rttvar = tp->mdev_us >> 2;
3010 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3011 info->tcpi_advmss = tp->advmss;
3012
3013 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3014 info->tcpi_rcv_space = tp->rcvq_space.space;
3015
3016 info->tcpi_total_retrans = tp->total_retrans;
3017
3018 info->tcpi_bytes_acked = tp->bytes_acked;
3019 info->tcpi_bytes_received = tp->bytes_received;
3020 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3021 tcp_get_info_chrono_stats(tp, info);
3022
3023 info->tcpi_segs_out = tp->segs_out;
3024 info->tcpi_segs_in = tp->segs_in;
3025
3026 info->tcpi_min_rtt = tcp_min_rtt(tp);
3027 info->tcpi_data_segs_in = tp->data_segs_in;
3028 info->tcpi_data_segs_out = tp->data_segs_out;
3029
3030 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3031 rate64 = tcp_compute_delivery_rate(tp);
3032 if (rate64)
3033 info->tcpi_delivery_rate = rate64;
3034 unlock_sock_fast(sk, slow);
3035}
3036EXPORT_SYMBOL_GPL(tcp_get_info);
3037
3038struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
3039{
3040 const struct tcp_sock *tp = tcp_sk(sk);
3041 struct sk_buff *stats;
3042 struct tcp_info info;
3043 u64 rate64;
3044 u32 rate;
3045
3046 stats = alloc_skb(7 * nla_total_size_64bit(sizeof(u64)) +
3047 5 * nla_total_size(sizeof(u32)) +
3048 3 * nla_total_size(sizeof(u8)), GFP_ATOMIC);
3049 if (!stats)
3050 return NULL;
3051
3052 tcp_get_info_chrono_stats(tp, &info);
3053 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3054 info.tcpi_busy_time, TCP_NLA_PAD);
3055 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3056 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3057 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3058 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3059 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3060 tp->data_segs_out, TCP_NLA_PAD);
3061 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3062 tp->total_retrans, TCP_NLA_PAD);
3063
3064 rate = READ_ONCE(sk->sk_pacing_rate);
3065 rate64 = rate != ~0U ? rate : ~0ULL;
3066 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3067
3068 rate64 = tcp_compute_delivery_rate(tp);
3069 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3070
3071 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3072 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3073 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3074
3075 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3076 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3077 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3078
3079 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3080 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3081 return stats;
3082}
3083
3084static int do_tcp_getsockopt(struct sock *sk, int level,
3085 int optname, char __user *optval, int __user *optlen)
3086{
3087 struct inet_connection_sock *icsk = inet_csk(sk);
3088 struct tcp_sock *tp = tcp_sk(sk);
3089 struct net *net = sock_net(sk);
3090 int val, len;
3091
3092 if (get_user(len, optlen))
3093 return -EFAULT;
3094
3095 len = min_t(unsigned int, len, sizeof(int));
3096
3097 if (len < 0)
3098 return -EINVAL;
3099
3100 switch (optname) {
3101 case TCP_MAXSEG:
3102 val = tp->mss_cache;
3103 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3104 val = tp->rx_opt.user_mss;
3105 if (tp->repair)
3106 val = tp->rx_opt.mss_clamp;
3107 break;
3108 case TCP_NODELAY:
3109 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3110 break;
3111 case TCP_CORK:
3112 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3113 break;
3114 case TCP_KEEPIDLE:
3115 val = keepalive_time_when(tp) / HZ;
3116 break;
3117 case TCP_KEEPINTVL:
3118 val = keepalive_intvl_when(tp) / HZ;
3119 break;
3120 case TCP_KEEPCNT:
3121 val = keepalive_probes(tp);
3122 break;
3123 case TCP_SYNCNT:
3124 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3125 break;
