Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/slab.h>
   7#include <linux/blkdev.h>
   8#include <linux/writeback.h>
   9#include <linux/sched/mm.h>
  10#include "misc.h"
  11#include "ctree.h"
  12#include "transaction.h"
  13#include "btrfs_inode.h"
  14#include "extent_io.h"
  15#include "disk-io.h"
  16#include "compression.h"
  17#include "delalloc-space.h"
  18
  19static struct kmem_cache *btrfs_ordered_extent_cache;
  20
  21static u64 entry_end(struct btrfs_ordered_extent *entry)
  22{
  23	if (entry->file_offset + entry->len < entry->file_offset)
  24		return (u64)-1;
  25	return entry->file_offset + entry->len;
  26}
  27
  28/* returns NULL if the insertion worked, or it returns the node it did find
  29 * in the tree
  30 */
  31static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  32				   struct rb_node *node)
  33{
  34	struct rb_node **p = &root->rb_node;
  35	struct rb_node *parent = NULL;
  36	struct btrfs_ordered_extent *entry;
  37
  38	while (*p) {
  39		parent = *p;
  40		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  41
  42		if (file_offset < entry->file_offset)
  43			p = &(*p)->rb_left;
  44		else if (file_offset >= entry_end(entry))
  45			p = &(*p)->rb_right;
  46		else
  47			return parent;
  48	}
  49
  50	rb_link_node(node, parent, p);
  51	rb_insert_color(node, root);
  52	return NULL;
  53}
  54
  55static void ordered_data_tree_panic(struct inode *inode, int errno,
  56					       u64 offset)
  57{
  58	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  59	btrfs_panic(fs_info, errno,
  60		    "Inconsistency in ordered tree at offset %llu", offset);
  61}
  62
  63/*
  64 * look for a given offset in the tree, and if it can't be found return the
  65 * first lesser offset
  66 */
  67static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  68				     struct rb_node **prev_ret)
  69{
  70	struct rb_node *n = root->rb_node;
  71	struct rb_node *prev = NULL;
  72	struct rb_node *test;
  73	struct btrfs_ordered_extent *entry;
  74	struct btrfs_ordered_extent *prev_entry = NULL;
  75
  76	while (n) {
  77		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  78		prev = n;
  79		prev_entry = entry;
  80
  81		if (file_offset < entry->file_offset)
  82			n = n->rb_left;
  83		else if (file_offset >= entry_end(entry))
  84			n = n->rb_right;
  85		else
  86			return n;
  87	}
  88	if (!prev_ret)
  89		return NULL;
  90
  91	while (prev && file_offset >= entry_end(prev_entry)) {
  92		test = rb_next(prev);
  93		if (!test)
  94			break;
  95		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  96				      rb_node);
  97		if (file_offset < entry_end(prev_entry))
  98			break;
  99
 100		prev = test;
 101	}
 102	if (prev)
 103		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
 104				      rb_node);
 105	while (prev && file_offset < entry_end(prev_entry)) {
 106		test = rb_prev(prev);
 107		if (!test)
 108			break;
 109		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 110				      rb_node);
 111		prev = test;
 112	}
 113	*prev_ret = prev;
 114	return NULL;
 115}
 116
 117/*
 118 * helper to check if a given offset is inside a given entry
 119 */
 120static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
 121{
 122	if (file_offset < entry->file_offset ||
 123	    entry->file_offset + entry->len <= file_offset)
 124		return 0;
 125	return 1;
 126}
 127
 128static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
 129			  u64 len)
 130{
 131	if (file_offset + len <= entry->file_offset ||
 132	    entry->file_offset + entry->len <= file_offset)
 133		return 0;
 134	return 1;
 135}
 136
 137/*
 138 * look find the first ordered struct that has this offset, otherwise
 139 * the first one less than this offset
 140 */
 141static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
 142					  u64 file_offset)
 143{
 144	struct rb_root *root = &tree->tree;
 145	struct rb_node *prev = NULL;
 146	struct rb_node *ret;
 147	struct btrfs_ordered_extent *entry;
 148
 149	if (tree->last) {
 150		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
 151				 rb_node);
 152		if (offset_in_entry(entry, file_offset))
 153			return tree->last;
 154	}
 155	ret = __tree_search(root, file_offset, &prev);
 156	if (!ret)
 157		ret = prev;
 158	if (ret)
 159		tree->last = ret;
 160	return ret;
 161}
 162
 163/* allocate and add a new ordered_extent into the per-inode tree.
 164 * file_offset is the logical offset in the file
 165 *
 166 * start is the disk block number of an extent already reserved in the
 167 * extent allocation tree
 168 *
 169 * len is the length of the extent
 170 *
 171 * The tree is given a single reference on the ordered extent that was
 172 * inserted.
 173 */
 174static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
 175				      u64 start, u64 len, u64 disk_len,
 176				      int type, int dio, int compress_type)
 177{
 178	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 179	struct btrfs_root *root = BTRFS_I(inode)->root;
 180	struct btrfs_ordered_inode_tree *tree;
 181	struct rb_node *node;
 182	struct btrfs_ordered_extent *entry;
 183
 184	tree = &BTRFS_I(inode)->ordered_tree;
 185	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
 186	if (!entry)
 187		return -ENOMEM;
 188
 189	entry->file_offset = file_offset;
 190	entry->start = start;
 191	entry->len = len;
 
 
 
 192	entry->disk_len = disk_len;
 193	entry->bytes_left = len;
 194	entry->inode = igrab(inode);
 195	entry->compress_type = compress_type;
 196	entry->truncated_len = (u64)-1;
 197	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
 198		set_bit(type, &entry->flags);
 199
 200	if (dio) {
 201		percpu_counter_add_batch(&fs_info->dio_bytes, len,
 202					 fs_info->delalloc_batch);
 203		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
 204	}
 205
 206	/* one ref for the tree */
 207	refcount_set(&entry->refs, 1);
 208	init_waitqueue_head(&entry->wait);
 209	INIT_LIST_HEAD(&entry->list);
 210	INIT_LIST_HEAD(&entry->root_extent_list);
 211	INIT_LIST_HEAD(&entry->work_list);
 212	init_completion(&entry->completion);
 213	INIT_LIST_HEAD(&entry->log_list);
 214	INIT_LIST_HEAD(&entry->trans_list);
 215
 216	trace_btrfs_ordered_extent_add(inode, entry);
 217
 218	spin_lock_irq(&tree->lock);
 219	node = tree_insert(&tree->tree, file_offset,
 220			   &entry->rb_node);
 221	if (node)
 222		ordered_data_tree_panic(inode, -EEXIST, file_offset);
 223	spin_unlock_irq(&tree->lock);
 224
 225	spin_lock(&root->ordered_extent_lock);
 226	list_add_tail(&entry->root_extent_list,
 227		      &root->ordered_extents);
 228	root->nr_ordered_extents++;
 229	if (root->nr_ordered_extents == 1) {
 230		spin_lock(&fs_info->ordered_root_lock);
 231		BUG_ON(!list_empty(&root->ordered_root));
 232		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
 233		spin_unlock(&fs_info->ordered_root_lock);
 
 234	}
 235	spin_unlock(&root->ordered_extent_lock);
 236
 237	/*
 238	 * We don't need the count_max_extents here, we can assume that all of
 239	 * that work has been done at higher layers, so this is truly the
 240	 * smallest the extent is going to get.
 241	 */
 242	spin_lock(&BTRFS_I(inode)->lock);
 243	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
 244	spin_unlock(&BTRFS_I(inode)->lock);
 245
 246	return 0;
 247}
 248
 249int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
 250			     u64 start, u64 len, u64 disk_len, int type)
 251{
 252	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 253					  disk_len, type, 0,
 254					  BTRFS_COMPRESS_NONE);
 255}
 256
 257int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
 258				 u64 start, u64 len, u64 disk_len, int type)
 259{
 260	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 261					  disk_len, type, 1,
 262					  BTRFS_COMPRESS_NONE);
 263}
 264
 265int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
 266				      u64 start, u64 len, u64 disk_len,
 267				      int type, int compress_type)
 268{
 269	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 270					  disk_len, type, 0,
 271					  compress_type);
 272}
 273
 274/*
 275 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
 276 * when an ordered extent is finished.  If the list covers more than one
 277 * ordered extent, it is split across multiples.
 278 */
 279void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
 
 280			   struct btrfs_ordered_sum *sum)
 281{
 282	struct btrfs_ordered_inode_tree *tree;
 283
 284	tree = &BTRFS_I(entry->inode)->ordered_tree;
 285	spin_lock_irq(&tree->lock);
 286	list_add_tail(&sum->list, &entry->list);
 
 
 
