Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/slab.h>
   7#include <linux/blkdev.h>
   8#include <linux/writeback.h>
   9#include <linux/sched/mm.h>
  10#include "misc.h"
  11#include "ctree.h"
  12#include "transaction.h"
  13#include "btrfs_inode.h"
  14#include "extent_io.h"
  15#include "disk-io.h"
  16#include "compression.h"
  17#include "delalloc-space.h"
  18
  19static struct kmem_cache *btrfs_ordered_extent_cache;
  20
  21static u64 entry_end(struct btrfs_ordered_extent *entry)
  22{
  23	if (entry->file_offset + entry->len < entry->file_offset)
  24		return (u64)-1;
  25	return entry->file_offset + entry->len;
  26}
  27
  28/* returns NULL if the insertion worked, or it returns the node it did find
  29 * in the tree
  30 */
  31static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  32				   struct rb_node *node)
  33{
  34	struct rb_node **p = &root->rb_node;
  35	struct rb_node *parent = NULL;
  36	struct btrfs_ordered_extent *entry;
  37
  38	while (*p) {
  39		parent = *p;
  40		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  41
  42		if (file_offset < entry->file_offset)
  43			p = &(*p)->rb_left;
  44		else if (file_offset >= entry_end(entry))
  45			p = &(*p)->rb_right;
  46		else
  47			return parent;
  48	}
  49
  50	rb_link_node(node, parent, p);
  51	rb_insert_color(node, root);
  52	return NULL;
  53}
  54
  55static void ordered_data_tree_panic(struct inode *inode, int errno,
  56					       u64 offset)
  57{
  58	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  59	btrfs_panic(fs_info, errno,
  60		    "Inconsistency in ordered tree at offset %llu", offset);
  61}
  62
  63/*
  64 * look for a given offset in the tree, and if it can't be found return the
  65 * first lesser offset
  66 */
  67static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  68				     struct rb_node **prev_ret)
  69{
  70	struct rb_node *n = root->rb_node;
  71	struct rb_node *prev = NULL;
  72	struct rb_node *test;
  73	struct btrfs_ordered_extent *entry;
  74	struct btrfs_ordered_extent *prev_entry = NULL;
  75
  76	while (n) {
  77		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  78		prev = n;
  79		prev_entry = entry;
  80
  81		if (file_offset < entry->file_offset)
  82			n = n->rb_left;
  83		else if (file_offset >= entry_end(entry))
  84			n = n->rb_right;
  85		else
  86			return n;
  87	}
  88	if (!prev_ret)
  89		return NULL;
  90
  91	while (prev && file_offset >= entry_end(prev_entry)) {
  92		test = rb_next(prev);
  93		if (!test)
  94			break;
  95		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  96				      rb_node);
  97		if (file_offset < entry_end(prev_entry))
  98			break;
  99
 100		prev = test;
 101	}
 102	if (prev)
 103		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
 104				      rb_node);
 105	while (prev && file_offset < entry_end(prev_entry)) {
 106		test = rb_prev(prev);
 107		if (!test)
 108			break;
 109		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 110				      rb_node);
 111		prev = test;
 112	}
 113	*prev_ret = prev;
 114	return NULL;
 115}
 116
 117/*
 118 * helper to check if a given offset is inside a given entry
 119 */
 120static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
 121{
 122	if (file_offset < entry->file_offset ||
 123	    entry->file_offset + entry->len <= file_offset)
 124		return 0;
 125	return 1;
 126}
 127
 128static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
 129			  u64 len)
 130{
 131	if (file_offset + len <= entry->file_offset ||
 132	    entry->file_offset + entry->len <= file_offset)
 133		return 0;
 134	return 1;
 135}
 136
 137/*
 138 * look find the first ordered struct that has this offset, otherwise
 139 * the first one less than this offset
 140 */
 141static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
 142					  u64 file_offset)
 143{
 144	struct rb_root *root = &tree->tree;
 145	struct rb_node *prev = NULL;
 146	struct rb_node *ret;
 147	struct btrfs_ordered_extent *entry;
 148
 149	if (tree->last) {
 150		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
 151				 rb_node);
 152		if (offset_in_entry(entry, file_offset))
 153			return tree->last;
 154	}
 155	ret = __tree_search(root, file_offset, &prev);
 156	if (!ret)
 157		ret = prev;
 158	if (ret)
 159		tree->last = ret;
 160	return ret;
 161}
 162
 163/* allocate and add a new ordered_extent into the per-inode tree.
 164 * file_offset is the logical offset in the file
 165 *
 166 * start is the disk block number of an extent already reserved in the
 167 * extent allocation tree
 168 *
 169 * len is the length of the extent
 170 *
 171 * The tree is given a single reference on the ordered extent that was
 172 * inserted.
 173 */
 174static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
 175				      u64 start, u64 len, u64 disk_len,
 176				      int type, int dio, int compress_type)
 177{
 178	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 179	struct btrfs_root *root = BTRFS_I(inode)->root;
 180	struct btrfs_ordered_inode_tree *tree;
 181	struct rb_node *node;
 182	struct btrfs_ordered_extent *entry;
 183
 184	tree = &BTRFS_I(inode)->ordered_tree;
 185	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
 186	if (!entry)
 187		return -ENOMEM;
 188
 189	entry->file_offset = file_offset;
 190	entry->start = start;
 191	entry->len = len;
 192	entry->disk_len = disk_len;
 193	entry->bytes_left = len;
 194	entry->inode = igrab(inode);
 195	entry->compress_type = compress_type;
 196	entry->truncated_len = (u64)-1;
 197	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
 198		set_bit(type, &entry->flags);
 199
 200	if (dio) {
 201		percpu_counter_add_batch(&fs_info->dio_bytes, len,
 202					 fs_info->delalloc_batch);
 203		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
 204	}
 205
 206	/* one ref for the tree */
 207	refcount_set(&entry->refs, 1);
 208	init_waitqueue_head(&entry->wait);
 209	INIT_LIST_HEAD(&entry->list);
 210	INIT_LIST_HEAD(&entry->root_extent_list);
 211	INIT_LIST_HEAD(&entry->work_list);
 212	init_completion(&entry->completion);
 213	INIT_LIST_HEAD(&entry->log_list);
 214	INIT_LIST_HEAD(&entry->trans_list);
 215
 216	trace_btrfs_ordered_extent_add(inode, entry);
 217
 218	spin_lock_irq(&tree->lock);
 219	node = tree_insert(&tree->tree, file_offset,
 220			   &entry->rb_node);
 221	if (node)
 222		ordered_data_tree_panic(inode, -EEXIST, file_offset);
 223	spin_unlock_irq(&tree->lock);
 224
 225	spin_lock(&root->ordered_extent_lock);
 226	list_add_tail(&entry->root_extent_list,
 227		      &root->ordered_extents);
 228	root->nr_ordered_extents++;
 229	if (root->nr_ordered_extents == 1) {
 230		spin_lock(&fs_info->ordered_root_lock);
 231		BUG_ON(!list_empty(&root->ordered_root));
 232		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
 233		spin_unlock(&fs_info->ordered_root_lock);
 234	}
 235	spin_unlock(&root->ordered_extent_lock);
 236
 237	/*
 238	 * We don't need the count_max_extents here, we can assume that all of
 239	 * that work has been done at higher layers, so this is truly the
 240	 * smallest the extent is going to get.
 241	 */
 242	spin_lock(&BTRFS_I(inode)->lock);
 243	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
 244	spin_unlock(&BTRFS_I(inode)->lock);
 245
 246	return 0;
 247}
 248
 249int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
 250			     u64 start, u64 len, u64 disk_len, int type)
 251{
 252	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 253					  disk_len, type, 0,
 254					  BTRFS_COMPRESS_NONE);
 255}
 256
 257int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
 258				 u64 start, u64 len, u64 disk_len, int type)
 259{
 260	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 261					  disk_len, type, 1,
 262					  BTRFS_COMPRESS_NONE);
 263}
 264
 265int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
 266				      u64 start, u64 len, u64 disk_len,
 267				      int type, int compress_type)
 268{
 269	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 270					  disk_len, type, 0,
 271					  compress_type);
 272}
 273
 274/*
 275 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
 276 * when an ordered extent is finished.  If the list covers more than one
 277 * ordered extent, it is split across multiples.
 278 */
 279void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
 