3126 case TCP_LINGER2:
3127 val = tp->linger2;
3128 if (val >= 0)
3129 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3130 break;
3131 case TCP_DEFER_ACCEPT:
3132 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3133 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3134 break;
3135 case TCP_WINDOW_CLAMP:
3136 val = tp->window_clamp;
3137 break;
3138 case TCP_INFO: {
3139 struct tcp_info info;
3140
3141 if (get_user(len, optlen))
3142 return -EFAULT;
3143
3144 tcp_get_info(sk, &info);
3145
3146 len = min_t(unsigned int, len, sizeof(info));
3147 if (put_user(len, optlen))
3148 return -EFAULT;
3149 if (copy_to_user(optval, &info, len))
3150 return -EFAULT;
3151 return 0;
3152 }
3153 case TCP_CC_INFO: {
3154 const struct tcp_congestion_ops *ca_ops;
3155 union tcp_cc_info info;
3156 size_t sz = 0;
3157 int attr;
3158
3159 if (get_user(len, optlen))
3160 return -EFAULT;
3161
3162 ca_ops = icsk->icsk_ca_ops;
3163 if (ca_ops && ca_ops->get_info)
3164 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3165
3166 len = min_t(unsigned int, len, sz);
3167 if (put_user(len, optlen))
3168 return -EFAULT;
3169 if (copy_to_user(optval, &info, len))
3170 return -EFAULT;
3171 return 0;
3172 }
3173 case TCP_QUICKACK:
3174 val = !icsk->icsk_ack.pingpong;
3175 break;
3176
3177 case TCP_CONGESTION:
3178 if (get_user(len, optlen))
3179 return -EFAULT;
3180 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3181 if (put_user(len, optlen))
3182 return -EFAULT;
3183 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3184 return -EFAULT;
3185 return 0;
3186
3187 case TCP_ULP:
3188 if (get_user(len, optlen))
3189 return -EFAULT;
3190 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3191 if (!icsk->icsk_ulp_ops) {
3192 if (put_user(0, optlen))
3193 return -EFAULT;
3194 return 0;
3195 }
3196 if (put_user(len, optlen))
3197 return -EFAULT;
3198 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3199 return -EFAULT;
3200 return 0;
3201
3202 case TCP_FASTOPEN_KEY: {
3203 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
3204 struct tcp_fastopen_context *ctx;
3205
3206 if (get_user(len, optlen))
3207 return -EFAULT;
3208
3209 rcu_read_lock();
3210 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
3211 if (ctx)
3212 memcpy(key, ctx->key, sizeof(key));
3213 else
3214 len = 0;
3215 rcu_read_unlock();
3216
3217 len = min_t(unsigned int, len, sizeof(key));
3218 if (put_user(len, optlen))
3219 return -EFAULT;
3220 if (copy_to_user(optval, key, len))
3221 return -EFAULT;
3222 return 0;
3223 }
3224 case TCP_THIN_LINEAR_TIMEOUTS:
3225 val = tp->thin_lto;
3226 break;
3227
3228 case TCP_THIN_DUPACK:
3229 val = 0;
3230 break;
3231
3232 case TCP_REPAIR:
3233 val = tp->repair;
3234 break;
3235
3236 case TCP_REPAIR_QUEUE:
3237 if (tp->repair)
3238 val = tp->repair_queue;
3239 else
3240 return -EINVAL;
3241 break;
3242
3243 case TCP_REPAIR_WINDOW: {
3244 struct tcp_repair_window opt;
3245
3246 if (get_user(len, optlen))
3247 return -EFAULT;
3248
3249 if (len != sizeof(opt))
3250 return -EINVAL;
3251
3252 if (!tp->repair)
3253 return -EPERM;
3254
3255 opt.snd_wl1 = tp->snd_wl1;
3256 opt.snd_wnd = tp->snd_wnd;
3257 opt.max_window = tp->max_window;
3258 opt.rcv_wnd = tp->rcv_wnd;
3259 opt.rcv_wup = tp->rcv_wup;
3260
3261 if (copy_to_user(optval, &opt, len))
3262 return -EFAULT;
3263 return 0;
3264 }
3265 case TCP_QUEUE_SEQ:
3266 if (tp->repair_queue == TCP_SEND_QUEUE)
3267 val = tp->write_seq;
3268 else if (tp->repair_queue == TCP_RECV_QUEUE)
3269 val = tp->rcv_nxt;
3270 else
3271 return -EINVAL;
3272 break;
3273
3274 case TCP_USER_TIMEOUT:
3275 val = jiffies_to_msecs(icsk->icsk_user_timeout);
3276 break;
3277
3278 case TCP_FASTOPEN:
3279 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3280 break;
3281
3282 case TCP_FASTOPEN_CONNECT:
3283 val = tp->fastopen_connect;
