Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/rbtree.h>
   9#include <linux/mm.h>
  10#include "ctree.h"
  11#include "disk-io.h"
  12#include "transaction.h"
  13#include "print-tree.h"
  14#include "locking.h"
  15#include "volumes.h"
  16#include "qgroup.h"
  17
  18static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  19		      *root, struct btrfs_path *path, int level);
  20static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  21		      const struct btrfs_key *ins_key, struct btrfs_path *path,
  22		      int data_size, int extend);
  23static int push_node_left(struct btrfs_trans_handle *trans,
 
  24			  struct extent_buffer *dst,
  25			  struct extent_buffer *src, int empty);
  26static int balance_node_right(struct btrfs_trans_handle *trans,
 
  27			      struct extent_buffer *dst_buf,
  28			      struct extent_buffer *src_buf);
  29static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  30		    int level, int slot);
  31
  32static const struct btrfs_csums {
  33	u16		size;
  34	const char	*name;
  35} btrfs_csums[] = {
  36	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
  37};
  38
  39int btrfs_super_csum_size(const struct btrfs_super_block *s)
  40{
  41	u16 t = btrfs_super_csum_type(s);
  42	/*
  43	 * csum type is validated at mount time
  44	 */
  45	return btrfs_csums[t].size;
  46}
  47
  48const char *btrfs_super_csum_name(u16 csum_type)
  49{
  50	/* csum type is validated at mount time */
  51	return btrfs_csums[csum_type].name;
  52}
  53
  54struct btrfs_path *btrfs_alloc_path(void)
  55{
  56	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  57}
  58
  59/*
  60 * set all locked nodes in the path to blocking locks.  This should
  61 * be done before scheduling
  62 */
  63noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  64{
  65	int i;
  66	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  67		if (!p->nodes[i] || !p->locks[i])
  68			continue;
  69		/*
  70		 * If we currently have a spinning reader or writer lock this
  71		 * will bump the count of blocking holders and drop the
  72		 * spinlock.
  73		 */
  74		if (p->locks[i] == BTRFS_READ_LOCK) {
  75			btrfs_set_lock_blocking_read(p->nodes[i]);
  76			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  77		} else if (p->locks[i] == BTRFS_WRITE_LOCK) {
  78			btrfs_set_lock_blocking_write(p->nodes[i]);
  79			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  80		}
  81	}
 
 
 
  82}
  83
  84/* this also releases the path */
  85void btrfs_free_path(struct btrfs_path *p)
  86{
  87	if (!p)
  88		return;
  89	btrfs_release_path(p);
  90	kmem_cache_free(btrfs_path_cachep, p);
  91}
  92
  93/*
  94 * path release drops references on the extent buffers in the path
  95 * and it drops any locks held by this path
  96 *
  97 * It is safe to call this on paths that no locks or extent buffers held.
  98 */
  99noinline void btrfs_release_path(struct btrfs_path *p)
 100{
 101	int i;
 102
 103	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 104		p->slots[i] = 0;
 105		if (!p->nodes[i])
 106			continue;
 107		if (p->locks[i]) {
 108			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 109			p->locks[i] = 0;
 110		}
 111		free_extent_buffer(p->nodes[i]);
 112		p->nodes[i] = NULL;
 113	}
 114}
 115
 116/*
 117 * safely gets a reference on the root node of a tree.  A lock
 118 * is not taken, so a concurrent writer may put a different node
 119 * at the root of the tree.  See btrfs_lock_root_node for the
 120 * looping required.
 121 *
 122 * The extent buffer returned by this has a reference taken, so
 123 * it won't disappear.  It may stop being the root of the tree
 124 * at any time because there are no locks held.
 125 */
 126struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 127{
 128	struct extent_buffer *eb;
 129
 130	while (1) {
 131		rcu_read_lock();
 132		eb = rcu_dereference(root->node);
 133
 134		/*
 135		 * RCU really hurts here, we could free up the root node because
 136		 * it was COWed but we may not get the new root node yet so do
 137		 * the inc_not_zero dance and if it doesn't work then
 138		 * synchronize_rcu and try again.
 139		 */
 140		if (atomic_inc_not_zero(&eb->refs)) {
 141			rcu_read_unlock();
 142			break;
 143		}
 144		rcu_read_unlock();
 145		synchronize_rcu();
 146	}
 147	return eb;
 148}
 149
 150/* loop around taking references on and locking the root node of the
 151 * tree until you end up with a lock on the root.  A locked buffer
 152 * is returned, with a reference held.
 153 */
 154struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
 155{
 156	struct extent_buffer *eb;
 157
 158	while (1) {
 159		eb = btrfs_root_node(root);
 160		btrfs_tree_lock(eb);
 161		if (eb == root->node)
 162			break;
 163		btrfs_tree_unlock(eb);
 164		free_extent_buffer(eb);
 165	}
 166	return eb;
 167}
 168
 169/* loop around taking references on and locking the root node of the
 170 * tree until you end up with a lock on the root.  A locked buffer
 171 * is returned, with a reference held.
 172 */
 173struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
 174{
 175	struct extent_buffer *eb;
 176
 177	while (1) {
 178		eb = btrfs_root_node(root);
 179		btrfs_tree_read_lock(eb);
 180		if (eb == root->node)
 181			break;
 182		btrfs_tree_read_unlock(eb);
 183		free_extent_buffer(eb);
 184	}
 185	return eb;
 186}
 187
 188/* cowonly root (everything not a reference counted cow subvolume), just get
 189 * put onto a simple dirty list.  transaction.c walks this to make sure they
 190 * get properly updated on disk.
 191 */
 192static void add_root_to_dirty_list(struct btrfs_root *root)
 193{
 194	struct btrfs_fs_info *fs_info = root->fs_info;
 195
 196	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 197	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 198		return;
 199
 200	spin_lock(&fs_info->trans_lock);
 201	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 202		/* Want the extent tree to be the last on the list */
 203		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
 204			list_move_tail(&root->dirty_list,
 205				       &fs_info->dirty_cowonly_roots);
 206		else
 207			list_move(&root->dirty_list,
 208				  &fs_info->dirty_cowonly_roots);
 209	}
 210	spin_unlock(&fs_info->trans_lock);
 211}
 212
 213/*
 214 * used by snapshot creation to make a copy of a root for a tree with
 215 * a given objectid.  The buffer with the new root node is returned in
 216 * cow_ret, and this func returns zero on success or a negative error code.
 217 */
 218int btrfs_copy_root(struct btrfs_trans_handle *trans,
 219		      struct btrfs_root *root,
 220		      struct extent_buffer *buf,
 221		      struct extent_buffer **cow_ret, u64 new_root_objectid)
 222{
 223	struct btrfs_fs_info *fs_info = root->fs_info;
 224	struct extent_buffer *cow;
 225	int ret = 0;
 226	int level;
 227	struct btrfs_disk_key disk_key;
 228
 229	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 230		trans->transid != fs_info->running_transaction->transid);
 231	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 232		trans->transid != root->last_trans);
 233
 234	level = btrfs_header_level(buf);
 235	if (level == 0)
 236		btrfs_item_key(buf, &disk_key, 0);
 237	else
 238		btrfs_node_key(buf, &disk_key, 0);
 239
 240	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 241			&disk_key, level, buf->start, 0);
 242	if (IS_ERR(cow))
 243		return PTR_ERR(cow);
 244
 245	copy_extent_buffer_full(cow, buf);
 246	btrfs_set_header_bytenr(cow, cow->start);
 247	btrfs_set_header_generation(cow, trans->transid);
 248	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 249	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 250				     BTRFS_HEADER_FLAG_RELOC);
 251	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 252		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 253	else
 254		btrfs_set_header_owner(cow, new_root_objectid);
 255
 256	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 257
 258	WARN_ON(btrfs_header_generation(buf) > trans->transid);
 259	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 260		ret = btrfs_inc_ref(trans, root, cow, 1);
 261	else
 262		ret = btrfs_inc_ref(trans, root, cow, 0);
 263
 264	if (ret)
 265		return ret;
 266
 267	btrfs_mark_buffer_dirty(cow);
 268	*cow_ret = cow;
 269	return 0;
 270}
 271
 272enum mod_log_op {
 273	MOD_LOG_KEY_REPLACE,
 274	MOD_LOG_KEY_ADD,
 275	MOD_LOG_KEY_REMOVE,
 276	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
 277	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
 278	MOD_LOG_MOVE_KEYS,
 279	MOD_LOG_ROOT_REPLACE,
 280};
 281
 282struct tree_mod_root {
 283	u64 logical;
 284	u8 level;
 285};
 286
 287struct tree_mod_elem {
 288	struct rb_node node;
 289	u64 logical;
 290	u64 seq;
 291	enum mod_log_op op;
 292
 293	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
 294	int slot;
 295
 296	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
 297	u64 generation;
 298
 299	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
 300	struct btrfs_disk_key key;
 301	u64 blockptr;
 302
 303	/* this is used for op == MOD_LOG_MOVE_KEYS */
 304	struct {
 305		int dst_slot;
 306		int nr_items;
 307	} move;
 308
 309	/* this is used for op == MOD_LOG_ROOT_REPLACE */
 310	struct tree_mod_root old_root;
 311};
 312
 313/*
 314 * Pull a new tree mod seq number for our operation.
 315 */
 316static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
 317{
 318	return atomic64_inc_return(&fs_info->tree_mod_seq);
 319}
 320
 321/*
 322 * This adds a new blocker to the tree mod log's blocker list if the @elem
 323 * passed does not already have a sequence number set. So when a caller expects
 324 * to record tree modifications, it should ensure to set elem->seq to zero
 325 * before calling btrfs_get_tree_mod_seq.
 326 * Returns a fresh, unused tree log modification sequence number, even if no new
 327 * blocker was added.
 328 */
 329u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
 330			   struct seq_list *elem)
 331{
 332	write_lock(&fs_info->tree_mod_log_lock);
 333	spin_lock(&fs_info->tree_mod_seq_lock);
 334	if (!elem->seq) {
 335		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
 336		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
 337	}
 338	spin_unlock(&fs_info->tree_mod_seq_lock);
 339	write_unlock(&fs_info->tree_mod_log_lock);
 340
 341	return elem->seq;
 342}
 343
 344void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
 345			    struct seq_list *elem)
 346{
 347	struct rb_root *tm_root;
 348	struct rb_node *node;
 349	struct rb_node *next;
 350	struct seq_list *cur_elem;
 351	struct tree_mod_elem *tm;
 352	u64 min_seq = (u64)-1;
 353	u64 seq_putting = elem->seq;
 354
 355	if (!seq_putting)
 356		return;
 357
 358	spin_lock(&fs_info->tree_mod_seq_lock);
 359	list_del(&elem->list);
 360	elem->seq = 0;
 361
 362	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
 363		if (cur_elem->seq < min_seq) {
 364			if (seq_putting > cur_elem->seq) {
 365				/*
 366				 * blocker with lower sequence number exists, we
 367				 * cannot remove anything from the log
 368				 */
 369				spin_unlock(&fs_info->tree_mod_seq_lock);
 370				return;
 371			}
 372			min_seq = cur_elem->seq;
 373		}
 374	}
 375	spin_unlock(&fs_info->tree_mod_seq_lock);
 376
 377	/*
 378	 * anything that's lower than the lowest existing (read: blocked)
 379	 * sequence number can be removed from the tree.
 380	 */
 381	write_lock(&fs_info->tree_mod_log_lock);
 382	tm_root = &fs_info->tree_mod_log;
 383	for (node = rb_first(tm_root); node; node = next) {
 384		next = rb_next(node);
 385		tm = rb_entry(node, struct tree_mod_elem, node);
 386		if (tm->seq > min_seq)
 387			continue;
 388		rb_erase(node, tm_root);
 389		kfree(tm);
 390	}
 391	write_unlock(&fs_info->tree_mod_log_lock);
 392}
 393
 394/*
 395 * key order of the log:
 396 *       node/leaf start address -> sequence
 397 *
 398 * The 'start address' is the logical address of the *new* root node
 399 * for root replace operations, or the logical address of the affected
 400 * block for all other operations.
 
 
 401 */
 402static noinline int
 403__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
 404{
 405	struct rb_root *tm_root;
 406	struct rb_node **new;
 407	struct rb_node *parent = NULL;
 408	struct tree_mod_elem *cur;
 409
 410	lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
 411
 412	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
 413
 414	tm_root = &fs_info->tree_mod_log;
 415	new = &tm_root->rb_node;
 416	while (*new) {
 417		cur = rb_entry(*new, struct tree_mod_elem, node);
 418		parent = *new;
 419		if (cur->logical < tm->logical)
 420			new = &((*new)->rb_left);
 421		else if (cur->logical > tm->logical)
 422			new = &((*new)->rb_right);
 423		else if (cur->seq < tm->seq)
 424			new = &((*new)->rb_left);
 425		else if (cur->seq > tm->seq)
 426			new = &((*new)->rb_right);
 427		else
 428			return -EEXIST;
 429	}
 430
 431	rb_link_node(&tm->node, parent, new);
 432	rb_insert_color(&tm->node, tm_root);
 433	return 0;
 434}
 435
 436/*
 437 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 438 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 439 * this until all tree mod log insertions are recorded in the rb tree and then
 440 * write unlock fs_info::tree_mod_log_lock.
 441 */
 442static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
 443				    struct extent_buffer *eb) {
 444	smp_mb();
 445	if (list_empty(&(fs_info)->tree_mod_seq_list))
 446		return 1;
 447	if (eb && btrfs_header_level(eb) == 0)
 448		return 1;
 449
 450	write_lock(&fs_info->tree_mod_log_lock);
 451	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
 452		write_unlock(&fs_info->tree_mod_log_lock);
 453		return 1;
 454	}
 455
 456	return 0;
 457}
 458
 459/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
 460static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
 461				    struct extent_buffer *eb)
 462{
 463	smp_mb();
 464	if (list_empty(&(fs_info)->tree_mod_seq_list))
 465		return 0;
 466	if (eb && btrfs_header_level(eb) == 0)
 467		return 0;
 468
 469	return 1;
 470}
 471
 472static struct tree_mod_elem *
 473alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
 474		    enum mod_log_op op, gfp_t flags)
 475{
 476	struct tree_mod_elem *tm;
 477
 478	tm = kzalloc(sizeof(*tm), flags);
 479	if (!tm)
 480		return NULL;
 481
 482	tm->logical = eb->start;
 483	if (op != MOD_LOG_KEY_ADD) {
 484		btrfs_node_key(eb, &tm->key, slot);
 485		tm->blockptr = btrfs_node_blockptr(eb, slot);
 486	}
 487	tm->op = op;
 488	tm->slot = slot;
 489	tm->generation = btrfs_node_ptr_generation(eb, slot);
 490	RB_CLEAR_NODE(&tm->node);
 491
 492	return tm;
 493}
 494
 495static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
 496		enum mod_log_op op, gfp_t flags)
 497{
 498	struct tree_mod_elem *tm;
 499	int ret;
 500
 501	if (!tree_mod_need_log(eb->fs_info, eb))
 502		return 0;
 503
 504	tm = alloc_tree_mod_elem(eb, slot, op, flags);
 505	if (!tm)
 506		return -ENOMEM;
 507
 508	if (tree_mod_dont_log(eb->fs_info, eb)) {
 509		kfree(tm);
 510		return 0;
 511	}
 512
 513	ret = __tree_mod_log_insert(eb->fs_info, tm);
 514	write_unlock(&eb->fs_info->tree_mod_log_lock);
 515	if (ret)
 516		kfree(tm);
 517
 518	return ret;
 519}
 520
 521static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
 522		int dst_slot, int src_slot, int nr_items)
 523{
 524	struct tree_mod_elem *tm = NULL;
 525	struct tree_mod_elem **tm_list = NULL;
 526	int ret = 0;
 527	int i;
 528	int locked = 0;
 529
 530	if (!tree_mod_need_log(eb->fs_info, eb))
 531		return 0;
 532
 533	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
 534	if (!tm_list)
 535		return -ENOMEM;
 536
 537	tm = kzalloc(sizeof(*tm), GFP_NOFS);
 538	if (!tm) {
 539		ret = -ENOMEM;
 540		goto free_tms;
 541	}
 542
 543	tm->logical = eb->start;
 544	tm->slot = src_slot;
 545	tm->move.dst_slot = dst_slot;
 546	tm->move.nr_items = nr_items;
 547	tm->op = MOD_LOG_MOVE_KEYS;
 548
 549	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 550		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
 551		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
 552		if (!tm_list[i]) {
 553			ret = -ENOMEM;
 554			goto free_tms;
 555		}
 556	}
 557
 558	if (tree_mod_dont_log(eb->fs_info, eb))
 559		goto free_tms;
 560	locked = 1;
 561
 562	/*
 563	 * When we override something during the move, we log these removals.
 564	 * This can only happen when we move towards the beginning of the
 565	 * buffer, i.e. dst_slot < src_slot.
 566	 */
 567	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 568		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
 569		if (ret)
 570			goto free_tms;
 571	}
 572
 573	ret = __tree_mod_log_insert(eb->fs_info, tm);
 574	if (ret)
 575		goto free_tms;
 576	write_unlock(&eb->fs_info->tree_mod_log_lock);
 577	kfree(tm_list);
 578
 579	return 0;
 580free_tms:
 581	for (i = 0; i < nr_items; i++) {
 582		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 583			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
 584		kfree(tm_list[i]);
 585	}
 586	if (locked)
 587		write_unlock(&eb->fs_info->tree_mod_log_lock);
 588	kfree(tm_list);
 589	kfree(tm);
 590
 591	return ret;
 592}
 593
 594static inline int
 595__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
 596		       struct tree_mod_elem **tm_list,
 597		       int nritems)
 598{
 599	int i, j;
 600	int ret;
 601
 602	for (i = nritems - 1; i >= 0; i--) {
 603		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 604		if (ret) {
 605			for (j = nritems - 1; j > i; j--)
 606				rb_erase(&tm_list[j]->node,
 607					 &fs_info->tree_mod_log);
 608			return ret;
 609		}
 610	}
 611
 612	return 0;
 613}
 614
 615static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
 616			 struct extent_buffer *new_root, int log_removal)
 617{
 618	struct btrfs_fs_info *fs_info = old_root->fs_info;
 619	struct tree_mod_elem *tm = NULL;
 620	struct tree_mod_elem **tm_list = NULL;
 621	int nritems = 0;
 622	int ret = 0;
 623	int i;
 624
 625	if (!tree_mod_need_log(fs_info, NULL))
 626		return 0;
 627
 628	if (log_removal && btrfs_header_level(old_root) > 0) {
 629		nritems = btrfs_header_nritems(old_root);
 630		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
 631				  GFP_NOFS);
 632		if (!tm_list) {
 633			ret = -ENOMEM;
 634			goto free_tms;
 635		}
 636		for (i = 0; i < nritems; i++) {
 637			tm_list[i] = alloc_tree_mod_elem(old_root, i,
 638			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 639			if (!tm_list[i]) {
 640				ret = -ENOMEM;
 641				goto free_tms;
 642			}
 643		}
 644	}
 645
 646	tm = kzalloc(sizeof(*tm), GFP_NOFS);
 647	if (!tm) {
 648		ret = -ENOMEM;
 649		goto free_tms;
 650	}
 651
 652	tm->logical = new_root->start;
 653	tm->old_root.logical = old_root->start;
 654	tm->old_root.level = btrfs_header_level(old_root);
 655	tm->generation = btrfs_header_generation(old_root);
 656	tm->op = MOD_LOG_ROOT_REPLACE;
 657
 658	if (tree_mod_dont_log(fs_info, NULL))
 659		goto free_tms;
 660
 661	if (tm_list)
 662		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 663	if (!ret)
 664		ret = __tree_mod_log_insert(fs_info, tm);
 665
 666	write_unlock(&fs_info->tree_mod_log_lock);
 667	if (ret)
 668		goto free_tms;
 669	kfree(tm_list);
 670
 671	return ret;
 672
 673free_tms:
 674	if (tm_list) {
 675		for (i = 0; i < nritems; i++)
 676			kfree(tm_list[i]);
 677		kfree(tm_list);
 678	}
 679	kfree(tm);
 680
 681	return ret;
 682}
 683
 684static struct tree_mod_elem *
 685__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
 686		      int smallest)
 687{
 688	struct rb_root *tm_root;
 689	struct rb_node *node;
 690	struct tree_mod_elem *cur = NULL;
 691	struct tree_mod_elem *found = NULL;
 692
 693	read_lock(&fs_info->tree_mod_log_lock);
 694	tm_root = &fs_info->tree_mod_log;
 695	node = tm_root->rb_node;
 696	while (node) {
 697		cur = rb_entry(node, struct tree_mod_elem, node);
 698		if (cur->logical < start) {
 699			node = node->rb_left;
 700		} else if (cur->logical > start) {
 701			node = node->rb_right;
 702		} else if (cur->seq < min_seq) {
 703			node = node->rb_left;
 704		} else if (!smallest) {
 705			/* we want the node with the highest seq */
 706			if (found)
 707				BUG_ON(found->seq > cur->seq);
 708			found = cur;
 709			node = node->rb_left;
 710		} else if (cur->seq > min_seq) {
 711			/* we want the node with the smallest seq */
 712			if (found)
 713				BUG_ON(found->seq < cur->seq);
 714			found = cur;
 715			node = node->rb_right;
 716		} else {
 717			found = cur;
 718			break;
 719		}
 720	}
 721	read_unlock(&fs_info->tree_mod_log_lock);
 722
 723	return found;
 724}
 725
 726/*
 727 * this returns the element from the log with the smallest time sequence
 728 * value that's in the log (the oldest log item). any element with a time
 729 * sequence lower than min_seq will be ignored.
 730 */
 731static struct tree_mod_elem *
 732tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
 733			   u64 min_seq)
 734{
 735	return __tree_mod_log_search(fs_info, start, min_seq, 1);
 736}
 737
 738/*
 739 * this returns the element from the log with the largest time sequence
 740 * value that's in the log (the most recent log item). any element with
 741 * a time sequence lower than min_seq will be ignored.
 742 */
 743static struct tree_mod_elem *
 744tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
 745{
 746	return __tree_mod_log_search(fs_info, start, min_seq, 0);
 747}
 748
 749static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
 
 750		     struct extent_buffer *src, unsigned long dst_offset,
 751		     unsigned long src_offset, int nr_items)
 752{
 753	struct btrfs_fs_info *fs_info = dst->fs_info;
 754	int ret = 0;
 755	struct tree_mod_elem **tm_list = NULL;
 756	struct tree_mod_elem **tm_list_add, **tm_list_rem;
 757	int i;
 758	int locked = 0;
 759
 760	if (!tree_mod_need_log(fs_info, NULL))
 761		return 0;
 762
 763	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
 764		return 0;
 765
 766	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
 767			  GFP_NOFS);
 768	if (!tm_list)
 769		return -ENOMEM;
 770
 771	tm_list_add = tm_list;
 772	tm_list_rem = tm_list + nr_items;
 773	for (i = 0; i < nr_items; i++) {
 774		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
 775		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
 776		if (!tm_list_rem[i]) {
 777			ret = -ENOMEM;
 778			goto free_tms;
 779		}
 780
 781		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
 782		    MOD_LOG_KEY_ADD, GFP_NOFS);
 783		if (!tm_list_add[i]) {
 784			ret = -ENOMEM;
 785			goto free_tms;
 786		}
 787	}
 788
 789	if (tree_mod_dont_log(fs_info, NULL))
 790		goto free_tms;
 791	locked = 1;
 792
 793	for (i = 0; i < nr_items; i++) {
 794		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
 795		if (ret)
 796			goto free_tms;
 797		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
 798		if (ret)
 799			goto free_tms;
 800	}
 801
 802	write_unlock(&fs_info->tree_mod_log_lock);
 803	kfree(tm_list);
 804
 805	return 0;
 806
 807free_tms:
 808	for (i = 0; i < nr_items * 2; i++) {
 809		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 810			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 811		kfree(tm_list[i]);
 812	}
 813	if (locked)
 814		write_unlock(&fs_info->tree_mod_log_lock);
 815	kfree(tm_list);
 816
 817	return ret;
 818}
 819
 820static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
 821{
 822	struct tree_mod_elem **tm_list = NULL;
 823	int nritems = 0;
 824	int i;
 825	int ret = 0;
 826
 827	if (btrfs_header_level(eb) == 0)
 828		return 0;
 829
 830	if (!tree_mod_need_log(eb->fs_info, NULL))
 831		return 0;
 832
 833	nritems = btrfs_header_nritems(eb);
 834	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
 835	if (!tm_list)
 836		return -ENOMEM;
 837
 838	for (i = 0; i < nritems; i++) {
 839		tm_list[i] = alloc_tree_mod_elem(eb, i,
 840		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 841		if (!tm_list[i]) {
 842			ret = -ENOMEM;
 843			goto free_tms;
 844		}
 845	}
 846
 847	if (tree_mod_dont_log(eb->fs_info, eb))
 848		goto free_tms;
 849
 850	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
 851	write_unlock(&eb->fs_info->tree_mod_log_lock);
 852	if (ret)
 853		goto free_tms;
 854	kfree(tm_list);
 855
 856	return 0;
 857
 858free_tms:
 859	for (i = 0; i < nritems; i++)
 860		kfree(tm_list[i]);
 861	kfree(tm_list);
 862
 863	return ret;
 864}
 865
 866/*
 867 * check if the tree block can be shared by multiple trees
 868 */
 869int btrfs_block_can_be_shared(struct btrfs_root *root,
 870			      struct extent_buffer *buf)
 871{
 872	/*
 873	 * Tree blocks not in reference counted trees and tree roots
 874	 * are never shared. If a block was allocated after the last
 875	 * snapshot and the block was not allocated by tree relocation,
 876	 * we know the block is not shared.
 877	 */
 878	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 879	    buf != root->node && buf != root->commit_root &&
 880	    (btrfs_header_generation(buf) <=
 881	     btrfs_root_last_snapshot(&root->root_item) ||
 882	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 883		return 1;
 884
 
 
 
 
 885	return 0;
 886}
 887
 888static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 889				       struct btrfs_root *root,
 890				       struct extent_buffer *buf,
 891				       struct extent_buffer *cow,
 892				       int *last_ref)
 893{
 894	struct btrfs_fs_info *fs_info = root->fs_info;
 895	u64 refs;
 896	u64 owner;
 897	u64 flags;
 898	u64 new_flags = 0;
 899	int ret;
 900
 901	/*
 902	 * Backrefs update rules:
 903	 *
 904	 * Always use full backrefs for extent pointers in tree block
 905	 * allocated by tree relocation.
 906	 *
 907	 * If a shared tree block is no longer referenced by its owner
 908	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 909	 * use full backrefs for extent pointers in tree block.
 910	 *
 911	 * If a tree block is been relocating
 912	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
 913	 * use full backrefs for extent pointers in tree block.
 914	 * The reason for this is some operations (such as drop tree)
 915	 * are only allowed for blocks use full backrefs.
 916	 */
 917
 918	if (btrfs_block_can_be_shared(root, buf)) {
 919		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
 920					       btrfs_header_level(buf), 1,
 921					       &refs, &flags);
 922		if (ret)
 923			return ret;
 924		if (refs == 0) {
 925			ret = -EROFS;
 926			btrfs_handle_fs_error(fs_info, ret, NULL);
 927			return ret;
 928		}
 929	} else {
 930		refs = 1;
 931		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 932		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 933			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 934		else
 935			flags = 0;
 936	}
 937
 938	owner = btrfs_header_owner(buf);
 939	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
 940	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 941
 942	if (refs > 1) {
 943		if ((owner == root->root_key.objectid ||
 944		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
 945		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
 946			ret = btrfs_inc_ref(trans, root, buf, 1);
 947			if (ret)
 948				return ret;
 949
 950			if (root->root_key.objectid ==
 951			    BTRFS_TREE_RELOC_OBJECTID) {
 952				ret = btrfs_dec_ref(trans, root, buf, 0);
 953				if (ret)
 954					return ret;
 955				ret = btrfs_inc_ref(trans, root, cow, 1);
 956				if (ret)
 957					return ret;
 958			}
 959			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 960		} else {
 961
 962			if (root->root_key.objectid ==
 963			    BTRFS_TREE_RELOC_OBJECTID)
 964				ret = btrfs_inc_ref(trans, root, cow, 1);
 965			else
 966				ret = btrfs_inc_ref(trans, root, cow, 0);
 967			if (ret)
 968				return ret;
 969		}
 970		if (new_flags != 0) {
 971			int level = btrfs_header_level(buf);
 972
 973			ret = btrfs_set_disk_extent_flags(trans,
 974							  buf->start,
 975							  buf->len,
 976							  new_flags, level, 0);
 977			if (ret)
 978				return ret;
 979		}
 980	} else {
 981		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 982			if (root->root_key.objectid ==
 983			    BTRFS_TREE_RELOC_OBJECTID)
 984				ret = btrfs_inc_ref(trans, root, cow, 1);
 985			else
 986				ret = btrfs_inc_ref(trans, root, cow, 0);
 987			if (ret)
 988				return ret;
 989			ret = btrfs_dec_ref(trans, root, buf, 1);
 990			if (ret)
 991				return ret;
 992		}
 993		btrfs_clean_tree_block(buf);
 994		*last_ref = 1;
 995	}
 996	return 0;
 997}
 998
 999static struct extent_buffer *alloc_tree_block_no_bg_flush(
1000					  struct btrfs_trans_handle *trans,
1001					  struct btrfs_root *root,
1002					  u64 parent_start,
1003					  const struct btrfs_disk_key *disk_key,
1004					  int level,
1005					  u64 hint,
1006					  u64 empty_size)
1007{
1008	struct btrfs_fs_info *fs_info = root->fs_info;
1009	struct extent_buffer *ret;
1010
1011	/*
1012	 * If we are COWing a node/leaf from the extent, chunk, device or free
1013	 * space trees, make sure that we do not finish block group creation of
1014	 * pending block groups. We do this to avoid a deadlock.
1015	 * COWing can result in allocation of a new chunk, and flushing pending
1016	 * block groups (btrfs_create_pending_block_groups()) can be triggered
1017	 * when finishing allocation of a new chunk. Creation of a pending block
1018	 * group modifies the extent, chunk, device and free space trees,
1019	 * therefore we could deadlock with ourselves since we are holding a
1020	 * lock on an extent buffer that btrfs_create_pending_block_groups() may
1021	 * try to COW later.
1022	 * For similar reasons, we also need to delay flushing pending block
1023	 * groups when splitting a leaf or node, from one of those trees, since
1024	 * we are holding a write lock on it and its parent or when inserting a
1025	 * new root node for one of those trees.
1026	 */
1027	if (root == fs_info->extent_root ||
1028	    root == fs_info->chunk_root ||
1029	    root == fs_info->dev_root ||
1030	    root == fs_info->free_space_root)
1031		trans->can_flush_pending_bgs = false;
1032
1033	ret = btrfs_alloc_tree_block(trans, root, parent_start,
1034				     root->root_key.objectid, disk_key, level,
1035				     hint, empty_size);
1036	trans->can_flush_pending_bgs = true;
1037
1038	return ret;
1039}
1040
1041/*
1042 * does the dirty work in cow of a single block.  The parent block (if
1043 * supplied) is updated to point to the new cow copy.  The new buffer is marked
1044 * dirty and returned locked.  If you modify the block it needs to be marked
1045 * dirty again.
1046 *
1047 * search_start -- an allocation hint for the new block
1048 *
1049 * empty_size -- a hint that you plan on doing more cow.  This is the size in
1050 * bytes the allocator should try to find free next to the block it returns.
1051 * This is just a hint and may be ignored by the allocator.
1052 */
1053static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1054			     struct btrfs_root *root,
1055			     struct extent_buffer *buf,
1056			     struct extent_buffer *parent, int parent_slot,
1057			     struct extent_buffer **cow_ret,
1058			     u64 search_start, u64 empty_size)
1059{
1060	struct btrfs_fs_info *fs_info = root->fs_info;
1061	struct btrfs_disk_key disk_key;
1062	struct extent_buffer *cow;
1063	int level, ret;
1064	int last_ref = 0;
1065	int unlock_orig = 0;
1066	u64 parent_start = 0;
1067
1068	if (*cow_ret == buf)
1069		unlock_orig = 1;
1070
1071	btrfs_assert_tree_locked(buf);
1072
1073	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1074		trans->transid != fs_info->running_transaction->transid);
1075	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1076		trans->transid != root->last_trans);
1077
1078	level = btrfs_header_level(buf);
1079
1080	if (level == 0)
1081		btrfs_item_key(buf, &disk_key, 0);
1082	else
1083		btrfs_node_key(buf, &disk_key, 0);
1084
1085	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1086		parent_start = parent->start;
1087
1088	cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1089					   level, search_start, empty_size);
 
1090	if (IS_ERR(cow))
1091		return PTR_ERR(cow);
1092
1093	/* cow is set to blocking by btrfs_init_new_buffer */
1094
1095	copy_extent_buffer_full(cow, buf);
1096	btrfs_set_header_bytenr(cow, cow->start);
1097	btrfs_set_header_generation(cow, trans->transid);
1098	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1099	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1100				     BTRFS_HEADER_FLAG_RELOC);
1101	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1102		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1103	else
1104		btrfs_set_header_owner(cow, root->root_key.objectid);
1105
1106	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
1107
1108	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1109	if (ret) {
1110		btrfs_abort_transaction(trans, ret);
1111		return ret;
1112	}
1113
1114	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1115		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1116		if (ret) {
1117			btrfs_abort_transaction(trans, ret);
1118			return ret;
1119		}
1120	}
1121
1122	if (buf == root->node) {
1123		WARN_ON(parent && parent != buf);
1124		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1125		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1126			parent_start = buf->start;
1127
1128		extent_buffer_get(cow);
1129		ret = tree_mod_log_insert_root(root->node, cow, 1);
1130		BUG_ON(ret < 0);
1131		rcu_assign_pointer(root->node, cow);
1132
1133		btrfs_free_tree_block(trans, root, buf, parent_start,
1134				      last_ref);
1135		free_extent_buffer(buf);
1136		add_root_to_dirty_list(root);
1137	} else {
1138		WARN_ON(trans->transid != btrfs_header_generation(parent));
1139		tree_mod_log_insert_key(parent, parent_slot,
1140					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1141		btrfs_set_node_blockptr(parent, parent_slot,
1142					cow->start);
1143		btrfs_set_node_ptr_generation(parent, parent_slot,
1144					      trans->transid);
1145		btrfs_mark_buffer_dirty(parent);
1146		if (last_ref) {
1147			ret = tree_mod_log_free_eb(buf);
1148			if (ret) {
1149				btrfs_abort_transaction(trans, ret);
1150				return ret;
1151			}
1152		}
1153		btrfs_free_tree_block(trans, root, buf, parent_start,
1154				      last_ref);
1155	}
1156	if (unlock_orig)
1157		btrfs_tree_unlock(buf);
1158	free_extent_buffer_stale(buf);
1159	btrfs_mark_buffer_dirty(cow);
1160	*cow_ret = cow;
1161	return 0;
1162}
1163
1164/*
1165 * returns the logical address of the oldest predecessor of the given root.
1166 * entries older than time_seq are ignored.
1167 */
1168static struct tree_mod_elem *__tree_mod_log_oldest_root(
1169		struct extent_buffer *eb_root, u64 time_seq)
1170{
1171	struct tree_mod_elem *tm;
1172	struct tree_mod_elem *found = NULL;
1173	u64 root_logical = eb_root->start;
1174	int looped = 0;
1175
1176	if (!time_seq)
1177		return NULL;
1178
1179	/*
1180	 * the very last operation that's logged for a root is the
1181	 * replacement operation (if it is replaced at all). this has
1182	 * the logical address of the *new* root, making it the very
1183	 * first operation that's logged for this root.
1184	 */
1185	while (1) {
1186		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1187						time_seq);
1188		if (!looped && !tm)
1189			return NULL;
1190		/*
1191		 * if there are no tree operation for the oldest root, we simply
1192		 * return it. this should only happen if that (old) root is at
1193		 * level 0.
1194		 */
1195		if (!tm)
1196			break;
1197
1198		/*
1199		 * if there's an operation that's not a root replacement, we
1200		 * found the oldest version of our root. normally, we'll find a
1201		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1202		 */
1203		if (tm->op != MOD_LOG_ROOT_REPLACE)
1204			break;
1205
1206		found = tm;
1207		root_logical = tm->old_root.logical;
1208		looped = 1;
1209	}
1210
1211	/* if there's no old root to return, return what we found instead */
1212	if (!found)
1213		found = tm;
1214
1215	return found;
1216}
1217
1218/*
1219 * tm is a pointer to the first operation to rewind within eb. then, all
1220 * previous operations will be rewound (until we reach something older than
1221 * time_seq).
1222 */
1223static void
1224__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1225		      u64 time_seq, struct tree_mod_elem *first_tm)
1226{
1227	u32 n;
1228	struct rb_node *next;
1229	struct tree_mod_elem *tm = first_tm;
1230	unsigned long o_dst;
1231	unsigned long o_src;
1232	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1233
1234	n = btrfs_header_nritems(eb);
1235	read_lock(&fs_info->tree_mod_log_lock);
1236	while (tm && tm->seq >= time_seq) {
1237		/*
1238		 * all the operations are recorded with the operator used for
1239		 * the modification. as we're going backwards, we do the
1240		 * opposite of each operation here.
1241		 */
1242		switch (tm->op) {
1243		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1244			BUG_ON(tm->slot < n);
1245			/* Fallthrough */
1246		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1247		case MOD_LOG_KEY_REMOVE:
1248			btrfs_set_node_key(eb, &tm->key, tm->slot);
1249			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1250			btrfs_set_node_ptr_generation(eb, tm->slot,
1251						      tm->generation);
1252			n++;
1253			break;
1254		case MOD_LOG_KEY_REPLACE:
1255			BUG_ON(tm->slot >= n);
1256			btrfs_set_node_key(eb, &tm->key, tm->slot);
1257			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1258			btrfs_set_node_ptr_generation(eb, tm->slot,
1259						      tm->generation);
1260			break;
1261		case MOD_LOG_KEY_ADD:
1262			/* if a move operation is needed it's in the log */
1263			n--;
1264			break;
1265		case MOD_LOG_MOVE_KEYS:
1266			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1267			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1268			memmove_extent_buffer(eb, o_dst, o_src,
1269					      tm->move.nr_items * p_size);
1270			break;
1271		case MOD_LOG_ROOT_REPLACE:
1272			/*
1273			 * this operation is special. for roots, this must be
1274			 * handled explicitly before rewinding.
1275			 * for non-roots, this operation may exist if the node
1276			 * was a root: root A -> child B; then A gets empty and
1277			 * B is promoted to the new root. in the mod log, we'll
1278			 * have a root-replace operation for B, a tree block
1279			 * that is no root. we simply ignore that operation.
1280			 */
1281			break;
1282		}
1283		next = rb_next(&tm->node);
1284		if (!next)
1285			break;
1286		tm = rb_entry(next, struct tree_mod_elem, node);
1287		if (tm->logical != first_tm->logical)
1288			break;
1289	}
1290	read_unlock(&fs_info->tree_mod_log_lock);
1291	btrfs_set_header_nritems(eb, n);
1292}
1293
1294/*
1295 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1296 * is returned. If rewind operations happen, a fresh buffer is returned. The
1297 * returned buffer is always read-locked. If the returned buffer is not the
1298 * input buffer, the lock on the input buffer is released and the input buffer
1299 * is freed (its refcount is decremented).
1300 */
1301static struct extent_buffer *
1302tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1303		    struct extent_buffer *eb, u64 time_seq)
1304{
1305	struct extent_buffer *eb_rewin;
1306	struct tree_mod_elem *tm;
1307
1308	if (!time_seq)
1309		return eb;
1310
1311	if (btrfs_header_level(eb) == 0)
1312		return eb;
1313
1314	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1315	if (!tm)
1316		return eb;
1317
1318	btrfs_set_path_blocking(path);
1319	btrfs_set_lock_blocking_read(eb);
1320
1321	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1322		BUG_ON(tm->slot != 0);
1323		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1324		if (!eb_rewin) {
1325			btrfs_tree_read_unlock_blocking(eb);
1326			free_extent_buffer(eb);
1327			return NULL;
1328		}
1329		btrfs_set_header_bytenr(eb_rewin, eb->start);
1330		btrfs_set_header_backref_rev(eb_rewin,
1331					     btrfs_header_backref_rev(eb));
1332		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1333		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1334	} else {
1335		eb_rewin = btrfs_clone_extent_buffer(eb);
1336		if (!eb_rewin) {
1337			btrfs_tree_read_unlock_blocking(eb);
1338			free_extent_buffer(eb);
1339			return NULL;
1340		}
1341	}
1342
 
1343	btrfs_tree_read_unlock_blocking(eb);
1344	free_extent_buffer(eb);
1345
 
1346	btrfs_tree_read_lock(eb_rewin);
1347	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1348	WARN_ON(btrfs_header_nritems(eb_rewin) >
1349		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1350
1351	return eb_rewin;
1352}
1353
1354/*
1355 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1356 * value. If there are no changes, the current root->root_node is returned. If
1357 * anything changed in between, there's a fresh buffer allocated on which the
1358 * rewind operations are done. In any case, the returned buffer is read locked.
1359 * Returns NULL on error (with no locks held).
1360 */
1361static inline struct extent_buffer *
1362get_old_root(struct btrfs_root *root, u64 time_seq)
1363{
1364	struct btrfs_fs_info *fs_info = root->fs_info;
1365	struct tree_mod_elem *tm;
1366	struct extent_buffer *eb = NULL;
1367	struct extent_buffer *eb_root;
1368	u64 eb_root_owner = 0;
1369	struct extent_buffer *old;
1370	struct tree_mod_root *old_root = NULL;
1371	u64 old_generation = 0;
1372	u64 logical;
1373	int level;
1374
1375	eb_root = btrfs_read_lock_root_node(root);
1376	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1377	if (!tm)
1378		return eb_root;
1379
1380	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1381		old_root = &tm->old_root;
1382		old_generation = tm->generation;
1383		logical = old_root->logical;
1384		level = old_root->level;
1385	} else {
1386		logical = eb_root->start;
1387		level = btrfs_header_level(eb_root);
1388	}
1389
1390	tm = tree_mod_log_search(fs_info, logical, time_seq);
1391	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1392		btrfs_tree_read_unlock(eb_root);
1393		free_extent_buffer(eb_root);
1394		old = read_tree_block(fs_info, logical, 0, level, NULL);
1395		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1396			if (!IS_ERR(old))
1397				free_extent_buffer(old);
1398			btrfs_warn(fs_info,
1399				   "failed to read tree block %llu from get_old_root",
1400				   logical);
1401		} else {
1402			eb = btrfs_clone_extent_buffer(old);
1403			free_extent_buffer(old);
1404		}
1405	} else if (old_root) {
1406		eb_root_owner = btrfs_header_owner(eb_root);
1407		btrfs_tree_read_unlock(eb_root);
1408		free_extent_buffer(eb_root);
1409		eb = alloc_dummy_extent_buffer(fs_info, logical);
1410	} else {
1411		btrfs_set_lock_blocking_read(eb_root);
1412		eb = btrfs_clone_extent_buffer(eb_root);
1413		btrfs_tree_read_unlock_blocking(eb_root);
1414		free_extent_buffer(eb_root);
1415	}
1416
1417	if (!eb)
1418		return NULL;
 