 280			   struct btrfs_ordered_sum *sum)
 281{
 282	struct btrfs_ordered_inode_tree *tree;
 283
 284	tree = &BTRFS_I(entry->inode)->ordered_tree;
 285	spin_lock_irq(&tree->lock);
 286	list_add_tail(&sum->list, &entry->list);
 287	spin_unlock_irq(&tree->lock);
 288}
 289
 290/*
 291 * this is used to account for finished IO across a given range
 292 * of the file.  The IO may span ordered extents.  If
 293 * a given ordered_extent is completely done, 1 is returned, otherwise
 294 * 0.
 295 *
 296 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 297 * to make sure this function only returns 1 once for a given ordered extent.
 298 *
 299 * file_offset is updated to one byte past the range that is recorded as
 300 * complete.  This allows you to walk forward in the file.
 301 */
 302int btrfs_dec_test_first_ordered_pending(struct inode *inode,
 303				   struct btrfs_ordered_extent **cached,
 304				   u64 *file_offset, u64 io_size, int uptodate)
 305{
 306	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 307	struct btrfs_ordered_inode_tree *tree;
 308	struct rb_node *node;
 309	struct btrfs_ordered_extent *entry = NULL;
 310	int ret;
 311	unsigned long flags;
 312	u64 dec_end;
 313	u64 dec_start;
 314	u64 to_dec;
 315
 316	tree = &BTRFS_I(inode)->ordered_tree;
 317	spin_lock_irqsave(&tree->lock, flags);
 318	node = tree_search(tree, *file_offset);
 319	if (!node) {
 320		ret = 1;
 321		goto out;
 322	}
 323
 324	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 325	if (!offset_in_entry(entry, *file_offset)) {
 326		ret = 1;
 327		goto out;
 328	}
 329
 330	dec_start = max(*file_offset, entry->file_offset);
 331	dec_end = min(*file_offset + io_size, entry->file_offset +
 332		      entry->len);
 333	*file_offset = dec_end;
 334	if (dec_start > dec_end) {
 335		btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
 336			   dec_start, dec_end);
 337	}
 338	to_dec = dec_end - dec_start;
 339	if (to_dec > entry->bytes_left) {
 340		btrfs_crit(fs_info,
 341			   "bad ordered accounting left %llu size %llu",
 342			   entry->bytes_left, to_dec);
 343	}
 344	entry->bytes_left -= to_dec;
 345	if (!uptodate)
 346		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 347
 348	if (entry->bytes_left == 0) {
 349		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 350		/* test_and_set_bit implies a barrier */
 351		cond_wake_up_nomb(&entry->wait);
 
 
 
 352	} else {
 353		ret = 1;
 354	}
 355out:
 356	if (!ret && cached && entry) {
 357		*cached = entry;
 358		refcount_inc(&entry->refs);
 359	}
 360	spin_unlock_irqrestore(&tree->lock, flags);
 361	return ret == 0;
 362}
 363
 364/*
 365 * this is used to account for finished IO across a given range
 366 * of the file.  The IO should not span ordered extents.  If
 367 * a given ordered_extent is completely done, 1 is returned, otherwise
 368 * 0.
 369 *
 370 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 371 * to make sure this function only returns 1 once for a given ordered extent.
 372 */
 373int btrfs_dec_test_ordered_pending(struct inode *inode,
 374				   struct btrfs_ordered_extent **cached,
 375				   u64 file_offset, u64 io_size, int uptodate)
 376{
 377	struct btrfs_ordered_inode_tree *tree;
 378	struct rb_node *node;
 379	struct btrfs_ordered_extent *entry = NULL;
 380	unsigned long flags;
 381	int ret;
 382
 383	tree = &BTRFS_I(inode)->ordered_tree;
 384	spin_lock_irqsave(&tree->lock, flags);
 385	if (cached && *cached) {
 386		entry = *cached;
 387		goto have_entry;
 388	}
 389
 390	node = tree_search(tree, file_offset);
 391	if (!node) {
 392		ret = 1;
 393		goto out;
 394	}
 395
 396	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 397have_entry:
 398	if (!offset_in_entry(entry, file_offset)) {
 399		ret = 1;
 400		goto out;
 401	}
 402
 403	if (io_size > entry->bytes_left) {
 404		btrfs_crit(BTRFS_I(inode)->root->fs_info,
 405			   "bad ordered accounting left %llu size %llu",
 406		       entry->bytes_left, io_size);
 407	}
 408	entry->bytes_left -= io_size;
 409	if (!uptodate)
 410		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 411
 412	if (entry->bytes_left == 0) {
 413		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 414		/* test_and_set_bit implies a barrier */
 415		cond_wake_up_nomb(&entry->wait);
 
 
 
 416	} else {
 417		ret = 1;
 418	}
 419out:
 420	if (!ret && cached && entry) {
 421		*cached = entry;
 422		refcount_inc(&entry->refs);
 423	}
 424	spin_unlock_irqrestore(&tree->lock, flags);
 425	return ret == 0;
 426}
 427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 428/*
 429 * used to drop a reference on an ordered extent.  This will free
 430 * the extent if the last reference is dropped
 431 */
 432void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
 433{
 434	struct list_head *cur;
 435	struct btrfs_ordered_sum *sum;
 436
 437	trace_btrfs_ordered_extent_put(entry->inode, entry);
 438
 439	if (refcount_dec_and_test(&entry->refs)) {
 440		ASSERT(list_empty(&entry->log_list));
 441		ASSERT(list_empty(&entry->trans_list));
 442		ASSERT(list_empty(&entry->root_extent_list));
 443		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
 444		if (entry->inode)
 445			btrfs_add_delayed_iput(entry->inode);
 446		while (!list_empty(&entry->list)) {
 447			cur = entry->list.next;
 448			sum = list_entry(cur, struct btrfs_ordered_sum, list);
 449			list_del(&sum->list);
 450			kvfree(sum);
 451		}
 452		kmem_cache_free(btrfs_ordered_extent_cache, entry);
 453	}
 454}
 455
 456/*
 457 * remove an ordered extent from the tree.  No references are dropped
 458 * and waiters are woken up.
 459 */
 460void btrfs_remove_ordered_extent(struct inode *inode,
 461				 struct btrfs_ordered_extent *entry)
 462{
 463	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 464	struct btrfs_ordered_inode_tree *tree;
 465	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
 466	struct btrfs_root *root = btrfs_inode->root;
 467	struct rb_node *node;
 
 468
 469	/* This is paired with btrfs_add_ordered_extent. */
 470	spin_lock(&btrfs_inode->lock);
 471	btrfs_mod_outstanding_extents(btrfs_inode, -1);
 472	spin_unlock(&btrfs_inode->lock);
 473	if (root != fs_info->tree_root)
 474		btrfs_delalloc_release_metadata(btrfs_inode, entry->len, false);
 475
 476	if (test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
 477		percpu_counter_add_batch(&fs_info->dio_bytes, -entry->len,
 478					 fs_info->delalloc_batch);
 479
 480	tree = &btrfs_inode->ordered_tree;
 481	spin_lock_irq(&tree->lock);
 482	node = &entry->rb_node;
 483	rb_erase(node, &tree->tree);
 484	RB_CLEAR_NODE(node);
 485	if (tree->last == node)
 486		tree->last = NULL;
 487	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
 
