Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/rbtree.h>
   9#include <linux/mm.h>
  10#include "ctree.h"
  11#include "disk-io.h"
  12#include "transaction.h"
  13#include "print-tree.h"
  14#include "locking.h"
  15#include "volumes.h"
  16#include "qgroup.h"
  17
  18static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  19		      *root, struct btrfs_path *path, int level);
  20static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  21		      const struct btrfs_key *ins_key, struct btrfs_path *path,
  22		      int data_size, int extend);
  23static int push_node_left(struct btrfs_trans_handle *trans,
 
  24			  struct extent_buffer *dst,
  25			  struct extent_buffer *src, int empty);
  26static int balance_node_right(struct btrfs_trans_handle *trans,
 
  27			      struct extent_buffer *dst_buf,
  28			      struct extent_buffer *src_buf);
  29static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  30		    int level, int slot);
  31
  32static const struct btrfs_csums {
  33	u16		size;
  34	const char	*name;
  35} btrfs_csums[] = {
  36	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
  37};
  38
  39int btrfs_super_csum_size(const struct btrfs_super_block *s)
  40{
  41	u16 t = btrfs_super_csum_type(s);
  42	/*
  43	 * csum type is validated at mount time
  44	 */
  45	return btrfs_csums[t].size;
  46}
  47
  48const char *btrfs_super_csum_name(u16 csum_type)
  49{
  50	/* csum type is validated at mount time */
  51	return btrfs_csums[csum_type].name;
  52}
  53
  54struct btrfs_path *btrfs_alloc_path(void)
  55{
  56	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  57}
  58
  59/*
  60 * set all locked nodes in the path to blocking locks.  This should
  61 * be done before scheduling
  62 */
  63noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  64{
  65	int i;
  66	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  67		if (!p->nodes[i] || !p->locks[i])
  68			continue;
  69		/*
  70		 * If we currently have a spinning reader or writer lock this
  71		 * will bump the count of blocking holders and drop the
  72		 * spinlock.
  73		 */
  74		if (p->locks[i] == BTRFS_READ_LOCK) {
  75			btrfs_set_lock_blocking_read(p->nodes[i]);
  76			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  77		} else if (p->locks[i] == BTRFS_WRITE_LOCK) {
  78			btrfs_set_lock_blocking_write(p->nodes[i]);
  79			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  80		}
  81	}
 
 
 