1419	btrfs_tree_read_lock(eb);
1420	if (old_root) {
1421		btrfs_set_header_bytenr(eb, eb->start);
1422		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1423		btrfs_set_header_owner(eb, eb_root_owner);
1424		btrfs_set_header_level(eb, old_root->level);
1425		btrfs_set_header_generation(eb, old_generation);
1426	}
1427	if (tm)
1428		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1429	else
1430		WARN_ON(btrfs_header_level(eb) != 0);
1431	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1432
1433	return eb;
1434}
1435
1436int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1437{
1438	struct tree_mod_elem *tm;
1439	int level;
1440	struct extent_buffer *eb_root = btrfs_root_node(root);
1441
1442	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1443	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1444		level = tm->old_root.level;
1445	} else {
1446		level = btrfs_header_level(eb_root);
1447	}
1448	free_extent_buffer(eb_root);
1449
1450	return level;
1451}
1452
1453static inline int should_cow_block(struct btrfs_trans_handle *trans,
1454				   struct btrfs_root *root,
1455				   struct extent_buffer *buf)
1456{
1457	if (btrfs_is_testing(root->fs_info))
1458		return 0;
1459
1460	/* Ensure we can see the FORCE_COW bit */
1461	smp_mb__before_atomic();
1462
1463	/*
1464	 * We do not need to cow a block if
1465	 * 1) this block is not created or changed in this transaction;
1466	 * 2) this block does not belong to TREE_RELOC tree;
1467	 * 3) the root is not forced COW.
1468	 *
1469	 * What is forced COW:
1470	 *    when we create snapshot during committing the transaction,
1471	 *    after we've finished copying src root, we must COW the shared
1472	 *    block to ensure the metadata consistency.
1473	 */
1474	if (btrfs_header_generation(buf) == trans->transid &&
1475	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1476	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1477	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1478	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1479		return 0;
1480	return 1;
1481}
1482
1483/*
1484 * cows a single block, see __btrfs_cow_block for the real work.
1485 * This version of it has extra checks so that a block isn't COWed more than
1486 * once per transaction, as long as it hasn't been written yet
1487 */
1488noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1489		    struct btrfs_root *root, struct extent_buffer *buf,
1490		    struct extent_buffer *parent, int parent_slot,
1491		    struct extent_buffer **cow_ret)
1492{
1493	struct btrfs_fs_info *fs_info = root->fs_info;
1494	u64 search_start;
1495	int ret;
1496
1497	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1498		btrfs_err(fs_info,
1499			"COW'ing blocks on a fs root that's being dropped");
1500
1501	if (trans->transaction != fs_info->running_transaction)
1502		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1503		       trans->transid,
1504		       fs_info->running_transaction->transid);
1505
1506	if (trans->transid != fs_info->generation)
1507		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1508		       trans->transid, fs_info->generation);
1509
1510	if (!should_cow_block(trans, root, buf)) {
1511		trans->dirty = true;
1512		*cow_ret = buf;
1513		return 0;
1514	}
1515
1516	search_start = buf->start & ~((u64)SZ_1G - 1);
1517
1518	if (parent)
1519		btrfs_set_lock_blocking_write(parent);
1520	btrfs_set_lock_blocking_write(buf);
1521
1522	/*
1523	 * Before CoWing this block for later modification, check if it's
1524	 * the subtree root and do the delayed subtree trace if needed.
1525	 *
1526	 * Also We don't care about the error, as it's handled internally.
1527	 */
1528	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1529	ret = __btrfs_cow_block(trans, root, buf, parent,
1530				 parent_slot, cow_ret, search_start, 0);
1531
1532	trace_btrfs_cow_block(root, buf, *cow_ret);
1533
1534	return ret;
1535}
1536
1537/*
1538 * helper function for defrag to decide if two blocks pointed to by a
1539 * node are actually close by
1540 */
1541static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1542{
1543	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1544		return 1;
1545	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1546		return 1;
1547	return 0;
1548}
1549
1550/*
1551 * compare two keys in a memcmp fashion
1552 */
1553static int comp_keys(const struct btrfs_disk_key *disk,
1554		     const struct btrfs_key *k2)
1555{
1556	struct btrfs_key k1;
1557
1558	btrfs_disk_key_to_cpu(&k1, disk);
1559
1560	return btrfs_comp_cpu_keys(&k1, k2);
1561}
1562
1563/*
1564 * same as comp_keys only with two btrfs_key's
1565 */
1566int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1567{
1568	if (k1->objectid > k2->objectid)
1569		return 1;
1570	if (k1->objectid < k2->objectid)
1571		return -1;
1572	if (k1->type > k2->type)
1573		return 1;
1574	if (k1->type < k2->type)
1575		return -1;
1576	if (k1->offset > k2->offset)
1577		return 1;
1578	if (k1->offset < k2->offset)
1579		return -1;
1580	return 0;
1581}
1582
1583/*
1584 * this is used by the defrag code to go through all the
1585 * leaves pointed to by a node and reallocate them so that
1586 * disk order is close to key order
1587 */
1588int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1589		       struct btrfs_root *root, struct extent_buffer *parent,
1590		       int start_slot, u64 *last_ret,
1591		       struct btrfs_key *progress)
1592{
1593	struct btrfs_fs_info *fs_info = root->fs_info;
1594	struct extent_buffer *cur;
1595	u64 blocknr;
1596	u64 gen;
1597	u64 search_start = *last_ret;
1598	u64 last_block = 0;
1599	u64 other;
1600	u32 parent_nritems;
1601	int end_slot;
1602	int i;
1603	int err = 0;
1604	int parent_level;
1605	int uptodate;
1606	u32 blocksize;
1607	int progress_passed = 0;
1608	struct btrfs_disk_key disk_key;
1609
1610	parent_level = btrfs_header_level(parent);
1611
1612	WARN_ON(trans->transaction != fs_info->running_transaction);
1613	WARN_ON(trans->transid != fs_info->generation);
1614
1615	parent_nritems = btrfs_header_nritems(parent);
1616	blocksize = fs_info->nodesize;
1617	end_slot = parent_nritems - 1;
1618
1619	if (parent_nritems <= 1)
1620		return 0;
1621
1622	btrfs_set_lock_blocking_write(parent);
1623
1624	for (i = start_slot; i <= end_slot; i++) {
1625		struct btrfs_key first_key;
1626		int close = 1;
1627
1628		btrfs_node_key(parent, &disk_key, i);
1629		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1630			continue;
1631
1632		progress_passed = 1;
1633		blocknr = btrfs_node_blockptr(parent, i);
1634		gen = btrfs_node_ptr_generation(parent, i);
1635		btrfs_node_key_to_cpu(parent, &first_key, i);
1636		if (last_block == 0)
1637			last_block = blocknr;
1638
1639		if (i > 0) {
1640			other = btrfs_node_blockptr(parent, i - 1);
1641			close = close_blocks(blocknr, other, blocksize);
1642		}
1643		if (!close && i < end_slot) {
1644			other = btrfs_node_blockptr(parent, i + 1);
1645			close = close_blocks(blocknr, other, blocksize);
1646		}
1647		if (close) {
1648			last_block = blocknr;
1649			continue;
1650		}
1651
1652		cur = find_extent_buffer(fs_info, blocknr);
1653		if (cur)
1654			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1655		else
1656			uptodate = 0;
1657		if (!cur || !uptodate) {
1658			if (!cur) {
1659				cur = read_tree_block(fs_info, blocknr, gen,
1660						      parent_level - 1,
1661						      &first_key);
1662				if (IS_ERR(cur)) {
1663					return PTR_ERR(cur);
1664				} else if (!extent_buffer_uptodate(cur)) {
1665					free_extent_buffer(cur);
1666					return -EIO;
1667				}
1668			} else if (!uptodate) {
1669				err = btrfs_read_buffer(cur, gen,
1670						parent_level - 1,&first_key);
1671				if (err) {
1672					free_extent_buffer(cur);
1673					return err;
1674				}
1675			}
1676		}
1677		if (search_start == 0)
1678			search_start = last_block;
1679
1680		btrfs_tree_lock(cur);
1681		btrfs_set_lock_blocking_write(cur);
1682		err = __btrfs_cow_block(trans, root, cur, parent, i,
1683					&cur, search_start,
1684					min(16 * blocksize,
1685					    (end_slot - i) * blocksize));
1686		if (err) {
1687			btrfs_tree_unlock(cur);
1688			free_extent_buffer(cur);
1689			break;
1690		}
1691		search_start = cur->start;
1692		last_block = cur->start;
1693		*last_ret = search_start;
1694		btrfs_tree_unlock(cur);
1695		free_extent_buffer(cur);
1696	}
1697	return err;
1698}
1699
1700/*
1701 * search for key in the extent_buffer.  The items start at offset p,
1702 * and they are item_size apart.  There are 'max' items in p.
1703 *
1704 * the slot in the array is returned via slot, and it points to
1705 * the place where you would insert key if it is not found in
1706 * the array.
1707 *
1708 * slot may point to max if the key is bigger than all of the keys
1709 */
1710static noinline int generic_bin_search(struct extent_buffer *eb,
1711				       unsigned long p, int item_size,
1712				       const struct btrfs_key *key,
1713				       int max, int *slot)
1714{
1715	int low = 0;
1716	int high = max;
1717	int mid;
1718	int ret;
1719	struct btrfs_disk_key *tmp = NULL;
1720	struct btrfs_disk_key unaligned;
1721	unsigned long offset;
1722	char *kaddr = NULL;
1723	unsigned long map_start = 0;
1724	unsigned long map_len = 0;
1725	int err;
1726
1727	if (low > high) {
1728		btrfs_err(eb->fs_info,
1729		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1730			  __func__, low, high, eb->start,
1731			  btrfs_header_owner(eb), btrfs_header_level(eb));
1732		return -EINVAL;
1733	}
1734
1735	while (low < high) {
1736		mid = (low + high) / 2;
1737		offset = p + mid * item_size;
1738
1739		if (!kaddr || offset < map_start ||
1740		    (offset + sizeof(struct btrfs_disk_key)) >
1741		    map_start + map_len) {
1742
1743			err = map_private_extent_buffer(eb, offset,
1744						sizeof(struct btrfs_disk_key),
1745						&kaddr, &map_start, &map_len);
1746
1747			if (!err) {
1748				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1749							map_start);
1750			} else if (err == 1) {
1751				read_extent_buffer(eb, &unaligned,
1752						   offset, sizeof(unaligned));
1753				tmp = &unaligned;
1754			} else {
1755				return err;
1756			}
1757
1758		} else {
1759			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1760							map_start);
1761		}
1762		ret = comp_keys(tmp, key);
1763
1764		if (ret < 0)
1765			low = mid + 1;
1766		else if (ret > 0)
1767			high = mid;
1768		else {
1769			*slot = mid;
1770			return 0;
1771		}
1772	}
1773	*slot = low;
1774	return 1;
1775}
1776
1777/*
1778 * simple bin_search frontend that does the right thing for
1779 * leaves vs nodes
1780 */
1781int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1782		     int level, int *slot)
1783{
1784	if (level == 0)
1785		return generic_bin_search(eb,
1786					  offsetof(struct btrfs_leaf, items),
1787					  sizeof(struct btrfs_item),
1788					  key, btrfs_header_nritems(eb),
1789					  slot);
1790	else
1791		return generic_bin_search(eb,
1792					  offsetof(struct btrfs_node, ptrs),
1793					  sizeof(struct btrfs_key_ptr),
1794					  key, btrfs_header_nritems(eb),
1795					  slot);
1796}
1797
1798static void root_add_used(struct btrfs_root *root, u32 size)
1799{
1800	spin_lock(&root->accounting_lock);
1801	btrfs_set_root_used(&root->root_item,
1802			    btrfs_root_used(&root->root_item) + size);
1803	spin_unlock(&root->accounting_lock);
1804}
1805
1806static void root_sub_used(struct btrfs_root *root, u32 size)
1807{
1808	spin_lock(&root->accounting_lock);
1809	btrfs_set_root_used(&root->root_item,
1810			    btrfs_root_used(&root->root_item) - size);
1811	spin_unlock(&root->accounting_lock);
1812}
1813
1814/* given a node and slot number, this reads the blocks it points to.  The
1815 * extent buffer is returned with a reference taken (but unlocked).
1816 */
1817struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
1818					   int slot)
 
1819{
1820	int level = btrfs_header_level(parent);
1821	struct extent_buffer *eb;
1822	struct btrfs_key first_key;
1823
1824	if (slot < 0 || slot >= btrfs_header_nritems(parent))
1825		return ERR_PTR(-ENOENT);
1826
1827	BUG_ON(level == 0);
1828
1829	btrfs_node_key_to_cpu(parent, &first_key, slot);
1830	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1831			     btrfs_node_ptr_generation(parent, slot),
1832			     level - 1, &first_key);
1833	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1834		free_extent_buffer(eb);
1835		eb = ERR_PTR(-EIO);
1836	}
1837
1838	return eb;
1839}
1840
1841/*
1842 * node level balancing, used to make sure nodes are in proper order for
1843 * item deletion.  We balance from the top down, so we have to make sure
1844 * that a deletion won't leave an node completely empty later on.
1845 */
1846static noinline int balance_level(struct btrfs_trans_handle *trans,
1847			 struct btrfs_root *root,
1848			 struct btrfs_path *path, int level)
1849{
1850	struct btrfs_fs_info *fs_info = root->fs_info;
1851	struct extent_buffer *right = NULL;
1852	struct extent_buffer *mid;
1853	struct extent_buffer *left = NULL;
1854	struct extent_buffer *parent = NULL;
1855	int ret = 0;
1856	int wret;
1857	int pslot;
1858	int orig_slot = path->slots[level];
1859	u64 orig_ptr;
1860
1861	ASSERT(level > 0);
 
1862
1863	mid = path->nodes[level];
1864
1865	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1866		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1867	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1868
1869	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1870
1871	if (level < BTRFS_MAX_LEVEL - 1) {
1872		parent = path->nodes[level + 1];
1873		pslot = path->slots[level + 1];
1874	}
1875
1876	/*
1877	 * deal with the case where there is only one pointer in the root
1878	 * by promoting the node below to a root
1879	 */
1880	if (!parent) {
1881		struct extent_buffer *child;
1882
1883		if (btrfs_header_nritems(mid) != 1)
1884			return 0;
1885
1886		/* promote the child to a root */
1887		child = btrfs_read_node_slot(mid, 0);
1888		if (IS_ERR(child)) {
1889			ret = PTR_ERR(child);
1890			btrfs_handle_fs_error(fs_info, ret, NULL);
1891			goto enospc;
1892		}
1893
1894		btrfs_tree_lock(child);
1895		btrfs_set_lock_blocking_write(child);
1896		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1897		if (ret) {
1898			btrfs_tree_unlock(child);
1899			free_extent_buffer(child);
1900			goto enospc;
1901		}
1902
1903		ret = tree_mod_log_insert_root(root->node, child, 1);
1904		BUG_ON(ret < 0);
1905		rcu_assign_pointer(root->node, child);
1906
1907		add_root_to_dirty_list(root);
1908		btrfs_tree_unlock(child);
1909
1910		path->locks[level] = 0;
1911		path->nodes[level] = NULL;
1912		btrfs_clean_tree_block(mid);
1913		btrfs_tree_unlock(mid);
1914		/* once for the path */
1915		free_extent_buffer(mid);
1916
1917		root_sub_used(root, mid->len);
1918		btrfs_free_tree_block(trans, root, mid, 0, 1);
1919		/* once for the root ptr */
1920		free_extent_buffer_stale(mid);
1921		return 0;
1922	}
1923	if (btrfs_header_nritems(mid) >
1924	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1925		return 0;
1926
1927	left = btrfs_read_node_slot(parent, pslot - 1);
1928	if (IS_ERR(left))
1929		left = NULL;
1930
1931	if (left) {
1932		btrfs_tree_lock(left);
1933		btrfs_set_lock_blocking_write(left);
1934		wret = btrfs_cow_block(trans, root, left,
1935				       parent, pslot - 1, &left);
1936		if (wret) {
1937			ret = wret;
1938			goto enospc;
1939		}
1940	}
1941
1942	right = btrfs_read_node_slot(parent, pslot + 1);
1943	if (IS_ERR(right))
1944		right = NULL;
1945
1946	if (right) {
1947		btrfs_tree_lock(right);
1948		btrfs_set_lock_blocking_write(right);
1949		wret = btrfs_cow_block(trans, root, right,
1950				       parent, pslot + 1, &right);
1951		if (wret) {
1952			ret = wret;
1953			goto enospc;
1954		}
1955	}
1956
1957	/* first, try to make some room in the middle buffer */
1958	if (left) {
1959		orig_slot += btrfs_header_nritems(left);
1960		wret = push_node_left(trans, left, mid, 1);
1961		if (wret < 0)
1962			ret = wret;
1963	}
1964
1965	/*
1966	 * then try to empty the right most buffer into the middle
1967	 */
1968	if (right) {
1969		wret = push_node_left(trans, mid, right, 1);
1970		if (wret < 0 && wret != -ENOSPC)
1971			ret = wret;
1972		if (btrfs_header_nritems(right) == 0) {
1973			btrfs_clean_tree_block(right);
1974			btrfs_tree_unlock(right);
1975			del_ptr(root, path, level + 1, pslot + 1);
1976			root_sub_used(root, right->len);
1977			btrfs_free_tree_block(trans, root, right, 0, 1);
1978			free_extent_buffer_stale(right);
1979			right = NULL;
1980		} else {
1981			struct btrfs_disk_key right_key;
1982			btrfs_node_key(right, &right_key, 0);
1983			ret = tree_mod_log_insert_key(parent, pslot + 1,
1984					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1985			BUG_ON(ret < 0);
1986			btrfs_set_node_key(parent, &right_key, pslot + 1);
1987			btrfs_mark_buffer_dirty(parent);
1988		}
1989	}
1990	if (btrfs_header_nritems(mid) == 1) {
1991		/*
1992		 * we're not allowed to leave a node with one item in the
1993		 * tree during a delete.  A deletion from lower in the tree
1994		 * could try to delete the only pointer in this node.
1995		 * So, pull some keys from the left.
1996		 * There has to be a left pointer at this point because
1997		 * otherwise we would have pulled some pointers from the
1998		 * right
1999		 */
2000		if (!left) {
2001			ret = -EROFS;
2002			btrfs_handle_fs_error(fs_info, ret, NULL);
2003			goto enospc;
2004		}
2005		wret = balance_node_right(trans, mid, left);
2006		if (wret < 0) {
2007			ret = wret;
2008			goto enospc;
2009		}
2010		if (wret == 1) {
2011			wret = push_node_left(trans, left, mid, 1);
2012			if (wret < 0)
2013				ret = wret;
2014		}
2015		BUG_ON(wret == 1);
2016	}
2017	if (btrfs_header_nritems(mid) == 0) {
2018		btrfs_clean_tree_block(mid);
2019		btrfs_tree_unlock(mid);
2020		del_ptr(root, path, level + 1, pslot);
2021		root_sub_used(root, mid->len);
2022		btrfs_free_tree_block(trans, root, mid, 0, 1);
2023		free_extent_buffer_stale(mid);
2024		mid = NULL;
2025	} else {
2026		/* update the parent key to reflect our changes */
2027		struct btrfs_disk_key mid_key;
2028		btrfs_node_key(mid, &mid_key, 0);
2029		ret = tree_mod_log_insert_key(parent, pslot,
2030				MOD_LOG_KEY_REPLACE, GFP_NOFS);
2031		BUG_ON(ret < 0);
2032		btrfs_set_node_key(parent, &mid_key, pslot);
2033		btrfs_mark_buffer_dirty(parent);
2034	}
2035
2036	/* update the path */
2037	if (left) {
2038		if (btrfs_header_nritems(left) > orig_slot) {
2039			extent_buffer_get(left);
2040			/* left was locked after cow */
2041			path->nodes[level] = left;
2042			path->slots[level + 1] -= 1;
2043			path->slots[level] = orig_slot;
2044			if (mid) {
2045				btrfs_tree_unlock(mid);
2046				free_extent_buffer(mid);
2047			}
2048		} else {
2049			orig_slot -= btrfs_header_nritems(left);
2050			path->slots[level] = orig_slot;
2051		}
2052	}
2053	/* double check we haven't messed things up */
2054	if (orig_ptr !=
2055	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2056		BUG();
2057enospc:
2058	if (right) {
2059		btrfs_tree_unlock(right);
2060		free_extent_buffer(right);
2061	}
2062	if (left) {
2063		if (path->nodes[level] != left)
2064			btrfs_tree_unlock(left);
2065		free_extent_buffer(left);
2066	}
2067	return ret;
2068}
2069
2070/* Node balancing for insertion.  Here we only split or push nodes around
2071 * when they are completely full.  This is also done top down, so we
2072 * have to be pessimistic.
2073 */
2074static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2075					  struct btrfs_root *root,
2076					  struct btrfs_path *path, int level)
2077{
2078	struct btrfs_fs_info *fs_info = root->fs_info;
2079	struct extent_buffer *right = NULL;
2080	struct extent_buffer *mid;
2081	struct extent_buffer *left = NULL;
2082	struct extent_buffer *parent = NULL;
2083	int ret = 0;
2084	int wret;
2085	int pslot;
2086	int orig_slot = path->slots[level];
2087
2088	if (level == 0)
2089		return 1;
2090
2091	mid = path->nodes[level];
2092	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2093
2094	if (level < BTRFS_MAX_LEVEL - 1) {
2095		parent = path->nodes[level + 1];
2096		pslot = path->slots[level + 1];
2097	}
2098
2099	if (!parent)
2100		return 1;
2101
2102	left = btrfs_read_node_slot(parent, pslot - 1);
2103	if (IS_ERR(left))
2104		left = NULL;
2105
2106	/* first, try to make some room in the middle buffer */
2107	if (left) {
2108		u32 left_nr;
2109
2110		btrfs_tree_lock(left);
2111		btrfs_set_lock_blocking_write(left);
2112
2113		left_nr = btrfs_header_nritems(left);
2114		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2115			wret = 1;
2116		} else {
2117			ret = btrfs_cow_block(trans, root, left, parent,
2118					      pslot - 1, &left);
2119			if (ret)
2120				wret = 1;
2121			else {
2122				wret = push_node_left(trans, left, mid, 0);
 
2123			}
2124		}
2125		if (wret < 0)
2126			ret = wret;
2127		if (wret == 0) {
2128			struct btrfs_disk_key disk_key;
2129			orig_slot += left_nr;
2130			btrfs_node_key(mid, &disk_key, 0);
2131			ret = tree_mod_log_insert_key(parent, pslot,
2132					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2133			BUG_ON(ret < 0);
2134			btrfs_set_node_key(parent, &disk_key, pslot);
2135			btrfs_mark_buffer_dirty(parent);
2136			if (btrfs_header_nritems(left) > orig_slot) {
2137				path->nodes[level] = left;
2138				path->slots[level + 1] -= 1;
2139				path->slots[level] = orig_slot;
2140				btrfs_tree_unlock(mid);
2141				free_extent_buffer(mid);
2142			} else {
2143				orig_slot -=
2144					btrfs_header_nritems(left);
2145				path->slots[level] = orig_slot;
2146				btrfs_tree_unlock(left);
2147				free_extent_buffer(left);
2148			}
2149			return 0;
2150		}
2151		btrfs_tree_unlock(left);
2152		free_extent_buffer(left);
2153	}
2154	right = btrfs_read_node_slot(parent, pslot + 1);
2155	if (IS_ERR(right))
2156		right = NULL;
2157
2158	/*
2159	 * then try to empty the right most buffer into the middle
2160	 */
2161	if (right) {
2162		u32 right_nr;
2163
2164		btrfs_tree_lock(right);
2165		btrfs_set_lock_blocking_write(right);
2166
2167		right_nr = btrfs_header_nritems(right);
2168		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2169			wret = 1;
2170		} else {
2171			ret = btrfs_cow_block(trans, root, right,
2172					      parent, pslot + 1,
2173					      &right);
2174			if (ret)
2175				wret = 1;
2176			else {
2177				wret = balance_node_right(trans, right, mid);
 
2178			}
2179		}
2180		if (wret < 0)
2181			ret = wret;
2182		if (wret == 0) {
2183			struct btrfs_disk_key disk_key;
2184
2185			btrfs_node_key(right, &disk_key, 0);
2186			ret = tree_mod_log_insert_key(parent, pslot + 1,
2187					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2188			BUG_ON(ret < 0);
2189			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2190			btrfs_mark_buffer_dirty(parent);
2191
2192			if (btrfs_header_nritems(mid) <= orig_slot) {
2193				path->nodes[level] = right;
2194				path->slots[level + 1] += 1;
2195				path->slots[level] = orig_slot -
2196					btrfs_header_nritems(mid);
2197				btrfs_tree_unlock(mid);
2198				free_extent_buffer(mid);
2199			} else {
2200				btrfs_tree_unlock(right);
2201				free_extent_buffer(right);
2202			}
2203			return 0;
2204		}
2205		btrfs_tree_unlock(right);
2206		free_extent_buffer(right);
2207	}
2208	return 1;
2209}
2210
2211/*
2212 * readahead one full node of leaves, finding things that are close
2213 * to the block in 'slot', and triggering ra on them.
2214 */
2215static void reada_for_search(struct btrfs_fs_info *fs_info,
2216			     struct btrfs_path *path,
2217			     int level, int slot, u64 objectid)
2218{
2219	struct extent_buffer *node;
2220	struct btrfs_disk_key disk_key;
2221	u32 nritems;
2222	u64 search;
2223	u64 target;
2224	u64 nread = 0;
2225	struct extent_buffer *eb;
2226	u32 nr;
2227	u32 blocksize;
2228	u32 nscan = 0;
2229
2230	if (level != 1)
2231		return;
2232
2233	if (!path->nodes[level])
2234		return;
2235
2236	node = path->nodes[level];
2237
2238	search = btrfs_node_blockptr(node, slot);
2239	blocksize = fs_info->nodesize;
2240	eb = find_extent_buffer(fs_info, search);
2241	if (eb) {
2242		free_extent_buffer(eb);
2243		return;
2244	}
2245
2246	target = search;
2247
2248	nritems = btrfs_header_nritems(node);
2249	nr = slot;
2250
2251	while (1) {
2252		if (path->reada == READA_BACK) {
2253			if (nr == 0)
2254				break;
2255			nr--;
2256		} else if (path->reada == READA_FORWARD) {
2257			nr++;
2258			if (nr >= nritems)
2259				break;
2260		}
2261		if (path->reada == READA_BACK && objectid) {
2262			btrfs_node_key(node, &disk_key, nr);
2263			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2264				break;
2265		}
2266		search = btrfs_node_blockptr(node, nr);
2267		if ((search <= target && target - search <= 65536) ||
2268		    (search > target && search - target <= 65536)) {
2269			readahead_tree_block(fs_info, search);
2270			nread += blocksize;
2271		}
2272		nscan++;
2273		if ((nread > 65536 || nscan > 32))
2274			break;
2275	}
2276}
2277
2278static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2279				       struct btrfs_path *path, int level)
2280{
2281	int slot;
2282	int nritems;
2283	struct extent_buffer *parent;
2284	struct extent_buffer *eb;
2285	u64 gen;
2286	u64 block1 = 0;
2287	u64 block2 = 0;
2288
2289	parent = path->nodes[level + 1];
2290	if (!parent)
2291		return;
2292
2293	nritems = btrfs_header_nritems(parent);
2294	slot = path->slots[level + 1];
2295
2296	if (slot > 0) {
2297		block1 = btrfs_node_blockptr(parent, slot - 1);
2298		gen = btrfs_node_ptr_generation(parent, slot - 1);
2299		eb = find_extent_buffer(fs_info, block1);
2300		/*
2301		 * if we get -eagain from btrfs_buffer_uptodate, we
2302		 * don't want to return eagain here.  That will loop
2303		 * forever
2304		 */
2305		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2306			block1 = 0;
2307		free_extent_buffer(eb);
2308	}
2309	if (slot + 1 < nritems) {
2310		block2 = btrfs_node_blockptr(parent, slot + 1);
2311		gen = btrfs_node_ptr_generation(parent, slot + 1);
2312		eb = find_extent_buffer(fs_info, block2);
2313		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2314			block2 = 0;
2315		free_extent_buffer(eb);
2316	}
2317
2318	if (block1)
2319		readahead_tree_block(fs_info, block1);
2320	if (block2)
2321		readahead_tree_block(fs_info, block2);
2322}
2323
2324
2325/*
2326 * when we walk down the tree, it is usually safe to unlock the higher layers
2327 * in the tree.  The exceptions are when our path goes through slot 0, because
2328 * operations on the tree might require changing key pointers higher up in the
2329 * tree.
2330 *
2331 * callers might also have set path->keep_locks, which tells this code to keep
2332 * the lock if the path points to the last slot in the block.  This is part of
2333 * walking through the tree, and selecting the next slot in the higher block.
2334 *
2335 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2336 * if lowest_unlock is 1, level 0 won't be unlocked
2337 */
2338static noinline void unlock_up(struct btrfs_path *path, int level,
2339			       int lowest_unlock, int min_write_lock_level,
2340			       int *write_lock_level)
2341{
2342	int i;
2343	int skip_level = level;
2344	int no_skips = 0;
2345	struct extent_buffer *t;
2346
2347	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2348		if (!path->nodes[i])
2349			break;
2350		if (!path->locks[i])
2351			break;
2352		if (!no_skips && path->slots[i] == 0) {
2353			skip_level = i + 1;
2354			continue;
2355		}
2356		if (!no_skips && path->keep_locks) {
2357			u32 nritems;
2358			t = path->nodes[i];
2359			nritems = btrfs_header_nritems(t);
2360			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2361				skip_level = i + 1;
2362				continue;
2363			}
2364		}
2365		if (skip_level < i && i >= lowest_unlock)
2366			no_skips = 1;
2367
2368		t = path->nodes[i];
2369		if (i >= lowest_unlock && i > skip_level) {
2370			btrfs_tree_unlock_rw(t, path->locks[i]);
2371			path->locks[i] = 0;
2372			if (write_lock_level &&
2373			    i > min_write_lock_level &&
2374			    i <= *write_lock_level) {
2375				*write_lock_level = i - 1;
2376			}
2377		}
2378	}
2379}
2380
2381/*
2382 * This releases any locks held in the path starting at level and
2383 * going all the way up to the root.
2384 *
2385 * btrfs_search_slot will keep the lock held on higher nodes in a few
2386 * corner cases, such as COW of the block at slot zero in the node.  This
2387 * ignores those rules, and it should only be called when there are no
2388 * more updates to be done higher up in the tree.
2389 */
2390noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2391{
2392	int i;
2393
2394	if (path->keep_locks)
2395		return;
2396
2397	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2398		if (!path->nodes[i])
2399			continue;
2400		if (!path->locks[i])
2401			continue;
2402		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2403		path->locks[i] = 0;
2404	}
2405}
2406
2407/*
2408 * helper function for btrfs_search_slot.  The goal is to find a block
2409 * in cache without setting the path to blocking.  If we find the block
2410 * we return zero and the path is unchanged.
2411 *
2412 * If we can't find the block, we set the path blocking and do some
2413 * reada.  -EAGAIN is returned and the search must be repeated.
2414 */
2415static int
2416read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2417		      struct extent_buffer **eb_ret, int level, int slot,
2418		      const struct btrfs_key *key)
2419{
2420	struct btrfs_fs_info *fs_info = root->fs_info;
2421	u64 blocknr;
2422	u64 gen;
2423	struct extent_buffer *b = *eb_ret;
2424	struct extent_buffer *tmp;
2425	struct btrfs_key first_key;
2426	int ret;
2427	int parent_level;
2428
2429	blocknr = btrfs_node_blockptr(b, slot);
2430	gen = btrfs_node_ptr_generation(b, slot);
2431	parent_level = btrfs_header_level(b);
2432	btrfs_node_key_to_cpu(b, &first_key, slot);
2433
2434	tmp = find_extent_buffer(fs_info, blocknr);
2435	if (tmp) {
2436		/* first we do an atomic uptodate check */
2437		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2438			/*
2439			 * Do extra check for first_key, eb can be stale due to
2440			 * being cached, read from scrub, or have multiple
2441			 * parents (shared tree blocks).
2442			 */
2443			if (btrfs_verify_level_key(tmp,
2444					parent_level - 1, &first_key, gen)) {
2445				free_extent_buffer(tmp);
2446				return -EUCLEAN;
2447			}
2448			*eb_ret = tmp;
2449			return 0;
2450		}
2451
2452		/* the pages were up to date, but we failed
2453		 * the generation number check.  Do a full
2454		 * read for the generation number that is correct.
2455		 * We must do this without dropping locks so
2456		 * we can trust our generation number
2457		 */
2458		btrfs_set_path_blocking(p);
2459
2460		/* now we're allowed to do a blocking uptodate check */
2461		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2462		if (!ret) {
2463			*eb_ret = tmp;
2464			return 0;
2465		}
2466		free_extent_buffer(tmp);
2467		btrfs_release_path(p);
2468		return -EIO;
2469	}
2470
2471	/*
2472	 * reduce lock contention at high levels
2473	 * of the btree by dropping locks before
2474	 * we read.  Don't release the lock on the current
2475	 * level because we need to walk this node to figure
2476	 * out which blocks to read.
2477	 */
2478	btrfs_unlock_up_safe(p, level + 1);
2479	btrfs_set_path_blocking(p);
2480
 
2481	if (p->reada != READA_NONE)
2482		reada_for_search(fs_info, p, level, slot, key->objectid);
2483
2484	ret = -EAGAIN;
2485	tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2486			      &first_key);
2487	if (!IS_ERR(tmp)) {
2488		/*
2489		 * If the read above didn't mark this buffer up to date,
2490		 * it will never end up being up to date.  Set ret to EIO now
2491		 * and give up so that our caller doesn't loop forever
2492		 * on our EAGAINs.
2493		 */
2494		if (!extent_buffer_uptodate(tmp))
2495			ret = -EIO;
2496		free_extent_buffer(tmp);
2497	} else {
2498		ret = PTR_ERR(tmp);
2499	}
2500
2501	btrfs_release_path(p);
2502	return ret;
2503}
2504
2505/*
2506 * helper function for btrfs_search_slot.  This does all of the checks
2507 * for node-level blocks and does any balancing required based on
2508 * the ins_len.
2509 *
2510 * If no extra work was required, zero is returned.  If we had to
2511 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2512 * start over
2513 */
2514static int
2515setup_nodes_for_search(struct btrfs_trans_handle *trans,
2516		       struct btrfs_root *root, struct btrfs_path *p,
2517		       struct extent_buffer *b, int level, int ins_len,
2518		       int *write_lock_level)
2519{
2520	struct btrfs_fs_info *fs_info = root->fs_info;
2521	int ret;
2522
2523	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2524	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2525		int sret;
2526
2527		if (*write_lock_level < level + 1) {
2528			*write_lock_level = level + 1;
2529			btrfs_release_path(p);
2530			goto again;
2531		}
2532
2533		btrfs_set_path_blocking(p);
2534		reada_for_balance(fs_info, p, level);
2535		sret = split_node(trans, root, p, level);
 
2536
2537		BUG_ON(sret > 0);
2538		if (sret) {
2539			ret = sret;
2540			goto done;
2541		}
2542		b = p->nodes[level];
2543	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2544		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2545		int sret;
2546
2547		if (*write_lock_level < level + 1) {
2548			*write_lock_level = level + 1;
2549			btrfs_release_path(p);
2550			goto again;
2551		}
2552
2553		btrfs_set_path_blocking(p);
2554		reada_for_balance(fs_info, p, level);
2555		sret = balance_level(trans, root, p, level);
 
2556
2557		if (sret) {
2558			ret = sret;
2559			goto done;
2560		}
2561		b = p->nodes[level];
2562		if (!b) {
2563			btrfs_release_path(p);
2564			goto again;
2565		}
2566		BUG_ON(btrfs_header_nritems(b) == 1);
2567	}
2568	return 0;
2569
2570again:
2571	ret = -EAGAIN;
2572done:
2573	return ret;
2574}
2575
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2576static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2577		      int level, int *prev_cmp, int *slot)
2578{
2579	if (*prev_cmp != 0) {
2580		*prev_cmp = btrfs_bin_search(b, key, level, slot);
2581		return *prev_cmp;
2582	}
2583
 
2584	*slot = 0;
2585
2586	return 0;
2587}
2588
2589int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2590		u64 iobjectid, u64 ioff, u8 key_type,
2591		struct btrfs_key *found_key)
2592{
2593	int ret;
2594	struct btrfs_key key;
2595	struct extent_buffer *eb;
2596
2597	ASSERT(path);
2598	ASSERT(found_key);
2599
2600	key.type = key_type;
2601	key.objectid = iobjectid;
2602	key.offset = ioff;
2603
2604	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2605	if (ret < 0)
2606		return ret;
2607
2608	eb = path->nodes[0];
2609	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2610		ret = btrfs_next_leaf(fs_root, path);
2611		if (ret)
2612			return ret;
2613		eb = path->nodes[0];
2614	}
2615
2616	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2617	if (found_key->type != key.type ||
2618			found_key->objectid != key.objectid)
2619		return 1;
2620
2621	return 0;
2622}
2623
2624static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2625							struct btrfs_path *p,
2626							int write_lock_level)
2627{
2628	struct btrfs_fs_info *fs_info = root->fs_info;
2629	struct extent_buffer *b;
2630	int root_lock;
2631	int level = 0;
2632
2633	/* We try very hard to do read locks on the root */
2634	root_lock = BTRFS_READ_LOCK;
2635
2636	if (p->search_commit_root) {
2637		/*
2638		 * The commit roots are read only so we always do read locks,
2639		 * and we always must hold the commit_root_sem when doing
2640		 * searches on them, the only exception is send where we don't
2641		 * want to block transaction commits for a long time, so
2642		 * we need to clone the commit root in order to avoid races
2643		 * with transaction commits that create a snapshot of one of
2644		 * the roots used by a send operation.
2645		 */
2646		if (p->need_commit_sem) {
2647			down_read(&fs_info->commit_root_sem);
2648			b = btrfs_clone_extent_buffer(root->commit_root);
2649			up_read(&fs_info->commit_root_sem);
2650			if (!b)
2651				return ERR_PTR(-ENOMEM);
2652
2653		} else {
2654			b = root->commit_root;
2655			extent_buffer_get(b);
2656		}
2657		level = btrfs_header_level(b);
2658		/*
2659		 * Ensure that all callers have set skip_locking when
2660		 * p->search_commit_root = 1.
2661		 */
2662		ASSERT(p->skip_locking == 1);
2663
2664		goto out;
2665	}
2666
2667	if (p->skip_locking) {
2668		b = btrfs_root_node(root);
2669		level = btrfs_header_level(b);
2670		goto out;
2671	}
2672
2673	/*
2674	 * If the level is set to maximum, we can skip trying to get the read
2675	 * lock.
2676	 */
2677	if (write_lock_level < BTRFS_MAX_LEVEL) {
2678		/*
2679		 * We don't know the level of the root node until we actually
2680		 * have it read locked
2681		 */
2682		b = btrfs_read_lock_root_node(root);
2683		level = btrfs_header_level(b);
2684		if (level > write_lock_level)
2685			goto out;
2686
2687		/* Whoops, must trade for write lock */
2688		btrfs_tree_read_unlock(b);
2689		free_extent_buffer(b);
2690	}
2691
2692	b = btrfs_lock_root_node(root);
2693	root_lock = BTRFS_WRITE_LOCK;
2694
2695	/* The level might have changed, check again */
2696	level = btrfs_header_level(b);
2697
2698out:
2699	p->nodes[level] = b;
2700	if (!p->skip_locking)
2701		p->locks[level] = root_lock;
2702	/*
2703	 * Callers are responsible for dropping b's references.
2704	 */
2705	return b;
2706}
2707
2708
2709/*
2710 * btrfs_search_slot - look for a key in a tree and perform necessary
2711 * modifications to preserve tree invariants.
2712 *
2713 * @trans:	Handle of transaction, used when modifying the tree
2714 * @p:		Holds all btree nodes along the search path
2715 * @root:	The root node of the tree
2716 * @key:	The key we are looking for
2717 * @ins_len:	Indicates purpose of search, for inserts it is 1, for
2718 *		deletions it's -1. 0 for plain searches
2719 * @cow:	boolean should CoW operations be performed. Must always be 1
2720 *		when modifying the tree.
2721 *
2722 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2723 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2724 *
2725 * If @key is found, 0 is returned and you can find the item in the leaf level
2726 * of the path (level 0)
2727 *
2728 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2729 * points to the slot where it should be inserted
2730 *
2731 * If an error is encountered while searching the tree a negative error number
2732 * is returned
2733 */
2734int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2735		      const struct btrfs_key *key, struct btrfs_path *p,
2736		      int ins_len, int cow)
2737{
 
2738	struct extent_buffer *b;
2739	int slot;
2740	int ret;
2741	int err;
2742	int level;
2743	int lowest_unlock = 1;
 
2744	/* everything at write_lock_level or lower must be write locked */
2745	int write_lock_level = 0;
2746	u8 lowest_level = 0;
2747	int min_write_lock_level;
2748	int prev_cmp;
2749
2750	lowest_level = p->lowest_level;
2751	WARN_ON(lowest_level && ins_len > 0);
2752	WARN_ON(p->nodes[0] != NULL);
2753	BUG_ON(!cow && ins_len);
2754
2755	if (ins_len < 0) {
2756		lowest_unlock = 2;
2757
2758		/* when we are removing items, we might have to go up to level
2759		 * two as we update tree pointers  Make sure we keep write
2760		 * for those levels as well
2761		 */
2762		write_lock_level = 2;
2763	} else if (ins_len > 0) {
2764		/*
2765		 * for inserting items, make sure we have a write lock on
2766		 * level 1 so we can update keys
2767		 */
2768		write_lock_level = 1;
2769	}
2770
2771	if (!cow)
2772		write_lock_level = -1;
2773
2774	if (cow && (p->keep_locks || p->lowest_level))
2775		write_lock_level = BTRFS_MAX_LEVEL;
2776
2777	min_write_lock_level = write_lock_level;
2778
2779again:
2780	prev_cmp = -1;
2781	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2782	if (IS_ERR(b)) {
2783		ret = PTR_ERR(b);
2784		goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2785	}
 
 
 
2786
2787	while (b) {
2788		level = btrfs_header_level(b);
2789
2790		/*
2791		 * setup the path here so we can release it under lock
2792		 * contention with the cow code
2793		 */
2794		if (cow) {
2795			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2796
2797			/*
2798			 * if we don't really need to cow this block
2799			 * then we don't want to set the path blocking,
2800			 * so we test it here
2801			 */
2802			if (!should_cow_block(trans, root, b)) {
2803				trans->dirty = true;
2804				goto cow_done;
2805			}
2806
2807			/*
2808			 * must have write locks on this node and the
2809			 * parent
2810			 */
2811			if (level > write_lock_level ||
2812			    (level + 1 > write_lock_level &&
2813			    level + 1 < BTRFS_MAX_LEVEL &&
2814			    p->nodes[level + 1])) {
2815				write_lock_level = level + 1;
2816				btrfs_release_path(p);
2817				goto again;
2818			}
2819
2820			btrfs_set_path_blocking(p);
2821			if (last_level)
2822				err = btrfs_cow_block(trans, root, b, NULL, 0,
2823						      &b);
2824			else
2825				err = btrfs_cow_block(trans, root, b,
2826						      p->nodes[level + 1],
2827						      p->slots[level + 1], &b);
2828			if (err) {
2829				ret = err;
2830				goto done;
2831			}
2832		}
2833cow_done:
2834		p->nodes[level] = b;
2835		/*
2836		 * Leave path with blocking locks to avoid massive
2837		 * lock context switch, this is made on purpose.
2838		 */
2839
2840		/*
2841		 * we have a lock on b and as long as we aren't changing
2842		 * the tree, there is no way to for the items in b to change.
2843		 * It is safe to drop the lock on our parent before we
2844		 * go through the expensive btree search on b.
2845		 *
2846		 * If we're inserting or deleting (ins_len != 0), then we might
2847		 * be changing slot zero, which may require changing the parent.
2848		 * So, we can't drop the lock until after we know which slot
2849		 * we're operating on.
2850		 */
2851		if (!ins_len && !p->keep_locks) {
2852			int u = level + 1;
2853
2854			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2855				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2856				p->locks[u] = 0;
2857			}
2858		}
2859
2860		ret = key_search(b, key, level, &prev_cmp, &slot);
2861		if (ret < 0)
2862			goto done;
2863
2864		if (level != 0) {
2865			int dec = 0;
2866			if (ret && slot > 0) {
2867				dec = 1;
2868				slot -= 1;
2869			}
2870			p->slots[level] = slot;
2871			err = setup_nodes_for_search(trans, root, p, b, level,
2872					     ins_len, &write_lock_level);
2873			if (err == -EAGAIN)
2874				goto again;
2875			if (err) {
2876				ret = err;
2877				goto done;
2878			}
2879			b = p->nodes[level];
2880			slot = p->slots[level];
2881
2882			/*
2883			 * slot 0 is special, if we change the key
2884			 * we have to update the parent pointer
2885			 * which means we must have a write lock
2886			 * on the parent
2887			 */
2888			if (slot == 0 && ins_len &&
2889			    write_lock_level < level + 1) {
2890				write_lock_level = level + 1;
2891				btrfs_release_path(p);
2892				goto again;
2893			}
2894
2895			unlock_up(p, level, lowest_unlock,
2896				  min_write_lock_level, &write_lock_level);
2897
2898			if (level == lowest_level) {
2899				if (dec)
2900					p->slots[level]++;
2901				goto done;
2902			}
2903
2904			err = read_block_for_search(root, p, &b, level,
2905						    slot, key);
2906			if (err == -EAGAIN)
2907				goto again;
2908			if (err) {
2909				ret = err;
2910				goto done;
2911			}
2912
2913			if (!p->skip_locking) {
2914				level = btrfs_header_level(b);
2915				if (level <= write_lock_level) {
2916					if (!btrfs_try_tree_write_lock(b)) {
 