 
 488	spin_unlock_irq(&tree->lock);
 489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 490	spin_lock(&root->ordered_extent_lock);
 491	list_del_init(&entry->root_extent_list);
 492	root->nr_ordered_extents--;
 493
 494	trace_btrfs_ordered_extent_remove(inode, entry);
 495
 496	if (!root->nr_ordered_extents) {
 497		spin_lock(&fs_info->ordered_root_lock);
 498		BUG_ON(list_empty(&root->ordered_root));
 499		list_del_init(&root->ordered_root);
 500		spin_unlock(&fs_info->ordered_root_lock);
 501	}
 502	spin_unlock(&root->ordered_extent_lock);
 503	wake_up(&entry->wait);
 504}
 505
 506static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
 507{
 508	struct btrfs_ordered_extent *ordered;
 509
 510	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
 511	btrfs_start_ordered_extent(ordered->inode, ordered, 1);
 512	complete(&ordered->completion);
 513}
 514
 515/*
 516 * wait for all the ordered extents in a root.  This is done when balancing
 517 * space between drives.
 518 */
 519u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
 520			       const u64 range_start, const u64 range_len)
 521{
 522	struct btrfs_fs_info *fs_info = root->fs_info;
 523	LIST_HEAD(splice);
 524	LIST_HEAD(skipped);
 525	LIST_HEAD(works);
 526	struct btrfs_ordered_extent *ordered, *next;
 527	u64 count = 0;
 528	const u64 range_end = range_start + range_len;
 529
 530	mutex_lock(&root->ordered_extent_mutex);
 531	spin_lock(&root->ordered_extent_lock);
 532	list_splice_init(&root->ordered_extents, &splice);
 533	while (!list_empty(&splice) && nr) {
 534		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
 535					   root_extent_list);
 536
 537		if (range_end <= ordered->start ||
 538		    ordered->start + ordered->disk_len <= range_start) {
 539			list_move_tail(&ordered->root_extent_list, &skipped);
 540			cond_resched_lock(&root->ordered_extent_lock);
 541			continue;
 542		}
 543
 544		list_move_tail(&ordered->root_extent_list,
 545			       &root->ordered_extents);
 546		refcount_inc(&ordered->refs);
 547		spin_unlock(&root->ordered_extent_lock);
 548
 549		btrfs_init_work(&ordered->flush_work,
 550				btrfs_flush_delalloc_helper,
 551				btrfs_run_ordered_extent_work, NULL, NULL);
 552		list_add_tail(&ordered->work_list, &works);
 553		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
 554
 555		cond_resched();
 556		spin_lock(&root->ordered_extent_lock);
 557		if (nr != U64_MAX)
 558			nr--;
 559		count++;
 560	}
 561	list_splice_tail(&skipped, &root->ordered_extents);
 562	list_splice_tail(&splice, &root->ordered_extents);
 563	spin_unlock(&root->ordered_extent_lock);
 564
 565	list_for_each_entry_safe(ordered, next, &works, work_list) {
 566		list_del_init(&ordered->work_list);
 567		wait_for_completion(&ordered->completion);
 568		btrfs_put_ordered_extent(ordered);
 569		cond_resched();
 570	}
 571	mutex_unlock(&root->ordered_extent_mutex);
 572
 573	return count;
 574}
 575
 576u64 btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
 577			     const u64 range_start, const u64 range_len)
 578{
 579	struct btrfs_root *root;
 580	struct list_head splice;
 581	u64 total_done = 0;
 582	u64 done;
 583
 584	INIT_LIST_HEAD(&splice);
 585
 586	mutex_lock(&fs_info->ordered_operations_mutex);
 587	spin_lock(&fs_info->ordered_root_lock);
 588	list_splice_init(&fs_info->ordered_roots, &splice);
 589	while (!list_empty(&splice) && nr) {
 590		root = list_first_entry(&splice, struct btrfs_root,
 591					ordered_root);
 592		root = btrfs_grab_fs_root(root);
 593		BUG_ON(!root);
 594		list_move_tail(&root->ordered_root,
 595			       &fs_info->ordered_roots);
 596		spin_unlock(&fs_info->ordered_root_lock);
 597
 598		done = btrfs_wait_ordered_extents(root, nr,
 599						  range_start, range_len);
 600		btrfs_put_fs_root(root);
 601		total_done += done;
 602
 603		spin_lock(&fs_info->ordered_root_lock);
 604		if (nr != U64_MAX) {
 605			nr -= done;
 606		}
 607	}
 608	list_splice_tail(&splice, &fs_info->ordered_roots);
 609	spin_unlock(&fs_info->ordered_root_lock);
 610	mutex_unlock(&fs_info->ordered_operations_mutex);
 611
 612	return total_done;
 613}
 614
 615/*
 616 * Used to start IO or wait for a given ordered extent to finish.
 617 *
 618 * If wait is one, this effectively waits on page writeback for all the pages
 619 * in the extent, and it waits on the io completion code to insert
 620 * metadata into the btree corresponding to the extent
 621 */
 622void btrfs_start_ordered_extent(struct inode *inode,
 623				       struct btrfs_ordered_extent *entry,
 624				       int wait)
 625{
 626	u64 start = entry->file_offset;
 627	u64 end = start + entry->len - 1;
 628
 629	trace_btrfs_ordered_extent_start(inode, entry);
 630
 631	/*
 632	 * pages in the range can be dirty, clean or writeback.  We
 633	 * start IO on any dirty ones so the wait doesn't stall waiting
 634	 * for the flusher thread to find them
 635	 */
 636	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
 637		filemap_fdatawrite_range(inode->i_mapping, start, end);
 638	if (wait) {
 639		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
 640						 &entry->flags));
 641	}
 642}
 643
 644/*
 645 * Used to wait on ordered extents across a large range of bytes.
 646 */
 647int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
 648{
 649	int ret = 0;
 650	int ret_wb = 0;
 651	u64 end;
 652	u64 orig_end;
 653	struct btrfs_ordered_extent *ordered;
 654
 655	if (start + len < start) {
 656		orig_end = INT_LIMIT(loff_t);
 657	} else {
 658		orig_end = start + len - 1;
 659		if (orig_end > INT_LIMIT(loff_t))
 660			orig_end = INT_LIMIT(loff_t);
 661	}
 662
 663	/* start IO across the range first to instantiate any delalloc
 664	 * extents
 665	 */
 666	ret = btrfs_fdatawrite_range(inode, start, orig_end);
 667	if (ret)
 668		return ret;
 669
 670	/*
 671	 * If we have a writeback error don't return immediately. Wait first
 672	 * for any ordered extents that haven't completed yet. This is to make
 673	 * sure no one can dirty the same page ranges and call writepages()
 674	 * before the ordered extents complete - to avoid failures (-EEXIST)
 675	 * when adding the new ordered extents to the ordered tree.
 676	 */
 677	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
 678
 679	end = orig_end;
 680	while (1) {
 681		ordered = btrfs_lookup_first_ordered_extent(inode, end);
 682		if (!ordered)
 683			break;
 684		if (ordered->file_offset > orig_end) {
 685			btrfs_put_ordered_extent(ordered);
 686			break;
 687		}
 688		if (ordered->file_offset + ordered->len <= start) {
 689			btrfs_put_ordered_extent(ordered);
 690			break;
 691		}
 692		btrfs_start_ordered_extent(inode, ordered, 1);
 693		end = ordered->file_offset;
 694		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
 695			ret = -EIO;
 696		btrfs_put_ordered_extent(ordered);
 697		if (ret || end == 0 || end == start)
 698			break;
 699		end--;
 700	}
 701	return ret_wb ? ret_wb : ret;
 702}
 703
 704/*
 705 * find an ordered extent corresponding to file_offset.  return NULL if
 706 * nothing is found, otherwise take a reference on the extent and return it
 707 */
 708struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
 709							 u64 file_offset)
 710{
 711	struct btrfs_ordered_inode_tree *tree;
 712	struct rb_node *node;
 713	struct btrfs_ordered_extent *entry = NULL;
 714
 715	tree = &BTRFS_I(inode)->ordered_tree;
 716	spin_lock_irq(&tree->lock);
 717	node = tree_search(tree, file_offset);
 718	if (!node)
 719		goto out;
 720
 721	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 722	if (!offset_in_entry(entry, file_offset))
 723		entry = NULL;
 724	if (entry)
 725		refcount_inc(&entry->refs);
 726out:
 727	spin_unlock_irq(&tree->lock);
 728	return entry;
 729}
 730
 731/* Since the DIO code tries to lock a wide area we need to look for any ordered
 732 * extents that exist in the range, rather than just the start of the range.
 733 */
 734struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
 735		struct btrfs_inode *inode, u64 file_offset, u64 len)
 736{
 737	struct btrfs_ordered_inode_tree *tree;
 738	struct rb_node *node;
 739	struct btrfs_ordered_extent *entry = NULL;
 740
 741	tree = &inode->ordered_tree;
 742	spin_lock_irq(&tree->lock);
 743	node = tree_search(tree, file_offset);
 744	if (!node) {
 745		node = tree_search(tree, file_offset + len);
 746		if (!node)
 747			goto out;
 748	}
 749
 750	while (1) {
 751		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 752		if (range_overlaps(entry, file_offset, len))
 753			break;
 754
 755		if (entry->file_offset >= file_offset + len) {
 756			entry = NULL;
 757			break;
 758		}
 759		entry = NULL;
 760		node = rb_next(node);
 761		if (!node)
 762			break;
 763	}
 764out:
 765	if (entry)
 766		refcount_inc(&entry->refs);
 767	spin_unlock_irq(&tree->lock);
 768	return entry;