3284 break;
3285
3286 case TCP_FASTOPEN_NO_COOKIE:
3287 val = tp->fastopen_no_cookie;
3288 break;
3289
3290 case TCP_TIMESTAMP:
3291 val = tcp_time_stamp_raw() + tp->tsoffset;
3292 break;
3293 case TCP_NOTSENT_LOWAT:
3294 val = tp->notsent_lowat;
3295 break;
3296 case TCP_SAVE_SYN:
3297 val = tp->save_syn;
3298 break;
3299 case TCP_SAVED_SYN: {
3300 if (get_user(len, optlen))
3301 return -EFAULT;
3302
3303 lock_sock(sk);
3304 if (tp->saved_syn) {
3305 if (len < tp->saved_syn[0]) {
3306 if (put_user(tp->saved_syn[0], optlen)) {
3307 release_sock(sk);
3308 return -EFAULT;
3309 }
3310 release_sock(sk);
3311 return -EINVAL;
3312 }
3313 len = tp->saved_syn[0];
3314 if (put_user(len, optlen)) {
3315 release_sock(sk);
3316 return -EFAULT;
3317 }
3318 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3319 release_sock(sk);
3320 return -EFAULT;
3321 }
3322 tcp_saved_syn_free(tp);
3323 release_sock(sk);
3324 } else {
3325 release_sock(sk);
3326 len = 0;
3327 if (put_user(len, optlen))
3328 return -EFAULT;
3329 }
3330 return 0;
3331 }
3332 default:
3333 return -ENOPROTOOPT;
3334 }
3335
3336 if (put_user(len, optlen))
3337 return -EFAULT;
3338 if (copy_to_user(optval, &val, len))
3339 return -EFAULT;
3340 return 0;
3341}
3342
3343int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3344 int __user *optlen)
3345{
3346 struct inet_connection_sock *icsk = inet_csk(sk);
3347
3348 if (level != SOL_TCP)
3349 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3350 optval, optlen);
3351 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3352}
3353EXPORT_SYMBOL(tcp_getsockopt);
3354
3355#ifdef CONFIG_COMPAT
3356int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3357 char __user *optval, int __user *optlen)
3358{
3359 if (level != SOL_TCP)
3360 return inet_csk_compat_getsockopt(sk, level, optname,
3361 optval, optlen);
3362 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3363}
3364EXPORT_SYMBOL(compat_tcp_getsockopt);
3365#endif
3366
3367#ifdef CONFIG_TCP_MD5SIG
3368static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3369static DEFINE_MUTEX(tcp_md5sig_mutex);
3370static bool tcp_md5sig_pool_populated = false;
3371
3372static void __tcp_alloc_md5sig_pool(void)
3373{
3374 struct crypto_ahash *hash;
3375 int cpu;
3376
3377 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3378 if (IS_ERR(hash))
3379 return;
3380
3381 for_each_possible_cpu(cpu) {
3382 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3383 struct ahash_request *req;
3384
3385 if (!scratch) {
3386 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3387 sizeof(struct tcphdr),
3388 GFP_KERNEL,
3389 cpu_to_node(cpu));
3390 if (!scratch)
3391 return;
3392 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3393 }
3394 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3395 continue;
3396
3397 req = ahash_request_alloc(hash, GFP_KERNEL);
3398 if (!req)
3399 return;
3400
3401 ahash_request_set_callback(req, 0, NULL, NULL);
3402
3403 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3404 }
3405 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3406 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3407 */
3408 smp_wmb();
3409 tcp_md5sig_pool_populated = true;
3410}
3411
3412bool tcp_alloc_md5sig_pool(void)
3413{
3414 if (unlikely(!tcp_md5sig_pool_populated)) {
3415 mutex_lock(&tcp_md5sig_mutex);
3416
3417 if (!tcp_md5sig_pool_populated)
3418 __tcp_alloc_md5sig_pool();
3419
3420 mutex_unlock(&tcp_md5sig_mutex);
3421 }
3422 return tcp_md5sig_pool_populated;
3423}
3424EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3425
3426
3427/**
3428 * tcp_get_md5sig_pool - get md5sig_pool for this user
3429 *
3430 * We use percpu structure, so if we succeed, we exit with preemption
3431 * and BH disabled, to make sure another thread or softirq handling
3432 * wont try to get same context.
