Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/slab.h>
8#include <linux/rbtree.h>
9#include <linux/mm.h>
10#include "ctree.h"
11#include "disk-io.h"
12#include "transaction.h"
13#include "print-tree.h"
14#include "locking.h"
15#include "volumes.h"
16#include "qgroup.h"
17
18static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
19 *root, struct btrfs_path *path, int level);
20static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
21 const struct btrfs_key *ins_key, struct btrfs_path *path,
22 int data_size, int extend);
23static int push_node_left(struct btrfs_trans_handle *trans,
24 struct extent_buffer *dst,
25 struct extent_buffer *src, int empty);
26static int balance_node_right(struct btrfs_trans_handle *trans,
27 struct extent_buffer *dst_buf,
28 struct extent_buffer *src_buf);
29static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
30 int level, int slot);
31
32static const struct btrfs_csums {
33 u16 size;
34 const char *name;
35} btrfs_csums[] = {
36 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
37};
38
39int btrfs_super_csum_size(const struct btrfs_super_block *s)
40{
41 u16 t = btrfs_super_csum_type(s);
42 /*
43 * csum type is validated at mount time
44 */
45 return btrfs_csums[t].size;
46}
47
48const char *btrfs_super_csum_name(u16 csum_type)
49{
50 /* csum type is validated at mount time */
51 return btrfs_csums[csum_type].name;
52}
53
54struct btrfs_path *btrfs_alloc_path(void)
55{
56 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
57}
58
59/*
60 * set all locked nodes in the path to blocking locks. This should
61 * be done before scheduling
62 */
63noinline void btrfs_set_path_blocking(struct btrfs_path *p)
64{
65 int i;
66 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
67 if (!p->nodes[i] || !p->locks[i])
68 continue;
69 /*
70 * If we currently have a spinning reader or writer lock this
71 * will bump the count of blocking holders and drop the
72 * spinlock.
73 */
74 if (p->locks[i] == BTRFS_READ_LOCK) {
75 btrfs_set_lock_blocking_read(p->nodes[i]);
76 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
77 } else if (p->locks[i] == BTRFS_WRITE_LOCK) {
78 btrfs_set_lock_blocking_write(p->nodes[i]);
79 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
80 }
81 }
82}
83
84/* this also releases the path */
85void btrfs_free_path(struct btrfs_path *p)
86{
87 if (!p)
88 return;
89 btrfs_release_path(p);
90 kmem_cache_free(btrfs_path_cachep, p);
91}
92
93/*
94 * path release drops references on the extent buffers in the path
95 * and it drops any locks held by this path
96 *
97 * It is safe to call this on paths that no locks or extent buffers held.
98 */
99noinline void btrfs_release_path(struct btrfs_path *p)
100{
101 int i;
102
103 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
104 p->slots[i] = 0;
105 if (!p->nodes[i])
106 continue;
107 if (p->locks[i]) {
108 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
109 p->locks[i] = 0;
110 }
111 free_extent_buffer(p->nodes[i]);
112 p->nodes[i] = NULL;
113 }
114}
115
116/*
117 * safely gets a reference on the root node of a tree. A lock
118 * is not taken, so a concurrent writer may put a different node
119 * at the root of the tree. See btrfs_lock_root_node for the
120 * looping required.
121 *
122 * The extent buffer returned by this has a reference taken, so
123 * it won't disappear. It may stop being the root of the tree
124 * at any time because there are no locks held.
125 */
126struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
127{
128 struct extent_buffer *eb;
129
130 while (1) {
131 rcu_read_lock();
132 eb = rcu_dereference(root->node);
133
134 /*
135 * RCU really hurts here, we could free up the root node because
136 * it was COWed but we may not get the new root node yet so do
137 * the inc_not_zero dance and if it doesn't work then
138 * synchronize_rcu and try again.
139 */
140 if (atomic_inc_not_zero(&eb->refs)) {
141 rcu_read_unlock();
142 break;
143 }
144 rcu_read_unlock();
145 synchronize_rcu();
146 }
147 return eb;
148}
149
150/* loop around taking references on and locking the root node of the
151 * tree until you end up with a lock on the root. A locked buffer
152 * is returned, with a reference held.
153 */
154struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
155{
156 struct extent_buffer *eb;
157
158 while (1) {
159 eb = btrfs_root_node(root);
160 btrfs_tree_lock(eb);
161 if (eb == root->node)
162 break;
163 btrfs_tree_unlock(eb);
164 free_extent_buffer(eb);
165 }
166 return eb;
167}
168
169/* loop around taking references on and locking the root node of the
170 * tree until you end up with a lock on the root. A locked buffer
171 * is returned, with a reference held.
172 */
173struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
174{
175 struct extent_buffer *eb;
176
177 while (1) {
178 eb = btrfs_root_node(root);
179 btrfs_tree_read_lock(eb);
180 if (eb == root->node)
181 break;
182 btrfs_tree_read_unlock(eb);
183 free_extent_buffer(eb);
184 }
185 return eb;
186}
187
188/* cowonly root (everything not a reference counted cow subvolume), just get
189 * put onto a simple dirty list. transaction.c walks this to make sure they
190 * get properly updated on disk.
191 */
192static void add_root_to_dirty_list(struct btrfs_root *root)
193{
194 struct btrfs_fs_info *fs_info = root->fs_info;
195
196 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
197 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
198 return;
199
200 spin_lock(&fs_info->trans_lock);
201 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
202 /* Want the extent tree to be the last on the list */
203 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
204 list_move_tail(&root->dirty_list,
205 &fs_info->dirty_cowonly_roots);
206 else
207 list_move(&root->dirty_list,
208 &fs_info->dirty_cowonly_roots);
209 }
210 spin_unlock(&fs_info->trans_lock);
211}
212
213/*
214 * used by snapshot creation to make a copy of a root for a tree with
215 * a given objectid. The buffer with the new root node is returned in
216 * cow_ret, and this func returns zero on success or a negative error code.
217 */
218int btrfs_copy_root(struct btrfs_trans_handle *trans,
219 struct btrfs_root *root,
220 struct extent_buffer *buf,
221 struct extent_buffer **cow_ret, u64 new_root_objectid)
222{
223 struct btrfs_fs_info *fs_info = root->fs_info;
224 struct extent_buffer *cow;
225 int ret = 0;
226 int level;
227 struct btrfs_disk_key disk_key;
228
229 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
230 trans->transid != fs_info->running_transaction->transid);
231 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
232 trans->transid != root->last_trans);
233
234 level = btrfs_header_level(buf);
235 if (level == 0)
236 btrfs_item_key(buf, &disk_key, 0);
237 else
238 btrfs_node_key(buf, &disk_key, 0);
239
240 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
241 &disk_key, level, buf->start, 0);
242 if (IS_ERR(cow))
243 return PTR_ERR(cow);
244
245 copy_extent_buffer_full(cow, buf);
246 btrfs_set_header_bytenr(cow, cow->start);
247 btrfs_set_header_generation(cow, trans->transid);
248 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
249 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
250 BTRFS_HEADER_FLAG_RELOC);
251 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
252 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
253 else
254 btrfs_set_header_owner(cow, new_root_objectid);
255
256 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
257
258 WARN_ON(btrfs_header_generation(buf) > trans->transid);
259 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
260 ret = btrfs_inc_ref(trans, root, cow, 1);
261 else
262 ret = btrfs_inc_ref(trans, root, cow, 0);
263
264 if (ret)
265 return ret;
266
267 btrfs_mark_buffer_dirty(cow);
268 *cow_ret = cow;
269 return 0;
270}
271
272enum mod_log_op {
273 MOD_LOG_KEY_REPLACE,
274 MOD_LOG_KEY_ADD,
275 MOD_LOG_KEY_REMOVE,
276 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
277 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
278 MOD_LOG_MOVE_KEYS,
279 MOD_LOG_ROOT_REPLACE,
280};
281
282struct tree_mod_root {
283 u64 logical;
284 u8 level;
285};
286
287struct tree_mod_elem {
288 struct rb_node node;
289 u64 logical;
290 u64 seq;
291 enum mod_log_op op;
292
293 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
294 int slot;
295
296 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
297 u64 generation;
298
299 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
300 struct btrfs_disk_key key;
301 u64 blockptr;
302
303 /* this is used for op == MOD_LOG_MOVE_KEYS */
304 struct {
305 int dst_slot;
306 int nr_items;
307 } move;
308
309 /* this is used for op == MOD_LOG_ROOT_REPLACE */
310 struct tree_mod_root old_root;
311};
312
313/*
314 * Pull a new tree mod seq number for our operation.
315 */
316static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
317{
318 return atomic64_inc_return(&fs_info->tree_mod_seq);
319}
320
321/*
322 * This adds a new blocker to the tree mod log's blocker list if the @elem
323 * passed does not already have a sequence number set. So when a caller expects
324 * to record tree modifications, it should ensure to set elem->seq to zero
325 * before calling btrfs_get_tree_mod_seq.
326 * Returns a fresh, unused tree log modification sequence number, even if no new
327 * blocker was added.
328 */
329u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
330 struct seq_list *elem)
331{
332 write_lock(&fs_info->tree_mod_log_lock);
333 spin_lock(&fs_info->tree_mod_seq_lock);
334 if (!elem->seq) {
335 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
336 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
337 }
338 spin_unlock(&fs_info->tree_mod_seq_lock);
339 write_unlock(&fs_info->tree_mod_log_lock);
340
341 return elem->seq;
342}
343
344void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
345 struct seq_list *elem)
346{
347 struct rb_root *tm_root;
348 struct rb_node *node;
349 struct rb_node *next;
350 struct seq_list *cur_elem;
351 struct tree_mod_elem *tm;
352 u64 min_seq = (u64)-1;
353 u64 seq_putting = elem->seq;
354
355 if (!seq_putting)
356 return;
357
358 spin_lock(&fs_info->tree_mod_seq_lock);
359 list_del(&elem->list);
360 elem->seq = 0;
361
362 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
363 if (cur_elem->seq < min_seq) {
364 if (seq_putting > cur_elem->seq) {
365 /*
366 * blocker with lower sequence number exists, we
367 * cannot remove anything from the log
368 */
369 spin_unlock(&fs_info->tree_mod_seq_lock);
370 return;
371 }
372 min_seq = cur_elem->seq;
373 }
374 }
375 spin_unlock(&fs_info->tree_mod_seq_lock);
376
377 /*
378 * anything that's lower than the lowest existing (read: blocked)
379 * sequence number can be removed from the tree.
380 */
381 write_lock(&fs_info->tree_mod_log_lock);
382 tm_root = &fs_info->tree_mod_log;
383 for (node = rb_first(tm_root); node; node = next) {
384 next = rb_next(node);
385 tm = rb_entry(node, struct tree_mod_elem, node);
386 if (tm->seq > min_seq)
387 continue;
388 rb_erase(node, tm_root);
389 kfree(tm);
390 }
391 write_unlock(&fs_info->tree_mod_log_lock);
392}
393
394/*
395 * key order of the log:
396 * node/leaf start address -> sequence
397 *
398 * The 'start address' is the logical address of the *new* root node
399 * for root replace operations, or the logical address of the affected
400 * block for all other operations.
401 */
402static noinline int
403__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
404{
405 struct rb_root *tm_root;
406 struct rb_node **new;
407 struct rb_node *parent = NULL;
408 struct tree_mod_elem *cur;
409
410 lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
411
412 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
413
414 tm_root = &fs_info->tree_mod_log;
415 new = &tm_root->rb_node;
416 while (*new) {
417 cur = rb_entry(*new, struct tree_mod_elem, node);
418 parent = *new;
419 if (cur->logical < tm->logical)
420 new = &((*new)->rb_left);
421 else if (cur->logical > tm->logical)
422 new = &((*new)->rb_right);
423 else if (cur->seq < tm->seq)
424 new = &((*new)->rb_left);
425 else if (cur->seq > tm->seq)
426 new = &((*new)->rb_right);
427 else
428 return -EEXIST;
429 }
430
431 rb_link_node(&tm->node, parent, new);
432 rb_insert_color(&tm->node, tm_root);
433 return 0;
434}
435
436/*
437 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
438 * returns zero with the tree_mod_log_lock acquired. The caller must hold
439 * this until all tree mod log insertions are recorded in the rb tree and then
440 * write unlock fs_info::tree_mod_log_lock.
441 */
442static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
443 struct extent_buffer *eb) {
444 smp_mb();
445 if (list_empty(&(fs_info)->tree_mod_seq_list))
446 return 1;
447 if (eb && btrfs_header_level(eb) == 0)
448 return 1;
449
450 write_lock(&fs_info->tree_mod_log_lock);
451 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
452 write_unlock(&fs_info->tree_mod_log_lock);
453 return 1;
454 }
455
456 return 0;
457}
458
459/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
460static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
461 struct extent_buffer *eb)
462{
463 smp_mb();
464 if (list_empty(&(fs_info)->tree_mod_seq_list))
465 return 0;
466 if (eb && btrfs_header_level(eb) == 0)
467 return 0;
468
469 return 1;
470}
471
472static struct tree_mod_elem *
473alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
474 enum mod_log_op op, gfp_t flags)
475{
476 struct tree_mod_elem *tm;
477
478 tm = kzalloc(sizeof(*tm), flags);
479 if (!tm)
480 return NULL;
481
482 tm->logical = eb->start;
483 if (op != MOD_LOG_KEY_ADD) {
484 btrfs_node_key(eb, &tm->key, slot);
485 tm->blockptr = btrfs_node_blockptr(eb, slot);
486 }
487 tm->op = op;
488 tm->slot = slot;
489 tm->generation = btrfs_node_ptr_generation(eb, slot);
490 RB_CLEAR_NODE(&tm->node);
491
492 return tm;
493}
494
495static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
496 enum mod_log_op op, gfp_t flags)
497{
498 struct tree_mod_elem *tm;
499 int ret;
500
501 if (!tree_mod_need_log(eb->fs_info, eb))
502 return 0;
503
504 tm = alloc_tree_mod_elem(eb, slot, op, flags);
505 if (!tm)
506 return -ENOMEM;
507
508 if (tree_mod_dont_log(eb->fs_info, eb)) {
509 kfree(tm);
510 return 0;
511 }
512
513 ret = __tree_mod_log_insert(eb->fs_info, tm);
514 write_unlock(&eb->fs_info->tree_mod_log_lock);
515 if (ret)
516 kfree(tm);
517
518 return ret;
519}
520
521static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
522 int dst_slot, int src_slot, int nr_items)
523{
524 struct tree_mod_elem *tm = NULL;
525 struct tree_mod_elem **tm_list = NULL;
526 int ret = 0;
527 int i;
528 int locked = 0;
529
530 if (!tree_mod_need_log(eb->fs_info, eb))
531 return 0;
532
533 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
534 if (!tm_list)
535 return -ENOMEM;
536
537 tm = kzalloc(sizeof(*tm), GFP_NOFS);
538 if (!tm) {
539 ret = -ENOMEM;
540 goto free_tms;
541 }
542
543 tm->logical = eb->start;
544 tm->slot = src_slot;
545 tm->move.dst_slot = dst_slot;
546 tm->move.nr_items = nr_items;
547 tm->op = MOD_LOG_MOVE_KEYS;
548
549 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
550 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
551 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
552 if (!tm_list[i]) {
553 ret = -ENOMEM;
554 goto free_tms;
555 }
556 }
557
558 if (tree_mod_dont_log(eb->fs_info, eb))
559 goto free_tms;
560 locked = 1;
561
562 /*
563 * When we override something during the move, we log these removals.
564 * This can only happen when we move towards the beginning of the
565 * buffer, i.e. dst_slot < src_slot.
566 */
567 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
568 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
569 if (ret)
570 goto free_tms;
571 }
572
573 ret = __tree_mod_log_insert(eb->fs_info, tm);
574 if (ret)
575 goto free_tms;
576 write_unlock(&eb->fs_info->tree_mod_log_lock);
577 kfree(tm_list);
578
579 return 0;
580free_tms:
581 for (i = 0; i < nr_items; i++) {
582 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
583 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
584 kfree(tm_list[i]);
585 }
586 if (locked)
587 write_unlock(&eb->fs_info->tree_mod_log_lock);
588 kfree(tm_list);
589 kfree(tm);
590
591 return ret;
592}
593
594static inline int
595__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
596 struct tree_mod_elem **tm_list,
597 int nritems)
598{
599 int i, j;
600 int ret;
601
602 for (i = nritems - 1; i >= 0; i--) {
603 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
604 if (ret) {
605 for (j = nritems - 1; j > i; j--)
606 rb_erase(&tm_list[j]->node,
607 &fs_info->tree_mod_log);
608 return ret;
609 }
610 }
611
612 return 0;
613}
614
615static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
616 struct extent_buffer *new_root, int log_removal)
617{
618 struct btrfs_fs_info *fs_info = old_root->fs_info;
619 struct tree_mod_elem *tm = NULL;
620 struct tree_mod_elem **tm_list = NULL;
621 int nritems = 0;
622 int ret = 0;
623 int i;
624
625 if (!tree_mod_need_log(fs_info, NULL))
626 return 0;
627
628 if (log_removal && btrfs_header_level(old_root) > 0) {
629 nritems = btrfs_header_nritems(old_root);
630 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
631 GFP_NOFS);
632 if (!tm_list) {
633 ret = -ENOMEM;
634 goto free_tms;
635 }
636 for (i = 0; i < nritems; i++) {
637 tm_list[i] = alloc_tree_mod_elem(old_root, i,
638 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
639 if (!tm_list[i]) {
640 ret = -ENOMEM;
641 goto free_tms;
642 }
643 }
644 }
645
646 tm = kzalloc(sizeof(*tm), GFP_NOFS);
647 if (!tm) {
648 ret = -ENOMEM;
649 goto free_tms;
650 }
651
652 tm->logical = new_root->start;
653 tm->old_root.logical = old_root->start;
654 tm->old_root.level = btrfs_header_level(old_root);
655 tm->generation = btrfs_header_generation(old_root);
656 tm->op = MOD_LOG_ROOT_REPLACE;
657
658 if (tree_mod_dont_log(fs_info, NULL))
659 goto free_tms;
660
661 if (tm_list)
662 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
663 if (!ret)
664 ret = __tree_mod_log_insert(fs_info, tm);
665
666 write_unlock(&fs_info->tree_mod_log_lock);
667 if (ret)
668 goto free_tms;
669 kfree(tm_list);
670
671 return ret;
672
673free_tms:
674 if (tm_list) {
675 for (i = 0; i < nritems; i++)
676 kfree(tm_list[i]);
677 kfree(tm_list);
678 }
679 kfree(tm);
680
681 return ret;
682}
683
684static struct tree_mod_elem *
685__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
686 int smallest)
687{
688 struct rb_root *tm_root;
689 struct rb_node *node;
690 struct tree_mod_elem *cur = NULL;
691 struct tree_mod_elem *found = NULL;
692
693 read_lock(&fs_info->tree_mod_log_lock);
694 tm_root = &fs_info->tree_mod_log;
695 node = tm_root->rb_node;
696 while (node) {
697 cur = rb_entry(node, struct tree_mod_elem, node);
698 if (cur->logical < start) {
699 node = node->rb_left;
700 } else if (cur->logical > start) {
701 node = node->rb_right;
702 } else if (cur->seq < min_seq) {
703 node = node->rb_left;
704 } else if (!smallest) {
705 /* we want the node with the highest seq */
706 if (found)
707 BUG_ON(found->seq > cur->seq);
708 found = cur;
709 node = node->rb_left;
710 } else if (cur->seq > min_seq) {
711 /* we want the node with the smallest seq */
712 if (found)
713 BUG_ON(found->seq < cur->seq);
714 found = cur;
715 node = node->rb_right;
716 } else {
717 found = cur;
718 break;
719 }
720 }
721 read_unlock(&fs_info->tree_mod_log_lock);
722
723 return found;
724}
725
726/*
727 * this returns the element from the log with the smallest time sequence
728 * value that's in the log (the oldest log item). any element with a time
729 * sequence lower than min_seq will be ignored.
730 */
731static struct tree_mod_elem *
732tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
733 u64 min_seq)
734{
735 return __tree_mod_log_search(fs_info, start, min_seq, 1);
736}
737
738/*
739 * this returns the element from the log with the largest time sequence
740 * value that's in the log (the most recent log item). any element with
741 * a time sequence lower than min_seq will be ignored.
742 */
743static struct tree_mod_elem *
744tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
745{
746 return __tree_mod_log_search(fs_info, start, min_seq, 0);
747}
748
749static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
750 struct extent_buffer *src, unsigned long dst_offset,
751 unsigned long src_offset, int nr_items)
752{
753 struct btrfs_fs_info *fs_info = dst->fs_info;
754 int ret = 0;
755 struct tree_mod_elem **tm_list = NULL;
756 struct tree_mod_elem **tm_list_add, **tm_list_rem;
757 int i;
758 int locked = 0;
759
760 if (!tree_mod_need_log(fs_info, NULL))
761 return 0;
762
763 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
764 return 0;
765
766 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
767 GFP_NOFS);
768 if (!tm_list)
769 return -ENOMEM;
770
771 tm_list_add = tm_list;
772 tm_list_rem = tm_list + nr_items;
773 for (i = 0; i < nr_items; i++) {
774 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
775 MOD_LOG_KEY_REMOVE, GFP_NOFS);
776 if (!tm_list_rem[i]) {
777 ret = -ENOMEM;
778 goto free_tms;
779 }
780
781 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
782 MOD_LOG_KEY_ADD, GFP_NOFS);
783 if (!tm_list_add[i]) {
784 ret = -ENOMEM;
785 goto free_tms;
786 }
787 }
788
789 if (tree_mod_dont_log(fs_info, NULL))
790 goto free_tms;
791 locked = 1;
792
793 for (i = 0; i < nr_items; i++) {
794 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
795 if (ret)
796 goto free_tms;
797 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
798 if (ret)
799 goto free_tms;
800 }
801
802 write_unlock(&fs_info->tree_mod_log_lock);
803 kfree(tm_list);
804
805 return 0;
806
807free_tms:
808 for (i = 0; i < nr_items * 2; i++) {
809 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
810 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
811 kfree(tm_list[i]);
812 }
813 if (locked)
814 write_unlock(&fs_info->tree_mod_log_lock);
815 kfree(tm_list);
816
817 return ret;
818}
819
820static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
821{
822 struct tree_mod_elem **tm_list = NULL;
823 int nritems = 0;
824 int i;
825 int ret = 0;
826
827 if (btrfs_header_level(eb) == 0)
828 return 0;
829
830 if (!tree_mod_need_log(eb->fs_info, NULL))
831 return 0;
832
833 nritems = btrfs_header_nritems(eb);
834 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
835 if (!tm_list)
836 return -ENOMEM;
837
838 for (i = 0; i < nritems; i++) {
839 tm_list[i] = alloc_tree_mod_elem(eb, i,
840 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
841 if (!tm_list[i]) {
842 ret = -ENOMEM;
843 goto free_tms;
844 }
845 }
846
847 if (tree_mod_dont_log(eb->fs_info, eb))
848 goto free_tms;
849
850 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
851 write_unlock(&eb->fs_info->tree_mod_log_lock);
852 if (ret)
853 goto free_tms;
854 kfree(tm_list);
855
856 return 0;
857
858free_tms:
859 for (i = 0; i < nritems; i++)
860 kfree(tm_list[i]);
861 kfree(tm_list);
862
863 return ret;
864}
865
866/*
867 * check if the tree block can be shared by multiple trees
868 */
869int btrfs_block_can_be_shared(struct btrfs_root *root,
870 struct extent_buffer *buf)
871{
872 /*
873 * Tree blocks not in reference counted trees and tree roots
874 * are never shared. If a block was allocated after the last
875 * snapshot and the block was not allocated by tree relocation,
876 * we know the block is not shared.
877 */
878 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
879 buf != root->node && buf != root->commit_root &&
880 (btrfs_header_generation(buf) <=
881 btrfs_root_last_snapshot(&root->root_item) ||
882 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
883 return 1;
884
885 return 0;
886}
887
888static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
889 struct btrfs_root *root,
890 struct extent_buffer *buf,
891 struct extent_buffer *cow,
892 int *last_ref)
893{
894 struct btrfs_fs_info *fs_info = root->fs_info;
895 u64 refs;
896 u64 owner;
897 u64 flags;
898 u64 new_flags = 0;
899 int ret;
900
901 /*
902 * Backrefs update rules:
903 *
904 * Always use full backrefs for extent pointers in tree block
905 * allocated by tree relocation.
906 *
907 * If a shared tree block is no longer referenced by its owner
908 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
909 * use full backrefs for extent pointers in tree block.
910 *
911 * If a tree block is been relocating
912 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
913 * use full backrefs for extent pointers in tree block.
914 * The reason for this is some operations (such as drop tree)
915 * are only allowed for blocks use full backrefs.
916 */
917
918 if (btrfs_block_can_be_shared(root, buf)) {
919 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
920 btrfs_header_level(buf), 1,
921 &refs, &flags);
922 if (ret)
923 return ret;
924 if (refs == 0) {
925 ret = -EROFS;
926 btrfs_handle_fs_error(fs_info, ret, NULL);
927 return ret;
928 }
929 } else {
930 refs = 1;
931 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
932 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
933 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
934 else
935 flags = 0;
936 }
937
938 owner = btrfs_header_owner(buf);
939 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
940 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
941
942 if (refs > 1) {
943 if ((owner == root->root_key.objectid ||
944 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
945 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
946 ret = btrfs_inc_ref(trans, root, buf, 1);
947 if (ret)
948 return ret;
949
950 if (root->root_key.objectid ==
951 BTRFS_TREE_RELOC_OBJECTID) {
952 ret = btrfs_dec_ref(trans, root, buf, 0);
953 if (ret)
954 return ret;
955 ret = btrfs_inc_ref(trans, root, cow, 1);
956 if (ret)
957 return ret;
958 }
959 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
960 } else {
961
962 if (root->root_key.objectid ==
963 BTRFS_TREE_RELOC_OBJECTID)
964 ret = btrfs_inc_ref(trans, root, cow, 1);
965 else
966 ret = btrfs_inc_ref(trans, root, cow, 0);
967 if (ret)
968 return ret;
969 }
970 if (new_flags != 0) {
971 int level = btrfs_header_level(buf);
972
973 ret = btrfs_set_disk_extent_flags(trans,
974 buf->start,
975 buf->len,
976 new_flags, level, 0);
977 if (ret)
978 return ret;
979 }
980 } else {
981 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
982 if (root->root_key.objectid ==
983 BTRFS_TREE_RELOC_OBJECTID)
984 ret = btrfs_inc_ref(trans, root, cow, 1);
985 else
986 ret = btrfs_inc_ref(trans, root, cow, 0);
987 if (ret)
988 return ret;
989 ret = btrfs_dec_ref(trans, root, buf, 1);
990 if (ret)
991 return ret;
992 }
993 btrfs_clean_tree_block(buf);
994 *last_ref = 1;
995 }
996 return 0;
997}
998
999static struct extent_buffer *alloc_tree_block_no_bg_flush(
1000 struct btrfs_trans_handle *trans,
1001 struct btrfs_root *root,
1002 u64 parent_start,
1003 const struct btrfs_disk_key *disk_key,
1004 int level,
1005 u64 hint,
1006 u64 empty_size)
1007{
1008 struct btrfs_fs_info *fs_info = root->fs_info;
1009 struct extent_buffer *ret;
1010
1011 /*
1012 * If we are COWing a node/leaf from the extent, chunk, device or free
1013 * space trees, make sure that we do not finish block group creation of
1014 * pending block groups. We do this to avoid a deadlock.
1015 * COWing can result in allocation of a new chunk, and flushing pending
1016 * block groups (btrfs_create_pending_block_groups()) can be triggered
1017 * when finishing allocation of a new chunk. Creation of a pending block
1018 * group modifies the extent, chunk, device and free space trees,
1019 * therefore we could deadlock with ourselves since we are holding a
1020 * lock on an extent buffer that btrfs_create_pending_block_groups() may
1021 * try to COW later.
1022 * For similar reasons, we also need to delay flushing pending block
1023 * groups when splitting a leaf or node, from one of those trees, since
1024 * we are holding a write lock on it and its parent or when inserting a
1025 * new root node for one of those trees.
1026 */
1027 if (root == fs_info->extent_root ||
1028 root == fs_info->chunk_root ||
1029 root == fs_info->dev_root ||
1030 root == fs_info->free_space_root)
1031 trans->can_flush_pending_bgs = false;
1032
1033 ret = btrfs_alloc_tree_block(trans, root, parent_start,
1034 root->root_key.objectid, disk_key, level,
1035 hint, empty_size);
1036 trans->can_flush_pending_bgs = true;
1037
1038 return ret;
1039}
1040
1041/*
1042 * does the dirty work in cow of a single block. The parent block (if
1043 * supplied) is updated to point to the new cow copy. The new buffer is marked
1044 * dirty and returned locked. If you modify the block it needs to be marked
1045 * dirty again.
1046 *
1047 * search_start -- an allocation hint for the new block
1048 *
1049 * empty_size -- a hint that you plan on doing more cow. This is the size in
1050 * bytes the allocator should try to find free next to the block it returns.
1051 * This is just a hint and may be ignored by the allocator.
1052 */
1053static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1054 struct btrfs_root *root,
1055 struct extent_buffer *buf,
1056 struct extent_buffer *parent, int parent_slot,
1057 struct extent_buffer **cow_ret,
1058 u64 search_start, u64 empty_size)
1059{
1060 struct btrfs_fs_info *fs_info = root->fs_info;
1061 struct btrfs_disk_key disk_key;
1062 struct extent_buffer *cow;
1063 int level, ret;
1064 int last_ref = 0;
1065 int unlock_orig = 0;
1066 u64 parent_start = 0;
1067
1068 if (*cow_ret == buf)
1069 unlock_orig = 1;
1070
1071 btrfs_assert_tree_locked(buf);
1072
1073 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1074 trans->transid != fs_info->running_transaction->transid);
1075 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1076 trans->transid != root->last_trans);
1077
1078 level = btrfs_header_level(buf);
1079
1080 if (level == 0)
1081 btrfs_item_key(buf, &disk_key, 0);
1082 else
1083 btrfs_node_key(buf, &disk_key, 0);
1084
1085 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1086 parent_start = parent->start;
1087
1088 cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1089 level, search_start, empty_size);
1090 if (IS_ERR(cow))
1091 return PTR_ERR(cow);
1092
1093 /* cow is set to blocking by btrfs_init_new_buffer */
1094
1095 copy_extent_buffer_full(cow, buf);
1096 btrfs_set_header_bytenr(cow, cow->start);
1097 btrfs_set_header_generation(cow, trans->transid);
1098 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1099 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1100 BTRFS_HEADER_FLAG_RELOC);
1101 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1102 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1103 else
1104 btrfs_set_header_owner(cow, root->root_key.objectid);
1105
1106 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
1107
1108 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1109 if (ret) {
1110 btrfs_abort_transaction(trans, ret);
1111 return ret;
1112 }
1113
1114 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1115 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1116 if (ret) {
1117 btrfs_abort_transaction(trans, ret);
1118 return ret;
1119 }
1120 }
1121
1122 if (buf == root->node) {
1123 WARN_ON(parent && parent != buf);
1124 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1125 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1126 parent_start = buf->start;
1127
1128 extent_buffer_get(cow);
1129 ret = tree_mod_log_insert_root(root->node, cow, 1);
1130 BUG_ON(ret < 0);
1131 rcu_assign_pointer(root->node, cow);
1132
1133 btrfs_free_tree_block(trans, root, buf, parent_start,
1134 last_ref);
1135 free_extent_buffer(buf);
1136 add_root_to_dirty_list(root);
1137 } else {
1138 WARN_ON(trans->transid != btrfs_header_generation(parent));
1139 tree_mod_log_insert_key(parent, parent_slot,
1140 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1141 btrfs_set_node_blockptr(parent, parent_slot,
1142 cow->start);
1143 btrfs_set_node_ptr_generation(parent, parent_slot,
1144 trans->transid);
1145 btrfs_mark_buffer_dirty(parent);
1146 if (last_ref) {
1147 ret = tree_mod_log_free_eb(buf);
1148 if (ret) {
1149 btrfs_abort_transaction(trans, ret);
1150 return ret;
1151 }
1152 }
1153 btrfs_free_tree_block(trans, root, buf, parent_start,
1154 last_ref);
1155 }
1156 if (unlock_orig)
1157 btrfs_tree_unlock(buf);
1158 free_extent_buffer_stale(buf);
1159 btrfs_mark_buffer_dirty(cow);
1160 *cow_ret = cow;
1161 return 0;
1162}
1163
1164/*
1165 * returns the logical address of the oldest predecessor of the given root.
1166 * entries older than time_seq are ignored.
1167 */
1168static struct tree_mod_elem *__tree_mod_log_oldest_root(
1169 struct extent_buffer *eb_root, u64 time_seq)
1170{
1171 struct tree_mod_elem *tm;
1172 struct tree_mod_elem *found = NULL;
1173 u64 root_logical = eb_root->start;
1174 int looped = 0;
1175
1176 if (!time_seq)
1177 return NULL;
1178
1179 /*
1180 * the very last operation that's logged for a root is the
1181 * replacement operation (if it is replaced at all). this has
1182 * the logical address of the *new* root, making it the very
1183 * first operation that's logged for this root.
1184 */
1185 while (1) {
1186 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1187 time_seq);
1188 if (!looped && !tm)
1189 return NULL;
1190 /*
1191 * if there are no tree operation for the oldest root, we simply
1192 * return it. this should only happen if that (old) root is at
1193 * level 0.
1194 */
1195 if (!tm)
1196 break;
1197
1198 /*
1199 * if there's an operation that's not a root replacement, we
1200 * found the oldest version of our root. normally, we'll find a
1201 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1202 */
1203 if (tm->op != MOD_LOG_ROOT_REPLACE)
1204 break;
1205
1206 found = tm;
1207 root_logical = tm->old_root.logical;
1208 looped = 1;
1209 }
1210
1211 /* if there's no old root to return, return what we found instead */
1212 if (!found)
1213 found = tm;
1214
1215 return found;
1216}
1217
1218/*
1219 * tm is a pointer to the first operation to rewind within eb. then, all
1220 * previous operations will be rewound (until we reach something older than
1221 * time_seq).
1222 */
1223static void
1224__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1225 u64 time_seq, struct tree_mod_elem *first_tm)
1226{
1227 u32 n;
1228 struct rb_node *next;
1229 struct tree_mod_elem *tm = first_tm;
1230 unsigned long o_dst;
1231 unsigned long o_src;
1232 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1233
1234 n = btrfs_header_nritems(eb);
1235 read_lock(&fs_info->tree_mod_log_lock);
1236 while (tm && tm->seq >= time_seq) {
1237 /*
1238 * all the operations are recorded with the operator used for
1239 * the modification. as we're going backwards, we do the
1240 * opposite of each operation here.
1241 */
1242 switch (tm->op) {
1243 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1244 BUG_ON(tm->slot < n);
1245 /* Fallthrough */
1246 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1247 case MOD_LOG_KEY_REMOVE:
1248 btrfs_set_node_key(eb, &tm->key, tm->slot);
1249 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1250 btrfs_set_node_ptr_generation(eb, tm->slot,
1251 tm->generation);
1252 n++;
1253 break;
1254 case MOD_LOG_KEY_REPLACE:
1255 BUG_ON(tm->slot >= n);
1256 btrfs_set_node_key(eb, &tm->key, tm->slot);
1257 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1258 btrfs_set_node_ptr_generation(eb, tm->slot,
1259 tm->generation);
1260 break;
1261 case MOD_LOG_KEY_ADD:
1262 /* if a move operation is needed it's in the log */
1263 n--;
1264 break;
1265 case MOD_LOG_MOVE_KEYS:
1266 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1267 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1268 memmove_extent_buffer(eb, o_dst, o_src,
1269 tm->move.nr_items * p_size);
1270 break;
1271 case MOD_LOG_ROOT_REPLACE:
1272 /*
1273 * this operation is special. for roots, this must be
1274 * handled explicitly before rewinding.
1275 * for non-roots, this operation may exist if the node
1276 * was a root: root A -> child B; then A gets empty and
1277 * B is promoted to the new root. in the mod log, we'll
1278 * have a root-replace operation for B, a tree block
1279 * that is no root. we simply ignore that operation.
1280 */
1281 break;
1282 }
1283 next = rb_next(&tm->node);
1284 if (!next)
1285 break;
1286 tm = rb_entry(next, struct tree_mod_elem, node);
1287 if (tm->logical != first_tm->logical)
1288 break;
1289 }
1290 read_unlock(&fs_info->tree_mod_log_lock);
1291 btrfs_set_header_nritems(eb, n);
1292}
1293
1294/*
1295 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1296 * is returned. If rewind operations happen, a fresh buffer is returned. The
1297 * returned buffer is always read-locked. If the returned buffer is not the
1298 * input buffer, the lock on the input buffer is released and the input buffer
1299 * is freed (its refcount is decremented).
1300 */
1301static struct extent_buffer *
1302tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1303 struct extent_buffer *eb, u64 time_seq)
1304{
1305 struct extent_buffer *eb_rewin;
1306 struct tree_mod_elem *tm;
1307
1308 if (!time_seq)
1309 return eb;
1310
1311 if (btrfs_header_level(eb) == 0)
1312 return eb;
1313
1314 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1315 if (!tm)
1316 return eb;
1317
1318 btrfs_set_path_blocking(path);
1319 btrfs_set_lock_blocking_read(eb);
1320
1321 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1322 BUG_ON(tm->slot != 0);
1323 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1324 if (!eb_rewin) {
1325 btrfs_tree_read_unlock_blocking(eb);
1326 free_extent_buffer(eb);
1327 return NULL;
1328 }
1329 btrfs_set_header_bytenr(eb_rewin, eb->start);
1330 btrfs_set_header_backref_rev(eb_rewin,
1331 btrfs_header_backref_rev(eb));
1332 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1333 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1334 } else {
1335 eb_rewin = btrfs_clone_extent_buffer(eb);
1336 if (!eb_rewin) {
1337 btrfs_tree_read_unlock_blocking(eb);
1338 free_extent_buffer(eb);
1339 return NULL;
1340 }
1341 }
1342
1343 btrfs_tree_read_unlock_blocking(eb);
1344 free_extent_buffer(eb);
1345
1346 btrfs_tree_read_lock(eb_rewin);
1347 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1348 WARN_ON(btrfs_header_nritems(eb_rewin) >
1349 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1350
1351 return eb_rewin;
1352}
1353
1354/*
1355 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1356 * value. If there are no changes, the current root->root_node is returned. If
1357 * anything changed in between, there's a fresh buffer allocated on which the
1358 * rewind operations are done. In any case, the returned buffer is read locked.
1359 * Returns NULL on error (with no locks held).
1360 */
1361static inline struct extent_buffer *
1362get_old_root(struct btrfs_root *root, u64 time_seq)
1363{
1364 struct btrfs_fs_info *fs_info = root->fs_info;
1365 struct tree_mod_elem *tm;
1366 struct extent_buffer *eb = NULL;
1367 struct extent_buffer *eb_root;
1368 u64 eb_root_owner = 0;
1369 struct extent_buffer *old;
1370 struct tree_mod_root *old_root = NULL;
1371 u64 old_generation = 0;
1372 u64 logical;
1373 int level;
1374
1375 eb_root = btrfs_read_lock_root_node(root);
1376 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1377 if (!tm)
1378 return eb_root;
1379
1380 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1381 old_root = &tm->old_root;
1382 old_generation = tm->generation;
1383 logical = old_root->logical;
1384 level = old_root->level;
1385 } else {
1386 logical = eb_root->start;
1387 level = btrfs_header_level(eb_root);
1388 }
1389
1390 tm = tree_mod_log_search(fs_info, logical, time_seq);
1391 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1392 btrfs_tree_read_unlock(eb_root);
1393 free_extent_buffer(eb_root);
1394 old = read_tree_block(fs_info, logical, 0, level, NULL);
1395 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1396 if (!IS_ERR(old))
1397 free_extent_buffer(old);
1398 btrfs_warn(fs_info,
1399 "failed to read tree block %llu from get_old_root",
1400 logical);
1401 } else {
1402 eb = btrfs_clone_extent_buffer(old);
1403 free_extent_buffer(old);
1404 }
1405 } else if (old_root) {
1406 eb_root_owner = btrfs_header_owner(eb_root);
1407 btrfs_tree_read_unlock(eb_root);
1408 free_extent_buffer(eb_root);
1409 eb = alloc_dummy_extent_buffer(fs_info, logical);
1410 } else {
1411 btrfs_set_lock_blocking_read(eb_root);
1412 eb = btrfs_clone_extent_buffer(eb_root);
1413 btrfs_tree_read_unlock_blocking(eb_root);
1414 free_extent_buffer(eb_root);
1415 }
1416
1417 if (!eb)
1418 return NULL;
1419 btrfs_tree_read_lock(eb);
1420 if (old_root) {
1421 btrfs_set_header_bytenr(eb, eb->start);
1422 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1423 btrfs_set_header_owner(eb, eb_root_owner);
1424 btrfs_set_header_level(eb, old_root->level);
1425 btrfs_set_header_generation(eb, old_generation);
1426 }
1427 if (tm)
1428 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1429 else
1430 WARN_ON(btrfs_header_level(eb) != 0);
1431 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1432
1433 return eb;
1434}
1435
1436int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1437{
1438 struct tree_mod_elem *tm;
1439 int level;
1440 struct extent_buffer *eb_root = btrfs_root_node(root);
1441
1442 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1443 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1444 level = tm->old_root.level;
1445 } else {
1446 level = btrfs_header_level(eb_root);
1447 }
1448 free_extent_buffer(eb_root);
1449
1450 return level;
1451}
1452
1453static inline int should_cow_block(struct btrfs_trans_handle *trans,
1454 struct btrfs_root *root,
1455 struct extent_buffer *buf)
1456{
1457 if (btrfs_is_testing(root->fs_info))
1458 return 0;
1459
1460 /* Ensure we can see the FORCE_COW bit */
1461 smp_mb__before_atomic();
1462
1463 /*
1464 * We do not need to cow a block if
1465 * 1) this block is not created or changed in this transaction;
1466 * 2) this block does not belong to TREE_RELOC tree;
1467 * 3) the root is not forced COW.
1468 *
1469 * What is forced COW:
1470 * when we create snapshot during committing the transaction,
1471 * after we've finished copying src root, we must COW the shared
1472 * block to ensure the metadata consistency.
1473 */
1474 if (btrfs_header_generation(buf) == trans->transid &&
1475 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1476 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1477 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1478 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1479 return 0;
1480 return 1;
1481}
1482
1483/*
1484 * cows a single block, see __btrfs_cow_block for the real work.
1485 * This version of it has extra checks so that a block isn't COWed more than
1486 * once per transaction, as long as it hasn't been written yet
1487 */
1488noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1489 struct btrfs_root *root, struct extent_buffer *buf,
1490 struct extent_buffer *parent, int parent_slot,
1491 struct extent_buffer **cow_ret)
1492{
1493 struct btrfs_fs_info *fs_info = root->fs_info;
1494 u64 search_start;
1495 int ret;
1496
1497 if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1498 btrfs_err(fs_info,
1499 "COW'ing blocks on a fs root that's being dropped");
1500
1501 if (trans->transaction != fs_info->running_transaction)
1502 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1503 trans->transid,
1504 fs_info->running_transaction->transid);
1505
1506 if (trans->transid != fs_info->generation)
1507 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1508 trans->transid, fs_info->generation);
1509
1510 if (!should_cow_block(trans, root, buf)) {
1511 trans->dirty = true;
1512 *cow_ret = buf;
1513 return 0;
1514 }
1515
1516 search_start = buf->start & ~((u64)SZ_1G - 1);
1517
1518 if (parent)
1519 btrfs_set_lock_blocking_write(parent);
1520 btrfs_set_lock_blocking_write(buf);
1521
1522 /*
1523 * Before CoWing this block for later modification, check if it's
1524 * the subtree root and do the delayed subtree trace if needed.