 
 287	spin_unlock_irq(&tree->lock);
 288}
 289
 290/*
 291 * this is used to account for finished IO across a given range
 292 * of the file.  The IO may span ordered extents.  If
 293 * a given ordered_extent is completely done, 1 is returned, otherwise
 294 * 0.
 295 *
 296 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 297 * to make sure this function only returns 1 once for a given ordered extent.
 298 *
 299 * file_offset is updated to one byte past the range that is recorded as
 300 * complete.  This allows you to walk forward in the file.
 301 */
 302int btrfs_dec_test_first_ordered_pending(struct inode *inode,
 303				   struct btrfs_ordered_extent **cached,
 304				   u64 *file_offset, u64 io_size, int uptodate)
 305{
 306	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 307	struct btrfs_ordered_inode_tree *tree;
 308	struct rb_node *node;
 309	struct btrfs_ordered_extent *entry = NULL;
 310	int ret;
 311	unsigned long flags;
 312	u64 dec_end;
 313	u64 dec_start;
 314	u64 to_dec;
 315
 316	tree = &BTRFS_I(inode)->ordered_tree;
 317	spin_lock_irqsave(&tree->lock, flags);
 318	node = tree_search(tree, *file_offset);
 319	if (!node) {
 320		ret = 1;
 321		goto out;
 322	}
 323
 324	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 325	if (!offset_in_entry(entry, *file_offset)) {
 326		ret = 1;
 327		goto out;
 328	}
 329
 330	dec_start = max(*file_offset, entry->file_offset);
 331	dec_end = min(*file_offset + io_size, entry->file_offset +
 332		      entry->len);
 333	*file_offset = dec_end;
 334	if (dec_start > dec_end) {
 335		btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
 336			   dec_start, dec_end);
 337	}
 338	to_dec = dec_end - dec_start;
 339	if (to_dec > entry->bytes_left) {
 340		btrfs_crit(fs_info,
 341			   "bad ordered accounting left %llu size %llu",
 342			   entry->bytes_left, to_dec);
 343	}
 344	entry->bytes_left -= to_dec;
 345	if (!uptodate)
 346		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 347
 348	if (entry->bytes_left == 0) {
 349		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 350		/* test_and_set_bit implies a barrier */
 351		cond_wake_up_nomb(&entry->wait);
 352	} else {
 353		ret = 1;
 354	}
 355out:
 356	if (!ret && cached && entry) {
 357		*cached = entry;
 358		refcount_inc(&entry->refs);
 359	}
 360	spin_unlock_irqrestore(&tree->lock, flags);
 361	return ret == 0;
 362}
 363
 364/*
 365 * this is used to account for finished IO across a given range
 366 * of the file.  The IO should not span ordered extents.  If
 367 * a given ordered_extent is completely done, 1 is returned, otherwise
 368 * 0.
 369 *
 370 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 371 * to make sure this function only returns 1 once for a given ordered extent.
 372 */
 373int btrfs_dec_test_ordered_pending(struct inode *inode,
 374				   struct btrfs_ordered_extent **cached,
 375				   u64 file_offset, u64 io_size, int uptodate)
 376{
 377	struct btrfs_ordered_inode_tree *tree;
 378	struct rb_node *node;
 379	struct btrfs_ordered_extent *entry = NULL;
 380	unsigned long flags;
 381	int ret;
 382
 383	tree = &BTRFS_I(inode)->ordered_tree;
 384	spin_lock_irqsave(&tree->lock, flags);
 385	if (cached && *cached) {
 386		entry = *cached;
 387		goto have_entry;
 388	}
 389
 390	node = tree_search(tree, file_offset);
 391	if (!node) {
 392		ret = 1;
 393		goto out;
 394	}
 395
 396	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 397have_entry:
 398	if (!offset_in_entry(entry, file_offset)) {
 399		ret = 1;
 400		goto out;
 401	}
 402
 403	if (io_size > entry->bytes_left) {
 404		btrfs_crit(BTRFS_I(inode)->root->fs_info,
 405			   "bad ordered accounting left %llu size %llu",
 406		       entry->bytes_left, io_size);
 407	}
 408	entry->bytes_left -= io_size;
 409	if (!uptodate)
 410		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 411
 412	if (entry->bytes_left == 0) {
 413		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 414		/* test_and_set_bit implies a barrier */
 415		cond_wake_up_nomb(&entry->wait);
 416	} else {
 417		ret = 1;
 418	}
 419out:
 420	if (!ret && cached && entry) {
 421		*cached = entry;
 422		refcount_inc(&entry->refs);
 423	}
 424	spin_unlock_irqrestore(&tree->lock, flags);
 425	return ret == 0;
 426}
 427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 428/*
 429 * used to drop a reference on an ordered extent.  This will free
 430 * the extent if the last reference is dropped
 431 */
 432void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
 433{
 434	struct list_head *cur;
 435	struct btrfs_ordered_sum *sum;
 436
 437	trace_btrfs_ordered_extent_put(entry->inode, entry);
 438
 439	if (refcount_dec_and_test(&entry->refs)) {
 440		ASSERT(list_empty(&entry->log_list));
 441		ASSERT(list_empty(&entry->trans_list));
 442		ASSERT(list_empty(&entry->root_extent_list));
 443		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
 444		if (entry->inode)
 445			btrfs_add_delayed_iput(entry->inode);
 446		while (!list_empty(&entry->list)) {
 447			cur = entry->list.next;
 448			sum = list_entry(cur, struct btrfs_ordered_sum, list);
 449			list_del(&sum->list);
 450			kvfree(sum);
 451		}
 452		kmem_cache_free(btrfs_ordered_extent_cache, entry);
 453	}
 454}
 455
 456/*
 457 * remove an ordered extent from the tree.  No references are dropped
 458 * and waiters are woken up.
 459 */
 460void btrfs_remove_ordered_extent(struct inode *inode,
 461				 struct btrfs_ordered_extent *entry)
 462{
 463	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 464	struct btrfs_ordered_inode_tree *tree;
 465	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
 466	struct btrfs_root *root = btrfs_inode->root;
 467	struct rb_node *node;
 468
 469	/* This is paired with btrfs_add_ordered_extent. */
 470	spin_lock(&btrfs_inode->lock);
 471	btrfs_mod_outstanding_extents(btrfs_inode, -1);
 472	spin_unlock(&btrfs_inode->lock);
 473	if (root != fs_info->tree_root)
 474		btrfs_delalloc_release_metadata(btrfs_inode, entry->len, false);
 475
 476	if (test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
 477		percpu_counter_add_batch(&fs_info->dio_bytes, -entry->len,
 478					 fs_info->delalloc_batch);
 479
 480	tree = &btrfs_inode->ordered_tree;
 481	spin_lock_irq(&tree->lock);
 482	node = &entry->rb_node;
 483	rb_erase(node, &tree->tree);
 484	RB_CLEAR_NODE(node);
 485	if (tree->last == node)
 486		tree->last = NULL;
 487	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
 488	spin_unlock_irq(&tree->lock);
 489
 490	spin_lock(&root->ordered_extent_lock);
 491	list_del_init(&entry->root_extent_list);
 492	root->nr_ordered_extents--;
 493
 494	trace_btrfs_ordered_extent_remove(inode, entry);
 495
 
 
 
 
 
 
 
 
 
 
 
 
 496	if (!root->nr_ordered_extents) {
 497		spin_lock(&fs_info->ordered_root_lock);
 498		BUG_ON(list_empty(&root->ordered_root));
 499		list_del_init(&root->ordered_root);
 500		spin_unlock(&fs_info->ordered_root_lock);
 501	}
 502	spin_unlock(&root->ordered_extent_lock);
 503	wake_up(&entry->wait);
 504}
 505
 506static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
 507{
 508	struct btrfs_ordered_extent *ordered;
 509
 510	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
 511	btrfs_start_ordered_extent(ordered->inode, ordered, 1);
 512	complete(&ordered->completion);
 513}
 514
 515/*
 516 * wait for all the ordered extents in a root.  This is done when balancing
 517 * space between drives.
 518 */
 519u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
 520			       const u64 range_start, const u64 range_len)
 521{
 522	struct btrfs_fs_info *fs_info = root->fs_info;
 523	LIST_HEAD(splice);
 524	LIST_HEAD(skipped);
 525	LIST_HEAD(works);
 526	struct btrfs_ordered_extent *ordered, *next;
 527	u64 count = 0;
 528	const u64 range_end = range_start + range_len;
 
 
 529
 530	mutex_lock(&root->ordered_extent_mutex);
 531	spin_lock(&root->ordered_extent_lock);
 532	list_splice_init(&root->ordered_extents, &splice);
 533	while (!list_empty(&splice) && nr) {
 534		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
 535					   root_extent_list);
 536
 537		if (range_end <= ordered->start ||
 538		    ordered->start + ordered->disk_len <= range_start) {
 539			list_move_tail(&ordered->root_extent_list, &skipped);
 540			cond_resched_lock(&root->ordered_extent_lock);
 541			continue;
 542		}
 543
 544		list_move_tail(&ordered->root_extent_list,
 545			       &root->ordered_extents);
 546		refcount_inc(&ordered->refs);
 547		spin_unlock(&root->ordered_extent_lock);
 548
 549		btrfs_init_work(&ordered->flush_work,
 550				btrfs_flush_delalloc_helper,
 551				btrfs_run_ordered_extent_work, NULL, NULL);
 552		list_add_tail(&ordered->work_list, &works);
 553		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
 