 769}
 770
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 771/*
 772 * lookup and return any extent before 'file_offset'.  NULL is returned
 773 * if none is found
 774 */
 775struct btrfs_ordered_extent *
 776btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
 777{
 778	struct btrfs_ordered_inode_tree *tree;
 779	struct rb_node *node;
 780	struct btrfs_ordered_extent *entry = NULL;
 781
 782	tree = &BTRFS_I(inode)->ordered_tree;
 783	spin_lock_irq(&tree->lock);
 784	node = tree_search(tree, file_offset);
 785	if (!node)
 786		goto out;
 787
 788	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 789	refcount_inc(&entry->refs);
 790out:
 791	spin_unlock_irq(&tree->lock);
 792	return entry;
 793}
 794
 795/*
 796 * After an extent is done, call this to conditionally update the on disk
 797 * i_size.  i_size is updated to cover any fully written part of the file.
 798 */
 799int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
 800				struct btrfs_ordered_extent *ordered)
 801{
 802	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
 803	u64 disk_i_size;
 804	u64 new_i_size;
 805	u64 i_size = i_size_read(inode);
 806	struct rb_node *node;
 807	struct rb_node *prev = NULL;
 808	struct btrfs_ordered_extent *test;
 809	int ret = 1;
 810	u64 orig_offset = offset;
 811
 812	spin_lock_irq(&tree->lock);
 813	if (ordered) {
 814		offset = entry_end(ordered);
 815		if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
 816			offset = min(offset,
 817				     ordered->file_offset +
 818				     ordered->truncated_len);
 819	} else {
 820		offset = ALIGN(offset, btrfs_inode_sectorsize(inode));
 821	}
 822	disk_i_size = BTRFS_I(inode)->disk_i_size;
 823
 824	/*
 825	 * truncate file.
 826	 * If ordered is not NULL, then this is called from endio and
 827	 * disk_i_size will be updated by either truncate itself or any
 828	 * in-flight IOs which are inside the disk_i_size.
 829	 *
 830	 * Because btrfs_setsize() may set i_size with disk_i_size if truncate
 831	 * fails somehow, we need to make sure we have a precise disk_i_size by
 832	 * updating it as usual.
 833	 *
 834	 */
 835	if (!ordered && disk_i_size > i_size) {
 836		BTRFS_I(inode)->disk_i_size = orig_offset;
 837		ret = 0;
 838		goto out;
 839	}
 840
 841	/*
 842	 * if the disk i_size is already at the inode->i_size, or
 843	 * this ordered extent is inside the disk i_size, we're done
 844	 */
 845	if (disk_i_size == i_size)
 846		goto out;
 847
 848	/*
 849	 * We still need to update disk_i_size if outstanding_isize is greater
 850	 * than disk_i_size.
 851	 */
 852	if (offset <= disk_i_size &&
 853	    (!ordered || ordered->outstanding_isize <= disk_i_size))
 854		goto out;
 855
 856	/*
 857	 * walk backward from this ordered extent to disk_i_size.
 858	 * if we find an ordered extent then we can't update disk i_size
 859	 * yet
 860	 */
 861	if (ordered) {
 862		node = rb_prev(&ordered->rb_node);
 863	} else {
 864		prev = tree_search(tree, offset);
 865		/*
 866		 * we insert file extents without involving ordered struct,
 867		 * so there should be no ordered struct cover this offset
 868		 */
 869		if (prev) {
 870			test = rb_entry(prev, struct btrfs_ordered_extent,
 871					rb_node);
 872			BUG_ON(offset_in_entry(test, offset));
 873		}
 874		node = prev;
 875	}
 876	for (; node; node = rb_prev(node)) {
 877		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 878
 879		/* We treat this entry as if it doesn't exist */
 880		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
 881			continue;
 882
 883		if (entry_end(test) <= disk_i_size)
 884			break;
 885		if (test->file_offset >= i_size)
 886			break;
 887
 888		/*
 889		 * We don't update disk_i_size now, so record this undealt
 890		 * i_size. Or we will not know the real i_size.
 891		 */
 892		if (test->outstanding_isize < offset)
 893			test->outstanding_isize = offset;
 894		if (ordered &&
 895		    ordered->outstanding_isize > test->outstanding_isize)
 896			test->outstanding_isize = ordered->outstanding_isize;
 897		goto out;
 898	}
 899	new_i_size = min_t(u64, offset, i_size);
 900
 901	/*
 902	 * Some ordered extents may completed before the current one, and
 903	 * we hold the real i_size in ->outstanding_isize.
 904	 */
 905	if (ordered && ordered->outstanding_isize > new_i_size)
 906		new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
 907	BTRFS_I(inode)->disk_i_size = new_i_size;
 908	ret = 0;
 909out:
 910	/*
 911	 * We need to do this because we can't remove ordered extents until
 912	 * after the i_disk_size has been updated and then the inode has been
 913	 * updated to reflect the change, so we need to tell anybody who finds
 914	 * this ordered extent that we've already done all the real work, we
 915	 * just haven't completed all the other work.
 916	 */
 917	if (ordered)
 918		set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
 919	spin_unlock_irq(&tree->lock);
 920	return ret;
 921}
 922
 923/*
 924 * search the ordered extents for one corresponding to 'offset' and
 925 * try to find a checksum.  This is used because we allow pages to
 926 * be reclaimed before their checksum is actually put into the btree
 927 */
 928int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
 929			   u8 *sum, int len)
 930{
 931	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 932	struct btrfs_ordered_sum *ordered_sum;
 933	struct btrfs_ordered_extent *ordered;
 934	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
 935	unsigned long num_sectors;
 936	unsigned long i;
 937	u32 sectorsize = btrfs_inode_sectorsize(inode);
 938	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 939	int index = 0;
 940
 941	ordered = btrfs_lookup_ordered_extent(inode, offset);
 942	if (!ordered)
 943		return 0;
 944
 945	spin_lock_irq(&tree->lock);
 946	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
 947		if (disk_bytenr >= ordered_sum->bytenr &&
 948		    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
 949			i = (disk_bytenr - ordered_sum->bytenr) >>
 950			    inode->i_sb->s_blocksize_bits;
 951			num_sectors = ordered_sum->len >>
 952				      inode->i_sb->s_blocksize_bits;
 953			num_sectors = min_t(int, len - index, num_sectors - i);
 954			memcpy(sum + index, ordered_sum->sums + i * csum_size,
 955			       num_sectors * csum_size);
 956
 957			index += (int)num_sectors * csum_size;
 958			if (index == len)
 959				goto out;
 960			disk_bytenr += num_sectors * sectorsize;
 961		}
 962	}
 963out:
 964	spin_unlock_irq(&tree->lock);
 965	btrfs_put_ordered_extent(ordered);
 966	return index;
 967}
 968
 969/*
 970 * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
 971 * ordered extents in it are run to completion.
 972 *
 973 * @tree:         IO tree used for locking out other users of the range
 974 * @inode:        Inode whose ordered tree is to be searched
 975 * @start:        Beginning of range to flush
 976 * @end:          Last byte of range to lock
 977 * @cached_state: If passed, will return the extent state responsible for the
 978 * locked range. It's the caller's responsibility to free the cached state.
 979 *
 980 * This function always returns with the given range locked, ensuring after it's
 981 * called no order extent can be pending.
 982 */
 983void btrfs_lock_and_flush_ordered_range(struct extent_io_tree *tree,
 984					struct btrfs_inode *inode, u64 start,
 985					u64 end,
 986					struct extent_state **cached_state)
 987{
 988	struct btrfs_ordered_extent *ordered;
 989	struct extent_state *cache = NULL;
 990	struct extent_state **cachedp = &cache;
 991
 992	if (cached_state)
 993		cachedp = cached_state;
 994
 995	while (1) {
 996		lock_extent_bits(tree, start, end, cachedp);
 997		ordered = btrfs_lookup_ordered_range(inode, start,
 998						     end - start + 1);
 999		if (!ordered) {
1000			/*
1001			 * If no external cached_state has been passed then
1002			 * decrement the extra ref taken for cachedp since we
1003			 * aren't exposing it outside of this function
1004			 */
1005			if (!cached_state)
1006				refcount_dec(&cache->refs);
1007			break;
1008		}
1009		unlock_extent_cached(tree, start, end, cachedp);
1010		btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
1011		btrfs_put_ordered_extent(ordered);
1012	}
1013}
1014
1015int __init ordered_data_init(void)
1016{
1017	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1018				     sizeof(struct btrfs_ordered_extent), 0,
1019				     SLAB_MEM_SPREAD,
1020				     NULL);
1021	if (!btrfs_ordered_extent_cache)
1022		return -ENOMEM;
1023
1024	return 0;
1025}
1026
1027void __cold ordered_data_exit(void)
1028{
1029	kmem_cache_destroy(btrfs_ordered_extent_cache);
1030}
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/slab.h>
   7#include <linux/blkdev.h>
   8#include <linux/writeback.h>
   9#include <linux/pagevec.h>
 