1525 *
1526 * Also We don't care about the error, as it's handled internally.
1527 */
1528 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1529 ret = __btrfs_cow_block(trans, root, buf, parent,
1530 parent_slot, cow_ret, search_start, 0);
1531
1532 trace_btrfs_cow_block(root, buf, *cow_ret);
1533
1534 return ret;
1535}
1536
1537/*
1538 * helper function for defrag to decide if two blocks pointed to by a
1539 * node are actually close by
1540 */
1541static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1542{
1543 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1544 return 1;
1545 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1546 return 1;
1547 return 0;
1548}
1549
1550/*
1551 * compare two keys in a memcmp fashion
1552 */
1553static int comp_keys(const struct btrfs_disk_key *disk,
1554 const struct btrfs_key *k2)
1555{
1556 struct btrfs_key k1;
1557
1558 btrfs_disk_key_to_cpu(&k1, disk);
1559
1560 return btrfs_comp_cpu_keys(&k1, k2);
1561}
1562
1563/*
1564 * same as comp_keys only with two btrfs_key's
1565 */
1566int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1567{
1568 if (k1->objectid > k2->objectid)
1569 return 1;
1570 if (k1->objectid < k2->objectid)
1571 return -1;
1572 if (k1->type > k2->type)
1573 return 1;
1574 if (k1->type < k2->type)
1575 return -1;
1576 if (k1->offset > k2->offset)
1577 return 1;
1578 if (k1->offset < k2->offset)
1579 return -1;
1580 return 0;
1581}
1582
1583/*
1584 * this is used by the defrag code to go through all the
1585 * leaves pointed to by a node and reallocate them so that
1586 * disk order is close to key order
1587 */
1588int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1589 struct btrfs_root *root, struct extent_buffer *parent,
1590 int start_slot, u64 *last_ret,
1591 struct btrfs_key *progress)
1592{
1593 struct btrfs_fs_info *fs_info = root->fs_info;
1594 struct extent_buffer *cur;
1595 u64 blocknr;
1596 u64 gen;
1597 u64 search_start = *last_ret;
1598 u64 last_block = 0;
1599 u64 other;
1600 u32 parent_nritems;
1601 int end_slot;
1602 int i;
1603 int err = 0;
1604 int parent_level;
1605 int uptodate;
1606 u32 blocksize;
1607 int progress_passed = 0;
1608 struct btrfs_disk_key disk_key;
1609
1610 parent_level = btrfs_header_level(parent);
1611
1612 WARN_ON(trans->transaction != fs_info->running_transaction);
1613 WARN_ON(trans->transid != fs_info->generation);
1614
1615 parent_nritems = btrfs_header_nritems(parent);
1616 blocksize = fs_info->nodesize;
1617 end_slot = parent_nritems - 1;
1618
1619 if (parent_nritems <= 1)
1620 return 0;
1621
1622 btrfs_set_lock_blocking_write(parent);
1623
1624 for (i = start_slot; i <= end_slot; i++) {
1625 struct btrfs_key first_key;
1626 int close = 1;
1627
1628 btrfs_node_key(parent, &disk_key, i);
1629 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1630 continue;
1631
1632 progress_passed = 1;
1633 blocknr = btrfs_node_blockptr(parent, i);
1634 gen = btrfs_node_ptr_generation(parent, i);
1635 btrfs_node_key_to_cpu(parent, &first_key, i);
1636 if (last_block == 0)
1637 last_block = blocknr;
1638
1639 if (i > 0) {
1640 other = btrfs_node_blockptr(parent, i - 1);
1641 close = close_blocks(blocknr, other, blocksize);
1642 }
1643 if (!close && i < end_slot) {
1644 other = btrfs_node_blockptr(parent, i + 1);
1645 close = close_blocks(blocknr, other, blocksize);
1646 }
1647 if (close) {
1648 last_block = blocknr;
1649 continue;
1650 }
1651
1652 cur = find_extent_buffer(fs_info, blocknr);
1653 if (cur)
1654 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1655 else
1656 uptodate = 0;
1657 if (!cur || !uptodate) {
1658 if (!cur) {
1659 cur = read_tree_block(fs_info, blocknr, gen,
1660 parent_level - 1,
1661 &first_key);
1662 if (IS_ERR(cur)) {
1663 return PTR_ERR(cur);
1664 } else if (!extent_buffer_uptodate(cur)) {
1665 free_extent_buffer(cur);
1666 return -EIO;
1667 }
1668 } else if (!uptodate) {
1669 err = btrfs_read_buffer(cur, gen,
1670 parent_level - 1,&first_key);
1671 if (err) {
1672 free_extent_buffer(cur);
1673 return err;
1674 }
1675 }
1676 }
1677 if (search_start == 0)
1678 search_start = last_block;
1679
1680 btrfs_tree_lock(cur);
1681 btrfs_set_lock_blocking_write(cur);
1682 err = __btrfs_cow_block(trans, root, cur, parent, i,
1683 &cur, search_start,
1684 min(16 * blocksize,
1685 (end_slot - i) * blocksize));
1686 if (err) {
1687 btrfs_tree_unlock(cur);
1688 free_extent_buffer(cur);
1689 break;
1690 }
1691 search_start = cur->start;
1692 last_block = cur->start;
1693 *last_ret = search_start;
1694 btrfs_tree_unlock(cur);
1695 free_extent_buffer(cur);
1696 }
1697 return err;
1698}
1699
1700/*
1701 * search for key in the extent_buffer. The items start at offset p,
1702 * and they are item_size apart. There are 'max' items in p.
1703 *
1704 * the slot in the array is returned via slot, and it points to
1705 * the place where you would insert key if it is not found in
1706 * the array.
1707 *
1708 * slot may point to max if the key is bigger than all of the keys
1709 */
1710static noinline int generic_bin_search(struct extent_buffer *eb,
1711 unsigned long p, int item_size,
1712 const struct btrfs_key *key,
1713 int max, int *slot)
1714{
1715 int low = 0;
1716 int high = max;
1717 int mid;
1718 int ret;
1719 struct btrfs_disk_key *tmp = NULL;
1720 struct btrfs_disk_key unaligned;
1721 unsigned long offset;
1722 char *kaddr = NULL;
1723 unsigned long map_start = 0;
1724 unsigned long map_len = 0;
1725 int err;
1726
1727 if (low > high) {
1728 btrfs_err(eb->fs_info,
1729 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1730 __func__, low, high, eb->start,
1731 btrfs_header_owner(eb), btrfs_header_level(eb));
1732 return -EINVAL;
1733 }
1734
1735 while (low < high) {
1736 mid = (low + high) / 2;
1737 offset = p + mid * item_size;
1738
1739 if (!kaddr || offset < map_start ||
1740 (offset + sizeof(struct btrfs_disk_key)) >
1741 map_start + map_len) {
1742
1743 err = map_private_extent_buffer(eb, offset,
1744 sizeof(struct btrfs_disk_key),
1745 &kaddr, &map_start, &map_len);
1746
1747 if (!err) {
1748 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1749 map_start);
1750 } else if (err == 1) {
1751 read_extent_buffer(eb, &unaligned,
1752 offset, sizeof(unaligned));
1753 tmp = &unaligned;
1754 } else {
1755 return err;
1756 }
1757
1758 } else {
1759 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1760 map_start);
1761 }
1762 ret = comp_keys(tmp, key);
1763
1764 if (ret < 0)
1765 low = mid + 1;
1766 else if (ret > 0)
1767 high = mid;
1768 else {
1769 *slot = mid;
1770 return 0;
1771 }
1772 }
1773 *slot = low;
1774 return 1;
1775}
1776
1777/*
1778 * simple bin_search frontend that does the right thing for
1779 * leaves vs nodes
1780 */
1781int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1782 int level, int *slot)
1783{
1784 if (level == 0)
1785 return generic_bin_search(eb,
1786 offsetof(struct btrfs_leaf, items),
1787 sizeof(struct btrfs_item),
1788 key, btrfs_header_nritems(eb),
1789 slot);
1790 else
1791 return generic_bin_search(eb,
1792 offsetof(struct btrfs_node, ptrs),
1793 sizeof(struct btrfs_key_ptr),
1794 key, btrfs_header_nritems(eb),
1795 slot);
1796}
1797
1798static void root_add_used(struct btrfs_root *root, u32 size)
1799{
1800 spin_lock(&root->accounting_lock);
1801 btrfs_set_root_used(&root->root_item,
1802 btrfs_root_used(&root->root_item) + size);
1803 spin_unlock(&root->accounting_lock);
1804}
1805
1806static void root_sub_used(struct btrfs_root *root, u32 size)
1807{
1808 spin_lock(&root->accounting_lock);
1809 btrfs_set_root_used(&root->root_item,
1810 btrfs_root_used(&root->root_item) - size);
1811 spin_unlock(&root->accounting_lock);
1812}
1813
1814/* given a node and slot number, this reads the blocks it points to. The
1815 * extent buffer is returned with a reference taken (but unlocked).
1816 */
1817struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
1818 int slot)
1819{
1820 int level = btrfs_header_level(parent);
1821 struct extent_buffer *eb;
1822 struct btrfs_key first_key;
1823
1824 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1825 return ERR_PTR(-ENOENT);
1826
1827 BUG_ON(level == 0);
1828
1829 btrfs_node_key_to_cpu(parent, &first_key, slot);
1830 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1831 btrfs_node_ptr_generation(parent, slot),
1832 level - 1, &first_key);
1833 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1834 free_extent_buffer(eb);
1835 eb = ERR_PTR(-EIO);
1836 }
1837
1838 return eb;
1839}
1840
1841/*
1842 * node level balancing, used to make sure nodes are in proper order for
1843 * item deletion. We balance from the top down, so we have to make sure
1844 * that a deletion won't leave an node completely empty later on.
1845 */
1846static noinline int balance_level(struct btrfs_trans_handle *trans,
1847 struct btrfs_root *root,
1848 struct btrfs_path *path, int level)
1849{
1850 struct btrfs_fs_info *fs_info = root->fs_info;
1851 struct extent_buffer *right = NULL;
1852 struct extent_buffer *mid;
1853 struct extent_buffer *left = NULL;
1854 struct extent_buffer *parent = NULL;
1855 int ret = 0;
1856 int wret;
1857 int pslot;
1858 int orig_slot = path->slots[level];
1859 u64 orig_ptr;
1860
1861 ASSERT(level > 0);
1862
1863 mid = path->nodes[level];
1864
1865 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1866 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1867 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1868
1869 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1870
1871 if (level < BTRFS_MAX_LEVEL - 1) {
1872 parent = path->nodes[level + 1];
1873 pslot = path->slots[level + 1];
1874 }
1875
1876 /*
1877 * deal with the case where there is only one pointer in the root
1878 * by promoting the node below to a root
1879 */
1880 if (!parent) {
1881 struct extent_buffer *child;
1882
1883 if (btrfs_header_nritems(mid) != 1)
1884 return 0;
1885
1886 /* promote the child to a root */
1887 child = btrfs_read_node_slot(mid, 0);
1888 if (IS_ERR(child)) {
1889 ret = PTR_ERR(child);
1890 btrfs_handle_fs_error(fs_info, ret, NULL);
1891 goto enospc;
1892 }
1893
1894 btrfs_tree_lock(child);
1895 btrfs_set_lock_blocking_write(child);
1896 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1897 if (ret) {
1898 btrfs_tree_unlock(child);
1899 free_extent_buffer(child);
1900 goto enospc;
1901 }
1902
1903 ret = tree_mod_log_insert_root(root->node, child, 1);
1904 BUG_ON(ret < 0);
1905 rcu_assign_pointer(root->node, child);
1906
1907 add_root_to_dirty_list(root);
1908 btrfs_tree_unlock(child);
1909
1910 path->locks[level] = 0;
1911 path->nodes[level] = NULL;
1912 btrfs_clean_tree_block(mid);
1913 btrfs_tree_unlock(mid);
1914 /* once for the path */
1915 free_extent_buffer(mid);
1916
1917 root_sub_used(root, mid->len);
1918 btrfs_free_tree_block(trans, root, mid, 0, 1);
1919 /* once for the root ptr */
1920 free_extent_buffer_stale(mid);
1921 return 0;
1922 }
1923 if (btrfs_header_nritems(mid) >
1924 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1925 return 0;
1926
1927 left = btrfs_read_node_slot(parent, pslot - 1);
1928 if (IS_ERR(left))
1929 left = NULL;
1930
1931 if (left) {
1932 btrfs_tree_lock(left);
1933 btrfs_set_lock_blocking_write(left);
1934 wret = btrfs_cow_block(trans, root, left,
1935 parent, pslot - 1, &left);
1936 if (wret) {
1937 ret = wret;
1938 goto enospc;
1939 }
1940 }
1941
1942 right = btrfs_read_node_slot(parent, pslot + 1);
1943 if (IS_ERR(right))
1944 right = NULL;
1945
1946 if (right) {
1947 btrfs_tree_lock(right);
1948 btrfs_set_lock_blocking_write(right);
1949 wret = btrfs_cow_block(trans, root, right,
1950 parent, pslot + 1, &right);
1951 if (wret) {
1952 ret = wret;
1953 goto enospc;
1954 }
1955 }
1956
1957 /* first, try to make some room in the middle buffer */
1958 if (left) {
1959 orig_slot += btrfs_header_nritems(left);
1960 wret = push_node_left(trans, left, mid, 1);
1961 if (wret < 0)
1962 ret = wret;
1963 }
1964
1965 /*
1966 * then try to empty the right most buffer into the middle
1967 */
1968 if (right) {
1969 wret = push_node_left(trans, mid, right, 1);
1970 if (wret < 0 && wret != -ENOSPC)
1971 ret = wret;
1972 if (btrfs_header_nritems(right) == 0) {
1973 btrfs_clean_tree_block(right);
1974 btrfs_tree_unlock(right);
1975 del_ptr(root, path, level + 1, pslot + 1);
1976 root_sub_used(root, right->len);
1977 btrfs_free_tree_block(trans, root, right, 0, 1);
1978 free_extent_buffer_stale(right);
1979 right = NULL;
1980 } else {
1981 struct btrfs_disk_key right_key;
1982 btrfs_node_key(right, &right_key, 0);
1983 ret = tree_mod_log_insert_key(parent, pslot + 1,
1984 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1985 BUG_ON(ret < 0);
1986 btrfs_set_node_key(parent, &right_key, pslot + 1);
1987 btrfs_mark_buffer_dirty(parent);
1988 }
1989 }
1990 if (btrfs_header_nritems(mid) == 1) {
1991 /*
1992 * we're not allowed to leave a node with one item in the
1993 * tree during a delete. A deletion from lower in the tree
1994 * could try to delete the only pointer in this node.
1995 * So, pull some keys from the left.
1996 * There has to be a left pointer at this point because
1997 * otherwise we would have pulled some pointers from the
1998 * right
1999 */
2000 if (!left) {
2001 ret = -EROFS;
2002 btrfs_handle_fs_error(fs_info, ret, NULL);
2003 goto enospc;
2004 }
2005 wret = balance_node_right(trans, mid, left);
2006 if (wret < 0) {
2007 ret = wret;
2008 goto enospc;
2009 }
2010 if (wret == 1) {
2011 wret = push_node_left(trans, left, mid, 1);
2012 if (wret < 0)
2013 ret = wret;
2014 }
2015 BUG_ON(wret == 1);
2016 }
2017 if (btrfs_header_nritems(mid) == 0) {
2018 btrfs_clean_tree_block(mid);
2019 btrfs_tree_unlock(mid);
2020 del_ptr(root, path, level + 1, pslot);
2021 root_sub_used(root, mid->len);
2022 btrfs_free_tree_block(trans, root, mid, 0, 1);
2023 free_extent_buffer_stale(mid);
2024 mid = NULL;
2025 } else {
2026 /* update the parent key to reflect our changes */
2027 struct btrfs_disk_key mid_key;
2028 btrfs_node_key(mid, &mid_key, 0);
2029 ret = tree_mod_log_insert_key(parent, pslot,
2030 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2031 BUG_ON(ret < 0);
2032 btrfs_set_node_key(parent, &mid_key, pslot);
2033 btrfs_mark_buffer_dirty(parent);
2034 }
2035
2036 /* update the path */
2037 if (left) {
2038 if (btrfs_header_nritems(left) > orig_slot) {
2039 extent_buffer_get(left);
2040 /* left was locked after cow */
2041 path->nodes[level] = left;
2042 path->slots[level + 1] -= 1;
2043 path->slots[level] = orig_slot;
2044 if (mid) {
2045 btrfs_tree_unlock(mid);
2046 free_extent_buffer(mid);
2047 }
2048 } else {
2049 orig_slot -= btrfs_header_nritems(left);
2050 path->slots[level] = orig_slot;
2051 }
2052 }
2053 /* double check we haven't messed things up */
2054 if (orig_ptr !=
2055 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2056 BUG();
2057enospc:
2058 if (right) {
2059 btrfs_tree_unlock(right);
2060 free_extent_buffer(right);
2061 }
2062 if (left) {
2063 if (path->nodes[level] != left)
2064 btrfs_tree_unlock(left);
2065 free_extent_buffer(left);
2066 }
2067 return ret;
2068}
2069
2070/* Node balancing for insertion. Here we only split or push nodes around
2071 * when they are completely full. This is also done top down, so we
2072 * have to be pessimistic.
2073 */
2074static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2075 struct btrfs_root *root,
2076 struct btrfs_path *path, int level)
2077{
2078 struct btrfs_fs_info *fs_info = root->fs_info;
2079 struct extent_buffer *right = NULL;
2080 struct extent_buffer *mid;
2081 struct extent_buffer *left = NULL;
2082 struct extent_buffer *parent = NULL;
2083 int ret = 0;
2084 int wret;
2085 int pslot;
2086 int orig_slot = path->slots[level];
2087
2088 if (level == 0)
2089 return 1;
2090
2091 mid = path->nodes[level];
2092 WARN_ON(btrfs_header_generation(mid) != trans->transid);
2093
2094 if (level < BTRFS_MAX_LEVEL - 1) {
2095 parent = path->nodes[level + 1];
2096 pslot = path->slots[level + 1];
2097 }
2098
2099 if (!parent)
2100 return 1;
2101
2102 left = btrfs_read_node_slot(parent, pslot - 1);
2103 if (IS_ERR(left))
2104 left = NULL;
2105
2106 /* first, try to make some room in the middle buffer */
2107 if (left) {
2108 u32 left_nr;
2109
2110 btrfs_tree_lock(left);
2111 btrfs_set_lock_blocking_write(left);
2112
2113 left_nr = btrfs_header_nritems(left);
2114 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2115 wret = 1;
2116 } else {
2117 ret = btrfs_cow_block(trans, root, left, parent,
2118 pslot - 1, &left);
2119 if (ret)
2120 wret = 1;
2121 else {
2122 wret = push_node_left(trans, left, mid, 0);
2123 }
2124 }
2125 if (wret < 0)
2126 ret = wret;
2127 if (wret == 0) {
2128 struct btrfs_disk_key disk_key;
2129 orig_slot += left_nr;
2130 btrfs_node_key(mid, &disk_key, 0);
2131 ret = tree_mod_log_insert_key(parent, pslot,
2132 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2133 BUG_ON(ret < 0);
2134 btrfs_set_node_key(parent, &disk_key, pslot);
2135 btrfs_mark_buffer_dirty(parent);
2136 if (btrfs_header_nritems(left) > orig_slot) {
2137 path->nodes[level] = left;
2138 path->slots[level + 1] -= 1;
2139 path->slots[level] = orig_slot;
2140 btrfs_tree_unlock(mid);
2141 free_extent_buffer(mid);
2142 } else {
2143 orig_slot -=
2144 btrfs_header_nritems(left);
2145 path->slots[level] = orig_slot;
2146 btrfs_tree_unlock(left);
2147 free_extent_buffer(left);
2148 }
2149 return 0;
2150 }
2151 btrfs_tree_unlock(left);
2152 free_extent_buffer(left);
2153 }
2154 right = btrfs_read_node_slot(parent, pslot + 1);
2155 if (IS_ERR(right))
2156 right = NULL;
2157
2158 /*
2159 * then try to empty the right most buffer into the middle
2160 */
2161 if (right) {
2162 u32 right_nr;
2163
2164 btrfs_tree_lock(right);
2165 btrfs_set_lock_blocking_write(right);
2166
2167 right_nr = btrfs_header_nritems(right);
2168 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2169 wret = 1;
2170 } else {
2171 ret = btrfs_cow_block(trans, root, right,
2172 parent, pslot + 1,
2173 &right);
2174 if (ret)
2175 wret = 1;
2176 else {
2177 wret = balance_node_right(trans, right, mid);
2178 }
2179 }
2180 if (wret < 0)
2181 ret = wret;
2182 if (wret == 0) {
2183 struct btrfs_disk_key disk_key;
2184
2185 btrfs_node_key(right, &disk_key, 0);
2186 ret = tree_mod_log_insert_key(parent, pslot + 1,
2187 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2188 BUG_ON(ret < 0);
2189 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2190 btrfs_mark_buffer_dirty(parent);
2191
2192 if (btrfs_header_nritems(mid) <= orig_slot) {
2193 path->nodes[level] = right;
2194 path->slots[level + 1] += 1;
2195 path->slots[level] = orig_slot -
2196 btrfs_header_nritems(mid);
2197 btrfs_tree_unlock(mid);
2198 free_extent_buffer(mid);
2199 } else {
2200 btrfs_tree_unlock(right);
2201 free_extent_buffer(right);
2202 }
2203 return 0;
2204 }
2205 btrfs_tree_unlock(right);
2206 free_extent_buffer(right);
2207 }
2208 return 1;
2209}
2210
2211/*
2212 * readahead one full node of leaves, finding things that are close
2213 * to the block in 'slot', and triggering ra on them.
2214 */
2215static void reada_for_search(struct btrfs_fs_info *fs_info,
2216 struct btrfs_path *path,
2217 int level, int slot, u64 objectid)
2218{
2219 struct extent_buffer *node;
2220 struct btrfs_disk_key disk_key;
2221 u32 nritems;
2222 u64 search;
2223 u64 target;
2224 u64 nread = 0;
2225 struct extent_buffer *eb;
2226 u32 nr;
2227 u32 blocksize;
2228 u32 nscan = 0;
2229
2230 if (level != 1)
2231 return;
2232
2233 if (!path->nodes[level])
2234 return;
2235
2236 node = path->nodes[level];
2237
2238 search = btrfs_node_blockptr(node, slot);
2239 blocksize = fs_info->nodesize;
2240 eb = find_extent_buffer(fs_info, search);
2241 if (eb) {
2242 free_extent_buffer(eb);
2243 return;
2244 }
2245
2246 target = search;
2247
2248 nritems = btrfs_header_nritems(node);
2249 nr = slot;
2250
2251 while (1) {
2252 if (path->reada == READA_BACK) {
2253 if (nr == 0)
2254 break;
2255 nr--;
2256 } else if (path->reada == READA_FORWARD) {
2257 nr++;
2258 if (nr >= nritems)
2259 break;
2260 }
2261 if (path->reada == READA_BACK && objectid) {
2262 btrfs_node_key(node, &disk_key, nr);
2263 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2264 break;
2265 }
2266 search = btrfs_node_blockptr(node, nr);
2267 if ((search <= target && target - search <= 65536) ||
2268 (search > target && search - target <= 65536)) {
2269 readahead_tree_block(fs_info, search);
2270 nread += blocksize;
2271 }
2272 nscan++;
2273 if ((nread > 65536 || nscan > 32))
2274 break;
2275 }
2276}
2277
2278static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2279 struct btrfs_path *path, int level)
2280{
2281 int slot;
2282 int nritems;
2283 struct extent_buffer *parent;
2284 struct extent_buffer *eb;
2285 u64 gen;
2286 u64 block1 = 0;
2287 u64 block2 = 0;
2288
2289 parent = path->nodes[level + 1];
2290 if (!parent)
2291 return;
2292
2293 nritems = btrfs_header_nritems(parent);
2294 slot = path->slots[level + 1];
2295
2296 if (slot > 0) {
2297 block1 = btrfs_node_blockptr(parent, slot - 1);
2298 gen = btrfs_node_ptr_generation(parent, slot - 1);
2299 eb = find_extent_buffer(fs_info, block1);
2300 /*
2301 * if we get -eagain from btrfs_buffer_uptodate, we
2302 * don't want to return eagain here. That will loop
2303 * forever
2304 */
2305 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2306 block1 = 0;
2307 free_extent_buffer(eb);
2308 }
2309 if (slot + 1 < nritems) {
2310 block2 = btrfs_node_blockptr(parent, slot + 1);
2311 gen = btrfs_node_ptr_generation(parent, slot + 1);
2312 eb = find_extent_buffer(fs_info, block2);
2313 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2314 block2 = 0;
2315 free_extent_buffer(eb);
2316 }
2317
2318 if (block1)
2319 readahead_tree_block(fs_info, block1);
2320 if (block2)
2321 readahead_tree_block(fs_info, block2);
2322}
2323
2324
2325/*
2326 * when we walk down the tree, it is usually safe to unlock the higher layers
2327 * in the tree. The exceptions are when our path goes through slot 0, because
2328 * operations on the tree might require changing key pointers higher up in the
2329 * tree.
2330 *
2331 * callers might also have set path->keep_locks, which tells this code to keep
2332 * the lock if the path points to the last slot in the block. This is part of
2333 * walking through the tree, and selecting the next slot in the higher block.
2334 *
2335 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2336 * if lowest_unlock is 1, level 0 won't be unlocked
2337 */
2338static noinline void unlock_up(struct btrfs_path *path, int level,
2339 int lowest_unlock, int min_write_lock_level,
2340 int *write_lock_level)
2341{
2342 int i;
2343 int skip_level = level;
2344 int no_skips = 0;
2345 struct extent_buffer *t;
2346
2347 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2348 if (!path->nodes[i])
2349 break;
2350 if (!path->locks[i])
2351 break;
2352 if (!no_skips && path->slots[i] == 0) {
2353 skip_level = i + 1;
2354 continue;
2355 }
2356 if (!no_skips && path->keep_locks) {
2357 u32 nritems;
2358 t = path->nodes[i];
2359 nritems = btrfs_header_nritems(t);
2360 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2361 skip_level = i + 1;
2362 continue;
2363 }
2364 }
2365 if (skip_level < i && i >= lowest_unlock)
2366 no_skips = 1;
2367
2368 t = path->nodes[i];
2369 if (i >= lowest_unlock && i > skip_level) {
2370 btrfs_tree_unlock_rw(t, path->locks[i]);
2371 path->locks[i] = 0;
2372 if (write_lock_level &&
2373 i > min_write_lock_level &&
2374 i <= *write_lock_level) {
2375 *write_lock_level = i - 1;
2376 }
2377 }
2378 }
2379}
2380
2381/*
2382 * This releases any locks held in the path starting at level and
2383 * going all the way up to the root.
2384 *
2385 * btrfs_search_slot will keep the lock held on higher nodes in a few
2386 * corner cases, such as COW of the block at slot zero in the node. This
2387 * ignores those rules, and it should only be called when there are no
2388 * more updates to be done higher up in the tree.
2389 */
2390noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2391{
2392 int i;
2393
2394 if (path->keep_locks)
2395 return;
2396
2397 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2398 if (!path->nodes[i])
2399 continue;
2400 if (!path->locks[i])
2401 continue;
2402 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2403 path->locks[i] = 0;
2404 }
2405}
2406
2407/*
2408 * helper function for btrfs_search_slot. The goal is to find a block
2409 * in cache without setting the path to blocking. If we find the block
2410 * we return zero and the path is unchanged.
2411 *
2412 * If we can't find the block, we set the path blocking and do some
2413 * reada. -EAGAIN is returned and the search must be repeated.
2414 */
2415static int
2416read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2417 struct extent_buffer **eb_ret, int level, int slot,
2418 const struct btrfs_key *key)
2419{
2420 struct btrfs_fs_info *fs_info = root->fs_info;
2421 u64 blocknr;
2422 u64 gen;
2423 struct extent_buffer *b = *eb_ret;
2424 struct extent_buffer *tmp;
2425 struct btrfs_key first_key;
2426 int ret;
2427 int parent_level;
2428
2429 blocknr = btrfs_node_blockptr(b, slot);
2430 gen = btrfs_node_ptr_generation(b, slot);
2431 parent_level = btrfs_header_level(b);
2432 btrfs_node_key_to_cpu(b, &first_key, slot);
2433
2434 tmp = find_extent_buffer(fs_info, blocknr);
2435 if (tmp) {
2436 /* first we do an atomic uptodate check */
2437 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2438 /*
2439 * Do extra check for first_key, eb can be stale due to
2440 * being cached, read from scrub, or have multiple
2441 * parents (shared tree blocks).
2442 */
2443 if (btrfs_verify_level_key(tmp,
2444 parent_level - 1, &first_key, gen)) {
2445 free_extent_buffer(tmp);
2446 return -EUCLEAN;
2447 }
2448 *eb_ret = tmp;
2449 return 0;
2450 }
2451
2452 /* the pages were up to date, but we failed
2453 * the generation number check. Do a full
2454 * read for the generation number that is correct.
2455 * We must do this without dropping locks so
2456 * we can trust our generation number
2457 */
2458 btrfs_set_path_blocking(p);
2459
2460 /* now we're allowed to do a blocking uptodate check */
2461 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2462 if (!ret) {
2463 *eb_ret = tmp;
2464 return 0;
2465 }
2466 free_extent_buffer(tmp);
2467 btrfs_release_path(p);
2468 return -EIO;
2469 }
2470
2471 /*
2472 * reduce lock contention at high levels
2473 * of the btree by dropping locks before
2474 * we read. Don't release the lock on the current
2475 * level because we need to walk this node to figure
2476 * out which blocks to read.
2477 */
2478 btrfs_unlock_up_safe(p, level + 1);
2479 btrfs_set_path_blocking(p);
2480
2481 if (p->reada != READA_NONE)
2482 reada_for_search(fs_info, p, level, slot, key->objectid);
2483
2484 ret = -EAGAIN;
2485 tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2486 &first_key);
2487 if (!IS_ERR(tmp)) {
2488 /*
2489 * If the read above didn't mark this buffer up to date,
2490 * it will never end up being up to date. Set ret to EIO now
2491 * and give up so that our caller doesn't loop forever
2492 * on our EAGAINs.
2493 */
2494 if (!extent_buffer_uptodate(tmp))
2495 ret = -EIO;
2496 free_extent_buffer(tmp);
2497 } else {
2498 ret = PTR_ERR(tmp);
2499 }
2500
2501 btrfs_release_path(p);
2502 return ret;
2503}
2504
2505/*
2506 * helper function for btrfs_search_slot. This does all of the checks
2507 * for node-level blocks and does any balancing required based on
2508 * the ins_len.
2509 *
2510 * If no extra work was required, zero is returned. If we had to
2511 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2512 * start over
2513 */
2514static int
2515setup_nodes_for_search(struct btrfs_trans_handle *trans,
2516 struct btrfs_root *root, struct btrfs_path *p,
2517 struct extent_buffer *b, int level, int ins_len,
2518 int *write_lock_level)
2519{
2520 struct btrfs_fs_info *fs_info = root->fs_info;
2521 int ret;
2522
2523 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2524 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2525 int sret;
2526
2527 if (*write_lock_level < level + 1) {
2528 *write_lock_level = level + 1;
2529 btrfs_release_path(p);
2530 goto again;
2531 }
2532
2533 btrfs_set_path_blocking(p);
2534 reada_for_balance(fs_info, p, level);
2535 sret = split_node(trans, root, p, level);
2536
2537 BUG_ON(sret > 0);
2538 if (sret) {
2539 ret = sret;
2540 goto done;
2541 }
2542 b = p->nodes[level];
2543 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2544 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2545 int sret;
2546
2547 if (*write_lock_level < level + 1) {
2548 *write_lock_level = level + 1;
2549 btrfs_release_path(p);
2550 goto again;
2551 }
2552
2553 btrfs_set_path_blocking(p);
2554 reada_for_balance(fs_info, p, level);
2555 sret = balance_level(trans, root, p, level);
2556
2557 if (sret) {
2558 ret = sret;
2559 goto done;
2560 }
2561 b = p->nodes[level];
2562 if (!b) {
2563 btrfs_release_path(p);
2564 goto again;
2565 }
2566 BUG_ON(btrfs_header_nritems(b) == 1);
2567 }
2568 return 0;
2569
2570again:
2571 ret = -EAGAIN;
2572done:
2573 return ret;
2574}
2575
2576static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2577 int level, int *prev_cmp, int *slot)
2578{
2579 if (*prev_cmp != 0) {
2580 *prev_cmp = btrfs_bin_search(b, key, level, slot);
2581 return *prev_cmp;
2582 }
2583
2584 *slot = 0;
2585
2586 return 0;
2587}
2588
2589int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2590 u64 iobjectid, u64 ioff, u8 key_type,
2591 struct btrfs_key *found_key)
2592{
2593 int ret;
2594 struct btrfs_key key;
2595 struct extent_buffer *eb;
2596
2597 ASSERT(path);
2598 ASSERT(found_key);
2599
2600 key.type = key_type;
2601 key.objectid = iobjectid;
2602 key.offset = ioff;
2603
2604 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2605 if (ret < 0)
2606 return ret;
2607
2608 eb = path->nodes[0];
2609 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2610 ret = btrfs_next_leaf(fs_root, path);
2611 if (ret)
2612 return ret;
2613 eb = path->nodes[0];
2614 }
2615
2616 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2617 if (found_key->type != key.type ||
2618 found_key->objectid != key.objectid)
2619 return 1;
2620
2621 return 0;
2622}
2623
2624static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2625 struct btrfs_path *p,
2626 int write_lock_level)
2627{
2628 struct btrfs_fs_info *fs_info = root->fs_info;
2629 struct extent_buffer *b;
2630 int root_lock;
2631 int level = 0;
2632
2633 /* We try very hard to do read locks on the root */
2634 root_lock = BTRFS_READ_LOCK;
2635
2636 if (p->search_commit_root) {
2637 /*
2638 * The commit roots are read only so we always do read locks,
2639 * and we always must hold the commit_root_sem when doing
2640 * searches on them, the only exception is send where we don't
2641 * want to block transaction commits for a long time, so
2642 * we need to clone the commit root in order to avoid races
2643 * with transaction commits that create a snapshot of one of
2644 * the roots used by a send operation.
2645 */
2646 if (p->need_commit_sem) {
2647 down_read(&fs_info->commit_root_sem);
2648 b = btrfs_clone_extent_buffer(root->commit_root);
2649 up_read(&fs_info->commit_root_sem);
2650 if (!b)
2651 return ERR_PTR(-ENOMEM);
2652
2653 } else {
2654 b = root->commit_root;
2655 extent_buffer_get(b);
2656 }
2657 level = btrfs_header_level(b);
2658 /*
2659 * Ensure that all callers have set skip_locking when
2660 * p->search_commit_root = 1.
2661 */
2662 ASSERT(p->skip_locking == 1);
2663
2664 goto out;
2665 }
2666
2667 if (p->skip_locking) {
2668 b = btrfs_root_node(root);
2669 level = btrfs_header_level(b);
2670 goto out;
2671 }
2672
2673 /*
2674 * If the level is set to maximum, we can skip trying to get the read
2675 * lock.
2676 */
2677 if (write_lock_level < BTRFS_MAX_LEVEL) {
2678 /*
2679 * We don't know the level of the root node until we actually
2680 * have it read locked
2681 */
2682 b = btrfs_read_lock_root_node(root);
2683 level = btrfs_header_level(b);
2684 if (level > write_lock_level)
2685 goto out;
2686
2687 /* Whoops, must trade for write lock */
2688 btrfs_tree_read_unlock(b);
2689 free_extent_buffer(b);
2690 }
2691
2692 b = btrfs_lock_root_node(root);
2693 root_lock = BTRFS_WRITE_LOCK;
2694
2695 /* The level might have changed, check again */
2696 level = btrfs_header_level(b);
2697
2698out:
2699 p->nodes[level] = b;
2700 if (!p->skip_locking)
2701 p->locks[level] = root_lock;
2702 /*
2703 * Callers are responsible for dropping b's references.
2704 */
2705 return b;
2706}
2707
2708
2709/*
2710 * btrfs_search_slot - look for a key in a tree and perform necessary
2711 * modifications to preserve tree invariants.
2712 *
2713 * @trans: Handle of transaction, used when modifying the tree
2714 * @p: Holds all btree nodes along the search path
2715 * @root: The root node of the tree
2716 * @key: The key we are looking for
2717 * @ins_len: Indicates purpose of search, for inserts it is 1, for
2718 * deletions it's -1. 0 for plain searches
2719 * @cow: boolean should CoW operations be performed. Must always be 1
2720 * when modifying the tree.
2721 *
2722 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2723 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2724 *
2725 * If @key is found, 0 is returned and you can find the item in the leaf level
2726 * of the path (level 0)
2727 *
2728 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2729 * points to the slot where it should be inserted
2730 *
2731 * If an error is encountered while searching the tree a negative error number
2732 * is returned
2733 */
2734int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2735 const struct btrfs_key *key, struct btrfs_path *p,
2736 int ins_len, int cow)
2737{
2738 struct extent_buffer *b;
2739 int slot;
2740 int ret;
2741 int err;
2742 int level;
2743 int lowest_unlock = 1;
2744 /* everything at write_lock_level or lower must be write locked */
2745 int write_lock_level = 0;
2746 u8 lowest_level = 0;
2747 int min_write_lock_level;
2748 int prev_cmp;
2749
2750 lowest_level = p->lowest_level;
2751 WARN_ON(lowest_level && ins_len > 0);
2752 WARN_ON(p->nodes[0] != NULL);
2753 BUG_ON(!cow && ins_len);
2754
2755 if (ins_len < 0) {
2756 lowest_unlock = 2;
2757
2758 /* when we are removing items, we might have to go up to level
2759 * two as we update tree pointers Make sure we keep write
2760 * for those levels as well
2761 */
2762 write_lock_level = 2;
2763 } else if (ins_len > 0) {
2764 /*
2765 * for inserting items, make sure we have a write lock on
2766 * level 1 so we can update keys
2767 */
2768 write_lock_level = 1;
2769 }
2770
2771 if (!cow)
2772 write_lock_level = -1;
2773
2774 if (cow && (p->keep_locks || p->lowest_level))
2775 write_lock_level = BTRFS_MAX_LEVEL;
2776
2777 min_write_lock_level = write_lock_level;
2778
2779again:
2780 prev_cmp = -1;
2781 b = btrfs_search_slot_get_root(root, p, write_lock_level);
2782 if (IS_ERR(b)) {
2783 ret = PTR_ERR(b);
2784 goto done;
2785 }
2786
2787 while (b) {
2788 level = btrfs_header_level(b);
2789
2790 /*
2791 * setup the path here so we can release it under lock
2792 * contention with the cow code
2793 */
2794 if (cow) {
2795 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2796
2797 /*
2798 * if we don't really need to cow this block
2799 * then we don't want to set the path blocking,
2800 * so we test it here
2801 */
2802 if (!should_cow_block(trans, root, b)) {
2803 trans->dirty = true;
2804 goto cow_done;
2805 }
2806
2807 /*
2808 * must have write locks on this node and the
2809 * parent
2810 */
2811 if (level > write_lock_level ||
2812 (level + 1 > write_lock_level &&
2813 level + 1 < BTRFS_MAX_LEVEL &&
2814 p->nodes[level + 1])) {
2815 write_lock_level = level + 1;
2816 btrfs_release_path(p);
2817 goto again;
2818 }
2819
2820 btrfs_set_path_blocking(p);
2821 if (last_level)
2822 err = btrfs_cow_block(trans, root, b, NULL, 0,
2823 &b);
2824 else
2825 err = btrfs_cow_block(trans, root, b,
2826 p->nodes[level + 1],
2827 p->slots[level + 1], &b);
2828 if (err) {
2829 ret = err;
2830 goto done;
2831 }
2832 }
2833cow_done:
2834 p->nodes[level] = b;
2835 /*
2836 * Leave path with blocking locks to avoid massive
2837 * lock context switch, this is made on purpose.
2838 */
2839
2840 /*
2841 * we have a lock on b and as long as we aren't changing
2842 * the tree, there is no way to for the items in b to change.
2843 * It is safe to drop the lock on our parent before we
2844 * go through the expensive btree search on b.
2845 *
2846 * If we're inserting or deleting (ins_len != 0), then we might
2847 * be changing slot zero, which may require changing the parent.
2848 * So, we can't drop the lock until after we know which slot
2849 * we're operating on.
2850 */
2851 if (!ins_len && !p->keep_locks) {
2852 int u = level + 1;
2853
2854 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2855 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2856 p->locks[u] = 0;
2857 }
2858 }
2859
2860 ret = key_search(b, key, level, &prev_cmp, &slot);
2861 if (ret < 0)
2862 goto done;
2863
2864 if (level != 0) {
2865 int dec = 0;
2866 if (ret && slot > 0) {
2867 dec = 1;
2868 slot -= 1;
2869 }
2870 p->slots[level] = slot;
2871 err = setup_nodes_for_search(trans, root, p, b, level,
2872 ins_len, &write_lock_level);
2873 if (err == -EAGAIN)
2874 goto again;
2875 if (err) {
2876 ret = err;
2877 goto done;
2878 }
2879 b = p->nodes[level];
2880 slot = p->slots[level];
2881
2882 /*
2883 * slot 0 is special, if we change the key
2884 * we have to update the parent pointer
2885 * which means we must have a write lock
2886 * on the parent
2887 */
2888 if (slot == 0 && ins_len &&
2889 write_lock_level < level + 1) {
2890 write_lock_level = level + 1;
2891 btrfs_release_path(p);
2892 goto again;
2893 }
2894
2895 unlock_up(p, level, lowest_unlock,
2896 min_write_lock_level, &write_lock_level);
2897
2898 if (level == lowest_level) {
2899 if (dec)
2900 p->slots[level]++;
2901 goto done;
2902 }
2903
2904 err = read_block_for_search(root, p, &b, level,
2905 slot, key);
2906 if (err == -EAGAIN)
2907 goto again;
2908 if (err) {
2909 ret = err;
2910 goto done;
2911 }
2912
2913 if (!p->skip_locking) {
2914 level = btrfs_header_level(b);
2915 if (level <= write_lock_level) {
2916 if (!btrfs_try_tree_write_lock(b)) {
2917 btrfs_set_path_blocking(p);
2918 btrfs_tree_lock(b);
2919 }
2920 p->locks[level] = BTRFS_WRITE_LOCK;
2921 } else {
2922 if (!btrfs_tree_read_lock_atomic(b)) {
2923 btrfs_set_path_blocking(p);
2924 btrfs_tree_read_lock(b);
2925 }
2926 p->locks[level] = BTRFS_READ_LOCK;
2927 }
2928 p->nodes[level] = b;
2929 }
2930 } else {
2931 p->slots[level] = slot;
2932 if (ins_len > 0 &&
2933 btrfs_leaf_free_space(b) < ins_len) {
2934 if (write_lock_level < 1) {
2935 write_lock_level = 1;
2936 btrfs_release_path(p);
2937 goto again;
2938 }
2939
2940 btrfs_set_path_blocking(p);
2941 err = split_leaf(trans, root, key,
2942 p, ins_len, ret == 0);
2943
2944 BUG_ON(err > 0);
2945 if (err) {
2946 ret = err;
2947 goto done;
2948 }
2949 }
2950 if (!p->search_for_split)
2951 unlock_up(p, level, lowest_unlock,
2952 min_write_lock_level, NULL);
2953 goto done;
2954 }
2955 }
2956 ret = 1;
2957done:
2958 /*
2959 * we don't really know what they plan on doing with the path
2960 * from here on, so for now just mark it as blocking
2961 */
2962 if (!p->leave_spinning)
2963 btrfs_set_path_blocking(p);
2964 if (ret < 0 && !p->skip_release_on_error)
2965 btrfs_release_path(p);
2966 return ret;
2967}
2968
2969/*
2970 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2971 * current state of the tree together with the operations recorded in the tree
2972 * modification log to search for the key in a previous version of this tree, as
2973 * denoted by the time_seq parameter.