 554
 555		cond_resched();
 556		spin_lock(&root->ordered_extent_lock);
 557		if (nr != U64_MAX)
 558			nr--;
 559		count++;
 560	}
 561	list_splice_tail(&skipped, &root->ordered_extents);
 562	list_splice_tail(&splice, &root->ordered_extents);
 563	spin_unlock(&root->ordered_extent_lock);
 564
 565	list_for_each_entry_safe(ordered, next, &works, work_list) {
 566		list_del_init(&ordered->work_list);
 567		wait_for_completion(&ordered->completion);
 568		btrfs_put_ordered_extent(ordered);
 569		cond_resched();
 570	}
 571	mutex_unlock(&root->ordered_extent_mutex);
 572
 573	return count;
 574}
 575
 576u64 btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
 577			     const u64 range_start, const u64 range_len)
 578{
 579	struct btrfs_root *root;
 580	struct list_head splice;
 581	u64 total_done = 0;
 582	u64 done;
 583
 584	INIT_LIST_HEAD(&splice);
 585
 586	mutex_lock(&fs_info->ordered_operations_mutex);
 587	spin_lock(&fs_info->ordered_root_lock);
 588	list_splice_init(&fs_info->ordered_roots, &splice);
 589	while (!list_empty(&splice) && nr) {
 590		root = list_first_entry(&splice, struct btrfs_root,
 591					ordered_root);
 592		root = btrfs_grab_fs_root(root);
 593		BUG_ON(!root);
 594		list_move_tail(&root->ordered_root,
 595			       &fs_info->ordered_roots);
 596		spin_unlock(&fs_info->ordered_root_lock);
 597
 598		done = btrfs_wait_ordered_extents(root, nr,
 599						  range_start, range_len);
 600		btrfs_put_fs_root(root);
 601		total_done += done;
 602
 603		spin_lock(&fs_info->ordered_root_lock);
 604		if (nr != U64_MAX) {
 605			nr -= done;
 
 606		}
 607	}
 608	list_splice_tail(&splice, &fs_info->ordered_roots);
 609	spin_unlock(&fs_info->ordered_root_lock);
 610	mutex_unlock(&fs_info->ordered_operations_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 611
 612	return total_done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 613}
 614
 615/*
 616 * Used to start IO or wait for a given ordered extent to finish.
 617 *
 618 * If wait is one, this effectively waits on page writeback for all the pages
 619 * in the extent, and it waits on the io completion code to insert
 620 * metadata into the btree corresponding to the extent
 621 */
 622void btrfs_start_ordered_extent(struct inode *inode,
 623				       struct btrfs_ordered_extent *entry,
 624				       int wait)
 625{
 626	u64 start = entry->file_offset;
 627	u64 end = start + entry->len - 1;
 628
 629	trace_btrfs_ordered_extent_start(inode, entry);
 630
 631	/*
 632	 * pages in the range can be dirty, clean or writeback.  We
 633	 * start IO on any dirty ones so the wait doesn't stall waiting
 634	 * for the flusher thread to find them
 635	 */
 636	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
 637		filemap_fdatawrite_range(inode->i_mapping, start, end);
 638	if (wait) {
 639		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
 640						 &entry->flags));
 641	}
 642}
 643
 644/*
 645 * Used to wait on ordered extents across a large range of bytes.
 646 */
 647int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
 648{
 649	int ret = 0;
 650	int ret_wb = 0;
 651	u64 end;
 652	u64 orig_end;
 653	struct btrfs_ordered_extent *ordered;
 654
 655	if (start + len < start) {
 656		orig_end = INT_LIMIT(loff_t);
 657	} else {
 658		orig_end = start + len - 1;
 659		if (orig_end > INT_LIMIT(loff_t))
 660			orig_end = INT_LIMIT(loff_t);
 661	}
 662
 663	/* start IO across the range first to instantiate any delalloc
 664	 * extents
 665	 */
 666	ret = btrfs_fdatawrite_range(inode, start, orig_end);
 667	if (ret)
 668		return ret;
 669
 670	/*
 671	 * If we have a writeback error don't return immediately. Wait first
 672	 * for any ordered extents that haven't completed yet. This is to make
 673	 * sure no one can dirty the same page ranges and call writepages()
 674	 * before the ordered extents complete - to avoid failures (-EEXIST)
 675	 * when adding the new ordered extents to the ordered tree.
 
 
 
 
 
 
 
 676	 */
 677	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
 
 
 
 
 
 
 
 
 
 678
 679	end = orig_end;
 680	while (1) {
 681		ordered = btrfs_lookup_first_ordered_extent(inode, end);
 682		if (!ordered)
 683			break;
 684		if (ordered->file_offset > orig_end) {
 685			btrfs_put_ordered_extent(ordered);
 686			break;
 687		}
 688		if (ordered->file_offset + ordered->len <= start) {
 689			btrfs_put_ordered_extent(ordered);
 690			break;
 691		}
 692		btrfs_start_ordered_extent(inode, ordered, 1);
 693		end = ordered->file_offset;
 694		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
 695			ret = -EIO;
 696		btrfs_put_ordered_extent(ordered);
 697		if (ret || end == 0 || end == start)
 698			break;
 699		end--;
 700	}
 701	return ret_wb ? ret_wb : ret;
 702}
 703
 704/*
 705 * find an ordered extent corresponding to file_offset.  return NULL if
 706 * nothing is found, otherwise take a reference on the extent and return it
 707 */
 708struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
 709							 u64 file_offset)
 710{
 711	struct btrfs_ordered_inode_tree *tree;
 712	struct rb_node *node;
 713	struct btrfs_ordered_extent *entry = NULL;
 714
 715	tree = &BTRFS_I(inode)->ordered_tree;
 716	spin_lock_irq(&tree->lock);
 717	node = tree_search(tree, file_offset);
 718	if (!node)
 719		goto out;
 720
 721	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 722	if (!offset_in_entry(entry, file_offset))
 723		entry = NULL;
 724	if (entry)
 725		refcount_inc(&entry->refs);
 726out:
 727	spin_unlock_irq(&tree->lock);
 728	return entry;
 729}
 730
 731/* Since the DIO code tries to lock a wide area we need to look for any ordered
 732 * extents that exist in the range, rather than just the start of the range.
 733 */
 734struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
 735		struct btrfs_inode *inode, u64 file_offset, u64 len)
 
 736{
 737	struct btrfs_ordered_inode_tree *tree;
 738	struct rb_node *node;
 739	struct btrfs_ordered_extent *entry = NULL;
 740
 741	tree = &inode->ordered_tree;
 742	spin_lock_irq(&tree->lock);
 743	node = tree_search(tree, file_offset);
 744	if (!node) {
 745		node = tree_search(tree, file_offset + len);
 746		if (!node)
 747			goto out;
 748	}
 749
 750	while (1) {
 751		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 752		if (range_overlaps(entry, file_offset, len))
 753			break;
 754
 755		if (entry->file_offset >= file_offset + len) {
 756			entry = NULL;
 757			break;
 758		}
 759		entry = NULL;
 760		node = rb_next(node);
 761		if (!node)
 762			break;
 763	}
 764out:
 765	if (entry)
 766		refcount_inc(&entry->refs);
 767	spin_unlock_irq(&tree->lock);
 768	return entry;
 769}
 770
 771/*
 772 * lookup and return any extent before 'file_offset'.  NULL is returned
 773 * if none is found
 774 */
 775struct btrfs_ordered_extent *
 776btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
 777{
 778	struct btrfs_ordered_inode_tree *tree;
 779	struct rb_node *node;
 780	struct btrfs_ordered_extent *entry = NULL;
 781
 782	tree = &BTRFS_I(inode)->ordered_tree;
 783	spin_lock_irq(&tree->lock);
 784	node = tree_search(tree, file_offset);
 785	if (!node)
 786		goto out;
 787
 788	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 789	refcount_inc(&entry->refs);
 790out:
 791	spin_unlock_irq(&tree->lock);
 792	return entry;
 793}
 794
 795/*
 796 * After an extent is done, call this to conditionally update the on disk
 797 * i_size.  i_size is updated to cover any fully written part of the file.
 798 */
 799int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
 800				struct btrfs_ordered_extent *ordered)
 801{
 802	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
 803	u64 disk_i_size;
 804	u64 new_i_size;
 805	u64 i_size = i_size_read(inode);
 806	struct rb_node *node;
 807	struct rb_node *prev = NULL;
 808	struct btrfs_ordered_extent *test;
 809	int ret = 1;
 810	u64 orig_offset = offset;
 811
 812	spin_lock_irq(&tree->lock);
 813	if (ordered) {
 814		offset = entry_end(ordered);
 815		if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
 816			offset = min(offset,
 817				     ordered->file_offset +
 818				     ordered->truncated_len);
 819	} else {
 820		offset = ALIGN(offset, btrfs_inode_sectorsize(inode));
 821	}
 822	disk_i_size = BTRFS_I(inode)->disk_i_size;
 823
 824	/*
 825	 * truncate file.
 826	 * If ordered is not NULL, then this is called from endio and
 827	 * disk_i_size will be updated by either truncate itself or any
 828	 * in-flight IOs which are inside the disk_i_size.
 829	 *
 830	 * Because btrfs_setsize() may set i_size with disk_i_size if truncate
 831	 * fails somehow, we need to make sure we have a precise disk_i_size by
 832	 * updating it as usual.
 833	 *
 834	 */
 835	if (!ordered && disk_i_size > i_size) {
 836		BTRFS_I(inode)->disk_i_size = orig_offset;
 837		ret = 0;
 838		goto out;
 839	}
 840
 841	/*
 842	 * if the disk i_size is already at the inode->i_size, or
 843	 * this ordered extent is inside the disk i_size, we're done
 844	 */
 845	if (disk_i_size == i_size)
 846		goto out;
 847
 848	/*
 849	 * We still need to update disk_i_size if outstanding_isize is greater
 850	 * than disk_i_size.
 851	 */
 852	if (offset <= disk_i_size &&
 853	    (!ordered || ordered->outstanding_isize <= disk_i_size))
 854		goto out;
 855
 856	/*
 857	 * walk backward from this ordered extent to disk_i_size.
 858	 * if we find an ordered extent then we can't update disk i_size
 859	 * yet
 860	 */
 861	if (ordered) {
 862		node = rb_prev(&ordered->rb_node);
 863	} else {
 864		prev = tree_search(tree, offset);
 865		/*
 866		 * we insert file extents without involving ordered struct,
 867		 * so there should be no ordered struct cover this offset
 868		 */
 869		if (prev) {
 870			test = rb_entry(prev, struct btrfs_ordered_extent,
 871					rb_node);
 872			BUG_ON(offset_in_entry(test, offset));
 873		}
 874		node = prev;
 875	}
 876	for (; node; node = rb_prev(node)) {
 877		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 878
 879		/* We treat this entry as if it doesn't exist */
 880		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
 881			continue;
 882
 883		if (entry_end(test) <= disk_i_size)
 884			break;
 885		if (test->file_offset >= i_size)
 886			break;
 887
 888		/*
 889		 * We don't update disk_i_size now, so record this undealt
 890		 * i_size. Or we will not know the real i_size.
 891		 */
 892		if (test->outstanding_isize < offset)
 893			test->outstanding_isize = offset;
 894		if (ordered &&
 895		    ordered->outstanding_isize > test->outstanding_isize)
 896			test->outstanding_isize = ordered->outstanding_isize;
 897		goto out;
 