  82}
  83
  84/* this also releases the path */
  85void btrfs_free_path(struct btrfs_path *p)
  86{
  87	if (!p)
  88		return;
  89	btrfs_release_path(p);
  90	kmem_cache_free(btrfs_path_cachep, p);
  91}
  92
  93/*
  94 * path release drops references on the extent buffers in the path
  95 * and it drops any locks held by this path
  96 *
  97 * It is safe to call this on paths that no locks or extent buffers held.
  98 */
  99noinline void btrfs_release_path(struct btrfs_path *p)
 100{
 101	int i;
 102
 103	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 104		p->slots[i] = 0;
 105		if (!p->nodes[i])
 106			continue;
 107		if (p->locks[i]) {
 108			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 109			p->locks[i] = 0;
 110		}
 111		free_extent_buffer(p->nodes[i]);
 112		p->nodes[i] = NULL;
 113	}
 114}
 115
 116/*
 117 * safely gets a reference on the root node of a tree.  A lock
 118 * is not taken, so a concurrent writer may put a different node
 119 * at the root of the tree.  See btrfs_lock_root_node for the
 120 * looping required.
 121 *
 122 * The extent buffer returned by this has a reference taken, so
 123 * it won't disappear.  It may stop being the root of the tree
 124 * at any time because there are no locks held.
 125 */
 126struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 127{
 128	struct extent_buffer *eb;
 129
 130	while (1) {
 131		rcu_read_lock();
 132		eb = rcu_dereference(root->node);
 133
 134		/*
 135		 * RCU really hurts here, we could free up the root node because
 136		 * it was COWed but we may not get the new root node yet so do
 137		 * the inc_not_zero dance and if it doesn't work then
 138		 * synchronize_rcu and try again.
 139		 */
 140		if (atomic_inc_not_zero(&eb->refs)) {
 141			rcu_read_unlock();
 142			break;
 143		}
 144		rcu_read_unlock();
 145		synchronize_rcu();
 146	}
 147	return eb;
 148}
 149
 150/* loop around taking references on and locking the root node of the
 151 * tree until you end up with a lock on the root.  A locked buffer
 152 * is returned, with a reference held.
 153 */
 154struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
 155{
 156	struct extent_buffer *eb;
 157
 158	while (1) {
 159		eb = btrfs_root_node(root);
 160		btrfs_tree_lock(eb);
 161		if (eb == root->node)
 162			break;
 163		btrfs_tree_unlock(eb);
 164		free_extent_buffer(eb);
 165	}
 166	return eb;
 167}
 168
 169/* loop around taking references on and locking the root node of the
 170 * tree until you end up with a lock on the root.  A locked buffer
 171 * is returned, with a reference held.
 172 */
 173struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
 174{
 175	struct extent_buffer *eb;
 176
 177	while (1) {
 178		eb = btrfs_root_node(root);
 179		btrfs_tree_read_lock(eb);
 180		if (eb == root->node)
 181			break;
 182		btrfs_tree_read_unlock(eb);
 183		free_extent_buffer(eb);
 184	}
 185	return eb;
 186}
 187
 188/* cowonly root (everything not a reference counted cow subvolume), just get
 189 * put onto a simple dirty list.  transaction.c walks this to make sure they
 190 * get properly updated on disk.
 191 */
 192static void add_root_to_dirty_list(struct btrfs_root *root)
 193{
 194	struct btrfs_fs_info *fs_info = root->fs_info;
 195
 196	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 197	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 198		return;
 199
 200	spin_lock(&fs_info->trans_lock);
 201	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 202		/* Want the extent tree to be the last on the list */
 203		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
 204			list_move_tail(&root->dirty_list,
 205				       &fs_info->dirty_cowonly_roots);
 206		else
 207			list_move(&root->dirty_list,
 208				  &fs_info->dirty_cowonly_roots);
 209	}
 210	spin_unlock(&fs_info->trans_lock);
 211}
 212
 213/*
 214 * used by snapshot creation to make a copy of a root for a tree with
 215 * a given objectid.  The buffer with the new root node is returned in
 216 * cow_ret, and this func returns zero on success or a negative error code.
 217 */
 218int btrfs_copy_root(struct btrfs_trans_handle *trans,
 219		      struct btrfs_root *root,
 220		      struct extent_buffer *buf,
 221		      struct extent_buffer **cow_ret, u64 new_root_objectid)
 222{
 223	struct btrfs_fs_info *fs_info = root->fs_info;
 224	struct extent_buffer *cow;
 225	int ret = 0;
 226	int level;
 227	struct btrfs_disk_key disk_key;
 228
 229	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 230		trans->transid != fs_info->running_transaction->transid);
 231	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 232		trans->transid != root->last_trans);
 233
 234	level = btrfs_header_level(buf);
 235	if (level == 0)
 236		btrfs_item_key(buf, &disk_key, 0);
 237	else
 238		btrfs_node_key(buf, &disk_key, 0);
 239
 240	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 241			&disk_key, level, buf->start, 0);
 242	if (IS_ERR(cow))
 243		return PTR_ERR(cow);
 244
 245	copy_extent_buffer_full(cow, buf);
 246	btrfs_set_header_bytenr(cow, cow->start);
 247	btrfs_set_header_generation(cow, trans->transid);
 248	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 249	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 250				     BTRFS_HEADER_FLAG_RELOC);
 251	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 252		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 253	else
 254		btrfs_set_header_owner(cow, new_root_objectid);
 255
 256	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 257
 258	WARN_ON(btrfs_header_generation(buf) > trans->transid);
 259	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 260		ret = btrfs_inc_ref(trans, root, cow, 1);
 261	else
 262		ret = btrfs_inc_ref(trans, root, cow, 0);
 263
 264	if (ret)
 265		return ret;
 266
 267	btrfs_mark_buffer_dirty(cow);
 268	*cow_ret = cow;
 269	return 0;
 270}
 271
 272enum mod_log_op {
 273	MOD_LOG_KEY_REPLACE,
 274	MOD_LOG_KEY_ADD,
 275	MOD_LOG_KEY_REMOVE,
 276	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
 277	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
 278	MOD_LOG_MOVE_KEYS,
 279	MOD_LOG_ROOT_REPLACE,
 280};
 281
 
 
 
 
 