2974 *
2975 * Naturally, there is no support for insert, delete or cow operations.
2976 *
2977 * The resulting path and return value will be set up as if we called
2978 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2979 */
2980int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2981 struct btrfs_path *p, u64 time_seq)
2982{
2983 struct btrfs_fs_info *fs_info = root->fs_info;
2984 struct extent_buffer *b;
2985 int slot;
2986 int ret;
2987 int err;
2988 int level;
2989 int lowest_unlock = 1;
2990 u8 lowest_level = 0;
2991 int prev_cmp = -1;
2992
2993 lowest_level = p->lowest_level;
2994 WARN_ON(p->nodes[0] != NULL);
2995
2996 if (p->search_commit_root) {
2997 BUG_ON(time_seq);
2998 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2999 }
3000
3001again:
3002 b = get_old_root(root, time_seq);
3003 if (!b) {
3004 ret = -EIO;
3005 goto done;
3006 }
3007 level = btrfs_header_level(b);
3008 p->locks[level] = BTRFS_READ_LOCK;
3009
3010 while (b) {
3011 level = btrfs_header_level(b);
3012 p->nodes[level] = b;
3013
3014 /*
3015 * we have a lock on b and as long as we aren't changing
3016 * the tree, there is no way to for the items in b to change.
3017 * It is safe to drop the lock on our parent before we
3018 * go through the expensive btree search on b.
3019 */
3020 btrfs_unlock_up_safe(p, level + 1);
3021
3022 /*
3023 * Since we can unwind ebs we want to do a real search every
3024 * time.
3025 */
3026 prev_cmp = -1;
3027 ret = key_search(b, key, level, &prev_cmp, &slot);
3028 if (ret < 0)
3029 goto done;
3030
3031 if (level != 0) {
3032 int dec = 0;
3033 if (ret && slot > 0) {
3034 dec = 1;
3035 slot -= 1;
3036 }
3037 p->slots[level] = slot;
3038 unlock_up(p, level, lowest_unlock, 0, NULL);
3039
3040 if (level == lowest_level) {
3041 if (dec)
3042 p->slots[level]++;
3043 goto done;
3044 }
3045
3046 err = read_block_for_search(root, p, &b, level,
3047 slot, key);
3048 if (err == -EAGAIN)
3049 goto again;
3050 if (err) {
3051 ret = err;
3052 goto done;
3053 }
3054
3055 level = btrfs_header_level(b);
3056 if (!btrfs_tree_read_lock_atomic(b)) {
3057 btrfs_set_path_blocking(p);
3058 btrfs_tree_read_lock(b);
3059 }
3060 b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3061 if (!b) {
3062 ret = -ENOMEM;
3063 goto done;
3064 }
3065 p->locks[level] = BTRFS_READ_LOCK;
3066 p->nodes[level] = b;
3067 } else {
3068 p->slots[level] = slot;
3069 unlock_up(p, level, lowest_unlock, 0, NULL);
3070 goto done;
3071 }
3072 }
3073 ret = 1;
3074done:
3075 if (!p->leave_spinning)
3076 btrfs_set_path_blocking(p);
3077 if (ret < 0)
3078 btrfs_release_path(p);
3079
3080 return ret;
3081}
3082
3083/*
3084 * helper to use instead of search slot if no exact match is needed but
3085 * instead the next or previous item should be returned.
3086 * When find_higher is true, the next higher item is returned, the next lower
3087 * otherwise.
3088 * When return_any and find_higher are both true, and no higher item is found,
3089 * return the next lower instead.
3090 * When return_any is true and find_higher is false, and no lower item is found,
3091 * return the next higher instead.
3092 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3093 * < 0 on error
3094 */
3095int btrfs_search_slot_for_read(struct btrfs_root *root,
3096 const struct btrfs_key *key,
3097 struct btrfs_path *p, int find_higher,
3098 int return_any)
3099{
3100 int ret;
3101 struct extent_buffer *leaf;
3102
3103again:
3104 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3105 if (ret <= 0)
3106 return ret;
3107 /*
3108 * a return value of 1 means the path is at the position where the
3109 * item should be inserted. Normally this is the next bigger item,
3110 * but in case the previous item is the last in a leaf, path points
3111 * to the first free slot in the previous leaf, i.e. at an invalid
3112 * item.
3113 */
3114 leaf = p->nodes[0];
3115
3116 if (find_higher) {
3117 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3118 ret = btrfs_next_leaf(root, p);
3119 if (ret <= 0)
3120 return ret;
3121 if (!return_any)
3122 return 1;
3123 /*
3124 * no higher item found, return the next
3125 * lower instead
3126 */
3127 return_any = 0;
3128 find_higher = 0;
3129 btrfs_release_path(p);
3130 goto again;
3131 }
3132 } else {
3133 if (p->slots[0] == 0) {
3134 ret = btrfs_prev_leaf(root, p);
3135 if (ret < 0)
3136 return ret;
3137 if (!ret) {
3138 leaf = p->nodes[0];
3139 if (p->slots[0] == btrfs_header_nritems(leaf))
3140 p->slots[0]--;
3141 return 0;
3142 }
3143 if (!return_any)
3144 return 1;
3145 /*
3146 * no lower item found, return the next
3147 * higher instead
3148 */
3149 return_any = 0;
3150 find_higher = 1;
3151 btrfs_release_path(p);
3152 goto again;
3153 } else {
3154 --p->slots[0];
3155 }
3156 }
3157 return 0;
3158}
3159
3160/*
3161 * adjust the pointers going up the tree, starting at level
3162 * making sure the right key of each node is points to 'key'.
3163 * This is used after shifting pointers to the left, so it stops
3164 * fixing up pointers when a given leaf/node is not in slot 0 of the
3165 * higher levels
3166 *
3167 */
3168static void fixup_low_keys(struct btrfs_path *path,
3169 struct btrfs_disk_key *key, int level)
3170{
3171 int i;
3172 struct extent_buffer *t;
3173 int ret;
3174
3175 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3176 int tslot = path->slots[i];
3177
3178 if (!path->nodes[i])
3179 break;
3180 t = path->nodes[i];
3181 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3182 GFP_ATOMIC);
3183 BUG_ON(ret < 0);
3184 btrfs_set_node_key(t, key, tslot);
3185 btrfs_mark_buffer_dirty(path->nodes[i]);
3186 if (tslot != 0)
3187 break;
3188 }
3189}
3190
3191/*
3192 * update item key.
3193 *
3194 * This function isn't completely safe. It's the caller's responsibility
3195 * that the new key won't break the order
3196 */
3197void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3198 struct btrfs_path *path,
3199 const struct btrfs_key *new_key)
3200{
3201 struct btrfs_disk_key disk_key;
3202 struct extent_buffer *eb;
3203 int slot;
3204
3205 eb = path->nodes[0];
3206 slot = path->slots[0];
3207 if (slot > 0) {
3208 btrfs_item_key(eb, &disk_key, slot - 1);
3209 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
3210 btrfs_crit(fs_info,
3211 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3212 slot, btrfs_disk_key_objectid(&disk_key),
3213 btrfs_disk_key_type(&disk_key),
3214 btrfs_disk_key_offset(&disk_key),
3215 new_key->objectid, new_key->type,
3216 new_key->offset);
3217 btrfs_print_leaf(eb);
3218 BUG();
3219 }
3220 }
3221 if (slot < btrfs_header_nritems(eb) - 1) {
3222 btrfs_item_key(eb, &disk_key, slot + 1);
3223 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
3224 btrfs_crit(fs_info,
3225 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3226 slot, btrfs_disk_key_objectid(&disk_key),
3227 btrfs_disk_key_type(&disk_key),
3228 btrfs_disk_key_offset(&disk_key),
3229 new_key->objectid, new_key->type,
3230 new_key->offset);
3231 btrfs_print_leaf(eb);
3232 BUG();
3233 }
3234 }
3235
3236 btrfs_cpu_key_to_disk(&disk_key, new_key);
3237 btrfs_set_item_key(eb, &disk_key, slot);
3238 btrfs_mark_buffer_dirty(eb);
3239 if (slot == 0)
3240 fixup_low_keys(path, &disk_key, 1);
3241}
3242
3243/*
3244 * try to push data from one node into the next node left in the
3245 * tree.
3246 *
3247 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3248 * error, and > 0 if there was no room in the left hand block.
3249 */
3250static int push_node_left(struct btrfs_trans_handle *trans,
3251 struct extent_buffer *dst,
3252 struct extent_buffer *src, int empty)
3253{
3254 struct btrfs_fs_info *fs_info = trans->fs_info;
3255 int push_items = 0;
3256 int src_nritems;
3257 int dst_nritems;
3258 int ret = 0;
3259
3260 src_nritems = btrfs_header_nritems(src);
3261 dst_nritems = btrfs_header_nritems(dst);
3262 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3263 WARN_ON(btrfs_header_generation(src) != trans->transid);
3264 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3265
3266 if (!empty && src_nritems <= 8)
3267 return 1;
3268
3269 if (push_items <= 0)
3270 return 1;
3271
3272 if (empty) {
3273 push_items = min(src_nritems, push_items);
3274 if (push_items < src_nritems) {
3275 /* leave at least 8 pointers in the node if
3276 * we aren't going to empty it
3277 */
3278 if (src_nritems - push_items < 8) {
3279 if (push_items <= 8)
3280 return 1;
3281 push_items -= 8;
3282 }
3283 }
3284 } else
3285 push_items = min(src_nritems - 8, push_items);
3286
3287 ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
3288 if (ret) {
3289 btrfs_abort_transaction(trans, ret);
3290 return ret;
3291 }
3292 copy_extent_buffer(dst, src,
3293 btrfs_node_key_ptr_offset(dst_nritems),
3294 btrfs_node_key_ptr_offset(0),
3295 push_items * sizeof(struct btrfs_key_ptr));
3296
3297 if (push_items < src_nritems) {
3298 /*
3299 * Don't call tree_mod_log_insert_move here, key removal was
3300 * already fully logged by tree_mod_log_eb_copy above.
3301 */
3302 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3303 btrfs_node_key_ptr_offset(push_items),
3304 (src_nritems - push_items) *
3305 sizeof(struct btrfs_key_ptr));
3306 }
3307 btrfs_set_header_nritems(src, src_nritems - push_items);
3308 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3309 btrfs_mark_buffer_dirty(src);
3310 btrfs_mark_buffer_dirty(dst);
3311
3312 return ret;
3313}
3314
3315/*
3316 * try to push data from one node into the next node right in the
3317 * tree.
3318 *
3319 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3320 * error, and > 0 if there was no room in the right hand block.
3321 *
3322 * this will only push up to 1/2 the contents of the left node over
3323 */
3324static int balance_node_right(struct btrfs_trans_handle *trans,
3325 struct extent_buffer *dst,
3326 struct extent_buffer *src)
3327{
3328 struct btrfs_fs_info *fs_info = trans->fs_info;
3329 int push_items = 0;
3330 int max_push;
3331 int src_nritems;
3332 int dst_nritems;
3333 int ret = 0;
3334
3335 WARN_ON(btrfs_header_generation(src) != trans->transid);
3336 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3337
3338 src_nritems = btrfs_header_nritems(src);
3339 dst_nritems = btrfs_header_nritems(dst);
3340 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3341 if (push_items <= 0)
3342 return 1;
3343
3344 if (src_nritems < 4)
3345 return 1;
3346
3347 max_push = src_nritems / 2 + 1;
3348 /* don't try to empty the node */
3349 if (max_push >= src_nritems)
3350 return 1;
3351
3352 if (max_push < push_items)
3353 push_items = max_push;
3354
3355 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3356 BUG_ON(ret < 0);
3357 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3358 btrfs_node_key_ptr_offset(0),
3359 (dst_nritems) *
3360 sizeof(struct btrfs_key_ptr));
3361
3362 ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
3363 push_items);
3364 if (ret) {
3365 btrfs_abort_transaction(trans, ret);
3366 return ret;
3367 }
3368 copy_extent_buffer(dst, src,
3369 btrfs_node_key_ptr_offset(0),
3370 btrfs_node_key_ptr_offset(src_nritems - push_items),
3371 push_items * sizeof(struct btrfs_key_ptr));
3372
3373 btrfs_set_header_nritems(src, src_nritems - push_items);
3374 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3375
3376 btrfs_mark_buffer_dirty(src);
3377 btrfs_mark_buffer_dirty(dst);
3378
3379 return ret;
3380}
3381
3382/*
3383 * helper function to insert a new root level in the tree.
3384 * A new node is allocated, and a single item is inserted to
3385 * point to the existing root
3386 *
3387 * returns zero on success or < 0 on failure.
3388 */
3389static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3390 struct btrfs_root *root,
3391 struct btrfs_path *path, int level)
3392{
3393 struct btrfs_fs_info *fs_info = root->fs_info;
3394 u64 lower_gen;
3395 struct extent_buffer *lower;
3396 struct extent_buffer *c;
3397 struct extent_buffer *old;
3398 struct btrfs_disk_key lower_key;
3399 int ret;
3400
3401 BUG_ON(path->nodes[level]);
3402 BUG_ON(path->nodes[level-1] != root->node);
3403
3404 lower = path->nodes[level-1];
3405 if (level == 1)
3406 btrfs_item_key(lower, &lower_key, 0);
3407 else
3408 btrfs_node_key(lower, &lower_key, 0);
3409
3410 c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3411 root->node->start, 0);
3412 if (IS_ERR(c))
3413 return PTR_ERR(c);
3414
3415 root_add_used(root, fs_info->nodesize);
3416
3417 btrfs_set_header_nritems(c, 1);
3418 btrfs_set_node_key(c, &lower_key, 0);
3419 btrfs_set_node_blockptr(c, 0, lower->start);
3420 lower_gen = btrfs_header_generation(lower);
3421 WARN_ON(lower_gen != trans->transid);
3422
3423 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3424
3425 btrfs_mark_buffer_dirty(c);
3426
3427 old = root->node;
3428 ret = tree_mod_log_insert_root(root->node, c, 0);
3429 BUG_ON(ret < 0);
3430 rcu_assign_pointer(root->node, c);
3431
3432 /* the super has an extra ref to root->node */
3433 free_extent_buffer(old);
3434
3435 add_root_to_dirty_list(root);
3436 extent_buffer_get(c);
3437 path->nodes[level] = c;
3438 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3439 path->slots[level] = 0;
3440 return 0;
3441}
3442
3443/*
3444 * worker function to insert a single pointer in a node.
3445 * the node should have enough room for the pointer already
3446 *
3447 * slot and level indicate where you want the key to go, and
3448 * blocknr is the block the key points to.
3449 */
3450static void insert_ptr(struct btrfs_trans_handle *trans,
3451 struct btrfs_path *path,
3452 struct btrfs_disk_key *key, u64 bytenr,
3453 int slot, int level)
3454{
3455 struct extent_buffer *lower;
3456 int nritems;
3457 int ret;
3458
3459 BUG_ON(!path->nodes[level]);
3460 btrfs_assert_tree_locked(path->nodes[level]);
3461 lower = path->nodes[level];
3462 nritems = btrfs_header_nritems(lower);
3463 BUG_ON(slot > nritems);
3464 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3465 if (slot != nritems) {
3466 if (level) {
3467 ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3468 nritems - slot);
3469 BUG_ON(ret < 0);
3470 }
3471 memmove_extent_buffer(lower,
3472 btrfs_node_key_ptr_offset(slot + 1),
3473 btrfs_node_key_ptr_offset(slot),
3474 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3475 }
3476 if (level) {
3477 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3478 GFP_NOFS);
3479 BUG_ON(ret < 0);
3480 }
3481 btrfs_set_node_key(lower, key, slot);
3482 btrfs_set_node_blockptr(lower, slot, bytenr);
3483 WARN_ON(trans->transid == 0);
3484 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3485 btrfs_set_header_nritems(lower, nritems + 1);
3486 btrfs_mark_buffer_dirty(lower);
3487}
3488
3489/*
3490 * split the node at the specified level in path in two.
3491 * The path is corrected to point to the appropriate node after the split
3492 *
3493 * Before splitting this tries to make some room in the node by pushing
3494 * left and right, if either one works, it returns right away.
3495 *
3496 * returns 0 on success and < 0 on failure
3497 */
3498static noinline int split_node(struct btrfs_trans_handle *trans,
3499 struct btrfs_root *root,
3500 struct btrfs_path *path, int level)
3501{
3502 struct btrfs_fs_info *fs_info = root->fs_info;
3503 struct extent_buffer *c;
3504 struct extent_buffer *split;
3505 struct btrfs_disk_key disk_key;
3506 int mid;
3507 int ret;
3508 u32 c_nritems;
3509
3510 c = path->nodes[level];
3511 WARN_ON(btrfs_header_generation(c) != trans->transid);
3512 if (c == root->node) {
3513 /*
3514 * trying to split the root, lets make a new one
3515 *
3516 * tree mod log: We don't log_removal old root in
3517 * insert_new_root, because that root buffer will be kept as a
3518 * normal node. We are going to log removal of half of the
3519 * elements below with tree_mod_log_eb_copy. We're holding a
3520 * tree lock on the buffer, which is why we cannot race with
3521 * other tree_mod_log users.
3522 */
3523 ret = insert_new_root(trans, root, path, level + 1);
3524 if (ret)
3525 return ret;
3526 } else {
3527 ret = push_nodes_for_insert(trans, root, path, level);
3528 c = path->nodes[level];
3529 if (!ret && btrfs_header_nritems(c) <
3530 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3531 return 0;
3532 if (ret < 0)
3533 return ret;
3534 }
3535
3536 c_nritems = btrfs_header_nritems(c);
3537 mid = (c_nritems + 1) / 2;
3538 btrfs_node_key(c, &disk_key, mid);
3539
3540 split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3541 c->start, 0);
3542 if (IS_ERR(split))
3543 return PTR_ERR(split);
3544
3545 root_add_used(root, fs_info->nodesize);
3546 ASSERT(btrfs_header_level(c) == level);
3547
3548 ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3549 if (ret) {
3550 btrfs_abort_transaction(trans, ret);
3551 return ret;
3552 }
3553 copy_extent_buffer(split, c,
3554 btrfs_node_key_ptr_offset(0),
3555 btrfs_node_key_ptr_offset(mid),
3556 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3557 btrfs_set_header_nritems(split, c_nritems - mid);
3558 btrfs_set_header_nritems(c, mid);
3559 ret = 0;
3560
3561 btrfs_mark_buffer_dirty(c);
3562 btrfs_mark_buffer_dirty(split);
3563
3564 insert_ptr(trans, path, &disk_key, split->start,
3565 path->slots[level + 1] + 1, level + 1);
3566
3567 if (path->slots[level] >= mid) {
3568 path->slots[level] -= mid;
3569 btrfs_tree_unlock(c);
3570 free_extent_buffer(c);
3571 path->nodes[level] = split;
3572 path->slots[level + 1] += 1;
3573 } else {
3574 btrfs_tree_unlock(split);
3575 free_extent_buffer(split);
3576 }
3577 return ret;
3578}
3579
3580/*
3581 * how many bytes are required to store the items in a leaf. start
3582 * and nr indicate which items in the leaf to check. This totals up the
3583 * space used both by the item structs and the item data
3584 */
3585static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3586{
3587 struct btrfs_item *start_item;
3588 struct btrfs_item *end_item;
3589 struct btrfs_map_token token;
3590 int data_len;
3591 int nritems = btrfs_header_nritems(l);
3592 int end = min(nritems, start + nr) - 1;
3593
3594 if (!nr)
3595 return 0;
3596 btrfs_init_map_token(&token, l);
3597 start_item = btrfs_item_nr(start);
3598 end_item = btrfs_item_nr(end);
3599 data_len = btrfs_token_item_offset(l, start_item, &token) +
3600 btrfs_token_item_size(l, start_item, &token);
3601 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3602 data_len += sizeof(struct btrfs_item) * nr;
3603 WARN_ON(data_len < 0);
3604 return data_len;
3605}
3606
3607/*
3608 * The space between the end of the leaf items and
3609 * the start of the leaf data. IOW, how much room
3610 * the leaf has left for both items and data
3611 */
3612noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3613{
3614 struct btrfs_fs_info *fs_info = leaf->fs_info;
3615 int nritems = btrfs_header_nritems(leaf);
3616 int ret;
3617
3618 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3619 if (ret < 0) {
3620 btrfs_crit(fs_info,
3621 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3622 ret,
3623 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3624 leaf_space_used(leaf, 0, nritems), nritems);
3625 }
3626 return ret;
3627}
3628
3629/*
3630 * min slot controls the lowest index we're willing to push to the
3631 * right. We'll push up to and including min_slot, but no lower
3632 */
3633static noinline int __push_leaf_right(struct btrfs_path *path,
3634 int data_size, int empty,
3635 struct extent_buffer *right,
3636 int free_space, u32 left_nritems,
3637 u32 min_slot)
3638{
3639 struct btrfs_fs_info *fs_info = right->fs_info;
3640 struct extent_buffer *left = path->nodes[0];
3641 struct extent_buffer *upper = path->nodes[1];
3642 struct btrfs_map_token token;
3643 struct btrfs_disk_key disk_key;
3644 int slot;
3645 u32 i;
3646 int push_space = 0;
3647 int push_items = 0;
3648 struct btrfs_item *item;
3649 u32 nr;
3650 u32 right_nritems;
3651 u32 data_end;
3652 u32 this_item_size;
3653
3654 if (empty)
3655 nr = 0;
3656 else
3657 nr = max_t(u32, 1, min_slot);
3658
3659 if (path->slots[0] >= left_nritems)
3660 push_space += data_size;
3661
3662 slot = path->slots[1];
3663 i = left_nritems - 1;
3664 while (i >= nr) {
3665 item = btrfs_item_nr(i);
3666
3667 if (!empty && push_items > 0) {
3668 if (path->slots[0] > i)
3669 break;
3670 if (path->slots[0] == i) {
3671 int space = btrfs_leaf_free_space(left);
3672
3673 if (space + push_space * 2 > free_space)
3674 break;
3675 }
3676 }
3677
3678 if (path->slots[0] == i)
3679 push_space += data_size;
3680
3681 this_item_size = btrfs_item_size(left, item);
3682 if (this_item_size + sizeof(*item) + push_space > free_space)
3683 break;
3684
3685 push_items++;
3686 push_space += this_item_size + sizeof(*item);
3687 if (i == 0)
3688 break;
3689 i--;
3690 }
3691
3692 if (push_items == 0)
3693 goto out_unlock;
3694
3695 WARN_ON(!empty && push_items == left_nritems);
3696
3697 /* push left to right */
3698 right_nritems = btrfs_header_nritems(right);
3699
3700 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3701 push_space -= leaf_data_end(left);
3702
3703 /* make room in the right data area */
3704 data_end = leaf_data_end(right);
3705 memmove_extent_buffer(right,
3706 BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3707 BTRFS_LEAF_DATA_OFFSET + data_end,
3708 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3709
3710 /* copy from the left data area */
3711 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3712 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3713 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
3714 push_space);
3715
3716 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3717 btrfs_item_nr_offset(0),
3718 right_nritems * sizeof(struct btrfs_item));
3719
3720 /* copy the items from left to right */
3721 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3722 btrfs_item_nr_offset(left_nritems - push_items),
3723 push_items * sizeof(struct btrfs_item));
3724
3725 /* update the item pointers */
3726 btrfs_init_map_token(&token, right);
3727 right_nritems += push_items;
3728 btrfs_set_header_nritems(right, right_nritems);
3729 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3730 for (i = 0; i < right_nritems; i++) {
3731 item = btrfs_item_nr(i);
3732 push_space -= btrfs_token_item_size(right, item, &token);
3733 btrfs_set_token_item_offset(right, item, push_space, &token);
3734 }
3735
3736 left_nritems -= push_items;
3737 btrfs_set_header_nritems(left, left_nritems);
3738
3739 if (left_nritems)
3740 btrfs_mark_buffer_dirty(left);
3741 else
3742 btrfs_clean_tree_block(left);
3743
3744 btrfs_mark_buffer_dirty(right);
3745
3746 btrfs_item_key(right, &disk_key, 0);
3747 btrfs_set_node_key(upper, &disk_key, slot + 1);
3748 btrfs_mark_buffer_dirty(upper);
3749
3750 /* then fixup the leaf pointer in the path */
3751 if (path->slots[0] >= left_nritems) {
3752 path->slots[0] -= left_nritems;
3753 if (btrfs_header_nritems(path->nodes[0]) == 0)
3754 btrfs_clean_tree_block(path->nodes[0]);
3755 btrfs_tree_unlock(path->nodes[0]);
3756 free_extent_buffer(path->nodes[0]);
3757 path->nodes[0] = right;
3758 path->slots[1] += 1;
3759 } else {
3760 btrfs_tree_unlock(right);
3761 free_extent_buffer(right);
3762 }
3763 return 0;
3764
3765out_unlock:
3766 btrfs_tree_unlock(right);
3767 free_extent_buffer(right);
3768 return 1;
3769}
3770
3771/*
3772 * push some data in the path leaf to the right, trying to free up at
3773 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3774 *
3775 * returns 1 if the push failed because the other node didn't have enough
3776 * room, 0 if everything worked out and < 0 if there were major errors.
3777 *
3778 * this will push starting from min_slot to the end of the leaf. It won't
3779 * push any slot lower than min_slot
3780 */
3781static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3782 *root, struct btrfs_path *path,
3783 int min_data_size, int data_size,
3784 int empty, u32 min_slot)
3785{
3786 struct extent_buffer *left = path->nodes[0];
3787 struct extent_buffer *right;
3788 struct extent_buffer *upper;
3789 int slot;
3790 int free_space;
3791 u32 left_nritems;
3792 int ret;
3793
3794 if (!path->nodes[1])
3795 return 1;
3796
3797 slot = path->slots[1];
3798 upper = path->nodes[1];
3799 if (slot >= btrfs_header_nritems(upper) - 1)
3800 return 1;
3801
3802 btrfs_assert_tree_locked(path->nodes[1]);
3803
3804 right = btrfs_read_node_slot(upper, slot + 1);
3805 /*
3806 * slot + 1 is not valid or we fail to read the right node,
3807 * no big deal, just return.
3808 */
3809 if (IS_ERR(right))
3810 return 1;
3811
3812 btrfs_tree_lock(right);
3813 btrfs_set_lock_blocking_write(right);
3814
3815 free_space = btrfs_leaf_free_space(right);
3816 if (free_space < data_size)
3817 goto out_unlock;
3818
3819 /* cow and double check */
3820 ret = btrfs_cow_block(trans, root, right, upper,
3821 slot + 1, &right);
3822 if (ret)
3823 goto out_unlock;
3824
3825 free_space = btrfs_leaf_free_space(right);
3826 if (free_space < data_size)
3827 goto out_unlock;
3828
3829 left_nritems = btrfs_header_nritems(left);
3830 if (left_nritems == 0)
3831 goto out_unlock;
3832
3833 if (path->slots[0] == left_nritems && !empty) {
3834 /* Key greater than all keys in the leaf, right neighbor has
3835 * enough room for it and we're not emptying our leaf to delete
3836 * it, therefore use right neighbor to insert the new item and
3837 * no need to touch/dirty our left leaf. */
3838 btrfs_tree_unlock(left);
3839 free_extent_buffer(left);
3840 path->nodes[0] = right;
3841 path->slots[0] = 0;
3842 path->slots[1]++;
3843 return 0;
3844 }
3845
3846 return __push_leaf_right(path, min_data_size, empty,
3847 right, free_space, left_nritems, min_slot);
3848out_unlock:
3849 btrfs_tree_unlock(right);
3850 free_extent_buffer(right);
3851 return 1;
3852}
3853
3854/*
3855 * push some data in the path leaf to the left, trying to free up at
3856 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3857 *
3858 * max_slot can put a limit on how far into the leaf we'll push items. The
3859 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3860 * items
3861 */
3862static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3863 int empty, struct extent_buffer *left,
3864 int free_space, u32 right_nritems,
3865 u32 max_slot)
3866{
3867 struct btrfs_fs_info *fs_info = left->fs_info;
3868 struct btrfs_disk_key disk_key;
3869 struct extent_buffer *right = path->nodes[0];
3870 int i;
3871 int push_space = 0;
3872 int push_items = 0;
3873 struct btrfs_item *item;
3874 u32 old_left_nritems;
3875 u32 nr;
3876 int ret = 0;
3877 u32 this_item_size;
3878 u32 old_left_item_size;
3879 struct btrfs_map_token token;
3880
3881 if (empty)
3882 nr = min(right_nritems, max_slot);
3883 else
3884 nr = min(right_nritems - 1, max_slot);
3885
3886 for (i = 0; i < nr; i++) {
3887 item = btrfs_item_nr(i);
3888
3889 if (!empty && push_items > 0) {
3890 if (path->slots[0] < i)
3891 break;
3892 if (path->slots[0] == i) {
3893 int space = btrfs_leaf_free_space(right);
3894
3895 if (space + push_space * 2 > free_space)
3896 break;
3897 }
3898 }
3899
3900 if (path->slots[0] == i)
3901 push_space += data_size;
3902
3903 this_item_size = btrfs_item_size(right, item);
3904 if (this_item_size + sizeof(*item) + push_space > free_space)
3905 break;
3906
3907 push_items++;
3908 push_space += this_item_size + sizeof(*item);
3909 }
3910
3911 if (push_items == 0) {
3912 ret = 1;
3913 goto out;
3914 }
3915 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3916
3917 /* push data from right to left */
3918 copy_extent_buffer(left, right,
3919 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3920 btrfs_item_nr_offset(0),
3921 push_items * sizeof(struct btrfs_item));
3922
3923 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3924 btrfs_item_offset_nr(right, push_items - 1);
3925
3926 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3927 leaf_data_end(left) - push_space,
3928 BTRFS_LEAF_DATA_OFFSET +
3929 btrfs_item_offset_nr(right, push_items - 1),
3930 push_space);
3931 old_left_nritems = btrfs_header_nritems(left);
3932 BUG_ON(old_left_nritems <= 0);
3933
3934 btrfs_init_map_token(&token, left);
3935 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3936 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3937 u32 ioff;
3938
3939 item = btrfs_item_nr(i);
3940
3941 ioff = btrfs_token_item_offset(left, item, &token);
3942 btrfs_set_token_item_offset(left, item,
3943 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3944 &token);
3945 }
3946 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3947
3948 /* fixup right node */
3949 if (push_items > right_nritems)
3950 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3951 right_nritems);
3952
3953 if (push_items < right_nritems) {
3954 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3955 leaf_data_end(right);
3956 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3957 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3958 BTRFS_LEAF_DATA_OFFSET +
3959 leaf_data_end(right), push_space);
3960
3961 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3962 btrfs_item_nr_offset(push_items),
3963 (btrfs_header_nritems(right) - push_items) *
3964 sizeof(struct btrfs_item));
3965 }
3966
3967 btrfs_init_map_token(&token, right);
3968 right_nritems -= push_items;
3969 btrfs_set_header_nritems(right, right_nritems);
3970 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3971 for (i = 0; i < right_nritems; i++) {
3972 item = btrfs_item_nr(i);
3973
3974 push_space = push_space - btrfs_token_item_size(right,
3975 item, &token);
3976 btrfs_set_token_item_offset(right, item, push_space, &token);
3977 }
3978
3979 btrfs_mark_buffer_dirty(left);
3980 if (right_nritems)
3981 btrfs_mark_buffer_dirty(right);
3982 else
3983 btrfs_clean_tree_block(right);
3984
3985 btrfs_item_key(right, &disk_key, 0);
3986 fixup_low_keys(path, &disk_key, 1);
3987
3988 /* then fixup the leaf pointer in the path */
3989 if (path->slots[0] < push_items) {
3990 path->slots[0] += old_left_nritems;
3991 btrfs_tree_unlock(path->nodes[0]);
3992 free_extent_buffer(path->nodes[0]);
3993 path->nodes[0] = left;
3994 path->slots[1] -= 1;
3995 } else {
3996 btrfs_tree_unlock(left);
3997 free_extent_buffer(left);
3998 path->slots[0] -= push_items;
3999 }
4000 BUG_ON(path->slots[0] < 0);
4001 return ret;
4002out:
4003 btrfs_tree_unlock(left);
4004 free_extent_buffer(left);
4005 return ret;
4006}
4007
4008/*
4009 * push some data in the path leaf to the left, trying to free up at
4010 * least data_size bytes. returns zero if the push worked, nonzero otherwise
4011 *
4012 * max_slot can put a limit on how far into the leaf we'll push items. The
4013 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
4014 * items
4015 */
4016static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
4017 *root, struct btrfs_path *path, int min_data_size,
4018 int data_size, int empty, u32 max_slot)
4019{
4020 struct extent_buffer *right = path->nodes[0];
4021 struct extent_buffer *left;
4022 int slot;
4023 int free_space;
4024 u32 right_nritems;
4025 int ret = 0;
4026
4027 slot = path->slots[1];
4028 if (slot == 0)
4029 return 1;
4030 if (!path->nodes[1])
4031 return 1;
4032
4033 right_nritems = btrfs_header_nritems(right);
4034 if (right_nritems == 0)
4035 return 1;
4036
4037 btrfs_assert_tree_locked(path->nodes[1]);
4038
4039 left = btrfs_read_node_slot(path->nodes[1], slot - 1);
4040 /*
4041 * slot - 1 is not valid or we fail to read the left node,
4042 * no big deal, just return.
4043 */
4044 if (IS_ERR(left))
4045 return 1;
4046
4047 btrfs_tree_lock(left);
4048 btrfs_set_lock_blocking_write(left);
4049
4050 free_space = btrfs_leaf_free_space(left);
4051 if (free_space < data_size) {
4052 ret = 1;
4053 goto out;
4054 }
4055
4056 /* cow and double check */
4057 ret = btrfs_cow_block(trans, root, left,
4058 path->nodes[1], slot - 1, &left);
4059 if (ret) {
4060 /* we hit -ENOSPC, but it isn't fatal here */
4061 if (ret == -ENOSPC)
4062 ret = 1;
4063 goto out;
4064 }
4065
4066 free_space = btrfs_leaf_free_space(left);
4067 if (free_space < data_size) {
4068 ret = 1;
4069 goto out;
4070 }
4071
4072 return __push_leaf_left(path, min_data_size,
4073 empty, left, free_space, right_nritems,
4074 max_slot);
4075out:
4076 btrfs_tree_unlock(left);
4077 free_extent_buffer(left);
4078 return ret;
4079}
4080
4081/*
4082 * split the path's leaf in two, making sure there is at least data_size
4083 * available for the resulting leaf level of the path.
4084 */
4085static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4086 struct btrfs_path *path,
4087 struct extent_buffer *l,
4088 struct extent_buffer *right,
4089 int slot, int mid, int nritems)
4090{
4091 struct btrfs_fs_info *fs_info = trans->fs_info;
4092 int data_copy_size;
4093 int rt_data_off;
4094 int i;
4095 struct btrfs_disk_key disk_key;
4096 struct btrfs_map_token token;
4097
4098 nritems = nritems - mid;
4099 btrfs_set_header_nritems(right, nritems);
4100 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
4101
4102 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4103 btrfs_item_nr_offset(mid),
4104 nritems * sizeof(struct btrfs_item));
4105
4106 copy_extent_buffer(right, l,
4107 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4108 data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4109 leaf_data_end(l), data_copy_size);
4110
4111 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4112
4113 btrfs_init_map_token(&token, right);
4114 for (i = 0; i < nritems; i++) {
4115 struct btrfs_item *item = btrfs_item_nr(i);
4116 u32 ioff;
4117
4118 ioff = btrfs_token_item_offset(right, item, &token);
4119 btrfs_set_token_item_offset(right, item,
4120 ioff + rt_data_off, &token);
4121 }
4122
4123 btrfs_set_header_nritems(l, mid);
4124 btrfs_item_key(right, &disk_key, 0);
4125 insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
4126
4127 btrfs_mark_buffer_dirty(right);
4128 btrfs_mark_buffer_dirty(l);
4129 BUG_ON(path->slots[0] != slot);
4130
4131 if (mid <= slot) {
4132 btrfs_tree_unlock(path->nodes[0]);
4133 free_extent_buffer(path->nodes[0]);
4134 path->nodes[0] = right;
4135 path->slots[0] -= mid;
4136 path->slots[1] += 1;
4137 } else {
4138 btrfs_tree_unlock(right);
4139 free_extent_buffer(right);
4140 }
4141
4142 BUG_ON(path->slots[0] < 0);
4143}
4144
4145/*
4146 * double splits happen when we need to insert a big item in the middle
4147 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4148 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4149 * A B C
4150 *
4151 * We avoid this by trying to push the items on either side of our target
4152 * into the adjacent leaves. If all goes well we can avoid the double split
4153 * completely.
4154 */
4155static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4156 struct btrfs_root *root,
4157 struct btrfs_path *path,
4158 int data_size)
4159{
4160 int ret;
4161 int progress = 0;
4162 int slot;
4163 u32 nritems;
4164 int space_needed = data_size;
4165
4166 slot = path->slots[0];
4167 if (slot < btrfs_header_nritems(path->nodes[0]))
4168 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4169
4170 /*
4171 * try to push all the items after our slot into the
4172 * right leaf
4173 */
4174 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4175 if (ret < 0)
4176 return ret;
4177
4178 if (ret == 0)
4179 progress++;
4180
4181 nritems = btrfs_header_nritems(path->nodes[0]);
4182 /*
4183 * our goal is to get our slot at the start or end of a leaf. If
4184 * we've done so we're done
4185 */
4186 if (path->slots[0] == 0 || path->slots[0] == nritems)
4187 return 0;
4188
4189 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4190 return 0;
4191
4192 /* try to push all the items before our slot into the next leaf */
4193 slot = path->slots[0];
4194 space_needed = data_size;
4195 if (slot > 0)
4196 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4197 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4198 if (ret < 0)
4199 return ret;
4200
4201 if (ret == 0)
4202 progress++;
4203
4204 if (progress)
4205 return 0;
4206 return 1;
4207}
4208
4209/*
4210 * split the path's leaf in two, making sure there is at least data_size
4211 * available for the resulting leaf level of the path.
4212 *
4213 * returns 0 if all went well and < 0 on failure.
4214 */
4215static noinline int split_leaf(struct btrfs_trans_handle *trans,
4216 struct btrfs_root *root,
4217 const struct btrfs_key *ins_key,
4218 struct btrfs_path *path, int data_size,
4219 int extend)
4220{
4221 struct btrfs_disk_key disk_key;
4222 struct extent_buffer *l;
4223 u32 nritems;
4224 int mid;
4225 int slot;
4226 struct extent_buffer *right;
4227 struct btrfs_fs_info *fs_info = root->fs_info;
4228 int ret = 0;
4229 int wret;
4230 int split;
4231 int num_doubles = 0;
4232 int tried_avoid_double = 0;
4233
4234 l = path->nodes[0];
4235 slot = path->slots[0];
4236 if (extend && data_size + btrfs_item_size_nr(l, slot) +
4237 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4238 return -EOVERFLOW;
4239
4240 /* first try to make some room by pushing left and right */
4241 if (data_size && path->nodes[1]) {
4242 int space_needed = data_size;
4243
4244 if (slot < btrfs_header_nritems(l))
4245 space_needed -= btrfs_leaf_free_space(l);
4246
4247 wret = push_leaf_right(trans, root, path, space_needed,
4248 space_needed, 0, 0);
4249 if (wret < 0)
4250 return wret;
4251 if (wret) {
4252 space_needed = data_size;
4253 if (slot > 0)
4254 space_needed -= btrfs_leaf_free_space(l);
4255 wret = push_leaf_left(trans, root, path, space_needed,
4256 space_needed, 0, (u32)-1);
4257 if (wret < 0)
4258 return wret;
4259 }
4260 l = path->nodes[0];
4261
4262 /* did the pushes work? */
4263 if (btrfs_leaf_free_space(l) >= data_size)
4264 return 0;
4265 }
4266
4267 if (!path->nodes[1]) {
4268 ret = insert_new_root(trans, root, path, 1);
4269 if (ret)
4270 return ret;
4271 }
4272again:
4273 split = 1;
4274 l = path->nodes[0];
4275 slot = path->slots[0];
4276 nritems = btrfs_header_nritems(l);
4277 mid = (nritems + 1) / 2;
4278
4279 if (mid <= slot) {
4280 if (nritems == 1 ||
4281 leaf_space_used(l, mid, nritems - mid) + data_size >
4282 BTRFS_LEAF_DATA_SIZE(fs_info)) {
4283 if (slot >= nritems) {
4284 split = 0;
4285 } else {
4286 mid = slot;
4287 if (mid != nritems &&
4288 leaf_space_used(l, mid, nritems - mid) +
4289 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4290 if (data_size && !tried_avoid_double)
4291 goto push_for_double;
4292 split = 2;
4293 }
4294 }
4295 }
4296 } else {
4297 if (leaf_space_used(l, 0, mid) + data_size >
4298 BTRFS_LEAF_DATA_SIZE(fs_info)) {
4299 if (!extend && data_size && slot == 0) {
4300 split = 0;
4301 } else if ((extend || !data_size) && slot == 0) {
4302 mid = 1;
4303 } else {
4304 mid = slot;
4305 if (mid != nritems &&
4306 leaf_space_used(l, mid, nritems - mid) +
4307 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4308 if (data_size && !tried_avoid_double)
4309 goto push_for_double;
4310 split = 2;
4311 }
4312 }
4313 }
4314 }
4315
4316 if (split == 0)
4317 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4318 else
4319 btrfs_item_key(l, &disk_key, mid);
4320
4321 right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4322 l->start, 0);
4323 if (IS_ERR(right))
4324 return PTR_ERR(right);
4325
4326 root_add_used(root, fs_info->nodesize);
4327
4328 if (split == 0) {
4329 if (mid <= slot) {
4330 btrfs_set_header_nritems(right, 0);
4331 insert_ptr(trans, path, &disk_key,
4332 right->start, path->slots[1] + 1, 1);
4333 btrfs_tree_unlock(path->nodes[0]);
4334 free_extent_buffer(path->nodes[0]);
4335 path->nodes[0] = right;
4336 path->slots[0] = 0;
4337 path->slots[1] += 1;
4338 } else {
4339 btrfs_set_header_nritems(right, 0);
4340 insert_ptr(trans, path, &disk_key,
4341 right->start, path->slots[1], 1);
4342 btrfs_tree_unlock(path->nodes[0]);
4343 free_extent_buffer(path->nodes[0]);
4344 path->nodes[0] = right;
4345 path->slots[0] = 0;
4346 if (path->slots[1] == 0)
4347 fixup_low_keys(path, &disk_key, 1);
4348 }
4349 /*
4350 * We create a new leaf 'right' for the required ins_len and
4351 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4352 * the content of ins_len to 'right'.