 
 
 
 898	}
 899	new_i_size = min_t(u64, offset, i_size);
 900
 901	/*
 902	 * Some ordered extents may completed before the current one, and
 903	 * we hold the real i_size in ->outstanding_isize.
 904	 */
 905	if (ordered && ordered->outstanding_isize > new_i_size)
 906		new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
 907	BTRFS_I(inode)->disk_i_size = new_i_size;
 908	ret = 0;
 909out:
 910	/*
 911	 * We need to do this because we can't remove ordered extents until
 912	 * after the i_disk_size has been updated and then the inode has been
 913	 * updated to reflect the change, so we need to tell anybody who finds
 914	 * this ordered extent that we've already done all the real work, we
 915	 * just haven't completed all the other work.
 916	 */
 917	if (ordered)
 918		set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
 919	spin_unlock_irq(&tree->lock);
 920	return ret;
 921}
 922
 923/*
 924 * search the ordered extents for one corresponding to 'offset' and
 925 * try to find a checksum.  This is used because we allow pages to
 926 * be reclaimed before their checksum is actually put into the btree
 927 */
 928int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
 929			   u8 *sum, int len)
 930{
 931	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 932	struct btrfs_ordered_sum *ordered_sum;
 933	struct btrfs_ordered_extent *ordered;
 934	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
 935	unsigned long num_sectors;
 936	unsigned long i;
 937	u32 sectorsize = btrfs_inode_sectorsize(inode);
 938	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 939	int index = 0;
 940
 941	ordered = btrfs_lookup_ordered_extent(inode, offset);
 942	if (!ordered)
 943		return 0;
 944
 945	spin_lock_irq(&tree->lock);
 946	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
 947		if (disk_bytenr >= ordered_sum->bytenr &&
 948		    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
 949			i = (disk_bytenr - ordered_sum->bytenr) >>
 950			    inode->i_sb->s_blocksize_bits;
 951			num_sectors = ordered_sum->len >>
 952				      inode->i_sb->s_blocksize_bits;
 953			num_sectors = min_t(int, len - index, num_sectors - i);
 954			memcpy(sum + index, ordered_sum->sums + i * csum_size,
 955			       num_sectors * csum_size);
 956
 957			index += (int)num_sectors * csum_size;
 958			if (index == len)
 959				goto out;
 960			disk_bytenr += num_sectors * sectorsize;
 961		}
 962	}
 963out:
 964	spin_unlock_irq(&tree->lock);
 965	btrfs_put_ordered_extent(ordered);
 966	return index;
 967}
 968
 
 969/*
 970 * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
 971 * ordered extents in it are run to completion.
 972 *
 973 * @tree:         IO tree used for locking out other users of the range
 974 * @inode:        Inode whose ordered tree is to be searched
 975 * @start:        Beginning of range to flush
 976 * @end:          Last byte of range to lock
 977 * @cached_state: If passed, will return the extent state responsible for the
 978 * locked range. It's the caller's responsibility to free the cached state.
 979 *
 980 * This function always returns with the given range locked, ensuring after it's
 981 * called no order extent can be pending.
 
 
 982 */
 983void btrfs_lock_and_flush_ordered_range(struct extent_io_tree *tree,
 984					struct btrfs_inode *inode, u64 start,
 985					u64 end,
 986					struct extent_state **cached_state)
 987{
 988	struct btrfs_ordered_extent *ordered;
 989	struct extent_state *cache = NULL;
 990	struct extent_state **cachedp = &cache;
 991
 992	if (cached_state)
 993		cachedp = cached_state;
 994
 995	while (1) {
 996		lock_extent_bits(tree, start, end, cachedp);
 997		ordered = btrfs_lookup_ordered_range(inode, start,
 998						     end - start + 1);
 999		if (!ordered) {
1000			/*
1001			 * If no external cached_state has been passed then
1002			 * decrement the extra ref taken for cachedp since we
1003			 * aren't exposing it outside of this function
1004			 */
1005			if (!cached_state)
1006				refcount_dec(&cache->refs);
1007			break;
1008		}
1009		unlock_extent_cached(tree, start, end, cachedp);
1010		btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
1011		btrfs_put_ordered_extent(ordered);
1012	}
 
1013}
1014
1015int __init ordered_data_init(void)
1016{
1017	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1018				     sizeof(struct btrfs_ordered_extent), 0,
1019				     SLAB_MEM_SPREAD,
1020				     NULL);
1021	if (!btrfs_ordered_extent_cache)
1022		return -ENOMEM;
1023
1024	return 0;
1025}
1026
1027void __cold ordered_data_exit(void)
1028{
1029	kmem_cache_destroy(btrfs_ordered_extent_cache);
 
1030}
v3.15
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/slab.h>
  20#include <linux/blkdev.h>
  21#include <linux/writeback.h>
  22#include <linux/pagevec.h>
 
  23#include "ctree.h"
  24#include "transaction.h"
  25#include "btrfs_inode.h"
  26#include "extent_io.h"
  27#include "disk-io.h"
 