2917						btrfs_set_path_blocking(p);
2918						btrfs_tree_lock(b);
 
 
2919					}
2920					p->locks[level] = BTRFS_WRITE_LOCK;
2921				} else {
2922					if (!btrfs_tree_read_lock_atomic(b)) {
 
2923						btrfs_set_path_blocking(p);
2924						btrfs_tree_read_lock(b);
 
 
2925					}
2926					p->locks[level] = BTRFS_READ_LOCK;
2927				}
2928				p->nodes[level] = b;
2929			}
2930		} else {
2931			p->slots[level] = slot;
2932			if (ins_len > 0 &&
2933			    btrfs_leaf_free_space(b) < ins_len) {
2934				if (write_lock_level < 1) {
2935					write_lock_level = 1;
2936					btrfs_release_path(p);
2937					goto again;
2938				}
2939
2940				btrfs_set_path_blocking(p);
2941				err = split_leaf(trans, root, key,
2942						 p, ins_len, ret == 0);
 
2943
2944				BUG_ON(err > 0);
2945				if (err) {
2946					ret = err;
2947					goto done;
2948				}
2949			}
2950			if (!p->search_for_split)
2951				unlock_up(p, level, lowest_unlock,
2952					  min_write_lock_level, NULL);
2953			goto done;
2954		}
2955	}
2956	ret = 1;
2957done:
2958	/*
2959	 * we don't really know what they plan on doing with the path
2960	 * from here on, so for now just mark it as blocking
2961	 */
2962	if (!p->leave_spinning)
2963		btrfs_set_path_blocking(p);
2964	if (ret < 0 && !p->skip_release_on_error)
2965		btrfs_release_path(p);
2966	return ret;
2967}
2968
2969/*
2970 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2971 * current state of the tree together with the operations recorded in the tree
2972 * modification log to search for the key in a previous version of this tree, as
2973 * denoted by the time_seq parameter.
2974 *
2975 * Naturally, there is no support for insert, delete or cow operations.
2976 *
2977 * The resulting path and return value will be set up as if we called
2978 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2979 */
2980int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2981			  struct btrfs_path *p, u64 time_seq)
2982{
2983	struct btrfs_fs_info *fs_info = root->fs_info;
2984	struct extent_buffer *b;
2985	int slot;
2986	int ret;
2987	int err;
2988	int level;
2989	int lowest_unlock = 1;
2990	u8 lowest_level = 0;
2991	int prev_cmp = -1;
2992
2993	lowest_level = p->lowest_level;
2994	WARN_ON(p->nodes[0] != NULL);
2995
2996	if (p->search_commit_root) {
2997		BUG_ON(time_seq);
2998		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2999	}
3000
3001again:
3002	b = get_old_root(root, time_seq);
3003	if (!b) {
3004		ret = -EIO;
3005		goto done;
3006	}
3007	level = btrfs_header_level(b);
3008	p->locks[level] = BTRFS_READ_LOCK;
3009
3010	while (b) {
3011		level = btrfs_header_level(b);
3012		p->nodes[level] = b;
 
3013
3014		/*
3015		 * we have a lock on b and as long as we aren't changing
3016		 * the tree, there is no way to for the items in b to change.
3017		 * It is safe to drop the lock on our parent before we
3018		 * go through the expensive btree search on b.
3019		 */
3020		btrfs_unlock_up_safe(p, level + 1);
3021
3022		/*
3023		 * Since we can unwind ebs we want to do a real search every
3024		 * time.
3025		 */
3026		prev_cmp = -1;
3027		ret = key_search(b, key, level, &prev_cmp, &slot);
3028		if (ret < 0)
3029			goto done;
3030
3031		if (level != 0) {
3032			int dec = 0;
3033			if (ret && slot > 0) {
3034				dec = 1;
3035				slot -= 1;
3036			}
3037			p->slots[level] = slot;
3038			unlock_up(p, level, lowest_unlock, 0, NULL);
3039
3040			if (level == lowest_level) {
3041				if (dec)
3042					p->slots[level]++;
3043				goto done;
3044			}
3045
3046			err = read_block_for_search(root, p, &b, level,
3047						    slot, key);
3048			if (err == -EAGAIN)
3049				goto again;
3050			if (err) {
3051				ret = err;
3052				goto done;
3053			}
3054
3055			level = btrfs_header_level(b);
3056			if (!btrfs_tree_read_lock_atomic(b)) {
 
3057				btrfs_set_path_blocking(p);
3058				btrfs_tree_read_lock(b);
 
 
3059			}
3060			b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3061			if (!b) {
3062				ret = -ENOMEM;
3063				goto done;
3064			}
3065			p->locks[level] = BTRFS_READ_LOCK;
3066			p->nodes[level] = b;
3067		} else {
3068			p->slots[level] = slot;
3069			unlock_up(p, level, lowest_unlock, 0, NULL);
3070			goto done;
3071		}
3072	}
3073	ret = 1;
3074done:
3075	if (!p->leave_spinning)
3076		btrfs_set_path_blocking(p);
3077	if (ret < 0)
3078		btrfs_release_path(p);
3079
3080	return ret;
3081}
3082
3083/*
3084 * helper to use instead of search slot if no exact match is needed but
3085 * instead the next or previous item should be returned.
3086 * When find_higher is true, the next higher item is returned, the next lower
3087 * otherwise.
3088 * When return_any and find_higher are both true, and no higher item is found,
3089 * return the next lower instead.
3090 * When return_any is true and find_higher is false, and no lower item is found,
3091 * return the next higher instead.
3092 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3093 * < 0 on error
3094 */
3095int btrfs_search_slot_for_read(struct btrfs_root *root,
3096			       const struct btrfs_key *key,
3097			       struct btrfs_path *p, int find_higher,
3098			       int return_any)
3099{
3100	int ret;
3101	struct extent_buffer *leaf;
3102
3103again:
3104	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3105	if (ret <= 0)
3106		return ret;
3107	/*
3108	 * a return value of 1 means the path is at the position where the
3109	 * item should be inserted. Normally this is the next bigger item,
3110	 * but in case the previous item is the last in a leaf, path points
3111	 * to the first free slot in the previous leaf, i.e. at an invalid
3112	 * item.
3113	 */
3114	leaf = p->nodes[0];
3115
3116	if (find_higher) {
3117		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3118			ret = btrfs_next_leaf(root, p);
3119			if (ret <= 0)
3120				return ret;
3121			if (!return_any)
3122				return 1;
3123			/*
3124			 * no higher item found, return the next
3125			 * lower instead
3126			 */
3127			return_any = 0;
3128			find_higher = 0;
3129			btrfs_release_path(p);
3130			goto again;
3131		}
3132	} else {
3133		if (p->slots[0] == 0) {
3134			ret = btrfs_prev_leaf(root, p);
3135			if (ret < 0)
3136				return ret;
3137			if (!ret) {
3138				leaf = p->nodes[0];
3139				if (p->slots[0] == btrfs_header_nritems(leaf))
3140					p->slots[0]--;
3141				return 0;
3142			}
3143			if (!return_any)
3144				return 1;
3145			/*
3146			 * no lower item found, return the next
3147			 * higher instead
3148			 */
3149			return_any = 0;
3150			find_higher = 1;
3151			btrfs_release_path(p);
3152			goto again;
3153		} else {
3154			--p->slots[0];
3155		}
3156	}
3157	return 0;
3158}
3159
3160/*
3161 * adjust the pointers going up the tree, starting at level
3162 * making sure the right key of each node is points to 'key'.
3163 * This is used after shifting pointers to the left, so it stops
3164 * fixing up pointers when a given leaf/node is not in slot 0 of the
3165 * higher levels
3166 *
3167 */
3168static void fixup_low_keys(struct btrfs_path *path,
 
3169			   struct btrfs_disk_key *key, int level)
3170{
3171	int i;
3172	struct extent_buffer *t;
3173	int ret;
3174
3175	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3176		int tslot = path->slots[i];
3177
3178		if (!path->nodes[i])
3179			break;
3180		t = path->nodes[i];
3181		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3182				GFP_ATOMIC);
3183		BUG_ON(ret < 0);
3184		btrfs_set_node_key(t, key, tslot);
3185		btrfs_mark_buffer_dirty(path->nodes[i]);
3186		if (tslot != 0)
3187			break;
3188	}
3189}
3190
3191/*
3192 * update item key.
3193 *
3194 * This function isn't completely safe. It's the caller's responsibility
3195 * that the new key won't break the order
3196 */
3197void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3198			     struct btrfs_path *path,
3199			     const struct btrfs_key *new_key)
3200{
3201	struct btrfs_disk_key disk_key;
3202	struct extent_buffer *eb;
3203	int slot;
3204
3205	eb = path->nodes[0];
3206	slot = path->slots[0];
3207	if (slot > 0) {
3208		btrfs_item_key(eb, &disk_key, slot - 1);
3209		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
3210			btrfs_crit(fs_info,
3211		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3212				   slot, btrfs_disk_key_objectid(&disk_key),
3213				   btrfs_disk_key_type(&disk_key),
3214				   btrfs_disk_key_offset(&disk_key),
3215				   new_key->objectid, new_key->type,
3216				   new_key->offset);
3217			btrfs_print_leaf(eb);
3218			BUG();
3219		}
3220	}
3221	if (slot < btrfs_header_nritems(eb) - 1) {
3222		btrfs_item_key(eb, &disk_key, slot + 1);
3223		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
3224			btrfs_crit(fs_info,
3225		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3226				   slot, btrfs_disk_key_objectid(&disk_key),
3227				   btrfs_disk_key_type(&disk_key),
3228				   btrfs_disk_key_offset(&disk_key),
3229				   new_key->objectid, new_key->type,
3230				   new_key->offset);
3231			btrfs_print_leaf(eb);
3232			BUG();
3233		}
3234	}
3235
3236	btrfs_cpu_key_to_disk(&disk_key, new_key);
3237	btrfs_set_item_key(eb, &disk_key, slot);
3238	btrfs_mark_buffer_dirty(eb);
3239	if (slot == 0)
3240		fixup_low_keys(path, &disk_key, 1);
3241}
3242
3243/*
3244 * try to push data from one node into the next node left in the
3245 * tree.
3246 *
3247 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3248 * error, and > 0 if there was no room in the left hand block.
3249 */
3250static int push_node_left(struct btrfs_trans_handle *trans,
 
3251			  struct extent_buffer *dst,
3252			  struct extent_buffer *src, int empty)
3253{
3254	struct btrfs_fs_info *fs_info = trans->fs_info;
3255	int push_items = 0;
3256	int src_nritems;
3257	int dst_nritems;
3258	int ret = 0;
3259
3260	src_nritems = btrfs_header_nritems(src);
3261	dst_nritems = btrfs_header_nritems(dst);
3262	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3263	WARN_ON(btrfs_header_generation(src) != trans->transid);
3264	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3265
3266	if (!empty && src_nritems <= 8)
3267		return 1;
3268
3269	if (push_items <= 0)
3270		return 1;
3271
3272	if (empty) {
3273		push_items = min(src_nritems, push_items);
3274		if (push_items < src_nritems) {
3275			/* leave at least 8 pointers in the node if
3276			 * we aren't going to empty it
3277			 */
3278			if (src_nritems - push_items < 8) {
3279				if (push_items <= 8)
3280					return 1;
3281				push_items -= 8;
3282			}
3283		}
3284	} else
3285		push_items = min(src_nritems - 8, push_items);
3286
3287	ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
 
3288	if (ret) {
3289		btrfs_abort_transaction(trans, ret);
3290		return ret;
3291	}
3292	copy_extent_buffer(dst, src,
3293			   btrfs_node_key_ptr_offset(dst_nritems),
3294			   btrfs_node_key_ptr_offset(0),
3295			   push_items * sizeof(struct btrfs_key_ptr));
3296
3297	if (push_items < src_nritems) {
3298		/*
3299		 * Don't call tree_mod_log_insert_move here, key removal was
3300		 * already fully logged by tree_mod_log_eb_copy above.
3301		 */
3302		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3303				      btrfs_node_key_ptr_offset(push_items),
3304				      (src_nritems - push_items) *
3305				      sizeof(struct btrfs_key_ptr));
3306	}
3307	btrfs_set_header_nritems(src, src_nritems - push_items);
3308	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3309	btrfs_mark_buffer_dirty(src);
3310	btrfs_mark_buffer_dirty(dst);
3311
3312	return ret;
3313}
3314
3315/*
3316 * try to push data from one node into the next node right in the
3317 * tree.
3318 *
3319 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3320 * error, and > 0 if there was no room in the right hand block.
3321 *
3322 * this will  only push up to 1/2 the contents of the left node over
3323 */
3324static int balance_node_right(struct btrfs_trans_handle *trans,
 
3325			      struct extent_buffer *dst,
3326			      struct extent_buffer *src)
3327{
3328	struct btrfs_fs_info *fs_info = trans->fs_info;
3329	int push_items = 0;
3330	int max_push;
3331	int src_nritems;
3332	int dst_nritems;
3333	int ret = 0;
3334
3335	WARN_ON(btrfs_header_generation(src) != trans->transid);
3336	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3337
3338	src_nritems = btrfs_header_nritems(src);
3339	dst_nritems = btrfs_header_nritems(dst);
3340	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3341	if (push_items <= 0)
3342		return 1;
3343
3344	if (src_nritems < 4)
3345		return 1;
3346
3347	max_push = src_nritems / 2 + 1;
3348	/* don't try to empty the node */
3349	if (max_push >= src_nritems)
3350		return 1;
3351
3352	if (max_push < push_items)
3353		push_items = max_push;
3354
3355	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3356	BUG_ON(ret < 0);
3357	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3358				      btrfs_node_key_ptr_offset(0),
3359				      (dst_nritems) *
3360				      sizeof(struct btrfs_key_ptr));
3361
3362	ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
3363				   push_items);
3364	if (ret) {
3365		btrfs_abort_transaction(trans, ret);
3366		return ret;
3367	}
3368	copy_extent_buffer(dst, src,
3369			   btrfs_node_key_ptr_offset(0),
3370			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3371			   push_items * sizeof(struct btrfs_key_ptr));
3372
3373	btrfs_set_header_nritems(src, src_nritems - push_items);
3374	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3375
3376	btrfs_mark_buffer_dirty(src);
3377	btrfs_mark_buffer_dirty(dst);
3378
3379	return ret;
3380}
3381
3382/*
3383 * helper function to insert a new root level in the tree.
3384 * A new node is allocated, and a single item is inserted to
3385 * point to the existing root
3386 *
3387 * returns zero on success or < 0 on failure.
3388 */
3389static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3390			   struct btrfs_root *root,
3391			   struct btrfs_path *path, int level)
3392{
3393	struct btrfs_fs_info *fs_info = root->fs_info;
3394	u64 lower_gen;
3395	struct extent_buffer *lower;
3396	struct extent_buffer *c;
3397	struct extent_buffer *old;
3398	struct btrfs_disk_key lower_key;
3399	int ret;
3400
3401	BUG_ON(path->nodes[level]);
3402	BUG_ON(path->nodes[level-1] != root->node);
3403
3404	lower = path->nodes[level-1];
3405	if (level == 1)
3406		btrfs_item_key(lower, &lower_key, 0);
3407	else
3408		btrfs_node_key(lower, &lower_key, 0);
3409
3410	c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3411					 root->node->start, 0);
3412	if (IS_ERR(c))
3413		return PTR_ERR(c);
3414
3415	root_add_used(root, fs_info->nodesize);
3416
 
3417	btrfs_set_header_nritems(c, 1);
 
 
 
 
 
 
 
 
 
3418	btrfs_set_node_key(c, &lower_key, 0);
3419	btrfs_set_node_blockptr(c, 0, lower->start);
3420	lower_gen = btrfs_header_generation(lower);
3421	WARN_ON(lower_gen != trans->transid);
3422
3423	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3424
3425	btrfs_mark_buffer_dirty(c);
3426
3427	old = root->node;
3428	ret = tree_mod_log_insert_root(root->node, c, 0);
3429	BUG_ON(ret < 0);
3430	rcu_assign_pointer(root->node, c);
3431
3432	/* the super has an extra ref to root->node */
3433	free_extent_buffer(old);
3434
3435	add_root_to_dirty_list(root);
3436	extent_buffer_get(c);
3437	path->nodes[level] = c;
3438	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3439	path->slots[level] = 0;
3440	return 0;
3441}
3442
3443/*
3444 * worker function to insert a single pointer in a node.
3445 * the node should have enough room for the pointer already
3446 *
3447 * slot and level indicate where you want the key to go, and
3448 * blocknr is the block the key points to.
3449 */
3450static void insert_ptr(struct btrfs_trans_handle *trans,
3451		       struct btrfs_path *path,
3452		       struct btrfs_disk_key *key, u64 bytenr,
3453		       int slot, int level)
3454{
3455	struct extent_buffer *lower;
3456	int nritems;
3457	int ret;
3458
3459	BUG_ON(!path->nodes[level]);
3460	btrfs_assert_tree_locked(path->nodes[level]);
3461	lower = path->nodes[level];
3462	nritems = btrfs_header_nritems(lower);
3463	BUG_ON(slot > nritems);
3464	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3465	if (slot != nritems) {
3466		if (level) {
3467			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3468					nritems - slot);
3469			BUG_ON(ret < 0);
3470		}
3471		memmove_extent_buffer(lower,
3472			      btrfs_node_key_ptr_offset(slot + 1),
3473			      btrfs_node_key_ptr_offset(slot),
3474			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3475	}
3476	if (level) {
3477		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3478				GFP_NOFS);
3479		BUG_ON(ret < 0);
3480	}
3481	btrfs_set_node_key(lower, key, slot);
3482	btrfs_set_node_blockptr(lower, slot, bytenr);
3483	WARN_ON(trans->transid == 0);
3484	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3485	btrfs_set_header_nritems(lower, nritems + 1);
3486	btrfs_mark_buffer_dirty(lower);
3487}
3488
3489/*
3490 * split the node at the specified level in path in two.
3491 * The path is corrected to point to the appropriate node after the split
3492 *
3493 * Before splitting this tries to make some room in the node by pushing
3494 * left and right, if either one works, it returns right away.
3495 *
3496 * returns 0 on success and < 0 on failure
3497 */
3498static noinline int split_node(struct btrfs_trans_handle *trans,
3499			       struct btrfs_root *root,
3500			       struct btrfs_path *path, int level)
3501{
3502	struct btrfs_fs_info *fs_info = root->fs_info;
3503	struct extent_buffer *c;
3504	struct extent_buffer *split;
3505	struct btrfs_disk_key disk_key;
3506	int mid;
3507	int ret;
3508	u32 c_nritems;
3509
3510	c = path->nodes[level];
3511	WARN_ON(btrfs_header_generation(c) != trans->transid);
3512	if (c == root->node) {
3513		/*
3514		 * trying to split the root, lets make a new one
3515		 *
3516		 * tree mod log: We don't log_removal old root in
3517		 * insert_new_root, because that root buffer will be kept as a
3518		 * normal node. We are going to log removal of half of the
3519		 * elements below with tree_mod_log_eb_copy. We're holding a
3520		 * tree lock on the buffer, which is why we cannot race with
3521		 * other tree_mod_log users.
3522		 */
3523		ret = insert_new_root(trans, root, path, level + 1);
3524		if (ret)
3525			return ret;
3526	} else {
3527		ret = push_nodes_for_insert(trans, root, path, level);
3528		c = path->nodes[level];
3529		if (!ret && btrfs_header_nritems(c) <
3530		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3531			return 0;
3532		if (ret < 0)
3533			return ret;
3534	}
3535
3536	c_nritems = btrfs_header_nritems(c);
3537	mid = (c_nritems + 1) / 2;
3538	btrfs_node_key(c, &disk_key, mid);
3539
3540	split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3541					     c->start, 0);
3542	if (IS_ERR(split))
3543		return PTR_ERR(split);
3544
3545	root_add_used(root, fs_info->nodesize);
3546	ASSERT(btrfs_header_level(c) == level);
3547
3548	ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
 
 
 
 
 
 
 
 
 
3549	if (ret) {
3550		btrfs_abort_transaction(trans, ret);
3551		return ret;
3552	}
3553	copy_extent_buffer(split, c,
3554			   btrfs_node_key_ptr_offset(0),
3555			   btrfs_node_key_ptr_offset(mid),
3556			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3557	btrfs_set_header_nritems(split, c_nritems - mid);
3558	btrfs_set_header_nritems(c, mid);
3559	ret = 0;
3560
3561	btrfs_mark_buffer_dirty(c);
3562	btrfs_mark_buffer_dirty(split);
3563
3564	insert_ptr(trans, path, &disk_key, split->start,
3565		   path->slots[level + 1] + 1, level + 1);
3566
3567	if (path->slots[level] >= mid) {
3568		path->slots[level] -= mid;
3569		btrfs_tree_unlock(c);
3570		free_extent_buffer(c);
3571		path->nodes[level] = split;
3572		path->slots[level + 1] += 1;
3573	} else {
3574		btrfs_tree_unlock(split);
3575		free_extent_buffer(split);
3576	}
3577	return ret;
3578}
3579
3580/*
3581 * how many bytes are required to store the items in a leaf.  start
3582 * and nr indicate which items in the leaf to check.  This totals up the
3583 * space used both by the item structs and the item data
3584 */
3585static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3586{
3587	struct btrfs_item *start_item;
3588	struct btrfs_item *end_item;
3589	struct btrfs_map_token token;
3590	int data_len;
3591	int nritems = btrfs_header_nritems(l);
3592	int end = min(nritems, start + nr) - 1;
3593
3594	if (!nr)
3595		return 0;
3596	btrfs_init_map_token(&token, l);
3597	start_item = btrfs_item_nr(start);
3598	end_item = btrfs_item_nr(end);
3599	data_len = btrfs_token_item_offset(l, start_item, &token) +
3600		btrfs_token_item_size(l, start_item, &token);
3601	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3602	data_len += sizeof(struct btrfs_item) * nr;
3603	WARN_ON(data_len < 0);
3604	return data_len;
3605}
3606
3607/*
3608 * The space between the end of the leaf items and
3609 * the start of the leaf data.  IOW, how much room
3610 * the leaf has left for both items and data
3611 */
3612noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
 
3613{
3614	struct btrfs_fs_info *fs_info = leaf->fs_info;
3615	int nritems = btrfs_header_nritems(leaf);
3616	int ret;
3617
3618	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3619	if (ret < 0) {
3620		btrfs_crit(fs_info,
3621			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3622			   ret,
3623			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3624			   leaf_space_used(leaf, 0, nritems), nritems);
3625	}
3626	return ret;
3627}
3628
3629/*
3630 * min slot controls the lowest index we're willing to push to the
3631 * right.  We'll push up to and including min_slot, but no lower
3632 */
3633static noinline int __push_leaf_right(struct btrfs_path *path,
 
3634				      int data_size, int empty,
3635				      struct extent_buffer *right,
3636				      int free_space, u32 left_nritems,
3637				      u32 min_slot)
3638{
3639	struct btrfs_fs_info *fs_info = right->fs_info;
3640	struct extent_buffer *left = path->nodes[0];
3641	struct extent_buffer *upper = path->nodes[1];
3642	struct btrfs_map_token token;
3643	struct btrfs_disk_key disk_key;
3644	int slot;
3645	u32 i;
3646	int push_space = 0;
3647	int push_items = 0;
3648	struct btrfs_item *item;
3649	u32 nr;
3650	u32 right_nritems;
3651	u32 data_end;
3652	u32 this_item_size;
3653
 
 
3654	if (empty)
3655		nr = 0;
3656	else
3657		nr = max_t(u32, 1, min_slot);
3658
3659	if (path->slots[0] >= left_nritems)
3660		push_space += data_size;
3661
3662	slot = path->slots[1];
3663	i = left_nritems - 1;
3664	while (i >= nr) {
3665		item = btrfs_item_nr(i);
3666
3667		if (!empty && push_items > 0) {
3668			if (path->slots[0] > i)
3669				break;
3670			if (path->slots[0] == i) {
3671				int space = btrfs_leaf_free_space(left);
3672
3673				if (space + push_space * 2 > free_space)
3674					break;
3675			}
3676		}
3677
3678		if (path->slots[0] == i)
3679			push_space += data_size;
3680
3681		this_item_size = btrfs_item_size(left, item);
3682		if (this_item_size + sizeof(*item) + push_space > free_space)
3683			break;
3684
3685		push_items++;
3686		push_space += this_item_size + sizeof(*item);
3687		if (i == 0)
3688			break;
3689		i--;
3690	}
3691
3692	if (push_items == 0)
3693		goto out_unlock;
3694
3695	WARN_ON(!empty && push_items == left_nritems);
3696
3697	/* push left to right */
3698	right_nritems = btrfs_header_nritems(right);
3699
3700	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3701	push_space -= leaf_data_end(left);
3702
3703	/* make room in the right data area */
3704	data_end = leaf_data_end(right);
3705	memmove_extent_buffer(right,
3706			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3707			      BTRFS_LEAF_DATA_OFFSET + data_end,
3708			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3709
3710	/* copy from the left data area */
3711	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3712		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3713		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
3714		     push_space);
3715
3716	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3717			      btrfs_item_nr_offset(0),
3718			      right_nritems * sizeof(struct btrfs_item));
3719
3720	/* copy the items from left to right */
3721	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3722		   btrfs_item_nr_offset(left_nritems - push_items),
3723		   push_items * sizeof(struct btrfs_item));
3724
3725	/* update the item pointers */
3726	btrfs_init_map_token(&token, right);
3727	right_nritems += push_items;
3728	btrfs_set_header_nritems(right, right_nritems);
3729	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3730	for (i = 0; i < right_nritems; i++) {
3731		item = btrfs_item_nr(i);
3732		push_space -= btrfs_token_item_size(right, item, &token);
3733		btrfs_set_token_item_offset(right, item, push_space, &token);
3734	}
3735
3736	left_nritems -= push_items;
3737	btrfs_set_header_nritems(left, left_nritems);
3738
3739	if (left_nritems)
3740		btrfs_mark_buffer_dirty(left);
3741	else
3742		btrfs_clean_tree_block(left);
3743
3744	btrfs_mark_buffer_dirty(right);
3745
3746	btrfs_item_key(right, &disk_key, 0);
3747	btrfs_set_node_key(upper, &disk_key, slot + 1);
3748	btrfs_mark_buffer_dirty(upper);
3749
3750	/* then fixup the leaf pointer in the path */
3751	if (path->slots[0] >= left_nritems) {
3752		path->slots[0] -= left_nritems;
3753		if (btrfs_header_nritems(path->nodes[0]) == 0)
3754			btrfs_clean_tree_block(path->nodes[0]);
3755		btrfs_tree_unlock(path->nodes[0]);
3756		free_extent_buffer(path->nodes[0]);
3757		path->nodes[0] = right;
3758		path->slots[1] += 1;
3759	} else {
3760		btrfs_tree_unlock(right);
3761		free_extent_buffer(right);
3762	}
3763	return 0;
3764
3765out_unlock:
3766	btrfs_tree_unlock(right);
3767	free_extent_buffer(right);
3768	return 1;
3769}
3770
3771/*
3772 * push some data in the path leaf to the right, trying to free up at
3773 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3774 *
3775 * returns 1 if the push failed because the other node didn't have enough
3776 * room, 0 if everything worked out and < 0 if there were major errors.
3777 *
3778 * this will push starting from min_slot to the end of the leaf.  It won't
3779 * push any slot lower than min_slot
3780 */
3781static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3782			   *root, struct btrfs_path *path,
3783			   int min_data_size, int data_size,
3784			   int empty, u32 min_slot)
3785{
 
3786	struct extent_buffer *left = path->nodes[0];
3787	struct extent_buffer *right;
3788	struct extent_buffer *upper;
3789	int slot;
3790	int free_space;
3791	u32 left_nritems;
3792	int ret;
3793
3794	if (!path->nodes[1])
3795		return 1;
3796
3797	slot = path->slots[1];
3798	upper = path->nodes[1];
3799	if (slot >= btrfs_header_nritems(upper) - 1)
3800		return 1;
3801
3802	btrfs_assert_tree_locked(path->nodes[1]);
3803
3804	right = btrfs_read_node_slot(upper, slot + 1);
3805	/*
3806	 * slot + 1 is not valid or we fail to read the right node,
3807	 * no big deal, just return.
3808	 */
3809	if (IS_ERR(right))
3810		return 1;
3811
3812	btrfs_tree_lock(right);
3813	btrfs_set_lock_blocking_write(right);
3814
3815	free_space = btrfs_leaf_free_space(right);
3816	if (free_space < data_size)
3817		goto out_unlock;
3818
3819	/* cow and double check */
3820	ret = btrfs_cow_block(trans, root, right, upper,
3821			      slot + 1, &right);
3822	if (ret)
3823		goto out_unlock;
3824
3825	free_space = btrfs_leaf_free_space(right);
3826	if (free_space < data_size)
3827		goto out_unlock;
3828
3829	left_nritems = btrfs_header_nritems(left);
3830	if (left_nritems == 0)
3831		goto out_unlock;
3832
3833	if (path->slots[0] == left_nritems && !empty) {
3834		/* Key greater than all keys in the leaf, right neighbor has
3835		 * enough room for it and we're not emptying our leaf to delete
3836		 * it, therefore use right neighbor to insert the new item and
3837		 * no need to touch/dirty our left leaf. */
3838		btrfs_tree_unlock(left);
3839		free_extent_buffer(left);
3840		path->nodes[0] = right;
3841		path->slots[0] = 0;
3842		path->slots[1]++;
3843		return 0;
3844	}
3845
3846	return __push_leaf_right(path, min_data_size, empty,
3847				right, free_space, left_nritems, min_slot);
3848out_unlock:
3849	btrfs_tree_unlock(right);
3850	free_extent_buffer(right);
3851	return 1;
3852}
3853
3854/*
3855 * push some data in the path leaf to the left, trying to free up at
3856 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3857 *
3858 * max_slot can put a limit on how far into the leaf we'll push items.  The
3859 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3860 * items
3861 */
3862static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
 
3863				     int empty, struct extent_buffer *left,
3864				     int free_space, u32 right_nritems,
3865				     u32 max_slot)
3866{
3867	struct btrfs_fs_info *fs_info = left->fs_info;
3868	struct btrfs_disk_key disk_key;
3869	struct extent_buffer *right = path->nodes[0];
3870	int i;
3871	int push_space = 0;
3872	int push_items = 0;
3873	struct btrfs_item *item;
3874	u32 old_left_nritems;
3875	u32 nr;
3876	int ret = 0;
3877	u32 this_item_size;
3878	u32 old_left_item_size;
3879	struct btrfs_map_token token;
3880
 
 
3881	if (empty)
3882		nr = min(right_nritems, max_slot);
3883	else
3884		nr = min(right_nritems - 1, max_slot);
3885
3886	for (i = 0; i < nr; i++) {
3887		item = btrfs_item_nr(i);
3888
3889		if (!empty && push_items > 0) {
3890			if (path->slots[0] < i)
3891				break;
3892			if (path->slots[0] == i) {
3893				int space = btrfs_leaf_free_space(right);
3894
3895				if (space + push_space * 2 > free_space)
3896					break;
3897			}
3898		}
3899
3900		if (path->slots[0] == i)
3901			push_space += data_size;
3902
3903		this_item_size = btrfs_item_size(right, item);
3904		if (this_item_size + sizeof(*item) + push_space > free_space)
3905			break;
3906
3907		push_items++;
3908		push_space += this_item_size + sizeof(*item);
3909	}
3910
3911	if (push_items == 0) {
3912		ret = 1;
3913		goto out;
3914	}
3915	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3916
3917	/* push data from right to left */
3918	copy_extent_buffer(left, right,
3919			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3920			   btrfs_item_nr_offset(0),
3921			   push_items * sizeof(struct btrfs_item));
3922
3923	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3924		     btrfs_item_offset_nr(right, push_items - 1);
3925
3926	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3927		     leaf_data_end(left) - push_space,
3928		     BTRFS_LEAF_DATA_OFFSET +
3929		     btrfs_item_offset_nr(right, push_items - 1),
3930		     push_space);
3931	old_left_nritems = btrfs_header_nritems(left);
3932	BUG_ON(old_left_nritems <= 0);
3933
3934	btrfs_init_map_token(&token, left);
3935	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3936	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3937		u32 ioff;
3938
3939		item = btrfs_item_nr(i);
3940
3941		ioff = btrfs_token_item_offset(left, item, &token);
3942		btrfs_set_token_item_offset(left, item,
3943		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3944		      &token);
3945	}
3946	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3947
3948	/* fixup right node */
3949	if (push_items > right_nritems)
3950		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3951		       right_nritems);
3952
3953	if (push_items < right_nritems) {
3954		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3955						  leaf_data_end(right);
3956		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3957				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3958				      BTRFS_LEAF_DATA_OFFSET +
3959				      leaf_data_end(right), push_space);
3960
3961		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3962			      btrfs_item_nr_offset(push_items),
3963			     (btrfs_header_nritems(right) - push_items) *
3964			     sizeof(struct btrfs_item));
3965	}
3966
3967	btrfs_init_map_token(&token, right);
3968	right_nritems -= push_items;
3969	btrfs_set_header_nritems(right, right_nritems);
3970	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3971	for (i = 0; i < right_nritems; i++) {
3972		item = btrfs_item_nr(i);
3973
3974		push_space = push_space - btrfs_token_item_size(right,
3975								item, &token);
3976		btrfs_set_token_item_offset(right, item, push_space, &token);
3977	}
3978
3979	btrfs_mark_buffer_dirty(left);
3980	if (right_nritems)
3981		btrfs_mark_buffer_dirty(right);
3982	else
3983		btrfs_clean_tree_block(right);
3984
3985	btrfs_item_key(right, &disk_key, 0);
3986	fixup_low_keys(path, &disk_key, 1);
3987
3988	/* then fixup the leaf pointer in the path */
3989	if (path->slots[0] < push_items) {
3990		path->slots[0] += old_left_nritems;
3991		btrfs_tree_unlock(path->nodes[0]);
3992		free_extent_buffer(path->nodes[0]);
3993		path->nodes[0] = left;
3994		path->slots[1] -= 1;
3995	} else {
3996		btrfs_tree_unlock(left);
3997		free_extent_buffer(left);
3998		path->slots[0] -= push_items;
3999	}
4000	BUG_ON(path->slots[0] < 0);
4001	return ret;
4002out:
4003	btrfs_tree_unlock(left);
4004	free_extent_buffer(left);
4005	return ret;
4006}
4007
4008/*
4009 * push some data in the path leaf to the left, trying to free up at
4010 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
4011 *
4012 * max_slot can put a limit on how far into the leaf we'll push items.  The
4013 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
4014 * items
4015 */
4016static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
4017			  *root, struct btrfs_path *path, int min_data_size,
4018			  int data_size, int empty, u32 max_slot)
4019{
 
4020	struct extent_buffer *right = path->nodes[0];
4021	struct extent_buffer *left;
4022	int slot;
4023	int free_space;
4024	u32 right_nritems;
4025	int ret = 0;
4026
4027	slot = path->slots[1];
4028	if (slot == 0)
4029		return 1;
4030	if (!path->nodes[1])
4031		return 1;
4032
4033	right_nritems = btrfs_header_nritems(right);
4034	if (right_nritems == 0)
4035		return 1;
4036
4037	btrfs_assert_tree_locked(path->nodes[1]);
4038
4039	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
4040	/*
4041	 * slot - 1 is not valid or we fail to read the left node,
4042	 * no big deal, just return.
4043	 */
4044	if (IS_ERR(left))
4045		return 1;
4046
4047	btrfs_tree_lock(left);
4048	btrfs_set_lock_blocking_write(left);
4049
4050	free_space = btrfs_leaf_free_space(left);
4051	if (free_space < data_size) {
4052		ret = 1;
4053		goto out;
4054	}
4055
4056	/* cow and double check */
4057	ret = btrfs_cow_block(trans, root, left,
4058			      path->nodes[1], slot - 1, &left);
4059	if (ret) {
4060		/* we hit -ENOSPC, but it isn't fatal here */
4061		if (ret == -ENOSPC)
4062			ret = 1;
4063		goto out;
4064	}
4065
4066	free_space = btrfs_leaf_free_space(left);
4067	if (free_space < data_size) {
4068		ret = 1;
4069		goto out;
4070	}
4071
4072	return __push_leaf_left(path, min_data_size,
4073			       empty, left, free_space, right_nritems,
4074			       max_slot);
4075out:
4076	btrfs_tree_unlock(left);
4077	free_extent_buffer(left);
4078	return ret;
4079}
4080
4081/*
4082 * split the path's leaf in two, making sure there is at least data_size
4083 * available for the resulting leaf level of the path.
4084 */
4085static noinline void copy_for_split(struct btrfs_trans_handle *trans,
 
4086				    struct btrfs_path *path,
4087				    struct extent_buffer *l,
4088				    struct extent_buffer *right,
4089				    int slot, int mid, int nritems)
4090{
4091	struct btrfs_fs_info *fs_info = trans->fs_info;
4092	int data_copy_size;
4093	int rt_data_off;
4094	int i;
4095	struct btrfs_disk_key disk_key;
4096	struct btrfs_map_token token;
4097
 
 
4098	nritems = nritems - mid;
4099	btrfs_set_header_nritems(right, nritems);
4100	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
4101
4102	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4103			   btrfs_item_nr_offset(mid),
4104			   nritems * sizeof(struct btrfs_item));
4105
4106	copy_extent_buffer(right, l,
4107		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4108		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4109		     leaf_data_end(l), data_copy_size);
4110
4111	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4112
4113	btrfs_init_map_token(&token, right);
4114	for (i = 0; i < nritems; i++) {
4115		struct btrfs_item *item = btrfs_item_nr(i);
4116		u32 ioff;
4117
4118		ioff = btrfs_token_item_offset(right, item, &token);
4119		btrfs_set_token_item_offset(right, item,
4120					    ioff + rt_data_off, &token);
4121	}
4122
4123	btrfs_set_header_nritems(l, mid);
4124	btrfs_item_key(right, &disk_key, 0);
4125	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
 
4126
4127	btrfs_mark_buffer_dirty(right);
4128	btrfs_mark_buffer_dirty(l);
4129	BUG_ON(path->slots[0] != slot);
4130
4131	if (mid <= slot) {
4132		btrfs_tree_unlock(path->nodes[0]);
4133		free_extent_buffer(path->nodes[0]);
4134		path->nodes[0] = right;
4135		path->slots[0] -= mid;
4136		path->slots[1] += 1;
4137	} else {
4138		btrfs_tree_unlock(right);
4139		free_extent_buffer(right);
4140	}
4141
4142	BUG_ON(path->slots[0] < 0);
4143}
4144
4145/*
4146 * double splits happen when we need to insert a big item in the middle
4147 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4148 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4149 *          A                 B                 C
4150 *
4151 * We avoid this by trying to push the items on either side of our target
4152 * into the adjacent leaves.  If all goes well we can avoid the double split
4153 * completely.
4154 */
4155static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4156					  struct btrfs_root *root,
4157					  struct btrfs_path *path,
4158					  int data_size)
4159{
 
4160	int ret;
4161	int progress = 0;
4162	int slot;
4163	u32 nritems;
4164	int space_needed = data_size;
4165
4166	slot = path->slots[0];
4167	if (slot < btrfs_header_nritems(path->nodes[0]))
4168		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4169
4170	/*
4171	 * try to push all the items after our slot into the
4172	 * right leaf
4173	 */
4174	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4175	if (ret < 0)
4176		return ret;
4177
4178	if (ret == 0)
4179		progress++;
4180
4181	nritems = btrfs_header_nritems(path->nodes[0]);
4182	/*
4183	 * our goal is to get our slot at the start or end of a leaf.  If
4184	 * we've done so we're done
4185	 */
4186	if (path->slots[0] == 0 || path->slots[0] == nritems)
4187		return 0;
4188
4189	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4190		return 0;
4191
4192	/* try to push all the items before our slot into the next leaf */
4193	slot = path->slots[0];
4194	space_needed = data_size;
4195	if (slot > 0)
4196		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4197	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4198	if (ret < 0)
4199		return ret;
4200
4201	if (ret == 0)
4202		progress++;
4203
4204	if (progress)
4205		return 0;
4206	return 1;
4207}
4208
4209/*
4210 * split the path's leaf in two, making sure there is at least data_size
4211 * available for the resulting leaf level of the path.
4212 *
4213 * returns 0 if all went well and < 0 on failure.
4214 */
4215static noinline int split_leaf(struct btrfs_trans_handle *trans,
4216			       struct btrfs_root *root,
4217			       const struct btrfs_key *ins_key,
4218			       struct btrfs_path *path, int data_size,
4219			       int extend)
4220{
4221	struct btrfs_disk_key disk_key;
4222	struct extent_buffer *l;
4223	u32 nritems;
4224	int mid;
4225	int slot;
4226	struct extent_buffer *right;
4227	struct btrfs_fs_info *fs_info = root->fs_info;
4228	int ret = 0;
4229	int wret;
4230	int split;
4231	int num_doubles = 0;
4232	int tried_avoid_double = 0;
4233
4234	l = path->nodes[0];
4235	slot = path->slots[0];
4236	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4237	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4238		return -EOVERFLOW;
4239
4240	/* first try to make some room by pushing left and right */
4241	if (data_size && path->nodes[1]) {
4242		int space_needed = data_size;
4243
4244		if (slot < btrfs_header_nritems(l))
4245			space_needed -= btrfs_leaf_free_space(l);
4246
4247		wret = push_leaf_right(trans, root, path, space_needed,
4248				       space_needed, 0, 0);
4249		if (wret < 0)
4250			return wret;
4251		if (wret) {
4252			space_needed = data_size;
4253			if (slot > 0)
4254				space_needed -= btrfs_leaf_free_space(l);
 
4255			wret = push_leaf_left(trans, root, path, space_needed,
4256					      space_needed, 0, (u32)-1);
4257			if (wret < 0)
4258				return wret;
4259		}
4260		l = path->nodes[0];
4261
4262		/* did the pushes work? */
4263		if (btrfs_leaf_free_space(l) >= data_size)
4264			return 0;
4265	}
4266
4267	if (!path->nodes[1]) {
4268		ret = insert_new_root(trans, root, path, 1);
4269		if (ret)
4270			return ret;
4271	}
4272again:
4273	split = 1;
4274	l = path->nodes[0];
4275	slot = path->slots[0];
4276	nritems = btrfs_header_nritems(l);
4277	mid = (nritems + 1) / 2;
4278
4279	if (mid <= slot) {
4280		if (nritems == 1 ||
4281		    leaf_space_used(l, mid, nritems - mid) + data_size >
4282			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4283			if (slot >= nritems) {
4284				split = 0;
4285			} else {
4286				mid = slot;
4287				if (mid != nritems &&
4288				    leaf_space_used(l, mid, nritems - mid) +
4289				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4290					if (data_size && !tried_avoid_double)
4291						goto push_for_double;
4292					split = 2;
4293				}
4294			}
4295		}
4296	} else {
4297		if (leaf_space_used(l, 0, mid) + data_size >
4298			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4299			if (!extend && data_size && slot == 0) {
4300				split = 0;
4301			} else if ((extend || !data_size) && slot == 0) {
4302				mid = 1;
4303			} else {
4304				mid = slot;
4305				if (mid != nritems &&
4306				    leaf_space_used(l, mid, nritems - mid) +
4307				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4308					if (data_size && !tried_avoid_double)
4309						goto push_for_double;
4310					split = 2;
4311				}
4312			}
4313		}
4314	}
4315
4316	if (split == 0)
4317		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4318	else
4319		btrfs_item_key(l, &disk_key, mid);
4320
4321	right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4322					     l->start, 0);
4323	if (IS_ERR(right))
4324		return PTR_ERR(right);
4325
4326	root_add_used(root, fs_info->nodesize);
4327
 
 
 
 
 
 
 
 
 