  10#include "ctree.h"
  11#include "transaction.h"
  12#include "btrfs_inode.h"
  13#include "extent_io.h"
  14#include "disk-io.h"
  15#include "compression.h"
 
  16
  17static struct kmem_cache *btrfs_ordered_extent_cache;
  18
  19static u64 entry_end(struct btrfs_ordered_extent *entry)
  20{
  21	if (entry->file_offset + entry->len < entry->file_offset)
  22		return (u64)-1;
  23	return entry->file_offset + entry->len;
  24}
  25
  26/* returns NULL if the insertion worked, or it returns the node it did find
  27 * in the tree
  28 */
  29static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  30				   struct rb_node *node)
  31{
  32	struct rb_node **p = &root->rb_node;
  33	struct rb_node *parent = NULL;
  34	struct btrfs_ordered_extent *entry;
  35
  36	while (*p) {
  37		parent = *p;
  38		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  39
  40		if (file_offset < entry->file_offset)
  41			p = &(*p)->rb_left;
  42		else if (file_offset >= entry_end(entry))
  43			p = &(*p)->rb_right;
  44		else
  45			return parent;
  46	}
  47
  48	rb_link_node(node, parent, p);
  49	rb_insert_color(node, root);
  50	return NULL;
  51}
  52
  53static void ordered_data_tree_panic(struct inode *inode, int errno,
  54					       u64 offset)
  55{
  56	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  57	btrfs_panic(fs_info, errno,
  58		    "Inconsistency in ordered tree at offset %llu", offset);
  59}
  60
  61/*
  62 * look for a given offset in the tree, and if it can't be found return the
  63 * first lesser offset
  64 */
  65static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  66				     struct rb_node **prev_ret)
  67{
  68	struct rb_node *n = root->rb_node;
  69	struct rb_node *prev = NULL;
  70	struct rb_node *test;
  71	struct btrfs_ordered_extent *entry;
  72	struct btrfs_ordered_extent *prev_entry = NULL;
  73
  74	while (n) {
  75		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  76		prev = n;
  77		prev_entry = entry;
  78
  79		if (file_offset < entry->file_offset)
  80			n = n->rb_left;
  81		else if (file_offset >= entry_end(entry))
  82			n = n->rb_right;
  83		else
  84			return n;
  85	}
  86	if (!prev_ret)
  87		return NULL;
  88
  89	while (prev && file_offset >= entry_end(prev_entry)) {
  90		test = rb_next(prev);
  91		if (!test)
  92			break;
  93		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  94				      rb_node);
  95		if (file_offset < entry_end(prev_entry))
  96			break;
  97
  98		prev = test;
  99	}
 100	if (prev)
 101		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
 102				      rb_node);
 103	while (prev && file_offset < entry_end(prev_entry)) {
 104		test = rb_prev(prev);
 105		if (!test)
 106			break;
 107		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 108				      rb_node);
 109		prev = test;
 110	}
 111	*prev_ret = prev;
 112	return NULL;
 113}
 114
 115/*
 116 * helper to check if a given offset is inside a given entry
 117 */
 118static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
 119{
 120	if (file_offset < entry->file_offset ||
 121	    entry->file_offset + entry->len <= file_offset)
 122		return 0;
 123	return 1;
 124}
 125
 126static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
 127			  u64 len)
 128{
 129	if (file_offset + len <= entry->file_offset ||
 130	    entry->file_offset + entry->len <= file_offset)
 131		return 0;
 132	return 1;
 133}
 134
 135/*
 136 * look find the first ordered struct that has this offset, otherwise
 137 * the first one less than this offset
 138 */
 139static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
 140					  u64 file_offset)
 141{
 142	struct rb_root *root = &tree->tree;
 143	struct rb_node *prev = NULL;
 144	struct rb_node *ret;
 145	struct btrfs_ordered_extent *entry;
 146
 147	if (tree->last) {
 148		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
 149				 rb_node);
 150		if (offset_in_entry(entry, file_offset))
 151			return tree->last;
 152	}
 153	ret = __tree_search(root, file_offset, &prev);
 154	if (!ret)
 155		ret = prev;
 156	if (ret)
 157		tree->last = ret;
 158	return ret;
 159}
 160
 161/* allocate and add a new ordered_extent into the per-inode tree.
 162 * file_offset is the logical offset in the file
 163 *
 164 * start is the disk block number of an extent already reserved in the
 165 * extent allocation tree
 166 *
 167 * len is the length of the extent
 168 *
 169 * The tree is given a single reference on the ordered extent that was
 170 * inserted.
 171 */
 172static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
 173				      u64 start, u64 len, u64 disk_len,
 174				      int type, int dio, int compress_type)
 175{
 176	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 177	struct btrfs_root *root = BTRFS_I(inode)->root;
 178	struct btrfs_ordered_inode_tree *tree;
 179	struct rb_node *node;
 180	struct btrfs_ordered_extent *entry;
 181
 182	tree = &BTRFS_I(inode)->ordered_tree;
 183	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
 184	if (!entry)
 185		return -ENOMEM;
 186
 187	entry->file_offset = file_offset;
 188	entry->start = start;
 189	entry->len = len;
 190	entry->disk_len = disk_len;
 191	entry->bytes_left = len;
 192	entry->inode = igrab(inode);
 193	entry->compress_type = compress_type;
 194	entry->truncated_len = (u64)-1;
 195	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
 196		set_bit(type, &entry->flags);
 197
 198	if (dio)
 