 282struct tree_mod_root {
 283	u64 logical;
 284	u8 level;
 285};
 286
 287struct tree_mod_elem {
 288	struct rb_node node;
 289	u64 logical;
 290	u64 seq;
 291	enum mod_log_op op;
 292
 293	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
 294	int slot;
 295
 296	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
 297	u64 generation;
 298
 299	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
 300	struct btrfs_disk_key key;
 301	u64 blockptr;
 302
 303	/* this is used for op == MOD_LOG_MOVE_KEYS */
 304	struct {
 305		int dst_slot;
 306		int nr_items;
 307	} move;
 308
 309	/* this is used for op == MOD_LOG_ROOT_REPLACE */
 310	struct tree_mod_root old_root;
 311};
 312
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 313/*
 314 * Pull a new tree mod seq number for our operation.
 315 */
 316static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
 317{
 318	return atomic64_inc_return(&fs_info->tree_mod_seq);
 319}
 320
 321/*
 322 * This adds a new blocker to the tree mod log's blocker list if the @elem
 323 * passed does not already have a sequence number set. So when a caller expects
 324 * to record tree modifications, it should ensure to set elem->seq to zero
 325 * before calling btrfs_get_tree_mod_seq.
 326 * Returns a fresh, unused tree log modification sequence number, even if no new
 327 * blocker was added.
 328 */
 329u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
 330			   struct seq_list *elem)
 331{
 332	write_lock(&fs_info->tree_mod_log_lock);
 333	spin_lock(&fs_info->tree_mod_seq_lock);
 334	if (!elem->seq) {
 335		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
 336		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
 337	}
 338	spin_unlock(&fs_info->tree_mod_seq_lock);
 339	write_unlock(&fs_info->tree_mod_log_lock);
 340
 341	return elem->seq;
 342}
 343
 344void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
 345			    struct seq_list *elem)
 346{
 347	struct rb_root *tm_root;
 348	struct rb_node *node;
 349	struct rb_node *next;
 350	struct seq_list *cur_elem;
 351	struct tree_mod_elem *tm;
 352	u64 min_seq = (u64)-1;
 353	u64 seq_putting = elem->seq;
 354
 355	if (!seq_putting)
 356		return;
 357
 358	spin_lock(&fs_info->tree_mod_seq_lock);
 359	list_del(&elem->list);
 360	elem->seq = 0;
 361
 362	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
 363		if (cur_elem->seq < min_seq) {
 364			if (seq_putting > cur_elem->seq) {
 365				/*
 366				 * blocker with lower sequence number exists, we
 367				 * cannot remove anything from the log
 368				 */
 369				spin_unlock(&fs_info->tree_mod_seq_lock);
 370				return;
 371			}
 372			min_seq = cur_elem->seq;
 373		}
 374	}
 375	spin_unlock(&fs_info->tree_mod_seq_lock);
 376
 377	/*
 378	 * anything that's lower than the lowest existing (read: blocked)
 379	 * sequence number can be removed from the tree.
 380	 */
 381	write_lock(&fs_info->tree_mod_log_lock);
 382	tm_root = &fs_info->tree_mod_log;
 383	for (node = rb_first(tm_root); node; node = next) {
 384		next = rb_next(node);
 385		tm = rb_entry(node, struct tree_mod_elem, node);
 386		if (tm->seq > min_seq)
 387			continue;
 388		rb_erase(node, tm_root);
 389		kfree(tm);
 390	}
 391	write_unlock(&fs_info->tree_mod_log_lock);
 392}
 393
 394/*
 395 * key order of the log:
 396 *       node/leaf start address -> sequence
 397 *
 398 * The 'start address' is the logical address of the *new* root node
 399 * for root replace operations, or the logical address of the affected
 400 * block for all other operations.
 
 
 401 */
 402static noinline int
 403__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
 404{
 405	struct rb_root *tm_root;
 406	struct rb_node **new;
 407	struct rb_node *parent = NULL;
 408	struct tree_mod_elem *cur;
 409
 410	lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
 411
 412	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
 413
 414	tm_root = &fs_info->tree_mod_log;
 415	new = &tm_root->rb_node;
 416	while (*new) {
 417		cur = rb_entry(*new, struct tree_mod_elem, node);
 418		parent = *new;
 419		if (cur->logical < tm->logical)
 420			new = &((*new)->rb_left);
 421		else if (cur->logical > tm->logical)
 422			new = &((*new)->rb_right);
 423		else if (cur->seq < tm->seq)
 424			new = &((*new)->rb_left);
 425		else if (cur->seq > tm->seq)
 426			new = &((*new)->rb_right);
 427		else
 428			return -EEXIST;
 429	}
 430
 431	rb_link_node(&tm->node, parent, new);
 432	rb_insert_color(&tm->node, tm_root);
 433	return 0;
 434}
 435
 436/*
 437 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 438 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 439 * this until all tree mod log insertions are recorded in the rb tree and then
 440 * write unlock fs_info::tree_mod_log_lock.
 441 */
 442static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
 443				    struct extent_buffer *eb) {
 444	smp_mb();
 445	if (list_empty(&(fs_info)->tree_mod_seq_list))
 446		return 1;
 447	if (eb && btrfs_header_level(eb) == 0)
 448		return 1;
 449
 450	write_lock(&fs_info->tree_mod_log_lock);
 451	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
 452		write_unlock(&fs_info->tree_mod_log_lock);
 453		return 1;
 454	}
 455
 456	return 0;
 457}
 458
 459/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
 460static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
 461				    struct extent_buffer *eb)
 462{
 463	smp_mb();
 464	if (list_empty(&(fs_info)->tree_mod_seq_list))
 465		return 0;
 466	if (eb && btrfs_header_level(eb) == 0)
 467		return 0;
 468
 469	return 1;
 470}
 471
 472static struct tree_mod_elem *
 473alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
 474		    enum mod_log_op op, gfp_t flags)
 475{
 476	struct tree_mod_elem *tm;
 477
 478	tm = kzalloc(sizeof(*tm), flags);
 479	if (!tm)
 480		return NULL;
 481
 482	tm->logical = eb->start;
 483	if (op != MOD_LOG_KEY_ADD) {
 484		btrfs_node_key(eb, &tm->key, slot);
 485		tm->blockptr = btrfs_node_blockptr(eb, slot);
 486	}
 487	tm->op = op;
 488	tm->slot = slot;
 489	tm->generation = btrfs_node_ptr_generation(eb, slot);
 490	RB_CLEAR_NODE(&tm->node);
 491
 492	return tm;
 493}
 494
 495static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
 496		enum mod_log_op op, gfp_t flags)
 