 
  28
  29static struct kmem_cache *btrfs_ordered_extent_cache;
  30
  31static u64 entry_end(struct btrfs_ordered_extent *entry)
  32{
  33	if (entry->file_offset + entry->len < entry->file_offset)
  34		return (u64)-1;
  35	return entry->file_offset + entry->len;
  36}
  37
  38/* returns NULL if the insertion worked, or it returns the node it did find
  39 * in the tree
  40 */
  41static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  42				   struct rb_node *node)
  43{
  44	struct rb_node **p = &root->rb_node;
  45	struct rb_node *parent = NULL;
  46	struct btrfs_ordered_extent *entry;
  47
  48	while (*p) {
  49		parent = *p;
  50		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  51
  52		if (file_offset < entry->file_offset)
  53			p = &(*p)->rb_left;
  54		else if (file_offset >= entry_end(entry))
  55			p = &(*p)->rb_right;
  56		else
  57			return parent;
  58	}
  59
  60	rb_link_node(node, parent, p);
  61	rb_insert_color(node, root);
  62	return NULL;
  63}
  64
  65static void ordered_data_tree_panic(struct inode *inode, int errno,
  66					       u64 offset)
  67{
  68	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  69	btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
  70		    "%llu\n", offset);
  71}
  72
  73/*
  74 * look for a given offset in the tree, and if it can't be found return the
  75 * first lesser offset
  76 */
  77static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  78				     struct rb_node **prev_ret)
  79{
  80	struct rb_node *n = root->rb_node;
  81	struct rb_node *prev = NULL;
  82	struct rb_node *test;
  83	struct btrfs_ordered_extent *entry;
  84	struct btrfs_ordered_extent *prev_entry = NULL;
  85
  86	while (n) {
  87		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  88		prev = n;
  89		prev_entry = entry;
  90
  91		if (file_offset < entry->file_offset)
  92			n = n->rb_left;
  93		else if (file_offset >= entry_end(entry))
  94			n = n->rb_right;
  95		else
  96			return n;
  97	}
  98	if (!prev_ret)
  99		return NULL;
 100
 101	while (prev && file_offset >= entry_end(prev_entry)) {
 102		test = rb_next(prev);
 103		if (!test)
 104			break;
 105		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 106				      rb_node);
 107		if (file_offset < entry_end(prev_entry))
 108			break;
 109
 110		prev = test;
 111	}
 112	if (prev)
 113		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
 114				      rb_node);
 115	while (prev && file_offset < entry_end(prev_entry)) {
 116		test = rb_prev(prev);
 117		if (!test)
 118			break;
 119		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 120				      rb_node);
 121		prev = test;
 122	}
 123	*prev_ret = prev;
 124	return NULL;
 125}
 126
 127/*
 128 * helper to check if a given offset is inside a given entry
 129 */
 130static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
 131{
 132	if (file_offset < entry->file_offset ||
 133	    entry->file_offset + entry->len <= file_offset)
 134		return 0;
 135	return 1;
 136}
 137
 138static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
 139			  u64 len)
 140{
 141	if (file_offset + len <= entry->file_offset ||
 142	    entry->file_offset + entry->len <= file_offset)
 143		return 0;
 144	return 1;
 145}
 146
 147/*
 148 * look find the first ordered struct that has this offset, otherwise
 149 * the first one less than this offset
 150 */
 151static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
 152					  u64 file_offset)
 153{
 154	struct rb_root *root = &tree->tree;
 155	struct rb_node *prev = NULL;
 156	struct rb_node *ret;
 157	struct btrfs_ordered_extent *entry;
 158
 159	if (tree->last) {
 160		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
 161				 rb_node);
 162		if (offset_in_entry(entry, file_offset))
 163			return tree->last;
 164	}
 165	ret = __tree_search(root, file_offset, &prev);
 166	if (!ret)
 167		ret = prev;
 168	if (ret)
 169		tree->last = ret;
 170	return ret;
 171}
 172
 173/* allocate and add a new ordered_extent into the per-inode tree.
 174 * file_offset is the logical offset in the file
 175 *
 176 * start is the disk block number of an extent already reserved in the
 177 * extent allocation tree
 178 *
 179 * len is the length of the extent
 180 *
 181 * The tree is given a single reference on the ordered extent that was
 182 * inserted.
 183 */
 184static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
 185				      u64 start, u64 len, u64 disk_len,
 186				      int type, int dio, int compress_type)
 187{
 
 188	struct btrfs_root *root = BTRFS_I(inode)->root;
 189	struct btrfs_ordered_inode_tree *tree;
 190	struct rb_node *node;
 191	struct btrfs_ordered_extent *entry;
 192
 193	tree = &BTRFS_I(inode)->ordered_tree;
 194	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
 195	if (!entry)
 196		return -ENOMEM;
 197
 198	entry->file_offset = file_offset;
 199	entry->start = start;
 200	entry->len = len;
 201	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) &&
 202	    !(type == BTRFS_ORDERED_NOCOW))
 203		entry->csum_bytes_left = disk_len;
 204	entry->disk_len = disk_len;
 205	entry->bytes_left = len;
 206	entry->inode = igrab(inode);
 207	entry->compress_type = compress_type;
 208	entry->truncated_len = (u64)-1;
 209	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
 210		set_bit(type, &entry->flags);
 211
 212	if (dio)
 
 
 213		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
 
 214
 215	/* one ref for the tree */
 216	atomic_set(&entry->refs, 1);
 217	init_waitqueue_head(&entry->wait);
 218	INIT_LIST_HEAD(&entry->list);
 219	INIT_LIST_HEAD(&entry->root_extent_list);
 220	INIT_LIST_HEAD(&entry->work_list);
 221	init_completion(&entry->completion);
 222	INIT_LIST_HEAD(&entry->log_list);
 
 223
 224	trace_btrfs_ordered_extent_add(inode, entry);
 225
 226	spin_lock_irq(&tree->lock);
 227	node = tree_insert(&tree->tree, file_offset,
 228			   &entry->rb_node);
 229	if (node)
 230		ordered_data_tree_panic(inode, -EEXIST, file_offset);
 231	spin_unlock_irq(&tree->lock);
 232
 233	spin_lock(&root->ordered_extent_lock);
 234	list_add_tail(&entry->root_extent_list,
 235		      &root->ordered_extents);
 236	root->nr_ordered_extents++;
 237	if (root->nr_ordered_extents == 1) {
 238		spin_lock(&root->fs_info->ordered_root_lock);
 239		BUG_ON(!list_empty(&root->ordered_root));
 240		list_add_tail(&root->ordered_root,
 241			      &root->fs_info->ordered_roots);
 242		spin_unlock(&root->fs_info->ordered_root_lock);
 243	}
 244	spin_unlock(&root->ordered_extent_lock);
 245
 
 
 
 
 
 
 
 
 
 246	return 0;
 247}
 248
 249int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
 250			     u64 start, u64 len, u64 disk_len, int type)
 251{
 252	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 253					  disk_len, type, 0,
 254					  BTRFS_COMPRESS_NONE);
 255}
 256
 257int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
 258				 u64 start, u64 len, u64 disk_len, int type)
 259{
 260	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 261					  disk_len, type, 1,
 262					  BTRFS_COMPRESS_NONE);
 263}
 264
 265int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
 266				      u64 start, u64 len, u64 disk_len,
 267				      int type, int compress_type)
 268{
 269	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 270					  disk_len, type, 0,
 271					  compress_type);
 272}
 273
 274/*
 275 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
 276 * when an ordered extent is finished.  If the list covers more than one
 277 * ordered extent, it is split across multiples.
 278 */
 279void btrfs_add_ordered_sum(struct inode *inode,
 280			   struct btrfs_ordered_extent *entry,
 281			   struct btrfs_ordered_sum *sum)
 282{
 283	struct btrfs_ordered_inode_tree *tree;
 284
 285	tree = &BTRFS_I(inode)->ordered_tree;
 286	spin_lock_irq(&tree->lock);
 287	list_add_tail(&sum->list, &entry->list);
 288	WARN_ON(entry->csum_bytes_left < sum->len);
 289	entry->csum_bytes_left -= sum->len;
 290	if (entry->csum_bytes_left == 0)
 291		wake_up(&entry->wait);
 292	spin_unlock_irq(&tree->lock);
 293}
 294
 295/*
 296 * this is used to account for finished IO across a given range
 297 * of the file.  The IO may span ordered extents.  If
 298 * a given ordered_extent is completely done, 1 is returned, otherwise
 299 * 0.
 300 *
 301 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 302 * to make sure this function only returns 1 once for a given ordered extent.
 303 *
 304 * file_offset is updated to one byte past the range that is recorded as
 305 * complete.  This allows you to walk forward in the file.
 306 */
 307int btrfs_dec_test_first_ordered_pending(struct inode *inode,
 308				   struct btrfs_ordered_extent **cached,
 309				   u64 *file_offset, u64 io_size, int uptodate)
 310{
 