 
 199		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
 
 200
 201	/* one ref for the tree */
 202	refcount_set(&entry->refs, 1);
 203	init_waitqueue_head(&entry->wait);
 204	INIT_LIST_HEAD(&entry->list);
 205	INIT_LIST_HEAD(&entry->root_extent_list);
 206	INIT_LIST_HEAD(&entry->work_list);
 207	init_completion(&entry->completion);
 208	INIT_LIST_HEAD(&entry->log_list);
 209	INIT_LIST_HEAD(&entry->trans_list);
 210
 211	trace_btrfs_ordered_extent_add(inode, entry);
 212
 213	spin_lock_irq(&tree->lock);
 214	node = tree_insert(&tree->tree, file_offset,
 215			   &entry->rb_node);
 216	if (node)
 217		ordered_data_tree_panic(inode, -EEXIST, file_offset);
 218	spin_unlock_irq(&tree->lock);
 219
 220	spin_lock(&root->ordered_extent_lock);
 221	list_add_tail(&entry->root_extent_list,
 222		      &root->ordered_extents);
 223	root->nr_ordered_extents++;
 224	if (root->nr_ordered_extents == 1) {
 225		spin_lock(&fs_info->ordered_root_lock);
 226		BUG_ON(!list_empty(&root->ordered_root));
 227		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
 228		spin_unlock(&fs_info->ordered_root_lock);
 229	}
 230	spin_unlock(&root->ordered_extent_lock);
 231
 232	/*
 233	 * We don't need the count_max_extents here, we can assume that all of
 234	 * that work has been done at higher layers, so this is truly the
 235	 * smallest the extent is going to get.
 236	 */
 237	spin_lock(&BTRFS_I(inode)->lock);
 238	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
 239	spin_unlock(&BTRFS_I(inode)->lock);
 240
 241	return 0;
 242}
 243
 244int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
 245			     u64 start, u64 len, u64 disk_len, int type)
 246{
 247	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 248					  disk_len, type, 0,
 249					  BTRFS_COMPRESS_NONE);
 250}
 251
 252int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
 253				 u64 start, u64 len, u64 disk_len, int type)
 254{
 255	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 256					  disk_len, type, 1,
 257					  BTRFS_COMPRESS_NONE);
 258}
 259
 260int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
 261				      u64 start, u64 len, u64 disk_len,
 262				      int type, int compress_type)
 263{
 264	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 265					  disk_len, type, 0,
 266					  compress_type);
 267}
 268
 269/*
 270 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
 271 * when an ordered extent is finished.  If the list covers more than one
 272 * ordered extent, it is split across multiples.
 273 */
 274void btrfs_add_ordered_sum(struct inode *inode,
 275			   struct btrfs_ordered_extent *entry,
 276			   struct btrfs_ordered_sum *sum)
 277{
 278	struct btrfs_ordered_inode_tree *tree;
 279
 280	tree = &BTRFS_I(inode)->ordered_tree;
 281	spin_lock_irq(&tree->lock);
 282	list_add_tail(&sum->list, &entry->list);
 283	spin_unlock_irq(&tree->lock);
 284}
 285
 286/*
 287 * this is used to account for finished IO across a given range
 288 * of the file.  The IO may span ordered extents.  If
 289 * a given ordered_extent is completely done, 1 is returned, otherwise
 290 * 0.
 291 *
 292 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 293 * to make sure this function only returns 1 once for a given ordered extent.
 294 *
 295 * file_offset is updated to one byte past the range that is recorded as
 296 * complete.  This allows you to walk forward in the file.
 297 */
 298int btrfs_dec_test_first_ordered_pending(struct inode *inode,
 299				   struct btrfs_ordered_extent **cached,
 300				   u64 *file_offset, u64 io_size, int uptodate)
 301{
 302	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 303	struct btrfs_ordered_inode_tree *tree;
 304	struct rb_node *node;
 305	struct btrfs_ordered_extent *entry = NULL;
 306	int ret;
 307	unsigned long flags;
 308	u64 dec_end;
 309	u64 dec_start;
 310	u64 to_dec;
 311
 312	tree = &BTRFS_I(inode)->ordered_tree;
 313	spin_lock_irqsave(&tree->lock, flags);
 314	node = tree_search(tree, *file_offset);
 315	if (!node) {
 316		ret = 1;
 317		goto out;
 318	}
 319
 320	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 321	if (!offset_in_entry(entry, *file_offset)) {
 322		ret = 1;
 323		goto out;
 324	}
 325
 326	dec_start = max(*file_offset, entry->file_offset);
 327	dec_end = min(*file_offset + io_size, entry->file_offset +
 328		      entry->len);
 329	*file_offset = dec_end;
 330	if (dec_start > dec_end) {
 331		btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
 332			   dec_start, dec_end);
 333	}
 334	to_dec = dec_end - dec_start;
 335	if (to_dec > entry->bytes_left) {
 336		btrfs_crit(fs_info,
 337			   "bad ordered accounting left %llu size %llu",
 338			   entry->bytes_left, to_dec);
 339	}
 340	entry->bytes_left -= to_dec;
 341	if (!uptodate)
 342		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 343
 344	if (entry->bytes_left == 0) {
 345		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 346		/*
 347		 * Implicit memory barrier after test_and_set_bit
 348		 */
 349		if (waitqueue_active(&entry->wait))
 350			wake_up(&entry->wait);
 351	} else {
 352		ret = 1;
 353	}
 354out:
 355	if (!ret && cached && entry) {
 356		*cached = entry;
 357		refcount_inc(&entry->refs);
 358	}
 359	spin_unlock_irqrestore(&tree->lock, flags);
 360	return ret == 0;
 361}
 362
 363/*
 364 * this is used to account for finished IO across a given range
 365 * of the file.  The IO should not span ordered extents.  If
 366 * a given ordered_extent is completely done, 1 is returned, otherwise
 367 * 0.
 368 *
 369 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 370 * to make sure this function only returns 1 once for a given ordered extent.
 371 */
 372int btrfs_dec_test_ordered_pending(struct inode *inode,
 373				   struct btrfs_ordered_extent **cached,
 374				   u64 file_offset, u64 io_size, int uptodate)
 375{
 376	struct btrfs_ordered_inode_tree *tree;
 377	struct rb_node *node;
 378	struct btrfs_ordered_extent *entry = NULL;
 379	unsigned long flags;
 380	int ret;
 381
 382	tree = &BTRFS_I(inode)->ordered_tree;
 383	spin_lock_irqsave(&tree->lock, flags);
 384	if (cached && *cached) {
 385		entry = *cached;
 386		goto have_entry;
 387	}
 388
 389	node = tree_search(tree, file_offset);
 390	if (!node) {
 391		ret = 1;
 392		goto out;
 393	}
 394
 395	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 396have_entry:
 397	if (!offset_in_entry(entry, file_offset)) {
 398		ret = 1;
 399		goto out;
 400	}
 401
 402	if (io_size > entry->bytes_left) {
 403		btrfs_crit(BTRFS_I(inode)->root->fs_info,
 404			   "bad ordered accounting left %llu size %llu",
 405		       entry->bytes_left, io_size);
 406	}
 407	entry->bytes_left -= io_size;
 408	if (!uptodate)
 409		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 410
 411	if (entry->bytes_left == 0) {
 412		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 413		/*
 414		 * Implicit memory barrier after test_and_set_bit
 415		 */
 416		if (waitqueue_active(&entry->wait))
 417			wake_up(&entry->wait);
 418	} else {
 419		ret = 1;
 420	}
 421out:
 422	if (!ret && cached && entry) {
 423		*cached = entry;
 424		refcount_inc(&entry->refs);
 425	}
 426	spin_unlock_irqrestore(&tree->lock, flags);
 427	return ret == 0;
 428}
 429
 430/* Needs to either be called under a log transaction or the log_mutex */
 431void btrfs_get_logged_extents(struct btrfs_inode *inode,
 432			      struct list_head *logged_list,
 433			      const loff_t start,
 434			      const loff_t end)
 435{
 436	struct btrfs_ordered_inode_tree *tree;
 437	struct btrfs_ordered_extent *ordered;
 438	struct rb_node *n;
 439	struct rb_node *prev;
 440
 441	tree = &inode->ordered_tree;
 442	spin_lock_irq(&tree->lock);
 443	n = __tree_search(&tree->tree, end, &prev);
 444	if (!n)
 445		n = prev;
 446	for (; n; n = rb_prev(n)) {
 447		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
 448		if (ordered->file_offset > end)
 449			continue;
 450		if (entry_end(ordered) <= start)
 451			break;
 452		if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
 453			continue;
 454		list_add(&ordered->log_list, logged_list);
 455		refcount_inc(&ordered->refs);
 456	}
 457	spin_unlock_irq(&tree->lock);
 458}
 459
 460void btrfs_put_logged_extents(struct list_head *logged_list)
 461{
 462	struct btrfs_ordered_extent *ordered;
 463
 464	while (!list_empty(logged_list)) {
 465		ordered = list_first_entry(logged_list,
 466					   struct btrfs_ordered_extent,
 467					   log_list);
 468		list_del_init(&ordered->log_list);
 469		btrfs_put_ordered_extent(ordered);
 470	}
 471}
 472
 473void btrfs_submit_logged_extents(struct list_head *logged_list,
 474				 struct btrfs_root *log)
 475{
 476	int index = log->log_transid % 2;
 477
 478	spin_lock_irq(&log->log_extents_lock[index]);
 479	list_splice_tail(logged_list, &log->logged_list[index]);
 480	spin_unlock_irq(&log->log_extents_lock[index]);
 481}
 482
 483void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans,
 484			       struct btrfs_root *log, u64 transid)
 485{
 486	struct btrfs_ordered_extent *ordered;
 487	int index = transid % 2;
 488
 489	spin_lock_irq(&log->log_extents_lock[index]);
 490	while (!list_empty(&log->logged_list[index])) {
 491		struct inode *inode;
 492		ordered = list_first_entry(&log->logged_list[index],
 493					   struct btrfs_ordered_extent,
 494					   log_list);
 495		list_del_init(&ordered->log_list);
 496		inode = ordered->inode;
 497		spin_unlock_irq(&log->log_extents_lock[index]);
 498
 499		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
 500		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
 501			u64 start = ordered->file_offset;
 502			u64 end = ordered->file_offset + ordered->len - 1;
 503
 504			WARN_ON(!inode);
 505			filemap_fdatawrite_range(inode->i_mapping, start, end);
 506		}
 507		wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
 508						   &ordered->flags));
 509
 510		/*
 511		 * In order to keep us from losing our ordered extent
 512		 * information when committing the transaction we have to make
 513		 * sure that any logged extents are completed when we go to
 514		 * commit the transaction.  To do this we simply increase the
 515		 * current transactions pending_ordered counter and decrement it
 516		 * when the ordered extent completes.
 517		 */
 518		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
 519			struct btrfs_ordered_inode_tree *tree;
 520
 521			tree = &BTRFS_I(inode)->ordered_tree;
 522			spin_lock_irq(&tree->lock);
 523			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
 524				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
 525				atomic_inc(&trans->transaction->pending_ordered);
 526			}
 527			spin_unlock_irq(&tree->lock);
 528		}
 529		btrfs_put_ordered_extent(ordered);
 530		spin_lock_irq(&log->log_extents_lock[index]);
 531	}
 532	spin_unlock_irq(&log->log_extents_lock[index]);
 533}
 534
 535void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
 536{
 537	struct btrfs_ordered_extent *ordered;
 538	int index = transid % 2;
 539
 540	spin_lock_irq(&log->log_extents_lock[index]);
 541	while (!list_empty(&log->logged_list[index])) {
 542		ordered = list_first_entry(&log->logged_list[index],
 543					   struct btrfs_ordered_extent,
 544					   log_list);
 545		list_del_init(&ordered->log_list);
 546		spin_unlock_irq(&log->log_extents_lock[index]);
 547		btrfs_put_ordered_extent(ordered);
 548		spin_lock_irq(&log->log_extents_lock[index]);
 549	}
 550	spin_unlock_irq(&log->log_extents_lock[index]);
 551}
 552
 553/*
 554 * used to drop a reference on an ordered extent.  This will free
 555 * the extent if the last reference is dropped
 556 */
 557void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
 558{
 559	struct list_head *cur;
 560	struct btrfs_ordered_sum *sum;
 561
 562	trace_btrfs_ordered_extent_put(entry->inode, entry);
 563
 564	if (refcount_dec_and_test(&entry->refs)) {
 565		ASSERT(list_empty(&entry->log_list));
 566		ASSERT(list_empty(&entry->trans_list));
 567		ASSERT(list_empty(&entry->root_extent_list));
 568		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
 569		if (entry->inode)
 570			btrfs_add_delayed_iput(entry->inode);
 571		while (!list_empty(&entry->list)) {
 572			cur = entry->list.next;
 573			sum = list_entry(cur, struct btrfs_ordered_sum, list);
 574			list_del(&sum->list);
 575			kfree(sum);
 576		}
 577		kmem_cache_free(btrfs_ordered_extent_cache, entry);
 578	}
 579}
 580
 581/*
 582 * remove an ordered extent from the tree.  No references are dropped
 583 * and waiters are woken up.
 584 */
 585void btrfs_remove_ordered_extent(struct inode *inode,
 586				 struct btrfs_ordered_extent *entry)
 587{
 588	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 589	struct btrfs_ordered_inode_tree *tree;
 590	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
 591	struct btrfs_root *root = btrfs_inode->root;
 592	struct rb_node *node;
 593	bool dec_pending_ordered = false;
 594
 595	/* This is paired with btrfs_add_ordered_extent. */
 596	spin_lock(&btrfs_inode->lock);
 597	btrfs_mod_outstanding_extents(btrfs_inode, -1);
 598	spin_unlock(&btrfs_inode->lock);
 599	if (root != fs_info->tree_root)
 600		btrfs_delalloc_release_metadata(btrfs_inode, entry->len, false);
 601
 
 
 