4328	if (split == 0) {
4329		if (mid <= slot) {
4330			btrfs_set_header_nritems(right, 0);
4331			insert_ptr(trans, path, &disk_key,
4332				   right->start, path->slots[1] + 1, 1);
4333			btrfs_tree_unlock(path->nodes[0]);
4334			free_extent_buffer(path->nodes[0]);
4335			path->nodes[0] = right;
4336			path->slots[0] = 0;
4337			path->slots[1] += 1;
4338		} else {
4339			btrfs_set_header_nritems(right, 0);
4340			insert_ptr(trans, path, &disk_key,
4341				   right->start, path->slots[1], 1);
4342			btrfs_tree_unlock(path->nodes[0]);
4343			free_extent_buffer(path->nodes[0]);
4344			path->nodes[0] = right;
4345			path->slots[0] = 0;
4346			if (path->slots[1] == 0)
4347				fixup_low_keys(path, &disk_key, 1);
4348		}
4349		/*
4350		 * We create a new leaf 'right' for the required ins_len and
4351		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4352		 * the content of ins_len to 'right'.
4353		 */
4354		return ret;
4355	}
4356
4357	copy_for_split(trans, path, l, right, slot, mid, nritems);
4358
4359	if (split == 2) {
4360		BUG_ON(num_doubles != 0);
4361		num_doubles++;
4362		goto again;
4363	}
4364
4365	return 0;
4366
4367push_for_double:
4368	push_for_double_split(trans, root, path, data_size);
4369	tried_avoid_double = 1;
4370	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4371		return 0;
4372	goto again;
4373}
4374
4375static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4376					 struct btrfs_root *root,
4377					 struct btrfs_path *path, int ins_len)
4378{
 
4379	struct btrfs_key key;
4380	struct extent_buffer *leaf;
4381	struct btrfs_file_extent_item *fi;
4382	u64 extent_len = 0;
4383	u32 item_size;
4384	int ret;
4385
4386	leaf = path->nodes[0];
4387	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4388
4389	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4390	       key.type != BTRFS_EXTENT_CSUM_KEY);
4391
4392	if (btrfs_leaf_free_space(leaf) >= ins_len)
4393		return 0;
4394
4395	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4396	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4397		fi = btrfs_item_ptr(leaf, path->slots[0],
4398				    struct btrfs_file_extent_item);
4399		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4400	}
4401	btrfs_release_path(path);
4402
4403	path->keep_locks = 1;
4404	path->search_for_split = 1;
4405	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4406	path->search_for_split = 0;
4407	if (ret > 0)
4408		ret = -EAGAIN;
4409	if (ret < 0)
4410		goto err;
4411
4412	ret = -EAGAIN;
4413	leaf = path->nodes[0];
4414	/* if our item isn't there, return now */
4415	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4416		goto err;
4417
4418	/* the leaf has  changed, it now has room.  return now */
4419	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4420		goto err;
4421
4422	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4423		fi = btrfs_item_ptr(leaf, path->slots[0],
4424				    struct btrfs_file_extent_item);
4425		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4426			goto err;
4427	}
4428
4429	btrfs_set_path_blocking(path);
4430	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4431	if (ret)
4432		goto err;
4433
4434	path->keep_locks = 0;
4435	btrfs_unlock_up_safe(path, 1);
4436	return 0;
4437err:
4438	path->keep_locks = 0;
4439	return ret;
4440}
4441
4442static noinline int split_item(struct btrfs_path *path,
 
4443			       const struct btrfs_key *new_key,
4444			       unsigned long split_offset)
4445{
4446	struct extent_buffer *leaf;
4447	struct btrfs_item *item;
4448	struct btrfs_item *new_item;
4449	int slot;
4450	char *buf;
4451	u32 nritems;
4452	u32 item_size;
4453	u32 orig_offset;
4454	struct btrfs_disk_key disk_key;
4455
4456	leaf = path->nodes[0];
4457	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
4458
4459	btrfs_set_path_blocking(path);
4460
4461	item = btrfs_item_nr(path->slots[0]);
4462	orig_offset = btrfs_item_offset(leaf, item);
4463	item_size = btrfs_item_size(leaf, item);
4464
4465	buf = kmalloc(item_size, GFP_NOFS);
4466	if (!buf)
4467		return -ENOMEM;
4468
4469	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4470			    path->slots[0]), item_size);
4471
4472	slot = path->slots[0] + 1;
4473	nritems = btrfs_header_nritems(leaf);
4474	if (slot != nritems) {
4475		/* shift the items */
4476		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4477				btrfs_item_nr_offset(slot),
4478				(nritems - slot) * sizeof(struct btrfs_item));
4479	}
4480
4481	btrfs_cpu_key_to_disk(&disk_key, new_key);
4482	btrfs_set_item_key(leaf, &disk_key, slot);
4483
4484	new_item = btrfs_item_nr(slot);
4485
4486	btrfs_set_item_offset(leaf, new_item, orig_offset);
4487	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4488
4489	btrfs_set_item_offset(leaf, item,
4490			      orig_offset + item_size - split_offset);
4491	btrfs_set_item_size(leaf, item, split_offset);
4492
4493	btrfs_set_header_nritems(leaf, nritems + 1);
4494
4495	/* write the data for the start of the original item */
4496	write_extent_buffer(leaf, buf,
4497			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4498			    split_offset);
4499
4500	/* write the data for the new item */
4501	write_extent_buffer(leaf, buf + split_offset,
4502			    btrfs_item_ptr_offset(leaf, slot),
4503			    item_size - split_offset);
4504	btrfs_mark_buffer_dirty(leaf);
4505
4506	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4507	kfree(buf);
4508	return 0;
4509}
4510
4511/*
4512 * This function splits a single item into two items,
4513 * giving 'new_key' to the new item and splitting the
4514 * old one at split_offset (from the start of the item).
4515 *
4516 * The path may be released by this operation.  After
4517 * the split, the path is pointing to the old item.  The
4518 * new item is going to be in the same node as the old one.
4519 *
4520 * Note, the item being split must be smaller enough to live alone on
4521 * a tree block with room for one extra struct btrfs_item
4522 *
4523 * This allows us to split the item in place, keeping a lock on the
4524 * leaf the entire time.
4525 */
4526int btrfs_split_item(struct btrfs_trans_handle *trans,
4527		     struct btrfs_root *root,
4528		     struct btrfs_path *path,
4529		     const struct btrfs_key *new_key,
4530		     unsigned long split_offset)
4531{
4532	int ret;
4533	ret = setup_leaf_for_split(trans, root, path,
4534				   sizeof(struct btrfs_item));
4535	if (ret)
4536		return ret;
4537
4538	ret = split_item(path, new_key, split_offset);
4539	return ret;
4540}
4541
4542/*
4543 * This function duplicate a item, giving 'new_key' to the new item.
4544 * It guarantees both items live in the same tree leaf and the new item
4545 * is contiguous with the original item.
4546 *
4547 * This allows us to split file extent in place, keeping a lock on the
4548 * leaf the entire time.
4549 */
4550int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4551			 struct btrfs_root *root,
4552			 struct btrfs_path *path,
4553			 const struct btrfs_key *new_key)
4554{
4555	struct extent_buffer *leaf;
4556	int ret;
4557	u32 item_size;
4558
4559	leaf = path->nodes[0];
4560	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4561	ret = setup_leaf_for_split(trans, root, path,
4562				   item_size + sizeof(struct btrfs_item));
4563	if (ret)
4564		return ret;
4565
4566	path->slots[0]++;
4567	setup_items_for_insert(root, path, new_key, &item_size,
4568			       item_size, item_size +
4569			       sizeof(struct btrfs_item), 1);
4570	leaf = path->nodes[0];
4571	memcpy_extent_buffer(leaf,
4572			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4573			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4574			     item_size);
4575	return 0;
4576}
4577
4578/*
4579 * make the item pointed to by the path smaller.  new_size indicates
4580 * how small to make it, and from_end tells us if we just chop bytes
4581 * off the end of the item or if we shift the item to chop bytes off
4582 * the front.
4583 */
4584void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
 
4585{
4586	int slot;
4587	struct extent_buffer *leaf;
4588	struct btrfs_item *item;
4589	u32 nritems;
4590	unsigned int data_end;
4591	unsigned int old_data_start;
4592	unsigned int old_size;
4593	unsigned int size_diff;
4594	int i;
4595	struct btrfs_map_token token;
4596
 
 
4597	leaf = path->nodes[0];
4598	slot = path->slots[0];
4599
4600	old_size = btrfs_item_size_nr(leaf, slot);
4601	if (old_size == new_size)
4602		return;
4603
4604	nritems = btrfs_header_nritems(leaf);
4605	data_end = leaf_data_end(leaf);
4606
4607	old_data_start = btrfs_item_offset_nr(leaf, slot);
4608
4609	size_diff = old_size - new_size;
4610
4611	BUG_ON(slot < 0);
4612	BUG_ON(slot >= nritems);
4613
4614	/*
4615	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4616	 */
4617	/* first correct the data pointers */
4618	btrfs_init_map_token(&token, leaf);
4619	for (i = slot; i < nritems; i++) {
4620		u32 ioff;
4621		item = btrfs_item_nr(i);
4622
4623		ioff = btrfs_token_item_offset(leaf, item, &token);
4624		btrfs_set_token_item_offset(leaf, item,
4625					    ioff + size_diff, &token);
4626	}
4627
4628	/* shift the data */
4629	if (from_end) {
4630		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4631			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4632			      data_end, old_data_start + new_size - data_end);
4633	} else {
4634		struct btrfs_disk_key disk_key;
4635		u64 offset;
4636
4637		btrfs_item_key(leaf, &disk_key, slot);
4638
4639		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4640			unsigned long ptr;
4641			struct btrfs_file_extent_item *fi;
4642
4643			fi = btrfs_item_ptr(leaf, slot,
4644					    struct btrfs_file_extent_item);
4645			fi = (struct btrfs_file_extent_item *)(
4646			     (unsigned long)fi - size_diff);
4647
4648			if (btrfs_file_extent_type(leaf, fi) ==
4649			    BTRFS_FILE_EXTENT_INLINE) {
4650				ptr = btrfs_item_ptr_offset(leaf, slot);
4651				memmove_extent_buffer(leaf, ptr,
4652				      (unsigned long)fi,
4653				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4654			}
4655		}
4656
4657		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4658			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4659			      data_end, old_data_start - data_end);
4660
4661		offset = btrfs_disk_key_offset(&disk_key);
4662		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4663		btrfs_set_item_key(leaf, &disk_key, slot);
4664		if (slot == 0)
4665			fixup_low_keys(path, &disk_key, 1);
4666	}
4667
4668	item = btrfs_item_nr(slot);
4669	btrfs_set_item_size(leaf, item, new_size);
4670	btrfs_mark_buffer_dirty(leaf);
4671
4672	if (btrfs_leaf_free_space(leaf) < 0) {
4673		btrfs_print_leaf(leaf);
4674		BUG();
4675	}
4676}
4677
4678/*
4679 * make the item pointed to by the path bigger, data_size is the added size.
4680 */
4681void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
 
4682{
4683	int slot;
4684	struct extent_buffer *leaf;
4685	struct btrfs_item *item;
4686	u32 nritems;
4687	unsigned int data_end;
4688	unsigned int old_data;
4689	unsigned int old_size;
4690	int i;
4691	struct btrfs_map_token token;
4692
 
 
4693	leaf = path->nodes[0];
4694
4695	nritems = btrfs_header_nritems(leaf);
4696	data_end = leaf_data_end(leaf);
4697
4698	if (btrfs_leaf_free_space(leaf) < data_size) {
4699		btrfs_print_leaf(leaf);
4700		BUG();
4701	}
4702	slot = path->slots[0];
4703	old_data = btrfs_item_end_nr(leaf, slot);
4704
4705	BUG_ON(slot < 0);
4706	if (slot >= nritems) {
4707		btrfs_print_leaf(leaf);
4708		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4709			   slot, nritems);
4710		BUG();
4711	}
4712
4713	/*
4714	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4715	 */
4716	/* first correct the data pointers */
4717	btrfs_init_map_token(&token, leaf);
4718	for (i = slot; i < nritems; i++) {
4719		u32 ioff;
4720		item = btrfs_item_nr(i);
4721
4722		ioff = btrfs_token_item_offset(leaf, item, &token);
4723		btrfs_set_token_item_offset(leaf, item,
4724					    ioff - data_size, &token);
4725	}
4726
4727	/* shift the data */
4728	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4729		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4730		      data_end, old_data - data_end);
4731
4732	data_end = old_data;
4733	old_size = btrfs_item_size_nr(leaf, slot);
4734	item = btrfs_item_nr(slot);
4735	btrfs_set_item_size(leaf, item, old_size + data_size);
4736	btrfs_mark_buffer_dirty(leaf);
4737
4738	if (btrfs_leaf_free_space(leaf) < 0) {
4739		btrfs_print_leaf(leaf);
4740		BUG();
4741	}
4742}
4743
4744/*
4745 * this is a helper for btrfs_insert_empty_items, the main goal here is
4746 * to save stack depth by doing the bulk of the work in a function
4747 * that doesn't call btrfs_search_slot
4748 */
4749void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4750			    const struct btrfs_key *cpu_key, u32 *data_size,
4751			    u32 total_data, u32 total_size, int nr)
4752{
4753	struct btrfs_fs_info *fs_info = root->fs_info;
4754	struct btrfs_item *item;
4755	int i;
4756	u32 nritems;
4757	unsigned int data_end;
4758	struct btrfs_disk_key disk_key;
4759	struct extent_buffer *leaf;
4760	int slot;
4761	struct btrfs_map_token token;
4762
4763	if (path->slots[0] == 0) {
4764		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4765		fixup_low_keys(path, &disk_key, 1);
4766	}
4767	btrfs_unlock_up_safe(path, 1);
4768
 
 
4769	leaf = path->nodes[0];
4770	slot = path->slots[0];
4771
4772	nritems = btrfs_header_nritems(leaf);
4773	data_end = leaf_data_end(leaf);
4774
4775	if (btrfs_leaf_free_space(leaf) < total_size) {
4776		btrfs_print_leaf(leaf);
4777		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4778			   total_size, btrfs_leaf_free_space(leaf));
4779		BUG();
4780	}
4781
4782	btrfs_init_map_token(&token, leaf);
4783	if (slot != nritems) {
4784		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4785
4786		if (old_data < data_end) {
4787			btrfs_print_leaf(leaf);
4788			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4789				   slot, old_data, data_end);
4790			BUG();
4791		}
4792		/*
4793		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4794		 */
4795		/* first correct the data pointers */
4796		for (i = slot; i < nritems; i++) {
4797			u32 ioff;
4798
4799			item = btrfs_item_nr(i);
4800			ioff = btrfs_token_item_offset(leaf, item, &token);
4801			btrfs_set_token_item_offset(leaf, item,
4802						    ioff - total_data, &token);
4803		}
4804		/* shift the items */
4805		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4806			      btrfs_item_nr_offset(slot),
4807			      (nritems - slot) * sizeof(struct btrfs_item));
4808
4809		/* shift the data */
4810		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4811			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4812			      data_end, old_data - data_end);
4813		data_end = old_data;
4814	}
4815
4816	/* setup the item for the new data */
4817	for (i = 0; i < nr; i++) {
4818		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4819		btrfs_set_item_key(leaf, &disk_key, slot + i);
4820		item = btrfs_item_nr(slot + i);
4821		btrfs_set_token_item_offset(leaf, item,
4822					    data_end - data_size[i], &token);
4823		data_end -= data_size[i];
4824		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4825	}
4826
4827	btrfs_set_header_nritems(leaf, nritems + nr);
4828	btrfs_mark_buffer_dirty(leaf);
4829
4830	if (btrfs_leaf_free_space(leaf) < 0) {
4831		btrfs_print_leaf(leaf);
4832		BUG();
4833	}
4834}
4835
4836/*
4837 * Given a key and some data, insert items into the tree.
4838 * This does all the path init required, making room in the tree if needed.
4839 */
4840int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4841			    struct btrfs_root *root,
4842			    struct btrfs_path *path,
4843			    const struct btrfs_key *cpu_key, u32 *data_size,
4844			    int nr)
4845{
4846	int ret = 0;
4847	int slot;
4848	int i;
4849	u32 total_size = 0;
4850	u32 total_data = 0;
4851
4852	for (i = 0; i < nr; i++)
4853		total_data += data_size[i];
4854
4855	total_size = total_data + (nr * sizeof(struct btrfs_item));
4856	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4857	if (ret == 0)
4858		return -EEXIST;
4859	if (ret < 0)
4860		return ret;
4861
4862	slot = path->slots[0];
4863	BUG_ON(slot < 0);
4864
4865	setup_items_for_insert(root, path, cpu_key, data_size,
4866			       total_data, total_size, nr);
4867	return 0;
4868}
4869
4870/*
4871 * Given a key and some data, insert an item into the tree.
4872 * This does all the path init required, making room in the tree if needed.
4873 */
4874int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4875		      const struct btrfs_key *cpu_key, void *data,
4876		      u32 data_size)
4877{
4878	int ret = 0;
4879	struct btrfs_path *path;
4880	struct extent_buffer *leaf;
4881	unsigned long ptr;
4882
4883	path = btrfs_alloc_path();
4884	if (!path)
4885		return -ENOMEM;
4886	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4887	if (!ret) {
4888		leaf = path->nodes[0];
4889		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4890		write_extent_buffer(leaf, data, ptr, data_size);
4891		btrfs_mark_buffer_dirty(leaf);
4892	}
4893	btrfs_free_path(path);
4894	return ret;
4895}
4896
4897/*
4898 * delete the pointer from a given node.
4899 *
4900 * the tree should have been previously balanced so the deletion does not
4901 * empty a node.
4902 */
4903static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4904		    int level, int slot)
4905{
 
4906	struct extent_buffer *parent = path->nodes[level];
4907	u32 nritems;
4908	int ret;
4909
4910	nritems = btrfs_header_nritems(parent);
4911	if (slot != nritems - 1) {
4912		if (level) {
4913			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4914					nritems - slot - 1);
4915			BUG_ON(ret < 0);
4916		}
4917		memmove_extent_buffer(parent,
4918			      btrfs_node_key_ptr_offset(slot),
4919			      btrfs_node_key_ptr_offset(slot + 1),
4920			      sizeof(struct btrfs_key_ptr) *
4921			      (nritems - slot - 1));
4922	} else if (level) {
4923		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4924				GFP_NOFS);
4925		BUG_ON(ret < 0);
4926	}
4927
4928	nritems--;
4929	btrfs_set_header_nritems(parent, nritems);
4930	if (nritems == 0 && parent == root->node) {
4931		BUG_ON(btrfs_header_level(root->node) != 1);
4932		/* just turn the root into a leaf and break */
4933		btrfs_set_header_level(root->node, 0);
4934	} else if (slot == 0) {
4935		struct btrfs_disk_key disk_key;
4936
4937		btrfs_node_key(parent, &disk_key, 0);
4938		fixup_low_keys(path, &disk_key, level + 1);
4939	}
4940	btrfs_mark_buffer_dirty(parent);
4941}
4942
4943/*
4944 * a helper function to delete the leaf pointed to by path->slots[1] and
4945 * path->nodes[1].
4946 *
4947 * This deletes the pointer in path->nodes[1] and frees the leaf
4948 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4949 *
4950 * The path must have already been setup for deleting the leaf, including
4951 * all the proper balancing.  path->nodes[1] must be locked.
4952 */
4953static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4954				    struct btrfs_root *root,
4955				    struct btrfs_path *path,
4956				    struct extent_buffer *leaf)
4957{
4958	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4959	del_ptr(root, path, 1, path->slots[1]);
4960
4961	/*
4962	 * btrfs_free_extent is expensive, we want to make sure we
4963	 * aren't holding any locks when we call it
4964	 */
4965	btrfs_unlock_up_safe(path, 0);
4966
4967	root_sub_used(root, leaf->len);
4968
4969	extent_buffer_get(leaf);
4970	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4971	free_extent_buffer_stale(leaf);
4972}
4973/*
4974 * delete the item at the leaf level in path.  If that empties
4975 * the leaf, remove it from the tree
4976 */
4977int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4978		    struct btrfs_path *path, int slot, int nr)
4979{
4980	struct btrfs_fs_info *fs_info = root->fs_info;
4981	struct extent_buffer *leaf;
4982	struct btrfs_item *item;
4983	u32 last_off;
4984	u32 dsize = 0;
4985	int ret = 0;
4986	int wret;
4987	int i;
4988	u32 nritems;
 
 
 
4989
4990	leaf = path->nodes[0];
4991	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4992
4993	for (i = 0; i < nr; i++)
4994		dsize += btrfs_item_size_nr(leaf, slot + i);
4995
4996	nritems = btrfs_header_nritems(leaf);
4997
4998	if (slot + nr != nritems) {
4999		int data_end = leaf_data_end(leaf);
5000		struct btrfs_map_token token;
5001
5002		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
5003			      data_end + dsize,
5004			      BTRFS_LEAF_DATA_OFFSET + data_end,
5005			      last_off - data_end);
5006
5007		btrfs_init_map_token(&token, leaf);
5008		for (i = slot + nr; i < nritems; i++) {
5009			u32 ioff;
5010
5011			item = btrfs_item_nr(i);
5012			ioff = btrfs_token_item_offset(leaf, item, &token);
5013			btrfs_set_token_item_offset(leaf, item,
5014						    ioff + dsize, &token);
5015		}
5016
5017		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
5018			      btrfs_item_nr_offset(slot + nr),
5019			      sizeof(struct btrfs_item) *
5020			      (nritems - slot - nr));
5021	}
5022	btrfs_set_header_nritems(leaf, nritems - nr);
5023	nritems -= nr;
5024
5025	/* delete the leaf if we've emptied it */
5026	if (nritems == 0) {
5027		if (leaf == root->node) {
5028			btrfs_set_header_level(leaf, 0);
5029		} else {
5030			btrfs_set_path_blocking(path);
5031			btrfs_clean_tree_block(leaf);
5032			btrfs_del_leaf(trans, root, path, leaf);
5033		}
5034	} else {
5035		int used = leaf_space_used(leaf, 0, nritems);
5036		if (slot == 0) {
5037			struct btrfs_disk_key disk_key;
5038
5039			btrfs_item_key(leaf, &disk_key, 0);
5040			fixup_low_keys(path, &disk_key, 1);
5041		}
5042
5043		/* delete the leaf if it is mostly empty */
5044		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5045			/* push_leaf_left fixes the path.
5046			 * make sure the path still points to our leaf
5047			 * for possible call to del_ptr below
5048			 */
5049			slot = path->slots[1];
5050			extent_buffer_get(leaf);
5051
5052			btrfs_set_path_blocking(path);
5053			wret = push_leaf_left(trans, root, path, 1, 1,
5054					      1, (u32)-1);
5055			if (wret < 0 && wret != -ENOSPC)
5056				ret = wret;
5057
5058			if (path->nodes[0] == leaf &&
5059			    btrfs_header_nritems(leaf)) {
5060				wret = push_leaf_right(trans, root, path, 1,
5061						       1, 1, 0);
5062				if (wret < 0 && wret != -ENOSPC)
5063					ret = wret;
5064			}
5065
5066			if (btrfs_header_nritems(leaf) == 0) {
5067				path->slots[1] = slot;
5068				btrfs_del_leaf(trans, root, path, leaf);
5069				free_extent_buffer(leaf);
5070				ret = 0;
5071			} else {
5072				/* if we're still in the path, make sure
5073				 * we're dirty.  Otherwise, one of the
5074				 * push_leaf functions must have already
5075				 * dirtied this buffer
5076				 */
5077				if (path->nodes[0] == leaf)
5078					btrfs_mark_buffer_dirty(leaf);
5079				free_extent_buffer(leaf);
5080			}
5081		} else {
5082			btrfs_mark_buffer_dirty(leaf);
5083		}
5084	}
5085	return ret;
5086}
5087
5088/*
5089 * search the tree again to find a leaf with lesser keys
5090 * returns 0 if it found something or 1 if there are no lesser leaves.
5091 * returns < 0 on io errors.
5092 *
5093 * This may release the path, and so you may lose any locks held at the
5094 * time you call it.
5095 */
5096int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5097{
5098	struct btrfs_key key;
5099	struct btrfs_disk_key found_key;
5100	int ret;
5101
5102	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5103
5104	if (key.offset > 0) {
5105		key.offset--;
5106	} else if (key.type > 0) {
5107		key.type--;
5108		key.offset = (u64)-1;
5109	} else if (key.objectid > 0) {
5110		key.objectid--;
5111		key.type = (u8)-1;
5112		key.offset = (u64)-1;
5113	} else {
5114		return 1;
5115	}
5116
5117	btrfs_release_path(path);
5118	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5119	if (ret < 0)
5120		return ret;
5121	btrfs_item_key(path->nodes[0], &found_key, 0);
5122	ret = comp_keys(&found_key, &key);
5123	/*
5124	 * We might have had an item with the previous key in the tree right
5125	 * before we released our path. And after we released our path, that
5126	 * item might have been pushed to the first slot (0) of the leaf we
5127	 * were holding due to a tree balance. Alternatively, an item with the
5128	 * previous key can exist as the only element of a leaf (big fat item).
5129	 * Therefore account for these 2 cases, so that our callers (like
5130	 * btrfs_previous_item) don't miss an existing item with a key matching
5131	 * the previous key we computed above.
5132	 */
5133	if (ret <= 0)
5134		return 0;
5135	return 1;
5136}
5137
5138/*
5139 * A helper function to walk down the tree starting at min_key, and looking
5140 * for nodes or leaves that are have a minimum transaction id.
5141 * This is used by the btree defrag code, and tree logging
5142 *
5143 * This does not cow, but it does stuff the starting key it finds back
5144 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5145 * key and get a writable path.
5146 *
5147 * This honors path->lowest_level to prevent descent past a given level
5148 * of the tree.
5149 *
5150 * min_trans indicates the oldest transaction that you are interested
5151 * in walking through.  Any nodes or leaves older than min_trans are
5152 * skipped over (without reading them).
5153 *
5154 * returns zero if something useful was found, < 0 on error and 1 if there
5155 * was nothing in the tree that matched the search criteria.
5156 */
5157int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5158			 struct btrfs_path *path,
5159			 u64 min_trans)
5160{
 
5161	struct extent_buffer *cur;
5162	struct btrfs_key found_key;
5163	int slot;
5164	int sret;
5165	u32 nritems;
5166	int level;
5167	int ret = 1;
5168	int keep_locks = path->keep_locks;
5169
5170	path->keep_locks = 1;
5171again:
5172	cur = btrfs_read_lock_root_node(root);
5173	level = btrfs_header_level(cur);
5174	WARN_ON(path->nodes[level]);
5175	path->nodes[level] = cur;
5176	path->locks[level] = BTRFS_READ_LOCK;
5177
5178	if (btrfs_header_generation(cur) < min_trans) {
5179		ret = 1;
5180		goto out;
5181	}
5182	while (1) {
5183		nritems = btrfs_header_nritems(cur);
5184		level = btrfs_header_level(cur);
5185		sret = btrfs_bin_search(cur, min_key, level, &slot);
5186		if (sret < 0) {
5187			ret = sret;
5188			goto out;
5189		}
5190
5191		/* at the lowest level, we're done, setup the path and exit */
5192		if (level == path->lowest_level) {
5193			if (slot >= nritems)
5194				goto find_next_key;
5195			ret = 0;
5196			path->slots[level] = slot;
5197			btrfs_item_key_to_cpu(cur, &found_key, slot);
5198			goto out;
5199		}
5200		if (sret && slot > 0)
5201			slot--;
5202		/*
5203		 * check this node pointer against the min_trans parameters.
5204		 * If it is too old, old, skip to the next one.
5205		 */
5206		while (slot < nritems) {
5207			u64 gen;
5208
5209			gen = btrfs_node_ptr_generation(cur, slot);
5210			if (gen < min_trans) {
5211				slot++;
5212				continue;
5213			}
5214			break;
5215		}
5216find_next_key:
5217		/*
5218		 * we didn't find a candidate key in this node, walk forward
5219		 * and find another one
5220		 */
5221		if (slot >= nritems) {
5222			path->slots[level] = slot;
5223			btrfs_set_path_blocking(path);
5224			sret = btrfs_find_next_key(root, path, min_key, level,
5225						  min_trans);
5226			if (sret == 0) {
5227				btrfs_release_path(path);
5228				goto again;
5229			} else {
5230				goto out;
5231			}
5232		}
5233		/* save our key for returning back */
5234		btrfs_node_key_to_cpu(cur, &found_key, slot);
5235		path->slots[level] = slot;
5236		if (level == path->lowest_level) {
5237			ret = 0;
5238			goto out;
5239		}
5240		btrfs_set_path_blocking(path);
5241		cur = btrfs_read_node_slot(cur, slot);
5242		if (IS_ERR(cur)) {
5243			ret = PTR_ERR(cur);
5244			goto out;
5245		}
5246
5247		btrfs_tree_read_lock(cur);
5248
5249		path->locks[level - 1] = BTRFS_READ_LOCK;
5250		path->nodes[level - 1] = cur;
5251		unlock_up(path, level, 1, 0, NULL);
 
5252	}
5253out:
5254	path->keep_locks = keep_locks;
5255	if (ret == 0) {
5256		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5257		btrfs_set_path_blocking(path);
5258		memcpy(min_key, &found_key, sizeof(found_key));
5259	}
5260	return ret;
5261}
5262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5263/*
5264 * this is similar to btrfs_next_leaf, but does not try to preserve
5265 * and fixup the path.  It looks for and returns the next key in the
5266 * tree based on the current path and the min_trans parameters.
5267 *
5268 * 0 is returned if another key is found, < 0 if there are any errors
5269 * and 1 is returned if there are no higher keys in the tree
5270 *
5271 * path->keep_locks should be set to 1 on the search made before
5272 * calling this function.
5273 */
5274int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5275			struct btrfs_key *key, int level, u64 min_trans)
5276{
5277	int slot;
5278	struct extent_buffer *c;
5279
5280	WARN_ON(!path->keep_locks && !path->skip_locking);
5281	while (level < BTRFS_MAX_LEVEL) {
5282		if (!path->nodes[level])
5283			return 1;
5284
5285		slot = path->slots[level] + 1;
5286		c = path->nodes[level];
5287next:
5288		if (slot >= btrfs_header_nritems(c)) {
5289			int ret;
5290			int orig_lowest;
5291			struct btrfs_key cur_key;
5292			if (level + 1 >= BTRFS_MAX_LEVEL ||
5293			    !path->nodes[level + 1])
5294				return 1;
5295
5296			if (path->locks[level + 1] || path->skip_locking) {
5297				level++;
5298				continue;
5299			}
5300
5301			slot = btrfs_header_nritems(c) - 1;
5302			if (level == 0)
5303				btrfs_item_key_to_cpu(c, &cur_key, slot);
5304			else
5305				btrfs_node_key_to_cpu(c, &cur_key, slot);
5306
5307			orig_lowest = path->lowest_level;
5308			btrfs_release_path(path);
5309			path->lowest_level = level;
5310			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5311						0, 0);
5312			path->lowest_level = orig_lowest;
5313			if (ret < 0)
5314				return ret;
5315
5316			c = path->nodes[level];
5317			slot = path->slots[level];
5318			if (ret == 0)
5319				slot++;
5320			goto next;
5321		}
5322
5323		if (level == 0)
5324			btrfs_item_key_to_cpu(c, key, slot);
5325		else {
5326			u64 gen = btrfs_node_ptr_generation(c, slot);
5327
5328			if (gen < min_trans) {
5329				slot++;
5330				goto next;
5331			}
5332			btrfs_node_key_to_cpu(c, key, slot);
5333		}
5334		return 0;
5335	}
5336	return 1;
5337}
5338
5339/*
5340 * search the tree again to find a leaf with greater keys
5341 * returns 0 if it found something or 1 if there are no greater leaves.
5342 * returns < 0 on io errors.
5343 */
5344int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5345{
5346	return btrfs_next_old_leaf(root, path, 0);
5347}
5348
5349int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5350			u64 time_seq)
5351{
5352	int slot;
5353	int level;
5354	struct extent_buffer *c;
5355	struct extent_buffer *next;
5356	struct btrfs_key key;
5357	u32 nritems;
5358	int ret;
5359	int old_spinning = path->leave_spinning;
5360	int next_rw_lock = 0;
5361
5362	nritems = btrfs_header_nritems(path->nodes[0]);
5363	if (nritems == 0)
5364		return 1;
5365
5366	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5367again:
5368	level = 1;
5369	next = NULL;
5370	next_rw_lock = 0;
5371	btrfs_release_path(path);
5372
5373	path->keep_locks = 1;
5374	path->leave_spinning = 1;
5375
5376	if (time_seq)
5377		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5378	else
5379		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5380	path->keep_locks = 0;
5381
5382	if (ret < 0)
5383		return ret;
5384
5385	nritems = btrfs_header_nritems(path->nodes[0]);
5386	/*
5387	 * by releasing the path above we dropped all our locks.  A balance
5388	 * could have added more items next to the key that used to be
5389	 * at the very end of the block.  So, check again here and
5390	 * advance the path if there are now more items available.
5391	 */
5392	if (nritems > 0 && path->slots[0] < nritems - 1) {
5393		if (ret == 0)
5394			path->slots[0]++;
5395		ret = 0;
5396		goto done;
5397	}
5398	/*
5399	 * So the above check misses one case:
5400	 * - after releasing the path above, someone has removed the item that
5401	 *   used to be at the very end of the block, and balance between leafs
5402	 *   gets another one with bigger key.offset to replace it.
5403	 *
5404	 * This one should be returned as well, or we can get leaf corruption
5405	 * later(esp. in __btrfs_drop_extents()).
5406	 *
5407	 * And a bit more explanation about this check,
5408	 * with ret > 0, the key isn't found, the path points to the slot
5409	 * where it should be inserted, so the path->slots[0] item must be the
5410	 * bigger one.
5411	 */
5412	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5413		ret = 0;
5414		goto done;
5415	}
5416
5417	while (level < BTRFS_MAX_LEVEL) {
5418		if (!path->nodes[level]) {
5419			ret = 1;
5420			goto done;
5421		}
5422
5423		slot = path->slots[level] + 1;
5424		c = path->nodes[level];
5425		if (slot >= btrfs_header_nritems(c)) {
5426			level++;
5427			if (level == BTRFS_MAX_LEVEL) {
5428				ret = 1;
5429				goto done;
5430			}
5431			continue;
5432		}
5433
5434		if (next) {
5435			btrfs_tree_unlock_rw(next, next_rw_lock);
5436			free_extent_buffer(next);
5437		}
5438
5439		next = c;
5440		next_rw_lock = path->locks[level];
5441		ret = read_block_for_search(root, path, &next, level,
5442					    slot, &key);
5443		if (ret == -EAGAIN)
5444			goto again;
5445
5446		if (ret < 0) {
5447			btrfs_release_path(path);
5448			goto done;
5449		}
5450
5451		if (!path->skip_locking) {
5452			ret = btrfs_try_tree_read_lock(next);
5453			if (!ret && time_seq) {
5454				/*
5455				 * If we don't get the lock, we may be racing
5456				 * with push_leaf_left, holding that lock while
5457				 * itself waiting for the leaf we've currently
5458				 * locked. To solve this situation, we give up
5459				 * on our lock and cycle.
5460				 */
5461				free_extent_buffer(next);
5462				btrfs_release_path(path);
5463				cond_resched();
5464				goto again;
5465			}
5466			if (!ret) {
5467				btrfs_set_path_blocking(path);
5468				btrfs_tree_read_lock(next);
 
 
5469			}
5470			next_rw_lock = BTRFS_READ_LOCK;
5471		}
5472		break;
5473	}
5474	path->slots[level] = slot;
5475	while (1) {
5476		level--;
5477		c = path->nodes[level];
5478		if (path->locks[level])
5479			btrfs_tree_unlock_rw(c, path->locks[level]);
5480
5481		free_extent_buffer(c);
5482		path->nodes[level] = next;
5483		path->slots[level] = 0;
5484		if (!path->skip_locking)
5485			path->locks[level] = next_rw_lock;
5486		if (!level)
5487			break;
5488
5489		ret = read_block_for_search(root, path, &next, level,
5490					    0, &key);
5491		if (ret == -EAGAIN)
5492			goto again;
5493
5494		if (ret < 0) {
5495			btrfs_release_path(path);
5496			goto done;
5497		}
5498
5499		if (!path->skip_locking) {
5500			ret = btrfs_try_tree_read_lock(next);
5501			if (!ret) {
5502				btrfs_set_path_blocking(path);
5503				btrfs_tree_read_lock(next);
 
 
5504			}
5505			next_rw_lock = BTRFS_READ_LOCK;
5506		}
5507	}
5508	ret = 0;
5509done:
5510	unlock_up(path, 0, 1, 0, NULL);
5511	path->leave_spinning = old_spinning;
5512	if (!old_spinning)
5513		btrfs_set_path_blocking(path);
5514
5515	return ret;
5516}
5517
5518/*
5519 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5520 * searching until it gets past min_objectid or finds an item of 'type'
5521 *
5522 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5523 */
5524int btrfs_previous_item(struct btrfs_root *root,
5525			struct btrfs_path *path, u64 min_objectid,
5526			int type)
5527{
5528	struct btrfs_key found_key;
5529	struct extent_buffer *leaf;
5530	u32 nritems;
5531	int ret;
5532
5533	while (1) {
5534		if (path->slots[0] == 0) {
5535			btrfs_set_path_blocking(path);
5536			ret = btrfs_prev_leaf(root, path);
5537			if (ret != 0)
5538				return ret;
5539		} else {
5540			path->slots[0]--;
5541		}
5542		leaf = path->nodes[0];
5543		nritems = btrfs_header_nritems(leaf);
5544		if (nritems == 0)
5545			return 1;
5546		if (path->slots[0] == nritems)
5547			path->slots[0]--;
5548
5549		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5550		if (found_key.objectid < min_objectid)
5551			break;
5552		if (found_key.type == type)
5553			return 0;
5554		if (found_key.objectid == min_objectid &&
5555		    found_key.type < type)
5556			break;
5557	}
5558	return 1;
5559}
5560
5561/*
5562 * search in extent tree to find a previous Metadata/Data extent item with
5563 * min objecitd.
5564 *
5565 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5566 */
5567int btrfs_previous_extent_item(struct btrfs_root *root,
5568			struct btrfs_path *path, u64 min_objectid)
5569{
5570	struct btrfs_key found_key;
5571	struct extent_buffer *leaf;
5572	u32 nritems;
5573	int ret;
5574
5575	while (1) {
5576		if (path->slots[0] == 0) {
5577			btrfs_set_path_blocking(path);
5578			ret = btrfs_prev_leaf(root, path);
5579			if (ret != 0)
5580				return ret;
5581		} else {
5582			path->slots[0]--;
5583		}
5584		leaf = path->nodes[0];
5585		nritems = btrfs_header_nritems(leaf);
5586		if (nritems == 0)
5587			return 1;
5588		if (path->slots[0] == nritems)
5589			path->slots[0]--;
5590
5591		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5592		if (found_key.objectid < min_objectid)
5593			break;
5594		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5595		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5596			return 0;
5597		if (found_key.objectid == min_objectid &&
5598		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5599			break;
5600	}
5601	return 1;
5602}
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/rbtree.h>
   9#include <linux/mm.h>
  10#include "ctree.h"
  11#include "disk-io.h"
  12#include "transaction.h"
  13#include "print-tree.h"
  14#include "locking.h"
 
 
  15
  16static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  17		      *root, struct btrfs_path *path, int level);
  18static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  19		      const struct btrfs_key *ins_key, struct btrfs_path *path,
  20		      int data_size, int extend);
  21static int push_node_left(struct btrfs_trans_handle *trans,
  22			  struct btrfs_fs_info *fs_info,
  23			  struct extent_buffer *dst,
  24			  struct extent_buffer *src, int empty);
  25static int balance_node_right(struct btrfs_trans_handle *trans,
  26			      struct btrfs_fs_info *fs_info,
  27			      struct extent_buffer *dst_buf,
  28			      struct extent_buffer *src_buf);
  29static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  30		    int level, int slot);
  31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  32struct btrfs_path *btrfs_alloc_path(void)
  33{
  34	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  35}
  36
  37/*
  38 * set all locked nodes in the path to blocking locks.  This should
  39 * be done before scheduling
  40 */
  41noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  42{
  43	int i;
  44	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  45		if (!p->nodes[i] || !p->locks[i])
  46			continue;
  47		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
  48		if (p->locks[i] == BTRFS_READ_LOCK)
 
 
 
 
 
  49			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  50		else if (p->locks[i] == BTRFS_WRITE_LOCK)
 