 
 497{
 498	struct tree_mod_elem *tm;
 499	int ret;
 500
 501	if (!tree_mod_need_log(eb->fs_info, eb))
 502		return 0;
 503
 504	tm = alloc_tree_mod_elem(eb, slot, op, flags);
 505	if (!tm)
 506		return -ENOMEM;
 507
 508	if (tree_mod_dont_log(eb->fs_info, eb)) {
 509		kfree(tm);
 510		return 0;
 511	}
 512
 513	ret = __tree_mod_log_insert(eb->fs_info, tm);
 514	write_unlock(&eb->fs_info->tree_mod_log_lock);
 515	if (ret)
 516		kfree(tm);
 517
 518	return ret;
 519}
 520
 521static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
 522		int dst_slot, int src_slot, int nr_items)
 
 
 523{
 524	struct tree_mod_elem *tm = NULL;
 525	struct tree_mod_elem **tm_list = NULL;
 526	int ret = 0;
 527	int i;
 528	int locked = 0;
 529
 530	if (!tree_mod_need_log(eb->fs_info, eb))
 531		return 0;
 532
 533	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
 534	if (!tm_list)
 535		return -ENOMEM;
 536
 537	tm = kzalloc(sizeof(*tm), GFP_NOFS);
 538	if (!tm) {
 539		ret = -ENOMEM;
 540		goto free_tms;
 541	}
 542
 543	tm->logical = eb->start;
 544	tm->slot = src_slot;
 545	tm->move.dst_slot = dst_slot;
 546	tm->move.nr_items = nr_items;
 547	tm->op = MOD_LOG_MOVE_KEYS;
 548
 549	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 550		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
 551		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
 552		if (!tm_list[i]) {
 553			ret = -ENOMEM;
 554			goto free_tms;
 555		}
 556	}
 557
 558	if (tree_mod_dont_log(eb->fs_info, eb))
 559		goto free_tms;
 560	locked = 1;
 561
 562	/*
 563	 * When we override something during the move, we log these removals.
 564	 * This can only happen when we move towards the beginning of the
 565	 * buffer, i.e. dst_slot < src_slot.
 566	 */
 567	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 568		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
 569		if (ret)
 570			goto free_tms;
 571	}
 572
 573	ret = __tree_mod_log_insert(eb->fs_info, tm);
 574	if (ret)
 575		goto free_tms;
 576	write_unlock(&eb->fs_info->tree_mod_log_lock);
 577	kfree(tm_list);
 578
 579	return 0;
 580free_tms:
 581	for (i = 0; i < nr_items; i++) {
 582		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 583			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
 584		kfree(tm_list[i]);
 585	}
 586	if (locked)
 587		write_unlock(&eb->fs_info->tree_mod_log_lock);
 588	kfree(tm_list);
 589	kfree(tm);
 590
 591	return ret;
 592}
 593
 594static inline int
 595__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
 596		       struct tree_mod_elem **tm_list,
 597		       int nritems)
 598{
 599	int i, j;
 600	int ret;
 601
 602	for (i = nritems - 1; i >= 0; i--) {
 603		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 604		if (ret) {
 605			for (j = nritems - 1; j > i; j--)
 606				rb_erase(&tm_list[j]->node,
 607					 &fs_info->tree_mod_log);
 608			return ret;
 609		}
 610	}
 611
 612	return 0;
 613}
 614
 615static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
 616			 struct extent_buffer *new_root, int log_removal)
 