4353 */
4354 return ret;
4355 }
4356
4357 copy_for_split(trans, path, l, right, slot, mid, nritems);
4358
4359 if (split == 2) {
4360 BUG_ON(num_doubles != 0);
4361 num_doubles++;
4362 goto again;
4363 }
4364
4365 return 0;
4366
4367push_for_double:
4368 push_for_double_split(trans, root, path, data_size);
4369 tried_avoid_double = 1;
4370 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4371 return 0;
4372 goto again;
4373}
4374
4375static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4376 struct btrfs_root *root,
4377 struct btrfs_path *path, int ins_len)
4378{
4379 struct btrfs_key key;
4380 struct extent_buffer *leaf;
4381 struct btrfs_file_extent_item *fi;
4382 u64 extent_len = 0;
4383 u32 item_size;
4384 int ret;
4385
4386 leaf = path->nodes[0];
4387 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4388
4389 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4390 key.type != BTRFS_EXTENT_CSUM_KEY);
4391
4392 if (btrfs_leaf_free_space(leaf) >= ins_len)
4393 return 0;
4394
4395 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4396 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4397 fi = btrfs_item_ptr(leaf, path->slots[0],
4398 struct btrfs_file_extent_item);
4399 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4400 }
4401 btrfs_release_path(path);
4402
4403 path->keep_locks = 1;
4404 path->search_for_split = 1;
4405 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4406 path->search_for_split = 0;
4407 if (ret > 0)
4408 ret = -EAGAIN;
4409 if (ret < 0)
4410 goto err;
4411
4412 ret = -EAGAIN;
4413 leaf = path->nodes[0];
4414 /* if our item isn't there, return now */
4415 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4416 goto err;
4417
4418 /* the leaf has changed, it now has room. return now */
4419 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4420 goto err;
4421
4422 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4423 fi = btrfs_item_ptr(leaf, path->slots[0],
4424 struct btrfs_file_extent_item);
4425 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4426 goto err;
4427 }
4428
4429 btrfs_set_path_blocking(path);
4430 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4431 if (ret)
4432 goto err;
4433
4434 path->keep_locks = 0;
4435 btrfs_unlock_up_safe(path, 1);
4436 return 0;
4437err:
4438 path->keep_locks = 0;
4439 return ret;
4440}
4441
4442static noinline int split_item(struct btrfs_path *path,
4443 const struct btrfs_key *new_key,
4444 unsigned long split_offset)
4445{
4446 struct extent_buffer *leaf;
4447 struct btrfs_item *item;
4448 struct btrfs_item *new_item;
4449 int slot;
4450 char *buf;
4451 u32 nritems;
4452 u32 item_size;
4453 u32 orig_offset;
4454 struct btrfs_disk_key disk_key;
4455
4456 leaf = path->nodes[0];
4457 BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
4458
4459 btrfs_set_path_blocking(path);
4460
4461 item = btrfs_item_nr(path->slots[0]);
4462 orig_offset = btrfs_item_offset(leaf, item);
4463 item_size = btrfs_item_size(leaf, item);
4464
4465 buf = kmalloc(item_size, GFP_NOFS);
4466 if (!buf)
4467 return -ENOMEM;
4468
4469 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4470 path->slots[0]), item_size);
4471
4472 slot = path->slots[0] + 1;
4473 nritems = btrfs_header_nritems(leaf);
4474 if (slot != nritems) {
4475 /* shift the items */
4476 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4477 btrfs_item_nr_offset(slot),
4478 (nritems - slot) * sizeof(struct btrfs_item));
4479 }
4480
4481 btrfs_cpu_key_to_disk(&disk_key, new_key);
4482 btrfs_set_item_key(leaf, &disk_key, slot);
4483
4484 new_item = btrfs_item_nr(slot);
4485
4486 btrfs_set_item_offset(leaf, new_item, orig_offset);
4487 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4488
4489 btrfs_set_item_offset(leaf, item,
4490 orig_offset + item_size - split_offset);
4491 btrfs_set_item_size(leaf, item, split_offset);
4492
4493 btrfs_set_header_nritems(leaf, nritems + 1);
4494
4495 /* write the data for the start of the original item */
4496 write_extent_buffer(leaf, buf,
4497 btrfs_item_ptr_offset(leaf, path->slots[0]),
4498 split_offset);
4499
4500 /* write the data for the new item */
4501 write_extent_buffer(leaf, buf + split_offset,
4502 btrfs_item_ptr_offset(leaf, slot),
4503 item_size - split_offset);
4504 btrfs_mark_buffer_dirty(leaf);
4505
4506 BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4507 kfree(buf);
4508 return 0;
4509}
4510
4511/*
4512 * This function splits a single item into two items,
4513 * giving 'new_key' to the new item and splitting the
4514 * old one at split_offset (from the start of the item).
4515 *
4516 * The path may be released by this operation. After
4517 * the split, the path is pointing to the old item. The
4518 * new item is going to be in the same node as the old one.
4519 *
4520 * Note, the item being split must be smaller enough to live alone on
4521 * a tree block with room for one extra struct btrfs_item
4522 *
4523 * This allows us to split the item in place, keeping a lock on the
4524 * leaf the entire time.
4525 */
4526int btrfs_split_item(struct btrfs_trans_handle *trans,
4527 struct btrfs_root *root,
4528 struct btrfs_path *path,
4529 const struct btrfs_key *new_key,
4530 unsigned long split_offset)
4531{
4532 int ret;
4533 ret = setup_leaf_for_split(trans, root, path,
4534 sizeof(struct btrfs_item));
4535 if (ret)
4536 return ret;
4537
4538 ret = split_item(path, new_key, split_offset);
4539 return ret;
4540}
4541
4542/*
4543 * This function duplicate a item, giving 'new_key' to the new item.
4544 * It guarantees both items live in the same tree leaf and the new item
4545 * is contiguous with the original item.
4546 *
4547 * This allows us to split file extent in place, keeping a lock on the
4548 * leaf the entire time.
4549 */
4550int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4551 struct btrfs_root *root,
4552 struct btrfs_path *path,
4553 const struct btrfs_key *new_key)
4554{
4555 struct extent_buffer *leaf;
4556 int ret;
4557 u32 item_size;
4558
4559 leaf = path->nodes[0];
4560 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4561 ret = setup_leaf_for_split(trans, root, path,
4562 item_size + sizeof(struct btrfs_item));
4563 if (ret)
4564 return ret;
4565
4566 path->slots[0]++;
4567 setup_items_for_insert(root, path, new_key, &item_size,
4568 item_size, item_size +
4569 sizeof(struct btrfs_item), 1);
4570 leaf = path->nodes[0];
4571 memcpy_extent_buffer(leaf,
4572 btrfs_item_ptr_offset(leaf, path->slots[0]),
4573 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4574 item_size);
4575 return 0;
4576}
4577
4578/*
4579 * make the item pointed to by the path smaller. new_size indicates
4580 * how small to make it, and from_end tells us if we just chop bytes
4581 * off the end of the item or if we shift the item to chop bytes off
4582 * the front.
4583 */
4584void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
4585{
4586 int slot;
4587 struct extent_buffer *leaf;
4588 struct btrfs_item *item;
4589 u32 nritems;
4590 unsigned int data_end;
4591 unsigned int old_data_start;
4592 unsigned int old_size;
4593 unsigned int size_diff;
4594 int i;
4595 struct btrfs_map_token token;
4596
4597 leaf = path->nodes[0];
4598 slot = path->slots[0];
4599
4600 old_size = btrfs_item_size_nr(leaf, slot);
4601 if (old_size == new_size)
4602 return;
4603
4604 nritems = btrfs_header_nritems(leaf);
4605 data_end = leaf_data_end(leaf);
4606
4607 old_data_start = btrfs_item_offset_nr(leaf, slot);
4608
4609 size_diff = old_size - new_size;
4610
4611 BUG_ON(slot < 0);
4612 BUG_ON(slot >= nritems);
4613
4614 /*
4615 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4616 */
4617 /* first correct the data pointers */
4618 btrfs_init_map_token(&token, leaf);
4619 for (i = slot; i < nritems; i++) {
4620 u32 ioff;
4621 item = btrfs_item_nr(i);
4622
4623 ioff = btrfs_token_item_offset(leaf, item, &token);
4624 btrfs_set_token_item_offset(leaf, item,
4625 ioff + size_diff, &token);
4626 }
4627
4628 /* shift the data */
4629 if (from_end) {
4630 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4631 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4632 data_end, old_data_start + new_size - data_end);
4633 } else {
4634 struct btrfs_disk_key disk_key;
4635 u64 offset;
4636
4637 btrfs_item_key(leaf, &disk_key, slot);
4638
4639 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4640 unsigned long ptr;
4641 struct btrfs_file_extent_item *fi;
4642
4643 fi = btrfs_item_ptr(leaf, slot,
4644 struct btrfs_file_extent_item);
4645 fi = (struct btrfs_file_extent_item *)(
4646 (unsigned long)fi - size_diff);
4647
4648 if (btrfs_file_extent_type(leaf, fi) ==
4649 BTRFS_FILE_EXTENT_INLINE) {
4650 ptr = btrfs_item_ptr_offset(leaf, slot);
4651 memmove_extent_buffer(leaf, ptr,
4652 (unsigned long)fi,
4653 BTRFS_FILE_EXTENT_INLINE_DATA_START);
4654 }
4655 }
4656
4657 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4658 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4659 data_end, old_data_start - data_end);
4660
4661 offset = btrfs_disk_key_offset(&disk_key);
4662 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4663 btrfs_set_item_key(leaf, &disk_key, slot);
4664 if (slot == 0)
4665 fixup_low_keys(path, &disk_key, 1);
4666 }
4667
4668 item = btrfs_item_nr(slot);
4669 btrfs_set_item_size(leaf, item, new_size);
4670 btrfs_mark_buffer_dirty(leaf);
4671
4672 if (btrfs_leaf_free_space(leaf) < 0) {
4673 btrfs_print_leaf(leaf);
4674 BUG();
4675 }
4676}
4677
4678/*
4679 * make the item pointed to by the path bigger, data_size is the added size.
4680 */
4681void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4682{
4683 int slot;
4684 struct extent_buffer *leaf;
4685 struct btrfs_item *item;
4686 u32 nritems;
4687 unsigned int data_end;
4688 unsigned int old_data;
4689 unsigned int old_size;
4690 int i;
4691 struct btrfs_map_token token;
4692
4693 leaf = path->nodes[0];
4694
4695 nritems = btrfs_header_nritems(leaf);
4696 data_end = leaf_data_end(leaf);
4697
4698 if (btrfs_leaf_free_space(leaf) < data_size) {
4699 btrfs_print_leaf(leaf);
4700 BUG();
4701 }
4702 slot = path->slots[0];
4703 old_data = btrfs_item_end_nr(leaf, slot);
4704
4705 BUG_ON(slot < 0);
4706 if (slot >= nritems) {
4707 btrfs_print_leaf(leaf);
4708 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4709 slot, nritems);
4710 BUG();
4711 }
4712
4713 /*
4714 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4715 */
4716 /* first correct the data pointers */
4717 btrfs_init_map_token(&token, leaf);
4718 for (i = slot; i < nritems; i++) {
4719 u32 ioff;
4720 item = btrfs_item_nr(i);
4721
4722 ioff = btrfs_token_item_offset(leaf, item, &token);
4723 btrfs_set_token_item_offset(leaf, item,
4724 ioff - data_size, &token);
4725 }
4726
4727 /* shift the data */
4728 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4729 data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4730 data_end, old_data - data_end);
4731
4732 data_end = old_data;
4733 old_size = btrfs_item_size_nr(leaf, slot);
4734 item = btrfs_item_nr(slot);
4735 btrfs_set_item_size(leaf, item, old_size + data_size);
4736 btrfs_mark_buffer_dirty(leaf);
4737
4738 if (btrfs_leaf_free_space(leaf) < 0) {
4739 btrfs_print_leaf(leaf);
4740 BUG();
4741 }
4742}
4743
4744/*
4745 * this is a helper for btrfs_insert_empty_items, the main goal here is
4746 * to save stack depth by doing the bulk of the work in a function
4747 * that doesn't call btrfs_search_slot
4748 */
4749void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4750 const struct btrfs_key *cpu_key, u32 *data_size,
4751 u32 total_data, u32 total_size, int nr)
4752{
4753 struct btrfs_fs_info *fs_info = root->fs_info;
4754 struct btrfs_item *item;
4755 int i;
4756 u32 nritems;
4757 unsigned int data_end;
4758 struct btrfs_disk_key disk_key;
4759 struct extent_buffer *leaf;
4760 int slot;
4761 struct btrfs_map_token token;
4762
4763 if (path->slots[0] == 0) {
4764 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4765 fixup_low_keys(path, &disk_key, 1);
4766 }
4767 btrfs_unlock_up_safe(path, 1);
4768
4769 leaf = path->nodes[0];
4770 slot = path->slots[0];
4771
4772 nritems = btrfs_header_nritems(leaf);
4773 data_end = leaf_data_end(leaf);
4774
4775 if (btrfs_leaf_free_space(leaf) < total_size) {
4776 btrfs_print_leaf(leaf);
4777 btrfs_crit(fs_info, "not enough freespace need %u have %d",
4778 total_size, btrfs_leaf_free_space(leaf));
4779 BUG();
4780 }
4781
4782 btrfs_init_map_token(&token, leaf);
4783 if (slot != nritems) {
4784 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4785
4786 if (old_data < data_end) {
4787 btrfs_print_leaf(leaf);
4788 btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4789 slot, old_data, data_end);
4790 BUG();
4791 }
4792 /*
4793 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4794 */
4795 /* first correct the data pointers */
4796 for (i = slot; i < nritems; i++) {
4797 u32 ioff;
4798
4799 item = btrfs_item_nr(i);
4800 ioff = btrfs_token_item_offset(leaf, item, &token);
4801 btrfs_set_token_item_offset(leaf, item,
4802 ioff - total_data, &token);
4803 }
4804 /* shift the items */
4805 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4806 btrfs_item_nr_offset(slot),
4807 (nritems - slot) * sizeof(struct btrfs_item));
4808
4809 /* shift the data */
4810 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4811 data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4812 data_end, old_data - data_end);
4813 data_end = old_data;
4814 }
4815
4816 /* setup the item for the new data */
4817 for (i = 0; i < nr; i++) {
4818 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4819 btrfs_set_item_key(leaf, &disk_key, slot + i);
4820 item = btrfs_item_nr(slot + i);
4821 btrfs_set_token_item_offset(leaf, item,
4822 data_end - data_size[i], &token);
4823 data_end -= data_size[i];
4824 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4825 }
4826
4827 btrfs_set_header_nritems(leaf, nritems + nr);
4828 btrfs_mark_buffer_dirty(leaf);
4829
4830 if (btrfs_leaf_free_space(leaf) < 0) {
4831 btrfs_print_leaf(leaf);
4832 BUG();
4833 }
4834}
4835
4836/*
4837 * Given a key and some data, insert items into the tree.
4838 * This does all the path init required, making room in the tree if needed.
4839 */
4840int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4841 struct btrfs_root *root,
4842 struct btrfs_path *path,
4843 const struct btrfs_key *cpu_key, u32 *data_size,
4844 int nr)
4845{
4846 int ret = 0;
4847 int slot;
4848 int i;
4849 u32 total_size = 0;
4850 u32 total_data = 0;
4851
4852 for (i = 0; i < nr; i++)
4853 total_data += data_size[i];
4854
4855 total_size = total_data + (nr * sizeof(struct btrfs_item));
4856 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4857 if (ret == 0)
4858 return -EEXIST;
4859 if (ret < 0)
4860 return ret;
4861
4862 slot = path->slots[0];
4863 BUG_ON(slot < 0);
4864
4865 setup_items_for_insert(root, path, cpu_key, data_size,
4866 total_data, total_size, nr);
4867 return 0;
4868}
4869
4870/*
4871 * Given a key and some data, insert an item into the tree.
4872 * This does all the path init required, making room in the tree if needed.
4873 */
4874int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4875 const struct btrfs_key *cpu_key, void *data,
4876 u32 data_size)
4877{
4878 int ret = 0;
4879 struct btrfs_path *path;
4880 struct extent_buffer *leaf;
4881 unsigned long ptr;
4882
4883 path = btrfs_alloc_path();
4884 if (!path)
4885 return -ENOMEM;
4886 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4887 if (!ret) {
4888 leaf = path->nodes[0];
4889 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4890 write_extent_buffer(leaf, data, ptr, data_size);
4891 btrfs_mark_buffer_dirty(leaf);
4892 }
4893 btrfs_free_path(path);
4894 return ret;
4895}
4896
4897/*
4898 * delete the pointer from a given node.
4899 *
4900 * the tree should have been previously balanced so the deletion does not
4901 * empty a node.
4902 */
4903static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4904 int level, int slot)
4905{
4906 struct extent_buffer *parent = path->nodes[level];
4907 u32 nritems;
4908 int ret;
4909
4910 nritems = btrfs_header_nritems(parent);
4911 if (slot != nritems - 1) {
4912 if (level) {
4913 ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4914 nritems - slot - 1);
4915 BUG_ON(ret < 0);
4916 }
4917 memmove_extent_buffer(parent,
4918 btrfs_node_key_ptr_offset(slot),
4919 btrfs_node_key_ptr_offset(slot + 1),
4920 sizeof(struct btrfs_key_ptr) *
4921 (nritems - slot - 1));
4922 } else if (level) {
4923 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4924 GFP_NOFS);
4925 BUG_ON(ret < 0);
4926 }
4927
4928 nritems--;
4929 btrfs_set_header_nritems(parent, nritems);
4930 if (nritems == 0 && parent == root->node) {
4931 BUG_ON(btrfs_header_level(root->node) != 1);
4932 /* just turn the root into a leaf and break */
4933 btrfs_set_header_level(root->node, 0);
4934 } else if (slot == 0) {
4935 struct btrfs_disk_key disk_key;
4936
4937 btrfs_node_key(parent, &disk_key, 0);
4938 fixup_low_keys(path, &disk_key, level + 1);
4939 }
4940 btrfs_mark_buffer_dirty(parent);
4941}
4942
4943/*
4944 * a helper function to delete the leaf pointed to by path->slots[1] and
4945 * path->nodes[1].
4946 *
4947 * This deletes the pointer in path->nodes[1] and frees the leaf
4948 * block extent. zero is returned if it all worked out, < 0 otherwise.
4949 *
4950 * The path must have already been setup for deleting the leaf, including
4951 * all the proper balancing. path->nodes[1] must be locked.
4952 */
4953static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4954 struct btrfs_root *root,
4955 struct btrfs_path *path,
4956 struct extent_buffer *leaf)
4957{
4958 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4959 del_ptr(root, path, 1, path->slots[1]);
4960
4961 /*
4962 * btrfs_free_extent is expensive, we want to make sure we
4963 * aren't holding any locks when we call it
4964 */
4965 btrfs_unlock_up_safe(path, 0);
4966
4967 root_sub_used(root, leaf->len);
4968
4969 extent_buffer_get(leaf);
4970 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4971 free_extent_buffer_stale(leaf);
4972}
4973/*
4974 * delete the item at the leaf level in path. If that empties
4975 * the leaf, remove it from the tree
4976 */
4977int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4978 struct btrfs_path *path, int slot, int nr)
4979{
4980 struct btrfs_fs_info *fs_info = root->fs_info;
4981 struct extent_buffer *leaf;
4982 struct btrfs_item *item;
4983 u32 last_off;
4984 u32 dsize = 0;
4985 int ret = 0;
4986 int wret;
4987 int i;
4988 u32 nritems;
4989
4990 leaf = path->nodes[0];
4991 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4992
4993 for (i = 0; i < nr; i++)
4994 dsize += btrfs_item_size_nr(leaf, slot + i);
4995
4996 nritems = btrfs_header_nritems(leaf);
4997
4998 if (slot + nr != nritems) {
4999 int data_end = leaf_data_end(leaf);
5000 struct btrfs_map_token token;
5001
5002 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
5003 data_end + dsize,
5004 BTRFS_LEAF_DATA_OFFSET + data_end,
5005 last_off - data_end);
5006
5007 btrfs_init_map_token(&token, leaf);
5008 for (i = slot + nr; i < nritems; i++) {
5009 u32 ioff;
5010
5011 item = btrfs_item_nr(i);
5012 ioff = btrfs_token_item_offset(leaf, item, &token);
5013 btrfs_set_token_item_offset(leaf, item,
5014 ioff + dsize, &token);
5015 }
5016
5017 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
5018 btrfs_item_nr_offset(slot + nr),
5019 sizeof(struct btrfs_item) *
5020 (nritems - slot - nr));
5021 }
5022 btrfs_set_header_nritems(leaf, nritems - nr);
5023 nritems -= nr;
5024
5025 /* delete the leaf if we've emptied it */
5026 if (nritems == 0) {
5027 if (leaf == root->node) {
5028 btrfs_set_header_level(leaf, 0);
5029 } else {
5030 btrfs_set_path_blocking(path);
5031 btrfs_clean_tree_block(leaf);
5032 btrfs_del_leaf(trans, root, path, leaf);
5033 }
5034 } else {
5035 int used = leaf_space_used(leaf, 0, nritems);
5036 if (slot == 0) {
5037 struct btrfs_disk_key disk_key;
5038
5039 btrfs_item_key(leaf, &disk_key, 0);
5040 fixup_low_keys(path, &disk_key, 1);
5041 }
5042
5043 /* delete the leaf if it is mostly empty */
5044 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5045 /* push_leaf_left fixes the path.
5046 * make sure the path still points to our leaf
5047 * for possible call to del_ptr below
5048 */
5049 slot = path->slots[1];
5050 extent_buffer_get(leaf);
5051
5052 btrfs_set_path_blocking(path);
5053 wret = push_leaf_left(trans, root, path, 1, 1,
5054 1, (u32)-1);
5055 if (wret < 0 && wret != -ENOSPC)
5056 ret = wret;
5057
5058 if (path->nodes[0] == leaf &&
5059 btrfs_header_nritems(leaf)) {
5060 wret = push_leaf_right(trans, root, path, 1,
5061 1, 1, 0);
5062 if (wret < 0 && wret != -ENOSPC)
5063 ret = wret;
5064 }
5065
5066 if (btrfs_header_nritems(leaf) == 0) {
5067 path->slots[1] = slot;
5068 btrfs_del_leaf(trans, root, path, leaf);
5069 free_extent_buffer(leaf);
5070 ret = 0;
5071 } else {
5072 /* if we're still in the path, make sure
5073 * we're dirty. Otherwise, one of the
5074 * push_leaf functions must have already
5075 * dirtied this buffer
5076 */
5077 if (path->nodes[0] == leaf)
5078 btrfs_mark_buffer_dirty(leaf);
5079 free_extent_buffer(leaf);
5080 }
5081 } else {
5082 btrfs_mark_buffer_dirty(leaf);
5083 }
5084 }
5085 return ret;
5086}
5087
5088/*
5089 * search the tree again to find a leaf with lesser keys
5090 * returns 0 if it found something or 1 if there are no lesser leaves.
5091 * returns < 0 on io errors.
5092 *
5093 * This may release the path, and so you may lose any locks held at the
5094 * time you call it.
5095 */
5096int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5097{
5098 struct btrfs_key key;
5099 struct btrfs_disk_key found_key;
5100 int ret;
5101
5102 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5103
5104 if (key.offset > 0) {
5105 key.offset--;
5106 } else if (key.type > 0) {
5107 key.type--;
5108 key.offset = (u64)-1;
5109 } else if (key.objectid > 0) {
5110 key.objectid--;
5111 key.type = (u8)-1;
5112 key.offset = (u64)-1;
5113 } else {
5114 return 1;
5115 }
5116
5117 btrfs_release_path(path);
5118 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5119 if (ret < 0)
5120 return ret;
5121 btrfs_item_key(path->nodes[0], &found_key, 0);
5122 ret = comp_keys(&found_key, &key);
5123 /*
5124 * We might have had an item with the previous key in the tree right
5125 * before we released our path. And after we released our path, that
5126 * item might have been pushed to the first slot (0) of the leaf we
5127 * were holding due to a tree balance. Alternatively, an item with the
5128 * previous key can exist as the only element of a leaf (big fat item).
5129 * Therefore account for these 2 cases, so that our callers (like
5130 * btrfs_previous_item) don't miss an existing item with a key matching
5131 * the previous key we computed above.
5132 */
5133 if (ret <= 0)
5134 return 0;
5135 return 1;
5136}
5137
5138/*
5139 * A helper function to walk down the tree starting at min_key, and looking
5140 * for nodes or leaves that are have a minimum transaction id.
5141 * This is used by the btree defrag code, and tree logging
5142 *
5143 * This does not cow, but it does stuff the starting key it finds back
5144 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5145 * key and get a writable path.
5146 *
5147 * This honors path->lowest_level to prevent descent past a given level
5148 * of the tree.
5149 *
5150 * min_trans indicates the oldest transaction that you are interested
5151 * in walking through. Any nodes or leaves older than min_trans are
5152 * skipped over (without reading them).
5153 *
5154 * returns zero if something useful was found, < 0 on error and 1 if there
5155 * was nothing in the tree that matched the search criteria.
5156 */
5157int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5158 struct btrfs_path *path,
5159 u64 min_trans)
5160{
5161 struct extent_buffer *cur;
5162 struct btrfs_key found_key;
5163 int slot;
5164 int sret;
5165 u32 nritems;
5166 int level;
5167 int ret = 1;
5168 int keep_locks = path->keep_locks;
5169
5170 path->keep_locks = 1;
5171again:
5172 cur = btrfs_read_lock_root_node(root);
5173 level = btrfs_header_level(cur);
5174 WARN_ON(path->nodes[level]);
5175 path->nodes[level] = cur;
5176 path->locks[level] = BTRFS_READ_LOCK;
5177
5178 if (btrfs_header_generation(cur) < min_trans) {
5179 ret = 1;
5180 goto out;
5181 }
5182 while (1) {
5183 nritems = btrfs_header_nritems(cur);
5184 level = btrfs_header_level(cur);
5185 sret = btrfs_bin_search(cur, min_key, level, &slot);
5186 if (sret < 0) {
5187 ret = sret;
5188 goto out;
5189 }
5190
5191 /* at the lowest level, we're done, setup the path and exit */
5192 if (level == path->lowest_level) {
5193 if (slot >= nritems)
5194 goto find_next_key;
5195 ret = 0;
5196 path->slots[level] = slot;
5197 btrfs_item_key_to_cpu(cur, &found_key, slot);
5198 goto out;
5199 }
5200 if (sret && slot > 0)
5201 slot--;
5202 /*
5203 * check this node pointer against the min_trans parameters.
5204 * If it is too old, old, skip to the next one.
5205 */
5206 while (slot < nritems) {
5207 u64 gen;
5208
5209 gen = btrfs_node_ptr_generation(cur, slot);
5210 if (gen < min_trans) {
5211 slot++;
5212 continue;
5213 }
5214 break;
5215 }
5216find_next_key:
5217 /*
5218 * we didn't find a candidate key in this node, walk forward
5219 * and find another one
5220 */
5221 if (slot >= nritems) {
5222 path->slots[level] = slot;
5223 btrfs_set_path_blocking(path);
5224 sret = btrfs_find_next_key(root, path, min_key, level,
5225 min_trans);
5226 if (sret == 0) {
5227 btrfs_release_path(path);
5228 goto again;
5229 } else {
5230 goto out;
5231 }
5232 }
5233 /* save our key for returning back */
5234 btrfs_node_key_to_cpu(cur, &found_key, slot);
5235 path->slots[level] = slot;
5236 if (level == path->lowest_level) {
5237 ret = 0;
5238 goto out;
5239 }
5240 btrfs_set_path_blocking(path);
5241 cur = btrfs_read_node_slot(cur, slot);
5242 if (IS_ERR(cur)) {
5243 ret = PTR_ERR(cur);
5244 goto out;
5245 }
5246
5247 btrfs_tree_read_lock(cur);
5248
5249 path->locks[level - 1] = BTRFS_READ_LOCK;
5250 path->nodes[level - 1] = cur;
5251 unlock_up(path, level, 1, 0, NULL);
5252 }
5253out:
5254 path->keep_locks = keep_locks;
5255 if (ret == 0) {
5256 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5257 btrfs_set_path_blocking(path);
5258 memcpy(min_key, &found_key, sizeof(found_key));
5259 }
5260 return ret;
5261}
5262
5263/*
5264 * this is similar to btrfs_next_leaf, but does not try to preserve
5265 * and fixup the path. It looks for and returns the next key in the
5266 * tree based on the current path and the min_trans parameters.
5267 *
5268 * 0 is returned if another key is found, < 0 if there are any errors
5269 * and 1 is returned if there are no higher keys in the tree
5270 *
5271 * path->keep_locks should be set to 1 on the search made before
5272 * calling this function.
5273 */
5274int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5275 struct btrfs_key *key, int level, u64 min_trans)
5276{
5277 int slot;
5278 struct extent_buffer *c;
5279
5280 WARN_ON(!path->keep_locks && !path->skip_locking);
5281 while (level < BTRFS_MAX_LEVEL) {
5282 if (!path->nodes[level])
5283 return 1;
5284
5285 slot = path->slots[level] + 1;
5286 c = path->nodes[level];
5287next:
5288 if (slot >= btrfs_header_nritems(c)) {
5289 int ret;
5290 int orig_lowest;
5291 struct btrfs_key cur_key;
5292 if (level + 1 >= BTRFS_MAX_LEVEL ||
5293 !path->nodes[level + 1])
5294 return 1;
5295
5296 if (path->locks[level + 1] || path->skip_locking) {
5297 level++;
5298 continue;
5299 }
5300
5301 slot = btrfs_header_nritems(c) - 1;
5302 if (level == 0)
5303 btrfs_item_key_to_cpu(c, &cur_key, slot);
5304 else
5305 btrfs_node_key_to_cpu(c, &cur_key, slot);
5306
5307 orig_lowest = path->lowest_level;
5308 btrfs_release_path(path);
5309 path->lowest_level = level;
5310 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5311 0, 0);
5312 path->lowest_level = orig_lowest;
5313 if (ret < 0)
5314 return ret;
5315
5316 c = path->nodes[level];
5317 slot = path->slots[level];
5318 if (ret == 0)
5319 slot++;
5320 goto next;
5321 }
5322
5323 if (level == 0)
5324 btrfs_item_key_to_cpu(c, key, slot);
5325 else {
5326 u64 gen = btrfs_node_ptr_generation(c, slot);
5327
5328 if (gen < min_trans) {
5329 slot++;
5330 goto next;
5331 }
5332 btrfs_node_key_to_cpu(c, key, slot);
5333 }
5334 return 0;
5335 }
5336 return 1;
5337}
5338
5339/*
5340 * search the tree again to find a leaf with greater keys
5341 * returns 0 if it found something or 1 if there are no greater leaves.
5342 * returns < 0 on io errors.
5343 */
5344int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5345{
5346 return btrfs_next_old_leaf(root, path, 0);
5347}
5348
5349int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5350 u64 time_seq)
5351{
5352 int slot;
5353 int level;
5354 struct extent_buffer *c;
5355 struct extent_buffer *next;
5356 struct btrfs_key key;
5357 u32 nritems;
5358 int ret;
5359 int old_spinning = path->leave_spinning;
5360 int next_rw_lock = 0;
5361
5362 nritems = btrfs_header_nritems(path->nodes[0]);
5363 if (nritems == 0)
5364 return 1;
5365
5366 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5367again:
5368 level = 1;
5369 next = NULL;
5370 next_rw_lock = 0;
5371 btrfs_release_path(path);
5372
5373 path->keep_locks = 1;
5374 path->leave_spinning = 1;
5375
5376 if (time_seq)
5377 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5378 else
5379 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5380 path->keep_locks = 0;
5381
5382 if (ret < 0)
5383 return ret;
5384
5385 nritems = btrfs_header_nritems(path->nodes[0]);
5386 /*
5387 * by releasing the path above we dropped all our locks. A balance
5388 * could have added more items next to the key that used to be
5389 * at the very end of the block. So, check again here and
5390 * advance the path if there are now more items available.
5391 */
5392 if (nritems > 0 && path->slots[0] < nritems - 1) {
5393 if (ret == 0)
5394 path->slots[0]++;
5395 ret = 0;
5396 goto done;
5397 }
5398 /*
5399 * So the above check misses one case:
5400 * - after releasing the path above, someone has removed the item that
5401 * used to be at the very end of the block, and balance between leafs
5402 * gets another one with bigger key.offset to replace it.
5403 *
5404 * This one should be returned as well, or we can get leaf corruption
5405 * later(esp. in __btrfs_drop_extents()).
5406 *
5407 * And a bit more explanation about this check,
5408 * with ret > 0, the key isn't found, the path points to the slot
5409 * where it should be inserted, so the path->slots[0] item must be the
5410 * bigger one.
5411 */
5412 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5413 ret = 0;
5414 goto done;
5415 }
5416
5417 while (level < BTRFS_MAX_LEVEL) {
5418 if (!path->nodes[level]) {
5419 ret = 1;
5420 goto done;
5421 }
5422
5423 slot = path->slots[level] + 1;
5424 c = path->nodes[level];
5425 if (slot >= btrfs_header_nritems(c)) {
5426 level++;
5427 if (level == BTRFS_MAX_LEVEL) {
5428 ret = 1;
5429 goto done;
5430 }
5431 continue;
5432 }
5433
5434 if (next) {
5435 btrfs_tree_unlock_rw(next, next_rw_lock);
5436 free_extent_buffer(next);
5437 }
5438
5439 next = c;
5440 next_rw_lock = path->locks[level];
5441 ret = read_block_for_search(root, path, &next, level,
5442 slot, &key);
5443 if (ret == -EAGAIN)
5444 goto again;
5445
5446 if (ret < 0) {
5447 btrfs_release_path(path);
5448 goto done;
5449 }
5450
5451 if (!path->skip_locking) {
5452 ret = btrfs_try_tree_read_lock(next);
5453 if (!ret && time_seq) {
5454 /*
5455 * If we don't get the lock, we may be racing
5456 * with push_leaf_left, holding that lock while
5457 * itself waiting for the leaf we've currently
5458 * locked. To solve this situation, we give up
5459 * on our lock and cycle.
5460 */
5461 free_extent_buffer(next);
5462 btrfs_release_path(path);
5463 cond_resched();
5464 goto again;
5465 }
5466 if (!ret) {
5467 btrfs_set_path_blocking(path);
5468 btrfs_tree_read_lock(next);
5469 }
5470 next_rw_lock = BTRFS_READ_LOCK;
5471 }
5472 break;
5473 }
5474 path->slots[level] = slot;
5475 while (1) {
5476 level--;
5477 c = path->nodes[level];
5478 if (path->locks[level])
5479 btrfs_tree_unlock_rw(c, path->locks[level]);
5480
5481 free_extent_buffer(c);
5482 path->nodes[level] = next;
5483 path->slots[level] = 0;
5484 if (!path->skip_locking)
5485 path->locks[level] = next_rw_lock;
5486 if (!level)
5487 break;
5488
5489 ret = read_block_for_search(root, path, &next, level,
5490 0, &key);
5491 if (ret == -EAGAIN)
5492 goto again;
5493
5494 if (ret < 0) {
5495 btrfs_release_path(path);
5496 goto done;
5497 }
5498
5499 if (!path->skip_locking) {
5500 ret = btrfs_try_tree_read_lock(next);
5501 if (!ret) {
5502 btrfs_set_path_blocking(path);
5503 btrfs_tree_read_lock(next);
5504 }
5505 next_rw_lock = BTRFS_READ_LOCK;
5506 }
5507 }
5508 ret = 0;
5509done:
5510 unlock_up(path, 0, 1, 0, NULL);
5511 path->leave_spinning = old_spinning;
5512 if (!old_spinning)
5513 btrfs_set_path_blocking(path);
5514
5515 return ret;
5516}
5517
5518/*
5519 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5520 * searching until it gets past min_objectid or finds an item of 'type'
5521 *
5522 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5523 */
5524int btrfs_previous_item(struct btrfs_root *root,
5525 struct btrfs_path *path, u64 min_objectid,
5526 int type)
5527{
5528 struct btrfs_key found_key;
5529 struct extent_buffer *leaf;
5530 u32 nritems;
5531 int ret;
5532
5533 while (1) {
5534 if (path->slots[0] == 0) {
5535 btrfs_set_path_blocking(path);
5536 ret = btrfs_prev_leaf(root, path);
5537 if (ret != 0)
5538 return ret;
5539 } else {
5540 path->slots[0]--;
5541 }
5542 leaf = path->nodes[0];
5543 nritems = btrfs_header_nritems(leaf);
5544 if (nritems == 0)
5545 return 1;
5546 if (path->slots[0] == nritems)
5547 path->slots[0]--;
5548
5549 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5550 if (found_key.objectid < min_objectid)
5551 break;
5552 if (found_key.type == type)
5553 return 0;
5554 if (found_key.objectid == min_objectid &&
5555 found_key.type < type)
5556 break;
5557 }
5558 return 1;
5559}
5560
5561/*
5562 * search in extent tree to find a previous Metadata/Data extent item with
5563 * min objecitd.
5564 *
5565 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5566 */
5567int btrfs_previous_extent_item(struct btrfs_root *root,
5568 struct btrfs_path *path, u64 min_objectid)
5569{
5570 struct btrfs_key found_key;
5571 struct extent_buffer *leaf;
5572 u32 nritems;
5573 int ret;
5574
5575 while (1) {
5576 if (path->slots[0] == 0) {
5577 btrfs_set_path_blocking(path);
5578 ret = btrfs_prev_leaf(root, path);
5579 if (ret != 0)
5580 return ret;
5581 } else {
5582 path->slots[0]--;
5583 }
5584 leaf = path->nodes[0];
5585 nritems = btrfs_header_nritems(leaf);
5586 if (nritems == 0)
5587 return 1;
5588 if (path->slots[0] == nritems)
5589 path->slots[0]--;
5590
5591 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5592 if (found_key.objectid < min_objectid)
5593 break;
5594 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5595 found_key.type == BTRFS_METADATA_ITEM_KEY)
5596 return 0;
5597 if (found_key.objectid == min_objectid &&
5598 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5599 break;
5600 }
5601 return 1;
5602}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/slab.h>
8#include <linux/rbtree.h>
9#include <linux/mm.h>
10#include "ctree.h"
11#include "disk-io.h"
12#include "transaction.h"
13#include "print-tree.h"
14#include "locking.h"
15
16static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
17 *root, struct btrfs_path *path, int level);
18static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
19 const struct btrfs_key *ins_key, struct btrfs_path *path,
20 int data_size, int extend);
21static int push_node_left(struct btrfs_trans_handle *trans,
22 struct btrfs_fs_info *fs_info,
23 struct extent_buffer *dst,
24 struct extent_buffer *src, int empty);
25static int balance_node_right(struct btrfs_trans_handle *trans,
26 struct btrfs_fs_info *fs_info,
27 struct extent_buffer *dst_buf,
28 struct extent_buffer *src_buf);
29static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
30 int level, int slot);
31
32struct btrfs_path *btrfs_alloc_path(void)
33{
34 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
35}
36
37/*
38 * set all locked nodes in the path to blocking locks. This should
39 * be done before scheduling
40 */
41noinline void btrfs_set_path_blocking(struct btrfs_path *p)
42{
43 int i;
44 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
45 if (!p->nodes[i] || !p->locks[i])
46 continue;
47 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
48 if (p->locks[i] == BTRFS_READ_LOCK)
49 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
50 else if (p->locks[i] == BTRFS_WRITE_LOCK)
51 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
52 }
53}
54
55/*
56 * reset all the locked nodes in the patch to spinning locks.
57 *
58 * held is used to keep lockdep happy, when lockdep is enabled
59 * we set held to a blocking lock before we go around and
60 * retake all the spinlocks in the path. You can safely use NULL
61 * for held
62 */
63noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
64 struct extent_buffer *held, int held_rw)
65{
66 int i;
67
68 if (held) {
69 btrfs_set_lock_blocking_rw(held, held_rw);
70 if (held_rw == BTRFS_WRITE_LOCK)
71 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
72 else if (held_rw == BTRFS_READ_LOCK)
73 held_rw = BTRFS_READ_LOCK_BLOCKING;
74 }
75 btrfs_set_path_blocking(p);
76
77 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
78 if (p->nodes[i] && p->locks[i]) {
79 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
80 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
81 p->locks[i] = BTRFS_WRITE_LOCK;
82 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
83 p->locks[i] = BTRFS_READ_LOCK;
84 }
85 }
86
87 if (held)
88 btrfs_clear_lock_blocking_rw(held, held_rw);
89}
90
91/* this also releases the path */
92void btrfs_free_path(struct btrfs_path *p)
93{
94 if (!p)
95 return;
96 btrfs_release_path(p);
97 kmem_cache_free(btrfs_path_cachep, p);
98}
99
100/*
101 * path release drops references on the extent buffers in the path
102 * and it drops any locks held by this path
103 *
104 * It is safe to call this on paths that no locks or extent buffers held.
105 */
106noinline void btrfs_release_path(struct btrfs_path *p)
107{
108 int i;
109
110 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
111 p->slots[i] = 0;
112 if (!p->nodes[i])
113 continue;
114 if (p->locks[i]) {
115 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
116 p->locks[i] = 0;
117 }
118 free_extent_buffer(p->nodes[i]);
119 p->nodes[i] = NULL;
120 }
121}
122
123/*
124 * safely gets a reference on the root node of a tree. A lock
125 * is not taken, so a concurrent writer may put a different node
126 * at the root of the tree. See btrfs_lock_root_node for the
127 * looping required.
128 *
129 * The extent buffer returned by this has a reference taken, so
130 * it won't disappear. It may stop being the root of the tree
131 * at any time because there are no locks held.
132 */
133struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
134{
135 struct extent_buffer *eb;
136
137 while (1) {
138 rcu_read_lock();
139 eb = rcu_dereference(root->node);
140
141 /*
142 * RCU really hurts here, we could free up the root node because
143 * it was COWed but we may not get the new root node yet so do
144 * the inc_not_zero dance and if it doesn't work then
145 * synchronize_rcu and try again.
146 */
147 if (atomic_inc_not_zero(&eb->refs)) {
148 rcu_read_unlock();
149 break;
150 }
151 rcu_read_unlock();
152 synchronize_rcu();
153 }
154 return eb;
155}
156
157/* loop around taking references on and locking the root node of the
158 * tree until you end up with a lock on the root. A locked buffer
159 * is returned, with a reference held.
160 */
161struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
162{
163 struct extent_buffer *eb;
164
165 while (1) {
166 eb = btrfs_root_node(root);
167 btrfs_tree_lock(eb);
168 if (eb == root->node)
169 break;
170 btrfs_tree_unlock(eb);
171 free_extent_buffer(eb);
172 }
173 return eb;
174}
175
176/* loop around taking references on and locking the root node of the
177 * tree until you end up with a lock on the root. A locked buffer
178 * is returned, with a reference held.
179 */
180struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
181{
182 struct extent_buffer *eb;
183
184 while (1) {
185 eb = btrfs_root_node(root);
186 btrfs_tree_read_lock(eb);
187 if (eb == root->node)
188 break;
189 btrfs_tree_read_unlock(eb);
190 free_extent_buffer(eb);
191 }
192 return eb;
193}
194
195/* cowonly root (everything not a reference counted cow subvolume), just get
196 * put onto a simple dirty list. transaction.c walks this to make sure they
197 * get properly updated on disk.