  51			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  52	}
  53}
  54
  55/*
  56 * reset all the locked nodes in the patch to spinning locks.
  57 *
  58 * held is used to keep lockdep happy, when lockdep is enabled
  59 * we set held to a blocking lock before we go around and
  60 * retake all the spinlocks in the path.  You can safely use NULL
  61 * for held
  62 */
  63noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  64					struct extent_buffer *held, int held_rw)
  65{
  66	int i;
  67
  68	if (held) {
  69		btrfs_set_lock_blocking_rw(held, held_rw);
  70		if (held_rw == BTRFS_WRITE_LOCK)
  71			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
  72		else if (held_rw == BTRFS_READ_LOCK)
  73			held_rw = BTRFS_READ_LOCK_BLOCKING;
  74	}
  75	btrfs_set_path_blocking(p);
  76
  77	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  78		if (p->nodes[i] && p->locks[i]) {
  79			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
  80			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
  81				p->locks[i] = BTRFS_WRITE_LOCK;
  82			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
  83				p->locks[i] = BTRFS_READ_LOCK;
  84		}
  85	}
  86
  87	if (held)
  88		btrfs_clear_lock_blocking_rw(held, held_rw);
  89}
  90
  91/* this also releases the path */
  92void btrfs_free_path(struct btrfs_path *p)
  93{
  94	if (!p)
  95		return;
  96	btrfs_release_path(p);
  97	kmem_cache_free(btrfs_path_cachep, p);
  98}
  99
 100/*
 101 * path release drops references on the extent buffers in the path
 102 * and it drops any locks held by this path
 103 *
 104 * It is safe to call this on paths that no locks or extent buffers held.
 105 */
 106noinline void btrfs_release_path(struct btrfs_path *p)
 107{
 108	int i;
 109
 110	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 111		p->slots[i] = 0;
 112		if (!p->nodes[i])
 113			continue;
 114		if (p->locks[i]) {
 115			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 116			p->locks[i] = 0;
 117		}
 118		free_extent_buffer(p->nodes[i]);
 119		p->nodes[i] = NULL;
 120	}
 121}
 122
 123/*
 124 * safely gets a reference on the root node of a tree.  A lock
 125 * is not taken, so a concurrent writer may put a different node
 126 * at the root of the tree.  See btrfs_lock_root_node for the
 127 * looping required.
 128 *
 129 * The extent buffer returned by this has a reference taken, so
 130 * it won't disappear.  It may stop being the root of the tree
 131 * at any time because there are no locks held.
 132 */
 133struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 134{
 135	struct extent_buffer *eb;
 136
 137	while (1) {
 138		rcu_read_lock();
 139		eb = rcu_dereference(root->node);
 140
 141		/*
 142		 * RCU really hurts here, we could free up the root node because
 143		 * it was COWed but we may not get the new root node yet so do
 144		 * the inc_not_zero dance and if it doesn't work then
 145		 * synchronize_rcu and try again.
 146		 */
 147		if (atomic_inc_not_zero(&eb->refs)) {
 148			rcu_read_unlock();
 149			break;
 150		}
 151		rcu_read_unlock();
 152		synchronize_rcu();
 153	}
 154	return eb;
 155}
 156
 157/* loop around taking references on and locking the root node of the
 158 * tree until you end up with a lock on the root.  A locked buffer
 159 * is returned, with a reference held.
 160 */
 161struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
 162{
 163	struct extent_buffer *eb;
 164
 165	while (1) {
 166		eb = btrfs_root_node(root);
 167		btrfs_tree_lock(eb);
 168		if (eb == root->node)
 169			break;
 170		btrfs_tree_unlock(eb);
 171		free_extent_buffer(eb);
 172	}
 173	return eb;
 174}
 175
 176/* loop around taking references on and locking the root node of the
 177 * tree until you end up with a lock on the root.  A locked buffer
 178 * is returned, with a reference held.
 179 */
 180struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
 181{
 182	struct extent_buffer *eb;
 183
 184	while (1) {
 185		eb = btrfs_root_node(root);
 186		btrfs_tree_read_lock(eb);
 187		if (eb == root->node)
 188			break;
 189		btrfs_tree_read_unlock(eb);
 190		free_extent_buffer(eb);
 191	}
 192	return eb;
 193}
 194
 195/* cowonly root (everything not a reference counted cow subvolume), just get
 196 * put onto a simple dirty list.  transaction.c walks this to make sure they
 197 * get properly updated on disk.
 198 */
 199static void add_root_to_dirty_list(struct btrfs_root *root)
 200{
 201	struct btrfs_fs_info *fs_info = root->fs_info;
 202
 203	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 204	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 205		return;
 206
 207	spin_lock(&fs_info->trans_lock);
 208	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 209		/* Want the extent tree to be the last on the list */
 210		if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
 211			list_move_tail(&root->dirty_list,
 212				       &fs_info->dirty_cowonly_roots);
 213		else
 214			list_move(&root->dirty_list,
 215				  &fs_info->dirty_cowonly_roots);
 216	}
 217	spin_unlock(&fs_info->trans_lock);
 218}
 219
 220/*
 221 * used by snapshot creation to make a copy of a root for a tree with
 222 * a given objectid.  The buffer with the new root node is returned in
 223 * cow_ret, and this func returns zero on success or a negative error code.
 224 */
 225int btrfs_copy_root(struct btrfs_trans_handle *trans,
 226		      struct btrfs_root *root,
 227		      struct extent_buffer *buf,
 228		      struct extent_buffer **cow_ret, u64 new_root_objectid)
 229{
 230	struct btrfs_fs_info *fs_info = root->fs_info;
 231	struct extent_buffer *cow;
 232	int ret = 0;
 233	int level;
 234	struct btrfs_disk_key disk_key;
 235
 236	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 237		trans->transid != fs_info->running_transaction->transid);
 238	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 239		trans->transid != root->last_trans);
 240
 241	level = btrfs_header_level(buf);
 242	if (level == 0)
 243		btrfs_item_key(buf, &disk_key, 0);
 244	else
 245		btrfs_node_key(buf, &disk_key, 0);
 246
 247	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 248			&disk_key, level, buf->start, 0);
 249	if (IS_ERR(cow))
 250		return PTR_ERR(cow);
 251
 252	copy_extent_buffer_full(cow, buf);
 253	btrfs_set_header_bytenr(cow, cow->start);
 254	btrfs_set_header_generation(cow, trans->transid);
 255	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 256	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 257				     BTRFS_HEADER_FLAG_RELOC);
 258	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 259		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 260	else
 261		btrfs_set_header_owner(cow, new_root_objectid);
 262
 263	write_extent_buffer_fsid(cow, fs_info->fsid);
 264
 265	WARN_ON(btrfs_header_generation(buf) > trans->transid);
 266	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 267		ret = btrfs_inc_ref(trans, root, cow, 1);
 268	else
 269		ret = btrfs_inc_ref(trans, root, cow, 0);
 270
 271	if (ret)
 272		return ret;
 273
 274	btrfs_mark_buffer_dirty(cow);
 275	*cow_ret = cow;
 276	return 0;
 277}
 278
 279enum mod_log_op {
 280	MOD_LOG_KEY_REPLACE,
 281	MOD_LOG_KEY_ADD,
 282	MOD_LOG_KEY_REMOVE,
 283	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
 284	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
 285	MOD_LOG_MOVE_KEYS,
 286	MOD_LOG_ROOT_REPLACE,
 287};
 288
 289struct tree_mod_root {
 290	u64 logical;
 291	u8 level;
 292};
 293
 294struct tree_mod_elem {
 295	struct rb_node node;
 296	u64 logical;
 297	u64 seq;
 298	enum mod_log_op op;
 299
 300	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
 301	int slot;
 302
 303	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
 304	u64 generation;
 305
 306	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
 307	struct btrfs_disk_key key;
 308	u64 blockptr;
 309
 310	/* this is used for op == MOD_LOG_MOVE_KEYS */
 311	struct {
 312		int dst_slot;
 313		int nr_items;
 314	} move;
 315
 316	/* this is used for op == MOD_LOG_ROOT_REPLACE */
 317	struct tree_mod_root old_root;
 318};
 319
 320/*
 321 * Pull a new tree mod seq number for our operation.
 322 */
 323static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
 324{
 325	return atomic64_inc_return(&fs_info->tree_mod_seq);
 326}
 327
 328/*
 329 * This adds a new blocker to the tree mod log's blocker list if the @elem
 330 * passed does not already have a sequence number set. So when a caller expects
 331 * to record tree modifications, it should ensure to set elem->seq to zero
 332 * before calling btrfs_get_tree_mod_seq.
 333 * Returns a fresh, unused tree log modification sequence number, even if no new
 334 * blocker was added.
 335 */
 336u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
 337			   struct seq_list *elem)
 338{
 339	write_lock(&fs_info->tree_mod_log_lock);
 340	spin_lock(&fs_info->tree_mod_seq_lock);
 341	if (!elem->seq) {
 342		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
 343		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
 344	}
 345	spin_unlock(&fs_info->tree_mod_seq_lock);
 346	write_unlock(&fs_info->tree_mod_log_lock);
 347
 348	return elem->seq;
 349}
 350
 351void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
 352			    struct seq_list *elem)
 353{
 354	struct rb_root *tm_root;
 355	struct rb_node *node;
 356	struct rb_node *next;
 357	struct seq_list *cur_elem;
 358	struct tree_mod_elem *tm;
 359	u64 min_seq = (u64)-1;
 360	u64 seq_putting = elem->seq;
 361
 362	if (!seq_putting)
 363		return;
 364
 365	spin_lock(&fs_info->tree_mod_seq_lock);
 366	list_del(&elem->list);
 367	elem->seq = 0;
 368
 369	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
 370		if (cur_elem->seq < min_seq) {
 371			if (seq_putting > cur_elem->seq) {
 372				/*
 373				 * blocker with lower sequence number exists, we
 374				 * cannot remove anything from the log
 375				 */
 376				spin_unlock(&fs_info->tree_mod_seq_lock);
 377				return;
 378			}
 379			min_seq = cur_elem->seq;
 380		}
 381	}
 382	spin_unlock(&fs_info->tree_mod_seq_lock);
 383
 384	/*
 385	 * anything that's lower than the lowest existing (read: blocked)
 386	 * sequence number can be removed from the tree.
 387	 */
 388	write_lock(&fs_info->tree_mod_log_lock);
 389	tm_root = &fs_info->tree_mod_log;
 390	for (node = rb_first(tm_root); node; node = next) {
 391		next = rb_next(node);
 392		tm = rb_entry(node, struct tree_mod_elem, node);
 393		if (tm->seq > min_seq)
 394			continue;
 395		rb_erase(node, tm_root);
 396		kfree(tm);
 397	}
 398	write_unlock(&fs_info->tree_mod_log_lock);
 399}
 400
 401/*
 402 * key order of the log:
 403 *       node/leaf start address -> sequence
 404 *
 405 * The 'start address' is the logical address of the *new* root node
 406 * for root replace operations, or the logical address of the affected
 407 * block for all other operations.
 408 *
 409 * Note: must be called with write lock for fs_info::tree_mod_log_lock.
 410 */
 411static noinline int
 412__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
 413{
 414	struct rb_root *tm_root;
 415	struct rb_node **new;
 416	struct rb_node *parent = NULL;
 417	struct tree_mod_elem *cur;
 418
 
 
 419	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
 420
 421	tm_root = &fs_info->tree_mod_log;
 422	new = &tm_root->rb_node;
 423	while (*new) {
 424		cur = rb_entry(*new, struct tree_mod_elem, node);
 425		parent = *new;
 426		if (cur->logical < tm->logical)
 427			new = &((*new)->rb_left);
 428		else if (cur->logical > tm->logical)
 429			new = &((*new)->rb_right);
 430		else if (cur->seq < tm->seq)
 431			new = &((*new)->rb_left);
 432		else if (cur->seq > tm->seq)
 433			new = &((*new)->rb_right);
 434		else
 435			return -EEXIST;
 436	}
 437
 438	rb_link_node(&tm->node, parent, new);
 439	rb_insert_color(&tm->node, tm_root);
 440	return 0;
 441}
 442
 443/*
 444 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 445 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 446 * this until all tree mod log insertions are recorded in the rb tree and then
 447 * write unlock fs_info::tree_mod_log_lock.
 448 */
 449static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
 450				    struct extent_buffer *eb) {
 451	smp_mb();
 452	if (list_empty(&(fs_info)->tree_mod_seq_list))
 453		return 1;
 454	if (eb && btrfs_header_level(eb) == 0)
 455		return 1;
 456
 457	write_lock(&fs_info->tree_mod_log_lock);
 458	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
 459		write_unlock(&fs_info->tree_mod_log_lock);
 460		return 1;
 461	}
 462
 463	return 0;
 464}
 465
 466/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
 467static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
 468				    struct extent_buffer *eb)
 469{
 470	smp_mb();
 471	if (list_empty(&(fs_info)->tree_mod_seq_list))
 472		return 0;
 473	if (eb && btrfs_header_level(eb) == 0)
 474		return 0;
 475
 476	return 1;
 477}
 478
 479static struct tree_mod_elem *
 480alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
 481		    enum mod_log_op op, gfp_t flags)
 482{
 483	struct tree_mod_elem *tm;
 484
 485	tm = kzalloc(sizeof(*tm), flags);
 486	if (!tm)
 487		return NULL;
 488
 489	tm->logical = eb->start;
 490	if (op != MOD_LOG_KEY_ADD) {
 491		btrfs_node_key(eb, &tm->key, slot);
 492		tm->blockptr = btrfs_node_blockptr(eb, slot);
 493	}
 494	tm->op = op;
 495	tm->slot = slot;
 496	tm->generation = btrfs_node_ptr_generation(eb, slot);
 497	RB_CLEAR_NODE(&tm->node);
 498
 499	return tm;
 500}
 501
 502static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
 503		enum mod_log_op op, gfp_t flags)
 504{
 505	struct tree_mod_elem *tm;
 506	int ret;
 507
 508	if (!tree_mod_need_log(eb->fs_info, eb))
 509		return 0;
 510
 511	tm = alloc_tree_mod_elem(eb, slot, op, flags);
 512	if (!tm)
 513		return -ENOMEM;
 514
 515	if (tree_mod_dont_log(eb->fs_info, eb)) {
 516		kfree(tm);
 517		return 0;
 518	}
 519
 520	ret = __tree_mod_log_insert(eb->fs_info, tm);
 521	write_unlock(&eb->fs_info->tree_mod_log_lock);
 522	if (ret)
 523		kfree(tm);
 524
 525	return ret;
 526}
 527
 528static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
 529		int dst_slot, int src_slot, int nr_items)
 530{
 531	struct tree_mod_elem *tm = NULL;
 532	struct tree_mod_elem **tm_list = NULL;
 533	int ret = 0;
 534	int i;
 535	int locked = 0;
 536
 537	if (!tree_mod_need_log(eb->fs_info, eb))
 538		return 0;
 539
 540	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
 541	if (!tm_list)
 542		return -ENOMEM;
 543
 544	tm = kzalloc(sizeof(*tm), GFP_NOFS);
 545	if (!tm) {
 546		ret = -ENOMEM;
 547		goto free_tms;
 548	}
 549
 550	tm->logical = eb->start;
 551	tm->slot = src_slot;
 552	tm->move.dst_slot = dst_slot;
 553	tm->move.nr_items = nr_items;
 554	tm->op = MOD_LOG_MOVE_KEYS;
 555
 556	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 557		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
 558		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
 559		if (!tm_list[i]) {
 560			ret = -ENOMEM;
 561			goto free_tms;
 562		}
 563	}
 564
 565	if (tree_mod_dont_log(eb->fs_info, eb))
 566		goto free_tms;
 567	locked = 1;
 568
 569	/*
 570	 * When we override something during the move, we log these removals.
 571	 * This can only happen when we move towards the beginning of the
 572	 * buffer, i.e. dst_slot < src_slot.
 573	 */
 574	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 575		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
 576		if (ret)
 577			goto free_tms;
 578	}
 579
 580	ret = __tree_mod_log_insert(eb->fs_info, tm);
 581	if (ret)
 582		goto free_tms;
 583	write_unlock(&eb->fs_info->tree_mod_log_lock);
 584	kfree(tm_list);
 585
 586	return 0;
 587free_tms:
 588	for (i = 0; i < nr_items; i++) {
 589		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 590			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
 591		kfree(tm_list[i]);
 592	}
 593	if (locked)
 594		write_unlock(&eb->fs_info->tree_mod_log_lock);
 595	kfree(tm_list);
 596	kfree(tm);
 597
 598	return ret;
 599}
 600
 601static inline int
 602__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
 603		       struct tree_mod_elem **tm_list,
 604		       int nritems)
 605{
 606	int i, j;
 607	int ret;
 608
 609	for (i = nritems - 1; i >= 0; i--) {
 610		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 611		if (ret) {
 612			for (j = nritems - 1; j > i; j--)
 613				rb_erase(&tm_list[j]->node,
 614					 &fs_info->tree_mod_log);
 615			return ret;
 616		}
 617	}
 618
 619	return 0;
 620}
 621
 622static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
 623			 struct extent_buffer *new_root, int log_removal)
 624{
 625	struct btrfs_fs_info *fs_info = old_root->fs_info;
 626	struct tree_mod_elem *tm = NULL;
 627	struct tree_mod_elem **tm_list = NULL;
 628	int nritems = 0;
 629	int ret = 0;
 630	int i;
 631
 632	if (!tree_mod_need_log(fs_info, NULL))
 633		return 0;
 634
 635	if (log_removal && btrfs_header_level(old_root) > 0) {
 636		nritems = btrfs_header_nritems(old_root);
 637		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
 638				  GFP_NOFS);
 639		if (!tm_list) {
 640			ret = -ENOMEM;
 641			goto free_tms;
 642		}
 643		for (i = 0; i < nritems; i++) {
 644			tm_list[i] = alloc_tree_mod_elem(old_root, i,
 645			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 646			if (!tm_list[i]) {
 647				ret = -ENOMEM;
 648				goto free_tms;
 649			}
 650		}
 651	}
 652
 653	tm = kzalloc(sizeof(*tm), GFP_NOFS);
 654	if (!tm) {
 655		ret = -ENOMEM;
 656		goto free_tms;
 657	}
 658
 659	tm->logical = new_root->start;
 660	tm->old_root.logical = old_root->start;
 661	tm->old_root.level = btrfs_header_level(old_root);
 662	tm->generation = btrfs_header_generation(old_root);
 663	tm->op = MOD_LOG_ROOT_REPLACE;
 664
 665	if (tree_mod_dont_log(fs_info, NULL))
 666		goto free_tms;
 667
 668	if (tm_list)
 669		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 670	if (!ret)
 671		ret = __tree_mod_log_insert(fs_info, tm);
 672
 673	write_unlock(&fs_info->tree_mod_log_lock);
 674	if (ret)
 675		goto free_tms;
 676	kfree(tm_list);
 677
 678	return ret;
 679
 680free_tms:
 681	if (tm_list) {
 682		for (i = 0; i < nritems; i++)
 683			kfree(tm_list[i]);
 684		kfree(tm_list);
 685	}
 686	kfree(tm);
 687
 688	return ret;
 689}
 690
 691static struct tree_mod_elem *
 692__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
 693		      int smallest)
 694{
 695	struct rb_root *tm_root;
 696	struct rb_node *node;
 697	struct tree_mod_elem *cur = NULL;
 698	struct tree_mod_elem *found = NULL;
 699
 700	read_lock(&fs_info->tree_mod_log_lock);
 701	tm_root = &fs_info->tree_mod_log;
 702	node = tm_root->rb_node;
 703	while (node) {
 704		cur = rb_entry(node, struct tree_mod_elem, node);
 705		if (cur->logical < start) {
 706			node = node->rb_left;
 707		} else if (cur->logical > start) {
 708			node = node->rb_right;
 709		} else if (cur->seq < min_seq) {
 710			node = node->rb_left;
 711		} else if (!smallest) {
 712			/* we want the node with the highest seq */
 713			if (found)
 714				BUG_ON(found->seq > cur->seq);
 715			found = cur;
 716			node = node->rb_left;
 717		} else if (cur->seq > min_seq) {
 718			/* we want the node with the smallest seq */
 719			if (found)
 720				BUG_ON(found->seq < cur->seq);
 721			found = cur;
 722			node = node->rb_right;
 723		} else {
 724			found = cur;
 725			break;
 726		}
 727	}
 728	read_unlock(&fs_info->tree_mod_log_lock);
 729
 730	return found;
 731}
 732
 733/*
 734 * this returns the element from the log with the smallest time sequence
 735 * value that's in the log (the oldest log item). any element with a time
 736 * sequence lower than min_seq will be ignored.
 737 */
 738static struct tree_mod_elem *
 739tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
 740			   u64 min_seq)
 741{
 742	return __tree_mod_log_search(fs_info, start, min_seq, 1);
 743}
 744
 745/*
 746 * this returns the element from the log with the largest time sequence
 747 * value that's in the log (the most recent log item). any element with
 748 * a time sequence lower than min_seq will be ignored.
 749 */
 750static struct tree_mod_elem *
 751tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
 752{
 753	return __tree_mod_log_search(fs_info, start, min_seq, 0);
 754}
 755
 756static noinline int
 757tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
 758		     struct extent_buffer *src, unsigned long dst_offset,
 759		     unsigned long src_offset, int nr_items)
 760{
 
 761	int ret = 0;
 762	struct tree_mod_elem **tm_list = NULL;
 763	struct tree_mod_elem **tm_list_add, **tm_list_rem;
 764	int i;
 765	int locked = 0;
 766
 767	if (!tree_mod_need_log(fs_info, NULL))
 768		return 0;
 769
 770	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
 771		return 0;
 772
 773	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
 774			  GFP_NOFS);
 775	if (!tm_list)
 776		return -ENOMEM;
 777
 778	tm_list_add = tm_list;
 779	tm_list_rem = tm_list + nr_items;
 780	for (i = 0; i < nr_items; i++) {
 781		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
 782		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
 783		if (!tm_list_rem[i]) {
 784			ret = -ENOMEM;
 785			goto free_tms;
 786		}
 787
 788		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
 789		    MOD_LOG_KEY_ADD, GFP_NOFS);
 790		if (!tm_list_add[i]) {
 791			ret = -ENOMEM;
 792			goto free_tms;
 793		}
 794	}
 795
 796	if (tree_mod_dont_log(fs_info, NULL))
 797		goto free_tms;
 798	locked = 1;
 799
 800	for (i = 0; i < nr_items; i++) {
 801		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
 802		if (ret)
 803			goto free_tms;
 804		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
 805		if (ret)
 806			goto free_tms;
 807	}
 808
 809	write_unlock(&fs_info->tree_mod_log_lock);
 810	kfree(tm_list);
 811
 812	return 0;
 813
 814free_tms:
 815	for (i = 0; i < nr_items * 2; i++) {
 816		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 817			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 818		kfree(tm_list[i]);
 819	}
 820	if (locked)
 821		write_unlock(&fs_info->tree_mod_log_lock);
 822	kfree(tm_list);
 823
 824	return ret;
 825}
 826
 827static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
 828{
 829	struct tree_mod_elem **tm_list = NULL;
 830	int nritems = 0;
 831	int i;
 832	int ret = 0;
 833
 834	if (btrfs_header_level(eb) == 0)
 835		return 0;
 836
 837	if (!tree_mod_need_log(eb->fs_info, NULL))
 838		return 0;
 839
 840	nritems = btrfs_header_nritems(eb);
 841	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
 842	if (!tm_list)
 843		return -ENOMEM;
 844
 845	for (i = 0; i < nritems; i++) {
 846		tm_list[i] = alloc_tree_mod_elem(eb, i,
 847		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 848		if (!tm_list[i]) {
 849			ret = -ENOMEM;
 850			goto free_tms;
 851		}
 852	}
 853
 854	if (tree_mod_dont_log(eb->fs_info, eb))
 855		goto free_tms;
 856
 857	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
 858	write_unlock(&eb->fs_info->tree_mod_log_lock);
 859	if (ret)
 860		goto free_tms;
 861	kfree(tm_list);
 862
 863	return 0;
 864
 865free_tms:
 866	for (i = 0; i < nritems; i++)
 867		kfree(tm_list[i]);
 868	kfree(tm_list);
 869
 870	return ret;
 871}
 872
 873/*
 874 * check if the tree block can be shared by multiple trees
 875 */
 876int btrfs_block_can_be_shared(struct btrfs_root *root,
 877			      struct extent_buffer *buf)
 878{
 879	/*
 880	 * Tree blocks not in reference counted trees and tree roots
 881	 * are never shared. If a block was allocated after the last
 882	 * snapshot and the block was not allocated by tree relocation,
 883	 * we know the block is not shared.
 884	 */
 885	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 886	    buf != root->node && buf != root->commit_root &&
 887	    (btrfs_header_generation(buf) <=
 888	     btrfs_root_last_snapshot(&root->root_item) ||
 889	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 890		return 1;
 891#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 892	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 893	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 894		return 1;
 895#endif
 896	return 0;
 897}
 898
 899static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 900				       struct btrfs_root *root,
 901				       struct extent_buffer *buf,
 902				       struct extent_buffer *cow,
 903				       int *last_ref)
 904{
 905	struct btrfs_fs_info *fs_info = root->fs_info;
 906	u64 refs;
 907	u64 owner;
 908	u64 flags;
 909	u64 new_flags = 0;
 910	int ret;
 911
 912	/*
 913	 * Backrefs update rules:
 914	 *
 915	 * Always use full backrefs for extent pointers in tree block
 916	 * allocated by tree relocation.
 917	 *
 918	 * If a shared tree block is no longer referenced by its owner
 919	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 920	 * use full backrefs for extent pointers in tree block.
 921	 *
 922	 * If a tree block is been relocating
 923	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
 924	 * use full backrefs for extent pointers in tree block.
 925	 * The reason for this is some operations (such as drop tree)
 926	 * are only allowed for blocks use full backrefs.
 927	 */
 928
 929	if (btrfs_block_can_be_shared(root, buf)) {
 930		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
 931					       btrfs_header_level(buf), 1,
 932					       &refs, &flags);
 933		if (ret)
 934			return ret;
 935		if (refs == 0) {
 936			ret = -EROFS;
 937			btrfs_handle_fs_error(fs_info, ret, NULL);
 938			return ret;
 939		}
 940	} else {
 941		refs = 1;
 942		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 943		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 944			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 945		else
 946			flags = 0;
 947	}
 948
 949	owner = btrfs_header_owner(buf);
 950	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
 951	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 952
 953	if (refs > 1) {
 954		if ((owner == root->root_key.objectid ||
 955		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
 956		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
 957			ret = btrfs_inc_ref(trans, root, buf, 1);
 958			if (ret)
 959				return ret;
 960
 961			if (root->root_key.objectid ==
 962			    BTRFS_TREE_RELOC_OBJECTID) {
 963				ret = btrfs_dec_ref(trans, root, buf, 0);
 964				if (ret)
 965					return ret;
 966				ret = btrfs_inc_ref(trans, root, cow, 1);
 967				if (ret)
 968					return ret;
 969			}
 970			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 971		} else {
 972
 973			if (root->root_key.objectid ==
 974			    BTRFS_TREE_RELOC_OBJECTID)
 975				ret = btrfs_inc_ref(trans, root, cow, 1);
 976			else
 977				ret = btrfs_inc_ref(trans, root, cow, 0);
 978			if (ret)
 979				return ret;
 980		}
 981		if (new_flags != 0) {
 982			int level = btrfs_header_level(buf);
 983
 984			ret = btrfs_set_disk_extent_flags(trans, fs_info,
 985							  buf->start,
 986							  buf->len,
 987							  new_flags, level, 0);
 988			if (ret)
 989				return ret;
 990		}
 991	} else {
 992		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 993			if (root->root_key.objectid ==
 994			    BTRFS_TREE_RELOC_OBJECTID)
 995				ret = btrfs_inc_ref(trans, root, cow, 1);
 996			else
 997				ret = btrfs_inc_ref(trans, root, cow, 0);
 998			if (ret)
 999				return ret;
1000			ret = btrfs_dec_ref(trans, root, buf, 1);
1001			if (ret)
1002				return ret;
1003		}
1004		clean_tree_block(fs_info, buf);
1005		*last_ref = 1;
1006	}
1007	return 0;
1008}
1009
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1010/*
1011 * does the dirty work in cow of a single block.  The parent block (if
1012 * supplied) is updated to point to the new cow copy.  The new buffer is marked
1013 * dirty and returned locked.  If you modify the block it needs to be marked
1014 * dirty again.
1015 *
1016 * search_start -- an allocation hint for the new block
1017 *
1018 * empty_size -- a hint that you plan on doing more cow.  This is the size in
1019 * bytes the allocator should try to find free next to the block it returns.
1020 * This is just a hint and may be ignored by the allocator.
1021 */
1022static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1023			     struct btrfs_root *root,
1024			     struct extent_buffer *buf,
1025			     struct extent_buffer *parent, int parent_slot,
1026			     struct extent_buffer **cow_ret,
1027			     u64 search_start, u64 empty_size)
1028{
1029	struct btrfs_fs_info *fs_info = root->fs_info;
1030	struct btrfs_disk_key disk_key;
1031	struct extent_buffer *cow;
1032	int level, ret;
1033	int last_ref = 0;
1034	int unlock_orig = 0;
1035	u64 parent_start = 0;
1036
1037	if (*cow_ret == buf)
1038		unlock_orig = 1;
1039
1040	btrfs_assert_tree_locked(buf);
1041
1042	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1043		trans->transid != fs_info->running_transaction->transid);
1044	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1045		trans->transid != root->last_trans);
1046
1047	level = btrfs_header_level(buf);
1048
1049	if (level == 0)
1050		btrfs_item_key(buf, &disk_key, 0);
1051	else
1052		btrfs_node_key(buf, &disk_key, 0);
1053
1054	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1055		parent_start = parent->start;
1056
1057	cow = btrfs_alloc_tree_block(trans, root, parent_start,
1058			root->root_key.objectid, &disk_key, level,
1059			search_start, empty_size);
1060	if (IS_ERR(cow))
1061		return PTR_ERR(cow);
1062
1063	/* cow is set to blocking by btrfs_init_new_buffer */
1064
1065	copy_extent_buffer_full(cow, buf);
1066	btrfs_set_header_bytenr(cow, cow->start);
1067	btrfs_set_header_generation(cow, trans->transid);
1068	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1069	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1070				     BTRFS_HEADER_FLAG_RELOC);
1071	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1072		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1073	else
1074		btrfs_set_header_owner(cow, root->root_key.objectid);
1075
1076	write_extent_buffer_fsid(cow, fs_info->fsid);
1077
1078	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1079	if (ret) {
1080		btrfs_abort_transaction(trans, ret);
1081		return ret;
1082	}
1083
1084	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1085		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1086		if (ret) {
1087			btrfs_abort_transaction(trans, ret);
1088			return ret;
1089		}
1090	}
1091
1092	if (buf == root->node) {
1093		WARN_ON(parent && parent != buf);
1094		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1095		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1096			parent_start = buf->start;
1097
1098		extent_buffer_get(cow);
1099		ret = tree_mod_log_insert_root(root->node, cow, 1);
1100		BUG_ON(ret < 0);
1101		rcu_assign_pointer(root->node, cow);
1102
1103		btrfs_free_tree_block(trans, root, buf, parent_start,
1104				      last_ref);
1105		free_extent_buffer(buf);
1106		add_root_to_dirty_list(root);
1107	} else {
1108		WARN_ON(trans->transid != btrfs_header_generation(parent));
1109		tree_mod_log_insert_key(parent, parent_slot,
1110					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1111		btrfs_set_node_blockptr(parent, parent_slot,
1112					cow->start);
1113		btrfs_set_node_ptr_generation(parent, parent_slot,
1114					      trans->transid);
1115		btrfs_mark_buffer_dirty(parent);
1116		if (last_ref) {
1117			ret = tree_mod_log_free_eb(buf);
1118			if (ret) {
1119				btrfs_abort_transaction(trans, ret);
1120				return ret;
1121			}
1122		}
1123		btrfs_free_tree_block(trans, root, buf, parent_start,
1124				      last_ref);
1125	}
1126	if (unlock_orig)
1127		btrfs_tree_unlock(buf);
1128	free_extent_buffer_stale(buf);
1129	btrfs_mark_buffer_dirty(cow);
1130	*cow_ret = cow;
1131	return 0;
1132}
1133
1134/*
1135 * returns the logical address of the oldest predecessor of the given root.
1136 * entries older than time_seq are ignored.
1137 */
1138static struct tree_mod_elem *__tree_mod_log_oldest_root(
1139		struct extent_buffer *eb_root, u64 time_seq)
1140{
1141	struct tree_mod_elem *tm;
1142	struct tree_mod_elem *found = NULL;
1143	u64 root_logical = eb_root->start;
1144	int looped = 0;
1145
1146	if (!time_seq)
1147		return NULL;
1148
1149	/*
1150	 * the very last operation that's logged for a root is the
1151	 * replacement operation (if it is replaced at all). this has
1152	 * the logical address of the *new* root, making it the very
1153	 * first operation that's logged for this root.
1154	 */
1155	while (1) {
1156		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1157						time_seq);
1158		if (!looped && !tm)
1159			return NULL;
1160		/*
1161		 * if there are no tree operation for the oldest root, we simply
1162		 * return it. this should only happen if that (old) root is at
1163		 * level 0.
1164		 */
1165		if (!tm)
1166			break;
1167
1168		/*
1169		 * if there's an operation that's not a root replacement, we
1170		 * found the oldest version of our root. normally, we'll find a
1171		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1172		 */
1173		if (tm->op != MOD_LOG_ROOT_REPLACE)
1174			break;
1175
1176		found = tm;
1177		root_logical = tm->old_root.logical;
1178		looped = 1;
1179	}
1180
1181	/* if there's no old root to return, return what we found instead */
1182	if (!found)
1183		found = tm;
1184
1185	return found;
1186}
1187
1188/*
1189 * tm is a pointer to the first operation to rewind within eb. then, all
1190 * previous operations will be rewound (until we reach something older than
1191 * time_seq).
1192 */
1193static void
1194__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1195		      u64 time_seq, struct tree_mod_elem *first_tm)
1196{
1197	u32 n;
1198	struct rb_node *next;
1199	struct tree_mod_elem *tm = first_tm;
1200	unsigned long o_dst;
1201	unsigned long o_src;
1202	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1203
1204	n = btrfs_header_nritems(eb);
1205	read_lock(&fs_info->tree_mod_log_lock);
1206	while (tm && tm->seq >= time_seq) {
1207		/*
1208		 * all the operations are recorded with the operator used for
1209		 * the modification. as we're going backwards, we do the
1210		 * opposite of each operation here.
1211		 */
1212		switch (tm->op) {
1213		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1214			BUG_ON(tm->slot < n);
1215			/* Fallthrough */
1216		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1217		case MOD_LOG_KEY_REMOVE:
1218			btrfs_set_node_key(eb, &tm->key, tm->slot);
1219			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1220			btrfs_set_node_ptr_generation(eb, tm->slot,
1221						      tm->generation);
1222			n++;
1223			break;
1224		case MOD_LOG_KEY_REPLACE:
1225			BUG_ON(tm->slot >= n);
1226			btrfs_set_node_key(eb, &tm->key, tm->slot);
1227			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1228			btrfs_set_node_ptr_generation(eb, tm->slot,
1229						      tm->generation);
1230			break;
1231		case MOD_LOG_KEY_ADD:
1232			/* if a move operation is needed it's in the log */
1233			n--;
1234			break;
1235		case MOD_LOG_MOVE_KEYS:
1236			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1237			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1238			memmove_extent_buffer(eb, o_dst, o_src,
1239					      tm->move.nr_items * p_size);
1240			break;
1241		case MOD_LOG_ROOT_REPLACE:
1242			/*
1243			 * this operation is special. for roots, this must be
1244			 * handled explicitly before rewinding.
1245			 * for non-roots, this operation may exist if the node
1246			 * was a root: root A -> child B; then A gets empty and
1247			 * B is promoted to the new root. in the mod log, we'll
1248			 * have a root-replace operation for B, a tree block
1249			 * that is no root. we simply ignore that operation.
1250			 */
1251			break;
1252		}
1253		next = rb_next(&tm->node);
1254		if (!next)
1255			break;
1256		tm = rb_entry(next, struct tree_mod_elem, node);
1257		if (tm->logical != first_tm->logical)
1258			break;
1259	}
1260	read_unlock(&fs_info->tree_mod_log_lock);
1261	btrfs_set_header_nritems(eb, n);
1262}
1263
1264/*
1265 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1266 * is returned. If rewind operations happen, a fresh buffer is returned. The
1267 * returned buffer is always read-locked. If the returned buffer is not the
1268 * input buffer, the lock on the input buffer is released and the input buffer
1269 * is freed (its refcount is decremented).
1270 */
1271static struct extent_buffer *
1272tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1273		    struct extent_buffer *eb, u64 time_seq)
1274{
1275	struct extent_buffer *eb_rewin;
1276	struct tree_mod_elem *tm;
1277
1278	if (!time_seq)
1279		return eb;
1280
1281	if (btrfs_header_level(eb) == 0)
1282		return eb;
1283
1284	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1285	if (!tm)
1286		return eb;
1287
1288	btrfs_set_path_blocking(path);
1289	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1290
1291	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1292		BUG_ON(tm->slot != 0);
1293		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1294		if (!eb_rewin) {
1295			btrfs_tree_read_unlock_blocking(eb);
1296			free_extent_buffer(eb);
1297			return NULL;
1298		}
1299		btrfs_set_header_bytenr(eb_rewin, eb->start);
1300		btrfs_set_header_backref_rev(eb_rewin,
1301					     btrfs_header_backref_rev(eb));
1302		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1303		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1304	} else {
1305		eb_rewin = btrfs_clone_extent_buffer(eb);
1306		if (!eb_rewin) {
1307			btrfs_tree_read_unlock_blocking(eb);
1308			free_extent_buffer(eb);
1309			return NULL;
1310		}
1311	}
1312
1313	btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1314	btrfs_tree_read_unlock_blocking(eb);
1315	free_extent_buffer(eb);
1316
1317	extent_buffer_get(eb_rewin);
1318	btrfs_tree_read_lock(eb_rewin);
1319	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1320	WARN_ON(btrfs_header_nritems(eb_rewin) >
1321		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1322
1323	return eb_rewin;
1324}
1325
1326/*
1327 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1328 * value. If there are no changes, the current root->root_node is returned. If
1329 * anything changed in between, there's a fresh buffer allocated on which the
1330 * rewind operations are done. In any case, the returned buffer is read locked.
1331 * Returns NULL on error (with no locks held).
1332 */
1333static inline struct extent_buffer *
1334get_old_root(struct btrfs_root *root, u64 time_seq)
1335{
1336	struct btrfs_fs_info *fs_info = root->fs_info;
1337	struct tree_mod_elem *tm;
1338	struct extent_buffer *eb = NULL;
1339	struct extent_buffer *eb_root;
 
1340	struct extent_buffer *old;
1341	struct tree_mod_root *old_root = NULL;
1342	u64 old_generation = 0;
1343	u64 logical;
1344	int level;
1345
1346	eb_root = btrfs_read_lock_root_node(root);
1347	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1348	if (!tm)
1349		return eb_root;
1350
1351	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1352		old_root = &tm->old_root;
1353		old_generation = tm->generation;
1354		logical = old_root->logical;
1355		level = old_root->level;
1356	} else {
1357		logical = eb_root->start;
1358		level = btrfs_header_level(eb_root);
1359	}
1360
1361	tm = tree_mod_log_search(fs_info, logical, time_seq);
1362	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1363		btrfs_tree_read_unlock(eb_root);
1364		free_extent_buffer(eb_root);
1365		old = read_tree_block(fs_info, logical, 0, level, NULL);
1366		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1367			if (!IS_ERR(old))
1368				free_extent_buffer(old);
1369			btrfs_warn(fs_info,
1370				   "failed to read tree block %llu from get_old_root",
1371				   logical);
1372		} else {
1373			eb = btrfs_clone_extent_buffer(old);
1374			free_extent_buffer(old);
1375		}
1376	} else if (old_root) {
 
1377		btrfs_tree_read_unlock(eb_root);
1378		free_extent_buffer(eb_root);
1379		eb = alloc_dummy_extent_buffer(fs_info, logical);
1380	} else {
1381		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1382		eb = btrfs_clone_extent_buffer(eb_root);
1383		btrfs_tree_read_unlock_blocking(eb_root);
1384		free_extent_buffer(eb_root);
1385	}
1386
1387	if (!eb)
1388		return NULL;
1389	extent_buffer_get(eb);
1390	btrfs_tree_read_lock(eb);
1391	if (old_root) {
1392		btrfs_set_header_bytenr(eb, eb->start);
1393		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1394		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1395		btrfs_set_header_level(eb, old_root->level);
1396		btrfs_set_header_generation(eb, old_generation);
1397	}
1398	if (tm)
1399		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1400	else
1401		WARN_ON(btrfs_header_level(eb) != 0);
1402	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1403
1404	return eb;
1405}
1406
1407int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1408{
1409	struct tree_mod_elem *tm;
1410	int level;
1411	struct extent_buffer *eb_root = btrfs_root_node(root);
1412
1413	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1414	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1415		level = tm->old_root.level;
1416	} else {
1417		level = btrfs_header_level(eb_root);
1418	}
1419	free_extent_buffer(eb_root);
1420
1421	return level;
1422}
1423
1424static inline int should_cow_block(struct btrfs_trans_handle *trans,
1425				   struct btrfs_root *root,
1426				   struct extent_buffer *buf)
1427{
1428	if (btrfs_is_testing(root->fs_info))
1429		return 0;
1430
1431	/* Ensure we can see the FORCE_COW bit */
1432	smp_mb__before_atomic();
1433
1434	/*
1435	 * We do not need to cow a block if
1436	 * 1) this block is not created or changed in this transaction;
1437	 * 2) this block does not belong to TREE_RELOC tree;
1438	 * 3) the root is not forced COW.
1439	 *
1440	 * What is forced COW:
1441	 *    when we create snapshot during committing the transaction,
1442	 *    after we've finished coping src root, we must COW the shared
1443	 *    block to ensure the metadata consistency.
1444	 */
1445	if (btrfs_header_generation(buf) == trans->transid &&
1446	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1447	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1448	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1449	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1450		return 0;
1451	return 1;
1452}
1453
1454/*
1455 * cows a single block, see __btrfs_cow_block for the real work.
1456 * This version of it has extra checks so that a block isn't COWed more than
1457 * once per transaction, as long as it hasn't been written yet
1458 */
1459noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1460		    struct btrfs_root *root, struct extent_buffer *buf,
1461		    struct extent_buffer *parent, int parent_slot,
1462		    struct extent_buffer **cow_ret)
1463{
1464	struct btrfs_fs_info *fs_info = root->fs_info;
1465	u64 search_start;
1466	int ret;
1467
 
 
 
 
1468	if (trans->transaction != fs_info->running_transaction)
1469		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1470		       trans->transid,
1471		       fs_info->running_transaction->transid);
1472
1473	if (trans->transid != fs_info->generation)
1474		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1475		       trans->transid, fs_info->generation);
1476
1477	if (!should_cow_block(trans, root, buf)) {
1478		trans->dirty = true;
1479		*cow_ret = buf;
1480		return 0;
1481	}
1482
1483	search_start = buf->start & ~((u64)SZ_1G - 1);
1484
1485	if (parent)
1486		btrfs_set_lock_blocking(parent);
1487	btrfs_set_lock_blocking(buf);
1488
 
 
 
 
 
 
 