 
 602	tree = &btrfs_inode->ordered_tree;
 603	spin_lock_irq(&tree->lock);
 604	node = &entry->rb_node;
 605	rb_erase(node, &tree->tree);
 606	RB_CLEAR_NODE(node);
 607	if (tree->last == node)
 608		tree->last = NULL;
 609	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
 610	if (test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags))
 611		dec_pending_ordered = true;
 612	spin_unlock_irq(&tree->lock);
 613
 614	/*
 615	 * The current running transaction is waiting on us, we need to let it
 616	 * know that we're complete and wake it up.
 617	 */
 618	if (dec_pending_ordered) {
 619		struct btrfs_transaction *trans;
 620
 621		/*
 622		 * The checks for trans are just a formality, it should be set,
 623		 * but if it isn't we don't want to deref/assert under the spin
 624		 * lock, so be nice and check if trans is set, but ASSERT() so
 625		 * if it isn't set a developer will notice.
 626		 */
 627		spin_lock(&fs_info->trans_lock);
 628		trans = fs_info->running_transaction;
 629		if (trans)
 630			refcount_inc(&trans->use_count);
 631		spin_unlock(&fs_info->trans_lock);
 632
 633		ASSERT(trans);
 634		if (trans) {
 635			if (atomic_dec_and_test(&trans->pending_ordered))
 636				wake_up(&trans->pending_wait);
 637			btrfs_put_transaction(trans);
 638		}
 639	}
 640
 641	spin_lock(&root->ordered_extent_lock);
 642	list_del_init(&entry->root_extent_list);
 643	root->nr_ordered_extents--;
 644
 645	trace_btrfs_ordered_extent_remove(inode, entry);
 646
 647	if (!root->nr_ordered_extents) {
 648		spin_lock(&fs_info->ordered_root_lock);
 649		BUG_ON(list_empty(&root->ordered_root));
 650		list_del_init(&root->ordered_root);
 651		spin_unlock(&fs_info->ordered_root_lock);
 652	}
 653	spin_unlock(&root->ordered_extent_lock);
 654	wake_up(&entry->wait);
 655}
 656
 657static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
 658{
 659	struct btrfs_ordered_extent *ordered;
 660
 661	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
 662	btrfs_start_ordered_extent(ordered->inode, ordered, 1);
 663	complete(&ordered->completion);
 664}
 665
 666/*
 667 * wait for all the ordered extents in a root.  This is done when balancing
 668 * space between drives.
 669 */
 670u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
 671			       const u64 range_start, const u64 range_len)
 672{
 673	struct btrfs_fs_info *fs_info = root->fs_info;
 674	LIST_HEAD(splice);
 675	LIST_HEAD(skipped);
 676	LIST_HEAD(works);
 677	struct btrfs_ordered_extent *ordered, *next;
 678	u64 count = 0;
 679	const u64 range_end = range_start + range_len;
 680
 681	mutex_lock(&root->ordered_extent_mutex);
 682	spin_lock(&root->ordered_extent_lock);
 683	list_splice_init(&root->ordered_extents, &splice);
 684	while (!list_empty(&splice) && nr) {
 685		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
 686					   root_extent_list);
 687
 688		if (range_end <= ordered->start ||
 689		    ordered->start + ordered->disk_len <= range_start) {
 690			list_move_tail(&ordered->root_extent_list, &skipped);
 691			cond_resched_lock(&root->ordered_extent_lock);
 692			continue;
 693		}
 694
 695		list_move_tail(&ordered->root_extent_list,
 696			       &root->ordered_extents);
 697		refcount_inc(&ordered->refs);
 698		spin_unlock(&root->ordered_extent_lock);
 699
 700		btrfs_init_work(&ordered->flush_work,
 701				btrfs_flush_delalloc_helper,
 702				btrfs_run_ordered_extent_work, NULL, NULL);
 703		list_add_tail(&ordered->work_list, &works);
 704		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
 705
 706		cond_resched();
 707		spin_lock(&root->ordered_extent_lock);
 708		if (nr != U64_MAX)
 709			nr--;
 710		count++;
 711	}
 712	list_splice_tail(&skipped, &root->ordered_extents);
 713	list_splice_tail(&splice, &root->ordered_extents);
 714	spin_unlock(&root->ordered_extent_lock);
 715
 716	list_for_each_entry_safe(ordered, next, &works, work_list) {
 717		list_del_init(&ordered->work_list);
 718		wait_for_completion(&ordered->completion);
 719		btrfs_put_ordered_extent(ordered);
 720		cond_resched();
 721	}
 722	mutex_unlock(&root->ordered_extent_mutex);
 723
 724	return count;
 725}
 726
 727u64 btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
 728			     const u64 range_start, const u64 range_len)
 729{
 730	struct btrfs_root *root;
 731	struct list_head splice;
 732	u64 total_done = 0;
 733	u64 done;
 734
 735	INIT_LIST_HEAD(&splice);
 736
 737	mutex_lock(&fs_info->ordered_operations_mutex);
 738	spin_lock(&fs_info->ordered_root_lock);
 739	list_splice_init(&fs_info->ordered_roots, &splice);
 740	while (!list_empty(&splice) && nr) {
 741		root = list_first_entry(&splice, struct btrfs_root,
 742					ordered_root);
 743		root = btrfs_grab_fs_root(root);
 744		BUG_ON(!root);
 745		list_move_tail(&root->ordered_root,
 746			       &fs_info->ordered_roots);
 747		spin_unlock(&fs_info->ordered_root_lock);
 748
 749		done = btrfs_wait_ordered_extents(root, nr,
 750						  range_start, range_len);
 751		btrfs_put_fs_root(root);
 752		total_done += done;
 753
 754		spin_lock(&fs_info->ordered_root_lock);
 755		if (nr != U64_MAX) {
 756			nr -= done;
 757		}
 758	}
 759	list_splice_tail(&splice, &fs_info->ordered_roots);
 760	spin_unlock(&fs_info->ordered_root_lock);
 761	mutex_unlock(&fs_info->ordered_operations_mutex);
 762
 763	return total_done;
 764}
 765
 766/*
 767 * Used to start IO or wait for a given ordered extent to finish.
 768 *
 769 * If wait is one, this effectively waits on page writeback for all the pages
 770 * in the extent, and it waits on the io completion code to insert
 771 * metadata into the btree corresponding to the extent
 772 */
 773void btrfs_start_ordered_extent(struct inode *inode,
 774				       struct btrfs_ordered_extent *entry,
 775				       int wait)
 776{
 777	u64 start = entry->file_offset;
 778	u64 end = start + entry->len - 1;
 779
 780	trace_btrfs_ordered_extent_start(inode, entry);
 781
 782	/*
 783	 * pages in the range can be dirty, clean or writeback.  We
 784	 * start IO on any dirty ones so the wait doesn't stall waiting
 785	 * for the flusher thread to find them
 786	 */
 787	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
 788		filemap_fdatawrite_range(inode->i_mapping, start, end);
 789	if (wait) {
 790		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
 791						 &entry->flags));
 792	}
 793}
 794
 795/*
 796 * Used to wait on ordered extents across a large range of bytes.
 797 */
 798int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
 799{
 800	int ret = 0;
 801	int ret_wb = 0;
 802	u64 end;
 803	u64 orig_end;
 804	struct btrfs_ordered_extent *ordered;
 805
 806	if (start + len < start) {
 807		orig_end = INT_LIMIT(loff_t);
 808	} else {
 809		orig_end = start + len - 1;
 810		if (orig_end > INT_LIMIT(loff_t))
 811			orig_end = INT_LIMIT(loff_t);
 812	}
 813
 814	/* start IO across the range first to instantiate any delalloc
 815	 * extents
 816	 */
 817	ret = btrfs_fdatawrite_range(inode, start, orig_end);
 818	if (ret)
 819		return ret;
 820
 821	/*
 822	 * If we have a writeback error don't return immediately. Wait first
 823	 * for any ordered extents that haven't completed yet. This is to make
 824	 * sure no one can dirty the same page ranges and call writepages()
 825	 * before the ordered extents complete - to avoid failures (-EEXIST)
 826	 * when adding the new ordered extents to the ordered tree.
 827	 */
 828	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
 829
 830	end = orig_end;
 831	while (1) {
 832		ordered = btrfs_lookup_first_ordered_extent(inode, end);
 833		if (!ordered)
 834			break;
 835		if (ordered->file_offset > orig_end) {
 836			btrfs_put_ordered_extent(ordered);
 837			break;
 838		}
 839		if (ordered->file_offset + ordered->len <= start) {
 840			btrfs_put_ordered_extent(ordered);
 841			break;
 842		}
 843		btrfs_start_ordered_extent(inode, ordered, 1);
 844		end = ordered->file_offset;
 845		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
 846			ret = -EIO;
 847		btrfs_put_ordered_extent(ordered);
 848		if (ret || end == 0 || end == start)
 849			break;
 850		end--;
 851	}
 852	return ret_wb ? ret_wb : ret;
 853}
 854
 855/*
 856 * find an ordered extent corresponding to file_offset.  return NULL if
 857 * nothing is found, otherwise take a reference on the extent and return it
 858 */
 859struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
 860							 u64 file_offset)
 861{
 862	struct btrfs_ordered_inode_tree *tree;
 863	struct rb_node *node;
 864	struct btrfs_ordered_extent *entry = NULL;
 865
 866	tree = &BTRFS_I(inode)->ordered_tree;
 867	spin_lock_irq(&tree->lock);
 868	node = tree_search(tree, file_offset);
 869	if (!node)
 870		goto out;
 871
 872	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 873	if (!offset_in_entry(entry, file_offset))
 874		entry = NULL;
 875	if (entry)
 876		refcount_inc(&entry->refs);
 877out:
 878	spin_unlock_irq(&tree->lock);
 879	return entry;
 880}
 881
 882/* Since the DIO code tries to lock a wide area we need to look for any ordered
 883 * extents that exist in the range, rather than just the start of the range.
 884 */
 885struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
 886		struct btrfs_inode *inode, u64 file_offset, u64 len)
 887{
 888	struct btrfs_ordered_inode_tree *tree;
 889	struct rb_node *node;
 890	struct btrfs_ordered_extent *entry = NULL;
 891
 892	tree = &inode->ordered_tree;
 893	spin_lock_irq(&tree->lock);
 894	node = tree_search(tree, file_offset);
 895	if (!node) {
 896		node = tree_search(tree, file_offset + len);
 897		if (!node)
 898			goto out;
 899	}
 900
 901	while (1) {
 902		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 903		if (range_overlaps(entry, file_offset, len))
 904			break;
 905
 906		if (entry->file_offset >= file_offset + len) {
 907			entry = NULL;
 908			break;
 909		}
 910		entry = NULL;
 911		node = rb_next(node);
 912		if (!node)
 913			break;
 914	}
 915out:
 916	if (entry)
 917		refcount_inc(&entry->refs);
 918	spin_unlock_irq(&tree->lock);
 919	return entry;
 920}
 921
 922bool btrfs_have_ordered_extents_in_range(struct inode *inode,
 923					 u64 file_offset,
 924					 u64 len)
 925{
 926	struct btrfs_ordered_extent *oe;
 927
 928	oe = btrfs_lookup_ordered_range(BTRFS_I(inode), file_offset, len);
 929	if (oe) {
 930		btrfs_put_ordered_extent(oe);
 931		return true;
 932	}
 933	return false;
 934}
 935
 936/*
 937 * lookup and return any extent before 'file_offset'.  NULL is returned
 938 * if none is found
 939 */
 940struct btrfs_ordered_extent *
 941btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
 942{
 943	struct btrfs_ordered_inode_tree *tree;
 944	struct rb_node *node;
 945	struct btrfs_ordered_extent *entry = NULL;
 946
 947	tree = &BTRFS_I(inode)->ordered_tree;
 948	spin_lock_irq(&tree->lock);
 949	node = tree_search(tree, file_offset);
 950	if (!node)
 951		goto out;
 952
 953	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 954	refcount_inc(&entry->refs);
 955out:
 956	spin_unlock_irq(&tree->lock);
 957	return entry;
 958}
 959
 960/*
 961 * After an extent is done, call this to conditionally update the on disk
 962 * i_size.  i_size is updated to cover any fully written part of the file.
 963 */
 964int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
 965				struct btrfs_ordered_extent *ordered)
 966{
 967	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
 968	u64 disk_i_size;
 969	u64 new_i_size;
 970	u64 i_size = i_size_read(inode);
 971	struct rb_node *node;
 972	struct rb_node *prev = NULL;
 973	struct btrfs_ordered_extent *test;
 974	int ret = 1;
 975	u64 orig_offset = offset;
 976
 977	spin_lock_irq(&tree->lock);
 978	if (ordered) {
 979		offset = entry_end(ordered);
 980		if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
 981			offset = min(offset,
 982				     ordered->file_offset +
 983				     ordered->truncated_len);
 984	} else {
 985		offset = ALIGN(offset, btrfs_inode_sectorsize(inode));
 986	}
 987	disk_i_size = BTRFS_I(inode)->disk_i_size;
 988
 989	/*
 990	 * truncate file.
 991	 * If ordered is not NULL, then this is called from endio and
 992	 * disk_i_size will be updated by either truncate itself or any
 993	 * in-flight IOs which are inside the disk_i_size.
 994	 *
 995	 * Because btrfs_setsize() may set i_size with disk_i_size if truncate
 996	 * fails somehow, we need to make sure we have a precise disk_i_size by
 997	 * updating it as usual.
 998	 *
 999	 */
1000	if (!ordered && disk_i_size > i_size) {
1001		BTRFS_I(inode)->disk_i_size = orig_offset;
1002		ret = 0;
1003		goto out;
1004	}
1005
1006	/*
1007	 * if the disk i_size is already at the inode->i_size, or
1008	 * this ordered extent is inside the disk i_size, we're done
1009	 */
1010	if (disk_i_size == i_size)
1011		goto out;
1012
1013	/*
1014	 * We still need to update disk_i_size if outstanding_isize is greater
1015	 * than disk_i_size.
1016	 */
1017	if (offset <= disk_i_size &&
1018	    (!ordered || ordered->outstanding_isize <= disk_i_size))
1019		goto out;
1020
1021	/*
1022	 * walk backward from this ordered extent to disk_i_size.
1023	 * if we find an ordered extent then we can't update disk i_size
1024	 * yet
1025	 */
1026	if (ordered) {
1027		node = rb_prev(&ordered->rb_node);
1028	} else {
1029		prev = tree_search(tree, offset);
1030		/*
1031		 * we insert file extents without involving ordered struct,
1032		 * so there should be no ordered struct cover this offset
1033		 */
1034		if (prev) {
1035			test = rb_entry(prev, struct btrfs_ordered_extent,
1036					rb_node);
1037			BUG_ON(offset_in_entry(test, offset));
1038		}
1039		node = prev;
1040	}
1041	for (; node; node = rb_prev(node)) {
1042		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1043
1044		/* We treat this entry as if it doesn't exist */
1045		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
1046			continue;
1047
1048		if (entry_end(test) <= disk_i_size)
1049			break;
1050		if (test->file_offset >= i_size)
1051			break;
1052
1053		/*
1054		 * We don't update disk_i_size now, so record this undealt
1055		 * i_size. Or we will not know the real i_size.
1056		 */
1057		if (test->outstanding_isize < offset)
1058			test->outstanding_isize = offset;
1059		if (ordered &&
1060		    ordered->outstanding_isize > test->outstanding_isize)
1061			test->outstanding_isize = ordered->outstanding_isize;
1062		goto out;
1063	}
1064	new_i_size = min_t(u64, offset, i_size);
1065
1066	/*
1067	 * Some ordered extents may completed before the current one, and
1068	 * we hold the real i_size in ->outstanding_isize.
1069	 */
1070	if (ordered && ordered->outstanding_isize > new_i_size)
1071		new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1072	BTRFS_I(inode)->disk_i_size = new_i_size;
1073	ret = 0;
1074out:
1075	/*
1076	 * We need to do this because we can't remove ordered extents until
1077	 * after the i_disk_size has been updated and then the inode has been
1078	 * updated to reflect the change, so we need to tell anybody who finds
1079	 * this ordered extent that we've already done all the real work, we
1080	 * just haven't completed all the other work.
1081	 */
1082	if (ordered)
1083		set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1084	spin_unlock_irq(&tree->lock);
1085	return ret;
1086}
1087
1088/*
1089 * search the ordered extents for one corresponding to 'offset' and
1090 * try to find a checksum.  This is used because we allow pages to
1091 * be reclaimed before their checksum is actually put into the btree
1092 */
1093int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1094			   u32 *sum, int len)
1095{
 