198 */
199static void add_root_to_dirty_list(struct btrfs_root *root)
200{
201 struct btrfs_fs_info *fs_info = root->fs_info;
202
203 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
204 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
205 return;
206
207 spin_lock(&fs_info->trans_lock);
208 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
209 /* Want the extent tree to be the last on the list */
210 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
211 list_move_tail(&root->dirty_list,
212 &fs_info->dirty_cowonly_roots);
213 else
214 list_move(&root->dirty_list,
215 &fs_info->dirty_cowonly_roots);
216 }
217 spin_unlock(&fs_info->trans_lock);
218}
219
220/*
221 * used by snapshot creation to make a copy of a root for a tree with
222 * a given objectid. The buffer with the new root node is returned in
223 * cow_ret, and this func returns zero on success or a negative error code.
224 */
225int btrfs_copy_root(struct btrfs_trans_handle *trans,
226 struct btrfs_root *root,
227 struct extent_buffer *buf,
228 struct extent_buffer **cow_ret, u64 new_root_objectid)
229{
230 struct btrfs_fs_info *fs_info = root->fs_info;
231 struct extent_buffer *cow;
232 int ret = 0;
233 int level;
234 struct btrfs_disk_key disk_key;
235
236 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
237 trans->transid != fs_info->running_transaction->transid);
238 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
239 trans->transid != root->last_trans);
240
241 level = btrfs_header_level(buf);
242 if (level == 0)
243 btrfs_item_key(buf, &disk_key, 0);
244 else
245 btrfs_node_key(buf, &disk_key, 0);
246
247 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
248 &disk_key, level, buf->start, 0);
249 if (IS_ERR(cow))
250 return PTR_ERR(cow);
251
252 copy_extent_buffer_full(cow, buf);
253 btrfs_set_header_bytenr(cow, cow->start);
254 btrfs_set_header_generation(cow, trans->transid);
255 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
256 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
257 BTRFS_HEADER_FLAG_RELOC);
258 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
259 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
260 else
261 btrfs_set_header_owner(cow, new_root_objectid);
262
263 write_extent_buffer_fsid(cow, fs_info->fsid);
264
265 WARN_ON(btrfs_header_generation(buf) > trans->transid);
266 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
267 ret = btrfs_inc_ref(trans, root, cow, 1);
268 else
269 ret = btrfs_inc_ref(trans, root, cow, 0);
270
271 if (ret)
272 return ret;
273
274 btrfs_mark_buffer_dirty(cow);
275 *cow_ret = cow;
276 return 0;
277}
278
279enum mod_log_op {
280 MOD_LOG_KEY_REPLACE,
281 MOD_LOG_KEY_ADD,
282 MOD_LOG_KEY_REMOVE,
283 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
284 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
285 MOD_LOG_MOVE_KEYS,
286 MOD_LOG_ROOT_REPLACE,
287};
288
289struct tree_mod_root {
290 u64 logical;
291 u8 level;
292};
293
294struct tree_mod_elem {
295 struct rb_node node;
296 u64 logical;
297 u64 seq;
298 enum mod_log_op op;
299
300 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
301 int slot;
302
303 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
304 u64 generation;
305
306 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
307 struct btrfs_disk_key key;
308 u64 blockptr;
309
310 /* this is used for op == MOD_LOG_MOVE_KEYS */
311 struct {
312 int dst_slot;
313 int nr_items;
314 } move;
315
316 /* this is used for op == MOD_LOG_ROOT_REPLACE */
317 struct tree_mod_root old_root;
318};
319
320/*
321 * Pull a new tree mod seq number for our operation.
322 */
323static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
324{
325 return atomic64_inc_return(&fs_info->tree_mod_seq);
326}
327
328/*
329 * This adds a new blocker to the tree mod log's blocker list if the @elem
330 * passed does not already have a sequence number set. So when a caller expects
331 * to record tree modifications, it should ensure to set elem->seq to zero
332 * before calling btrfs_get_tree_mod_seq.
333 * Returns a fresh, unused tree log modification sequence number, even if no new
334 * blocker was added.
335 */
336u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
337 struct seq_list *elem)
338{
339 write_lock(&fs_info->tree_mod_log_lock);
340 spin_lock(&fs_info->tree_mod_seq_lock);
341 if (!elem->seq) {
342 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
343 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
344 }
345 spin_unlock(&fs_info->tree_mod_seq_lock);
346 write_unlock(&fs_info->tree_mod_log_lock);
347
348 return elem->seq;
349}
350
351void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
352 struct seq_list *elem)
353{
354 struct rb_root *tm_root;
355 struct rb_node *node;
356 struct rb_node *next;
357 struct seq_list *cur_elem;
358 struct tree_mod_elem *tm;
359 u64 min_seq = (u64)-1;
360 u64 seq_putting = elem->seq;
361
362 if (!seq_putting)
363 return;
364
365 spin_lock(&fs_info->tree_mod_seq_lock);
366 list_del(&elem->list);
367 elem->seq = 0;
368
369 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
370 if (cur_elem->seq < min_seq) {
371 if (seq_putting > cur_elem->seq) {
372 /*
373 * blocker with lower sequence number exists, we
374 * cannot remove anything from the log
375 */
376 spin_unlock(&fs_info->tree_mod_seq_lock);
377 return;
378 }
379 min_seq = cur_elem->seq;
380 }
381 }
382 spin_unlock(&fs_info->tree_mod_seq_lock);
383
384 /*
385 * anything that's lower than the lowest existing (read: blocked)
386 * sequence number can be removed from the tree.
387 */
388 write_lock(&fs_info->tree_mod_log_lock);
389 tm_root = &fs_info->tree_mod_log;
390 for (node = rb_first(tm_root); node; node = next) {
391 next = rb_next(node);
392 tm = rb_entry(node, struct tree_mod_elem, node);
393 if (tm->seq > min_seq)
394 continue;
395 rb_erase(node, tm_root);
396 kfree(tm);
397 }
398 write_unlock(&fs_info->tree_mod_log_lock);
399}
400
401/*
402 * key order of the log:
403 * node/leaf start address -> sequence
404 *
405 * The 'start address' is the logical address of the *new* root node
406 * for root replace operations, or the logical address of the affected
407 * block for all other operations.
408 *
409 * Note: must be called with write lock for fs_info::tree_mod_log_lock.
410 */
411static noinline int
412__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
413{
414 struct rb_root *tm_root;
415 struct rb_node **new;
416 struct rb_node *parent = NULL;
417 struct tree_mod_elem *cur;
418
419 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
420
421 tm_root = &fs_info->tree_mod_log;
422 new = &tm_root->rb_node;
423 while (*new) {
424 cur = rb_entry(*new, struct tree_mod_elem, node);
425 parent = *new;
426 if (cur->logical < tm->logical)
427 new = &((*new)->rb_left);
428 else if (cur->logical > tm->logical)
429 new = &((*new)->rb_right);
430 else if (cur->seq < tm->seq)
431 new = &((*new)->rb_left);
432 else if (cur->seq > tm->seq)
433 new = &((*new)->rb_right);
434 else
435 return -EEXIST;
436 }
437
438 rb_link_node(&tm->node, parent, new);
439 rb_insert_color(&tm->node, tm_root);
440 return 0;
441}
442
443/*
444 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
445 * returns zero with the tree_mod_log_lock acquired. The caller must hold
446 * this until all tree mod log insertions are recorded in the rb tree and then
447 * write unlock fs_info::tree_mod_log_lock.
448 */
449static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
450 struct extent_buffer *eb) {
451 smp_mb();
452 if (list_empty(&(fs_info)->tree_mod_seq_list))
453 return 1;
454 if (eb && btrfs_header_level(eb) == 0)
455 return 1;
456
457 write_lock(&fs_info->tree_mod_log_lock);
458 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
459 write_unlock(&fs_info->tree_mod_log_lock);
460 return 1;
461 }
462
463 return 0;
464}
465
466/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
467static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
468 struct extent_buffer *eb)
469{
470 smp_mb();
471 if (list_empty(&(fs_info)->tree_mod_seq_list))
472 return 0;
473 if (eb && btrfs_header_level(eb) == 0)
474 return 0;
475
476 return 1;
477}
478
479static struct tree_mod_elem *
480alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
481 enum mod_log_op op, gfp_t flags)
482{
483 struct tree_mod_elem *tm;
484
485 tm = kzalloc(sizeof(*tm), flags);
486 if (!tm)
487 return NULL;
488
489 tm->logical = eb->start;
490 if (op != MOD_LOG_KEY_ADD) {
491 btrfs_node_key(eb, &tm->key, slot);
492 tm->blockptr = btrfs_node_blockptr(eb, slot);
493 }
494 tm->op = op;
495 tm->slot = slot;
496 tm->generation = btrfs_node_ptr_generation(eb, slot);
497 RB_CLEAR_NODE(&tm->node);
498
499 return tm;
500}
501
502static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
503 enum mod_log_op op, gfp_t flags)
504{
505 struct tree_mod_elem *tm;
506 int ret;
507
508 if (!tree_mod_need_log(eb->fs_info, eb))
509 return 0;
510
511 tm = alloc_tree_mod_elem(eb, slot, op, flags);
512 if (!tm)
513 return -ENOMEM;
514
515 if (tree_mod_dont_log(eb->fs_info, eb)) {
516 kfree(tm);
517 return 0;
518 }
519
520 ret = __tree_mod_log_insert(eb->fs_info, tm);
521 write_unlock(&eb->fs_info->tree_mod_log_lock);
522 if (ret)
523 kfree(tm);
524
525 return ret;
526}
527
528static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
529 int dst_slot, int src_slot, int nr_items)
530{
531 struct tree_mod_elem *tm = NULL;
532 struct tree_mod_elem **tm_list = NULL;
533 int ret = 0;
534 int i;
535 int locked = 0;
536
537 if (!tree_mod_need_log(eb->fs_info, eb))
538 return 0;
539
540 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
541 if (!tm_list)
542 return -ENOMEM;
543
544 tm = kzalloc(sizeof(*tm), GFP_NOFS);
545 if (!tm) {
546 ret = -ENOMEM;
547 goto free_tms;
548 }
549
550 tm->logical = eb->start;
551 tm->slot = src_slot;
552 tm->move.dst_slot = dst_slot;
553 tm->move.nr_items = nr_items;
554 tm->op = MOD_LOG_MOVE_KEYS;
555
556 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
557 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
558 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
559 if (!tm_list[i]) {
560 ret = -ENOMEM;
561 goto free_tms;
562 }
563 }
564
565 if (tree_mod_dont_log(eb->fs_info, eb))
566 goto free_tms;
567 locked = 1;
568
569 /*
570 * When we override something during the move, we log these removals.
571 * This can only happen when we move towards the beginning of the
572 * buffer, i.e. dst_slot < src_slot.
573 */
574 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
575 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
576 if (ret)
577 goto free_tms;
578 }
579
580 ret = __tree_mod_log_insert(eb->fs_info, tm);
581 if (ret)
582 goto free_tms;
583 write_unlock(&eb->fs_info->tree_mod_log_lock);
584 kfree(tm_list);
585
586 return 0;
587free_tms:
588 for (i = 0; i < nr_items; i++) {
589 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
590 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
591 kfree(tm_list[i]);
592 }
593 if (locked)
594 write_unlock(&eb->fs_info->tree_mod_log_lock);
595 kfree(tm_list);
596 kfree(tm);
597
598 return ret;
599}
600
601static inline int
602__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
603 struct tree_mod_elem **tm_list,
604 int nritems)
605{
606 int i, j;
607 int ret;
608
609 for (i = nritems - 1; i >= 0; i--) {
610 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
611 if (ret) {
612 for (j = nritems - 1; j > i; j--)
613 rb_erase(&tm_list[j]->node,
614 &fs_info->tree_mod_log);
615 return ret;
616 }
617 }
618
619 return 0;
620}
621
622static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
623 struct extent_buffer *new_root, int log_removal)
624{
625 struct btrfs_fs_info *fs_info = old_root->fs_info;
626 struct tree_mod_elem *tm = NULL;
627 struct tree_mod_elem **tm_list = NULL;
628 int nritems = 0;
629 int ret = 0;
630 int i;
631
632 if (!tree_mod_need_log(fs_info, NULL))
633 return 0;
634
635 if (log_removal && btrfs_header_level(old_root) > 0) {
636 nritems = btrfs_header_nritems(old_root);
637 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
638 GFP_NOFS);
639 if (!tm_list) {
640 ret = -ENOMEM;
641 goto free_tms;
642 }
643 for (i = 0; i < nritems; i++) {
644 tm_list[i] = alloc_tree_mod_elem(old_root, i,
645 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
646 if (!tm_list[i]) {
647 ret = -ENOMEM;
648 goto free_tms;
649 }
650 }
651 }
652
653 tm = kzalloc(sizeof(*tm), GFP_NOFS);
654 if (!tm) {
655 ret = -ENOMEM;
656 goto free_tms;
657 }
658
659 tm->logical = new_root->start;
660 tm->old_root.logical = old_root->start;
661 tm->old_root.level = btrfs_header_level(old_root);
662 tm->generation = btrfs_header_generation(old_root);
663 tm->op = MOD_LOG_ROOT_REPLACE;
664
665 if (tree_mod_dont_log(fs_info, NULL))
666 goto free_tms;
667
668 if (tm_list)
669 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
670 if (!ret)
671 ret = __tree_mod_log_insert(fs_info, tm);
672
673 write_unlock(&fs_info->tree_mod_log_lock);
674 if (ret)
675 goto free_tms;
676 kfree(tm_list);
677
678 return ret;
679
680free_tms:
681 if (tm_list) {
682 for (i = 0; i < nritems; i++)
683 kfree(tm_list[i]);
684 kfree(tm_list);
685 }
686 kfree(tm);
687
688 return ret;
689}
690
691static struct tree_mod_elem *
692__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
693 int smallest)
694{
695 struct rb_root *tm_root;
696 struct rb_node *node;
697 struct tree_mod_elem *cur = NULL;
698 struct tree_mod_elem *found = NULL;
699
700 read_lock(&fs_info->tree_mod_log_lock);
701 tm_root = &fs_info->tree_mod_log;
702 node = tm_root->rb_node;
703 while (node) {
704 cur = rb_entry(node, struct tree_mod_elem, node);
705 if (cur->logical < start) {
706 node = node->rb_left;
707 } else if (cur->logical > start) {
708 node = node->rb_right;
709 } else if (cur->seq < min_seq) {
710 node = node->rb_left;
711 } else if (!smallest) {
712 /* we want the node with the highest seq */
713 if (found)
714 BUG_ON(found->seq > cur->seq);
715 found = cur;
716 node = node->rb_left;
717 } else if (cur->seq > min_seq) {
718 /* we want the node with the smallest seq */
719 if (found)
720 BUG_ON(found->seq < cur->seq);
721 found = cur;
722 node = node->rb_right;
723 } else {
724 found = cur;
725 break;
726 }
727 }
728 read_unlock(&fs_info->tree_mod_log_lock);
729
730 return found;
731}
732
733/*
734 * this returns the element from the log with the smallest time sequence
735 * value that's in the log (the oldest log item). any element with a time
736 * sequence lower than min_seq will be ignored.
737 */
738static struct tree_mod_elem *
739tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
740 u64 min_seq)
741{
742 return __tree_mod_log_search(fs_info, start, min_seq, 1);
743}
744
745/*
746 * this returns the element from the log with the largest time sequence
747 * value that's in the log (the most recent log item). any element with
748 * a time sequence lower than min_seq will be ignored.
749 */
750static struct tree_mod_elem *
751tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
752{
753 return __tree_mod_log_search(fs_info, start, min_seq, 0);
754}
755
756static noinline int
757tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
758 struct extent_buffer *src, unsigned long dst_offset,
759 unsigned long src_offset, int nr_items)
760{
761 int ret = 0;
762 struct tree_mod_elem **tm_list = NULL;
763 struct tree_mod_elem **tm_list_add, **tm_list_rem;
764 int i;
765 int locked = 0;
766
767 if (!tree_mod_need_log(fs_info, NULL))
768 return 0;
769
770 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
771 return 0;
772
773 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
774 GFP_NOFS);
775 if (!tm_list)
776 return -ENOMEM;
777
778 tm_list_add = tm_list;
779 tm_list_rem = tm_list + nr_items;
780 for (i = 0; i < nr_items; i++) {
781 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
782 MOD_LOG_KEY_REMOVE, GFP_NOFS);
783 if (!tm_list_rem[i]) {
784 ret = -ENOMEM;
785 goto free_tms;
786 }
787
788 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
789 MOD_LOG_KEY_ADD, GFP_NOFS);
790 if (!tm_list_add[i]) {
791 ret = -ENOMEM;
792 goto free_tms;
793 }
794 }
795
796 if (tree_mod_dont_log(fs_info, NULL))
797 goto free_tms;
798 locked = 1;
799
800 for (i = 0; i < nr_items; i++) {
801 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
802 if (ret)
803 goto free_tms;
804 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
805 if (ret)
806 goto free_tms;
807 }
808
809 write_unlock(&fs_info->tree_mod_log_lock);
810 kfree(tm_list);
811
812 return 0;
813
814free_tms:
815 for (i = 0; i < nr_items * 2; i++) {
816 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
817 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
818 kfree(tm_list[i]);
819 }
820 if (locked)
821 write_unlock(&fs_info->tree_mod_log_lock);
822 kfree(tm_list);
823
824 return ret;
825}
826
827static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
828{
829 struct tree_mod_elem **tm_list = NULL;
830 int nritems = 0;
831 int i;
832 int ret = 0;
833
834 if (btrfs_header_level(eb) == 0)
835 return 0;
836
837 if (!tree_mod_need_log(eb->fs_info, NULL))
838 return 0;
839
840 nritems = btrfs_header_nritems(eb);
841 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
842 if (!tm_list)
843 return -ENOMEM;
844
845 for (i = 0; i < nritems; i++) {
846 tm_list[i] = alloc_tree_mod_elem(eb, i,
847 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
848 if (!tm_list[i]) {
849 ret = -ENOMEM;
850 goto free_tms;
851 }
852 }
853
854 if (tree_mod_dont_log(eb->fs_info, eb))
855 goto free_tms;
856
857 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
858 write_unlock(&eb->fs_info->tree_mod_log_lock);
859 if (ret)
860 goto free_tms;
861 kfree(tm_list);
862
863 return 0;
864
865free_tms:
866 for (i = 0; i < nritems; i++)
867 kfree(tm_list[i]);
868 kfree(tm_list);
869
870 return ret;
871}
872
873/*
874 * check if the tree block can be shared by multiple trees
875 */
876int btrfs_block_can_be_shared(struct btrfs_root *root,
877 struct extent_buffer *buf)
878{
879 /*
880 * Tree blocks not in reference counted trees and tree roots
881 * are never shared. If a block was allocated after the last
882 * snapshot and the block was not allocated by tree relocation,
883 * we know the block is not shared.
884 */
885 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
886 buf != root->node && buf != root->commit_root &&
887 (btrfs_header_generation(buf) <=
888 btrfs_root_last_snapshot(&root->root_item) ||
889 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
890 return 1;
891#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
892 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
893 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
894 return 1;
895#endif
896 return 0;
897}
898
899static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
900 struct btrfs_root *root,
901 struct extent_buffer *buf,
902 struct extent_buffer *cow,
903 int *last_ref)
904{
905 struct btrfs_fs_info *fs_info = root->fs_info;
906 u64 refs;
907 u64 owner;
908 u64 flags;
909 u64 new_flags = 0;
910 int ret;
911
912 /*
913 * Backrefs update rules:
914 *
915 * Always use full backrefs for extent pointers in tree block
916 * allocated by tree relocation.
917 *
918 * If a shared tree block is no longer referenced by its owner
919 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
920 * use full backrefs for extent pointers in tree block.
921 *
922 * If a tree block is been relocating
923 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
924 * use full backrefs for extent pointers in tree block.
925 * The reason for this is some operations (such as drop tree)
926 * are only allowed for blocks use full backrefs.
927 */
928
929 if (btrfs_block_can_be_shared(root, buf)) {
930 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
931 btrfs_header_level(buf), 1,
932 &refs, &flags);
933 if (ret)
934 return ret;
935 if (refs == 0) {
936 ret = -EROFS;
937 btrfs_handle_fs_error(fs_info, ret, NULL);
938 return ret;
939 }
940 } else {
941 refs = 1;
942 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
943 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
944 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
945 else
946 flags = 0;
947 }
948
949 owner = btrfs_header_owner(buf);
950 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
951 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
952
953 if (refs > 1) {
954 if ((owner == root->root_key.objectid ||
955 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
956 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
957 ret = btrfs_inc_ref(trans, root, buf, 1);
958 if (ret)
959 return ret;
960
961 if (root->root_key.objectid ==
962 BTRFS_TREE_RELOC_OBJECTID) {
963 ret = btrfs_dec_ref(trans, root, buf, 0);
964 if (ret)
965 return ret;
966 ret = btrfs_inc_ref(trans, root, cow, 1);
967 if (ret)
968 return ret;
969 }
970 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
971 } else {
972
973 if (root->root_key.objectid ==
974 BTRFS_TREE_RELOC_OBJECTID)
975 ret = btrfs_inc_ref(trans, root, cow, 1);
976 else
977 ret = btrfs_inc_ref(trans, root, cow, 0);
978 if (ret)
979 return ret;
980 }
981 if (new_flags != 0) {
982 int level = btrfs_header_level(buf);
983
984 ret = btrfs_set_disk_extent_flags(trans, fs_info,
985 buf->start,
986 buf->len,
987 new_flags, level, 0);
988 if (ret)
989 return ret;
990 }
991 } else {
992 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
993 if (root->root_key.objectid ==
994 BTRFS_TREE_RELOC_OBJECTID)
995 ret = btrfs_inc_ref(trans, root, cow, 1);
996 else
997 ret = btrfs_inc_ref(trans, root, cow, 0);
998 if (ret)
999 return ret;
1000 ret = btrfs_dec_ref(trans, root, buf, 1);
1001 if (ret)
1002 return ret;
1003 }
1004 clean_tree_block(fs_info, buf);
1005 *last_ref = 1;
1006 }
1007 return 0;
1008}
1009
1010/*
1011 * does the dirty work in cow of a single block. The parent block (if
1012 * supplied) is updated to point to the new cow copy. The new buffer is marked
1013 * dirty and returned locked. If you modify the block it needs to be marked
1014 * dirty again.
1015 *
1016 * search_start -- an allocation hint for the new block
1017 *
1018 * empty_size -- a hint that you plan on doing more cow. This is the size in
1019 * bytes the allocator should try to find free next to the block it returns.
1020 * This is just a hint and may be ignored by the allocator.
1021 */
1022static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1023 struct btrfs_root *root,
1024 struct extent_buffer *buf,
1025 struct extent_buffer *parent, int parent_slot,
1026 struct extent_buffer **cow_ret,
1027 u64 search_start, u64 empty_size)
1028{
1029 struct btrfs_fs_info *fs_info = root->fs_info;
1030 struct btrfs_disk_key disk_key;
1031 struct extent_buffer *cow;
1032 int level, ret;
1033 int last_ref = 0;
1034 int unlock_orig = 0;
1035 u64 parent_start = 0;
1036
1037 if (*cow_ret == buf)
1038 unlock_orig = 1;
1039
1040 btrfs_assert_tree_locked(buf);
1041
1042 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1043 trans->transid != fs_info->running_transaction->transid);
1044 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1045 trans->transid != root->last_trans);
1046
1047 level = btrfs_header_level(buf);
1048
1049 if (level == 0)
1050 btrfs_item_key(buf, &disk_key, 0);
1051 else
1052 btrfs_node_key(buf, &disk_key, 0);
1053
1054 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1055 parent_start = parent->start;
1056
1057 cow = btrfs_alloc_tree_block(trans, root, parent_start,
1058 root->root_key.objectid, &disk_key, level,
1059 search_start, empty_size);
1060 if (IS_ERR(cow))
1061 return PTR_ERR(cow);
1062
1063 /* cow is set to blocking by btrfs_init_new_buffer */
1064
1065 copy_extent_buffer_full(cow, buf);
1066 btrfs_set_header_bytenr(cow, cow->start);
1067 btrfs_set_header_generation(cow, trans->transid);
1068 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1069 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1070 BTRFS_HEADER_FLAG_RELOC);
1071 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1072 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1073 else
1074 btrfs_set_header_owner(cow, root->root_key.objectid);
1075
1076 write_extent_buffer_fsid(cow, fs_info->fsid);
1077
1078 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1079 if (ret) {
1080 btrfs_abort_transaction(trans, ret);
1081 return ret;
1082 }
1083
1084 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1085 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1086 if (ret) {
1087 btrfs_abort_transaction(trans, ret);
1088 return ret;
1089 }
1090 }
1091
1092 if (buf == root->node) {
1093 WARN_ON(parent && parent != buf);
1094 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1095 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1096 parent_start = buf->start;
1097
1098 extent_buffer_get(cow);
1099 ret = tree_mod_log_insert_root(root->node, cow, 1);
1100 BUG_ON(ret < 0);
1101 rcu_assign_pointer(root->node, cow);
1102
1103 btrfs_free_tree_block(trans, root, buf, parent_start,
1104 last_ref);
1105 free_extent_buffer(buf);
1106 add_root_to_dirty_list(root);
1107 } else {
1108 WARN_ON(trans->transid != btrfs_header_generation(parent));
1109 tree_mod_log_insert_key(parent, parent_slot,
1110 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1111 btrfs_set_node_blockptr(parent, parent_slot,
1112 cow->start);
1113 btrfs_set_node_ptr_generation(parent, parent_slot,
1114 trans->transid);
1115 btrfs_mark_buffer_dirty(parent);
1116 if (last_ref) {
1117 ret = tree_mod_log_free_eb(buf);
1118 if (ret) {
1119 btrfs_abort_transaction(trans, ret);
1120 return ret;
1121 }
1122 }
1123 btrfs_free_tree_block(trans, root, buf, parent_start,
1124 last_ref);
1125 }
1126 if (unlock_orig)
1127 btrfs_tree_unlock(buf);
1128 free_extent_buffer_stale(buf);
1129 btrfs_mark_buffer_dirty(cow);
1130 *cow_ret = cow;
1131 return 0;
1132}
1133
1134/*
1135 * returns the logical address of the oldest predecessor of the given root.
1136 * entries older than time_seq are ignored.
1137 */
1138static struct tree_mod_elem *__tree_mod_log_oldest_root(
1139 struct extent_buffer *eb_root, u64 time_seq)
1140{
1141 struct tree_mod_elem *tm;
1142 struct tree_mod_elem *found = NULL;
1143 u64 root_logical = eb_root->start;
1144 int looped = 0;
1145
1146 if (!time_seq)
1147 return NULL;
1148
1149 /*
1150 * the very last operation that's logged for a root is the
1151 * replacement operation (if it is replaced at all). this has
1152 * the logical address of the *new* root, making it the very
1153 * first operation that's logged for this root.
1154 */
1155 while (1) {
1156 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1157 time_seq);
1158 if (!looped && !tm)
1159 return NULL;
1160 /*
1161 * if there are no tree operation for the oldest root, we simply
1162 * return it. this should only happen if that (old) root is at
1163 * level 0.
1164 */
1165 if (!tm)
1166 break;
1167
1168 /*
1169 * if there's an operation that's not a root replacement, we
1170 * found the oldest version of our root. normally, we'll find a
1171 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1172 */
1173 if (tm->op != MOD_LOG_ROOT_REPLACE)
1174 break;
1175
1176 found = tm;
1177 root_logical = tm->old_root.logical;
1178 looped = 1;
1179 }
1180
1181 /* if there's no old root to return, return what we found instead */
1182 if (!found)
1183 found = tm;
1184
1185 return found;
1186}
1187
1188/*
1189 * tm is a pointer to the first operation to rewind within eb. then, all
1190 * previous operations will be rewound (until we reach something older than
1191 * time_seq).
1192 */
1193static void
1194__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1195 u64 time_seq, struct tree_mod_elem *first_tm)
1196{
1197 u32 n;
1198 struct rb_node *next;
1199 struct tree_mod_elem *tm = first_tm;
1200 unsigned long o_dst;
1201 unsigned long o_src;
1202 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1203
1204 n = btrfs_header_nritems(eb);
1205 read_lock(&fs_info->tree_mod_log_lock);
1206 while (tm && tm->seq >= time_seq) {
1207 /*
1208 * all the operations are recorded with the operator used for
1209 * the modification. as we're going backwards, we do the
1210 * opposite of each operation here.
1211 */
1212 switch (tm->op) {
1213 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1214 BUG_ON(tm->slot < n);
1215 /* Fallthrough */
1216 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1217 case MOD_LOG_KEY_REMOVE:
1218 btrfs_set_node_key(eb, &tm->key, tm->slot);
1219 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1220 btrfs_set_node_ptr_generation(eb, tm->slot,
1221 tm->generation);
1222 n++;
1223 break;
1224 case MOD_LOG_KEY_REPLACE:
1225 BUG_ON(tm->slot >= n);
1226 btrfs_set_node_key(eb, &tm->key, tm->slot);
1227 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1228 btrfs_set_node_ptr_generation(eb, tm->slot,
1229 tm->generation);
1230 break;
1231 case MOD_LOG_KEY_ADD:
1232 /* if a move operation is needed it's in the log */
1233 n--;
1234 break;
1235 case MOD_LOG_MOVE_KEYS:
1236 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1237 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1238 memmove_extent_buffer(eb, o_dst, o_src,
1239 tm->move.nr_items * p_size);
1240 break;
1241 case MOD_LOG_ROOT_REPLACE:
1242 /*
1243 * this operation is special. for roots, this must be
1244 * handled explicitly before rewinding.
1245 * for non-roots, this operation may exist if the node
1246 * was a root: root A -> child B; then A gets empty and
1247 * B is promoted to the new root. in the mod log, we'll
1248 * have a root-replace operation for B, a tree block
1249 * that is no root. we simply ignore that operation.
1250 */
1251 break;
1252 }
1253 next = rb_next(&tm->node);
1254 if (!next)
1255 break;
1256 tm = rb_entry(next, struct tree_mod_elem, node);
1257 if (tm->logical != first_tm->logical)
1258 break;
1259 }
1260 read_unlock(&fs_info->tree_mod_log_lock);
1261 btrfs_set_header_nritems(eb, n);
1262}
1263
1264/*
1265 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1266 * is returned. If rewind operations happen, a fresh buffer is returned. The
1267 * returned buffer is always read-locked. If the returned buffer is not the
1268 * input buffer, the lock on the input buffer is released and the input buffer
1269 * is freed (its refcount is decremented).
1270 */
1271static struct extent_buffer *
1272tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1273 struct extent_buffer *eb, u64 time_seq)
1274{
1275 struct extent_buffer *eb_rewin;
1276 struct tree_mod_elem *tm;
1277
1278 if (!time_seq)
1279 return eb;
1280
1281 if (btrfs_header_level(eb) == 0)
1282 return eb;
1283
1284 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1285 if (!tm)
1286 return eb;
1287
1288 btrfs_set_path_blocking(path);
1289 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1290
1291 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1292 BUG_ON(tm->slot != 0);
1293 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1294 if (!eb_rewin) {
1295 btrfs_tree_read_unlock_blocking(eb);
1296 free_extent_buffer(eb);
1297 return NULL;
1298 }
1299 btrfs_set_header_bytenr(eb_rewin, eb->start);
1300 btrfs_set_header_backref_rev(eb_rewin,
1301 btrfs_header_backref_rev(eb));
1302 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1303 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1304 } else {
1305 eb_rewin = btrfs_clone_extent_buffer(eb);
1306 if (!eb_rewin) {
1307 btrfs_tree_read_unlock_blocking(eb);
1308 free_extent_buffer(eb);
1309 return NULL;
1310 }
1311 }
1312
1313 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1314 btrfs_tree_read_unlock_blocking(eb);
1315 free_extent_buffer(eb);
1316
1317 extent_buffer_get(eb_rewin);
1318 btrfs_tree_read_lock(eb_rewin);
1319 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1320 WARN_ON(btrfs_header_nritems(eb_rewin) >
1321 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1322
1323 return eb_rewin;
1324}
1325
1326/*
1327 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1328 * value. If there are no changes, the current root->root_node is returned. If
1329 * anything changed in between, there's a fresh buffer allocated on which the
1330 * rewind operations are done. In any case, the returned buffer is read locked.
1331 * Returns NULL on error (with no locks held).
1332 */
1333static inline struct extent_buffer *
1334get_old_root(struct btrfs_root *root, u64 time_seq)
1335{
1336 struct btrfs_fs_info *fs_info = root->fs_info;
1337 struct tree_mod_elem *tm;
1338 struct extent_buffer *eb = NULL;
1339 struct extent_buffer *eb_root;
1340 struct extent_buffer *old;
1341 struct tree_mod_root *old_root = NULL;
1342 u64 old_generation = 0;
1343 u64 logical;
1344 int level;
1345
1346 eb_root = btrfs_read_lock_root_node(root);
1347 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1348 if (!tm)
1349 return eb_root;
1350
1351 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1352 old_root = &tm->old_root;
1353 old_generation = tm->generation;
1354 logical = old_root->logical;
1355 level = old_root->level;
1356 } else {
1357 logical = eb_root->start;
1358 level = btrfs_header_level(eb_root);
1359 }
1360
1361 tm = tree_mod_log_search(fs_info, logical, time_seq);
1362 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1363 btrfs_tree_read_unlock(eb_root);
1364 free_extent_buffer(eb_root);
1365 old = read_tree_block(fs_info, logical, 0, level, NULL);
1366 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1367 if (!IS_ERR(old))
1368 free_extent_buffer(old);
1369 btrfs_warn(fs_info,
1370 "failed to read tree block %llu from get_old_root",
1371 logical);
1372 } else {
1373 eb = btrfs_clone_extent_buffer(old);
1374 free_extent_buffer(old);
1375 }
1376 } else if (old_root) {
1377 btrfs_tree_read_unlock(eb_root);
1378 free_extent_buffer(eb_root);
1379 eb = alloc_dummy_extent_buffer(fs_info, logical);
1380 } else {
1381 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1382 eb = btrfs_clone_extent_buffer(eb_root);
1383 btrfs_tree_read_unlock_blocking(eb_root);
1384 free_extent_buffer(eb_root);
1385 }
1386
1387 if (!eb)
1388 return NULL;
1389 extent_buffer_get(eb);
1390 btrfs_tree_read_lock(eb);
1391 if (old_root) {
1392 btrfs_set_header_bytenr(eb, eb->start);
1393 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1394 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1395 btrfs_set_header_level(eb, old_root->level);
1396 btrfs_set_header_generation(eb, old_generation);
1397 }
1398 if (tm)
1399 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1400 else
1401 WARN_ON(btrfs_header_level(eb) != 0);
1402 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1403
1404 return eb;
1405}
1406
1407int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1408{
1409 struct tree_mod_elem *tm;
1410 int level;
1411 struct extent_buffer *eb_root = btrfs_root_node(root);
1412
1413 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1414 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1415 level = tm->old_root.level;
1416 } else {
1417 level = btrfs_header_level(eb_root);
1418 }
1419 free_extent_buffer(eb_root);
1420
1421 return level;
1422}
1423
1424static inline int should_cow_block(struct btrfs_trans_handle *trans,
1425 struct btrfs_root *root,
1426 struct extent_buffer *buf)
1427{
1428 if (btrfs_is_testing(root->fs_info))
1429 return 0;
1430
1431 /* Ensure we can see the FORCE_COW bit */
1432 smp_mb__before_atomic();
1433
1434 /*
1435 * We do not need to cow a block if
1436 * 1) this block is not created or changed in this transaction;
1437 * 2) this block does not belong to TREE_RELOC tree;
1438 * 3) the root is not forced COW.
1439 *
1440 * What is forced COW:
1441 * when we create snapshot during committing the transaction,
1442 * after we've finished coping src root, we must COW the shared
1443 * block to ensure the metadata consistency.
1444 */
1445 if (btrfs_header_generation(buf) == trans->transid &&
1446 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1447 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1448 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1449 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1450 return 0;
1451 return 1;
1452}
1453
1454/*
1455 * cows a single block, see __btrfs_cow_block for the real work.
1456 * This version of it has extra checks so that a block isn't COWed more than
1457 * once per transaction, as long as it hasn't been written yet
1458 */
1459noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1460 struct btrfs_root *root, struct extent_buffer *buf,
1461 struct extent_buffer *parent, int parent_slot,
1462 struct extent_buffer **cow_ret)
1463{
1464 struct btrfs_fs_info *fs_info = root->fs_info;
1465 u64 search_start;
1466 int ret;
1467
1468 if (trans->transaction != fs_info->running_transaction)
1469 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1470 trans->transid,
1471 fs_info->running_transaction->transid);
1472
1473 if (trans->transid != fs_info->generation)
1474 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1475 trans->transid, fs_info->generation);
1476
1477 if (!should_cow_block(trans, root, buf)) {
1478 trans->dirty = true;
1479 *cow_ret = buf;
1480 return 0;
1481 }
1482
1483 search_start = buf->start & ~((u64)SZ_1G - 1);
1484
1485 if (parent)
1486 btrfs_set_lock_blocking(parent);
1487 btrfs_set_lock_blocking(buf);
1488
1489 ret = __btrfs_cow_block(trans, root, buf, parent,
1490 parent_slot, cow_ret, search_start, 0);
1491
1492 trace_btrfs_cow_block(root, buf, *cow_ret);
1493
1494 return ret;
1495}
1496
1497/*
1498 * helper function for defrag to decide if two blocks pointed to by a
1499 * node are actually close by
1500 */
1501static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1502{
1503 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1504 return 1;
1505 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1506 return 1;
1507 return 0;
1508}
1509
1510/*
1511 * compare two keys in a memcmp fashion
1512 */
1513static int comp_keys(const struct btrfs_disk_key *disk,
1514 const struct btrfs_key *k2)
1515{
1516 struct btrfs_key k1;
1517
1518 btrfs_disk_key_to_cpu(&k1, disk);
1519
1520 return btrfs_comp_cpu_keys(&k1, k2);
1521}
1522
1523/*
1524 * same as comp_keys only with two btrfs_key's
1525 */
1526int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1527{
1528 if (k1->objectid > k2->objectid)
1529 return 1;
1530 if (k1->objectid < k2->objectid)
1531 return -1;
1532 if (k1->type > k2->type)
1533 return 1;
1534 if (k1->type < k2->type)
1535 return -1;
1536 if (k1->offset > k2->offset)
1537 return 1;
1538 if (k1->offset < k2->offset)
1539 return -1;
1540 return 0;
1541}
1542
1543/*
1544 * this is used by the defrag code to go through all the
1545 * leaves pointed to by a node and reallocate them so that
1546 * disk order is close to key order
1547 */
1548int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1549 struct btrfs_root *root, struct extent_buffer *parent,
1550 int start_slot, u64 *last_ret,
1551 struct btrfs_key *progress)
1552{
1553 struct btrfs_fs_info *fs_info = root->fs_info;
1554 struct extent_buffer *cur;
1555 u64 blocknr;
1556 u64 gen;
1557 u64 search_start = *last_ret;
1558 u64 last_block = 0;
1559 u64 other;
1560 u32 parent_nritems;
1561 int end_slot;
1562 int i;
1563 int err = 0;
1564 int parent_level;
1565 int uptodate;
1566 u32 blocksize;
1567 int progress_passed = 0;
1568 struct btrfs_disk_key disk_key;
1569
1570 parent_level = btrfs_header_level(parent);
1571
1572 WARN_ON(trans->transaction != fs_info->running_transaction);
1573 WARN_ON(trans->transid != fs_info->generation);
1574
1575 parent_nritems = btrfs_header_nritems(parent);
1576 blocksize = fs_info->nodesize;
1577 end_slot = parent_nritems - 1;
1578
1579 if (parent_nritems <= 1)
1580 return 0;
1581
1582 btrfs_set_lock_blocking(parent);
1583
1584 for (i = start_slot; i <= end_slot; i++) {
1585 struct btrfs_key first_key;
1586 int close = 1;
1587
1588 btrfs_node_key(parent, &disk_key, i);
1589 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1590 continue;
1591
1592 progress_passed = 1;
1593 blocknr = btrfs_node_blockptr(parent, i);
1594 gen = btrfs_node_ptr_generation(parent, i);
1595 btrfs_node_key_to_cpu(parent, &first_key, i);
1596 if (last_block == 0)
1597 last_block = blocknr;
1598
1599 if (i > 0) {
1600 other = btrfs_node_blockptr(parent, i - 1);
1601 close = close_blocks(blocknr, other, blocksize);
1602 }
1603 if (!close && i < end_slot) {
1604 other = btrfs_node_blockptr(parent, i + 1);
1605 close = close_blocks(blocknr, other, blocksize);
1606 }
1607 if (close) {
1608 last_block = blocknr;
1609 continue;
1610 }
1611
1612 cur = find_extent_buffer(fs_info, blocknr);
1613 if (cur)
1614 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1615 else
1616 uptodate = 0;
1617 if (!cur || !uptodate) {
1618 if (!cur) {
1619 cur = read_tree_block(fs_info, blocknr, gen,
1620 parent_level - 1,
1621 &first_key);
1622 if (IS_ERR(cur)) {
1623 return PTR_ERR(cur);
1624 } else if (!extent_buffer_uptodate(cur)) {
1625 free_extent_buffer(cur);
1626 return -EIO;
1627 }
1628 } else if (!uptodate) {
1629 err = btrfs_read_buffer(cur, gen,
1630 parent_level - 1,&first_key);
1631 if (err) {
1632 free_extent_buffer(cur);
1633 return err;
1634 }
1635 }
1636 }
1637 if (search_start == 0)
1638 search_start = last_block;
1639
1640 btrfs_tree_lock(cur);
1641 btrfs_set_lock_blocking(cur);
1642 err = __btrfs_cow_block(trans, root, cur, parent, i,
1643 &cur, search_start,
1644 min(16 * blocksize,
1645 (end_slot - i) * blocksize));
1646 if (err) {
1647 btrfs_tree_unlock(cur);
1648 free_extent_buffer(cur);
1649 break;
1650 }
1651 search_start = cur->start;
1652 last_block = cur->start;
1653 *last_ret = search_start;
1654 btrfs_tree_unlock(cur);
1655 free_extent_buffer(cur);
1656 }
1657 return err;
1658}
1659
1660/*
1661 * search for key in the extent_buffer. The items start at offset p,
1662 * and they are item_size apart. There are 'max' items in p.
1663 *
1664 * the slot in the array is returned via slot, and it points to
1665 * the place where you would insert key if it is not found in
1666 * the array.