1489	ret = __btrfs_cow_block(trans, root, buf, parent,
1490				 parent_slot, cow_ret, search_start, 0);
1491
1492	trace_btrfs_cow_block(root, buf, *cow_ret);
1493
1494	return ret;
1495}
1496
1497/*
1498 * helper function for defrag to decide if two blocks pointed to by a
1499 * node are actually close by
1500 */
1501static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1502{
1503	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1504		return 1;
1505	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1506		return 1;
1507	return 0;
1508}
1509
1510/*
1511 * compare two keys in a memcmp fashion
1512 */
1513static int comp_keys(const struct btrfs_disk_key *disk,
1514		     const struct btrfs_key *k2)
1515{
1516	struct btrfs_key k1;
1517
1518	btrfs_disk_key_to_cpu(&k1, disk);
1519
1520	return btrfs_comp_cpu_keys(&k1, k2);
1521}
1522
1523/*
1524 * same as comp_keys only with two btrfs_key's
1525 */
1526int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1527{
1528	if (k1->objectid > k2->objectid)
1529		return 1;
1530	if (k1->objectid < k2->objectid)
1531		return -1;
1532	if (k1->type > k2->type)
1533		return 1;
1534	if (k1->type < k2->type)
1535		return -1;
1536	if (k1->offset > k2->offset)
1537		return 1;
1538	if (k1->offset < k2->offset)
1539		return -1;
1540	return 0;
1541}
1542
1543/*
1544 * this is used by the defrag code to go through all the
1545 * leaves pointed to by a node and reallocate them so that
1546 * disk order is close to key order
1547 */
1548int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1549		       struct btrfs_root *root, struct extent_buffer *parent,
1550		       int start_slot, u64 *last_ret,
1551		       struct btrfs_key *progress)
1552{
1553	struct btrfs_fs_info *fs_info = root->fs_info;
1554	struct extent_buffer *cur;
1555	u64 blocknr;
1556	u64 gen;
1557	u64 search_start = *last_ret;
1558	u64 last_block = 0;
1559	u64 other;
1560	u32 parent_nritems;
1561	int end_slot;
1562	int i;
1563	int err = 0;
1564	int parent_level;
1565	int uptodate;
1566	u32 blocksize;
1567	int progress_passed = 0;
1568	struct btrfs_disk_key disk_key;
1569
1570	parent_level = btrfs_header_level(parent);
1571
1572	WARN_ON(trans->transaction != fs_info->running_transaction);
1573	WARN_ON(trans->transid != fs_info->generation);
1574
1575	parent_nritems = btrfs_header_nritems(parent);
1576	blocksize = fs_info->nodesize;
1577	end_slot = parent_nritems - 1;
1578
1579	if (parent_nritems <= 1)
1580		return 0;
1581
1582	btrfs_set_lock_blocking(parent);
1583
1584	for (i = start_slot; i <= end_slot; i++) {
1585		struct btrfs_key first_key;
1586		int close = 1;
1587
1588		btrfs_node_key(parent, &disk_key, i);
1589		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1590			continue;
1591
1592		progress_passed = 1;
1593		blocknr = btrfs_node_blockptr(parent, i);
1594		gen = btrfs_node_ptr_generation(parent, i);
1595		btrfs_node_key_to_cpu(parent, &first_key, i);
1596		if (last_block == 0)
1597			last_block = blocknr;
1598
1599		if (i > 0) {
1600			other = btrfs_node_blockptr(parent, i - 1);
1601			close = close_blocks(blocknr, other, blocksize);
1602		}
1603		if (!close && i < end_slot) {
1604			other = btrfs_node_blockptr(parent, i + 1);
1605			close = close_blocks(blocknr, other, blocksize);
1606		}
1607		if (close) {
1608			last_block = blocknr;
1609			continue;
1610		}
1611
1612		cur = find_extent_buffer(fs_info, blocknr);
1613		if (cur)
1614			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1615		else
1616			uptodate = 0;
1617		if (!cur || !uptodate) {
1618			if (!cur) {
1619				cur = read_tree_block(fs_info, blocknr, gen,
1620						      parent_level - 1,
1621						      &first_key);
1622				if (IS_ERR(cur)) {
1623					return PTR_ERR(cur);
1624				} else if (!extent_buffer_uptodate(cur)) {
1625					free_extent_buffer(cur);
1626					return -EIO;
1627				}
1628			} else if (!uptodate) {
1629				err = btrfs_read_buffer(cur, gen,
1630						parent_level - 1,&first_key);
1631				if (err) {
1632					free_extent_buffer(cur);
1633					return err;
1634				}
1635			}
1636		}
1637		if (search_start == 0)
1638			search_start = last_block;
1639
1640		btrfs_tree_lock(cur);
1641		btrfs_set_lock_blocking(cur);
1642		err = __btrfs_cow_block(trans, root, cur, parent, i,
1643					&cur, search_start,
1644					min(16 * blocksize,
1645					    (end_slot - i) * blocksize));
1646		if (err) {
1647			btrfs_tree_unlock(cur);
1648			free_extent_buffer(cur);
1649			break;
1650		}
1651		search_start = cur->start;
1652		last_block = cur->start;
1653		*last_ret = search_start;
1654		btrfs_tree_unlock(cur);
1655		free_extent_buffer(cur);
1656	}
1657	return err;
1658}
1659
1660/*
1661 * search for key in the extent_buffer.  The items start at offset p,
1662 * and they are item_size apart.  There are 'max' items in p.
1663 *
1664 * the slot in the array is returned via slot, and it points to
1665 * the place where you would insert key if it is not found in
1666 * the array.
1667 *
1668 * slot may point to max if the key is bigger than all of the keys
1669 */
1670static noinline int generic_bin_search(struct extent_buffer *eb,
1671				       unsigned long p, int item_size,
1672				       const struct btrfs_key *key,
1673				       int max, int *slot)
1674{
1675	int low = 0;
1676	int high = max;
1677	int mid;
1678	int ret;
1679	struct btrfs_disk_key *tmp = NULL;
1680	struct btrfs_disk_key unaligned;
1681	unsigned long offset;
1682	char *kaddr = NULL;
1683	unsigned long map_start = 0;
1684	unsigned long map_len = 0;
1685	int err;
1686
1687	if (low > high) {
1688		btrfs_err(eb->fs_info,
1689		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1690			  __func__, low, high, eb->start,
1691			  btrfs_header_owner(eb), btrfs_header_level(eb));
1692		return -EINVAL;
1693	}
1694
1695	while (low < high) {
1696		mid = (low + high) / 2;
1697		offset = p + mid * item_size;
1698
1699		if (!kaddr || offset < map_start ||
1700		    (offset + sizeof(struct btrfs_disk_key)) >
1701		    map_start + map_len) {
1702
1703			err = map_private_extent_buffer(eb, offset,
1704						sizeof(struct btrfs_disk_key),
1705						&kaddr, &map_start, &map_len);
1706
1707			if (!err) {
1708				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1709							map_start);
1710			} else if (err == 1) {
1711				read_extent_buffer(eb, &unaligned,
1712						   offset, sizeof(unaligned));
1713				tmp = &unaligned;
1714			} else {
1715				return err;
1716			}
1717
1718		} else {
1719			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1720							map_start);
1721		}
1722		ret = comp_keys(tmp, key);
1723
1724		if (ret < 0)
1725			low = mid + 1;
1726		else if (ret > 0)
1727			high = mid;
1728		else {
1729			*slot = mid;
1730			return 0;
1731		}
1732	}
1733	*slot = low;
1734	return 1;
1735}
1736
1737/*
1738 * simple bin_search frontend that does the right thing for
1739 * leaves vs nodes
1740 */
1741int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1742		     int level, int *slot)
1743{
1744	if (level == 0)
1745		return generic_bin_search(eb,
1746					  offsetof(struct btrfs_leaf, items),
1747					  sizeof(struct btrfs_item),
1748					  key, btrfs_header_nritems(eb),
1749					  slot);
1750	else
1751		return generic_bin_search(eb,
1752					  offsetof(struct btrfs_node, ptrs),
1753					  sizeof(struct btrfs_key_ptr),
1754					  key, btrfs_header_nritems(eb),
1755					  slot);
1756}
1757
1758static void root_add_used(struct btrfs_root *root, u32 size)
1759{
1760	spin_lock(&root->accounting_lock);
1761	btrfs_set_root_used(&root->root_item,
1762			    btrfs_root_used(&root->root_item) + size);
1763	spin_unlock(&root->accounting_lock);
1764}
1765
1766static void root_sub_used(struct btrfs_root *root, u32 size)
1767{
1768	spin_lock(&root->accounting_lock);
1769	btrfs_set_root_used(&root->root_item,
1770			    btrfs_root_used(&root->root_item) - size);
1771	spin_unlock(&root->accounting_lock);
1772}
1773
1774/* given a node and slot number, this reads the blocks it points to.  The
1775 * extent buffer is returned with a reference taken (but unlocked).
1776 */
1777static noinline struct extent_buffer *
1778read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1779	       int slot)
1780{
1781	int level = btrfs_header_level(parent);
1782	struct extent_buffer *eb;
1783	struct btrfs_key first_key;
1784
1785	if (slot < 0 || slot >= btrfs_header_nritems(parent))
1786		return ERR_PTR(-ENOENT);
1787
1788	BUG_ON(level == 0);
1789
1790	btrfs_node_key_to_cpu(parent, &first_key, slot);
1791	eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1792			     btrfs_node_ptr_generation(parent, slot),
1793			     level - 1, &first_key);
1794	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1795		free_extent_buffer(eb);
1796		eb = ERR_PTR(-EIO);
1797	}
1798
1799	return eb;
1800}
1801
1802/*
1803 * node level balancing, used to make sure nodes are in proper order for
1804 * item deletion.  We balance from the top down, so we have to make sure
1805 * that a deletion won't leave an node completely empty later on.
1806 */
1807static noinline int balance_level(struct btrfs_trans_handle *trans,
1808			 struct btrfs_root *root,
1809			 struct btrfs_path *path, int level)
1810{
1811	struct btrfs_fs_info *fs_info = root->fs_info;
1812	struct extent_buffer *right = NULL;
1813	struct extent_buffer *mid;
1814	struct extent_buffer *left = NULL;
1815	struct extent_buffer *parent = NULL;
1816	int ret = 0;
1817	int wret;
1818	int pslot;
1819	int orig_slot = path->slots[level];
1820	u64 orig_ptr;
1821
1822	if (level == 0)
1823		return 0;
1824
1825	mid = path->nodes[level];
1826
1827	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1828		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1829	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1830
1831	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1832
1833	if (level < BTRFS_MAX_LEVEL - 1) {
1834		parent = path->nodes[level + 1];
1835		pslot = path->slots[level + 1];
1836	}
1837
1838	/*
1839	 * deal with the case where there is only one pointer in the root
1840	 * by promoting the node below to a root
1841	 */
1842	if (!parent) {
1843		struct extent_buffer *child;
1844
1845		if (btrfs_header_nritems(mid) != 1)
1846			return 0;
1847
1848		/* promote the child to a root */
1849		child = read_node_slot(fs_info, mid, 0);
1850		if (IS_ERR(child)) {
1851			ret = PTR_ERR(child);
1852			btrfs_handle_fs_error(fs_info, ret, NULL);
1853			goto enospc;
1854		}
1855
1856		btrfs_tree_lock(child);
1857		btrfs_set_lock_blocking(child);
1858		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1859		if (ret) {
1860			btrfs_tree_unlock(child);
1861			free_extent_buffer(child);
1862			goto enospc;
1863		}
1864
1865		ret = tree_mod_log_insert_root(root->node, child, 1);
1866		BUG_ON(ret < 0);
1867		rcu_assign_pointer(root->node, child);
1868
1869		add_root_to_dirty_list(root);
1870		btrfs_tree_unlock(child);
1871
1872		path->locks[level] = 0;
1873		path->nodes[level] = NULL;
1874		clean_tree_block(fs_info, mid);
1875		btrfs_tree_unlock(mid);
1876		/* once for the path */
1877		free_extent_buffer(mid);
1878
1879		root_sub_used(root, mid->len);
1880		btrfs_free_tree_block(trans, root, mid, 0, 1);
1881		/* once for the root ptr */
1882		free_extent_buffer_stale(mid);
1883		return 0;
1884	}
1885	if (btrfs_header_nritems(mid) >
1886	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1887		return 0;
1888
1889	left = read_node_slot(fs_info, parent, pslot - 1);
1890	if (IS_ERR(left))
1891		left = NULL;
1892
1893	if (left) {
1894		btrfs_tree_lock(left);
1895		btrfs_set_lock_blocking(left);
1896		wret = btrfs_cow_block(trans, root, left,
1897				       parent, pslot - 1, &left);
1898		if (wret) {
1899			ret = wret;
1900			goto enospc;
1901		}
1902	}
1903
1904	right = read_node_slot(fs_info, parent, pslot + 1);
1905	if (IS_ERR(right))
1906		right = NULL;
1907
1908	if (right) {
1909		btrfs_tree_lock(right);
1910		btrfs_set_lock_blocking(right);
1911		wret = btrfs_cow_block(trans, root, right,
1912				       parent, pslot + 1, &right);
1913		if (wret) {
1914			ret = wret;
1915			goto enospc;
1916		}
1917	}
1918
1919	/* first, try to make some room in the middle buffer */
1920	if (left) {
1921		orig_slot += btrfs_header_nritems(left);
1922		wret = push_node_left(trans, fs_info, left, mid, 1);
1923		if (wret < 0)
1924			ret = wret;
1925	}
1926
1927	/*
1928	 * then try to empty the right most buffer into the middle
1929	 */
1930	if (right) {
1931		wret = push_node_left(trans, fs_info, mid, right, 1);
1932		if (wret < 0 && wret != -ENOSPC)
1933			ret = wret;
1934		if (btrfs_header_nritems(right) == 0) {
1935			clean_tree_block(fs_info, right);
1936			btrfs_tree_unlock(right);
1937			del_ptr(root, path, level + 1, pslot + 1);
1938			root_sub_used(root, right->len);
1939			btrfs_free_tree_block(trans, root, right, 0, 1);
1940			free_extent_buffer_stale(right);
1941			right = NULL;
1942		} else {
1943			struct btrfs_disk_key right_key;
1944			btrfs_node_key(right, &right_key, 0);
1945			ret = tree_mod_log_insert_key(parent, pslot + 1,
1946					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1947			BUG_ON(ret < 0);
1948			btrfs_set_node_key(parent, &right_key, pslot + 1);
1949			btrfs_mark_buffer_dirty(parent);
1950		}
1951	}
1952	if (btrfs_header_nritems(mid) == 1) {
1953		/*
1954		 * we're not allowed to leave a node with one item in the
1955		 * tree during a delete.  A deletion from lower in the tree
1956		 * could try to delete the only pointer in this node.
1957		 * So, pull some keys from the left.
1958		 * There has to be a left pointer at this point because
1959		 * otherwise we would have pulled some pointers from the
1960		 * right
1961		 */
1962		if (!left) {
1963			ret = -EROFS;
1964			btrfs_handle_fs_error(fs_info, ret, NULL);
1965			goto enospc;
1966		}
1967		wret = balance_node_right(trans, fs_info, mid, left);
1968		if (wret < 0) {
1969			ret = wret;
1970			goto enospc;
1971		}
1972		if (wret == 1) {
1973			wret = push_node_left(trans, fs_info, left, mid, 1);
1974			if (wret < 0)
1975				ret = wret;
1976		}
1977		BUG_ON(wret == 1);
1978	}
1979	if (btrfs_header_nritems(mid) == 0) {
1980		clean_tree_block(fs_info, mid);
1981		btrfs_tree_unlock(mid);
1982		del_ptr(root, path, level + 1, pslot);
1983		root_sub_used(root, mid->len);
1984		btrfs_free_tree_block(trans, root, mid, 0, 1);
1985		free_extent_buffer_stale(mid);
1986		mid = NULL;
1987	} else {
1988		/* update the parent key to reflect our changes */
1989		struct btrfs_disk_key mid_key;
1990		btrfs_node_key(mid, &mid_key, 0);
1991		ret = tree_mod_log_insert_key(parent, pslot,
1992				MOD_LOG_KEY_REPLACE, GFP_NOFS);
1993		BUG_ON(ret < 0);
1994		btrfs_set_node_key(parent, &mid_key, pslot);
1995		btrfs_mark_buffer_dirty(parent);
1996	}
1997
1998	/* update the path */
1999	if (left) {
2000		if (btrfs_header_nritems(left) > orig_slot) {
2001			extent_buffer_get(left);
2002			/* left was locked after cow */
2003			path->nodes[level] = left;
2004			path->slots[level + 1] -= 1;
2005			path->slots[level] = orig_slot;
2006			if (mid) {
2007				btrfs_tree_unlock(mid);
2008				free_extent_buffer(mid);
2009			}
2010		} else {
2011			orig_slot -= btrfs_header_nritems(left);
2012			path->slots[level] = orig_slot;
2013		}
2014	}
2015	/* double check we haven't messed things up */
2016	if (orig_ptr !=
2017	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2018		BUG();
2019enospc:
2020	if (right) {
2021		btrfs_tree_unlock(right);
2022		free_extent_buffer(right);
2023	}
2024	if (left) {
2025		if (path->nodes[level] != left)
2026			btrfs_tree_unlock(left);
2027		free_extent_buffer(left);
2028	}
2029	return ret;
2030}
2031
2032/* Node balancing for insertion.  Here we only split or push nodes around
2033 * when they are completely full.  This is also done top down, so we
2034 * have to be pessimistic.
2035 */
2036static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2037					  struct btrfs_root *root,
2038					  struct btrfs_path *path, int level)
2039{
2040	struct btrfs_fs_info *fs_info = root->fs_info;
2041	struct extent_buffer *right = NULL;
2042	struct extent_buffer *mid;
2043	struct extent_buffer *left = NULL;
2044	struct extent_buffer *parent = NULL;
2045	int ret = 0;
2046	int wret;
2047	int pslot;
2048	int orig_slot = path->slots[level];
2049
2050	if (level == 0)
2051		return 1;
2052
2053	mid = path->nodes[level];
2054	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2055
2056	if (level < BTRFS_MAX_LEVEL - 1) {
2057		parent = path->nodes[level + 1];
2058		pslot = path->slots[level + 1];
2059	}
2060
2061	if (!parent)
2062		return 1;
2063
2064	left = read_node_slot(fs_info, parent, pslot - 1);
2065	if (IS_ERR(left))
2066		left = NULL;
2067
2068	/* first, try to make some room in the middle buffer */
2069	if (left) {
2070		u32 left_nr;
2071
2072		btrfs_tree_lock(left);
2073		btrfs_set_lock_blocking(left);
2074
2075		left_nr = btrfs_header_nritems(left);
2076		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2077			wret = 1;
2078		} else {
2079			ret = btrfs_cow_block(trans, root, left, parent,
2080					      pslot - 1, &left);
2081			if (ret)
2082				wret = 1;
2083			else {
2084				wret = push_node_left(trans, fs_info,
2085						      left, mid, 0);
2086			}
2087		}
2088		if (wret < 0)
2089			ret = wret;
2090		if (wret == 0) {
2091			struct btrfs_disk_key disk_key;
2092			orig_slot += left_nr;
2093			btrfs_node_key(mid, &disk_key, 0);
2094			ret = tree_mod_log_insert_key(parent, pslot,
2095					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2096			BUG_ON(ret < 0);
2097			btrfs_set_node_key(parent, &disk_key, pslot);
2098			btrfs_mark_buffer_dirty(parent);
2099			if (btrfs_header_nritems(left) > orig_slot) {
2100				path->nodes[level] = left;
2101				path->slots[level + 1] -= 1;
2102				path->slots[level] = orig_slot;
2103				btrfs_tree_unlock(mid);
2104				free_extent_buffer(mid);
2105			} else {
2106				orig_slot -=
2107					btrfs_header_nritems(left);
2108				path->slots[level] = orig_slot;
2109				btrfs_tree_unlock(left);
2110				free_extent_buffer(left);
2111			}
2112			return 0;
2113		}
2114		btrfs_tree_unlock(left);
2115		free_extent_buffer(left);
2116	}
2117	right = read_node_slot(fs_info, parent, pslot + 1);
2118	if (IS_ERR(right))
2119		right = NULL;
2120
2121	/*
2122	 * then try to empty the right most buffer into the middle
2123	 */
2124	if (right) {
2125		u32 right_nr;
2126
2127		btrfs_tree_lock(right);
2128		btrfs_set_lock_blocking(right);
2129
2130		right_nr = btrfs_header_nritems(right);
2131		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2132			wret = 1;
2133		} else {
2134			ret = btrfs_cow_block(trans, root, right,
2135					      parent, pslot + 1,
2136					      &right);
2137			if (ret)
2138				wret = 1;
2139			else {
2140				wret = balance_node_right(trans, fs_info,
2141							  right, mid);
2142			}
2143		}
2144		if (wret < 0)
2145			ret = wret;
2146		if (wret == 0) {
2147			struct btrfs_disk_key disk_key;
2148
2149			btrfs_node_key(right, &disk_key, 0);
2150			ret = tree_mod_log_insert_key(parent, pslot + 1,
2151					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2152			BUG_ON(ret < 0);
2153			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2154			btrfs_mark_buffer_dirty(parent);
2155
2156			if (btrfs_header_nritems(mid) <= orig_slot) {
2157				path->nodes[level] = right;
2158				path->slots[level + 1] += 1;
2159				path->slots[level] = orig_slot -
2160					btrfs_header_nritems(mid);
2161				btrfs_tree_unlock(mid);
2162				free_extent_buffer(mid);
2163			} else {
2164				btrfs_tree_unlock(right);
2165				free_extent_buffer(right);
2166			}
2167			return 0;
2168		}
2169		btrfs_tree_unlock(right);
2170		free_extent_buffer(right);
2171	}
2172	return 1;
2173}
2174
2175/*
2176 * readahead one full node of leaves, finding things that are close
2177 * to the block in 'slot', and triggering ra on them.
2178 */
2179static void reada_for_search(struct btrfs_fs_info *fs_info,
2180			     struct btrfs_path *path,
2181			     int level, int slot, u64 objectid)
2182{
2183	struct extent_buffer *node;
2184	struct btrfs_disk_key disk_key;
2185	u32 nritems;
2186	u64 search;
2187	u64 target;
2188	u64 nread = 0;
2189	struct extent_buffer *eb;
2190	u32 nr;
2191	u32 blocksize;
2192	u32 nscan = 0;
2193
2194	if (level != 1)
2195		return;
2196
2197	if (!path->nodes[level])
2198		return;
2199
2200	node = path->nodes[level];
2201
2202	search = btrfs_node_blockptr(node, slot);
2203	blocksize = fs_info->nodesize;
2204	eb = find_extent_buffer(fs_info, search);
2205	if (eb) {
2206		free_extent_buffer(eb);
2207		return;
2208	}
2209
2210	target = search;
2211
2212	nritems = btrfs_header_nritems(node);
2213	nr = slot;
2214
2215	while (1) {
2216		if (path->reada == READA_BACK) {
2217			if (nr == 0)
2218				break;
2219			nr--;
2220		} else if (path->reada == READA_FORWARD) {
2221			nr++;
2222			if (nr >= nritems)
2223				break;
2224		}
2225		if (path->reada == READA_BACK && objectid) {
2226			btrfs_node_key(node, &disk_key, nr);
2227			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2228				break;
2229		}
2230		search = btrfs_node_blockptr(node, nr);
2231		if ((search <= target && target - search <= 65536) ||
2232		    (search > target && search - target <= 65536)) {
2233			readahead_tree_block(fs_info, search);
2234			nread += blocksize;
2235		}
2236		nscan++;
2237		if ((nread > 65536 || nscan > 32))
2238			break;
2239	}
2240}
2241
2242static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2243				       struct btrfs_path *path, int level)
2244{
2245	int slot;
2246	int nritems;
2247	struct extent_buffer *parent;
2248	struct extent_buffer *eb;
2249	u64 gen;
2250	u64 block1 = 0;
2251	u64 block2 = 0;
2252
2253	parent = path->nodes[level + 1];
2254	if (!parent)
2255		return;
2256
2257	nritems = btrfs_header_nritems(parent);
2258	slot = path->slots[level + 1];
2259
2260	if (slot > 0) {
2261		block1 = btrfs_node_blockptr(parent, slot - 1);
2262		gen = btrfs_node_ptr_generation(parent, slot - 1);
2263		eb = find_extent_buffer(fs_info, block1);
2264		/*
2265		 * if we get -eagain from btrfs_buffer_uptodate, we
2266		 * don't want to return eagain here.  That will loop
2267		 * forever
2268		 */
2269		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2270			block1 = 0;
2271		free_extent_buffer(eb);
2272	}
2273	if (slot + 1 < nritems) {
2274		block2 = btrfs_node_blockptr(parent, slot + 1);
2275		gen = btrfs_node_ptr_generation(parent, slot + 1);
2276		eb = find_extent_buffer(fs_info, block2);
2277		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2278			block2 = 0;
2279		free_extent_buffer(eb);
2280	}
2281
2282	if (block1)
2283		readahead_tree_block(fs_info, block1);
2284	if (block2)
2285		readahead_tree_block(fs_info, block2);
2286}
2287
2288
2289/*
2290 * when we walk down the tree, it is usually safe to unlock the higher layers
2291 * in the tree.  The exceptions are when our path goes through slot 0, because
2292 * operations on the tree might require changing key pointers higher up in the
2293 * tree.
2294 *
2295 * callers might also have set path->keep_locks, which tells this code to keep
2296 * the lock if the path points to the last slot in the block.  This is part of
2297 * walking through the tree, and selecting the next slot in the higher block.
2298 *
2299 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2300 * if lowest_unlock is 1, level 0 won't be unlocked
2301 */
2302static noinline void unlock_up(struct btrfs_path *path, int level,
2303			       int lowest_unlock, int min_write_lock_level,
2304			       int *write_lock_level)
2305{
2306	int i;
2307	int skip_level = level;
2308	int no_skips = 0;
2309	struct extent_buffer *t;
2310
2311	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2312		if (!path->nodes[i])
2313			break;
2314		if (!path->locks[i])
2315			break;
2316		if (!no_skips && path->slots[i] == 0) {
2317			skip_level = i + 1;
2318			continue;
2319		}
2320		if (!no_skips && path->keep_locks) {
2321			u32 nritems;
2322			t = path->nodes[i];
2323			nritems = btrfs_header_nritems(t);
2324			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2325				skip_level = i + 1;
2326				continue;
2327			}
2328		}
2329		if (skip_level < i && i >= lowest_unlock)
2330			no_skips = 1;
2331
2332		t = path->nodes[i];
2333		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2334			btrfs_tree_unlock_rw(t, path->locks[i]);
2335			path->locks[i] = 0;
2336			if (write_lock_level &&
2337			    i > min_write_lock_level &&
2338			    i <= *write_lock_level) {
2339				*write_lock_level = i - 1;
2340			}
2341		}
2342	}
2343}
2344
2345/*
2346 * This releases any locks held in the path starting at level and
2347 * going all the way up to the root.
2348 *
2349 * btrfs_search_slot will keep the lock held on higher nodes in a few
2350 * corner cases, such as COW of the block at slot zero in the node.  This
2351 * ignores those rules, and it should only be called when there are no
2352 * more updates to be done higher up in the tree.
2353 */
2354noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2355{
2356	int i;
2357
2358	if (path->keep_locks)
2359		return;
2360
2361	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2362		if (!path->nodes[i])
2363			continue;
2364		if (!path->locks[i])
2365			continue;
2366		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2367		path->locks[i] = 0;
2368	}
2369}
2370
2371/*
2372 * helper function for btrfs_search_slot.  The goal is to find a block
2373 * in cache without setting the path to blocking.  If we find the block
2374 * we return zero and the path is unchanged.
2375 *
2376 * If we can't find the block, we set the path blocking and do some
2377 * reada.  -EAGAIN is returned and the search must be repeated.
2378 */
2379static int
2380read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2381		      struct extent_buffer **eb_ret, int level, int slot,
2382		      const struct btrfs_key *key)
2383{
2384	struct btrfs_fs_info *fs_info = root->fs_info;
2385	u64 blocknr;
2386	u64 gen;
2387	struct extent_buffer *b = *eb_ret;
2388	struct extent_buffer *tmp;
2389	struct btrfs_key first_key;
2390	int ret;
2391	int parent_level;
2392
2393	blocknr = btrfs_node_blockptr(b, slot);
2394	gen = btrfs_node_ptr_generation(b, slot);
2395	parent_level = btrfs_header_level(b);
2396	btrfs_node_key_to_cpu(b, &first_key, slot);
2397
2398	tmp = find_extent_buffer(fs_info, blocknr);
2399	if (tmp) {
2400		/* first we do an atomic uptodate check */
2401		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
 
 
 
 
 
 
 
 
 
 
2402			*eb_ret = tmp;
2403			return 0;
2404		}
2405
2406		/* the pages were up to date, but we failed
2407		 * the generation number check.  Do a full
2408		 * read for the generation number that is correct.
2409		 * We must do this without dropping locks so
2410		 * we can trust our generation number
2411		 */
2412		btrfs_set_path_blocking(p);
2413
2414		/* now we're allowed to do a blocking uptodate check */
2415		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2416		if (!ret) {
2417			*eb_ret = tmp;
2418			return 0;
2419		}
2420		free_extent_buffer(tmp);
2421		btrfs_release_path(p);
2422		return -EIO;
2423	}
2424
2425	/*
2426	 * reduce lock contention at high levels
2427	 * of the btree by dropping locks before
2428	 * we read.  Don't release the lock on the current
2429	 * level because we need to walk this node to figure
2430	 * out which blocks to read.
2431	 */
2432	btrfs_unlock_up_safe(p, level + 1);
2433	btrfs_set_path_blocking(p);
2434
2435	free_extent_buffer(tmp);
2436	if (p->reada != READA_NONE)
2437		reada_for_search(fs_info, p, level, slot, key->objectid);
2438
2439	ret = -EAGAIN;
2440	tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2441			      &first_key);
2442	if (!IS_ERR(tmp)) {
2443		/*
2444		 * If the read above didn't mark this buffer up to date,
2445		 * it will never end up being up to date.  Set ret to EIO now
2446		 * and give up so that our caller doesn't loop forever
2447		 * on our EAGAINs.
2448		 */
2449		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2450			ret = -EIO;
2451		free_extent_buffer(tmp);
2452	} else {
2453		ret = PTR_ERR(tmp);
2454	}
2455
2456	btrfs_release_path(p);
2457	return ret;
2458}
2459
2460/*
2461 * helper function for btrfs_search_slot.  This does all of the checks
2462 * for node-level blocks and does any balancing required based on
2463 * the ins_len.
2464 *
2465 * If no extra work was required, zero is returned.  If we had to
2466 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2467 * start over
2468 */
2469static int
2470setup_nodes_for_search(struct btrfs_trans_handle *trans,
2471		       struct btrfs_root *root, struct btrfs_path *p,
2472		       struct extent_buffer *b, int level, int ins_len,
2473		       int *write_lock_level)
2474{
2475	struct btrfs_fs_info *fs_info = root->fs_info;
2476	int ret;
2477
2478	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2479	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2480		int sret;
2481
2482		if (*write_lock_level < level + 1) {
2483			*write_lock_level = level + 1;
2484			btrfs_release_path(p);
2485			goto again;
2486		}
2487
2488		btrfs_set_path_blocking(p);
2489		reada_for_balance(fs_info, p, level);
2490		sret = split_node(trans, root, p, level);
2491		btrfs_clear_path_blocking(p, NULL, 0);
2492
2493		BUG_ON(sret > 0);
2494		if (sret) {
2495			ret = sret;
2496			goto done;
2497		}
2498		b = p->nodes[level];
2499	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2500		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2501		int sret;
2502
2503		if (*write_lock_level < level + 1) {
2504			*write_lock_level = level + 1;
2505			btrfs_release_path(p);
2506			goto again;
2507		}
2508
2509		btrfs_set_path_blocking(p);
2510		reada_for_balance(fs_info, p, level);
2511		sret = balance_level(trans, root, p, level);
2512		btrfs_clear_path_blocking(p, NULL, 0);
2513
2514		if (sret) {
2515			ret = sret;
2516			goto done;
2517		}
2518		b = p->nodes[level];
2519		if (!b) {
2520			btrfs_release_path(p);
2521			goto again;
2522		}
2523		BUG_ON(btrfs_header_nritems(b) == 1);
2524	}
2525	return 0;
2526
2527again:
2528	ret = -EAGAIN;
2529done:
2530	return ret;
2531}
2532
2533static void key_search_validate(struct extent_buffer *b,
2534				const struct btrfs_key *key,
2535				int level)
2536{
2537#ifdef CONFIG_BTRFS_ASSERT
2538	struct btrfs_disk_key disk_key;
2539
2540	btrfs_cpu_key_to_disk(&disk_key, key);
2541
2542	if (level == 0)
2543		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2544		    offsetof(struct btrfs_leaf, items[0].key),
2545		    sizeof(disk_key)));
2546	else
2547		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2548		    offsetof(struct btrfs_node, ptrs[0].key),
2549		    sizeof(disk_key)));
2550#endif
2551}
2552
2553static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2554		      int level, int *prev_cmp, int *slot)
2555{
2556	if (*prev_cmp != 0) {
2557		*prev_cmp = btrfs_bin_search(b, key, level, slot);
2558		return *prev_cmp;
2559	}
2560
2561	key_search_validate(b, key, level);
2562	*slot = 0;
2563
2564	return 0;
2565}
2566
2567int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2568		u64 iobjectid, u64 ioff, u8 key_type,
2569		struct btrfs_key *found_key)
2570{
2571	int ret;
2572	struct btrfs_key key;
2573	struct extent_buffer *eb;
2574
2575	ASSERT(path);
2576	ASSERT(found_key);
2577
2578	key.type = key_type;
2579	key.objectid = iobjectid;
2580	key.offset = ioff;
2581
2582	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2583	if (ret < 0)
2584		return ret;
2585
2586	eb = path->nodes[0];
2587	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2588		ret = btrfs_next_leaf(fs_root, path);
2589		if (ret)
2590			return ret;
2591		eb = path->nodes[0];
2592	}
2593
2594	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2595	if (found_key->type != key.type ||
2596			found_key->objectid != key.objectid)
2597		return 1;
2598
2599	return 0;
2600}
2601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2602/*
2603 * btrfs_search_slot - look for a key in a tree and perform necessary
2604 * modifications to preserve tree invariants.
2605 *
2606 * @trans:	Handle of transaction, used when modifying the tree
2607 * @p:		Holds all btree nodes along the search path
2608 * @root:	The root node of the tree
2609 * @key:	The key we are looking for
2610 * @ins_len:	Indicates purpose of search, for inserts it is 1, for
2611 *		deletions it's -1. 0 for plain searches
2612 * @cow:	boolean should CoW operations be performed. Must always be 1
2613 *		when modifying the tree.
2614 *
2615 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2616 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2617 *
2618 * If @key is found, 0 is returned and you can find the item in the leaf level
2619 * of the path (level 0)
2620 *
2621 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2622 * points to the slot where it should be inserted
2623 *
2624 * If an error is encountered while searching the tree a negative error number
2625 * is returned
2626 */
2627int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2628		      const struct btrfs_key *key, struct btrfs_path *p,
2629		      int ins_len, int cow)
2630{
2631	struct btrfs_fs_info *fs_info = root->fs_info;
2632	struct extent_buffer *b;
2633	int slot;
2634	int ret;
2635	int err;
2636	int level;
2637	int lowest_unlock = 1;
2638	int root_lock;
2639	/* everything at write_lock_level or lower must be write locked */
2640	int write_lock_level = 0;
2641	u8 lowest_level = 0;
2642	int min_write_lock_level;
2643	int prev_cmp;
2644
2645	lowest_level = p->lowest_level;
2646	WARN_ON(lowest_level && ins_len > 0);
2647	WARN_ON(p->nodes[0] != NULL);
2648	BUG_ON(!cow && ins_len);
2649
2650	if (ins_len < 0) {
2651		lowest_unlock = 2;
2652
2653		/* when we are removing items, we might have to go up to level
2654		 * two as we update tree pointers  Make sure we keep write
2655		 * for those levels as well
2656		 */
2657		write_lock_level = 2;
2658	} else if (ins_len > 0) {
2659		/*
2660		 * for inserting items, make sure we have a write lock on
2661		 * level 1 so we can update keys
2662		 */
2663		write_lock_level = 1;
2664	}
2665
2666	if (!cow)
2667		write_lock_level = -1;
2668
2669	if (cow && (p->keep_locks || p->lowest_level))
2670		write_lock_level = BTRFS_MAX_LEVEL;
2671
2672	min_write_lock_level = write_lock_level;
2673
2674again:
2675	prev_cmp = -1;
2676	/*
2677	 * we try very hard to do read locks on the root
2678	 */
2679	root_lock = BTRFS_READ_LOCK;
2680	level = 0;
2681	if (p->search_commit_root) {
2682		/*
2683		 * the commit roots are read only
2684		 * so we always do read locks
2685		 */
2686		if (p->need_commit_sem)
2687			down_read(&fs_info->commit_root_sem);
2688		b = root->commit_root;
2689		extent_buffer_get(b);
2690		level = btrfs_header_level(b);
2691		if (p->need_commit_sem)
2692			up_read(&fs_info->commit_root_sem);
2693		if (!p->skip_locking)
2694			btrfs_tree_read_lock(b);
2695	} else {
2696		if (p->skip_locking) {
2697			b = btrfs_root_node(root);
2698			level = btrfs_header_level(b);
2699		} else {
2700			/* we don't know the level of the root node
2701			 * until we actually have it read locked
2702			 */
2703			b = btrfs_read_lock_root_node(root);
2704			level = btrfs_header_level(b);
2705			if (level <= write_lock_level) {
2706				/* whoops, must trade for write lock */
2707				btrfs_tree_read_unlock(b);
2708				free_extent_buffer(b);
2709				b = btrfs_lock_root_node(root);
2710				root_lock = BTRFS_WRITE_LOCK;
2711
2712				/* the level might have changed, check again */
2713				level = btrfs_header_level(b);
2714			}
2715		}
2716	}
2717	p->nodes[level] = b;
2718	if (!p->skip_locking)
2719		p->locks[level] = root_lock;
2720
2721	while (b) {
2722		level = btrfs_header_level(b);
2723
2724		/*
2725		 * setup the path here so we can release it under lock
2726		 * contention with the cow code
2727		 */
2728		if (cow) {
2729			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2730
2731			/*
2732			 * if we don't really need to cow this block
2733			 * then we don't want to set the path blocking,
2734			 * so we test it here
2735			 */
2736			if (!should_cow_block(trans, root, b)) {
2737				trans->dirty = true;
2738				goto cow_done;
2739			}
2740
2741			/*
2742			 * must have write locks on this node and the
2743			 * parent
2744			 */
2745			if (level > write_lock_level ||
2746			    (level + 1 > write_lock_level &&
2747			    level + 1 < BTRFS_MAX_LEVEL &&
2748			    p->nodes[level + 1])) {
2749				write_lock_level = level + 1;
2750				btrfs_release_path(p);
2751				goto again;
2752			}
2753
2754			btrfs_set_path_blocking(p);
2755			if (last_level)
2756				err = btrfs_cow_block(trans, root, b, NULL, 0,
2757						      &b);
2758			else
2759				err = btrfs_cow_block(trans, root, b,
2760						      p->nodes[level + 1],
2761						      p->slots[level + 1], &b);
2762			if (err) {
2763				ret = err;
2764				goto done;
2765			}
2766		}
2767cow_done:
2768		p->nodes[level] = b;
2769		btrfs_clear_path_blocking(p, NULL, 0);
 
 
 
2770
2771		/*
2772		 * we have a lock on b and as long as we aren't changing
2773		 * the tree, there is no way to for the items in b to change.
2774		 * It is safe to drop the lock on our parent before we
2775		 * go through the expensive btree search on b.
2776		 *
2777		 * If we're inserting or deleting (ins_len != 0), then we might
2778		 * be changing slot zero, which may require changing the parent.
2779		 * So, we can't drop the lock until after we know which slot
2780		 * we're operating on.
2781		 */
2782		if (!ins_len && !p->keep_locks) {
2783			int u = level + 1;
2784
2785			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2786				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2787				p->locks[u] = 0;
2788			}
2789		}
2790
2791		ret = key_search(b, key, level, &prev_cmp, &slot);
2792		if (ret < 0)
2793			goto done;
2794
2795		if (level != 0) {
2796			int dec = 0;
2797			if (ret && slot > 0) {
2798				dec = 1;
2799				slot -= 1;
2800			}
2801			p->slots[level] = slot;
2802			err = setup_nodes_for_search(trans, root, p, b, level,
2803					     ins_len, &write_lock_level);
2804			if (err == -EAGAIN)
2805				goto again;
2806			if (err) {
2807				ret = err;
2808				goto done;
2809			}
2810			b = p->nodes[level];
2811			slot = p->slots[level];
2812
2813			/*
2814			 * slot 0 is special, if we change the key
2815			 * we have to update the parent pointer
2816			 * which means we must have a write lock
2817			 * on the parent
2818			 */
2819			if (slot == 0 && ins_len &&
2820			    write_lock_level < level + 1) {
2821				write_lock_level = level + 1;
2822				btrfs_release_path(p);
2823				goto again;
2824			}
2825
2826			unlock_up(p, level, lowest_unlock,
2827				  min_write_lock_level, &write_lock_level);
2828
2829			if (level == lowest_level) {
2830				if (dec)
2831					p->slots[level]++;
2832				goto done;
2833			}
2834
2835			err = read_block_for_search(root, p, &b, level,
2836						    slot, key);
2837			if (err == -EAGAIN)
2838				goto again;
2839			if (err) {
2840				ret = err;
2841				goto done;
2842			}
2843
2844			if (!p->skip_locking) {
2845				level = btrfs_header_level(b);
2846				if (level <= write_lock_level) {
2847					err = btrfs_try_tree_write_lock(b);
2848					if (!err) {
2849						btrfs_set_path_blocking(p);
2850						btrfs_tree_lock(b);
2851						btrfs_clear_path_blocking(p, b,
2852								  BTRFS_WRITE_LOCK);
2853					}
2854					p->locks[level] = BTRFS_WRITE_LOCK;
2855				} else {
2856					err = btrfs_tree_read_lock_atomic(b);
2857					if (!err) {
2858						btrfs_set_path_blocking(p);
2859						btrfs_tree_read_lock(b);
2860						btrfs_clear_path_blocking(p, b,
2861								  BTRFS_READ_LOCK);
2862					}
2863					p->locks[level] = BTRFS_READ_LOCK;
2864				}
2865				p->nodes[level] = b;
2866			}
2867		} else {
2868			p->slots[level] = slot;
2869			if (ins_len > 0 &&
2870			    btrfs_leaf_free_space(fs_info, b) < ins_len) {
2871				if (write_lock_level < 1) {
2872					write_lock_level = 1;
2873					btrfs_release_path(p);
2874					goto again;
2875				}
2876
2877				btrfs_set_path_blocking(p);
2878				err = split_leaf(trans, root, key,
2879						 p, ins_len, ret == 0);
2880				btrfs_clear_path_blocking(p, NULL, 0);
2881
2882				BUG_ON(err > 0);
2883				if (err) {
2884					ret = err;
2885					goto done;
2886				}
2887			}
2888			if (!p->search_for_split)
2889				unlock_up(p, level, lowest_unlock,
2890					  min_write_lock_level, &write_lock_level);
2891			goto done;
2892		}
2893	}
2894	ret = 1;
2895done:
2896	/*
2897	 * we don't really know what they plan on doing with the path
2898	 * from here on, so for now just mark it as blocking
2899	 */
2900	if (!p->leave_spinning)
2901		btrfs_set_path_blocking(p);
2902	if (ret < 0 && !p->skip_release_on_error)
2903		btrfs_release_path(p);
2904	return ret;
2905}
2906
2907/*
2908 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2909 * current state of the tree together with the operations recorded in the tree
2910 * modification log to search for the key in a previous version of this tree, as
2911 * denoted by the time_seq parameter.
2912 *
2913 * Naturally, there is no support for insert, delete or cow operations.
2914 *
2915 * The resulting path and return value will be set up as if we called
2916 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2917 */
2918int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2919			  struct btrfs_path *p, u64 time_seq)
2920{
2921	struct btrfs_fs_info *fs_info = root->fs_info;
2922	struct extent_buffer *b;
2923	int slot;
2924	int ret;
2925	int err;
2926	int level;
2927	int lowest_unlock = 1;
2928	u8 lowest_level = 0;
2929	int prev_cmp = -1;
2930
2931	lowest_level = p->lowest_level;
2932	WARN_ON(p->nodes[0] != NULL);
2933
2934	if (p->search_commit_root) {
2935		BUG_ON(time_seq);
2936		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2937	}
2938
2939again:
2940	b = get_old_root(root, time_seq);
 
 
 
 
2941	level = btrfs_header_level(b);
2942	p->locks[level] = BTRFS_READ_LOCK;
2943
2944	while (b) {
2945		level = btrfs_header_level(b);
2946		p->nodes[level] = b;
2947		btrfs_clear_path_blocking(p, NULL, 0);
2948
2949		/*
2950		 * we have a lock on b and as long as we aren't changing
2951		 * the tree, there is no way to for the items in b to change.
2952		 * It is safe to drop the lock on our parent before we
2953		 * go through the expensive btree search on b.
2954		 */
2955		btrfs_unlock_up_safe(p, level + 1);
2956
2957		/*
2958		 * Since we can unwind ebs we want to do a real search every
2959		 * time.
2960		 */
2961		prev_cmp = -1;
2962		ret = key_search(b, key, level, &prev_cmp, &slot);
 
 
2963
2964		if (level != 0) {
2965			int dec = 0;
2966			if (ret && slot > 0) {
2967				dec = 1;
2968				slot -= 1;
2969			}
2970			p->slots[level] = slot;
2971			unlock_up(p, level, lowest_unlock, 0, NULL);
2972
2973			if (level == lowest_level) {
2974				if (dec)
2975					p->slots[level]++;
2976				goto done;
2977			}
2978
2979			err = read_block_for_search(root, p, &b, level,
2980						    slot, key);
2981			if (err == -EAGAIN)
2982				goto again;
2983			if (err) {
2984				ret = err;
2985				goto done;
2986			}
2987
2988			level = btrfs_header_level(b);
2989			err = btrfs_tree_read_lock_atomic(b);
2990			if (!err) {
2991				btrfs_set_path_blocking(p);
2992				btrfs_tree_read_lock(b);
2993				btrfs_clear_path_blocking(p, b,
2994							  BTRFS_READ_LOCK);
2995			}
2996			b = tree_mod_log_rewind(fs_info, p, b, time_seq);
2997			if (!b) {
2998				ret = -ENOMEM;
2999				goto done;
3000			}
3001			p->locks[level] = BTRFS_READ_LOCK;
3002			p->nodes[level] = b;
3003		} else {
3004			p->slots[level] = slot;
3005			unlock_up(p, level, lowest_unlock, 0, NULL);
3006			goto done;
3007		}
3008	}
3009	ret = 1;
3010done:
3011	if (!p->leave_spinning)
3012		btrfs_set_path_blocking(p);
3013	if (ret < 0)
3014		btrfs_release_path(p);
3015
3016	return ret;
3017}
3018
3019/*
3020 * helper to use instead of search slot if no exact match is needed but
3021 * instead the next or previous item should be returned.
3022 * When find_higher is true, the next higher item is returned, the next lower
3023 * otherwise.
3024 * When return_any and find_higher are both true, and no higher item is found,
3025 * return the next lower instead.
3026 * When return_any is true and find_higher is false, and no lower item is found,
3027 * return the next higher instead.
3028 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3029 * < 0 on error
3030 */
3031int btrfs_search_slot_for_read(struct btrfs_root *root,
3032			       const struct btrfs_key *key,
3033			       struct btrfs_path *p, int find_higher,
3034			       int return_any)
3035{
3036	int ret;
3037	struct extent_buffer *leaf;
3038
3039again:
3040	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3041	if (ret <= 0)
3042		return ret;
3043	/*
3044	 * a return value of 1 means the path is at the position where the
3045	 * item should be inserted. Normally this is the next bigger item,
3046	 * but in case the previous item is the last in a leaf, path points
3047	 * to the first free slot in the previous leaf, i.e. at an invalid
3048	 * item.
3049	 */
3050	leaf = p->nodes[0];
3051
3052	if (find_higher) {
3053		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3054			ret = btrfs_next_leaf(root, p);
3055			if (ret <= 0)
3056				return ret;
3057			if (!return_any)
3058				return 1;
3059			/*
3060			 * no higher item found, return the next
3061			 * lower instead
3062			 */
3063			return_any = 0;
3064			find_higher = 0;
3065			btrfs_release_path(p);
3066			goto again;
3067		}
3068	} else {
3069		if (p->slots[0] == 0) {
3070			ret = btrfs_prev_leaf(root, p);
3071			if (ret < 0)
3072				return ret;
3073			if (!ret) {
3074				leaf = p->nodes[0];
3075				if (p->slots[0] == btrfs_header_nritems(leaf))
3076					p->slots[0]--;
3077				return 0;
3078			}
3079			if (!return_any)
3080				return 1;
3081			/*
3082			 * no lower item found, return the next
3083			 * higher instead
3084			 */
3085			return_any = 0;
3086			find_higher = 1;
3087			btrfs_release_path(p);
3088			goto again;
3089		} else {
3090			--p->slots[0];
3091		}
3092	}
3093	return 0;
3094}
3095
3096/*
3097 * adjust the pointers going up the tree, starting at level
3098 * making sure the right key of each node is points to 'key'.
3099 * This is used after shifting pointers to the left, so it stops
3100 * fixing up pointers when a given leaf/node is not in slot 0 of the
3101 * higher levels
3102 *
3103 */
3104static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3105			   struct btrfs_path *path,
3106			   struct btrfs_disk_key *key, int level)
3107{
3108	int i;
3109	struct extent_buffer *t;
3110	int ret;
3111
3112	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3113		int tslot = path->slots[i];
3114
3115		if (!path->nodes[i])
3116			break;
3117		t = path->nodes[i];
3118		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3119				GFP_ATOMIC);
3120		BUG_ON(ret < 0);
3121		btrfs_set_node_key(t, key, tslot);
3122		btrfs_mark_buffer_dirty(path->nodes[i]);
3123		if (tslot != 0)
3124			break;
3125	}
3126}
3127
3128/*
3129 * update item key.
3130 *
3131 * This function isn't completely safe. It's the caller's responsibility
3132 * that the new key won't break the order
3133 */
3134void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3135			     struct btrfs_path *path,
3136			     const struct btrfs_key *new_key)
3137{
3138	struct btrfs_disk_key disk_key;
3139	struct extent_buffer *eb;
3140	int slot;
3141
3142	eb = path->nodes[0];
3143	slot = path->slots[0];
3144	if (slot > 0) {
3145		btrfs_item_key(eb, &disk_key, slot - 1);
3146		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
 