1096	struct btrfs_ordered_sum *ordered_sum;
1097	struct btrfs_ordered_extent *ordered;
1098	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1099	unsigned long num_sectors;
1100	unsigned long i;
1101	u32 sectorsize = btrfs_inode_sectorsize(inode);
 
1102	int index = 0;
1103
1104	ordered = btrfs_lookup_ordered_extent(inode, offset);
1105	if (!ordered)
1106		return 0;
1107
1108	spin_lock_irq(&tree->lock);
1109	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1110		if (disk_bytenr >= ordered_sum->bytenr &&
1111		    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1112			i = (disk_bytenr - ordered_sum->bytenr) >>
1113			    inode->i_sb->s_blocksize_bits;
1114			num_sectors = ordered_sum->len >>
1115				      inode->i_sb->s_blocksize_bits;
1116			num_sectors = min_t(int, len - index, num_sectors - i);
1117			memcpy(sum + index, ordered_sum->sums + i,
1118			       num_sectors);
1119
1120			index += (int)num_sectors;
1121			if (index == len)
1122				goto out;
1123			disk_bytenr += num_sectors * sectorsize;
1124		}
1125	}
1126out:
1127	spin_unlock_irq(&tree->lock);
1128	btrfs_put_ordered_extent(ordered);
1129	return index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1130}
1131
1132int __init ordered_data_init(void)
1133{
1134	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1135				     sizeof(struct btrfs_ordered_extent), 0,
1136				     SLAB_MEM_SPREAD,
1137				     NULL);
1138	if (!btrfs_ordered_extent_cache)
1139		return -ENOMEM;
1140
1141	return 0;
1142}
1143
1144void __cold ordered_data_exit(void)
1145{
1146	kmem_cache_destroy(btrfs_ordered_extent_cache);
1147}