1667 *
1668 * slot may point to max if the key is bigger than all of the keys
1669 */
1670static noinline int generic_bin_search(struct extent_buffer *eb,
1671 unsigned long p, int item_size,
1672 const struct btrfs_key *key,
1673 int max, int *slot)
1674{
1675 int low = 0;
1676 int high = max;
1677 int mid;
1678 int ret;
1679 struct btrfs_disk_key *tmp = NULL;
1680 struct btrfs_disk_key unaligned;
1681 unsigned long offset;
1682 char *kaddr = NULL;
1683 unsigned long map_start = 0;
1684 unsigned long map_len = 0;
1685 int err;
1686
1687 if (low > high) {
1688 btrfs_err(eb->fs_info,
1689 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1690 __func__, low, high, eb->start,
1691 btrfs_header_owner(eb), btrfs_header_level(eb));
1692 return -EINVAL;
1693 }
1694
1695 while (low < high) {
1696 mid = (low + high) / 2;
1697 offset = p + mid * item_size;
1698
1699 if (!kaddr || offset < map_start ||
1700 (offset + sizeof(struct btrfs_disk_key)) >
1701 map_start + map_len) {
1702
1703 err = map_private_extent_buffer(eb, offset,
1704 sizeof(struct btrfs_disk_key),
1705 &kaddr, &map_start, &map_len);
1706
1707 if (!err) {
1708 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1709 map_start);
1710 } else if (err == 1) {
1711 read_extent_buffer(eb, &unaligned,
1712 offset, sizeof(unaligned));
1713 tmp = &unaligned;
1714 } else {
1715 return err;
1716 }
1717
1718 } else {
1719 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1720 map_start);
1721 }
1722 ret = comp_keys(tmp, key);
1723
1724 if (ret < 0)
1725 low = mid + 1;
1726 else if (ret > 0)
1727 high = mid;
1728 else {
1729 *slot = mid;
1730 return 0;
1731 }
1732 }
1733 *slot = low;
1734 return 1;
1735}
1736
1737/*
1738 * simple bin_search frontend that does the right thing for
1739 * leaves vs nodes
1740 */
1741int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1742 int level, int *slot)
1743{
1744 if (level == 0)
1745 return generic_bin_search(eb,
1746 offsetof(struct btrfs_leaf, items),
1747 sizeof(struct btrfs_item),
1748 key, btrfs_header_nritems(eb),
1749 slot);
1750 else
1751 return generic_bin_search(eb,
1752 offsetof(struct btrfs_node, ptrs),
1753 sizeof(struct btrfs_key_ptr),
1754 key, btrfs_header_nritems(eb),
1755 slot);
1756}
1757
1758static void root_add_used(struct btrfs_root *root, u32 size)
1759{
1760 spin_lock(&root->accounting_lock);
1761 btrfs_set_root_used(&root->root_item,
1762 btrfs_root_used(&root->root_item) + size);
1763 spin_unlock(&root->accounting_lock);
1764}
1765
1766static void root_sub_used(struct btrfs_root *root, u32 size)
1767{
1768 spin_lock(&root->accounting_lock);
1769 btrfs_set_root_used(&root->root_item,
1770 btrfs_root_used(&root->root_item) - size);
1771 spin_unlock(&root->accounting_lock);
1772}
1773
1774/* given a node and slot number, this reads the blocks it points to. The
1775 * extent buffer is returned with a reference taken (but unlocked).
1776 */
1777static noinline struct extent_buffer *
1778read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1779 int slot)
1780{
1781 int level = btrfs_header_level(parent);
1782 struct extent_buffer *eb;
1783 struct btrfs_key first_key;
1784
1785 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1786 return ERR_PTR(-ENOENT);
1787
1788 BUG_ON(level == 0);
1789
1790 btrfs_node_key_to_cpu(parent, &first_key, slot);
1791 eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1792 btrfs_node_ptr_generation(parent, slot),
1793 level - 1, &first_key);
1794 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1795 free_extent_buffer(eb);
1796 eb = ERR_PTR(-EIO);
1797 }
1798
1799 return eb;
1800}
1801
1802/*
1803 * node level balancing, used to make sure nodes are in proper order for
1804 * item deletion. We balance from the top down, so we have to make sure
1805 * that a deletion won't leave an node completely empty later on.
1806 */
1807static noinline int balance_level(struct btrfs_trans_handle *trans,
1808 struct btrfs_root *root,
1809 struct btrfs_path *path, int level)
1810{
1811 struct btrfs_fs_info *fs_info = root->fs_info;
1812 struct extent_buffer *right = NULL;
1813 struct extent_buffer *mid;
1814 struct extent_buffer *left = NULL;
1815 struct extent_buffer *parent = NULL;
1816 int ret = 0;
1817 int wret;
1818 int pslot;
1819 int orig_slot = path->slots[level];
1820 u64 orig_ptr;
1821
1822 if (level == 0)
1823 return 0;
1824
1825 mid = path->nodes[level];
1826
1827 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1828 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1829 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1830
1831 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1832
1833 if (level < BTRFS_MAX_LEVEL - 1) {
1834 parent = path->nodes[level + 1];
1835 pslot = path->slots[level + 1];
1836 }
1837
1838 /*
1839 * deal with the case where there is only one pointer in the root
1840 * by promoting the node below to a root
1841 */
1842 if (!parent) {
1843 struct extent_buffer *child;
1844
1845 if (btrfs_header_nritems(mid) != 1)
1846 return 0;
1847
1848 /* promote the child to a root */
1849 child = read_node_slot(fs_info, mid, 0);
1850 if (IS_ERR(child)) {
1851 ret = PTR_ERR(child);
1852 btrfs_handle_fs_error(fs_info, ret, NULL);
1853 goto enospc;
1854 }
1855
1856 btrfs_tree_lock(child);
1857 btrfs_set_lock_blocking(child);
1858 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1859 if (ret) {
1860 btrfs_tree_unlock(child);
1861 free_extent_buffer(child);
1862 goto enospc;
1863 }
1864
1865 ret = tree_mod_log_insert_root(root->node, child, 1);
1866 BUG_ON(ret < 0);
1867 rcu_assign_pointer(root->node, child);
1868
1869 add_root_to_dirty_list(root);
1870 btrfs_tree_unlock(child);
1871
1872 path->locks[level] = 0;
1873 path->nodes[level] = NULL;
1874 clean_tree_block(fs_info, mid);
1875 btrfs_tree_unlock(mid);
1876 /* once for the path */
1877 free_extent_buffer(mid);
1878
1879 root_sub_used(root, mid->len);
1880 btrfs_free_tree_block(trans, root, mid, 0, 1);
1881 /* once for the root ptr */
1882 free_extent_buffer_stale(mid);
1883 return 0;
1884 }
1885 if (btrfs_header_nritems(mid) >
1886 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1887 return 0;
1888
1889 left = read_node_slot(fs_info, parent, pslot - 1);
1890 if (IS_ERR(left))
1891 left = NULL;
1892
1893 if (left) {
1894 btrfs_tree_lock(left);
1895 btrfs_set_lock_blocking(left);
1896 wret = btrfs_cow_block(trans, root, left,
1897 parent, pslot - 1, &left);
1898 if (wret) {
1899 ret = wret;
1900 goto enospc;
1901 }
1902 }
1903
1904 right = read_node_slot(fs_info, parent, pslot + 1);
1905 if (IS_ERR(right))
1906 right = NULL;
1907
1908 if (right) {
1909 btrfs_tree_lock(right);
1910 btrfs_set_lock_blocking(right);
1911 wret = btrfs_cow_block(trans, root, right,
1912 parent, pslot + 1, &right);
1913 if (wret) {
1914 ret = wret;
1915 goto enospc;
1916 }
1917 }
1918
1919 /* first, try to make some room in the middle buffer */
1920 if (left) {
1921 orig_slot += btrfs_header_nritems(left);
1922 wret = push_node_left(trans, fs_info, left, mid, 1);
1923 if (wret < 0)
1924 ret = wret;
1925 }
1926
1927 /*
1928 * then try to empty the right most buffer into the middle
1929 */
1930 if (right) {
1931 wret = push_node_left(trans, fs_info, mid, right, 1);
1932 if (wret < 0 && wret != -ENOSPC)
1933 ret = wret;
1934 if (btrfs_header_nritems(right) == 0) {
1935 clean_tree_block(fs_info, right);
1936 btrfs_tree_unlock(right);
1937 del_ptr(root, path, level + 1, pslot + 1);
1938 root_sub_used(root, right->len);
1939 btrfs_free_tree_block(trans, root, right, 0, 1);
1940 free_extent_buffer_stale(right);
1941 right = NULL;
1942 } else {
1943 struct btrfs_disk_key right_key;
1944 btrfs_node_key(right, &right_key, 0);
1945 ret = tree_mod_log_insert_key(parent, pslot + 1,
1946 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1947 BUG_ON(ret < 0);
1948 btrfs_set_node_key(parent, &right_key, pslot + 1);
1949 btrfs_mark_buffer_dirty(parent);
1950 }
1951 }
1952 if (btrfs_header_nritems(mid) == 1) {
1953 /*
1954 * we're not allowed to leave a node with one item in the
1955 * tree during a delete. A deletion from lower in the tree
1956 * could try to delete the only pointer in this node.
1957 * So, pull some keys from the left.
1958 * There has to be a left pointer at this point because
1959 * otherwise we would have pulled some pointers from the
1960 * right
1961 */
1962 if (!left) {
1963 ret = -EROFS;
1964 btrfs_handle_fs_error(fs_info, ret, NULL);
1965 goto enospc;
1966 }
1967 wret = balance_node_right(trans, fs_info, mid, left);
1968 if (wret < 0) {
1969 ret = wret;
1970 goto enospc;
1971 }
1972 if (wret == 1) {
1973 wret = push_node_left(trans, fs_info, left, mid, 1);
1974 if (wret < 0)
1975 ret = wret;
1976 }
1977 BUG_ON(wret == 1);
1978 }
1979 if (btrfs_header_nritems(mid) == 0) {
1980 clean_tree_block(fs_info, mid);
1981 btrfs_tree_unlock(mid);
1982 del_ptr(root, path, level + 1, pslot);
1983 root_sub_used(root, mid->len);
1984 btrfs_free_tree_block(trans, root, mid, 0, 1);
1985 free_extent_buffer_stale(mid);
1986 mid = NULL;
1987 } else {
1988 /* update the parent key to reflect our changes */
1989 struct btrfs_disk_key mid_key;
1990 btrfs_node_key(mid, &mid_key, 0);
1991 ret = tree_mod_log_insert_key(parent, pslot,
1992 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1993 BUG_ON(ret < 0);
1994 btrfs_set_node_key(parent, &mid_key, pslot);
1995 btrfs_mark_buffer_dirty(parent);
1996 }
1997
1998 /* update the path */
1999 if (left) {
2000 if (btrfs_header_nritems(left) > orig_slot) {
2001 extent_buffer_get(left);
2002 /* left was locked after cow */
2003 path->nodes[level] = left;
2004 path->slots[level + 1] -= 1;
2005 path->slots[level] = orig_slot;
2006 if (mid) {
2007 btrfs_tree_unlock(mid);
2008 free_extent_buffer(mid);
2009 }
2010 } else {
2011 orig_slot -= btrfs_header_nritems(left);
2012 path->slots[level] = orig_slot;
2013 }
2014 }
2015 /* double check we haven't messed things up */
2016 if (orig_ptr !=
2017 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2018 BUG();
2019enospc:
2020 if (right) {
2021 btrfs_tree_unlock(right);
2022 free_extent_buffer(right);
2023 }
2024 if (left) {
2025 if (path->nodes[level] != left)
2026 btrfs_tree_unlock(left);
2027 free_extent_buffer(left);
2028 }
2029 return ret;
2030}
2031
2032/* Node balancing for insertion. Here we only split or push nodes around
2033 * when they are completely full. This is also done top down, so we
2034 * have to be pessimistic.
2035 */
2036static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2037 struct btrfs_root *root,
2038 struct btrfs_path *path, int level)
2039{
2040 struct btrfs_fs_info *fs_info = root->fs_info;
2041 struct extent_buffer *right = NULL;
2042 struct extent_buffer *mid;
2043 struct extent_buffer *left = NULL;
2044 struct extent_buffer *parent = NULL;
2045 int ret = 0;
2046 int wret;
2047 int pslot;
2048 int orig_slot = path->slots[level];
2049
2050 if (level == 0)
2051 return 1;
2052
2053 mid = path->nodes[level];
2054 WARN_ON(btrfs_header_generation(mid) != trans->transid);
2055
2056 if (level < BTRFS_MAX_LEVEL - 1) {
2057 parent = path->nodes[level + 1];
2058 pslot = path->slots[level + 1];
2059 }
2060
2061 if (!parent)
2062 return 1;
2063
2064 left = read_node_slot(fs_info, parent, pslot - 1);
2065 if (IS_ERR(left))
2066 left = NULL;
2067
2068 /* first, try to make some room in the middle buffer */
2069 if (left) {
2070 u32 left_nr;
2071
2072 btrfs_tree_lock(left);
2073 btrfs_set_lock_blocking(left);
2074
2075 left_nr = btrfs_header_nritems(left);
2076 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2077 wret = 1;
2078 } else {
2079 ret = btrfs_cow_block(trans, root, left, parent,
2080 pslot - 1, &left);
2081 if (ret)
2082 wret = 1;
2083 else {
2084 wret = push_node_left(trans, fs_info,
2085 left, mid, 0);
2086 }
2087 }
2088 if (wret < 0)
2089 ret = wret;
2090 if (wret == 0) {
2091 struct btrfs_disk_key disk_key;
2092 orig_slot += left_nr;
2093 btrfs_node_key(mid, &disk_key, 0);
2094 ret = tree_mod_log_insert_key(parent, pslot,
2095 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2096 BUG_ON(ret < 0);
2097 btrfs_set_node_key(parent, &disk_key, pslot);
2098 btrfs_mark_buffer_dirty(parent);
2099 if (btrfs_header_nritems(left) > orig_slot) {
2100 path->nodes[level] = left;
2101 path->slots[level + 1] -= 1;
2102 path->slots[level] = orig_slot;
2103 btrfs_tree_unlock(mid);
2104 free_extent_buffer(mid);
2105 } else {
2106 orig_slot -=
2107 btrfs_header_nritems(left);
2108 path->slots[level] = orig_slot;
2109 btrfs_tree_unlock(left);
2110 free_extent_buffer(left);
2111 }
2112 return 0;
2113 }
2114 btrfs_tree_unlock(left);
2115 free_extent_buffer(left);
2116 }
2117 right = read_node_slot(fs_info, parent, pslot + 1);
2118 if (IS_ERR(right))
2119 right = NULL;
2120
2121 /*
2122 * then try to empty the right most buffer into the middle
2123 */
2124 if (right) {
2125 u32 right_nr;
2126
2127 btrfs_tree_lock(right);
2128 btrfs_set_lock_blocking(right);
2129
2130 right_nr = btrfs_header_nritems(right);
2131 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2132 wret = 1;
2133 } else {
2134 ret = btrfs_cow_block(trans, root, right,
2135 parent, pslot + 1,
2136 &right);
2137 if (ret)
2138 wret = 1;
2139 else {
2140 wret = balance_node_right(trans, fs_info,
2141 right, mid);
2142 }
2143 }
2144 if (wret < 0)
2145 ret = wret;
2146 if (wret == 0) {
2147 struct btrfs_disk_key disk_key;
2148
2149 btrfs_node_key(right, &disk_key, 0);
2150 ret = tree_mod_log_insert_key(parent, pslot + 1,
2151 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2152 BUG_ON(ret < 0);
2153 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2154 btrfs_mark_buffer_dirty(parent);
2155
2156 if (btrfs_header_nritems(mid) <= orig_slot) {
2157 path->nodes[level] = right;
2158 path->slots[level + 1] += 1;
2159 path->slots[level] = orig_slot -
2160 btrfs_header_nritems(mid);
2161 btrfs_tree_unlock(mid);
2162 free_extent_buffer(mid);
2163 } else {
2164 btrfs_tree_unlock(right);
2165 free_extent_buffer(right);
2166 }
2167 return 0;
2168 }
2169 btrfs_tree_unlock(right);
2170 free_extent_buffer(right);
2171 }
2172 return 1;
2173}
2174
2175/*
2176 * readahead one full node of leaves, finding things that are close
2177 * to the block in 'slot', and triggering ra on them.
2178 */
2179static void reada_for_search(struct btrfs_fs_info *fs_info,
2180 struct btrfs_path *path,
2181 int level, int slot, u64 objectid)
2182{
2183 struct extent_buffer *node;
2184 struct btrfs_disk_key disk_key;
2185 u32 nritems;
2186 u64 search;
2187 u64 target;
2188 u64 nread = 0;
2189 struct extent_buffer *eb;
2190 u32 nr;
2191 u32 blocksize;
2192 u32 nscan = 0;
2193
2194 if (level != 1)
2195 return;
2196
2197 if (!path->nodes[level])
2198 return;
2199
2200 node = path->nodes[level];
2201
2202 search = btrfs_node_blockptr(node, slot);
2203 blocksize = fs_info->nodesize;
2204 eb = find_extent_buffer(fs_info, search);
2205 if (eb) {
2206 free_extent_buffer(eb);
2207 return;
2208 }
2209
2210 target = search;
2211
2212 nritems = btrfs_header_nritems(node);
2213 nr = slot;
2214
2215 while (1) {
2216 if (path->reada == READA_BACK) {
2217 if (nr == 0)
2218 break;
2219 nr--;
2220 } else if (path->reada == READA_FORWARD) {
2221 nr++;
2222 if (nr >= nritems)
2223 break;
2224 }
2225 if (path->reada == READA_BACK && objectid) {
2226 btrfs_node_key(node, &disk_key, nr);
2227 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2228 break;
2229 }
2230 search = btrfs_node_blockptr(node, nr);
2231 if ((search <= target && target - search <= 65536) ||
2232 (search > target && search - target <= 65536)) {
2233 readahead_tree_block(fs_info, search);
2234 nread += blocksize;
2235 }
2236 nscan++;
2237 if ((nread > 65536 || nscan > 32))
2238 break;
2239 }
2240}
2241
2242static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2243 struct btrfs_path *path, int level)
2244{
2245 int slot;
2246 int nritems;
2247 struct extent_buffer *parent;
2248 struct extent_buffer *eb;
2249 u64 gen;
2250 u64 block1 = 0;
2251 u64 block2 = 0;
2252
2253 parent = path->nodes[level + 1];
2254 if (!parent)
2255 return;
2256
2257 nritems = btrfs_header_nritems(parent);
2258 slot = path->slots[level + 1];
2259
2260 if (slot > 0) {
2261 block1 = btrfs_node_blockptr(parent, slot - 1);
2262 gen = btrfs_node_ptr_generation(parent, slot - 1);
2263 eb = find_extent_buffer(fs_info, block1);
2264 /*
2265 * if we get -eagain from btrfs_buffer_uptodate, we
2266 * don't want to return eagain here. That will loop
2267 * forever
2268 */
2269 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2270 block1 = 0;
2271 free_extent_buffer(eb);
2272 }
2273 if (slot + 1 < nritems) {
2274 block2 = btrfs_node_blockptr(parent, slot + 1);
2275 gen = btrfs_node_ptr_generation(parent, slot + 1);
2276 eb = find_extent_buffer(fs_info, block2);
2277 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2278 block2 = 0;
2279 free_extent_buffer(eb);
2280 }
2281
2282 if (block1)
2283 readahead_tree_block(fs_info, block1);
2284 if (block2)
2285 readahead_tree_block(fs_info, block2);
2286}
2287
2288
2289/*
2290 * when we walk down the tree, it is usually safe to unlock the higher layers
2291 * in the tree. The exceptions are when our path goes through slot 0, because
2292 * operations on the tree might require changing key pointers higher up in the
2293 * tree.
2294 *
2295 * callers might also have set path->keep_locks, which tells this code to keep
2296 * the lock if the path points to the last slot in the block. This is part of
2297 * walking through the tree, and selecting the next slot in the higher block.
2298 *
2299 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2300 * if lowest_unlock is 1, level 0 won't be unlocked
2301 */
2302static noinline void unlock_up(struct btrfs_path *path, int level,
2303 int lowest_unlock, int min_write_lock_level,
2304 int *write_lock_level)
2305{
2306 int i;
2307 int skip_level = level;
2308 int no_skips = 0;
2309 struct extent_buffer *t;
2310
2311 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2312 if (!path->nodes[i])
2313 break;
2314 if (!path->locks[i])
2315 break;
2316 if (!no_skips && path->slots[i] == 0) {
2317 skip_level = i + 1;
2318 continue;
2319 }
2320 if (!no_skips && path->keep_locks) {
2321 u32 nritems;
2322 t = path->nodes[i];
2323 nritems = btrfs_header_nritems(t);
2324 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2325 skip_level = i + 1;
2326 continue;
2327 }
2328 }
2329 if (skip_level < i && i >= lowest_unlock)
2330 no_skips = 1;
2331
2332 t = path->nodes[i];
2333 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2334 btrfs_tree_unlock_rw(t, path->locks[i]);
2335 path->locks[i] = 0;
2336 if (write_lock_level &&
2337 i > min_write_lock_level &&
2338 i <= *write_lock_level) {
2339 *write_lock_level = i - 1;
2340 }
2341 }
2342 }
2343}
2344
2345/*
2346 * This releases any locks held in the path starting at level and
2347 * going all the way up to the root.
2348 *
2349 * btrfs_search_slot will keep the lock held on higher nodes in a few
2350 * corner cases, such as COW of the block at slot zero in the node. This
2351 * ignores those rules, and it should only be called when there are no
2352 * more updates to be done higher up in the tree.
2353 */
2354noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2355{
2356 int i;
2357
2358 if (path->keep_locks)
2359 return;
2360
2361 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2362 if (!path->nodes[i])
2363 continue;
2364 if (!path->locks[i])
2365 continue;
2366 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2367 path->locks[i] = 0;
2368 }
2369}
2370
2371/*
2372 * helper function for btrfs_search_slot. The goal is to find a block
2373 * in cache without setting the path to blocking. If we find the block
2374 * we return zero and the path is unchanged.
2375 *
2376 * If we can't find the block, we set the path blocking and do some
2377 * reada. -EAGAIN is returned and the search must be repeated.
2378 */
2379static int
2380read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2381 struct extent_buffer **eb_ret, int level, int slot,
2382 const struct btrfs_key *key)
2383{
2384 struct btrfs_fs_info *fs_info = root->fs_info;
2385 u64 blocknr;
2386 u64 gen;
2387 struct extent_buffer *b = *eb_ret;
2388 struct extent_buffer *tmp;
2389 struct btrfs_key first_key;
2390 int ret;
2391 int parent_level;
2392
2393 blocknr = btrfs_node_blockptr(b, slot);
2394 gen = btrfs_node_ptr_generation(b, slot);
2395 parent_level = btrfs_header_level(b);
2396 btrfs_node_key_to_cpu(b, &first_key, slot);
2397
2398 tmp = find_extent_buffer(fs_info, blocknr);
2399 if (tmp) {
2400 /* first we do an atomic uptodate check */
2401 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2402 *eb_ret = tmp;
2403 return 0;
2404 }
2405
2406 /* the pages were up to date, but we failed
2407 * the generation number check. Do a full
2408 * read for the generation number that is correct.
2409 * We must do this without dropping locks so
2410 * we can trust our generation number
2411 */
2412 btrfs_set_path_blocking(p);
2413
2414 /* now we're allowed to do a blocking uptodate check */
2415 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2416 if (!ret) {
2417 *eb_ret = tmp;
2418 return 0;
2419 }
2420 free_extent_buffer(tmp);
2421 btrfs_release_path(p);
2422 return -EIO;
2423 }
2424
2425 /*
2426 * reduce lock contention at high levels
2427 * of the btree by dropping locks before
2428 * we read. Don't release the lock on the current
2429 * level because we need to walk this node to figure
2430 * out which blocks to read.
2431 */
2432 btrfs_unlock_up_safe(p, level + 1);
2433 btrfs_set_path_blocking(p);
2434
2435 free_extent_buffer(tmp);
2436 if (p->reada != READA_NONE)
2437 reada_for_search(fs_info, p, level, slot, key->objectid);
2438
2439 ret = -EAGAIN;
2440 tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2441 &first_key);
2442 if (!IS_ERR(tmp)) {
2443 /*
2444 * If the read above didn't mark this buffer up to date,
2445 * it will never end up being up to date. Set ret to EIO now
2446 * and give up so that our caller doesn't loop forever
2447 * on our EAGAINs.
2448 */
2449 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2450 ret = -EIO;
2451 free_extent_buffer(tmp);
2452 } else {
2453 ret = PTR_ERR(tmp);
2454 }
2455
2456 btrfs_release_path(p);
2457 return ret;
2458}
2459
2460/*
2461 * helper function for btrfs_search_slot. This does all of the checks
2462 * for node-level blocks and does any balancing required based on
2463 * the ins_len.
2464 *
2465 * If no extra work was required, zero is returned. If we had to
2466 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2467 * start over
2468 */
2469static int
2470setup_nodes_for_search(struct btrfs_trans_handle *trans,
2471 struct btrfs_root *root, struct btrfs_path *p,
2472 struct extent_buffer *b, int level, int ins_len,
2473 int *write_lock_level)
2474{
2475 struct btrfs_fs_info *fs_info = root->fs_info;
2476 int ret;
2477
2478 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2479 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2480 int sret;
2481
2482 if (*write_lock_level < level + 1) {
2483 *write_lock_level = level + 1;
2484 btrfs_release_path(p);
2485 goto again;
2486 }
2487
2488 btrfs_set_path_blocking(p);
2489 reada_for_balance(fs_info, p, level);
2490 sret = split_node(trans, root, p, level);
2491 btrfs_clear_path_blocking(p, NULL, 0);
2492
2493 BUG_ON(sret > 0);
2494 if (sret) {
2495 ret = sret;
2496 goto done;
2497 }
2498 b = p->nodes[level];
2499 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2500 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2501 int sret;
2502
2503 if (*write_lock_level < level + 1) {
2504 *write_lock_level = level + 1;
2505 btrfs_release_path(p);
2506 goto again;
2507 }
2508
2509 btrfs_set_path_blocking(p);
2510 reada_for_balance(fs_info, p, level);
2511 sret = balance_level(trans, root, p, level);
2512 btrfs_clear_path_blocking(p, NULL, 0);
2513
2514 if (sret) {
2515 ret = sret;
2516 goto done;
2517 }
2518 b = p->nodes[level];
2519 if (!b) {
2520 btrfs_release_path(p);
2521 goto again;
2522 }
2523 BUG_ON(btrfs_header_nritems(b) == 1);
2524 }
2525 return 0;
2526
2527again:
2528 ret = -EAGAIN;
2529done:
2530 return ret;
2531}
2532
2533static void key_search_validate(struct extent_buffer *b,
2534 const struct btrfs_key *key,
2535 int level)
2536{
2537#ifdef CONFIG_BTRFS_ASSERT
2538 struct btrfs_disk_key disk_key;
2539
2540 btrfs_cpu_key_to_disk(&disk_key, key);
2541
2542 if (level == 0)
2543 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2544 offsetof(struct btrfs_leaf, items[0].key),
2545 sizeof(disk_key)));
2546 else
2547 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2548 offsetof(struct btrfs_node, ptrs[0].key),
2549 sizeof(disk_key)));
2550#endif
2551}
2552
2553static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2554 int level, int *prev_cmp, int *slot)
2555{
2556 if (*prev_cmp != 0) {
2557 *prev_cmp = btrfs_bin_search(b, key, level, slot);
2558 return *prev_cmp;
2559 }
2560
2561 key_search_validate(b, key, level);
2562 *slot = 0;
2563
2564 return 0;
2565}
2566
2567int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2568 u64 iobjectid, u64 ioff, u8 key_type,
2569 struct btrfs_key *found_key)
2570{
2571 int ret;
2572 struct btrfs_key key;
2573 struct extent_buffer *eb;
2574
2575 ASSERT(path);
2576 ASSERT(found_key);
2577
2578 key.type = key_type;
2579 key.objectid = iobjectid;
2580 key.offset = ioff;
2581
2582 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2583 if (ret < 0)
2584 return ret;
2585
2586 eb = path->nodes[0];
2587 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2588 ret = btrfs_next_leaf(fs_root, path);
2589 if (ret)
2590 return ret;
2591 eb = path->nodes[0];
2592 }
2593
2594 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2595 if (found_key->type != key.type ||
2596 found_key->objectid != key.objectid)
2597 return 1;
2598
2599 return 0;
2600}
2601
2602/*
2603 * btrfs_search_slot - look for a key in a tree and perform necessary
2604 * modifications to preserve tree invariants.
2605 *
2606 * @trans: Handle of transaction, used when modifying the tree
2607 * @p: Holds all btree nodes along the search path
2608 * @root: The root node of the tree
2609 * @key: The key we are looking for
2610 * @ins_len: Indicates purpose of search, for inserts it is 1, for
2611 * deletions it's -1. 0 for plain searches
2612 * @cow: boolean should CoW operations be performed. Must always be 1
2613 * when modifying the tree.
2614 *
2615 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2616 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2617 *
2618 * If @key is found, 0 is returned and you can find the item in the leaf level
2619 * of the path (level 0)
2620 *
2621 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2622 * points to the slot where it should be inserted
2623 *
2624 * If an error is encountered while searching the tree a negative error number
2625 * is returned
2626 */
2627int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2628 const struct btrfs_key *key, struct btrfs_path *p,
2629 int ins_len, int cow)
2630{
2631 struct btrfs_fs_info *fs_info = root->fs_info;
2632 struct extent_buffer *b;
2633 int slot;
2634 int ret;
2635 int err;
2636 int level;
2637 int lowest_unlock = 1;
2638 int root_lock;
2639 /* everything at write_lock_level or lower must be write locked */
2640 int write_lock_level = 0;
2641 u8 lowest_level = 0;
2642 int min_write_lock_level;
2643 int prev_cmp;
2644
2645 lowest_level = p->lowest_level;
2646 WARN_ON(lowest_level && ins_len > 0);
2647 WARN_ON(p->nodes[0] != NULL);
2648 BUG_ON(!cow && ins_len);
2649
2650 if (ins_len < 0) {
2651 lowest_unlock = 2;
2652
2653 /* when we are removing items, we might have to go up to level
2654 * two as we update tree pointers Make sure we keep write
2655 * for those levels as well
2656 */
2657 write_lock_level = 2;
2658 } else if (ins_len > 0) {
2659 /*
2660 * for inserting items, make sure we have a write lock on
2661 * level 1 so we can update keys
2662 */
2663 write_lock_level = 1;
2664 }
2665
2666 if (!cow)
2667 write_lock_level = -1;
2668
2669 if (cow && (p->keep_locks || p->lowest_level))
2670 write_lock_level = BTRFS_MAX_LEVEL;
2671
2672 min_write_lock_level = write_lock_level;
2673
2674again:
2675 prev_cmp = -1;
2676 /*
2677 * we try very hard to do read locks on the root
2678 */
2679 root_lock = BTRFS_READ_LOCK;
2680 level = 0;
2681 if (p->search_commit_root) {
2682 /*
2683 * the commit roots are read only
2684 * so we always do read locks
2685 */
2686 if (p->need_commit_sem)
2687 down_read(&fs_info->commit_root_sem);
2688 b = root->commit_root;
2689 extent_buffer_get(b);
2690 level = btrfs_header_level(b);
2691 if (p->need_commit_sem)
2692 up_read(&fs_info->commit_root_sem);
2693 if (!p->skip_locking)
2694 btrfs_tree_read_lock(b);
2695 } else {
2696 if (p->skip_locking) {
2697 b = btrfs_root_node(root);
2698 level = btrfs_header_level(b);
2699 } else {
2700 /* we don't know the level of the root node
2701 * until we actually have it read locked
2702 */
2703 b = btrfs_read_lock_root_node(root);
2704 level = btrfs_header_level(b);
2705 if (level <= write_lock_level) {
2706 /* whoops, must trade for write lock */
2707 btrfs_tree_read_unlock(b);
2708 free_extent_buffer(b);
2709 b = btrfs_lock_root_node(root);
2710 root_lock = BTRFS_WRITE_LOCK;
2711
2712 /* the level might have changed, check again */
2713 level = btrfs_header_level(b);
2714 }
2715 }
2716 }
2717 p->nodes[level] = b;
2718 if (!p->skip_locking)
2719 p->locks[level] = root_lock;
2720
2721 while (b) {
2722 level = btrfs_header_level(b);
2723
2724 /*
2725 * setup the path here so we can release it under lock
2726 * contention with the cow code
2727 */
2728 if (cow) {
2729 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2730
2731 /*
2732 * if we don't really need to cow this block
2733 * then we don't want to set the path blocking,
2734 * so we test it here
2735 */
2736 if (!should_cow_block(trans, root, b)) {
2737 trans->dirty = true;
2738 goto cow_done;
2739 }
2740
2741 /*
2742 * must have write locks on this node and the
2743 * parent
2744 */
2745 if (level > write_lock_level ||
2746 (level + 1 > write_lock_level &&
2747 level + 1 < BTRFS_MAX_LEVEL &&
2748 p->nodes[level + 1])) {
2749 write_lock_level = level + 1;
2750 btrfs_release_path(p);
2751 goto again;
2752 }
2753
2754 btrfs_set_path_blocking(p);
2755 if (last_level)
2756 err = btrfs_cow_block(trans, root, b, NULL, 0,
2757 &b);
2758 else
2759 err = btrfs_cow_block(trans, root, b,
2760 p->nodes[level + 1],
2761 p->slots[level + 1], &b);
2762 if (err) {
2763 ret = err;
2764 goto done;
2765 }
2766 }
2767cow_done:
2768 p->nodes[level] = b;
2769 btrfs_clear_path_blocking(p, NULL, 0);
2770
2771 /*
2772 * we have a lock on b and as long as we aren't changing
2773 * the tree, there is no way to for the items in b to change.
2774 * It is safe to drop the lock on our parent before we
2775 * go through the expensive btree search on b.
2776 *
2777 * If we're inserting or deleting (ins_len != 0), then we might
2778 * be changing slot zero, which may require changing the parent.
2779 * So, we can't drop the lock until after we know which slot
2780 * we're operating on.
2781 */
2782 if (!ins_len && !p->keep_locks) {
2783 int u = level + 1;
2784
2785 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2786 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2787 p->locks[u] = 0;
2788 }
2789 }
2790
2791 ret = key_search(b, key, level, &prev_cmp, &slot);
2792 if (ret < 0)
2793 goto done;
2794
2795 if (level != 0) {
2796 int dec = 0;
2797 if (ret && slot > 0) {
2798 dec = 1;
2799 slot -= 1;
2800 }
2801 p->slots[level] = slot;
2802 err = setup_nodes_for_search(trans, root, p, b, level,
2803 ins_len, &write_lock_level);
2804 if (err == -EAGAIN)
2805 goto again;
2806 if (err) {
2807 ret = err;
2808 goto done;
2809 }
2810 b = p->nodes[level];
2811 slot = p->slots[level];
2812
2813 /*
2814 * slot 0 is special, if we change the key
2815 * we have to update the parent pointer
2816 * which means we must have a write lock
2817 * on the parent
2818 */
2819 if (slot == 0 && ins_len &&
2820 write_lock_level < level + 1) {
2821 write_lock_level = level + 1;
2822 btrfs_release_path(p);
2823 goto again;
2824 }
2825
2826 unlock_up(p, level, lowest_unlock,
2827 min_write_lock_level, &write_lock_level);
2828
2829 if (level == lowest_level) {
2830 if (dec)
2831 p->slots[level]++;
2832 goto done;
2833 }
2834
2835 err = read_block_for_search(root, p, &b, level,
2836 slot, key);
2837 if (err == -EAGAIN)
2838 goto again;
2839 if (err) {
2840 ret = err;
2841 goto done;
2842 }
2843
2844 if (!p->skip_locking) {
2845 level = btrfs_header_level(b);
2846 if (level <= write_lock_level) {
2847 err = btrfs_try_tree_write_lock(b);
2848 if (!err) {
2849 btrfs_set_path_blocking(p);
2850 btrfs_tree_lock(b);
2851 btrfs_clear_path_blocking(p, b,
2852 BTRFS_WRITE_LOCK);
2853 }
2854 p->locks[level] = BTRFS_WRITE_LOCK;
2855 } else {
2856 err = btrfs_tree_read_lock_atomic(b);
2857 if (!err) {
2858 btrfs_set_path_blocking(p);
2859 btrfs_tree_read_lock(b);
2860 btrfs_clear_path_blocking(p, b,
2861 BTRFS_READ_LOCK);
2862 }
2863 p->locks[level] = BTRFS_READ_LOCK;
2864 }
2865 p->nodes[level] = b;
2866 }
2867 } else {
2868 p->slots[level] = slot;
2869 if (ins_len > 0 &&
2870 btrfs_leaf_free_space(fs_info, b) < ins_len) {
2871 if (write_lock_level < 1) {
2872 write_lock_level = 1;
2873 btrfs_release_path(p);
2874 goto again;
2875 }
2876
2877 btrfs_set_path_blocking(p);
2878 err = split_leaf(trans, root, key,
2879 p, ins_len, ret == 0);
2880 btrfs_clear_path_blocking(p, NULL, 0);
2881
2882 BUG_ON(err > 0);
2883 if (err) {
2884 ret = err;
2885 goto done;
2886 }
2887 }
2888 if (!p->search_for_split)
2889 unlock_up(p, level, lowest_unlock,
2890 min_write_lock_level, &write_lock_level);
2891 goto done;
2892 }
2893 }
2894 ret = 1;
2895done:
2896 /*
2897 * we don't really know what they plan on doing with the path
2898 * from here on, so for now just mark it as blocking
2899 */
2900 if (!p->leave_spinning)
2901 btrfs_set_path_blocking(p);
2902 if (ret < 0 && !p->skip_release_on_error)
2903 btrfs_release_path(p);
2904 return ret;
2905}
2906
2907/*
2908 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2909 * current state of the tree together with the operations recorded in the tree
2910 * modification log to search for the key in a previous version of this tree, as
2911 * denoted by the time_seq parameter.
2912 *
2913 * Naturally, there is no support for insert, delete or cow operations.
2914 *
2915 * The resulting path and return value will be set up as if we called
2916 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2917 */
2918int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2919 struct btrfs_path *p, u64 time_seq)
2920{
2921 struct btrfs_fs_info *fs_info = root->fs_info;
2922 struct extent_buffer *b;
2923 int slot;
2924 int ret;
2925 int err;
2926 int level;
2927 int lowest_unlock = 1;
2928 u8 lowest_level = 0;
2929 int prev_cmp = -1;
2930
2931 lowest_level = p->lowest_level;
2932 WARN_ON(p->nodes[0] != NULL);
2933
2934 if (p->search_commit_root) {
2935 BUG_ON(time_seq);
2936 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2937 }
2938
2939again:
2940 b = get_old_root(root, time_seq);
2941 level = btrfs_header_level(b);
2942 p->locks[level] = BTRFS_READ_LOCK;
2943
2944 while (b) {
2945 level = btrfs_header_level(b);
2946 p->nodes[level] = b;
2947 btrfs_clear_path_blocking(p, NULL, 0);
2948
2949 /*
2950 * we have a lock on b and as long as we aren't changing
2951 * the tree, there is no way to for the items in b to change.
2952 * It is safe to drop the lock on our parent before we
2953 * go through the expensive btree search on b.
2954 */
2955 btrfs_unlock_up_safe(p, level + 1);
2956
2957 /*
2958 * Since we can unwind ebs we want to do a real search every
2959 * time.
2960 */
2961 prev_cmp = -1;
2962 ret = key_search(b, key, level, &prev_cmp, &slot);
2963
2964 if (level != 0) {
2965 int dec = 0;
2966 if (ret && slot > 0) {
2967 dec = 1;
2968 slot -= 1;
2969 }
2970 p->slots[level] = slot;
2971 unlock_up(p, level, lowest_unlock, 0, NULL);
2972
2973 if (level == lowest_level) {
2974 if (dec)
2975 p->slots[level]++;
2976 goto done;
2977 }
2978
2979 err = read_block_for_search(root, p, &b, level,
2980 slot, key);
2981 if (err == -EAGAIN)
2982 goto again;
2983 if (err) {
2984 ret = err;
2985 goto done;
2986 }
2987
2988 level = btrfs_header_level(b);
2989 err = btrfs_tree_read_lock_atomic(b);
2990 if (!err) {
2991 btrfs_set_path_blocking(p);
2992 btrfs_tree_read_lock(b);
2993 btrfs_clear_path_blocking(p, b,
2994 BTRFS_READ_LOCK);
2995 }
2996 b = tree_mod_log_rewind(fs_info, p, b, time_seq);
2997 if (!b) {
2998 ret = -ENOMEM;
2999 goto done;
3000 }
3001 p->locks[level] = BTRFS_READ_LOCK;
3002 p->nodes[level] = b;
3003 } else {
3004 p->slots[level] = slot;
3005 unlock_up(p, level, lowest_unlock, 0, NULL);
3006 goto done;
3007 }
3008 }
3009 ret = 1;
3010done:
3011 if (!p->leave_spinning)
3012 btrfs_set_path_blocking(p);
3013 if (ret < 0)
3014 btrfs_release_path(p);
3015
3016 return ret;
3017}
3018
3019/*
3020 * helper to use instead of search slot if no exact match is needed but
3021 * instead the next or previous item should be returned.
3022 * When find_higher is true, the next higher item is returned, the next lower
3023 * otherwise.
3024 * When return_any and find_higher are both true, and no higher item is found,
3025 * return the next lower instead.
3026 * When return_any is true and find_higher is false, and no lower item is found,
3027 * return the next higher instead.
3028 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3029 * < 0 on error
3030 */
3031int btrfs_search_slot_for_read(struct btrfs_root *root,
3032 const struct btrfs_key *key,
3033 struct btrfs_path *p, int find_higher,
3034 int return_any)
3035{
3036 int ret;
3037 struct extent_buffer *leaf;
3038
3039again:
3040 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3041 if (ret <= 0)
3042 return ret;
3043 /*
3044 * a return value of 1 means the path is at the position where the
3045 * item should be inserted. Normally this is the next bigger item,
3046 * but in case the previous item is the last in a leaf, path points
3047 * to the first free slot in the previous leaf, i.e. at an invalid
3048 * item.
3049 */
3050 leaf = p->nodes[0];
3051
3052 if (find_higher) {
3053 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3054 ret = btrfs_next_leaf(root, p);
3055 if (ret <= 0)
3056 return ret;
3057 if (!return_any)
3058 return 1;
3059 /*
3060 * no higher item found, return the next
3061 * lower instead
3062 */
3063 return_any = 0;
3064 find_higher = 0;
3065 btrfs_release_path(p);
3066 goto again;
3067 }
3068 } else {
3069 if (p->slots[0] == 0) {
3070 ret = btrfs_prev_leaf(root, p);
3071 if (ret < 0)
3072 return ret;
3073 if (!ret) {
3074 leaf = p->nodes[0];
3075 if (p->slots[0] == btrfs_header_nritems(leaf))
3076 p->slots[0]--;
3077 return 0;
3078 }
3079 if (!return_any)
3080 return 1;
3081 /*
3082 * no lower item found, return the next
3083 * higher instead
3084 */
3085 return_any = 0;
3086 find_higher = 1;
3087 btrfs_release_path(p);
3088 goto again;
3089 } else {
3090 --p->slots[0];
3091 }
3092 }
3093 return 0;
3094}
3095
3096/*
3097 * adjust the pointers going up the tree, starting at level
3098 * making sure the right key of each node is points to 'key'.
3099 * This is used after shifting pointers to the left, so it stops
3100 * fixing up pointers when a given leaf/node is not in slot 0 of the
3101 * higher levels
3102 *
3103 */
3104static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3105 struct btrfs_path *path,
3106 struct btrfs_disk_key *key, int level)
3107{
3108 int i;
3109 struct extent_buffer *t;
3110 int ret;
3111
3112 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3113 int tslot = path->slots[i];
3114
3115 if (!path->nodes[i])
3116 break;
3117 t = path->nodes[i];
3118 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3119 GFP_ATOMIC);
3120 BUG_ON(ret < 0);
3121 btrfs_set_node_key(t, key, tslot);
3122 btrfs_mark_buffer_dirty(path->nodes[i]);
3123 if (tslot != 0)
3124 break;
3125 }
3126}
3127
3128/*
3129 * update item key.