 
 
 617{
 618	struct btrfs_fs_info *fs_info = old_root->fs_info;
 619	struct tree_mod_elem *tm = NULL;
 620	struct tree_mod_elem **tm_list = NULL;
 621	int nritems = 0;
 622	int ret = 0;
 623	int i;
 624
 625	if (!tree_mod_need_log(fs_info, NULL))
 626		return 0;
 627
 628	if (log_removal && btrfs_header_level(old_root) > 0) {
 629		nritems = btrfs_header_nritems(old_root);
 630		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
 631				  GFP_NOFS);
 632		if (!tm_list) {
 633			ret = -ENOMEM;
 634			goto free_tms;
 635		}
 636		for (i = 0; i < nritems; i++) {
 637			tm_list[i] = alloc_tree_mod_elem(old_root, i,
 638			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 639			if (!tm_list[i]) {
 640				ret = -ENOMEM;
 641				goto free_tms;
 642			}
 643		}
 644	}
 645
 646	tm = kzalloc(sizeof(*tm), GFP_NOFS);
 647	if (!tm) {
 648		ret = -ENOMEM;
 649		goto free_tms;
 650	}
 651
 652	tm->logical = new_root->start;
 653	tm->old_root.logical = old_root->start;
 654	tm->old_root.level = btrfs_header_level(old_root);
 655	tm->generation = btrfs_header_generation(old_root);
 656	tm->op = MOD_LOG_ROOT_REPLACE;
 657
 658	if (tree_mod_dont_log(fs_info, NULL))
 659		goto free_tms;
 660
 661	if (tm_list)
 662		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 663	if (!ret)
 664		ret = __tree_mod_log_insert(fs_info, tm);
 665
 666	write_unlock(&fs_info->tree_mod_log_lock);
 667	if (ret)
 668		goto free_tms;
 669	kfree(tm_list);
 670
 671	return ret;
 672
 673free_tms:
 674	if (tm_list) {
 675		for (i = 0; i < nritems; i++)
 676			kfree(tm_list[i]);
 677		kfree(tm_list);
 678	}
 679	kfree(tm);
 680
 681	return ret;
 682}
 683
 684static struct tree_mod_elem *
 685__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
 686		      int smallest)
 687{
 688	struct rb_root *tm_root;
 689	struct rb_node *node;
 690	struct tree_mod_elem *cur = NULL;
 691	struct tree_mod_elem *found = NULL;
 692
 693	read_lock(&fs_info->tree_mod_log_lock);
 694	tm_root = &fs_info->tree_mod_log;
 695	node = tm_root->rb_node;
 696	while (node) {
 697		cur = rb_entry(node, struct tree_mod_elem, node);
 698		if (cur->logical < start) {
 699			node = node->rb_left;
 700		} else if (cur->logical > start) {
 701			node = node->rb_right;
 702		} else if (cur->seq < min_seq) {
 703			node = node->rb_left;
 704		} else if (!smallest) {
 705			/* we want the node with the highest seq */
 706			if (found)
 707				BUG_ON(found->seq > cur->seq);
 708			found = cur;
 709			node = node->rb_left;
 710		} else if (cur->seq > min_seq) {
 711			/* we want the node with the smallest seq */
 712			if (found)
 713				BUG_ON(found->seq < cur->seq);
 714			found = cur;
 715			node = node->rb_right;
 716		} else {
 717			found = cur;
 718			break;
 719		}
 720	}
 721	read_unlock(&fs_info->tree_mod_log_lock);
 722
 723	return found;
 724}
 725
 726/*
 727 * this returns the element from the log with the smallest time sequence
 728 * value that's in the log (the oldest log item). any element with a time
 729 * sequence lower than min_seq will be ignored.
 730 */
 731static struct tree_mod_elem *
 732tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
 733			   u64 min_seq)
 734{
 735	return __tree_mod_log_search(fs_info, start, min_seq, 1);
 736}
 737
 738/*
 739 * this returns the element from the log with the largest time sequence
 740 * value that's in the log (the most recent log item). any element with
 741 * a time sequence lower than min_seq will be ignored.
 742 */
 743static struct tree_mod_elem *
 744tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
 745{
 746	return __tree_mod_log_search(fs_info, start, min_seq, 0);
 747}
 748
 749static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
 