3433 */
3434struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3435{
3436 local_bh_disable();
3437
3438 if (tcp_md5sig_pool_populated) {
3439 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3440 smp_rmb();
3441 return this_cpu_ptr(&tcp_md5sig_pool);
3442 }
3443 local_bh_enable();
3444 return NULL;
3445}
3446EXPORT_SYMBOL(tcp_get_md5sig_pool);
3447
3448int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3449 const struct sk_buff *skb, unsigned int header_len)
3450{
3451 struct scatterlist sg;
3452 const struct tcphdr *tp = tcp_hdr(skb);
3453 struct ahash_request *req = hp->md5_req;
3454 unsigned int i;
3455 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3456 skb_headlen(skb) - header_len : 0;
3457 const struct skb_shared_info *shi = skb_shinfo(skb);
3458 struct sk_buff *frag_iter;
3459
3460 sg_init_table(&sg, 1);
3461
3462 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3463 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3464 if (crypto_ahash_update(req))
3465 return 1;
3466
3467 for (i = 0; i < shi->nr_frags; ++i) {
3468 const struct skb_frag_struct *f = &shi->frags[i];
3469 unsigned int offset = f->page_offset;
3470 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3471
3472 sg_set_page(&sg, page, skb_frag_size(f),
3473 offset_in_page(offset));
3474 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3475 if (crypto_ahash_update(req))
3476 return 1;
3477 }
3478
3479 skb_walk_frags(skb, frag_iter)
3480 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3481 return 1;
3482
3483 return 0;
3484}
3485EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3486
3487int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3488{
3489 struct scatterlist sg;
3490
3491 sg_init_one(&sg, key->key, key->keylen);
3492 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3493 return crypto_ahash_update(hp->md5_req);
3494}
3495EXPORT_SYMBOL(tcp_md5_hash_key);
3496
3497#endif
3498
3499void tcp_done(struct sock *sk)
3500{
3501 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3502
3503 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3504 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3505
3506 tcp_set_state(sk, TCP_CLOSE);
3507 tcp_clear_xmit_timers(sk);
3508 if (req)
3509 reqsk_fastopen_remove(sk, req, false);
3510
3511 sk->sk_shutdown = SHUTDOWN_MASK;
3512
3513 if (!sock_flag(sk, SOCK_DEAD))
3514 sk->sk_state_change(sk);
3515 else
3516 inet_csk_destroy_sock(sk);
3517}
3518EXPORT_SYMBOL_GPL(tcp_done);
3519
3520int tcp_abort(struct sock *sk, int err)
3521{
3522 if (!sk_fullsock(sk)) {
3523 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3524 struct request_sock *req = inet_reqsk(sk);
3525
3526 local_bh_disable();
3527 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3528 req);
3529 local_bh_enable();
3530 return 0;
3531 }
3532 return -EOPNOTSUPP;
3533 }
3534
3535 /* Don't race with userspace socket closes such as tcp_close. */
3536 lock_sock(sk);
3537
3538 if (sk->sk_state == TCP_LISTEN) {
3539 tcp_set_state(sk, TCP_CLOSE);
3540 inet_csk_listen_stop(sk);
3541 }
3542
3543 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3544 local_bh_disable();
3545 bh_lock_sock(sk);
3546
3547 if (!sock_flag(sk, SOCK_DEAD)) {
3548 sk->sk_err = err;
3549 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3550 smp_wmb();
3551 sk->sk_error_report(sk);
3552 if (tcp_need_reset(sk->sk_state))
3553 tcp_send_active_reset(sk, GFP_ATOMIC);
3554 tcp_done(sk);
3555 }
3556
3557 bh_unlock_sock(sk);
3558 local_bh_enable();
3559 tcp_write_queue_purge(sk);
3560 release_sock(sk);