 311	struct btrfs_ordered_inode_tree *tree;
 312	struct rb_node *node;
 313	struct btrfs_ordered_extent *entry = NULL;
 314	int ret;
 315	unsigned long flags;
 316	u64 dec_end;
 317	u64 dec_start;
 318	u64 to_dec;
 319
 320	tree = &BTRFS_I(inode)->ordered_tree;
 321	spin_lock_irqsave(&tree->lock, flags);
 322	node = tree_search(tree, *file_offset);
 323	if (!node) {
 324		ret = 1;
 325		goto out;
 326	}
 327
 328	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 329	if (!offset_in_entry(entry, *file_offset)) {
 330		ret = 1;
 331		goto out;
 332	}
 333
 334	dec_start = max(*file_offset, entry->file_offset);
 335	dec_end = min(*file_offset + io_size, entry->file_offset +
 336		      entry->len);
 337	*file_offset = dec_end;
 338	if (dec_start > dec_end) {
 339		btrfs_crit(BTRFS_I(inode)->root->fs_info,
 340			"bad ordering dec_start %llu end %llu", dec_start, dec_end);
 341	}
 342	to_dec = dec_end - dec_start;
 343	if (to_dec > entry->bytes_left) {
 344		btrfs_crit(BTRFS_I(inode)->root->fs_info,
 345			"bad ordered accounting left %llu size %llu",
 346			entry->bytes_left, to_dec);
 347	}
 348	entry->bytes_left -= to_dec;
 349	if (!uptodate)
 350		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 351
 352	if (entry->bytes_left == 0) {
 353		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 354		if (waitqueue_active(&entry->wait))
 355			wake_up(&entry->wait);
 356	} else {
 357		ret = 1;
 358	}
 359out:
 360	if (!ret && cached && entry) {
 361		*cached = entry;
 362		atomic_inc(&entry->refs);
 363	}
 364	spin_unlock_irqrestore(&tree->lock, flags);
 365	return ret == 0;
 366}
 367
 368/*
 369 * this is used to account for finished IO across a given range
 370 * of the file.  The IO should not span ordered extents.  If
 371 * a given ordered_extent is completely done, 1 is returned, otherwise
 372 * 0.
 373 *
 374 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 375 * to make sure this function only returns 1 once for a given ordered extent.
 376 */
 377int btrfs_dec_test_ordered_pending(struct inode *inode,
 378				   struct btrfs_ordered_extent **cached,
 379				   u64 file_offset, u64 io_size, int uptodate)
 380{
 381	struct btrfs_ordered_inode_tree *tree;
 382	struct rb_node *node;
 383	struct btrfs_ordered_extent *entry = NULL;
 384	unsigned long flags;
 385	int ret;
 386
 387	tree = &BTRFS_I(inode)->ordered_tree;
 388	spin_lock_irqsave(&tree->lock, flags);
 389	if (cached && *cached) {
 390		entry = *cached;
 391		goto have_entry;
 392	}
 393
 394	node = tree_search(tree, file_offset);
 395	if (!node) {
 396		ret = 1;
 397		goto out;
 398	}
 399
 400	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 401have_entry:
 402	if (!offset_in_entry(entry, file_offset)) {
 403		ret = 1;
 404		goto out;
 405	}
 406
 407	if (io_size > entry->bytes_left) {
 408		btrfs_crit(BTRFS_I(inode)->root->fs_info,
 409			   "bad ordered accounting left %llu size %llu",
 410		       entry->bytes_left, io_size);
 411	}
 412	entry->bytes_left -= io_size;
 413	if (!uptodate)
 414		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 415
 416	if (entry->bytes_left == 0) {
 417		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 418		if (waitqueue_active(&entry->wait))
 419			wake_up(&entry->wait);
 420	} else {
 421		ret = 1;
 422	}
 423out:
 424	if (!ret && cached && entry) {
 425		*cached = entry;
 426		atomic_inc(&entry->refs);
 427	}
 428	spin_unlock_irqrestore(&tree->lock, flags);
 429	return ret == 0;
 430}
 431
 432/* Needs to either be called under a log transaction or the log_mutex */
 433void btrfs_get_logged_extents(struct inode *inode,
 434			      struct list_head *logged_list)
 435{
 436	struct btrfs_ordered_inode_tree *tree;
 437	struct btrfs_ordered_extent *ordered;
 438	struct rb_node *n;
 439
 440	tree = &BTRFS_I(inode)->ordered_tree;
 441	spin_lock_irq(&tree->lock);
 442	for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
 443		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
 444		if (!list_empty(&ordered->log_list))
 445			continue;
 446		list_add_tail(&ordered->log_list, logged_list);
 447		atomic_inc(&ordered->refs);
 448	}
 449	spin_unlock_irq(&tree->lock);
 450}
 451
 452void btrfs_put_logged_extents(struct list_head *logged_list)
 453{
 454	struct btrfs_ordered_extent *ordered;
 455
 456	while (!list_empty(logged_list)) {
 457		ordered = list_first_entry(logged_list,
 458					   struct btrfs_ordered_extent,
 459					   log_list);
 460		list_del_init(&ordered->log_list);
 461		btrfs_put_ordered_extent(ordered);
 462	}
 463}
 464
 465void btrfs_submit_logged_extents(struct list_head *logged_list,
 466				 struct btrfs_root *log)
 467{
 468	int index = log->log_transid % 2;
 469
 470	spin_lock_irq(&log->log_extents_lock[index]);
 471	list_splice_tail(logged_list, &log->logged_list[index]);
 472	spin_unlock_irq(&log->log_extents_lock[index]);
 473}
 474
 475void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid)
 476{
 477	struct btrfs_ordered_extent *ordered;
 478	int index = transid % 2;
 479
 480	spin_lock_irq(&log->log_extents_lock[index]);
 481	while (!list_empty(&log->logged_list[index])) {
 482		ordered = list_first_entry(&log->logged_list[index],
 483					   struct btrfs_ordered_extent,
 484					   log_list);
 485		list_del_init(&ordered->log_list);
 486		spin_unlock_irq(&log->log_extents_lock[index]);
 487		wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
 488						   &ordered->flags));
 489		btrfs_put_ordered_extent(ordered);
 490		spin_lock_irq(&log->log_extents_lock[index]);
 491	}
 492	spin_unlock_irq(&log->log_extents_lock[index]);
 493}
 494
 495void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
 496{
 497	struct btrfs_ordered_extent *ordered;
 498	int index = transid % 2;
 499
 500	spin_lock_irq(&log->log_extents_lock[index]);
 501	while (!list_empty(&log->logged_list[index])) {
 502		ordered = list_first_entry(&log->logged_list[index],
 503					   struct btrfs_ordered_extent,
 504					   log_list);
 505		list_del_init(&ordered->log_list);
 506		spin_unlock_irq(&log->log_extents_lock[index]);
 507		btrfs_put_ordered_extent(ordered);
 508		spin_lock_irq(&log->log_extents_lock[index]);
 509	}
 510	spin_unlock_irq(&log->log_extents_lock[index]);
 511}
 512
 513/*
 514 * used to drop a reference on an ordered extent.  This will free
 515 * the extent if the last reference is dropped
 516 */
 517void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
 518{
 519	struct list_head *cur;
 520	struct btrfs_ordered_sum *sum;
 521
 522	trace_btrfs_ordered_extent_put(entry->inode, entry);
 523
 524	if (atomic_dec_and_test(&entry->refs)) {
 
 
 
 
 525		if (entry->inode)
 526			btrfs_add_delayed_iput(entry->inode);
 527		while (!list_empty(&entry->list)) {
 528			cur = entry->list.next;
 529			sum = list_entry(cur, struct btrfs_ordered_sum, list);
 530			list_del(&sum->list);
 531			kfree(sum);
 532		}
 533		kmem_cache_free(btrfs_ordered_extent_cache, entry);
 534	}
 535}
 536
 537/*
 538 * remove an ordered extent from the tree.  No references are dropped
 539 * and waiters are woken up.
 540 */
 541void btrfs_remove_ordered_extent(struct inode *inode,
 542				 struct btrfs_ordered_extent *entry)
 543{
 
 544	struct btrfs_ordered_inode_tree *tree;
 545	struct btrfs_root *root = BTRFS_I(inode)->root;
 
 546	struct rb_node *node;
 547
 548	tree = &BTRFS_I(inode)->ordered_tree;
 
 
 
 
 
 
 
 
 
 
 
 549	spin_lock_irq(&tree->lock);
 550	node = &entry->rb_node;
 551	rb_erase(node, &tree->tree);
 
 552	if (tree->last == node)
 553		tree->last = NULL;
 554	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
 555	spin_unlock_irq(&tree->lock);
 556
 557	spin_lock(&root->ordered_extent_lock);
 558	list_del_init(&entry->root_extent_list);
 559	root->nr_ordered_extents--;
 560
 561	trace_btrfs_ordered_extent_remove(inode, entry);
 562
 563	/*
 564	 * we have no more ordered extents for this inode and
 565	 * no dirty pages.  We can safely remove it from the
 566	 * list of ordered extents
 567	 */
 568	if (RB_EMPTY_ROOT(&tree->tree) &&
 569	    !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
 570		spin_lock(&root->fs_info->ordered_root_lock);
 571		list_del_init(&BTRFS_I(inode)->ordered_operations);
 572		spin_unlock(&root->fs_info->ordered_root_lock);
 573	}
 574
 575	if (!root->nr_ordered_extents) {
 576		spin_lock(&root->fs_info->ordered_root_lock);
 577		BUG_ON(list_empty(&root->ordered_root));
 578		list_del_init(&root->ordered_root);
 579		spin_unlock(&root->fs_info->ordered_root_lock);
 580	}
 581	spin_unlock(&root->ordered_extent_lock);
 582	wake_up(&entry->wait);
 583}
 584
 585static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
 586{
 587	struct btrfs_ordered_extent *ordered;
 588
 589	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
 590	btrfs_start_ordered_extent(ordered->inode, ordered, 1);
 591	complete(&ordered->completion);
 592}
 593
 594/*
 595 * wait for all the ordered extents in a root.  This is done when balancing
 596 * space between drives.
 597 */
 598int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
 
 599{
 600	struct list_head splice, works;
 
 
 
 601	struct btrfs_ordered_extent *ordered, *next;
 602	int count = 0;
 603
 604	INIT_LIST_HEAD(&splice);
 605	INIT_LIST_HEAD(&works);
 606
 607	mutex_lock(&root->ordered_extent_mutex);
 608	spin_lock(&root->ordered_extent_lock);
 609	list_splice_init(&root->ordered_extents, &splice);
 610	while (!list_empty(&splice) && nr) {
 611		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
 612					   root_extent_list);
 
 
 
 
 
 
 
 
 613		list_move_tail(&ordered->root_extent_list,
 614			       &root->ordered_extents);
 615		atomic_inc(&ordered->refs);
 616		spin_unlock(&root->ordered_extent_lock);
 617
 618		btrfs_init_work(&ordered->flush_work,
 
 619				btrfs_run_ordered_extent_work, NULL, NULL);
 620		list_add_tail(&ordered->work_list, &works);
 621		btrfs_queue_work(root->fs_info->flush_workers,
 622				 &ordered->flush_work);
 623
 624		cond_resched();
 625		spin_lock(&root->ordered_extent_lock);
 626		if (nr != -1)
 627			nr--;
 628		count++;
 629	}
 