 750		     struct extent_buffer *src, unsigned long dst_offset,
 751		     unsigned long src_offset, int nr_items)
 752{
 753	struct btrfs_fs_info *fs_info = dst->fs_info;
 754	int ret = 0;
 755	struct tree_mod_elem **tm_list = NULL;
 756	struct tree_mod_elem **tm_list_add, **tm_list_rem;
 757	int i;
 758	int locked = 0;
 759
 760	if (!tree_mod_need_log(fs_info, NULL))
 761		return 0;
 762
 763	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
 764		return 0;
 765
 766	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
 767			  GFP_NOFS);
 768	if (!tm_list)
 769		return -ENOMEM;
 770
 771	tm_list_add = tm_list;
 772	tm_list_rem = tm_list + nr_items;
 773	for (i = 0; i < nr_items; i++) {
 774		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
 775		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
 776		if (!tm_list_rem[i]) {
 777			ret = -ENOMEM;
 778			goto free_tms;
 779		}
 780
 781		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
 782		    MOD_LOG_KEY_ADD, GFP_NOFS);
 783		if (!tm_list_add[i]) {
 784			ret = -ENOMEM;
 785			goto free_tms;
 786		}
 787	}
 788
 789	if (tree_mod_dont_log(fs_info, NULL))
 790		goto free_tms;
 791	locked = 1;
 792
 793	for (i = 0; i < nr_items; i++) {
 794		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
 795		if (ret)
 796			goto free_tms;
 797		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
 798		if (ret)
 799			goto free_tms;
 800	}
 801
 802	write_unlock(&fs_info->tree_mod_log_lock);
 803	kfree(tm_list);
 804
 805	return 0;
 806
 807free_tms:
 808	for (i = 0; i < nr_items * 2; i++) {
 809		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 810			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 811		kfree(tm_list[i]);
 812	}
 813	if (locked)
 814		write_unlock(&fs_info->tree_mod_log_lock);
 815	kfree(tm_list);
 816
 817	return ret;
 818}
 819
 820static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 821{
 822	struct tree_mod_elem **tm_list = NULL;
 823	int nritems = 0;
 824	int i;
 825	int ret = 0;
 826
 827	if (btrfs_header_level(eb) == 0)
 828		return 0;
 829
 830	if (!tree_mod_need_log(eb->fs_info, NULL))
 831		return 0;
 832
 833	nritems = btrfs_header_nritems(eb);
 834	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
 835	if (!tm_list)
 836		return -ENOMEM;
 837
 838	for (i = 0; i < nritems; i++) {
 839		tm_list[i] = alloc_tree_mod_elem(eb, i,
 840		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 841		if (!tm_list[i]) {
 842			ret = -ENOMEM;
 843			goto free_tms;
 844		}
 845	}
 846
 847	if (tree_mod_dont_log(eb->fs_info, eb))
 848		goto free_tms;
 849
 850	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
 851	write_unlock(&eb->fs_info->tree_mod_log_lock);
 852	if (ret)
 853		goto free_tms;
 854	kfree(tm_list);
 855
 856	return 0;
 857
 858free_tms:
 859	for (i = 0; i < nritems; i++)
 860		kfree(tm_list[i]);
 861	kfree(tm_list);
 862
 863	return ret;
 864}
 865
 
 
 
 
 
 
 
 
 
 
 
 866/*
 867 * check if the tree block can be shared by multiple trees
 868 */
 869int btrfs_block_can_be_shared(struct btrfs_root *root,
 870			      struct extent_buffer *buf)
 871{
 872	/*
 873	 * Tree blocks not in reference counted trees and tree roots
 874	 * are never shared. If a block was allocated after the last
 875	 * snapshot and the block was not allocated by tree relocation,
 876	 * we know the block is not shared.
 877	 */
 878	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 879	    buf != root->node && buf != root->commit_root &&
 880	    (btrfs_header_generation(buf) <=
 881	     btrfs_root_last_snapshot(&root->root_item) ||
 882	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 883		return 1;
 884
 
 
 