 
 
 
 
 
 
 
 
 
3147	}
3148	if (slot < btrfs_header_nritems(eb) - 1) {
3149		btrfs_item_key(eb, &disk_key, slot + 1);
3150		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
 
 
 
 
 
 
 
 
 
 
3151	}
3152
3153	btrfs_cpu_key_to_disk(&disk_key, new_key);
3154	btrfs_set_item_key(eb, &disk_key, slot);
3155	btrfs_mark_buffer_dirty(eb);
3156	if (slot == 0)
3157		fixup_low_keys(fs_info, path, &disk_key, 1);
3158}
3159
3160/*
3161 * try to push data from one node into the next node left in the
3162 * tree.
3163 *
3164 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3165 * error, and > 0 if there was no room in the left hand block.
3166 */
3167static int push_node_left(struct btrfs_trans_handle *trans,
3168			  struct btrfs_fs_info *fs_info,
3169			  struct extent_buffer *dst,
3170			  struct extent_buffer *src, int empty)
3171{
 
3172	int push_items = 0;
3173	int src_nritems;
3174	int dst_nritems;
3175	int ret = 0;
3176
3177	src_nritems = btrfs_header_nritems(src);
3178	dst_nritems = btrfs_header_nritems(dst);
3179	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3180	WARN_ON(btrfs_header_generation(src) != trans->transid);
3181	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3182
3183	if (!empty && src_nritems <= 8)
3184		return 1;
3185
3186	if (push_items <= 0)
3187		return 1;
3188
3189	if (empty) {
3190		push_items = min(src_nritems, push_items);
3191		if (push_items < src_nritems) {
3192			/* leave at least 8 pointers in the node if
3193			 * we aren't going to empty it
3194			 */
3195			if (src_nritems - push_items < 8) {
3196				if (push_items <= 8)
3197					return 1;
3198				push_items -= 8;
3199			}
3200		}
3201	} else
3202		push_items = min(src_nritems - 8, push_items);
3203
3204	ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
3205				   push_items);
3206	if (ret) {
3207		btrfs_abort_transaction(trans, ret);
3208		return ret;
3209	}
3210	copy_extent_buffer(dst, src,
3211			   btrfs_node_key_ptr_offset(dst_nritems),
3212			   btrfs_node_key_ptr_offset(0),
3213			   push_items * sizeof(struct btrfs_key_ptr));
3214
3215	if (push_items < src_nritems) {
3216		/*
3217		 * Don't call tree_mod_log_insert_move here, key removal was
3218		 * already fully logged by tree_mod_log_eb_copy above.
3219		 */
3220		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3221				      btrfs_node_key_ptr_offset(push_items),
3222				      (src_nritems - push_items) *
3223				      sizeof(struct btrfs_key_ptr));
3224	}
3225	btrfs_set_header_nritems(src, src_nritems - push_items);
3226	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3227	btrfs_mark_buffer_dirty(src);
3228	btrfs_mark_buffer_dirty(dst);
3229
3230	return ret;
3231}
3232
3233/*
3234 * try to push data from one node into the next node right in the
3235 * tree.
3236 *
3237 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3238 * error, and > 0 if there was no room in the right hand block.
3239 *
3240 * this will  only push up to 1/2 the contents of the left node over
3241 */
3242static int balance_node_right(struct btrfs_trans_handle *trans,
3243			      struct btrfs_fs_info *fs_info,
3244			      struct extent_buffer *dst,
3245			      struct extent_buffer *src)
3246{
 
3247	int push_items = 0;
3248	int max_push;
3249	int src_nritems;
3250	int dst_nritems;
3251	int ret = 0;
3252
3253	WARN_ON(btrfs_header_generation(src) != trans->transid);
3254	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3255
3256	src_nritems = btrfs_header_nritems(src);
3257	dst_nritems = btrfs_header_nritems(dst);
3258	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3259	if (push_items <= 0)
3260		return 1;
3261
3262	if (src_nritems < 4)
3263		return 1;
3264
3265	max_push = src_nritems / 2 + 1;
3266	/* don't try to empty the node */
3267	if (max_push >= src_nritems)
3268		return 1;
3269
3270	if (max_push < push_items)
3271		push_items = max_push;
3272
3273	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3274	BUG_ON(ret < 0);
3275	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3276				      btrfs_node_key_ptr_offset(0),
3277				      (dst_nritems) *
3278				      sizeof(struct btrfs_key_ptr));
3279
3280	ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
3281				   src_nritems - push_items, push_items);
3282	if (ret) {
3283		btrfs_abort_transaction(trans, ret);
3284		return ret;
3285	}
3286	copy_extent_buffer(dst, src,
3287			   btrfs_node_key_ptr_offset(0),
3288			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3289			   push_items * sizeof(struct btrfs_key_ptr));
3290
3291	btrfs_set_header_nritems(src, src_nritems - push_items);
3292	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3293
3294	btrfs_mark_buffer_dirty(src);
3295	btrfs_mark_buffer_dirty(dst);
3296
3297	return ret;
3298}
3299
3300/*
3301 * helper function to insert a new root level in the tree.
3302 * A new node is allocated, and a single item is inserted to
3303 * point to the existing root
3304 *
3305 * returns zero on success or < 0 on failure.
3306 */
3307static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3308			   struct btrfs_root *root,
3309			   struct btrfs_path *path, int level)
3310{
3311	struct btrfs_fs_info *fs_info = root->fs_info;
3312	u64 lower_gen;
3313	struct extent_buffer *lower;
3314	struct extent_buffer *c;
3315	struct extent_buffer *old;
3316	struct btrfs_disk_key lower_key;
3317	int ret;
3318
3319	BUG_ON(path->nodes[level]);
3320	BUG_ON(path->nodes[level-1] != root->node);
3321
3322	lower = path->nodes[level-1];
3323	if (level == 1)
3324		btrfs_item_key(lower, &lower_key, 0);
3325	else
3326		btrfs_node_key(lower, &lower_key, 0);
3327
3328	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3329				   &lower_key, level, root->node->start, 0);
3330	if (IS_ERR(c))
3331		return PTR_ERR(c);
3332
3333	root_add_used(root, fs_info->nodesize);
3334
3335	memzero_extent_buffer(c, 0, sizeof(struct btrfs_header));
3336	btrfs_set_header_nritems(c, 1);
3337	btrfs_set_header_level(c, level);
3338	btrfs_set_header_bytenr(c, c->start);
3339	btrfs_set_header_generation(c, trans->transid);
3340	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3341	btrfs_set_header_owner(c, root->root_key.objectid);
3342
3343	write_extent_buffer_fsid(c, fs_info->fsid);
3344	write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid);
3345
3346	btrfs_set_node_key(c, &lower_key, 0);
3347	btrfs_set_node_blockptr(c, 0, lower->start);
3348	lower_gen = btrfs_header_generation(lower);
3349	WARN_ON(lower_gen != trans->transid);
3350
3351	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3352
3353	btrfs_mark_buffer_dirty(c);
3354
3355	old = root->node;
3356	ret = tree_mod_log_insert_root(root->node, c, 0);
3357	BUG_ON(ret < 0);
3358	rcu_assign_pointer(root->node, c);
3359
3360	/* the super has an extra ref to root->node */
3361	free_extent_buffer(old);
3362
3363	add_root_to_dirty_list(root);
3364	extent_buffer_get(c);
3365	path->nodes[level] = c;
3366	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3367	path->slots[level] = 0;
3368	return 0;
3369}
3370
3371/*
3372 * worker function to insert a single pointer in a node.
3373 * the node should have enough room for the pointer already
3374 *
3375 * slot and level indicate where you want the key to go, and
3376 * blocknr is the block the key points to.
3377 */
3378static void insert_ptr(struct btrfs_trans_handle *trans,
3379		       struct btrfs_fs_info *fs_info, struct btrfs_path *path,
3380		       struct btrfs_disk_key *key, u64 bytenr,
3381		       int slot, int level)
3382{
3383	struct extent_buffer *lower;
3384	int nritems;
3385	int ret;
3386
3387	BUG_ON(!path->nodes[level]);
3388	btrfs_assert_tree_locked(path->nodes[level]);
3389	lower = path->nodes[level];
3390	nritems = btrfs_header_nritems(lower);
3391	BUG_ON(slot > nritems);
3392	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
3393	if (slot != nritems) {
3394		if (level) {
3395			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3396					nritems - slot);
3397			BUG_ON(ret < 0);
3398		}
3399		memmove_extent_buffer(lower,
3400			      btrfs_node_key_ptr_offset(slot + 1),
3401			      btrfs_node_key_ptr_offset(slot),
3402			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3403	}
3404	if (level) {
3405		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3406				GFP_NOFS);
3407		BUG_ON(ret < 0);
3408	}
3409	btrfs_set_node_key(lower, key, slot);
3410	btrfs_set_node_blockptr(lower, slot, bytenr);
3411	WARN_ON(trans->transid == 0);
3412	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3413	btrfs_set_header_nritems(lower, nritems + 1);
3414	btrfs_mark_buffer_dirty(lower);
3415}
3416
3417/*
3418 * split the node at the specified level in path in two.
3419 * The path is corrected to point to the appropriate node after the split
3420 *
3421 * Before splitting this tries to make some room in the node by pushing
3422 * left and right, if either one works, it returns right away.
3423 *
3424 * returns 0 on success and < 0 on failure
3425 */
3426static noinline int split_node(struct btrfs_trans_handle *trans,
3427			       struct btrfs_root *root,
3428			       struct btrfs_path *path, int level)
3429{
3430	struct btrfs_fs_info *fs_info = root->fs_info;
3431	struct extent_buffer *c;
3432	struct extent_buffer *split;
3433	struct btrfs_disk_key disk_key;
3434	int mid;
3435	int ret;
3436	u32 c_nritems;
3437
3438	c = path->nodes[level];
3439	WARN_ON(btrfs_header_generation(c) != trans->transid);
3440	if (c == root->node) {
3441		/*
3442		 * trying to split the root, lets make a new one
3443		 *
3444		 * tree mod log: We don't log_removal old root in
3445		 * insert_new_root, because that root buffer will be kept as a
3446		 * normal node. We are going to log removal of half of the
3447		 * elements below with tree_mod_log_eb_copy. We're holding a
3448		 * tree lock on the buffer, which is why we cannot race with
3449		 * other tree_mod_log users.
3450		 */
3451		ret = insert_new_root(trans, root, path, level + 1);
3452		if (ret)
3453			return ret;
3454	} else {
3455		ret = push_nodes_for_insert(trans, root, path, level);
3456		c = path->nodes[level];
3457		if (!ret && btrfs_header_nritems(c) <
3458		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3459			return 0;
3460		if (ret < 0)
3461			return ret;
3462	}
3463
3464	c_nritems = btrfs_header_nritems(c);
3465	mid = (c_nritems + 1) / 2;
3466	btrfs_node_key(c, &disk_key, mid);
3467
3468	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3469			&disk_key, level, c->start, 0);
3470	if (IS_ERR(split))
3471		return PTR_ERR(split);
3472
3473	root_add_used(root, fs_info->nodesize);
 
3474
3475	memzero_extent_buffer(split, 0, sizeof(struct btrfs_header));
3476	btrfs_set_header_level(split, btrfs_header_level(c));
3477	btrfs_set_header_bytenr(split, split->start);
3478	btrfs_set_header_generation(split, trans->transid);
3479	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3480	btrfs_set_header_owner(split, root->root_key.objectid);
3481	write_extent_buffer_fsid(split, fs_info->fsid);
3482	write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid);
3483
3484	ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
3485	if (ret) {
3486		btrfs_abort_transaction(trans, ret);
3487		return ret;
3488	}
3489	copy_extent_buffer(split, c,
3490			   btrfs_node_key_ptr_offset(0),
3491			   btrfs_node_key_ptr_offset(mid),
3492			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3493	btrfs_set_header_nritems(split, c_nritems - mid);
3494	btrfs_set_header_nritems(c, mid);
3495	ret = 0;
3496
3497	btrfs_mark_buffer_dirty(c);
3498	btrfs_mark_buffer_dirty(split);
3499
3500	insert_ptr(trans, fs_info, path, &disk_key, split->start,
3501		   path->slots[level + 1] + 1, level + 1);
3502
3503	if (path->slots[level] >= mid) {
3504		path->slots[level] -= mid;
3505		btrfs_tree_unlock(c);
3506		free_extent_buffer(c);
3507		path->nodes[level] = split;
3508		path->slots[level + 1] += 1;
3509	} else {
3510		btrfs_tree_unlock(split);
3511		free_extent_buffer(split);
3512	}
3513	return ret;
3514}
3515
3516/*
3517 * how many bytes are required to store the items in a leaf.  start
3518 * and nr indicate which items in the leaf to check.  This totals up the
3519 * space used both by the item structs and the item data
3520 */
3521static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3522{
3523	struct btrfs_item *start_item;
3524	struct btrfs_item *end_item;
3525	struct btrfs_map_token token;
3526	int data_len;
3527	int nritems = btrfs_header_nritems(l);
3528	int end = min(nritems, start + nr) - 1;
3529
3530	if (!nr)
3531		return 0;
3532	btrfs_init_map_token(&token);
3533	start_item = btrfs_item_nr(start);
3534	end_item = btrfs_item_nr(end);
3535	data_len = btrfs_token_item_offset(l, start_item, &token) +
3536		btrfs_token_item_size(l, start_item, &token);
3537	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3538	data_len += sizeof(struct btrfs_item) * nr;
3539	WARN_ON(data_len < 0);
3540	return data_len;
3541}
3542
3543/*
3544 * The space between the end of the leaf items and
3545 * the start of the leaf data.  IOW, how much room
3546 * the leaf has left for both items and data
3547 */
3548noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
3549				   struct extent_buffer *leaf)
3550{
 
3551	int nritems = btrfs_header_nritems(leaf);
3552	int ret;
3553
3554	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3555	if (ret < 0) {
3556		btrfs_crit(fs_info,
3557			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3558			   ret,
3559			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3560			   leaf_space_used(leaf, 0, nritems), nritems);
3561	}
3562	return ret;
3563}
3564
3565/*
3566 * min slot controls the lowest index we're willing to push to the
3567 * right.  We'll push up to and including min_slot, but no lower
3568 */
3569static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
3570				      struct btrfs_path *path,
3571				      int data_size, int empty,
3572				      struct extent_buffer *right,
3573				      int free_space, u32 left_nritems,
3574				      u32 min_slot)
3575{
 
3576	struct extent_buffer *left = path->nodes[0];
3577	struct extent_buffer *upper = path->nodes[1];
3578	struct btrfs_map_token token;
3579	struct btrfs_disk_key disk_key;
3580	int slot;
3581	u32 i;
3582	int push_space = 0;
3583	int push_items = 0;
3584	struct btrfs_item *item;
3585	u32 nr;
3586	u32 right_nritems;
3587	u32 data_end;
3588	u32 this_item_size;
3589
3590	btrfs_init_map_token(&token);
3591
3592	if (empty)
3593		nr = 0;
3594	else
3595		nr = max_t(u32, 1, min_slot);
3596
3597	if (path->slots[0] >= left_nritems)
3598		push_space += data_size;
3599
3600	slot = path->slots[1];
3601	i = left_nritems - 1;
3602	while (i >= nr) {
3603		item = btrfs_item_nr(i);
3604
3605		if (!empty && push_items > 0) {
3606			if (path->slots[0] > i)
3607				break;
3608			if (path->slots[0] == i) {
3609				int space = btrfs_leaf_free_space(fs_info, left);
 
3610				if (space + push_space * 2 > free_space)
3611					break;
3612			}
3613		}
3614
3615		if (path->slots[0] == i)
3616			push_space += data_size;
3617
3618		this_item_size = btrfs_item_size(left, item);
3619		if (this_item_size + sizeof(*item) + push_space > free_space)
3620			break;
3621
3622		push_items++;
3623		push_space += this_item_size + sizeof(*item);
3624		if (i == 0)
3625			break;
3626		i--;
3627	}
3628
3629	if (push_items == 0)
3630		goto out_unlock;
3631
3632	WARN_ON(!empty && push_items == left_nritems);
3633
3634	/* push left to right */
3635	right_nritems = btrfs_header_nritems(right);
3636
3637	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3638	push_space -= leaf_data_end(fs_info, left);
3639
3640	/* make room in the right data area */
3641	data_end = leaf_data_end(fs_info, right);
3642	memmove_extent_buffer(right,
3643			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3644			      BTRFS_LEAF_DATA_OFFSET + data_end,
3645			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3646
3647	/* copy from the left data area */
3648	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3649		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3650		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
3651		     push_space);
3652
3653	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3654			      btrfs_item_nr_offset(0),
3655			      right_nritems * sizeof(struct btrfs_item));
3656
3657	/* copy the items from left to right */
3658	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3659		   btrfs_item_nr_offset(left_nritems - push_items),
3660		   push_items * sizeof(struct btrfs_item));
3661
3662	/* update the item pointers */
 
3663	right_nritems += push_items;
3664	btrfs_set_header_nritems(right, right_nritems);
3665	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3666	for (i = 0; i < right_nritems; i++) {
3667		item = btrfs_item_nr(i);
3668		push_space -= btrfs_token_item_size(right, item, &token);
3669		btrfs_set_token_item_offset(right, item, push_space, &token);
3670	}
3671
3672	left_nritems -= push_items;
3673	btrfs_set_header_nritems(left, left_nritems);
3674
3675	if (left_nritems)
3676		btrfs_mark_buffer_dirty(left);
3677	else
3678		clean_tree_block(fs_info, left);
3679
3680	btrfs_mark_buffer_dirty(right);
3681
3682	btrfs_item_key(right, &disk_key, 0);
3683	btrfs_set_node_key(upper, &disk_key, slot + 1);
3684	btrfs_mark_buffer_dirty(upper);
3685
3686	/* then fixup the leaf pointer in the path */
3687	if (path->slots[0] >= left_nritems) {
3688		path->slots[0] -= left_nritems;
3689		if (btrfs_header_nritems(path->nodes[0]) == 0)
3690			clean_tree_block(fs_info, path->nodes[0]);
3691		btrfs_tree_unlock(path->nodes[0]);
3692		free_extent_buffer(path->nodes[0]);
3693		path->nodes[0] = right;
3694		path->slots[1] += 1;
3695	} else {
3696		btrfs_tree_unlock(right);
3697		free_extent_buffer(right);
3698	}
3699	return 0;
3700
3701out_unlock:
3702	btrfs_tree_unlock(right);
3703	free_extent_buffer(right);
3704	return 1;
3705}
3706
3707/*
3708 * push some data in the path leaf to the right, trying to free up at
3709 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3710 *
3711 * returns 1 if the push failed because the other node didn't have enough
3712 * room, 0 if everything worked out and < 0 if there were major errors.
3713 *
3714 * this will push starting from min_slot to the end of the leaf.  It won't
3715 * push any slot lower than min_slot
3716 */
3717static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3718			   *root, struct btrfs_path *path,
3719			   int min_data_size, int data_size,
3720			   int empty, u32 min_slot)
3721{
3722	struct btrfs_fs_info *fs_info = root->fs_info;
3723	struct extent_buffer *left = path->nodes[0];
3724	struct extent_buffer *right;
3725	struct extent_buffer *upper;
3726	int slot;
3727	int free_space;
3728	u32 left_nritems;
3729	int ret;
3730
3731	if (!path->nodes[1])
3732		return 1;
3733
3734	slot = path->slots[1];
3735	upper = path->nodes[1];
3736	if (slot >= btrfs_header_nritems(upper) - 1)
3737		return 1;
3738
3739	btrfs_assert_tree_locked(path->nodes[1]);
3740
3741	right = read_node_slot(fs_info, upper, slot + 1);
3742	/*
3743	 * slot + 1 is not valid or we fail to read the right node,
3744	 * no big deal, just return.
3745	 */
3746	if (IS_ERR(right))
3747		return 1;
3748
3749	btrfs_tree_lock(right);
3750	btrfs_set_lock_blocking(right);
3751
3752	free_space = btrfs_leaf_free_space(fs_info, right);
3753	if (free_space < data_size)
3754		goto out_unlock;
3755
3756	/* cow and double check */
3757	ret = btrfs_cow_block(trans, root, right, upper,
3758			      slot + 1, &right);
3759	if (ret)
3760		goto out_unlock;
3761
3762	free_space = btrfs_leaf_free_space(fs_info, right);
3763	if (free_space < data_size)
3764		goto out_unlock;
3765
3766	left_nritems = btrfs_header_nritems(left);
3767	if (left_nritems == 0)
3768		goto out_unlock;
3769
3770	if (path->slots[0] == left_nritems && !empty) {
3771		/* Key greater than all keys in the leaf, right neighbor has
3772		 * enough room for it and we're not emptying our leaf to delete
3773		 * it, therefore use right neighbor to insert the new item and
3774		 * no need to touch/dirty our left leaft. */
3775		btrfs_tree_unlock(left);
3776		free_extent_buffer(left);
3777		path->nodes[0] = right;
3778		path->slots[0] = 0;
3779		path->slots[1]++;
3780		return 0;
3781	}
3782
3783	return __push_leaf_right(fs_info, path, min_data_size, empty,
3784				right, free_space, left_nritems, min_slot);
3785out_unlock:
3786	btrfs_tree_unlock(right);
3787	free_extent_buffer(right);
3788	return 1;
3789}
3790
3791/*
3792 * push some data in the path leaf to the left, trying to free up at
3793 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3794 *
3795 * max_slot can put a limit on how far into the leaf we'll push items.  The
3796 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3797 * items
3798 */
3799static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
3800				     struct btrfs_path *path, int data_size,
3801				     int empty, struct extent_buffer *left,
3802				     int free_space, u32 right_nritems,
3803				     u32 max_slot)
3804{
 
3805	struct btrfs_disk_key disk_key;
3806	struct extent_buffer *right = path->nodes[0];
3807	int i;
3808	int push_space = 0;
3809	int push_items = 0;
3810	struct btrfs_item *item;
3811	u32 old_left_nritems;
3812	u32 nr;
3813	int ret = 0;
3814	u32 this_item_size;
3815	u32 old_left_item_size;
3816	struct btrfs_map_token token;
3817
3818	btrfs_init_map_token(&token);
3819
3820	if (empty)
3821		nr = min(right_nritems, max_slot);
3822	else
3823		nr = min(right_nritems - 1, max_slot);
3824
3825	for (i = 0; i < nr; i++) {
3826		item = btrfs_item_nr(i);
3827
3828		if (!empty && push_items > 0) {
3829			if (path->slots[0] < i)
3830				break;
3831			if (path->slots[0] == i) {
3832				int space = btrfs_leaf_free_space(fs_info, right);
 
3833				if (space + push_space * 2 > free_space)
3834					break;
3835			}
3836		}
3837
3838		if (path->slots[0] == i)
3839			push_space += data_size;
3840
3841		this_item_size = btrfs_item_size(right, item);
3842		if (this_item_size + sizeof(*item) + push_space > free_space)
3843			break;
3844
3845		push_items++;
3846		push_space += this_item_size + sizeof(*item);
3847	}
3848
3849	if (push_items == 0) {
3850		ret = 1;
3851		goto out;
3852	}
3853	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3854
3855	/* push data from right to left */
3856	copy_extent_buffer(left, right,
3857			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3858			   btrfs_item_nr_offset(0),
3859			   push_items * sizeof(struct btrfs_item));
3860
3861	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3862		     btrfs_item_offset_nr(right, push_items - 1);
3863
3864	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3865		     leaf_data_end(fs_info, left) - push_space,
3866		     BTRFS_LEAF_DATA_OFFSET +
3867		     btrfs_item_offset_nr(right, push_items - 1),
3868		     push_space);
3869	old_left_nritems = btrfs_header_nritems(left);
3870	BUG_ON(old_left_nritems <= 0);
3871
 
3872	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3873	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3874		u32 ioff;
3875
3876		item = btrfs_item_nr(i);
3877
3878		ioff = btrfs_token_item_offset(left, item, &token);
3879		btrfs_set_token_item_offset(left, item,
3880		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3881		      &token);
3882	}
3883	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3884
3885	/* fixup right node */
3886	if (push_items > right_nritems)
3887		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3888		       right_nritems);
3889
3890	if (push_items < right_nritems) {
3891		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3892						  leaf_data_end(fs_info, right);
3893		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3894				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3895				      BTRFS_LEAF_DATA_OFFSET +
3896				      leaf_data_end(fs_info, right), push_space);
3897
3898		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3899			      btrfs_item_nr_offset(push_items),
3900			     (btrfs_header_nritems(right) - push_items) *
3901			     sizeof(struct btrfs_item));
3902	}
 
 
3903	right_nritems -= push_items;
3904	btrfs_set_header_nritems(right, right_nritems);
3905	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3906	for (i = 0; i < right_nritems; i++) {
3907		item = btrfs_item_nr(i);
3908
3909		push_space = push_space - btrfs_token_item_size(right,
3910								item, &token);
3911		btrfs_set_token_item_offset(right, item, push_space, &token);
3912	}
3913
3914	btrfs_mark_buffer_dirty(left);
3915	if (right_nritems)
3916		btrfs_mark_buffer_dirty(right);
3917	else
3918		clean_tree_block(fs_info, right);
3919
3920	btrfs_item_key(right, &disk_key, 0);
3921	fixup_low_keys(fs_info, path, &disk_key, 1);
3922
3923	/* then fixup the leaf pointer in the path */
3924	if (path->slots[0] < push_items) {
3925		path->slots[0] += old_left_nritems;
3926		btrfs_tree_unlock(path->nodes[0]);
3927		free_extent_buffer(path->nodes[0]);
3928		path->nodes[0] = left;
3929		path->slots[1] -= 1;
3930	} else {
3931		btrfs_tree_unlock(left);
3932		free_extent_buffer(left);
3933		path->slots[0] -= push_items;
3934	}
3935	BUG_ON(path->slots[0] < 0);
3936	return ret;
3937out:
3938	btrfs_tree_unlock(left);
3939	free_extent_buffer(left);
3940	return ret;
3941}
3942
3943/*
3944 * push some data in the path leaf to the left, trying to free up at
3945 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3946 *
3947 * max_slot can put a limit on how far into the leaf we'll push items.  The
3948 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3949 * items
3950 */
3951static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3952			  *root, struct btrfs_path *path, int min_data_size,
3953			  int data_size, int empty, u32 max_slot)
3954{
3955	struct btrfs_fs_info *fs_info = root->fs_info;
3956	struct extent_buffer *right = path->nodes[0];
3957	struct extent_buffer *left;
3958	int slot;
3959	int free_space;
3960	u32 right_nritems;
3961	int ret = 0;
3962
3963	slot = path->slots[1];
3964	if (slot == 0)
3965		return 1;
3966	if (!path->nodes[1])
3967		return 1;
3968
3969	right_nritems = btrfs_header_nritems(right);
3970	if (right_nritems == 0)
3971		return 1;
3972
3973	btrfs_assert_tree_locked(path->nodes[1]);
3974
3975	left = read_node_slot(fs_info, path->nodes[1], slot - 1);
3976	/*
3977	 * slot - 1 is not valid or we fail to read the left node,
3978	 * no big deal, just return.
3979	 */
3980	if (IS_ERR(left))
3981		return 1;
3982
3983	btrfs_tree_lock(left);
3984	btrfs_set_lock_blocking(left);
3985
3986	free_space = btrfs_leaf_free_space(fs_info, left);
3987	if (free_space < data_size) {
3988		ret = 1;
3989		goto out;
3990	}
3991
3992	/* cow and double check */
3993	ret = btrfs_cow_block(trans, root, left,
3994			      path->nodes[1], slot - 1, &left);
3995	if (ret) {
3996		/* we hit -ENOSPC, but it isn't fatal here */
3997		if (ret == -ENOSPC)
3998			ret = 1;
3999		goto out;
4000	}
4001
4002	free_space = btrfs_leaf_free_space(fs_info, left);
4003	if (free_space < data_size) {
4004		ret = 1;
4005		goto out;
4006	}
4007
4008	return __push_leaf_left(fs_info, path, min_data_size,
4009			       empty, left, free_space, right_nritems,
4010			       max_slot);
4011out:
4012	btrfs_tree_unlock(left);
4013	free_extent_buffer(left);
4014	return ret;
4015}
4016
4017/*
4018 * split the path's leaf in two, making sure there is at least data_size
4019 * available for the resulting leaf level of the path.
4020 */
4021static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4022				    struct btrfs_fs_info *fs_info,
4023				    struct btrfs_path *path,
4024				    struct extent_buffer *l,
4025				    struct extent_buffer *right,
4026				    int slot, int mid, int nritems)
4027{
 
4028	int data_copy_size;
4029	int rt_data_off;
4030	int i;
4031	struct btrfs_disk_key disk_key;
4032	struct btrfs_map_token token;
4033
4034	btrfs_init_map_token(&token);
4035
4036	nritems = nritems - mid;
4037	btrfs_set_header_nritems(right, nritems);
4038	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
4039
4040	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4041			   btrfs_item_nr_offset(mid),
4042			   nritems * sizeof(struct btrfs_item));
4043
4044	copy_extent_buffer(right, l,
4045		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4046		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4047		     leaf_data_end(fs_info, l), data_copy_size);
4048
4049	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4050
 
4051	for (i = 0; i < nritems; i++) {
4052		struct btrfs_item *item = btrfs_item_nr(i);
4053		u32 ioff;
4054
4055		ioff = btrfs_token_item_offset(right, item, &token);
4056		btrfs_set_token_item_offset(right, item,
4057					    ioff + rt_data_off, &token);
4058	}
4059
4060	btrfs_set_header_nritems(l, mid);
4061	btrfs_item_key(right, &disk_key, 0);
4062	insert_ptr(trans, fs_info, path, &disk_key, right->start,
4063		   path->slots[1] + 1, 1);
4064
4065	btrfs_mark_buffer_dirty(right);
4066	btrfs_mark_buffer_dirty(l);
4067	BUG_ON(path->slots[0] != slot);
4068
4069	if (mid <= slot) {
4070		btrfs_tree_unlock(path->nodes[0]);
4071		free_extent_buffer(path->nodes[0]);
4072		path->nodes[0] = right;
4073		path->slots[0] -= mid;
4074		path->slots[1] += 1;
4075	} else {
4076		btrfs_tree_unlock(right);
4077		free_extent_buffer(right);
4078	}
4079
4080	BUG_ON(path->slots[0] < 0);
4081}
4082
4083/*
4084 * double splits happen when we need to insert a big item in the middle
4085 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4086 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4087 *          A                 B                 C
4088 *
4089 * We avoid this by trying to push the items on either side of our target
4090 * into the adjacent leaves.  If all goes well we can avoid the double split
4091 * completely.
4092 */
4093static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4094					  struct btrfs_root *root,
4095					  struct btrfs_path *path,
4096					  int data_size)
4097{
4098	struct btrfs_fs_info *fs_info = root->fs_info;
4099	int ret;
4100	int progress = 0;
4101	int slot;
4102	u32 nritems;
4103	int space_needed = data_size;
4104
4105	slot = path->slots[0];
4106	if (slot < btrfs_header_nritems(path->nodes[0]))
4107		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4108
4109	/*
4110	 * try to push all the items after our slot into the
4111	 * right leaf
4112	 */
4113	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4114	if (ret < 0)
4115		return ret;
4116
4117	if (ret == 0)
4118		progress++;
4119
4120	nritems = btrfs_header_nritems(path->nodes[0]);
4121	/*
4122	 * our goal is to get our slot at the start or end of a leaf.  If
4123	 * we've done so we're done
4124	 */
4125	if (path->slots[0] == 0 || path->slots[0] == nritems)
4126		return 0;
4127
4128	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4129		return 0;
4130
4131	/* try to push all the items before our slot into the next leaf */
4132	slot = path->slots[0];
4133	space_needed = data_size;
4134	if (slot > 0)
4135		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4136	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4137	if (ret < 0)
4138		return ret;
4139
4140	if (ret == 0)
4141		progress++;
4142
4143	if (progress)
4144		return 0;
4145	return 1;
4146}
4147
4148/*
4149 * split the path's leaf in two, making sure there is at least data_size
4150 * available for the resulting leaf level of the path.
4151 *
4152 * returns 0 if all went well and < 0 on failure.
4153 */
4154static noinline int split_leaf(struct btrfs_trans_handle *trans,
4155			       struct btrfs_root *root,
4156			       const struct btrfs_key *ins_key,
4157			       struct btrfs_path *path, int data_size,
4158			       int extend)
4159{
4160	struct btrfs_disk_key disk_key;
4161	struct extent_buffer *l;
4162	u32 nritems;
4163	int mid;
4164	int slot;
4165	struct extent_buffer *right;
4166	struct btrfs_fs_info *fs_info = root->fs_info;
4167	int ret = 0;
4168	int wret;
4169	int split;
4170	int num_doubles = 0;
4171	int tried_avoid_double = 0;
4172
4173	l = path->nodes[0];
4174	slot = path->slots[0];
4175	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4176	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4177		return -EOVERFLOW;
4178
4179	/* first try to make some room by pushing left and right */
4180	if (data_size && path->nodes[1]) {
4181		int space_needed = data_size;
4182
4183		if (slot < btrfs_header_nritems(l))
4184			space_needed -= btrfs_leaf_free_space(fs_info, l);
4185
4186		wret = push_leaf_right(trans, root, path, space_needed,
4187				       space_needed, 0, 0);
4188		if (wret < 0)
4189			return wret;
4190		if (wret) {
4191			space_needed = data_size;
4192			if (slot > 0)
4193				space_needed -= btrfs_leaf_free_space(fs_info,
4194								      l);
4195			wret = push_leaf_left(trans, root, path, space_needed,
4196					      space_needed, 0, (u32)-1);
4197			if (wret < 0)
4198				return wret;
4199		}
4200		l = path->nodes[0];
4201
4202		/* did the pushes work? */
4203		if (btrfs_leaf_free_space(fs_info, l) >= data_size)
4204			return 0;
4205	}
4206
4207	if (!path->nodes[1]) {
4208		ret = insert_new_root(trans, root, path, 1);
4209		if (ret)
4210			return ret;
4211	}
4212again:
4213	split = 1;
4214	l = path->nodes[0];
4215	slot = path->slots[0];
4216	nritems = btrfs_header_nritems(l);
4217	mid = (nritems + 1) / 2;
4218
4219	if (mid <= slot) {
4220		if (nritems == 1 ||
4221		    leaf_space_used(l, mid, nritems - mid) + data_size >
4222			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4223			if (slot >= nritems) {
4224				split = 0;
4225			} else {
4226				mid = slot;
4227				if (mid != nritems &&
4228				    leaf_space_used(l, mid, nritems - mid) +
4229				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4230					if (data_size && !tried_avoid_double)
4231						goto push_for_double;
4232					split = 2;
4233				}
4234			}
4235		}
4236	} else {
4237		if (leaf_space_used(l, 0, mid) + data_size >
4238			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4239			if (!extend && data_size && slot == 0) {
4240				split = 0;
4241			} else if ((extend || !data_size) && slot == 0) {
4242				mid = 1;
4243			} else {
4244				mid = slot;
4245				if (mid != nritems &&
4246				    leaf_space_used(l, mid, nritems - mid) +
4247				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4248					if (data_size && !tried_avoid_double)
4249						goto push_for_double;
4250					split = 2;
4251				}
4252			}
4253		}
4254	}
4255
4256	if (split == 0)
4257		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4258	else
4259		btrfs_item_key(l, &disk_key, mid);
4260
4261	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4262			&disk_key, 0, l->start, 0);
4263	if (IS_ERR(right))
4264		return PTR_ERR(right);
4265
4266	root_add_used(root, fs_info->nodesize);
4267
4268	memzero_extent_buffer(right, 0, sizeof(struct btrfs_header));
4269	btrfs_set_header_bytenr(right, right->start);
4270	btrfs_set_header_generation(right, trans->transid);
4271	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4272	btrfs_set_header_owner(right, root->root_key.objectid);
4273	btrfs_set_header_level(right, 0);
4274	write_extent_buffer_fsid(right, fs_info->fsid);
4275	write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid);
4276
4277	if (split == 0) {
4278		if (mid <= slot) {
4279			btrfs_set_header_nritems(right, 0);
4280			insert_ptr(trans, fs_info, path, &disk_key,
4281				   right->start, path->slots[1] + 1, 1);
4282			btrfs_tree_unlock(path->nodes[0]);
4283			free_extent_buffer(path->nodes[0]);
4284			path->nodes[0] = right;
4285			path->slots[0] = 0;
4286			path->slots[1] += 1;
4287		} else {
4288			btrfs_set_header_nritems(right, 0);
4289			insert_ptr(trans, fs_info, path, &disk_key,
4290				   right->start, path->slots[1], 1);
4291			btrfs_tree_unlock(path->nodes[0]);
4292			free_extent_buffer(path->nodes[0]);
4293			path->nodes[0] = right;
4294			path->slots[0] = 0;
4295			if (path->slots[1] == 0)
4296				fixup_low_keys(fs_info, path, &disk_key, 1);
4297		}
4298		/*
4299		 * We create a new leaf 'right' for the required ins_len and
4300		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4301		 * the content of ins_len to 'right'.
4302		 */
4303		return ret;
4304	}
4305
4306	copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
4307
4308	if (split == 2) {
4309		BUG_ON(num_doubles != 0);
4310		num_doubles++;
4311		goto again;
4312	}
4313
4314	return 0;
4315
4316push_for_double:
4317	push_for_double_split(trans, root, path, data_size);
4318	tried_avoid_double = 1;
4319	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4320		return 0;
4321	goto again;
4322}
4323
4324static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4325					 struct btrfs_root *root,
4326					 struct btrfs_path *path, int ins_len)
4327{
4328	struct btrfs_fs_info *fs_info = root->fs_info;
4329	struct btrfs_key key;
4330	struct extent_buffer *leaf;
4331	struct btrfs_file_extent_item *fi;
4332	u64 extent_len = 0;
4333	u32 item_size;
4334	int ret;
4335
4336	leaf = path->nodes[0];
4337	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4338
4339	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4340	       key.type != BTRFS_EXTENT_CSUM_KEY);
4341
4342	if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
4343		return 0;
4344
4345	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4346	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4347		fi = btrfs_item_ptr(leaf, path->slots[0],
4348				    struct btrfs_file_extent_item);
4349		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4350	}
4351	btrfs_release_path(path);
4352
4353	path->keep_locks = 1;
4354	path->search_for_split = 1;
4355	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4356	path->search_for_split = 0;
4357	if (ret > 0)
4358		ret = -EAGAIN;
4359	if (ret < 0)
4360		goto err;
4361
4362	ret = -EAGAIN;
4363	leaf = path->nodes[0];
4364	/* if our item isn't there, return now */
4365	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4366		goto err;
4367
4368	/* the leaf has  changed, it now has room.  return now */
4369	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
4370		goto err;
4371
4372	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4373		fi = btrfs_item_ptr(leaf, path->slots[0],
4374				    struct btrfs_file_extent_item);
4375		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4376			goto err;
4377	}
4378
4379	btrfs_set_path_blocking(path);
4380	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4381	if (ret)
4382		goto err;
4383
4384	path->keep_locks = 0;
4385	btrfs_unlock_up_safe(path, 1);
4386	return 0;
4387err:
4388	path->keep_locks = 0;
4389	return ret;
4390}
4391
4392static noinline int split_item(struct btrfs_fs_info *fs_info,
4393			       struct btrfs_path *path,
4394			       const struct btrfs_key *new_key,
4395			       unsigned long split_offset)
4396{
4397	struct extent_buffer *leaf;
4398	struct btrfs_item *item;
4399	struct btrfs_item *new_item;
4400	int slot;
4401	char *buf;
4402	u32 nritems;
4403	u32 item_size;
4404	u32 orig_offset;
4405	struct btrfs_disk_key disk_key;
4406
4407	leaf = path->nodes[0];
4408	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
4409
4410	btrfs_set_path_blocking(path);
4411
4412	item = btrfs_item_nr(path->slots[0]);
4413	orig_offset = btrfs_item_offset(leaf, item);
4414	item_size = btrfs_item_size(leaf, item);
4415
4416	buf = kmalloc(item_size, GFP_NOFS);
4417	if (!buf)
4418		return -ENOMEM;
4419
4420	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4421			    path->slots[0]), item_size);
4422
4423	slot = path->slots[0] + 1;
4424	nritems = btrfs_header_nritems(leaf);
4425	if (slot != nritems) {
4426		/* shift the items */
4427		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4428				btrfs_item_nr_offset(slot),
4429				(nritems - slot) * sizeof(struct btrfs_item));
4430	}
4431
4432	btrfs_cpu_key_to_disk(&disk_key, new_key);
4433	btrfs_set_item_key(leaf, &disk_key, slot);
4434
4435	new_item = btrfs_item_nr(slot);
4436
4437	btrfs_set_item_offset(leaf, new_item, orig_offset);
4438	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4439
4440	btrfs_set_item_offset(leaf, item,
4441			      orig_offset + item_size - split_offset);
4442	btrfs_set_item_size(leaf, item, split_offset);
4443
4444	btrfs_set_header_nritems(leaf, nritems + 1);
4445
4446	/* write the data for the start of the original item */
4447	write_extent_buffer(leaf, buf,
4448			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4449			    split_offset);
4450
4451	/* write the data for the new item */
4452	write_extent_buffer(leaf, buf + split_offset,
4453			    btrfs_item_ptr_offset(leaf, slot),
4454			    item_size - split_offset);
4455	btrfs_mark_buffer_dirty(leaf);
4456
4457	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
4458	kfree(buf);
4459	return 0;
4460}
4461
4462/*
4463 * This function splits a single item into two items,
4464 * giving 'new_key' to the new item and splitting the
4465 * old one at split_offset (from the start of the item).
4466 *
4467 * The path may be released by this operation.  After
4468 * the split, the path is pointing to the old item.  The
4469 * new item is going to be in the same node as the old one.
4470 *
4471 * Note, the item being split must be smaller enough to live alone on
4472 * a tree block with room for one extra struct btrfs_item
4473 *
4474 * This allows us to split the item in place, keeping a lock on the
4475 * leaf the entire time.
4476 */
4477int btrfs_split_item(struct btrfs_trans_handle *trans,
4478		     struct btrfs_root *root,
4479		     struct btrfs_path *path,
4480		     const struct btrfs_key *new_key,
4481		     unsigned long split_offset)
4482{
4483	int ret;
4484	ret = setup_leaf_for_split(trans, root, path,
4485				   sizeof(struct btrfs_item));
4486	if (ret)
4487		return ret;
4488
4489	ret = split_item(root->fs_info, path, new_key, split_offset);
4490	return ret;
4491}
4492
4493/*
4494 * This function duplicate a item, giving 'new_key' to the new item.
4495 * It guarantees both items live in the same tree leaf and the new item
4496 * is contiguous with the original item.
4497 *
4498 * This allows us to split file extent in place, keeping a lock on the
4499 * leaf the entire time.
4500 */
4501int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4502			 struct btrfs_root *root,
4503			 struct btrfs_path *path,
4504			 const struct btrfs_key *new_key)
4505{
4506	struct extent_buffer *leaf;
4507	int ret;
4508	u32 item_size;
4509
4510	leaf = path->nodes[0];
4511	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4512	ret = setup_leaf_for_split(trans, root, path,
4513				   item_size + sizeof(struct btrfs_item));
4514	if (ret)
4515		return ret;
4516
4517	path->slots[0]++;
4518	setup_items_for_insert(root, path, new_key, &item_size,
4519			       item_size, item_size +
4520			       sizeof(struct btrfs_item), 1);
4521	leaf = path->nodes[0];
4522	memcpy_extent_buffer(leaf,
4523			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4524			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4525			     item_size);
4526	return 0;
4527}
4528
4529/*
4530 * make the item pointed to by the path smaller.  new_size indicates
4531 * how small to make it, and from_end tells us if we just chop bytes
4532 * off the end of the item or if we shift the item to chop bytes off
4533 * the front.
4534 */
4535void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4536			 struct btrfs_path *path, u32 new_size, int from_end)
4537{
4538	int slot;
4539	struct extent_buffer *leaf;
4540	struct btrfs_item *item;
4541	u32 nritems;
4542	unsigned int data_end;
4543	unsigned int old_data_start;
4544	unsigned int old_size;
4545	unsigned int size_diff;
4546	int i;
4547	struct btrfs_map_token token;
4548
4549	btrfs_init_map_token(&token);
4550
4551	leaf = path->nodes[0];
4552	slot = path->slots[0];
4553
4554	old_size = btrfs_item_size_nr(leaf, slot);
4555	if (old_size == new_size)
4556		return;
4557
4558	nritems = btrfs_header_nritems(leaf);
4559	data_end = leaf_data_end(fs_info, leaf);
4560
4561	old_data_start = btrfs_item_offset_nr(leaf, slot);
4562
4563	size_diff = old_size - new_size;
4564
4565	BUG_ON(slot < 0);
4566	BUG_ON(slot >= nritems);
4567
4568	/*
4569	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4570	 */
4571	/* first correct the data pointers */
 