 630	list_splice_tail(&splice, &root->ordered_extents);
 631	spin_unlock(&root->ordered_extent_lock);
 632
 633	list_for_each_entry_safe(ordered, next, &works, work_list) {
 634		list_del_init(&ordered->work_list);
 635		wait_for_completion(&ordered->completion);
 636		btrfs_put_ordered_extent(ordered);
 637		cond_resched();
 638	}
 639	mutex_unlock(&root->ordered_extent_mutex);
 640
 641	return count;
 642}
 643
 644void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr)
 
 645{
 646	struct btrfs_root *root;
 647	struct list_head splice;
 648	int done;
 
 649
 650	INIT_LIST_HEAD(&splice);
 651
 652	mutex_lock(&fs_info->ordered_operations_mutex);
 653	spin_lock(&fs_info->ordered_root_lock);
 654	list_splice_init(&fs_info->ordered_roots, &splice);
 655	while (!list_empty(&splice) && nr) {
 656		root = list_first_entry(&splice, struct btrfs_root,
 657					ordered_root);
 658		root = btrfs_grab_fs_root(root);
 659		BUG_ON(!root);
 660		list_move_tail(&root->ordered_root,
 661			       &fs_info->ordered_roots);
 662		spin_unlock(&fs_info->ordered_root_lock);
 663
 664		done = btrfs_wait_ordered_extents(root, nr);
 
 665		btrfs_put_fs_root(root);
 
 666
 667		spin_lock(&fs_info->ordered_root_lock);
 668		if (nr != -1) {
 669			nr -= done;
 670			WARN_ON(nr < 0);
 671		}
 672	}
 673	list_splice_tail(&splice, &fs_info->ordered_roots);
 674	spin_unlock(&fs_info->ordered_root_lock);
 675	mutex_unlock(&fs_info->ordered_operations_mutex);
 676}
 677
 678/*
 679 * this is used during transaction commit to write all the inodes
 680 * added to the ordered operation list.  These files must be fully on
 681 * disk before the transaction commits.
 682 *
 683 * we have two modes here, one is to just start the IO via filemap_flush
 684 * and the other is to wait for all the io.  When we wait, we have an
 685 * extra check to make sure the ordered operation list really is empty
 686 * before we return
 687 */
 688int btrfs_run_ordered_operations(struct btrfs_trans_handle *trans,
 689				 struct btrfs_root *root, int wait)
 690{
 691	struct btrfs_inode *btrfs_inode;
 692	struct inode *inode;
 693	struct btrfs_transaction *cur_trans = trans->transaction;
 694	struct list_head splice;
 695	struct list_head works;
 696	struct btrfs_delalloc_work *work, *next;
 697	int ret = 0;
 698
 699	INIT_LIST_HEAD(&splice);
 700	INIT_LIST_HEAD(&works);
 701
 702	mutex_lock(&root->fs_info->ordered_extent_flush_mutex);
 703	spin_lock(&root->fs_info->ordered_root_lock);
 704	list_splice_init(&cur_trans->ordered_operations, &splice);
 705	while (!list_empty(&splice)) {
 706		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
 707				   ordered_operations);
 708		inode = &btrfs_inode->vfs_inode;
 709
 710		list_del_init(&btrfs_inode->ordered_operations);
 711
 712		/*
 713		 * the inode may be getting freed (in sys_unlink path).
 714		 */
 715		inode = igrab(inode);
 716		if (!inode)
 717			continue;
 718
 719		if (!wait)
 720			list_add_tail(&BTRFS_I(inode)->ordered_operations,
 721				      &cur_trans->ordered_operations);
 722		spin_unlock(&root->fs_info->ordered_root_lock);
 723
 724		work = btrfs_alloc_delalloc_work(inode, wait, 1);
 725		if (!work) {
 726			spin_lock(&root->fs_info->ordered_root_lock);
 727			if (list_empty(&BTRFS_I(inode)->ordered_operations))
 728				list_add_tail(&btrfs_inode->ordered_operations,
 729					      &splice);
 730			list_splice_tail(&splice,
 731					 &cur_trans->ordered_operations);
 732			spin_unlock(&root->fs_info->ordered_root_lock);
 733			ret = -ENOMEM;
 734			goto out;
 735		}
 736		list_add_tail(&work->list, &works);
 737		btrfs_queue_work(root->fs_info->flush_workers,
 738				 &work->work);
 739
 740		cond_resched();
 741		spin_lock(&root->fs_info->ordered_root_lock);
 742	}
 743	spin_unlock(&root->fs_info->ordered_root_lock);
 744out:
 745	list_for_each_entry_safe(work, next, &works, list) {
 746		list_del_init(&work->list);
 747		btrfs_wait_and_free_delalloc_work(work);
 748	}
 749	mutex_unlock(&root->fs_info->ordered_extent_flush_mutex);
 750	return ret;
 751}
 752
 753/*
 754 * Used to start IO or wait for a given ordered extent to finish.
 755 *
 756 * If wait is one, this effectively waits on page writeback for all the pages
 757 * in the extent, and it waits on the io completion code to insert
 758 * metadata into the btree corresponding to the extent
 759 */
 760void btrfs_start_ordered_extent(struct inode *inode,
 761				       struct btrfs_ordered_extent *entry,
 762				       int wait)
 763{
 764	u64 start = entry->file_offset;
 765	u64 end = start + entry->len - 1;
 766
 767	trace_btrfs_ordered_extent_start(inode, entry);
 768
 769	/*
 770	 * pages in the range can be dirty, clean or writeback.  We
 771	 * start IO on any dirty ones so the wait doesn't stall waiting
 772	 * for the flusher thread to find them
 773	 */
 774	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
 775		filemap_fdatawrite_range(inode->i_mapping, start, end);
 776	if (wait) {
 777		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
 778						 &entry->flags));
 779	}
 780}
 781
 782/*
 783 * Used to wait on ordered extents across a large range of bytes.
 784 */
 785int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
 786{
 787	int ret = 0;
 
 788	u64 end;
 789	u64 orig_end;
 790	struct btrfs_ordered_extent *ordered;
 791
 792	if (start + len < start) {
 793		orig_end = INT_LIMIT(loff_t);
 794	} else {
 795		orig_end = start + len - 1;
 796		if (orig_end > INT_LIMIT(loff_t))
 797			orig_end = INT_LIMIT(loff_t);
 798	}
 799
 800	/* start IO across the range first to instantiate any delalloc
 801	 * extents
 802	 */
 803	ret = filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
 804	if (ret)
 805		return ret;
 
 806	/*
 807	 * So with compression we will find and lock a dirty page and clear the
 808	 * first one as dirty, setup an async extent, and immediately return
 809	 * with the entire range locked but with nobody actually marked with
 810	 * writeback.  So we can't just filemap_write_and_wait_range() and
 811	 * expect it to work since it will just kick off a thread to do the
 812	 * actual work.  So we need to call filemap_fdatawrite_range _again_
 813	 * since it will wait on the page lock, which won't be unlocked until
 814	 * after the pages have been marked as writeback and so we're good to go
 815	 * from there.  We have to do this otherwise we'll miss the ordered
 816	 * extents and that results in badness.  Please Josef, do not think you
 817	 * know better and pull this out at some point in the future, it is
 818	 * right and you are wrong.
 819	 */
 820	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
 821		     &BTRFS_I(inode)->runtime_flags)) {
 822		ret = filemap_fdatawrite_range(inode->i_mapping, start,
 823					       orig_end);
 824		if (ret)
 825			return ret;
 826	}
 827	ret = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
 828	if (ret)
 829		return ret;
 830
 831	end = orig_end;
 832	while (1) {
 833		ordered = btrfs_lookup_first_ordered_extent(inode, end);
 834		if (!ordered)
 835			break;
 836		if (ordered->file_offset > orig_end) {
 837			btrfs_put_ordered_extent(ordered);
 838			break;
 839		}
 840		if (ordered->file_offset + ordered->len <= start) {
 841			btrfs_put_ordered_extent(ordered);
 842			break;
 843		}
 844		btrfs_start_ordered_extent(inode, ordered, 1);
 845		end = ordered->file_offset;
 846		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
 847			ret = -EIO;
 848		btrfs_put_ordered_extent(ordered);
 849		if (ret || end == 0 || end == start)
 850			break;
 851		end--;
 852	}
 853	return ret;
 854}
 855
 856/*
 857 * find an ordered extent corresponding to file_offset.  return NULL if
 858 * nothing is found, otherwise take a reference on the extent and return it
 859 */
 860struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
 861							 u64 file_offset)
 862{
 863	struct btrfs_ordered_inode_tree *tree;
 864	struct rb_node *node;
 865	struct btrfs_ordered_extent *entry = NULL;
 866
 867	tree = &BTRFS_I(inode)->ordered_tree;
 868	spin_lock_irq(&tree->lock);
 869	node = tree_search(tree, file_offset);
 870	if (!node)
 871		goto out;
 872
 873	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 874	if (!offset_in_entry(entry, file_offset))
 875		entry = NULL;
 876	if (entry)
 877		atomic_inc(&entry->refs);
 878out:
 879	spin_unlock_irq(&tree->lock);
 880	return entry;
 881}
 882
 883/* Since the DIO code tries to lock a wide area we need to look for any ordered
 884 * extents that exist in the range, rather than just the start of the range.
 885 */
 886struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
 887							u64 file_offset,
 888							u64 len)
 889{
 890	struct btrfs_ordered_inode_tree *tree;
 891	struct rb_node *node;
 892	struct btrfs_ordered_extent *entry = NULL;
 893
 894	tree = &BTRFS_I(inode)->ordered_tree;
 895	spin_lock_irq(&tree->lock);
 896	node = tree_search(tree, file_offset);
 897	if (!node) {
 898		node = tree_search(tree, file_offset + len);
 899		if (!node)
 900			goto out;
 901	}
 902
 903	while (1) {
 904		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 905		if (range_overlaps(entry, file_offset, len))
 906			break;
 907
 908		if (entry->file_offset >= file_offset + len) {
 909			entry = NULL;
 910			break;
 911		}
 912		entry = NULL;
 913		node = rb_next(node);
 914		if (!node)
 915			break;
 916	}
 917out:
 918	if (entry)
 919		atomic_inc(&entry->refs);
 920	spin_unlock_irq(&tree->lock);
 921	return entry;
 922}
 923
 924/*
 925 * lookup and return any extent before 'file_offset'.  NULL is returned
 926 * if none is found
 927 */
 928struct btrfs_ordered_extent *
 929btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
 930{
 931	struct btrfs_ordered_inode_tree *tree;
 932	struct rb_node *node;
 933	struct btrfs_ordered_extent *entry = NULL;
 934
 935	tree = &BTRFS_I(inode)->ordered_tree;
 936	spin_lock_irq(&tree->lock);
 937	node = tree_search(tree, file_offset);
 938	if (!node)
 939		goto out;
 940
 941	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 942	atomic_inc(&entry->refs);
 943out:
 944	spin_unlock_irq(&tree->lock);
 945	return entry;
 946}
 947
 948/*
 949 * After an extent is done, call this to conditionally update the on disk
 950 * i_size.  i_size is updated to cover any fully written part of the file.
 951 */
 952int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
 953				struct btrfs_ordered_extent *ordered)
 954{
 955	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
 956	u64 disk_i_size;
 957	u64 new_i_size;
 958	u64 i_size = i_size_read(inode);
 959	struct rb_node *node;
 960	struct rb_node *prev = NULL;
 961	struct btrfs_ordered_extent *test;
 962	int ret = 1;
 