 
 885	return 0;
 886}
 887
 888static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 889				       struct btrfs_root *root,
 890				       struct extent_buffer *buf,
 891				       struct extent_buffer *cow,
 892				       int *last_ref)
 893{
 894	struct btrfs_fs_info *fs_info = root->fs_info;
 895	u64 refs;
 896	u64 owner;
 897	u64 flags;
 898	u64 new_flags = 0;
 899	int ret;
 900
 901	/*
 902	 * Backrefs update rules:
 903	 *
 904	 * Always use full backrefs for extent pointers in tree block
 905	 * allocated by tree relocation.
 906	 *
 907	 * If a shared tree block is no longer referenced by its owner
 908	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 909	 * use full backrefs for extent pointers in tree block.
 910	 *
 911	 * If a tree block is been relocating
 912	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
 913	 * use full backrefs for extent pointers in tree block.
 914	 * The reason for this is some operations (such as drop tree)
 915	 * are only allowed for blocks use full backrefs.
 916	 */
 917
 918	if (btrfs_block_can_be_shared(root, buf)) {
 919		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
 920					       btrfs_header_level(buf), 1,
 921					       &refs, &flags);
 922		if (ret)
 923			return ret;
 924		if (refs == 0) {
 925			ret = -EROFS;
 926			btrfs_handle_fs_error(fs_info, ret, NULL);
 927			return ret;
 928		}
 929	} else {
 930		refs = 1;
 931		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 932		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 933			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 934		else
 935			flags = 0;
 936	}
 937
 938	owner = btrfs_header_owner(buf);
 939	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
 940	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 941
 942	if (refs > 1) {
 943		if ((owner == root->root_key.objectid ||
 944		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
 945		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
 946			ret = btrfs_inc_ref(trans, root, buf, 1);
 947			if (ret)
 948				return ret;
 949
 950			if (root->root_key.objectid ==
 951			    BTRFS_TREE_RELOC_OBJECTID) {
 952				ret = btrfs_dec_ref(trans, root, buf, 0);
 953				if (ret)
 954					return ret;
 955				ret = btrfs_inc_ref(trans, root, cow, 1);
 956				if (ret)
 957					return ret;
 958			}
 959			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 960		} else {
 961
 962			if (root->root_key.objectid ==
 963			    BTRFS_TREE_RELOC_OBJECTID)
 964				ret = btrfs_inc_ref(trans, root, cow, 1);
 965			else
 966				ret = btrfs_inc_ref(trans, root, cow, 0);
 967			if (ret)
 968				return ret;
 969		}
 970		if (new_flags != 0) {
 971			int level = btrfs_header_level(buf);
 972
 973			ret = btrfs_set_disk_extent_flags(trans,
 974							  buf->start,
 975							  buf->len,
 976							  new_flags, level, 0);
 977			if (ret)
 978				return ret;
 979		}
 980	} else {
 981		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 982			if (root->root_key.objectid ==
 983			    BTRFS_TREE_RELOC_OBJECTID)
 984				ret = btrfs_inc_ref(trans, root, cow, 1);
 985			else
 986				ret = btrfs_inc_ref(trans, root, cow, 0);
 987			if (ret)
 988				return ret;
 989			ret = btrfs_dec_ref(trans, root, buf, 1);
 990			if (ret)
 991				return ret;
 992		}
 993		btrfs_clean_tree_block(buf);
 994		*last_ref = 1;
 995	}
 996	return 0;
 997}
 998
 999static struct extent_buffer *alloc_tree_block_no_bg_flush(
1000					  struct btrfs_trans_handle *trans,
1001					  struct btrfs_root *root,
1002					  u64 parent_start,
1003					  const struct btrfs_disk_key *disk_key,
1004					  int level,
1005					  u64 hint,
1006					  u64 empty_size)
1007{
1008	struct btrfs_fs_info *fs_info = root->fs_info;
1009	struct extent_buffer *ret;
1010
1011	/*
1012	 * If we are COWing a node/leaf from the extent, chunk, device or free
1013	 * space trees, make sure that we do not finish block group creation of
1014	 * pending block groups. We do this to avoid a deadlock.
1015	 * COWing can result in allocation of a new chunk, and flushing pending
1016	 * block groups (btrfs_create_pending_block_groups()) can be triggered
1017	 * when finishing allocation of a new chunk. Creation of a pending block
1018	 * group modifies the extent, chunk, device and free space trees,
1019	 * therefore we could deadlock with ourselves since we are holding a
1020	 * lock on an extent buffer that btrfs_create_pending_block_groups() may
1021	 * try to COW later.
1022	 * For similar reasons, we also need to delay flushing pending block
1023	 * groups when splitting a leaf or node, from one of those trees, since
1024	 * we are holding a write lock on it and its parent or when inserting a
1025	 * new root node for one of those trees.
1026	 */
1027	if (root == fs_info->extent_root ||
1028	    root == fs_info->chunk_root ||
1029	    root == fs_info->dev_root ||
1030	    root == fs_info->free_space_root)
1031		trans->can_flush_pending_bgs = false;
1032
1033	ret = btrfs_alloc_tree_block(trans, root, parent_start,
1034				     root->root_key.objectid, disk_key, level,
1035				     hint, empty_size);
1036	trans->can_flush_pending_bgs = true;
1037
1038	return ret;
1039}
1040
1041/*
1042 * does the dirty work in cow of a single block.  The parent block (if
1043 * supplied) is updated to point to the new cow copy.  The new buffer is marked
1044 * dirty and returned locked.  If you modify the block it needs to be marked
1045 * dirty again.
1046 *
1047 * search_start -- an allocation hint for the new block
1048 *
1049 * empty_size -- a hint that you plan on doing more cow.  This is the size in
1050 * bytes the allocator should try to find free next to the block it returns.
1051 * This is just a hint and may be ignored by the allocator.
1052 */
1053static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1054			     struct btrfs_root *root,
1055			     struct extent_buffer *buf,
1056			     struct extent_buffer *parent, int parent_slot,
1057			     struct extent_buffer **cow_ret,
1058			     u64 search_start, u64 empty_size)
1059{
1060	struct btrfs_fs_info *fs_info = root->fs_info;
1061	struct btrfs_disk_key disk_key;
1062	struct extent_buffer *cow;
1063	int level, ret;
1064	int last_ref = 0;
1065	int unlock_orig = 0;
1066	u64 parent_start = 0;
1067
1068	if (*cow_ret == buf)
1069		unlock_orig = 1;
1070
1071	btrfs_assert_tree_locked(buf);
1072
1073	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1074		trans->transid != fs_info->running_transaction->transid);
1075	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1076		trans->transid != root->last_trans);
1077
1078	level = btrfs_header_level(buf);
1079
1080	if (level == 0)
1081		btrfs_item_key(buf, &disk_key, 0);
1082	else
1083		btrfs_node_key(buf, &disk_key, 0);
1084
1085	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1086		parent_start = parent->start;
1087
1088	cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1089					   level, search_start, empty_size);
 