3561 return 0;
3562}
3563EXPORT_SYMBOL_GPL(tcp_abort);
3564
3565extern struct tcp_congestion_ops tcp_reno;
3566
3567static __initdata unsigned long thash_entries;
3568static int __init set_thash_entries(char *str)
3569{
3570 ssize_t ret;
3571
3572 if (!str)
3573 return 0;
3574
3575 ret = kstrtoul(str, 0, &thash_entries);
3576 if (ret)
3577 return 0;
3578
3579 return 1;
3580}
3581__setup("thash_entries=", set_thash_entries);
3582
3583static void __init tcp_init_mem(void)
3584{
3585 unsigned long limit = nr_free_buffer_pages() / 16;
3586
3587 limit = max(limit, 128UL);
3588 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3589 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3590 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3591}
3592
3593void __init tcp_init(void)
3594{
3595 int max_rshare, max_wshare, cnt;
3596 unsigned long limit;
3597 unsigned int i;
3598
3599 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3600 FIELD_SIZEOF(struct sk_buff, cb));
3601
3602 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3603 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3604 inet_hashinfo_init(&tcp_hashinfo);
3605 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
3606 thash_entries, 21, /* one slot per 2 MB*/
3607 0, 64 * 1024);
3608 tcp_hashinfo.bind_bucket_cachep =
3609 kmem_cache_create("tcp_bind_bucket",
3610 sizeof(struct inet_bind_bucket), 0,
3611 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3612
3613 /* Size and allocate the main established and bind bucket
3614 * hash tables.
3615 *
3616 * The methodology is similar to that of the buffer cache.
3617 */
3618 tcp_hashinfo.ehash =
3619 alloc_large_system_hash("TCP established",
3620 sizeof(struct inet_ehash_bucket),
3621 thash_entries,
3622 17, /* one slot per 128 KB of memory */
3623 0,
3624 NULL,
3625 &tcp_hashinfo.ehash_mask,
3626 0,
3627 thash_entries ? 0 : 512 * 1024);
3628 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3629 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3630
3631 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3632 panic("TCP: failed to alloc ehash_locks");
3633 tcp_hashinfo.bhash =
3634 alloc_large_system_hash("TCP bind",
3635 sizeof(struct inet_bind_hashbucket),
3636 tcp_hashinfo.ehash_mask + 1,
3637 17, /* one slot per 128 KB of memory */
3638 0,
3639 &tcp_hashinfo.bhash_size,
3640 NULL,
3641 0,
3642 64 * 1024);
3643 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3644 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3645 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3646 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3647 }
3648
3649
3650 cnt = tcp_hashinfo.ehash_mask + 1;
3651 sysctl_tcp_max_orphans = cnt / 2;
3652
3653 tcp_init_mem();
3654 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3655 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3656 max_wshare = min(4UL*1024*1024, limit);
3657 max_rshare = min(6UL*1024*1024, limit);
3658
3659 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3660 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
3661 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3662
3663 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3664 init_net.ipv4.sysctl_tcp_rmem[1] = 87380;
3665 init_net.ipv4.sysctl_tcp_rmem[2] = max(87380, max_rshare);
3666
3667 pr_info("Hash tables configured (established %u bind %u)\n",
3668 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3669
3670 tcp_v4_init();
3671 tcp_metrics_init();
3672 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3673 tcp_tasklet_init();
3674}