 963
 964	spin_lock_irq(&tree->lock);
 965	if (ordered) {
 966		offset = entry_end(ordered);
 967		if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
 968			offset = min(offset,
 969				     ordered->file_offset +
 970				     ordered->truncated_len);
 971	} else {
 972		offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
 973	}
 974	disk_i_size = BTRFS_I(inode)->disk_i_size;
 975
 976	/* truncate file */
 977	if (disk_i_size > i_size) {
 978		BTRFS_I(inode)->disk_i_size = i_size;
 
 
 
 
 
 
 
 
 
 
 979		ret = 0;
 980		goto out;
 981	}
 982
 983	/*
 984	 * if the disk i_size is already at the inode->i_size, or
 985	 * this ordered extent is inside the disk i_size, we're done
 986	 */
 987	if (disk_i_size == i_size)
 988		goto out;
 989
 990	/*
 991	 * We still need to update disk_i_size if outstanding_isize is greater
 992	 * than disk_i_size.
 993	 */
 994	if (offset <= disk_i_size &&
 995	    (!ordered || ordered->outstanding_isize <= disk_i_size))
 996		goto out;
 997
 998	/*
 999	 * walk backward from this ordered extent to disk_i_size.
1000	 * if we find an ordered extent then we can't update disk i_size
1001	 * yet
1002	 */
1003	if (ordered) {
1004		node = rb_prev(&ordered->rb_node);
1005	} else {
1006		prev = tree_search(tree, offset);
1007		/*
1008		 * we insert file extents without involving ordered struct,
1009		 * so there should be no ordered struct cover this offset
1010		 */
1011		if (prev) {
1012			test = rb_entry(prev, struct btrfs_ordered_extent,
1013					rb_node);
1014			BUG_ON(offset_in_entry(test, offset));
1015		}
1016		node = prev;
1017	}
1018	for (; node; node = rb_prev(node)) {
1019		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1020
1021		/* We treat this entry as if it doesnt exist */
1022		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
1023			continue;
1024		if (test->file_offset + test->len <= disk_i_size)
 
1025			break;
1026		if (test->file_offset >= i_size)
1027			break;
1028		if (entry_end(test) > disk_i_size) {
1029			/*
1030			 * we don't update disk_i_size now, so record this
1031			 * undealt i_size. Or we will not know the real
1032			 * i_size.
1033			 */
1034			if (test->outstanding_isize < offset)
1035				test->outstanding_isize = offset;
1036			if (ordered &&
1037			    ordered->outstanding_isize >
1038			    test->outstanding_isize)
1039				test->outstanding_isize =
1040						ordered->outstanding_isize;
1041			goto out;
1042		}
1043	}
1044	new_i_size = min_t(u64, offset, i_size);
1045
1046	/*
1047	 * Some ordered extents may completed before the current one, and
1048	 * we hold the real i_size in ->outstanding_isize.
1049	 */
1050	if (ordered && ordered->outstanding_isize > new_i_size)
1051		new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1052	BTRFS_I(inode)->disk_i_size = new_i_size;
1053	ret = 0;
1054out:
1055	/*
1056	 * We need to do this because we can't remove ordered extents until
1057	 * after the i_disk_size has been updated and then the inode has been
1058	 * updated to reflect the change, so we need to tell anybody who finds
1059	 * this ordered extent that we've already done all the real work, we
1060	 * just haven't completed all the other work.
1061	 */
1062	if (ordered)
1063		set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1064	spin_unlock_irq(&tree->lock);
1065	return ret;
1066}
1067
1068/*
1069 * search the ordered extents for one corresponding to 'offset' and
1070 * try to find a checksum.  This is used because we allow pages to
1071 * be reclaimed before their checksum is actually put into the btree
1072 */
1073int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1074			   u32 *sum, int len)
1075{
 
1076	struct btrfs_ordered_sum *ordered_sum;
1077	struct btrfs_ordered_extent *ordered;
1078	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1079	unsigned long num_sectors;
1080	unsigned long i;
1081	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
 
1082	int index = 0;
1083
1084	ordered = btrfs_lookup_ordered_extent(inode, offset);
1085	if (!ordered)
1086		return 0;
1087
1088	spin_lock_irq(&tree->lock);
1089	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1090		if (disk_bytenr >= ordered_sum->bytenr &&
1091		    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1092			i = (disk_bytenr - ordered_sum->bytenr) >>
1093			    inode->i_sb->s_blocksize_bits;
1094			num_sectors = ordered_sum->len >>
1095				      inode->i_sb->s_blocksize_bits;
1096			num_sectors = min_t(int, len - index, num_sectors - i);
1097			memcpy(sum + index, ordered_sum->sums + i,
1098			       num_sectors);
1099
1100			index += (int)num_sectors;
1101			if (index == len)
1102				goto out;
1103			disk_bytenr += num_sectors * sectorsize;
1104		}
1105	}
1106out:
1107	spin_unlock_irq(&tree->lock);
1108	btrfs_put_ordered_extent(ordered);
1109	return index;
1110}
1111
1112
1113/*
1114 * add a given inode to the list of inodes that must be fully on
1115 * disk before a transaction commit finishes.
1116 *
1117 * This basically gives us the ext3 style data=ordered mode, and it is mostly
1118 * used to make sure renamed files are fully on disk.
 
 
 
 
1119 *
1120 * It is a noop if the inode is already fully on disk.
1121 *
1122 * If trans is not null, we'll do a friendly check for a transaction that
1123 * is already flushing things and force the IO down ourselves.
1124 */
1125void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
1126				 struct btrfs_root *root, struct inode *inode)
 
 
1127{
1128	struct btrfs_transaction *cur_trans = trans->transaction;
1129	u64 last_mod;
 
1130
1131	last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
 
1132
1133	/*
1134	 * if this file hasn't been changed since the last transaction
1135	 * commit, we can safely return without doing anything
1136	 */
1137	if (last_mod <= root->fs_info->last_trans_committed)
1138		return;
1139
1140	spin_lock(&root->fs_info->ordered_root_lock);
1141	if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
1142		list_add_tail(&BTRFS_I(inode)->ordered_operations,
1143			      &cur_trans->ordered_operations);
 
 
 
 
 
 
1144	}
1145	spin_unlock(&root->fs_info->ordered_root_lock);
1146}
1147
1148int __init ordered_data_init(void)
1149{
1150	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1151				     sizeof(struct btrfs_ordered_extent), 0,
1152				     SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1153				     NULL);
1154	if (!btrfs_ordered_extent_cache)
1155		return -ENOMEM;
1156
1157	return 0;
1158}
1159
1160void ordered_data_exit(void)
1161{
1162	if (btrfs_ordered_extent_cache)
1163		kmem_cache_destroy(btrfs_ordered_extent_cache);
1164}