3130 *
3131 * This function isn't completely safe. It's the caller's responsibility
3132 * that the new key won't break the order
3133 */
3134void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3135 struct btrfs_path *path,
3136 const struct btrfs_key *new_key)
3137{
3138 struct btrfs_disk_key disk_key;
3139 struct extent_buffer *eb;
3140 int slot;
3141
3142 eb = path->nodes[0];
3143 slot = path->slots[0];
3144 if (slot > 0) {
3145 btrfs_item_key(eb, &disk_key, slot - 1);
3146 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3147 }
3148 if (slot < btrfs_header_nritems(eb) - 1) {
3149 btrfs_item_key(eb, &disk_key, slot + 1);
3150 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3151 }
3152
3153 btrfs_cpu_key_to_disk(&disk_key, new_key);
3154 btrfs_set_item_key(eb, &disk_key, slot);
3155 btrfs_mark_buffer_dirty(eb);
3156 if (slot == 0)
3157 fixup_low_keys(fs_info, path, &disk_key, 1);
3158}
3159
3160/*
3161 * try to push data from one node into the next node left in the
3162 * tree.
3163 *
3164 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3165 * error, and > 0 if there was no room in the left hand block.
3166 */
3167static int push_node_left(struct btrfs_trans_handle *trans,
3168 struct btrfs_fs_info *fs_info,
3169 struct extent_buffer *dst,
3170 struct extent_buffer *src, int empty)
3171{
3172 int push_items = 0;
3173 int src_nritems;
3174 int dst_nritems;
3175 int ret = 0;
3176
3177 src_nritems = btrfs_header_nritems(src);
3178 dst_nritems = btrfs_header_nritems(dst);
3179 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3180 WARN_ON(btrfs_header_generation(src) != trans->transid);
3181 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3182
3183 if (!empty && src_nritems <= 8)
3184 return 1;
3185
3186 if (push_items <= 0)
3187 return 1;
3188
3189 if (empty) {
3190 push_items = min(src_nritems, push_items);
3191 if (push_items < src_nritems) {
3192 /* leave at least 8 pointers in the node if
3193 * we aren't going to empty it
3194 */
3195 if (src_nritems - push_items < 8) {
3196 if (push_items <= 8)
3197 return 1;
3198 push_items -= 8;
3199 }
3200 }
3201 } else
3202 push_items = min(src_nritems - 8, push_items);
3203
3204 ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
3205 push_items);
3206 if (ret) {
3207 btrfs_abort_transaction(trans, ret);
3208 return ret;
3209 }
3210 copy_extent_buffer(dst, src,
3211 btrfs_node_key_ptr_offset(dst_nritems),
3212 btrfs_node_key_ptr_offset(0),
3213 push_items * sizeof(struct btrfs_key_ptr));
3214
3215 if (push_items < src_nritems) {
3216 /*
3217 * Don't call tree_mod_log_insert_move here, key removal was
3218 * already fully logged by tree_mod_log_eb_copy above.
3219 */
3220 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3221 btrfs_node_key_ptr_offset(push_items),
3222 (src_nritems - push_items) *
3223 sizeof(struct btrfs_key_ptr));
3224 }
3225 btrfs_set_header_nritems(src, src_nritems - push_items);
3226 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3227 btrfs_mark_buffer_dirty(src);
3228 btrfs_mark_buffer_dirty(dst);
3229
3230 return ret;
3231}
3232
3233/*
3234 * try to push data from one node into the next node right in the
3235 * tree.
3236 *
3237 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3238 * error, and > 0 if there was no room in the right hand block.
3239 *
3240 * this will only push up to 1/2 the contents of the left node over
3241 */
3242static int balance_node_right(struct btrfs_trans_handle *trans,
3243 struct btrfs_fs_info *fs_info,
3244 struct extent_buffer *dst,
3245 struct extent_buffer *src)
3246{
3247 int push_items = 0;
3248 int max_push;
3249 int src_nritems;
3250 int dst_nritems;
3251 int ret = 0;
3252
3253 WARN_ON(btrfs_header_generation(src) != trans->transid);
3254 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3255
3256 src_nritems = btrfs_header_nritems(src);
3257 dst_nritems = btrfs_header_nritems(dst);
3258 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3259 if (push_items <= 0)
3260 return 1;
3261
3262 if (src_nritems < 4)
3263 return 1;
3264
3265 max_push = src_nritems / 2 + 1;
3266 /* don't try to empty the node */
3267 if (max_push >= src_nritems)
3268 return 1;
3269
3270 if (max_push < push_items)
3271 push_items = max_push;
3272
3273 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3274 BUG_ON(ret < 0);
3275 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3276 btrfs_node_key_ptr_offset(0),
3277 (dst_nritems) *
3278 sizeof(struct btrfs_key_ptr));
3279
3280 ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
3281 src_nritems - push_items, push_items);
3282 if (ret) {
3283 btrfs_abort_transaction(trans, ret);
3284 return ret;
3285 }
3286 copy_extent_buffer(dst, src,
3287 btrfs_node_key_ptr_offset(0),
3288 btrfs_node_key_ptr_offset(src_nritems - push_items),
3289 push_items * sizeof(struct btrfs_key_ptr));
3290
3291 btrfs_set_header_nritems(src, src_nritems - push_items);
3292 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3293
3294 btrfs_mark_buffer_dirty(src);
3295 btrfs_mark_buffer_dirty(dst);
3296
3297 return ret;
3298}
3299
3300/*
3301 * helper function to insert a new root level in the tree.
3302 * A new node is allocated, and a single item is inserted to
3303 * point to the existing root
3304 *
3305 * returns zero on success or < 0 on failure.
3306 */
3307static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3308 struct btrfs_root *root,
3309 struct btrfs_path *path, int level)
3310{
3311 struct btrfs_fs_info *fs_info = root->fs_info;
3312 u64 lower_gen;
3313 struct extent_buffer *lower;
3314 struct extent_buffer *c;
3315 struct extent_buffer *old;
3316 struct btrfs_disk_key lower_key;
3317 int ret;
3318
3319 BUG_ON(path->nodes[level]);
3320 BUG_ON(path->nodes[level-1] != root->node);
3321
3322 lower = path->nodes[level-1];
3323 if (level == 1)
3324 btrfs_item_key(lower, &lower_key, 0);
3325 else
3326 btrfs_node_key(lower, &lower_key, 0);
3327
3328 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3329 &lower_key, level, root->node->start, 0);
3330 if (IS_ERR(c))
3331 return PTR_ERR(c);
3332
3333 root_add_used(root, fs_info->nodesize);
3334
3335 memzero_extent_buffer(c, 0, sizeof(struct btrfs_header));
3336 btrfs_set_header_nritems(c, 1);
3337 btrfs_set_header_level(c, level);
3338 btrfs_set_header_bytenr(c, c->start);
3339 btrfs_set_header_generation(c, trans->transid);
3340 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3341 btrfs_set_header_owner(c, root->root_key.objectid);
3342
3343 write_extent_buffer_fsid(c, fs_info->fsid);
3344 write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid);
3345
3346 btrfs_set_node_key(c, &lower_key, 0);
3347 btrfs_set_node_blockptr(c, 0, lower->start);
3348 lower_gen = btrfs_header_generation(lower);
3349 WARN_ON(lower_gen != trans->transid);
3350
3351 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3352
3353 btrfs_mark_buffer_dirty(c);
3354
3355 old = root->node;
3356 ret = tree_mod_log_insert_root(root->node, c, 0);
3357 BUG_ON(ret < 0);
3358 rcu_assign_pointer(root->node, c);
3359
3360 /* the super has an extra ref to root->node */
3361 free_extent_buffer(old);
3362
3363 add_root_to_dirty_list(root);
3364 extent_buffer_get(c);
3365 path->nodes[level] = c;
3366 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3367 path->slots[level] = 0;
3368 return 0;
3369}
3370
3371/*
3372 * worker function to insert a single pointer in a node.
3373 * the node should have enough room for the pointer already
3374 *
3375 * slot and level indicate where you want the key to go, and
3376 * blocknr is the block the key points to.
3377 */
3378static void insert_ptr(struct btrfs_trans_handle *trans,
3379 struct btrfs_fs_info *fs_info, struct btrfs_path *path,
3380 struct btrfs_disk_key *key, u64 bytenr,
3381 int slot, int level)
3382{
3383 struct extent_buffer *lower;
3384 int nritems;
3385 int ret;
3386
3387 BUG_ON(!path->nodes[level]);
3388 btrfs_assert_tree_locked(path->nodes[level]);
3389 lower = path->nodes[level];
3390 nritems = btrfs_header_nritems(lower);
3391 BUG_ON(slot > nritems);
3392 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
3393 if (slot != nritems) {
3394 if (level) {
3395 ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3396 nritems - slot);
3397 BUG_ON(ret < 0);
3398 }
3399 memmove_extent_buffer(lower,
3400 btrfs_node_key_ptr_offset(slot + 1),
3401 btrfs_node_key_ptr_offset(slot),
3402 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3403 }
3404 if (level) {
3405 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3406 GFP_NOFS);
3407 BUG_ON(ret < 0);
3408 }
3409 btrfs_set_node_key(lower, key, slot);
3410 btrfs_set_node_blockptr(lower, slot, bytenr);
3411 WARN_ON(trans->transid == 0);
3412 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3413 btrfs_set_header_nritems(lower, nritems + 1);
3414 btrfs_mark_buffer_dirty(lower);
3415}
3416
3417/*
3418 * split the node at the specified level in path in two.
3419 * The path is corrected to point to the appropriate node after the split
3420 *
3421 * Before splitting this tries to make some room in the node by pushing
3422 * left and right, if either one works, it returns right away.
3423 *
3424 * returns 0 on success and < 0 on failure
3425 */
3426static noinline int split_node(struct btrfs_trans_handle *trans,
3427 struct btrfs_root *root,
3428 struct btrfs_path *path, int level)
3429{
3430 struct btrfs_fs_info *fs_info = root->fs_info;
3431 struct extent_buffer *c;
3432 struct extent_buffer *split;
3433 struct btrfs_disk_key disk_key;
3434 int mid;
3435 int ret;
3436 u32 c_nritems;
3437
3438 c = path->nodes[level];
3439 WARN_ON(btrfs_header_generation(c) != trans->transid);
3440 if (c == root->node) {
3441 /*
3442 * trying to split the root, lets make a new one
3443 *
3444 * tree mod log: We don't log_removal old root in
3445 * insert_new_root, because that root buffer will be kept as a
3446 * normal node. We are going to log removal of half of the
3447 * elements below with tree_mod_log_eb_copy. We're holding a
3448 * tree lock on the buffer, which is why we cannot race with
3449 * other tree_mod_log users.
3450 */
3451 ret = insert_new_root(trans, root, path, level + 1);
3452 if (ret)
3453 return ret;
3454 } else {
3455 ret = push_nodes_for_insert(trans, root, path, level);
3456 c = path->nodes[level];
3457 if (!ret && btrfs_header_nritems(c) <
3458 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3459 return 0;
3460 if (ret < 0)
3461 return ret;
3462 }
3463
3464 c_nritems = btrfs_header_nritems(c);
3465 mid = (c_nritems + 1) / 2;
3466 btrfs_node_key(c, &disk_key, mid);
3467
3468 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3469 &disk_key, level, c->start, 0);
3470 if (IS_ERR(split))
3471 return PTR_ERR(split);
3472
3473 root_add_used(root, fs_info->nodesize);
3474
3475 memzero_extent_buffer(split, 0, sizeof(struct btrfs_header));
3476 btrfs_set_header_level(split, btrfs_header_level(c));
3477 btrfs_set_header_bytenr(split, split->start);
3478 btrfs_set_header_generation(split, trans->transid);
3479 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3480 btrfs_set_header_owner(split, root->root_key.objectid);
3481 write_extent_buffer_fsid(split, fs_info->fsid);
3482 write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid);
3483
3484 ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
3485 if (ret) {
3486 btrfs_abort_transaction(trans, ret);
3487 return ret;
3488 }
3489 copy_extent_buffer(split, c,
3490 btrfs_node_key_ptr_offset(0),
3491 btrfs_node_key_ptr_offset(mid),
3492 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3493 btrfs_set_header_nritems(split, c_nritems - mid);
3494 btrfs_set_header_nritems(c, mid);
3495 ret = 0;
3496
3497 btrfs_mark_buffer_dirty(c);
3498 btrfs_mark_buffer_dirty(split);
3499
3500 insert_ptr(trans, fs_info, path, &disk_key, split->start,
3501 path->slots[level + 1] + 1, level + 1);
3502
3503 if (path->slots[level] >= mid) {
3504 path->slots[level] -= mid;
3505 btrfs_tree_unlock(c);
3506 free_extent_buffer(c);
3507 path->nodes[level] = split;
3508 path->slots[level + 1] += 1;
3509 } else {
3510 btrfs_tree_unlock(split);
3511 free_extent_buffer(split);
3512 }
3513 return ret;
3514}
3515
3516/*
3517 * how many bytes are required to store the items in a leaf. start
3518 * and nr indicate which items in the leaf to check. This totals up the
3519 * space used both by the item structs and the item data
3520 */
3521static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3522{
3523 struct btrfs_item *start_item;
3524 struct btrfs_item *end_item;
3525 struct btrfs_map_token token;
3526 int data_len;
3527 int nritems = btrfs_header_nritems(l);
3528 int end = min(nritems, start + nr) - 1;
3529
3530 if (!nr)
3531 return 0;
3532 btrfs_init_map_token(&token);
3533 start_item = btrfs_item_nr(start);
3534 end_item = btrfs_item_nr(end);
3535 data_len = btrfs_token_item_offset(l, start_item, &token) +
3536 btrfs_token_item_size(l, start_item, &token);
3537 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3538 data_len += sizeof(struct btrfs_item) * nr;
3539 WARN_ON(data_len < 0);
3540 return data_len;
3541}
3542
3543/*
3544 * The space between the end of the leaf items and
3545 * the start of the leaf data. IOW, how much room
3546 * the leaf has left for both items and data
3547 */
3548noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
3549 struct extent_buffer *leaf)
3550{
3551 int nritems = btrfs_header_nritems(leaf);
3552 int ret;
3553
3554 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3555 if (ret < 0) {
3556 btrfs_crit(fs_info,
3557 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3558 ret,
3559 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3560 leaf_space_used(leaf, 0, nritems), nritems);
3561 }
3562 return ret;
3563}
3564
3565/*
3566 * min slot controls the lowest index we're willing to push to the
3567 * right. We'll push up to and including min_slot, but no lower
3568 */
3569static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
3570 struct btrfs_path *path,
3571 int data_size, int empty,
3572 struct extent_buffer *right,
3573 int free_space, u32 left_nritems,
3574 u32 min_slot)
3575{
3576 struct extent_buffer *left = path->nodes[0];
3577 struct extent_buffer *upper = path->nodes[1];
3578 struct btrfs_map_token token;
3579 struct btrfs_disk_key disk_key;
3580 int slot;
3581 u32 i;
3582 int push_space = 0;
3583 int push_items = 0;
3584 struct btrfs_item *item;
3585 u32 nr;
3586 u32 right_nritems;
3587 u32 data_end;
3588 u32 this_item_size;
3589
3590 btrfs_init_map_token(&token);
3591
3592 if (empty)
3593 nr = 0;
3594 else
3595 nr = max_t(u32, 1, min_slot);
3596
3597 if (path->slots[0] >= left_nritems)
3598 push_space += data_size;
3599
3600 slot = path->slots[1];
3601 i = left_nritems - 1;
3602 while (i >= nr) {
3603 item = btrfs_item_nr(i);
3604
3605 if (!empty && push_items > 0) {
3606 if (path->slots[0] > i)
3607 break;
3608 if (path->slots[0] == i) {
3609 int space = btrfs_leaf_free_space(fs_info, left);
3610 if (space + push_space * 2 > free_space)
3611 break;
3612 }
3613 }
3614
3615 if (path->slots[0] == i)
3616 push_space += data_size;
3617
3618 this_item_size = btrfs_item_size(left, item);
3619 if (this_item_size + sizeof(*item) + push_space > free_space)
3620 break;
3621
3622 push_items++;
3623 push_space += this_item_size + sizeof(*item);
3624 if (i == 0)
3625 break;
3626 i--;
3627 }
3628
3629 if (push_items == 0)
3630 goto out_unlock;
3631
3632 WARN_ON(!empty && push_items == left_nritems);
3633
3634 /* push left to right */
3635 right_nritems = btrfs_header_nritems(right);
3636
3637 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3638 push_space -= leaf_data_end(fs_info, left);
3639
3640 /* make room in the right data area */
3641 data_end = leaf_data_end(fs_info, right);
3642 memmove_extent_buffer(right,
3643 BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3644 BTRFS_LEAF_DATA_OFFSET + data_end,
3645 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3646
3647 /* copy from the left data area */
3648 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3649 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3650 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
3651 push_space);
3652
3653 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3654 btrfs_item_nr_offset(0),
3655 right_nritems * sizeof(struct btrfs_item));
3656
3657 /* copy the items from left to right */
3658 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3659 btrfs_item_nr_offset(left_nritems - push_items),
3660 push_items * sizeof(struct btrfs_item));
3661
3662 /* update the item pointers */
3663 right_nritems += push_items;
3664 btrfs_set_header_nritems(right, right_nritems);
3665 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3666 for (i = 0; i < right_nritems; i++) {
3667 item = btrfs_item_nr(i);
3668 push_space -= btrfs_token_item_size(right, item, &token);
3669 btrfs_set_token_item_offset(right, item, push_space, &token);
3670 }
3671
3672 left_nritems -= push_items;
3673 btrfs_set_header_nritems(left, left_nritems);
3674
3675 if (left_nritems)
3676 btrfs_mark_buffer_dirty(left);
3677 else
3678 clean_tree_block(fs_info, left);
3679
3680 btrfs_mark_buffer_dirty(right);
3681
3682 btrfs_item_key(right, &disk_key, 0);
3683 btrfs_set_node_key(upper, &disk_key, slot + 1);
3684 btrfs_mark_buffer_dirty(upper);
3685
3686 /* then fixup the leaf pointer in the path */
3687 if (path->slots[0] >= left_nritems) {
3688 path->slots[0] -= left_nritems;
3689 if (btrfs_header_nritems(path->nodes[0]) == 0)
3690 clean_tree_block(fs_info, path->nodes[0]);
3691 btrfs_tree_unlock(path->nodes[0]);
3692 free_extent_buffer(path->nodes[0]);
3693 path->nodes[0] = right;
3694 path->slots[1] += 1;
3695 } else {
3696 btrfs_tree_unlock(right);
3697 free_extent_buffer(right);
3698 }
3699 return 0;
3700
3701out_unlock:
3702 btrfs_tree_unlock(right);
3703 free_extent_buffer(right);
3704 return 1;
3705}
3706
3707/*
3708 * push some data in the path leaf to the right, trying to free up at
3709 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3710 *
3711 * returns 1 if the push failed because the other node didn't have enough
3712 * room, 0 if everything worked out and < 0 if there were major errors.
3713 *
3714 * this will push starting from min_slot to the end of the leaf. It won't
3715 * push any slot lower than min_slot
3716 */
3717static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3718 *root, struct btrfs_path *path,
3719 int min_data_size, int data_size,
3720 int empty, u32 min_slot)
3721{
3722 struct btrfs_fs_info *fs_info = root->fs_info;
3723 struct extent_buffer *left = path->nodes[0];
3724 struct extent_buffer *right;
3725 struct extent_buffer *upper;
3726 int slot;
3727 int free_space;
3728 u32 left_nritems;
3729 int ret;
3730
3731 if (!path->nodes[1])
3732 return 1;
3733
3734 slot = path->slots[1];
3735 upper = path->nodes[1];
3736 if (slot >= btrfs_header_nritems(upper) - 1)
3737 return 1;
3738
3739 btrfs_assert_tree_locked(path->nodes[1]);
3740
3741 right = read_node_slot(fs_info, upper, slot + 1);
3742 /*
3743 * slot + 1 is not valid or we fail to read the right node,
3744 * no big deal, just return.
3745 */
3746 if (IS_ERR(right))
3747 return 1;
3748
3749 btrfs_tree_lock(right);
3750 btrfs_set_lock_blocking(right);
3751
3752 free_space = btrfs_leaf_free_space(fs_info, right);
3753 if (free_space < data_size)
3754 goto out_unlock;
3755
3756 /* cow and double check */
3757 ret = btrfs_cow_block(trans, root, right, upper,
3758 slot + 1, &right);
3759 if (ret)
3760 goto out_unlock;
3761
3762 free_space = btrfs_leaf_free_space(fs_info, right);
3763 if (free_space < data_size)
3764 goto out_unlock;
3765
3766 left_nritems = btrfs_header_nritems(left);
3767 if (left_nritems == 0)
3768 goto out_unlock;
3769
3770 if (path->slots[0] == left_nritems && !empty) {
3771 /* Key greater than all keys in the leaf, right neighbor has
3772 * enough room for it and we're not emptying our leaf to delete
3773 * it, therefore use right neighbor to insert the new item and
3774 * no need to touch/dirty our left leaft. */
3775 btrfs_tree_unlock(left);
3776 free_extent_buffer(left);
3777 path->nodes[0] = right;
3778 path->slots[0] = 0;
3779 path->slots[1]++;
3780 return 0;
3781 }
3782
3783 return __push_leaf_right(fs_info, path, min_data_size, empty,
3784 right, free_space, left_nritems, min_slot);
3785out_unlock:
3786 btrfs_tree_unlock(right);
3787 free_extent_buffer(right);
3788 return 1;
3789}
3790
3791/*
3792 * push some data in the path leaf to the left, trying to free up at
3793 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3794 *
3795 * max_slot can put a limit on how far into the leaf we'll push items. The
3796 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3797 * items
3798 */
3799static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
3800 struct btrfs_path *path, int data_size,
3801 int empty, struct extent_buffer *left,
3802 int free_space, u32 right_nritems,
3803 u32 max_slot)
3804{
3805 struct btrfs_disk_key disk_key;
3806 struct extent_buffer *right = path->nodes[0];
3807 int i;
3808 int push_space = 0;
3809 int push_items = 0;
3810 struct btrfs_item *item;
3811 u32 old_left_nritems;
3812 u32 nr;
3813 int ret = 0;
3814 u32 this_item_size;
3815 u32 old_left_item_size;
3816 struct btrfs_map_token token;
3817
3818 btrfs_init_map_token(&token);
3819
3820 if (empty)
3821 nr = min(right_nritems, max_slot);
3822 else
3823 nr = min(right_nritems - 1, max_slot);
3824
3825 for (i = 0; i < nr; i++) {
3826 item = btrfs_item_nr(i);
3827
3828 if (!empty && push_items > 0) {
3829 if (path->slots[0] < i)
3830 break;
3831 if (path->slots[0] == i) {
3832 int space = btrfs_leaf_free_space(fs_info, right);
3833 if (space + push_space * 2 > free_space)
3834 break;
3835 }
3836 }
3837
3838 if (path->slots[0] == i)
3839 push_space += data_size;
3840
3841 this_item_size = btrfs_item_size(right, item);
3842 if (this_item_size + sizeof(*item) + push_space > free_space)
3843 break;
3844
3845 push_items++;
3846 push_space += this_item_size + sizeof(*item);
3847 }
3848
3849 if (push_items == 0) {
3850 ret = 1;
3851 goto out;
3852 }
3853 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3854
3855 /* push data from right to left */
3856 copy_extent_buffer(left, right,
3857 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3858 btrfs_item_nr_offset(0),
3859 push_items * sizeof(struct btrfs_item));
3860
3861 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3862 btrfs_item_offset_nr(right, push_items - 1);
3863
3864 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3865 leaf_data_end(fs_info, left) - push_space,
3866 BTRFS_LEAF_DATA_OFFSET +
3867 btrfs_item_offset_nr(right, push_items - 1),
3868 push_space);
3869 old_left_nritems = btrfs_header_nritems(left);
3870 BUG_ON(old_left_nritems <= 0);
3871
3872 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3873 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3874 u32 ioff;
3875
3876 item = btrfs_item_nr(i);
3877
3878 ioff = btrfs_token_item_offset(left, item, &token);
3879 btrfs_set_token_item_offset(left, item,
3880 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3881 &token);
3882 }
3883 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3884
3885 /* fixup right node */
3886 if (push_items > right_nritems)
3887 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3888 right_nritems);
3889
3890 if (push_items < right_nritems) {
3891 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3892 leaf_data_end(fs_info, right);
3893 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3894 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3895 BTRFS_LEAF_DATA_OFFSET +
3896 leaf_data_end(fs_info, right), push_space);
3897
3898 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3899 btrfs_item_nr_offset(push_items),
3900 (btrfs_header_nritems(right) - push_items) *
3901 sizeof(struct btrfs_item));
3902 }
3903 right_nritems -= push_items;
3904 btrfs_set_header_nritems(right, right_nritems);
3905 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3906 for (i = 0; i < right_nritems; i++) {
3907 item = btrfs_item_nr(i);
3908
3909 push_space = push_space - btrfs_token_item_size(right,
3910 item, &token);
3911 btrfs_set_token_item_offset(right, item, push_space, &token);
3912 }
3913
3914 btrfs_mark_buffer_dirty(left);
3915 if (right_nritems)
3916 btrfs_mark_buffer_dirty(right);
3917 else
3918 clean_tree_block(fs_info, right);
3919
3920 btrfs_item_key(right, &disk_key, 0);
3921 fixup_low_keys(fs_info, path, &disk_key, 1);
3922
3923 /* then fixup the leaf pointer in the path */
3924 if (path->slots[0] < push_items) {
3925 path->slots[0] += old_left_nritems;
3926 btrfs_tree_unlock(path->nodes[0]);
3927 free_extent_buffer(path->nodes[0]);
3928 path->nodes[0] = left;
3929 path->slots[1] -= 1;
3930 } else {
3931 btrfs_tree_unlock(left);
3932 free_extent_buffer(left);
3933 path->slots[0] -= push_items;
3934 }
3935 BUG_ON(path->slots[0] < 0);
3936 return ret;
3937out:
3938 btrfs_tree_unlock(left);
3939 free_extent_buffer(left);
3940 return ret;
3941}
3942
3943/*
3944 * push some data in the path leaf to the left, trying to free up at
3945 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3946 *
3947 * max_slot can put a limit on how far into the leaf we'll push items. The
3948 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3949 * items
3950 */
3951static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3952 *root, struct btrfs_path *path, int min_data_size,
3953 int data_size, int empty, u32 max_slot)
3954{
3955 struct btrfs_fs_info *fs_info = root->fs_info;
3956 struct extent_buffer *right = path->nodes[0];
3957 struct extent_buffer *left;
3958 int slot;
3959 int free_space;
3960 u32 right_nritems;
3961 int ret = 0;
3962
3963 slot = path->slots[1];
3964 if (slot == 0)
3965 return 1;
3966 if (!path->nodes[1])
3967 return 1;
3968
3969 right_nritems = btrfs_header_nritems(right);
3970 if (right_nritems == 0)
3971 return 1;
3972
3973 btrfs_assert_tree_locked(path->nodes[1]);
3974
3975 left = read_node_slot(fs_info, path->nodes[1], slot - 1);
3976 /*
3977 * slot - 1 is not valid or we fail to read the left node,
3978 * no big deal, just return.
3979 */
3980 if (IS_ERR(left))
3981 return 1;
3982
3983 btrfs_tree_lock(left);
3984 btrfs_set_lock_blocking(left);
3985
3986 free_space = btrfs_leaf_free_space(fs_info, left);
3987 if (free_space < data_size) {
3988 ret = 1;
3989 goto out;
3990 }
3991
3992 /* cow and double check */
3993 ret = btrfs_cow_block(trans, root, left,
3994 path->nodes[1], slot - 1, &left);
3995 if (ret) {
3996 /* we hit -ENOSPC, but it isn't fatal here */
3997 if (ret == -ENOSPC)
3998 ret = 1;
3999 goto out;
4000 }
4001
4002 free_space = btrfs_leaf_free_space(fs_info, left);
4003 if (free_space < data_size) {
4004 ret = 1;
4005 goto out;
4006 }
4007
4008 return __push_leaf_left(fs_info, path, min_data_size,
4009 empty, left, free_space, right_nritems,
4010 max_slot);
4011out:
4012 btrfs_tree_unlock(left);
4013 free_extent_buffer(left);
4014 return ret;
4015}
4016
4017/*
4018 * split the path's leaf in two, making sure there is at least data_size
4019 * available for the resulting leaf level of the path.
4020 */
4021static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4022 struct btrfs_fs_info *fs_info,
4023 struct btrfs_path *path,
4024 struct extent_buffer *l,
4025 struct extent_buffer *right,
4026 int slot, int mid, int nritems)
4027{
4028 int data_copy_size;
4029 int rt_data_off;
4030 int i;
4031 struct btrfs_disk_key disk_key;
4032 struct btrfs_map_token token;
4033
4034 btrfs_init_map_token(&token);
4035
4036 nritems = nritems - mid;
4037 btrfs_set_header_nritems(right, nritems);
4038 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
4039
4040 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4041 btrfs_item_nr_offset(mid),
4042 nritems * sizeof(struct btrfs_item));
4043
4044 copy_extent_buffer(right, l,
4045 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4046 data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4047 leaf_data_end(fs_info, l), data_copy_size);
4048
4049 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4050
4051 for (i = 0; i < nritems; i++) {
4052 struct btrfs_item *item = btrfs_item_nr(i);
4053 u32 ioff;
4054
4055 ioff = btrfs_token_item_offset(right, item, &token);
4056 btrfs_set_token_item_offset(right, item,
4057 ioff + rt_data_off, &token);
4058 }
4059
4060 btrfs_set_header_nritems(l, mid);
4061 btrfs_item_key(right, &disk_key, 0);
4062 insert_ptr(trans, fs_info, path, &disk_key, right->start,
4063 path->slots[1] + 1, 1);
4064
4065 btrfs_mark_buffer_dirty(right);
4066 btrfs_mark_buffer_dirty(l);
4067 BUG_ON(path->slots[0] != slot);
4068
4069 if (mid <= slot) {
4070 btrfs_tree_unlock(path->nodes[0]);
4071 free_extent_buffer(path->nodes[0]);
4072 path->nodes[0] = right;
4073 path->slots[0] -= mid;
4074 path->slots[1] += 1;
4075 } else {
4076 btrfs_tree_unlock(right);
4077 free_extent_buffer(right);
4078 }
4079
4080 BUG_ON(path->slots[0] < 0);
4081}
4082
4083/*
4084 * double splits happen when we need to insert a big item in the middle
4085 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4086 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4087 * A B C
4088 *
4089 * We avoid this by trying to push the items on either side of our target
4090 * into the adjacent leaves. If all goes well we can avoid the double split
4091 * completely.
4092 */
4093static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4094 struct btrfs_root *root,
4095 struct btrfs_path *path,
4096 int data_size)
4097{
4098 struct btrfs_fs_info *fs_info = root->fs_info;
4099 int ret;
4100 int progress = 0;
4101 int slot;
4102 u32 nritems;
4103 int space_needed = data_size;
4104
4105 slot = path->slots[0];
4106 if (slot < btrfs_header_nritems(path->nodes[0]))
4107 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4108
4109 /*
4110 * try to push all the items after our slot into the
4111 * right leaf
4112 */
4113 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4114 if (ret < 0)
4115 return ret;
4116
4117 if (ret == 0)
4118 progress++;
4119
4120 nritems = btrfs_header_nritems(path->nodes[0]);
4121 /*
4122 * our goal is to get our slot at the start or end of a leaf. If
4123 * we've done so we're done
4124 */
4125 if (path->slots[0] == 0 || path->slots[0] == nritems)
4126 return 0;
4127
4128 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4129 return 0;
4130
4131 /* try to push all the items before our slot into the next leaf */
4132 slot = path->slots[0];
4133 space_needed = data_size;
4134 if (slot > 0)
4135 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4136 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4137 if (ret < 0)
4138 return ret;
4139
4140 if (ret == 0)
4141 progress++;
4142
4143 if (progress)
4144 return 0;
4145 return 1;
4146}
4147
4148/*
4149 * split the path's leaf in two, making sure there is at least data_size
4150 * available for the resulting leaf level of the path.
4151 *
4152 * returns 0 if all went well and < 0 on failure.
4153 */
4154static noinline int split_leaf(struct btrfs_trans_handle *trans,
4155 struct btrfs_root *root,
4156 const struct btrfs_key *ins_key,
4157 struct btrfs_path *path, int data_size,
4158 int extend)
4159{
4160 struct btrfs_disk_key disk_key;
4161 struct extent_buffer *l;
4162 u32 nritems;
4163 int mid;
4164 int slot;
4165 struct extent_buffer *right;
4166 struct btrfs_fs_info *fs_info = root->fs_info;
4167 int ret = 0;
4168 int wret;
4169 int split;
4170 int num_doubles = 0;
4171 int tried_avoid_double = 0;
4172
4173 l = path->nodes[0];
4174 slot = path->slots[0];
4175 if (extend && data_size + btrfs_item_size_nr(l, slot) +
4176 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4177 return -EOVERFLOW;
4178
4179 /* first try to make some room by pushing left and right */
4180 if (data_size && path->nodes[1]) {
4181 int space_needed = data_size;
4182
4183 if (slot < btrfs_header_nritems(l))
4184 space_needed -= btrfs_leaf_free_space(fs_info, l);
4185
4186 wret = push_leaf_right(trans, root, path, space_needed,
4187 space_needed, 0, 0);
4188 if (wret < 0)
4189 return wret;
4190 if (wret) {
4191 space_needed = data_size;
4192 if (slot > 0)
4193 space_needed -= btrfs_leaf_free_space(fs_info,
4194 l);
4195 wret = push_leaf_left(trans, root, path, space_needed,
4196 space_needed, 0, (u32)-1);
4197 if (wret < 0)
4198 return wret;
4199 }
4200 l = path->nodes[0];
4201
4202 /* did the pushes work? */
4203 if (btrfs_leaf_free_space(fs_info, l) >= data_size)
4204 return 0;
4205 }
4206
4207 if (!path->nodes[1]) {
4208 ret = insert_new_root(trans, root, path, 1);
4209 if (ret)
4210 return ret;
4211 }
4212again:
4213 split = 1;
4214 l = path->nodes[0];
4215 slot = path->slots[0];
4216 nritems = btrfs_header_nritems(l);
4217 mid = (nritems + 1) / 2;
4218
4219 if (mid <= slot) {
4220 if (nritems == 1 ||
4221 leaf_space_used(l, mid, nritems - mid) + data_size >
4222 BTRFS_LEAF_DATA_SIZE(fs_info)) {
4223 if (slot >= nritems) {
4224 split = 0;
4225 } else {
4226 mid = slot;
4227 if (mid != nritems &&
4228 leaf_space_used(l, mid, nritems - mid) +
4229 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4230 if (data_size && !tried_avoid_double)
4231 goto push_for_double;
4232 split = 2;
4233 }
4234 }
4235 }
4236 } else {
4237 if (leaf_space_used(l, 0, mid) + data_size >
4238 BTRFS_LEAF_DATA_SIZE(fs_info)) {
4239 if (!extend && data_size && slot == 0) {
4240 split = 0;
4241 } else if ((extend || !data_size) && slot == 0) {
4242 mid = 1;
4243 } else {
4244 mid = slot;
4245 if (mid != nritems &&
4246 leaf_space_used(l, mid, nritems - mid) +
4247 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4248 if (data_size && !tried_avoid_double)
4249 goto push_for_double;
4250 split = 2;
4251 }
4252 }
4253 }
4254 }
4255
4256 if (split == 0)
4257 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4258 else
4259 btrfs_item_key(l, &disk_key, mid);
4260
4261 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4262 &disk_key, 0, l->start, 0);
4263 if (IS_ERR(right))
4264 return PTR_ERR(right);
4265
4266 root_add_used(root, fs_info->nodesize);
4267
4268 memzero_extent_buffer(right, 0, sizeof(struct btrfs_header));
4269 btrfs_set_header_bytenr(right, right->start);
4270 btrfs_set_header_generation(right, trans->transid);
4271 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4272 btrfs_set_header_owner(right, root->root_key.objectid);
4273 btrfs_set_header_level(right, 0);
4274 write_extent_buffer_fsid(right, fs_info->fsid);
4275 write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid);
4276
4277 if (split == 0) {
4278 if (mid <= slot) {
4279 btrfs_set_header_nritems(right, 0);
4280 insert_ptr(trans, fs_info, path, &disk_key,
4281 right->start, path->slots[1] + 1, 1);
4282 btrfs_tree_unlock(path->nodes[0]);
4283 free_extent_buffer(path->nodes[0]);
4284 path->nodes[0] = right;
4285 path->slots[0] = 0;
4286 path->slots[1] += 1;
4287 } else {
4288 btrfs_set_header_nritems(right, 0);
4289 insert_ptr(trans, fs_info, path, &disk_key,
4290 right->start, path->slots[1], 1);
4291 btrfs_tree_unlock(path->nodes[0]);
4292 free_extent_buffer(path->nodes[0]);
4293 path->nodes[0] = right;
4294 path->slots[0] = 0;
4295 if (path->slots[1] == 0)
4296 fixup_low_keys(fs_info, path, &disk_key, 1);
4297 }
4298 /*
4299 * We create a new leaf 'right' for the required ins_len and
4300 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4301 * the content of ins_len to 'right'.
4302 */
4303 return ret;
4304 }
4305
4306 copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
4307
4308 if (split == 2) {
4309 BUG_ON(num_doubles != 0);
4310 num_doubles++;
4311 goto again;
4312 }
4313
4314 return 0;
4315
4316push_for_double:
4317 push_for_double_split(trans, root, path, data_size);
4318 tried_avoid_double = 1;
4319 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4320 return 0;
4321 goto again;
4322}
4323
4324static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4325 struct btrfs_root *root,
4326 struct btrfs_path *path, int ins_len)
4327{
4328 struct btrfs_fs_info *fs_info = root->fs_info;
4329 struct btrfs_key key;
4330 struct extent_buffer *leaf;
4331 struct btrfs_file_extent_item *fi;
4332 u64 extent_len = 0;
4333 u32 item_size;
4334 int ret;
4335
4336 leaf = path->nodes[0];
4337 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4338
4339 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4340 key.type != BTRFS_EXTENT_CSUM_KEY);
4341
4342 if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
4343 return 0;
4344
4345 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4346 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4347 fi = btrfs_item_ptr(leaf, path->slots[0],
4348 struct btrfs_file_extent_item);
4349 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4350 }
4351 btrfs_release_path(path);
4352
4353 path->keep_locks = 1;
4354 path->search_for_split = 1;
4355 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4356 path->search_for_split = 0;
4357 if (ret > 0)
4358 ret = -EAGAIN;
4359 if (ret < 0)
4360 goto err;
4361
4362 ret = -EAGAIN;
4363 leaf = path->nodes[0];
4364 /* if our item isn't there, return now */
4365 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4366 goto err;
4367
4368 /* the leaf has changed, it now has room. return now */
4369 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
4370 goto err;
4371
4372 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4373 fi = btrfs_item_ptr(leaf, path->slots[0],
4374 struct btrfs_file_extent_item);
4375 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4376 goto err;
4377 }
4378
4379 btrfs_set_path_blocking(path);
4380 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4381 if (ret)
4382 goto err;
4383
4384 path->keep_locks = 0;
4385 btrfs_unlock_up_safe(path, 1);
4386 return 0;
4387err:
4388 path->keep_locks = 0;
4389 return ret;
4390}
4391
4392static noinline int split_item(struct btrfs_fs_info *fs_info,
4393 struct btrfs_path *path,
4394 const struct btrfs_key *new_key,
4395 unsigned long split_offset)
4396{
4397 struct extent_buffer *leaf;
4398 struct btrfs_item *item;
4399 struct btrfs_item *new_item;
4400 int slot;
4401 char *buf;
4402 u32 nritems;
4403 u32 item_size;
4404 u32 orig_offset;
4405 struct btrfs_disk_key disk_key;
4406
4407 leaf = path->nodes[0];
4408 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
4409
4410 btrfs_set_path_blocking(path);
4411
4412 item = btrfs_item_nr(path->slots[0]);
4413 orig_offset = btrfs_item_offset(leaf, item);
4414 item_size = btrfs_item_size(leaf, item);
4415
4416 buf = kmalloc(item_size, GFP_NOFS);
4417 if (!buf)
4418 return -ENOMEM;
4419
4420 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4421 path->slots[0]), item_size);
4422
4423 slot = path->slots[0] + 1;
4424 nritems = btrfs_header_nritems(leaf);
4425 if (slot != nritems) {
4426 /* shift the items */
4427 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4428 btrfs_item_nr_offset(slot),
4429 (nritems - slot) * sizeof(struct btrfs_item));
4430 }
4431
4432 btrfs_cpu_key_to_disk(&disk_key, new_key);
4433 btrfs_set_item_key(leaf, &disk_key, slot);
4434
4435 new_item = btrfs_item_nr(slot);
4436
4437 btrfs_set_item_offset(leaf, new_item, orig_offset);
4438 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4439
4440 btrfs_set_item_offset(leaf, item,
4441 orig_offset + item_size - split_offset);
4442 btrfs_set_item_size(leaf, item, split_offset);
4443
4444 btrfs_set_header_nritems(leaf, nritems + 1);
4445
4446 /* write the data for the start of the original item */
4447 write_extent_buffer(leaf, buf,
4448 btrfs_item_ptr_offset(leaf, path->slots[0]),
4449 split_offset);
4450
4451 /* write the data for the new item */
4452 write_extent_buffer(leaf, buf + split_offset,
4453 btrfs_item_ptr_offset(leaf, slot),
4454 item_size - split_offset);
4455 btrfs_mark_buffer_dirty(leaf);
4456
4457 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
4458 kfree(buf);
4459 return 0;
4460}
4461
4462/*
4463 * This function splits a single item into two items,
4464 * giving 'new_key' to the new item and splitting the
4465 * old one at split_offset (from the start of the item).
4466 *
4467 * The path may be released by this operation. After
4468 * the split, the path is pointing to the old item. The
4469 * new item is going to be in the same node as the old one.
4470 *
4471 * Note, the item being split must be smaller enough to live alone on
4472 * a tree block with room for one extra struct btrfs_item
4473 *
4474 * This allows us to split the item in place, keeping a lock on the
4475 * leaf the entire time.
4476 */
4477int btrfs_split_item(struct btrfs_trans_handle *trans,
4478 struct btrfs_root *root,
4479 struct btrfs_path *path,
4480 const struct btrfs_key *new_key,
4481 unsigned long split_offset)
4482{
4483 int ret;
4484 ret = setup_leaf_for_split(trans, root, path,
4485 sizeof(struct btrfs_item));
4486 if (ret)
4487 return ret;
4488
4489 ret = split_item(root->fs_info, path, new_key, split_offset);
4490 return ret;
4491}
4492
4493/*
4494 * This function duplicate a item, giving 'new_key' to the new item.
4495 * It guarantees both items live in the same tree leaf and the new item
4496 * is contiguous with the original item.
4497 *
4498 * This allows us to split file extent in place, keeping a lock on the
4499 * leaf the entire time.
4500 */
4501int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4502 struct btrfs_root *root,
4503 struct btrfs_path *path,
4504 const struct btrfs_key *new_key)
4505{
4506 struct extent_buffer *leaf;
4507 int ret;
4508 u32 item_size;
4509
4510 leaf = path->nodes[0];
4511 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4512 ret = setup_leaf_for_split(trans, root, path,
4513 item_size + sizeof(struct btrfs_item));
4514 if (ret)
4515 return ret;
4516
4517 path->slots[0]++;
4518 setup_items_for_insert(root, path, new_key, &item_size,
4519 item_size, item_size +
4520 sizeof(struct btrfs_item), 1);
4521 leaf = path->nodes[0];
4522 memcpy_extent_buffer(leaf,
4523 btrfs_item_ptr_offset(leaf, path->slots[0]),
4524 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4525 item_size);
4526 return 0;
4527}
4528
4529/*
4530 * make the item pointed to by the path smaller. new_size indicates
4531 * how small to make it, and from_end tells us if we just chop bytes
4532 * off the end of the item or if we shift the item to chop bytes off
4533 * the front.