4572	for (i = slot; i < nritems; i++) {
4573		u32 ioff;
4574		item = btrfs_item_nr(i);
4575
4576		ioff = btrfs_token_item_offset(leaf, item, &token);
4577		btrfs_set_token_item_offset(leaf, item,
4578					    ioff + size_diff, &token);
4579	}
4580
4581	/* shift the data */
4582	if (from_end) {
4583		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4584			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4585			      data_end, old_data_start + new_size - data_end);
4586	} else {
4587		struct btrfs_disk_key disk_key;
4588		u64 offset;
4589
4590		btrfs_item_key(leaf, &disk_key, slot);
4591
4592		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4593			unsigned long ptr;
4594			struct btrfs_file_extent_item *fi;
4595
4596			fi = btrfs_item_ptr(leaf, slot,
4597					    struct btrfs_file_extent_item);
4598			fi = (struct btrfs_file_extent_item *)(
4599			     (unsigned long)fi - size_diff);
4600
4601			if (btrfs_file_extent_type(leaf, fi) ==
4602			    BTRFS_FILE_EXTENT_INLINE) {
4603				ptr = btrfs_item_ptr_offset(leaf, slot);
4604				memmove_extent_buffer(leaf, ptr,
4605				      (unsigned long)fi,
4606				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4607			}
4608		}
4609
4610		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4611			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4612			      data_end, old_data_start - data_end);
4613
4614		offset = btrfs_disk_key_offset(&disk_key);
4615		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4616		btrfs_set_item_key(leaf, &disk_key, slot);
4617		if (slot == 0)
4618			fixup_low_keys(fs_info, path, &disk_key, 1);
4619	}
4620
4621	item = btrfs_item_nr(slot);
4622	btrfs_set_item_size(leaf, item, new_size);
4623	btrfs_mark_buffer_dirty(leaf);
4624
4625	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4626		btrfs_print_leaf(leaf);
4627		BUG();
4628	}
4629}
4630
4631/*
4632 * make the item pointed to by the path bigger, data_size is the added size.
4633 */
4634void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
4635		       u32 data_size)
4636{
4637	int slot;
4638	struct extent_buffer *leaf;
4639	struct btrfs_item *item;
4640	u32 nritems;
4641	unsigned int data_end;
4642	unsigned int old_data;
4643	unsigned int old_size;
4644	int i;
4645	struct btrfs_map_token token;
4646
4647	btrfs_init_map_token(&token);
4648
4649	leaf = path->nodes[0];
4650
4651	nritems = btrfs_header_nritems(leaf);
4652	data_end = leaf_data_end(fs_info, leaf);
4653
4654	if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
4655		btrfs_print_leaf(leaf);
4656		BUG();
4657	}
4658	slot = path->slots[0];
4659	old_data = btrfs_item_end_nr(leaf, slot);
4660
4661	BUG_ON(slot < 0);
4662	if (slot >= nritems) {
4663		btrfs_print_leaf(leaf);
4664		btrfs_crit(fs_info, "slot %d too large, nritems %d",
4665			   slot, nritems);
4666		BUG_ON(1);
4667	}
4668
4669	/*
4670	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4671	 */
4672	/* first correct the data pointers */
 
4673	for (i = slot; i < nritems; i++) {
4674		u32 ioff;
4675		item = btrfs_item_nr(i);
4676
4677		ioff = btrfs_token_item_offset(leaf, item, &token);
4678		btrfs_set_token_item_offset(leaf, item,
4679					    ioff - data_size, &token);
4680	}
4681
4682	/* shift the data */
4683	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4684		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4685		      data_end, old_data - data_end);
4686
4687	data_end = old_data;
4688	old_size = btrfs_item_size_nr(leaf, slot);
4689	item = btrfs_item_nr(slot);
4690	btrfs_set_item_size(leaf, item, old_size + data_size);
4691	btrfs_mark_buffer_dirty(leaf);
4692
4693	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4694		btrfs_print_leaf(leaf);
4695		BUG();
4696	}
4697}
4698
4699/*
4700 * this is a helper for btrfs_insert_empty_items, the main goal here is
4701 * to save stack depth by doing the bulk of the work in a function
4702 * that doesn't call btrfs_search_slot
4703 */
4704void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4705			    const struct btrfs_key *cpu_key, u32 *data_size,
4706			    u32 total_data, u32 total_size, int nr)
4707{
4708	struct btrfs_fs_info *fs_info = root->fs_info;
4709	struct btrfs_item *item;
4710	int i;
4711	u32 nritems;
4712	unsigned int data_end;
4713	struct btrfs_disk_key disk_key;
4714	struct extent_buffer *leaf;
4715	int slot;
4716	struct btrfs_map_token token;
4717
4718	if (path->slots[0] == 0) {
4719		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4720		fixup_low_keys(fs_info, path, &disk_key, 1);
4721	}
4722	btrfs_unlock_up_safe(path, 1);
4723
4724	btrfs_init_map_token(&token);
4725
4726	leaf = path->nodes[0];
4727	slot = path->slots[0];
4728
4729	nritems = btrfs_header_nritems(leaf);
4730	data_end = leaf_data_end(fs_info, leaf);
4731
4732	if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
4733		btrfs_print_leaf(leaf);
4734		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4735			   total_size, btrfs_leaf_free_space(fs_info, leaf));
4736		BUG();
4737	}
4738
 
4739	if (slot != nritems) {
4740		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4741
4742		if (old_data < data_end) {
4743			btrfs_print_leaf(leaf);
4744			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4745				   slot, old_data, data_end);
4746			BUG_ON(1);
4747		}
4748		/*
4749		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4750		 */
4751		/* first correct the data pointers */
4752		for (i = slot; i < nritems; i++) {
4753			u32 ioff;
4754
4755			item = btrfs_item_nr(i);
4756			ioff = btrfs_token_item_offset(leaf, item, &token);
4757			btrfs_set_token_item_offset(leaf, item,
4758						    ioff - total_data, &token);
4759		}
4760		/* shift the items */
4761		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4762			      btrfs_item_nr_offset(slot),
4763			      (nritems - slot) * sizeof(struct btrfs_item));
4764
4765		/* shift the data */
4766		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4767			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4768			      data_end, old_data - data_end);
4769		data_end = old_data;
4770	}
4771
4772	/* setup the item for the new data */
4773	for (i = 0; i < nr; i++) {
4774		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4775		btrfs_set_item_key(leaf, &disk_key, slot + i);
4776		item = btrfs_item_nr(slot + i);
4777		btrfs_set_token_item_offset(leaf, item,
4778					    data_end - data_size[i], &token);
4779		data_end -= data_size[i];
4780		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4781	}
4782
4783	btrfs_set_header_nritems(leaf, nritems + nr);
4784	btrfs_mark_buffer_dirty(leaf);
4785
4786	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4787		btrfs_print_leaf(leaf);
4788		BUG();
4789	}
4790}
4791
4792/*
4793 * Given a key and some data, insert items into the tree.
4794 * This does all the path init required, making room in the tree if needed.
4795 */
4796int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4797			    struct btrfs_root *root,
4798			    struct btrfs_path *path,
4799			    const struct btrfs_key *cpu_key, u32 *data_size,
4800			    int nr)
4801{
4802	int ret = 0;
4803	int slot;
4804	int i;
4805	u32 total_size = 0;
4806	u32 total_data = 0;
4807
4808	for (i = 0; i < nr; i++)
4809		total_data += data_size[i];
4810
4811	total_size = total_data + (nr * sizeof(struct btrfs_item));
4812	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4813	if (ret == 0)
4814		return -EEXIST;
4815	if (ret < 0)
4816		return ret;
4817
4818	slot = path->slots[0];
4819	BUG_ON(slot < 0);
4820
4821	setup_items_for_insert(root, path, cpu_key, data_size,
4822			       total_data, total_size, nr);
4823	return 0;
4824}
4825
4826/*
4827 * Given a key and some data, insert an item into the tree.
4828 * This does all the path init required, making room in the tree if needed.
4829 */
4830int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4831		      const struct btrfs_key *cpu_key, void *data,
4832		      u32 data_size)
4833{
4834	int ret = 0;
4835	struct btrfs_path *path;
4836	struct extent_buffer *leaf;
4837	unsigned long ptr;
4838
4839	path = btrfs_alloc_path();
4840	if (!path)
4841		return -ENOMEM;
4842	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4843	if (!ret) {
4844		leaf = path->nodes[0];
4845		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4846		write_extent_buffer(leaf, data, ptr, data_size);
4847		btrfs_mark_buffer_dirty(leaf);
4848	}
4849	btrfs_free_path(path);
4850	return ret;
4851}
4852
4853/*
4854 * delete the pointer from a given node.
4855 *
4856 * the tree should have been previously balanced so the deletion does not
4857 * empty a node.
4858 */
4859static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4860		    int level, int slot)
4861{
4862	struct btrfs_fs_info *fs_info = root->fs_info;
4863	struct extent_buffer *parent = path->nodes[level];
4864	u32 nritems;
4865	int ret;
4866
4867	nritems = btrfs_header_nritems(parent);
4868	if (slot != nritems - 1) {
4869		if (level) {
4870			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4871					nritems - slot - 1);
4872			BUG_ON(ret < 0);
4873		}
4874		memmove_extent_buffer(parent,
4875			      btrfs_node_key_ptr_offset(slot),
4876			      btrfs_node_key_ptr_offset(slot + 1),
4877			      sizeof(struct btrfs_key_ptr) *
4878			      (nritems - slot - 1));
4879	} else if (level) {
4880		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4881				GFP_NOFS);
4882		BUG_ON(ret < 0);
4883	}
4884
4885	nritems--;
4886	btrfs_set_header_nritems(parent, nritems);
4887	if (nritems == 0 && parent == root->node) {
4888		BUG_ON(btrfs_header_level(root->node) != 1);
4889		/* just turn the root into a leaf and break */
4890		btrfs_set_header_level(root->node, 0);
4891	} else if (slot == 0) {
4892		struct btrfs_disk_key disk_key;
4893
4894		btrfs_node_key(parent, &disk_key, 0);
4895		fixup_low_keys(fs_info, path, &disk_key, level + 1);
4896	}
4897	btrfs_mark_buffer_dirty(parent);
4898}
4899
4900/*
4901 * a helper function to delete the leaf pointed to by path->slots[1] and
4902 * path->nodes[1].
4903 *
4904 * This deletes the pointer in path->nodes[1] and frees the leaf
4905 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4906 *
4907 * The path must have already been setup for deleting the leaf, including
4908 * all the proper balancing.  path->nodes[1] must be locked.
4909 */
4910static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4911				    struct btrfs_root *root,
4912				    struct btrfs_path *path,
4913				    struct extent_buffer *leaf)
4914{
4915	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4916	del_ptr(root, path, 1, path->slots[1]);
4917
4918	/*
4919	 * btrfs_free_extent is expensive, we want to make sure we
4920	 * aren't holding any locks when we call it
4921	 */
4922	btrfs_unlock_up_safe(path, 0);
4923
4924	root_sub_used(root, leaf->len);
4925
4926	extent_buffer_get(leaf);
4927	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4928	free_extent_buffer_stale(leaf);
4929}
4930/*
4931 * delete the item at the leaf level in path.  If that empties
4932 * the leaf, remove it from the tree
4933 */
4934int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4935		    struct btrfs_path *path, int slot, int nr)
4936{
4937	struct btrfs_fs_info *fs_info = root->fs_info;
4938	struct extent_buffer *leaf;
4939	struct btrfs_item *item;
4940	u32 last_off;
4941	u32 dsize = 0;
4942	int ret = 0;
4943	int wret;
4944	int i;
4945	u32 nritems;
4946	struct btrfs_map_token token;
4947
4948	btrfs_init_map_token(&token);
4949
4950	leaf = path->nodes[0];
4951	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4952
4953	for (i = 0; i < nr; i++)
4954		dsize += btrfs_item_size_nr(leaf, slot + i);
4955
4956	nritems = btrfs_header_nritems(leaf);
4957
4958	if (slot + nr != nritems) {
4959		int data_end = leaf_data_end(fs_info, leaf);
 
4960
4961		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4962			      data_end + dsize,
4963			      BTRFS_LEAF_DATA_OFFSET + data_end,
4964			      last_off - data_end);
4965
 
4966		for (i = slot + nr; i < nritems; i++) {
4967			u32 ioff;
4968
4969			item = btrfs_item_nr(i);
4970			ioff = btrfs_token_item_offset(leaf, item, &token);
4971			btrfs_set_token_item_offset(leaf, item,
4972						    ioff + dsize, &token);
4973		}
4974
4975		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4976			      btrfs_item_nr_offset(slot + nr),
4977			      sizeof(struct btrfs_item) *
4978			      (nritems - slot - nr));
4979	}
4980	btrfs_set_header_nritems(leaf, nritems - nr);
4981	nritems -= nr;
4982
4983	/* delete the leaf if we've emptied it */
4984	if (nritems == 0) {
4985		if (leaf == root->node) {
4986			btrfs_set_header_level(leaf, 0);
4987		} else {
4988			btrfs_set_path_blocking(path);
4989			clean_tree_block(fs_info, leaf);
4990			btrfs_del_leaf(trans, root, path, leaf);
4991		}
4992	} else {
4993		int used = leaf_space_used(leaf, 0, nritems);
4994		if (slot == 0) {
4995			struct btrfs_disk_key disk_key;
4996
4997			btrfs_item_key(leaf, &disk_key, 0);
4998			fixup_low_keys(fs_info, path, &disk_key, 1);
4999		}
5000
5001		/* delete the leaf if it is mostly empty */
5002		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5003			/* push_leaf_left fixes the path.
5004			 * make sure the path still points to our leaf
5005			 * for possible call to del_ptr below
5006			 */
5007			slot = path->slots[1];
5008			extent_buffer_get(leaf);
5009
5010			btrfs_set_path_blocking(path);
5011			wret = push_leaf_left(trans, root, path, 1, 1,
5012					      1, (u32)-1);
5013			if (wret < 0 && wret != -ENOSPC)
5014				ret = wret;
5015
5016			if (path->nodes[0] == leaf &&
5017			    btrfs_header_nritems(leaf)) {
5018				wret = push_leaf_right(trans, root, path, 1,
5019						       1, 1, 0);
5020				if (wret < 0 && wret != -ENOSPC)
5021					ret = wret;
5022			}
5023
5024			if (btrfs_header_nritems(leaf) == 0) {
5025				path->slots[1] = slot;
5026				btrfs_del_leaf(trans, root, path, leaf);
5027				free_extent_buffer(leaf);
5028				ret = 0;
5029			} else {
5030				/* if we're still in the path, make sure
5031				 * we're dirty.  Otherwise, one of the
5032				 * push_leaf functions must have already
5033				 * dirtied this buffer
5034				 */
5035				if (path->nodes[0] == leaf)
5036					btrfs_mark_buffer_dirty(leaf);
5037				free_extent_buffer(leaf);
5038			}
5039		} else {
5040			btrfs_mark_buffer_dirty(leaf);
5041		}
5042	}
5043	return ret;
5044}
5045
5046/*
5047 * search the tree again to find a leaf with lesser keys
5048 * returns 0 if it found something or 1 if there are no lesser leaves.
5049 * returns < 0 on io errors.
5050 *
5051 * This may release the path, and so you may lose any locks held at the
5052 * time you call it.
5053 */
5054int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5055{
5056	struct btrfs_key key;
5057	struct btrfs_disk_key found_key;
5058	int ret;
5059
5060	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5061
5062	if (key.offset > 0) {
5063		key.offset--;
5064	} else if (key.type > 0) {
5065		key.type--;
5066		key.offset = (u64)-1;
5067	} else if (key.objectid > 0) {
5068		key.objectid--;
5069		key.type = (u8)-1;
5070		key.offset = (u64)-1;
5071	} else {
5072		return 1;
5073	}
5074
5075	btrfs_release_path(path);
5076	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5077	if (ret < 0)
5078		return ret;
5079	btrfs_item_key(path->nodes[0], &found_key, 0);
5080	ret = comp_keys(&found_key, &key);
5081	/*
5082	 * We might have had an item with the previous key in the tree right
5083	 * before we released our path. And after we released our path, that
5084	 * item might have been pushed to the first slot (0) of the leaf we
5085	 * were holding due to a tree balance. Alternatively, an item with the
5086	 * previous key can exist as the only element of a leaf (big fat item).
5087	 * Therefore account for these 2 cases, so that our callers (like
5088	 * btrfs_previous_item) don't miss an existing item with a key matching
5089	 * the previous key we computed above.
5090	 */
5091	if (ret <= 0)
5092		return 0;
5093	return 1;
5094}
5095
5096/*
5097 * A helper function to walk down the tree starting at min_key, and looking
5098 * for nodes or leaves that are have a minimum transaction id.
5099 * This is used by the btree defrag code, and tree logging
5100 *
5101 * This does not cow, but it does stuff the starting key it finds back
5102 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5103 * key and get a writable path.
5104 *
5105 * This honors path->lowest_level to prevent descent past a given level
5106 * of the tree.
5107 *
5108 * min_trans indicates the oldest transaction that you are interested
5109 * in walking through.  Any nodes or leaves older than min_trans are
5110 * skipped over (without reading them).
5111 *
5112 * returns zero if something useful was found, < 0 on error and 1 if there
5113 * was nothing in the tree that matched the search criteria.
5114 */
5115int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5116			 struct btrfs_path *path,
5117			 u64 min_trans)
5118{
5119	struct btrfs_fs_info *fs_info = root->fs_info;
5120	struct extent_buffer *cur;
5121	struct btrfs_key found_key;
5122	int slot;
5123	int sret;
5124	u32 nritems;
5125	int level;
5126	int ret = 1;
5127	int keep_locks = path->keep_locks;
5128
5129	path->keep_locks = 1;
5130again:
5131	cur = btrfs_read_lock_root_node(root);
5132	level = btrfs_header_level(cur);
5133	WARN_ON(path->nodes[level]);
5134	path->nodes[level] = cur;
5135	path->locks[level] = BTRFS_READ_LOCK;
5136
5137	if (btrfs_header_generation(cur) < min_trans) {
5138		ret = 1;
5139		goto out;
5140	}
5141	while (1) {
5142		nritems = btrfs_header_nritems(cur);
5143		level = btrfs_header_level(cur);
5144		sret = btrfs_bin_search(cur, min_key, level, &slot);
 
 
 
 
5145
5146		/* at the lowest level, we're done, setup the path and exit */
5147		if (level == path->lowest_level) {
5148			if (slot >= nritems)
5149				goto find_next_key;
5150			ret = 0;
5151			path->slots[level] = slot;
5152			btrfs_item_key_to_cpu(cur, &found_key, slot);
5153			goto out;
5154		}
5155		if (sret && slot > 0)
5156			slot--;
5157		/*
5158		 * check this node pointer against the min_trans parameters.
5159		 * If it is too old, old, skip to the next one.
5160		 */
5161		while (slot < nritems) {
5162			u64 gen;
5163
5164			gen = btrfs_node_ptr_generation(cur, slot);
5165			if (gen < min_trans) {
5166				slot++;
5167				continue;
5168			}
5169			break;
5170		}
5171find_next_key:
5172		/*
5173		 * we didn't find a candidate key in this node, walk forward
5174		 * and find another one
5175		 */
5176		if (slot >= nritems) {
5177			path->slots[level] = slot;
5178			btrfs_set_path_blocking(path);
5179			sret = btrfs_find_next_key(root, path, min_key, level,
5180						  min_trans);
5181			if (sret == 0) {
5182				btrfs_release_path(path);
5183				goto again;
5184			} else {
5185				goto out;
5186			}
5187		}
5188		/* save our key for returning back */
5189		btrfs_node_key_to_cpu(cur, &found_key, slot);
5190		path->slots[level] = slot;
5191		if (level == path->lowest_level) {
5192			ret = 0;
5193			goto out;
5194		}
5195		btrfs_set_path_blocking(path);
5196		cur = read_node_slot(fs_info, cur, slot);
5197		if (IS_ERR(cur)) {
5198			ret = PTR_ERR(cur);
5199			goto out;
5200		}
5201
5202		btrfs_tree_read_lock(cur);
5203
5204		path->locks[level - 1] = BTRFS_READ_LOCK;
5205		path->nodes[level - 1] = cur;
5206		unlock_up(path, level, 1, 0, NULL);
5207		btrfs_clear_path_blocking(path, NULL, 0);
5208	}
5209out:
5210	path->keep_locks = keep_locks;
5211	if (ret == 0) {
5212		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5213		btrfs_set_path_blocking(path);
5214		memcpy(min_key, &found_key, sizeof(found_key));
5215	}
5216	return ret;
5217}
5218
5219static int tree_move_down(struct btrfs_fs_info *fs_info,
5220			   struct btrfs_path *path,
5221			   int *level)
5222{
5223	struct extent_buffer *eb;
5224
5225	BUG_ON(*level == 0);
5226	eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
5227	if (IS_ERR(eb))
5228		return PTR_ERR(eb);
5229
5230	path->nodes[*level - 1] = eb;
5231	path->slots[*level - 1] = 0;
5232	(*level)--;
5233	return 0;
5234}
5235
5236static int tree_move_next_or_upnext(struct btrfs_path *path,
5237				    int *level, int root_level)
5238{
5239	int ret = 0;
5240	int nritems;
5241	nritems = btrfs_header_nritems(path->nodes[*level]);
5242
5243	path->slots[*level]++;
5244
5245	while (path->slots[*level] >= nritems) {
5246		if (*level == root_level)
5247			return -1;
5248
5249		/* move upnext */
5250		path->slots[*level] = 0;
5251		free_extent_buffer(path->nodes[*level]);
5252		path->nodes[*level] = NULL;
5253		(*level)++;
5254		path->slots[*level]++;
5255
5256		nritems = btrfs_header_nritems(path->nodes[*level]);
5257		ret = 1;
5258	}
5259	return ret;
5260}
5261
5262/*
5263 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5264 * or down.
5265 */
5266static int tree_advance(struct btrfs_fs_info *fs_info,
5267			struct btrfs_path *path,
5268			int *level, int root_level,
5269			int allow_down,
5270			struct btrfs_key *key)
5271{
5272	int ret;
5273
5274	if (*level == 0 || !allow_down) {
5275		ret = tree_move_next_or_upnext(path, level, root_level);
5276	} else {
5277		ret = tree_move_down(fs_info, path, level);
5278	}
5279	if (ret >= 0) {
5280		if (*level == 0)
5281			btrfs_item_key_to_cpu(path->nodes[*level], key,
5282					path->slots[*level]);
5283		else
5284			btrfs_node_key_to_cpu(path->nodes[*level], key,
5285					path->slots[*level]);
5286	}
5287	return ret;
5288}
5289
5290static int tree_compare_item(struct btrfs_path *left_path,
5291			     struct btrfs_path *right_path,
5292			     char *tmp_buf)
5293{
5294	int cmp;
5295	int len1, len2;
5296	unsigned long off1, off2;
5297
5298	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5299	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5300	if (len1 != len2)
5301		return 1;
5302
5303	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5304	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5305				right_path->slots[0]);
5306
5307	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5308
5309	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5310	if (cmp)
5311		return 1;
5312	return 0;
5313}
5314
5315#define ADVANCE 1
5316#define ADVANCE_ONLY_NEXT -1
5317
5318/*
5319 * This function compares two trees and calls the provided callback for
5320 * every changed/new/deleted item it finds.
5321 * If shared tree blocks are encountered, whole subtrees are skipped, making
5322 * the compare pretty fast on snapshotted subvolumes.
5323 *
5324 * This currently works on commit roots only. As commit roots are read only,
5325 * we don't do any locking. The commit roots are protected with transactions.
5326 * Transactions are ended and rejoined when a commit is tried in between.
5327 *
5328 * This function checks for modifications done to the trees while comparing.
5329 * If it detects a change, it aborts immediately.
5330 */
5331int btrfs_compare_trees(struct btrfs_root *left_root,
5332			struct btrfs_root *right_root,
5333			btrfs_changed_cb_t changed_cb, void *ctx)
5334{
5335	struct btrfs_fs_info *fs_info = left_root->fs_info;
5336	int ret;
5337	int cmp;
5338	struct btrfs_path *left_path = NULL;
5339	struct btrfs_path *right_path = NULL;
5340	struct btrfs_key left_key;
5341	struct btrfs_key right_key;
5342	char *tmp_buf = NULL;
5343	int left_root_level;
5344	int right_root_level;
5345	int left_level;
5346	int right_level;
5347	int left_end_reached;
5348	int right_end_reached;
5349	int advance_left;
5350	int advance_right;
5351	u64 left_blockptr;
5352	u64 right_blockptr;
5353	u64 left_gen;
5354	u64 right_gen;
5355
5356	left_path = btrfs_alloc_path();
5357	if (!left_path) {
5358		ret = -ENOMEM;
5359		goto out;
5360	}
5361	right_path = btrfs_alloc_path();
5362	if (!right_path) {
5363		ret = -ENOMEM;
5364		goto out;
5365	}
5366
5367	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
5368	if (!tmp_buf) {
5369		ret = -ENOMEM;
5370		goto out;
5371	}
5372
5373	left_path->search_commit_root = 1;
5374	left_path->skip_locking = 1;
5375	right_path->search_commit_root = 1;
5376	right_path->skip_locking = 1;
5377
5378	/*
5379	 * Strategy: Go to the first items of both trees. Then do
5380	 *
5381	 * If both trees are at level 0
5382	 *   Compare keys of current items
5383	 *     If left < right treat left item as new, advance left tree
5384	 *       and repeat
5385	 *     If left > right treat right item as deleted, advance right tree
5386	 *       and repeat
5387	 *     If left == right do deep compare of items, treat as changed if
5388	 *       needed, advance both trees and repeat
5389	 * If both trees are at the same level but not at level 0
5390	 *   Compare keys of current nodes/leafs
5391	 *     If left < right advance left tree and repeat
5392	 *     If left > right advance right tree and repeat
5393	 *     If left == right compare blockptrs of the next nodes/leafs
5394	 *       If they match advance both trees but stay at the same level
5395	 *         and repeat
5396	 *       If they don't match advance both trees while allowing to go
5397	 *         deeper and repeat
5398	 * If tree levels are different
5399	 *   Advance the tree that needs it and repeat
5400	 *
5401	 * Advancing a tree means:
5402	 *   If we are at level 0, try to go to the next slot. If that's not
5403	 *   possible, go one level up and repeat. Stop when we found a level
5404	 *   where we could go to the next slot. We may at this point be on a
5405	 *   node or a leaf.
5406	 *
5407	 *   If we are not at level 0 and not on shared tree blocks, go one
5408	 *   level deeper.
5409	 *
5410	 *   If we are not at level 0 and on shared tree blocks, go one slot to
5411	 *   the right if possible or go up and right.
5412	 */
5413
5414	down_read(&fs_info->commit_root_sem);
5415	left_level = btrfs_header_level(left_root->commit_root);
5416	left_root_level = left_level;
5417	left_path->nodes[left_level] =
5418			btrfs_clone_extent_buffer(left_root->commit_root);
5419	if (!left_path->nodes[left_level]) {
5420		up_read(&fs_info->commit_root_sem);
5421		ret = -ENOMEM;
5422		goto out;
5423	}
5424	extent_buffer_get(left_path->nodes[left_level]);
5425
5426	right_level = btrfs_header_level(right_root->commit_root);
5427	right_root_level = right_level;
5428	right_path->nodes[right_level] =
5429			btrfs_clone_extent_buffer(right_root->commit_root);
5430	if (!right_path->nodes[right_level]) {
5431		up_read(&fs_info->commit_root_sem);
5432		ret = -ENOMEM;
5433		goto out;
5434	}
5435	extent_buffer_get(right_path->nodes[right_level]);
5436	up_read(&fs_info->commit_root_sem);
5437
5438	if (left_level == 0)
5439		btrfs_item_key_to_cpu(left_path->nodes[left_level],
5440				&left_key, left_path->slots[left_level]);
5441	else
5442		btrfs_node_key_to_cpu(left_path->nodes[left_level],
5443				&left_key, left_path->slots[left_level]);
5444	if (right_level == 0)
5445		btrfs_item_key_to_cpu(right_path->nodes[right_level],
5446				&right_key, right_path->slots[right_level]);
5447	else
5448		btrfs_node_key_to_cpu(right_path->nodes[right_level],
5449				&right_key, right_path->slots[right_level]);
5450
5451	left_end_reached = right_end_reached = 0;
5452	advance_left = advance_right = 0;
5453
5454	while (1) {
5455		if (advance_left && !left_end_reached) {
5456			ret = tree_advance(fs_info, left_path, &left_level,
5457					left_root_level,
5458					advance_left != ADVANCE_ONLY_NEXT,
5459					&left_key);
5460			if (ret == -1)
5461				left_end_reached = ADVANCE;
5462			else if (ret < 0)
5463				goto out;
5464			advance_left = 0;
5465		}
5466		if (advance_right && !right_end_reached) {
5467			ret = tree_advance(fs_info, right_path, &right_level,
5468					right_root_level,
5469					advance_right != ADVANCE_ONLY_NEXT,
5470					&right_key);
5471			if (ret == -1)
5472				right_end_reached = ADVANCE;
5473			else if (ret < 0)
5474				goto out;
5475			advance_right = 0;
5476		}
5477
5478		if (left_end_reached && right_end_reached) {
5479			ret = 0;
5480			goto out;
5481		} else if (left_end_reached) {
5482			if (right_level == 0) {
5483				ret = changed_cb(left_path, right_path,
5484						&right_key,
5485						BTRFS_COMPARE_TREE_DELETED,
5486						ctx);
5487				if (ret < 0)
5488					goto out;
5489			}
5490			advance_right = ADVANCE;
5491			continue;
5492		} else if (right_end_reached) {
5493			if (left_level == 0) {
5494				ret = changed_cb(left_path, right_path,
5495						&left_key,
5496						BTRFS_COMPARE_TREE_NEW,
5497						ctx);
5498				if (ret < 0)
5499					goto out;
5500			}
5501			advance_left = ADVANCE;
5502			continue;
5503		}
5504
5505		if (left_level == 0 && right_level == 0) {
5506			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5507			if (cmp < 0) {
5508				ret = changed_cb(left_path, right_path,
5509						&left_key,
5510						BTRFS_COMPARE_TREE_NEW,
5511						ctx);
5512				if (ret < 0)
5513					goto out;
5514				advance_left = ADVANCE;
5515			} else if (cmp > 0) {
5516				ret = changed_cb(left_path, right_path,
5517						&right_key,
5518						BTRFS_COMPARE_TREE_DELETED,
5519						ctx);
5520				if (ret < 0)
5521					goto out;
5522				advance_right = ADVANCE;
5523			} else {
5524				enum btrfs_compare_tree_result result;
5525
5526				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5527				ret = tree_compare_item(left_path, right_path,
5528							tmp_buf);
5529				if (ret)
5530					result = BTRFS_COMPARE_TREE_CHANGED;
5531				else
5532					result = BTRFS_COMPARE_TREE_SAME;
5533				ret = changed_cb(left_path, right_path,
5534						 &left_key, result, ctx);
5535				if (ret < 0)
5536					goto out;
5537				advance_left = ADVANCE;
5538				advance_right = ADVANCE;
5539			}
5540		} else if (left_level == right_level) {
5541			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5542			if (cmp < 0) {
5543				advance_left = ADVANCE;
5544			} else if (cmp > 0) {
5545				advance_right = ADVANCE;
5546			} else {
5547				left_blockptr = btrfs_node_blockptr(
5548						left_path->nodes[left_level],
5549						left_path->slots[left_level]);
5550				right_blockptr = btrfs_node_blockptr(
5551						right_path->nodes[right_level],
5552						right_path->slots[right_level]);
5553				left_gen = btrfs_node_ptr_generation(
5554						left_path->nodes[left_level],
5555						left_path->slots[left_level]);
5556				right_gen = btrfs_node_ptr_generation(
5557						right_path->nodes[right_level],
5558						right_path->slots[right_level]);
5559				if (left_blockptr == right_blockptr &&
5560				    left_gen == right_gen) {
5561					/*
5562					 * As we're on a shared block, don't
5563					 * allow to go deeper.
5564					 */
5565					advance_left = ADVANCE_ONLY_NEXT;
5566					advance_right = ADVANCE_ONLY_NEXT;
5567				} else {
5568					advance_left = ADVANCE;
5569					advance_right = ADVANCE;
5570				}
5571			}
5572		} else if (left_level < right_level) {
5573			advance_right = ADVANCE;
5574		} else {
5575			advance_left = ADVANCE;
5576		}
5577	}
5578
5579out:
5580	btrfs_free_path(left_path);
5581	btrfs_free_path(right_path);
5582	kvfree(tmp_buf);
5583	return ret;
5584}
5585
5586/*
5587 * this is similar to btrfs_next_leaf, but does not try to preserve
5588 * and fixup the path.  It looks for and returns the next key in the
5589 * tree based on the current path and the min_trans parameters.
5590 *
5591 * 0 is returned if another key is found, < 0 if there are any errors
5592 * and 1 is returned if there are no higher keys in the tree
5593 *
5594 * path->keep_locks should be set to 1 on the search made before
5595 * calling this function.
5596 */
5597int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5598			struct btrfs_key *key, int level, u64 min_trans)
5599{
5600	int slot;
5601	struct extent_buffer *c;
5602
5603	WARN_ON(!path->keep_locks);
5604	while (level < BTRFS_MAX_LEVEL) {
5605		if (!path->nodes[level])
5606			return 1;
5607
5608		slot = path->slots[level] + 1;
5609		c = path->nodes[level];
5610next:
5611		if (slot >= btrfs_header_nritems(c)) {
5612			int ret;
5613			int orig_lowest;
5614			struct btrfs_key cur_key;
5615			if (level + 1 >= BTRFS_MAX_LEVEL ||
5616			    !path->nodes[level + 1])
5617				return 1;
5618
5619			if (path->locks[level + 1]) {
5620				level++;
5621				continue;
5622			}
5623
5624			slot = btrfs_header_nritems(c) - 1;
5625			if (level == 0)
5626				btrfs_item_key_to_cpu(c, &cur_key, slot);
5627			else
5628				btrfs_node_key_to_cpu(c, &cur_key, slot);
5629
5630			orig_lowest = path->lowest_level;
5631			btrfs_release_path(path);
5632			path->lowest_level = level;
5633			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5634						0, 0);
5635			path->lowest_level = orig_lowest;
5636			if (ret < 0)
5637				return ret;
5638
5639			c = path->nodes[level];
5640			slot = path->slots[level];
5641			if (ret == 0)
5642				slot++;
5643			goto next;
5644		}
5645
5646		if (level == 0)
5647			btrfs_item_key_to_cpu(c, key, slot);
5648		else {
5649			u64 gen = btrfs_node_ptr_generation(c, slot);
5650
5651			if (gen < min_trans) {
5652				slot++;
5653				goto next;
5654			}
5655			btrfs_node_key_to_cpu(c, key, slot);
5656		}
5657		return 0;
5658	}
5659	return 1;
5660}
5661
5662/*
5663 * search the tree again to find a leaf with greater keys
5664 * returns 0 if it found something or 1 if there are no greater leaves.
5665 * returns < 0 on io errors.
5666 */
5667int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5668{
5669	return btrfs_next_old_leaf(root, path, 0);
5670}
5671
5672int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5673			u64 time_seq)
5674{
5675	int slot;
5676	int level;
5677	struct extent_buffer *c;
5678	struct extent_buffer *next;
5679	struct btrfs_key key;
5680	u32 nritems;
5681	int ret;
5682	int old_spinning = path->leave_spinning;
5683	int next_rw_lock = 0;
5684
5685	nritems = btrfs_header_nritems(path->nodes[0]);
5686	if (nritems == 0)
5687		return 1;
5688
5689	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5690again:
5691	level = 1;
5692	next = NULL;
5693	next_rw_lock = 0;
5694	btrfs_release_path(path);
5695
5696	path->keep_locks = 1;
5697	path->leave_spinning = 1;
5698
5699	if (time_seq)
5700		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5701	else
5702		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5703	path->keep_locks = 0;
5704
5705	if (ret < 0)
5706		return ret;
5707
5708	nritems = btrfs_header_nritems(path->nodes[0]);
5709	/*
5710	 * by releasing the path above we dropped all our locks.  A balance
5711	 * could have added more items next to the key that used to be
5712	 * at the very end of the block.  So, check again here and
5713	 * advance the path if there are now more items available.
5714	 */
5715	if (nritems > 0 && path->slots[0] < nritems - 1) {
5716		if (ret == 0)
5717			path->slots[0]++;
5718		ret = 0;
5719		goto done;
5720	}
5721	/*
5722	 * So the above check misses one case:
5723	 * - after releasing the path above, someone has removed the item that
5724	 *   used to be at the very end of the block, and balance between leafs
5725	 *   gets another one with bigger key.offset to replace it.
5726	 *
5727	 * This one should be returned as well, or we can get leaf corruption
5728	 * later(esp. in __btrfs_drop_extents()).
5729	 *
5730	 * And a bit more explanation about this check,
5731	 * with ret > 0, the key isn't found, the path points to the slot
5732	 * where it should be inserted, so the path->slots[0] item must be the
5733	 * bigger one.
5734	 */
5735	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5736		ret = 0;
5737		goto done;
5738	}
5739
5740	while (level < BTRFS_MAX_LEVEL) {
5741		if (!path->nodes[level]) {
5742			ret = 1;
5743			goto done;
5744		}
5745
5746		slot = path->slots[level] + 1;
5747		c = path->nodes[level];
5748		if (slot >= btrfs_header_nritems(c)) {
5749			level++;
5750			if (level == BTRFS_MAX_LEVEL) {
5751				ret = 1;
5752				goto done;
5753			}
5754			continue;
5755		}
5756
5757		if (next) {
5758			btrfs_tree_unlock_rw(next, next_rw_lock);
5759			free_extent_buffer(next);
5760		}
5761
5762		next = c;
5763		next_rw_lock = path->locks[level];
5764		ret = read_block_for_search(root, path, &next, level,
5765					    slot, &key);
5766		if (ret == -EAGAIN)
5767			goto again;
5768
5769		if (ret < 0) {
5770			btrfs_release_path(path);
5771			goto done;
5772		}
5773
5774		if (!path->skip_locking) {
5775			ret = btrfs_try_tree_read_lock(next);
5776			if (!ret && time_seq) {
5777				/*
5778				 * If we don't get the lock, we may be racing
5779				 * with push_leaf_left, holding that lock while
5780				 * itself waiting for the leaf we've currently
5781				 * locked. To solve this situation, we give up
5782				 * on our lock and cycle.
5783				 */
5784				free_extent_buffer(next);
5785				btrfs_release_path(path);
5786				cond_resched();
5787				goto again;
5788			}
5789			if (!ret) {
5790				btrfs_set_path_blocking(path);
5791				btrfs_tree_read_lock(next);
5792				btrfs_clear_path_blocking(path, next,
5793							  BTRFS_READ_LOCK);
5794			}
5795			next_rw_lock = BTRFS_READ_LOCK;
5796		}
5797		break;
5798	}
5799	path->slots[level] = slot;
5800	while (1) {
5801		level--;
5802		c = path->nodes[level];
5803		if (path->locks[level])
5804			btrfs_tree_unlock_rw(c, path->locks[level]);
5805
5806		free_extent_buffer(c);
5807		path->nodes[level] = next;
5808		path->slots[level] = 0;
5809		if (!path->skip_locking)
5810			path->locks[level] = next_rw_lock;
5811		if (!level)
5812			break;
5813
5814		ret = read_block_for_search(root, path, &next, level,
5815					    0, &key);
5816		if (ret == -EAGAIN)
5817			goto again;
5818
5819		if (ret < 0) {
5820			btrfs_release_path(path);
5821			goto done;
5822		}
5823
5824		if (!path->skip_locking) {
5825			ret = btrfs_try_tree_read_lock(next);
5826			if (!ret) {
5827				btrfs_set_path_blocking(path);
5828				btrfs_tree_read_lock(next);
5829				btrfs_clear_path_blocking(path, next,
5830							  BTRFS_READ_LOCK);
5831			}
5832			next_rw_lock = BTRFS_READ_LOCK;
5833		}
5834	}
5835	ret = 0;
5836done:
5837	unlock_up(path, 0, 1, 0, NULL);
5838	path->leave_spinning = old_spinning;
5839	if (!old_spinning)
5840		btrfs_set_path_blocking(path);
5841
5842	return ret;
5843}
5844
5845/*
5846 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5847 * searching until it gets past min_objectid or finds an item of 'type'
5848 *
5849 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5850 */
5851int btrfs_previous_item(struct btrfs_root *root,
5852			struct btrfs_path *path, u64 min_objectid,
5853			int type)
5854{
5855	struct btrfs_key found_key;
5856	struct extent_buffer *leaf;
5857	u32 nritems;
5858	int ret;
5859
5860	while (1) {
5861		if (path->slots[0] == 0) {
5862			btrfs_set_path_blocking(path);
5863			ret = btrfs_prev_leaf(root, path);
5864			if (ret != 0)
5865				return ret;
5866		} else {
5867			path->slots[0]--;
5868		}
5869		leaf = path->nodes[0];
5870		nritems = btrfs_header_nritems(leaf);
5871		if (nritems == 0)
5872			return 1;
5873		if (path->slots[0] == nritems)
5874			path->slots[0]--;
5875
5876		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5877		if (found_key.objectid < min_objectid)
5878			break;
5879		if (found_key.type == type)
5880			return 0;
5881		if (found_key.objectid == min_objectid &&
5882		    found_key.type < type)
5883			break;
5884	}
5885	return 1;
5886}
5887
5888/*
5889 * search in extent tree to find a previous Metadata/Data extent item with
5890 * min objecitd.
5891 *
5892 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5893 */
5894int btrfs_previous_extent_item(struct btrfs_root *root,
5895			struct btrfs_path *path, u64 min_objectid)
5896{
5897	struct btrfs_key found_key;
5898	struct extent_buffer *leaf;
5899	u32 nritems;
5900	int ret;
5901
5902	while (1) {
5903		if (path->slots[0] == 0) {
5904			btrfs_set_path_blocking(path);
5905			ret = btrfs_prev_leaf(root, path);
5906			if (ret != 0)
5907				return ret;
5908		} else {
5909			path->slots[0]--;
5910		}
5911		leaf = path->nodes[0];
5912		nritems = btrfs_header_nritems(leaf);
5913		if (nritems == 0)
5914			return 1;
5915		if (path->slots[0] == nritems)
5916			path->slots[0]--;
5917
5918		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5919		if (found_key.objectid < min_objectid)
5920			break;
5921		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5922		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5923			return 0;
5924		if (found_key.objectid == min_objectid &&
5925		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5926			break;
5927	}
5928	return 1;
5929}