4534 */
4535void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4536 struct btrfs_path *path, u32 new_size, int from_end)
4537{
4538 int slot;
4539 struct extent_buffer *leaf;
4540 struct btrfs_item *item;
4541 u32 nritems;
4542 unsigned int data_end;
4543 unsigned int old_data_start;
4544 unsigned int old_size;
4545 unsigned int size_diff;
4546 int i;
4547 struct btrfs_map_token token;
4548
4549 btrfs_init_map_token(&token);
4550
4551 leaf = path->nodes[0];
4552 slot = path->slots[0];
4553
4554 old_size = btrfs_item_size_nr(leaf, slot);
4555 if (old_size == new_size)
4556 return;
4557
4558 nritems = btrfs_header_nritems(leaf);
4559 data_end = leaf_data_end(fs_info, leaf);
4560
4561 old_data_start = btrfs_item_offset_nr(leaf, slot);
4562
4563 size_diff = old_size - new_size;
4564
4565 BUG_ON(slot < 0);
4566 BUG_ON(slot >= nritems);
4567
4568 /*
4569 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4570 */
4571 /* first correct the data pointers */
4572 for (i = slot; i < nritems; i++) {
4573 u32 ioff;
4574 item = btrfs_item_nr(i);
4575
4576 ioff = btrfs_token_item_offset(leaf, item, &token);
4577 btrfs_set_token_item_offset(leaf, item,
4578 ioff + size_diff, &token);
4579 }
4580
4581 /* shift the data */
4582 if (from_end) {
4583 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4584 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4585 data_end, old_data_start + new_size - data_end);
4586 } else {
4587 struct btrfs_disk_key disk_key;
4588 u64 offset;
4589
4590 btrfs_item_key(leaf, &disk_key, slot);
4591
4592 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4593 unsigned long ptr;
4594 struct btrfs_file_extent_item *fi;
4595
4596 fi = btrfs_item_ptr(leaf, slot,
4597 struct btrfs_file_extent_item);
4598 fi = (struct btrfs_file_extent_item *)(
4599 (unsigned long)fi - size_diff);
4600
4601 if (btrfs_file_extent_type(leaf, fi) ==
4602 BTRFS_FILE_EXTENT_INLINE) {
4603 ptr = btrfs_item_ptr_offset(leaf, slot);
4604 memmove_extent_buffer(leaf, ptr,
4605 (unsigned long)fi,
4606 BTRFS_FILE_EXTENT_INLINE_DATA_START);
4607 }
4608 }
4609
4610 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4611 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4612 data_end, old_data_start - data_end);
4613
4614 offset = btrfs_disk_key_offset(&disk_key);
4615 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4616 btrfs_set_item_key(leaf, &disk_key, slot);
4617 if (slot == 0)
4618 fixup_low_keys(fs_info, path, &disk_key, 1);
4619 }
4620
4621 item = btrfs_item_nr(slot);
4622 btrfs_set_item_size(leaf, item, new_size);
4623 btrfs_mark_buffer_dirty(leaf);
4624
4625 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4626 btrfs_print_leaf(leaf);
4627 BUG();
4628 }
4629}
4630
4631/*
4632 * make the item pointed to by the path bigger, data_size is the added size.
4633 */
4634void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
4635 u32 data_size)
4636{
4637 int slot;
4638 struct extent_buffer *leaf;
4639 struct btrfs_item *item;
4640 u32 nritems;
4641 unsigned int data_end;
4642 unsigned int old_data;
4643 unsigned int old_size;
4644 int i;
4645 struct btrfs_map_token token;
4646
4647 btrfs_init_map_token(&token);
4648
4649 leaf = path->nodes[0];
4650
4651 nritems = btrfs_header_nritems(leaf);
4652 data_end = leaf_data_end(fs_info, leaf);
4653
4654 if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
4655 btrfs_print_leaf(leaf);
4656 BUG();
4657 }
4658 slot = path->slots[0];
4659 old_data = btrfs_item_end_nr(leaf, slot);
4660
4661 BUG_ON(slot < 0);
4662 if (slot >= nritems) {
4663 btrfs_print_leaf(leaf);
4664 btrfs_crit(fs_info, "slot %d too large, nritems %d",
4665 slot, nritems);
4666 BUG_ON(1);
4667 }
4668
4669 /*
4670 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4671 */
4672 /* first correct the data pointers */
4673 for (i = slot; i < nritems; i++) {
4674 u32 ioff;
4675 item = btrfs_item_nr(i);
4676
4677 ioff = btrfs_token_item_offset(leaf, item, &token);
4678 btrfs_set_token_item_offset(leaf, item,
4679 ioff - data_size, &token);
4680 }
4681
4682 /* shift the data */
4683 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4684 data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4685 data_end, old_data - data_end);
4686
4687 data_end = old_data;
4688 old_size = btrfs_item_size_nr(leaf, slot);
4689 item = btrfs_item_nr(slot);
4690 btrfs_set_item_size(leaf, item, old_size + data_size);
4691 btrfs_mark_buffer_dirty(leaf);
4692
4693 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4694 btrfs_print_leaf(leaf);
4695 BUG();
4696 }
4697}
4698
4699/*
4700 * this is a helper for btrfs_insert_empty_items, the main goal here is
4701 * to save stack depth by doing the bulk of the work in a function
4702 * that doesn't call btrfs_search_slot
4703 */
4704void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4705 const struct btrfs_key *cpu_key, u32 *data_size,
4706 u32 total_data, u32 total_size, int nr)
4707{
4708 struct btrfs_fs_info *fs_info = root->fs_info;
4709 struct btrfs_item *item;
4710 int i;
4711 u32 nritems;
4712 unsigned int data_end;
4713 struct btrfs_disk_key disk_key;
4714 struct extent_buffer *leaf;
4715 int slot;
4716 struct btrfs_map_token token;
4717
4718 if (path->slots[0] == 0) {
4719 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4720 fixup_low_keys(fs_info, path, &disk_key, 1);
4721 }
4722 btrfs_unlock_up_safe(path, 1);
4723
4724 btrfs_init_map_token(&token);
4725
4726 leaf = path->nodes[0];
4727 slot = path->slots[0];
4728
4729 nritems = btrfs_header_nritems(leaf);
4730 data_end = leaf_data_end(fs_info, leaf);
4731
4732 if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
4733 btrfs_print_leaf(leaf);
4734 btrfs_crit(fs_info, "not enough freespace need %u have %d",
4735 total_size, btrfs_leaf_free_space(fs_info, leaf));
4736 BUG();
4737 }
4738
4739 if (slot != nritems) {
4740 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4741
4742 if (old_data < data_end) {
4743 btrfs_print_leaf(leaf);
4744 btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4745 slot, old_data, data_end);
4746 BUG_ON(1);
4747 }
4748 /*
4749 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4750 */
4751 /* first correct the data pointers */
4752 for (i = slot; i < nritems; i++) {
4753 u32 ioff;
4754
4755 item = btrfs_item_nr(i);
4756 ioff = btrfs_token_item_offset(leaf, item, &token);
4757 btrfs_set_token_item_offset(leaf, item,
4758 ioff - total_data, &token);
4759 }
4760 /* shift the items */
4761 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4762 btrfs_item_nr_offset(slot),
4763 (nritems - slot) * sizeof(struct btrfs_item));
4764
4765 /* shift the data */
4766 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4767 data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4768 data_end, old_data - data_end);
4769 data_end = old_data;
4770 }
4771
4772 /* setup the item for the new data */
4773 for (i = 0; i < nr; i++) {
4774 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4775 btrfs_set_item_key(leaf, &disk_key, slot + i);
4776 item = btrfs_item_nr(slot + i);
4777 btrfs_set_token_item_offset(leaf, item,
4778 data_end - data_size[i], &token);
4779 data_end -= data_size[i];
4780 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4781 }
4782
4783 btrfs_set_header_nritems(leaf, nritems + nr);
4784 btrfs_mark_buffer_dirty(leaf);
4785
4786 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4787 btrfs_print_leaf(leaf);
4788 BUG();
4789 }
4790}
4791
4792/*
4793 * Given a key and some data, insert items into the tree.
4794 * This does all the path init required, making room in the tree if needed.
4795 */
4796int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4797 struct btrfs_root *root,
4798 struct btrfs_path *path,
4799 const struct btrfs_key *cpu_key, u32 *data_size,
4800 int nr)
4801{
4802 int ret = 0;
4803 int slot;
4804 int i;
4805 u32 total_size = 0;
4806 u32 total_data = 0;
4807
4808 for (i = 0; i < nr; i++)
4809 total_data += data_size[i];
4810
4811 total_size = total_data + (nr * sizeof(struct btrfs_item));
4812 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4813 if (ret == 0)
4814 return -EEXIST;
4815 if (ret < 0)
4816 return ret;
4817
4818 slot = path->slots[0];
4819 BUG_ON(slot < 0);
4820
4821 setup_items_for_insert(root, path, cpu_key, data_size,
4822 total_data, total_size, nr);
4823 return 0;
4824}
4825
4826/*
4827 * Given a key and some data, insert an item into the tree.
4828 * This does all the path init required, making room in the tree if needed.
4829 */
4830int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4831 const struct btrfs_key *cpu_key, void *data,
4832 u32 data_size)
4833{
4834 int ret = 0;
4835 struct btrfs_path *path;
4836 struct extent_buffer *leaf;
4837 unsigned long ptr;
4838
4839 path = btrfs_alloc_path();
4840 if (!path)
4841 return -ENOMEM;
4842 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4843 if (!ret) {
4844 leaf = path->nodes[0];
4845 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4846 write_extent_buffer(leaf, data, ptr, data_size);
4847 btrfs_mark_buffer_dirty(leaf);
4848 }
4849 btrfs_free_path(path);
4850 return ret;
4851}
4852
4853/*
4854 * delete the pointer from a given node.
4855 *
4856 * the tree should have been previously balanced so the deletion does not
4857 * empty a node.
4858 */
4859static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4860 int level, int slot)
4861{
4862 struct btrfs_fs_info *fs_info = root->fs_info;
4863 struct extent_buffer *parent = path->nodes[level];
4864 u32 nritems;
4865 int ret;
4866
4867 nritems = btrfs_header_nritems(parent);
4868 if (slot != nritems - 1) {
4869 if (level) {
4870 ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4871 nritems - slot - 1);
4872 BUG_ON(ret < 0);
4873 }
4874 memmove_extent_buffer(parent,
4875 btrfs_node_key_ptr_offset(slot),
4876 btrfs_node_key_ptr_offset(slot + 1),
4877 sizeof(struct btrfs_key_ptr) *
4878 (nritems - slot - 1));
4879 } else if (level) {
4880 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4881 GFP_NOFS);
4882 BUG_ON(ret < 0);
4883 }
4884
4885 nritems--;
4886 btrfs_set_header_nritems(parent, nritems);
4887 if (nritems == 0 && parent == root->node) {
4888 BUG_ON(btrfs_header_level(root->node) != 1);
4889 /* just turn the root into a leaf and break */
4890 btrfs_set_header_level(root->node, 0);
4891 } else if (slot == 0) {
4892 struct btrfs_disk_key disk_key;
4893
4894 btrfs_node_key(parent, &disk_key, 0);
4895 fixup_low_keys(fs_info, path, &disk_key, level + 1);
4896 }
4897 btrfs_mark_buffer_dirty(parent);
4898}
4899
4900/*
4901 * a helper function to delete the leaf pointed to by path->slots[1] and
4902 * path->nodes[1].
4903 *
4904 * This deletes the pointer in path->nodes[1] and frees the leaf
4905 * block extent. zero is returned if it all worked out, < 0 otherwise.
4906 *
4907 * The path must have already been setup for deleting the leaf, including
4908 * all the proper balancing. path->nodes[1] must be locked.
4909 */
4910static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4911 struct btrfs_root *root,
4912 struct btrfs_path *path,
4913 struct extent_buffer *leaf)
4914{
4915 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4916 del_ptr(root, path, 1, path->slots[1]);
4917
4918 /*
4919 * btrfs_free_extent is expensive, we want to make sure we
4920 * aren't holding any locks when we call it
4921 */
4922 btrfs_unlock_up_safe(path, 0);
4923
4924 root_sub_used(root, leaf->len);
4925
4926 extent_buffer_get(leaf);
4927 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4928 free_extent_buffer_stale(leaf);
4929}
4930/*
4931 * delete the item at the leaf level in path. If that empties
4932 * the leaf, remove it from the tree
4933 */
4934int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4935 struct btrfs_path *path, int slot, int nr)
4936{
4937 struct btrfs_fs_info *fs_info = root->fs_info;
4938 struct extent_buffer *leaf;
4939 struct btrfs_item *item;
4940 u32 last_off;
4941 u32 dsize = 0;
4942 int ret = 0;
4943 int wret;
4944 int i;
4945 u32 nritems;
4946 struct btrfs_map_token token;
4947
4948 btrfs_init_map_token(&token);
4949
4950 leaf = path->nodes[0];
4951 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4952
4953 for (i = 0; i < nr; i++)
4954 dsize += btrfs_item_size_nr(leaf, slot + i);
4955
4956 nritems = btrfs_header_nritems(leaf);
4957
4958 if (slot + nr != nritems) {
4959 int data_end = leaf_data_end(fs_info, leaf);
4960
4961 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4962 data_end + dsize,
4963 BTRFS_LEAF_DATA_OFFSET + data_end,
4964 last_off - data_end);
4965
4966 for (i = slot + nr; i < nritems; i++) {
4967 u32 ioff;
4968
4969 item = btrfs_item_nr(i);
4970 ioff = btrfs_token_item_offset(leaf, item, &token);
4971 btrfs_set_token_item_offset(leaf, item,
4972 ioff + dsize, &token);
4973 }
4974
4975 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4976 btrfs_item_nr_offset(slot + nr),
4977 sizeof(struct btrfs_item) *
4978 (nritems - slot - nr));
4979 }
4980 btrfs_set_header_nritems(leaf, nritems - nr);
4981 nritems -= nr;
4982
4983 /* delete the leaf if we've emptied it */
4984 if (nritems == 0) {
4985 if (leaf == root->node) {
4986 btrfs_set_header_level(leaf, 0);
4987 } else {
4988 btrfs_set_path_blocking(path);
4989 clean_tree_block(fs_info, leaf);
4990 btrfs_del_leaf(trans, root, path, leaf);
4991 }
4992 } else {
4993 int used = leaf_space_used(leaf, 0, nritems);
4994 if (slot == 0) {
4995 struct btrfs_disk_key disk_key;
4996
4997 btrfs_item_key(leaf, &disk_key, 0);
4998 fixup_low_keys(fs_info, path, &disk_key, 1);
4999 }
5000
5001 /* delete the leaf if it is mostly empty */
5002 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5003 /* push_leaf_left fixes the path.
5004 * make sure the path still points to our leaf
5005 * for possible call to del_ptr below
5006 */
5007 slot = path->slots[1];
5008 extent_buffer_get(leaf);
5009
5010 btrfs_set_path_blocking(path);
5011 wret = push_leaf_left(trans, root, path, 1, 1,
5012 1, (u32)-1);
5013 if (wret < 0 && wret != -ENOSPC)
5014 ret = wret;
5015
5016 if (path->nodes[0] == leaf &&
5017 btrfs_header_nritems(leaf)) {
5018 wret = push_leaf_right(trans, root, path, 1,
5019 1, 1, 0);
5020 if (wret < 0 && wret != -ENOSPC)
5021 ret = wret;
5022 }
5023
5024 if (btrfs_header_nritems(leaf) == 0) {
5025 path->slots[1] = slot;
5026 btrfs_del_leaf(trans, root, path, leaf);
5027 free_extent_buffer(leaf);
5028 ret = 0;
5029 } else {
5030 /* if we're still in the path, make sure
5031 * we're dirty. Otherwise, one of the
5032 * push_leaf functions must have already
5033 * dirtied this buffer
5034 */
5035 if (path->nodes[0] == leaf)
5036 btrfs_mark_buffer_dirty(leaf);
5037 free_extent_buffer(leaf);
5038 }
5039 } else {
5040 btrfs_mark_buffer_dirty(leaf);
5041 }
5042 }
5043 return ret;
5044}
5045
5046/*
5047 * search the tree again to find a leaf with lesser keys
5048 * returns 0 if it found something or 1 if there are no lesser leaves.
5049 * returns < 0 on io errors.
5050 *
5051 * This may release the path, and so you may lose any locks held at the
5052 * time you call it.
5053 */
5054int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5055{
5056 struct btrfs_key key;
5057 struct btrfs_disk_key found_key;
5058 int ret;
5059
5060 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5061
5062 if (key.offset > 0) {
5063 key.offset--;
5064 } else if (key.type > 0) {
5065 key.type--;
5066 key.offset = (u64)-1;
5067 } else if (key.objectid > 0) {
5068 key.objectid--;
5069 key.type = (u8)-1;
5070 key.offset = (u64)-1;
5071 } else {
5072 return 1;
5073 }
5074
5075 btrfs_release_path(path);
5076 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5077 if (ret < 0)
5078 return ret;
5079 btrfs_item_key(path->nodes[0], &found_key, 0);
5080 ret = comp_keys(&found_key, &key);
5081 /*
5082 * We might have had an item with the previous key in the tree right
5083 * before we released our path. And after we released our path, that
5084 * item might have been pushed to the first slot (0) of the leaf we
5085 * were holding due to a tree balance. Alternatively, an item with the
5086 * previous key can exist as the only element of a leaf (big fat item).
5087 * Therefore account for these 2 cases, so that our callers (like
5088 * btrfs_previous_item) don't miss an existing item with a key matching
5089 * the previous key we computed above.
5090 */
5091 if (ret <= 0)
5092 return 0;
5093 return 1;
5094}
5095
5096/*
5097 * A helper function to walk down the tree starting at min_key, and looking
5098 * for nodes or leaves that are have a minimum transaction id.
5099 * This is used by the btree defrag code, and tree logging
5100 *
5101 * This does not cow, but it does stuff the starting key it finds back
5102 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5103 * key and get a writable path.
5104 *
5105 * This honors path->lowest_level to prevent descent past a given level
5106 * of the tree.
5107 *
5108 * min_trans indicates the oldest transaction that you are interested
5109 * in walking through. Any nodes or leaves older than min_trans are
5110 * skipped over (without reading them).
5111 *
5112 * returns zero if something useful was found, < 0 on error and 1 if there
5113 * was nothing in the tree that matched the search criteria.
5114 */
5115int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5116 struct btrfs_path *path,
5117 u64 min_trans)
5118{
5119 struct btrfs_fs_info *fs_info = root->fs_info;
5120 struct extent_buffer *cur;
5121 struct btrfs_key found_key;
5122 int slot;
5123 int sret;
5124 u32 nritems;
5125 int level;
5126 int ret = 1;
5127 int keep_locks = path->keep_locks;
5128
5129 path->keep_locks = 1;
5130again:
5131 cur = btrfs_read_lock_root_node(root);
5132 level = btrfs_header_level(cur);
5133 WARN_ON(path->nodes[level]);
5134 path->nodes[level] = cur;
5135 path->locks[level] = BTRFS_READ_LOCK;
5136
5137 if (btrfs_header_generation(cur) < min_trans) {
5138 ret = 1;
5139 goto out;
5140 }
5141 while (1) {
5142 nritems = btrfs_header_nritems(cur);
5143 level = btrfs_header_level(cur);
5144 sret = btrfs_bin_search(cur, min_key, level, &slot);
5145
5146 /* at the lowest level, we're done, setup the path and exit */
5147 if (level == path->lowest_level) {
5148 if (slot >= nritems)
5149 goto find_next_key;
5150 ret = 0;
5151 path->slots[level] = slot;
5152 btrfs_item_key_to_cpu(cur, &found_key, slot);
5153 goto out;
5154 }
5155 if (sret && slot > 0)
5156 slot--;
5157 /*
5158 * check this node pointer against the min_trans parameters.
5159 * If it is too old, old, skip to the next one.
5160 */
5161 while (slot < nritems) {
5162 u64 gen;
5163
5164 gen = btrfs_node_ptr_generation(cur, slot);
5165 if (gen < min_trans) {
5166 slot++;
5167 continue;
5168 }
5169 break;
5170 }
5171find_next_key:
5172 /*
5173 * we didn't find a candidate key in this node, walk forward
5174 * and find another one
5175 */
5176 if (slot >= nritems) {
5177 path->slots[level] = slot;
5178 btrfs_set_path_blocking(path);
5179 sret = btrfs_find_next_key(root, path, min_key, level,
5180 min_trans);
5181 if (sret == 0) {
5182 btrfs_release_path(path);
5183 goto again;
5184 } else {
5185 goto out;
5186 }
5187 }
5188 /* save our key for returning back */
5189 btrfs_node_key_to_cpu(cur, &found_key, slot);
5190 path->slots[level] = slot;
5191 if (level == path->lowest_level) {
5192 ret = 0;
5193 goto out;
5194 }
5195 btrfs_set_path_blocking(path);
5196 cur = read_node_slot(fs_info, cur, slot);
5197 if (IS_ERR(cur)) {
5198 ret = PTR_ERR(cur);
5199 goto out;
5200 }
5201
5202 btrfs_tree_read_lock(cur);
5203
5204 path->locks[level - 1] = BTRFS_READ_LOCK;
5205 path->nodes[level - 1] = cur;
5206 unlock_up(path, level, 1, 0, NULL);
5207 btrfs_clear_path_blocking(path, NULL, 0);
5208 }
5209out:
5210 path->keep_locks = keep_locks;
5211 if (ret == 0) {
5212 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5213 btrfs_set_path_blocking(path);
5214 memcpy(min_key, &found_key, sizeof(found_key));
5215 }
5216 return ret;
5217}
5218
5219static int tree_move_down(struct btrfs_fs_info *fs_info,
5220 struct btrfs_path *path,
5221 int *level)
5222{
5223 struct extent_buffer *eb;
5224
5225 BUG_ON(*level == 0);
5226 eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
5227 if (IS_ERR(eb))
5228 return PTR_ERR(eb);
5229
5230 path->nodes[*level - 1] = eb;
5231 path->slots[*level - 1] = 0;
5232 (*level)--;
5233 return 0;
5234}
5235
5236static int tree_move_next_or_upnext(struct btrfs_path *path,
5237 int *level, int root_level)
5238{
5239 int ret = 0;
5240 int nritems;
5241 nritems = btrfs_header_nritems(path->nodes[*level]);
5242
5243 path->slots[*level]++;
5244
5245 while (path->slots[*level] >= nritems) {
5246 if (*level == root_level)
5247 return -1;
5248
5249 /* move upnext */
5250 path->slots[*level] = 0;
5251 free_extent_buffer(path->nodes[*level]);
5252 path->nodes[*level] = NULL;
5253 (*level)++;
5254 path->slots[*level]++;
5255
5256 nritems = btrfs_header_nritems(path->nodes[*level]);
5257 ret = 1;
5258 }
5259 return ret;
5260}
5261
5262/*
5263 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5264 * or down.
5265 */
5266static int tree_advance(struct btrfs_fs_info *fs_info,
5267 struct btrfs_path *path,
5268 int *level, int root_level,
5269 int allow_down,
5270 struct btrfs_key *key)
5271{
5272 int ret;
5273
5274 if (*level == 0 || !allow_down) {
5275 ret = tree_move_next_or_upnext(path, level, root_level);
5276 } else {
5277 ret = tree_move_down(fs_info, path, level);
5278 }
5279 if (ret >= 0) {
5280 if (*level == 0)
5281 btrfs_item_key_to_cpu(path->nodes[*level], key,
5282 path->slots[*level]);
5283 else
5284 btrfs_node_key_to_cpu(path->nodes[*level], key,
5285 path->slots[*level]);
5286 }
5287 return ret;
5288}
5289
5290static int tree_compare_item(struct btrfs_path *left_path,
5291 struct btrfs_path *right_path,
5292 char *tmp_buf)
5293{
5294 int cmp;
5295 int len1, len2;
5296 unsigned long off1, off2;
5297
5298 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5299 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5300 if (len1 != len2)
5301 return 1;
5302
5303 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5304 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5305 right_path->slots[0]);
5306
5307 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5308
5309 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5310 if (cmp)
5311 return 1;
5312 return 0;
5313}
5314
5315#define ADVANCE 1
5316#define ADVANCE_ONLY_NEXT -1
5317
5318/*
5319 * This function compares two trees and calls the provided callback for
5320 * every changed/new/deleted item it finds.
5321 * If shared tree blocks are encountered, whole subtrees are skipped, making
5322 * the compare pretty fast on snapshotted subvolumes.
5323 *
5324 * This currently works on commit roots only. As commit roots are read only,
5325 * we don't do any locking. The commit roots are protected with transactions.
5326 * Transactions are ended and rejoined when a commit is tried in between.
5327 *
5328 * This function checks for modifications done to the trees while comparing.
5329 * If it detects a change, it aborts immediately.
5330 */
5331int btrfs_compare_trees(struct btrfs_root *left_root,
5332 struct btrfs_root *right_root,
5333 btrfs_changed_cb_t changed_cb, void *ctx)
5334{
5335 struct btrfs_fs_info *fs_info = left_root->fs_info;
5336 int ret;
5337 int cmp;
5338 struct btrfs_path *left_path = NULL;
5339 struct btrfs_path *right_path = NULL;
5340 struct btrfs_key left_key;
5341 struct btrfs_key right_key;
5342 char *tmp_buf = NULL;
5343 int left_root_level;
5344 int right_root_level;
5345 int left_level;
5346 int right_level;
5347 int left_end_reached;
5348 int right_end_reached;
5349 int advance_left;
5350 int advance_right;
5351 u64 left_blockptr;
5352 u64 right_blockptr;
5353 u64 left_gen;
5354 u64 right_gen;
5355
5356 left_path = btrfs_alloc_path();
5357 if (!left_path) {
5358 ret = -ENOMEM;
5359 goto out;
5360 }
5361 right_path = btrfs_alloc_path();
5362 if (!right_path) {
5363 ret = -ENOMEM;
5364 goto out;
5365 }
5366
5367 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
5368 if (!tmp_buf) {
5369 ret = -ENOMEM;
5370 goto out;
5371 }
5372
5373 left_path->search_commit_root = 1;
5374 left_path->skip_locking = 1;
5375 right_path->search_commit_root = 1;
5376 right_path->skip_locking = 1;
5377
5378 /*
5379 * Strategy: Go to the first items of both trees. Then do
5380 *
5381 * If both trees are at level 0
5382 * Compare keys of current items
5383 * If left < right treat left item as new, advance left tree
5384 * and repeat
5385 * If left > right treat right item as deleted, advance right tree
5386 * and repeat
5387 * If left == right do deep compare of items, treat as changed if
5388 * needed, advance both trees and repeat
5389 * If both trees are at the same level but not at level 0
5390 * Compare keys of current nodes/leafs
5391 * If left < right advance left tree and repeat
5392 * If left > right advance right tree and repeat
5393 * If left == right compare blockptrs of the next nodes/leafs
5394 * If they match advance both trees but stay at the same level
5395 * and repeat
5396 * If they don't match advance both trees while allowing to go
5397 * deeper and repeat
5398 * If tree levels are different
5399 * Advance the tree that needs it and repeat
5400 *
5401 * Advancing a tree means:
5402 * If we are at level 0, try to go to the next slot. If that's not
5403 * possible, go one level up and repeat. Stop when we found a level
5404 * where we could go to the next slot. We may at this point be on a
5405 * node or a leaf.
5406 *
5407 * If we are not at level 0 and not on shared tree blocks, go one
5408 * level deeper.
5409 *
5410 * If we are not at level 0 and on shared tree blocks, go one slot to
5411 * the right if possible or go up and right.
5412 */
5413
5414 down_read(&fs_info->commit_root_sem);
5415 left_level = btrfs_header_level(left_root->commit_root);
5416 left_root_level = left_level;
5417 left_path->nodes[left_level] =
5418 btrfs_clone_extent_buffer(left_root->commit_root);
5419 if (!left_path->nodes[left_level]) {
5420 up_read(&fs_info->commit_root_sem);
5421 ret = -ENOMEM;
5422 goto out;
5423 }
5424 extent_buffer_get(left_path->nodes[left_level]);
5425
5426 right_level = btrfs_header_level(right_root->commit_root);
5427 right_root_level = right_level;
5428 right_path->nodes[right_level] =
5429 btrfs_clone_extent_buffer(right_root->commit_root);
5430 if (!right_path->nodes[right_level]) {
5431 up_read(&fs_info->commit_root_sem);
5432 ret = -ENOMEM;
5433 goto out;
5434 }
5435 extent_buffer_get(right_path->nodes[right_level]);
5436 up_read(&fs_info->commit_root_sem);
5437
5438 if (left_level == 0)
5439 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5440 &left_key, left_path->slots[left_level]);
5441 else
5442 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5443 &left_key, left_path->slots[left_level]);
5444 if (right_level == 0)
5445 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5446 &right_key, right_path->slots[right_level]);
5447 else
5448 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5449 &right_key, right_path->slots[right_level]);
5450
5451 left_end_reached = right_end_reached = 0;
5452 advance_left = advance_right = 0;
5453
5454 while (1) {
5455 if (advance_left && !left_end_reached) {
5456 ret = tree_advance(fs_info, left_path, &left_level,
5457 left_root_level,
5458 advance_left != ADVANCE_ONLY_NEXT,
5459 &left_key);
5460 if (ret == -1)
5461 left_end_reached = ADVANCE;
5462 else if (ret < 0)
5463 goto out;
5464 advance_left = 0;
5465 }
5466 if (advance_right && !right_end_reached) {
5467 ret = tree_advance(fs_info, right_path, &right_level,
5468 right_root_level,
5469 advance_right != ADVANCE_ONLY_NEXT,
5470 &right_key);
5471 if (ret == -1)
5472 right_end_reached = ADVANCE;
5473 else if (ret < 0)
5474 goto out;
5475 advance_right = 0;
5476 }
5477
5478 if (left_end_reached && right_end_reached) {
5479 ret = 0;
5480 goto out;
5481 } else if (left_end_reached) {
5482 if (right_level == 0) {
5483 ret = changed_cb(left_path, right_path,
5484 &right_key,
5485 BTRFS_COMPARE_TREE_DELETED,
5486 ctx);
5487 if (ret < 0)
5488 goto out;
5489 }
5490 advance_right = ADVANCE;
5491 continue;
5492 } else if (right_end_reached) {
5493 if (left_level == 0) {
5494 ret = changed_cb(left_path, right_path,
5495 &left_key,
5496 BTRFS_COMPARE_TREE_NEW,
5497 ctx);
5498 if (ret < 0)
5499 goto out;
5500 }
5501 advance_left = ADVANCE;
5502 continue;
5503 }
5504
5505 if (left_level == 0 && right_level == 0) {
5506 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5507 if (cmp < 0) {
5508 ret = changed_cb(left_path, right_path,
5509 &left_key,
5510 BTRFS_COMPARE_TREE_NEW,
5511 ctx);
5512 if (ret < 0)
5513 goto out;
5514 advance_left = ADVANCE;
5515 } else if (cmp > 0) {
5516 ret = changed_cb(left_path, right_path,
5517 &right_key,
5518 BTRFS_COMPARE_TREE_DELETED,
5519 ctx);
5520 if (ret < 0)
5521 goto out;
5522 advance_right = ADVANCE;
5523 } else {
5524 enum btrfs_compare_tree_result result;
5525
5526 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5527 ret = tree_compare_item(left_path, right_path,
5528 tmp_buf);
5529 if (ret)
5530 result = BTRFS_COMPARE_TREE_CHANGED;
5531 else
5532 result = BTRFS_COMPARE_TREE_SAME;
5533 ret = changed_cb(left_path, right_path,
5534 &left_key, result, ctx);
5535 if (ret < 0)
5536 goto out;
5537 advance_left = ADVANCE;
5538 advance_right = ADVANCE;
5539 }
5540 } else if (left_level == right_level) {
5541 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5542 if (cmp < 0) {
5543 advance_left = ADVANCE;
5544 } else if (cmp > 0) {
5545 advance_right = ADVANCE;
5546 } else {
5547 left_blockptr = btrfs_node_blockptr(
5548 left_path->nodes[left_level],
5549 left_path->slots[left_level]);
5550 right_blockptr = btrfs_node_blockptr(
5551 right_path->nodes[right_level],
5552 right_path->slots[right_level]);
5553 left_gen = btrfs_node_ptr_generation(
5554 left_path->nodes[left_level],
5555 left_path->slots[left_level]);
5556 right_gen = btrfs_node_ptr_generation(
5557 right_path->nodes[right_level],
5558 right_path->slots[right_level]);
5559 if (left_blockptr == right_blockptr &&
5560 left_gen == right_gen) {
5561 /*
5562 * As we're on a shared block, don't
5563 * allow to go deeper.
5564 */
5565 advance_left = ADVANCE_ONLY_NEXT;
5566 advance_right = ADVANCE_ONLY_NEXT;
5567 } else {
5568 advance_left = ADVANCE;
5569 advance_right = ADVANCE;
5570 }
5571 }
5572 } else if (left_level < right_level) {
5573 advance_right = ADVANCE;
5574 } else {
5575 advance_left = ADVANCE;
5576 }
5577 }
5578
5579out:
5580 btrfs_free_path(left_path);
5581 btrfs_free_path(right_path);
5582 kvfree(tmp_buf);
5583 return ret;
5584}
5585
5586/*
5587 * this is similar to btrfs_next_leaf, but does not try to preserve
5588 * and fixup the path. It looks for and returns the next key in the
5589 * tree based on the current path and the min_trans parameters.
5590 *
5591 * 0 is returned if another key is found, < 0 if there are any errors
5592 * and 1 is returned if there are no higher keys in the tree
5593 *
5594 * path->keep_locks should be set to 1 on the search made before
5595 * calling this function.
5596 */
5597int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5598 struct btrfs_key *key, int level, u64 min_trans)
5599{
5600 int slot;
5601 struct extent_buffer *c;
5602
5603 WARN_ON(!path->keep_locks);
5604 while (level < BTRFS_MAX_LEVEL) {
5605 if (!path->nodes[level])
5606 return 1;
5607
5608 slot = path->slots[level] + 1;
5609 c = path->nodes[level];
5610next:
5611 if (slot >= btrfs_header_nritems(c)) {
5612 int ret;
5613 int orig_lowest;
5614 struct btrfs_key cur_key;
5615 if (level + 1 >= BTRFS_MAX_LEVEL ||
5616 !path->nodes[level + 1])
5617 return 1;
5618
5619 if (path->locks[level + 1]) {
5620 level++;
5621 continue;
5622 }
5623
5624 slot = btrfs_header_nritems(c) - 1;
5625 if (level == 0)
5626 btrfs_item_key_to_cpu(c, &cur_key, slot);
5627 else
5628 btrfs_node_key_to_cpu(c, &cur_key, slot);
5629
5630 orig_lowest = path->lowest_level;
5631 btrfs_release_path(path);
5632 path->lowest_level = level;
5633 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5634 0, 0);
5635 path->lowest_level = orig_lowest;
5636 if (ret < 0)
5637 return ret;
5638
5639 c = path->nodes[level];
5640 slot = path->slots[level];
5641 if (ret == 0)
5642 slot++;
5643 goto next;
5644 }
5645
5646 if (level == 0)
5647 btrfs_item_key_to_cpu(c, key, slot);
5648 else {
5649 u64 gen = btrfs_node_ptr_generation(c, slot);
5650
5651 if (gen < min_trans) {
5652 slot++;
5653 goto next;
5654 }
5655 btrfs_node_key_to_cpu(c, key, slot);
5656 }
5657 return 0;
5658 }
5659 return 1;
5660}
5661
5662/*
5663 * search the tree again to find a leaf with greater keys
5664 * returns 0 if it found something or 1 if there are no greater leaves.
5665 * returns < 0 on io errors.
5666 */
5667int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5668{
5669 return btrfs_next_old_leaf(root, path, 0);
5670}
5671
5672int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5673 u64 time_seq)
5674{
5675 int slot;
5676 int level;
5677 struct extent_buffer *c;
5678 struct extent_buffer *next;
5679 struct btrfs_key key;
5680 u32 nritems;
5681 int ret;
5682 int old_spinning = path->leave_spinning;
5683 int next_rw_lock = 0;
5684
5685 nritems = btrfs_header_nritems(path->nodes[0]);
5686 if (nritems == 0)
5687 return 1;
5688
5689 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5690again:
5691 level = 1;
5692 next = NULL;
5693 next_rw_lock = 0;
5694 btrfs_release_path(path);
5695
5696 path->keep_locks = 1;
5697 path->leave_spinning = 1;
5698
5699 if (time_seq)
5700 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5701 else
5702 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5703 path->keep_locks = 0;
5704
5705 if (ret < 0)
5706 return ret;
5707
5708 nritems = btrfs_header_nritems(path->nodes[0]);
5709 /*
5710 * by releasing the path above we dropped all our locks. A balance
5711 * could have added more items next to the key that used to be
5712 * at the very end of the block. So, check again here and
5713 * advance the path if there are now more items available.
5714 */
5715 if (nritems > 0 && path->slots[0] < nritems - 1) {
5716 if (ret == 0)
5717 path->slots[0]++;
5718 ret = 0;
5719 goto done;
5720 }
5721 /*
5722 * So the above check misses one case:
5723 * - after releasing the path above, someone has removed the item that
5724 * used to be at the very end of the block, and balance between leafs
5725 * gets another one with bigger key.offset to replace it.
5726 *
5727 * This one should be returned as well, or we can get leaf corruption
5728 * later(esp. in __btrfs_drop_extents()).
5729 *
5730 * And a bit more explanation about this check,
5731 * with ret > 0, the key isn't found, the path points to the slot
5732 * where it should be inserted, so the path->slots[0] item must be the
5733 * bigger one.
5734 */
5735 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5736 ret = 0;
5737 goto done;
5738 }
5739
5740 while (level < BTRFS_MAX_LEVEL) {
5741 if (!path->nodes[level]) {
5742 ret = 1;
5743 goto done;
5744 }
5745
5746 slot = path->slots[level] + 1;
5747 c = path->nodes[level];
5748 if (slot >= btrfs_header_nritems(c)) {
5749 level++;
5750 if (level == BTRFS_MAX_LEVEL) {
5751 ret = 1;
5752 goto done;
5753 }
5754 continue;
5755 }
5756
5757 if (next) {
5758 btrfs_tree_unlock_rw(next, next_rw_lock);
5759 free_extent_buffer(next);
5760 }
5761
5762 next = c;
5763 next_rw_lock = path->locks[level];
5764 ret = read_block_for_search(root, path, &next, level,
5765 slot, &key);
5766 if (ret == -EAGAIN)
5767 goto again;
5768
5769 if (ret < 0) {
5770 btrfs_release_path(path);
5771 goto done;
5772 }
5773
5774 if (!path->skip_locking) {
5775 ret = btrfs_try_tree_read_lock(next);
5776 if (!ret && time_seq) {
5777 /*
5778 * If we don't get the lock, we may be racing
5779 * with push_leaf_left, holding that lock while
5780 * itself waiting for the leaf we've currently
5781 * locked. To solve this situation, we give up
5782 * on our lock and cycle.
5783 */
5784 free_extent_buffer(next);
5785 btrfs_release_path(path);
5786 cond_resched();
5787 goto again;
5788 }
5789 if (!ret) {
5790 btrfs_set_path_blocking(path);
5791 btrfs_tree_read_lock(next);
5792 btrfs_clear_path_blocking(path, next,
5793 BTRFS_READ_LOCK);
5794 }
5795 next_rw_lock = BTRFS_READ_LOCK;
5796 }
5797 break;
5798 }
5799 path->slots[level] = slot;
5800 while (1) {
5801 level--;
5802 c = path->nodes[level];
5803 if (path->locks[level])
5804 btrfs_tree_unlock_rw(c, path->locks[level]);
5805
5806 free_extent_buffer(c);
5807 path->nodes[level] = next;
5808 path->slots[level] = 0;
5809 if (!path->skip_locking)
5810 path->locks[level] = next_rw_lock;
5811 if (!level)
5812 break;
5813
5814 ret = read_block_for_search(root, path, &next, level,
5815 0, &key);
5816 if (ret == -EAGAIN)
5817 goto again;
5818
5819 if (ret < 0) {
5820 btrfs_release_path(path);
5821 goto done;
5822 }
5823
5824 if (!path->skip_locking) {
5825 ret = btrfs_try_tree_read_lock(next);
5826 if (!ret) {
5827 btrfs_set_path_blocking(path);
5828 btrfs_tree_read_lock(next);
5829 btrfs_clear_path_blocking(path, next,
5830 BTRFS_READ_LOCK);
5831 }
5832 next_rw_lock = BTRFS_READ_LOCK;
5833 }
5834 }
5835 ret = 0;
5836done:
5837 unlock_up(path, 0, 1, 0, NULL);
5838 path->leave_spinning = old_spinning;
5839 if (!old_spinning)
5840 btrfs_set_path_blocking(path);
5841
5842 return ret;
5843}
5844
5845/*
5846 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5847 * searching until it gets past min_objectid or finds an item of 'type'
5848 *
5849 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5850 */
5851int btrfs_previous_item(struct btrfs_root *root,
5852 struct btrfs_path *path, u64 min_objectid,
5853 int type)
5854{
5855 struct btrfs_key found_key;
5856 struct extent_buffer *leaf;
5857 u32 nritems;
5858 int ret;
5859
5860 while (1) {
5861 if (path->slots[0] == 0) {
5862 btrfs_set_path_blocking(path);
5863 ret = btrfs_prev_leaf(root, path);
5864 if (ret != 0)
5865 return ret;
5866 } else {
5867 path->slots[0]--;
5868 }
5869 leaf = path->nodes[0];
5870 nritems = btrfs_header_nritems(leaf);
5871 if (nritems == 0)
5872 return 1;
5873 if (path->slots[0] == nritems)
5874 path->slots[0]--;
5875
5876 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5877 if (found_key.objectid < min_objectid)
5878 break;
5879 if (found_key.type == type)
5880 return 0;
5881 if (found_key.objectid == min_objectid &&
5882 found_key.type < type)
5883 break;
5884 }
5885 return 1;
5886}
5887
5888/*
5889 * search in extent tree to find a previous Metadata/Data extent item with
5890 * min objecitd.
5891 *
5892 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5893 */
5894int btrfs_previous_extent_item(struct btrfs_root *root,
5895 struct btrfs_path *path, u64 min_objectid)
5896{
5897 struct btrfs_key found_key;
5898 struct extent_buffer *leaf;
5899 u32 nritems;
5900 int ret;
5901
5902 while (1) {
5903 if (path->slots[0] == 0) {
5904 btrfs_set_path_blocking(path);
5905 ret = btrfs_prev_leaf(root, path);
5906 if (ret != 0)
5907 return ret;
5908 } else {
5909 path->slots[0]--;
5910 }
5911 leaf = path->nodes[0];
5912 nritems = btrfs_header_nritems(leaf);
5913 if (nritems == 0)
5914 return 1;
5915 if (path->slots[0] == nritems)
5916 path->slots[0]--;
5917
5918 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5919 if (found_key.objectid < min_objectid)
5920 break;
5921 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5922 found_key.type == BTRFS_METADATA_ITEM_KEY)
5923 return 0;
5924 if (found_key.objectid == min_objectid &&
5925 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5926 break;
5927 }
5928 return 1;
5929}