1090	if (IS_ERR(cow))
1091		return PTR_ERR(cow);
1092
1093	/* cow is set to blocking by btrfs_init_new_buffer */
1094
1095	copy_extent_buffer_full(cow, buf);
1096	btrfs_set_header_bytenr(cow, cow->start);
1097	btrfs_set_header_generation(cow, trans->transid);
1098	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1099	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1100				     BTRFS_HEADER_FLAG_RELOC);
1101	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1102		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1103	else
1104		btrfs_set_header_owner(cow, root->root_key.objectid);
1105
1106	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
1107
1108	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1109	if (ret) {
1110		btrfs_abort_transaction(trans, ret);
1111		return ret;
1112	}
1113
1114	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1115		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1116		if (ret) {
1117			btrfs_abort_transaction(trans, ret);
1118			return ret;
1119		}
1120	}
1121
1122	if (buf == root->node) {
1123		WARN_ON(parent && parent != buf);
1124		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1125		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1126			parent_start = buf->start;
1127
1128		extent_buffer_get(cow);
1129		ret = tree_mod_log_insert_root(root->node, cow, 1);
1130		BUG_ON(ret < 0);
1131		rcu_assign_pointer(root->node, cow);
1132
1133		btrfs_free_tree_block(trans, root, buf, parent_start,
1134				      last_ref);
1135		free_extent_buffer(buf);
1136		add_root_to_dirty_list(root);
1137	} else {
1138		WARN_ON(trans->transid != btrfs_header_generation(parent));
1139		tree_mod_log_insert_key(parent, parent_slot,
1140					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1141		btrfs_set_node_blockptr(parent, parent_slot,
1142					cow->start);
1143		btrfs_set_node_ptr_generation(parent, parent_slot,
1144					      trans->transid);
1145		btrfs_mark_buffer_dirty(parent);
1146		if (last_ref) {
1147			ret = tree_mod_log_free_eb(buf);
1148			if (ret) {
1149				btrfs_abort_transaction(trans, ret);
1150				return ret;
1151			}
1152		}
1153		btrfs_free_tree_block(trans, root, buf, parent_start,
1154				      last_ref);
1155	}
1156	if (unlock_orig)
1157		btrfs_tree_unlock(buf);
1158	free_extent_buffer_stale(buf);
1159	btrfs_mark_buffer_dirty(cow);
1160	*cow_ret = cow;
1161	return 0;
1162}
1163
1164/*
1165 * returns the logical address of the oldest predecessor of the given root.
1166 * entries older than time_seq are ignored.
1167 */
1168static struct tree_mod_elem *__tree_mod_log_oldest_root(
1169		struct extent_buffer *eb_root, u64 time_seq)
 
1170{
1171	struct tree_mod_elem *tm;
1172	struct tree_mod_elem *found = NULL;
1173	u64 root_logical = eb_root->start;
1174	int looped = 0;
1175
1176	if (!time_seq)
1177		return NULL;
1178
1179	/*
1180	 * the very last operation that's logged for a root is the
1181	 * replacement operation (if it is replaced at all). this has
1182	 * the logical address of the *new* root, making it the very
1183	 * first operation that's logged for this root.
1184	 */
1185	while (1) {
1186		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1187						time_seq);
1188		if (!looped && !tm)
1189			return NULL;
1190		/*
1191		 * if there are no tree operation for the oldest root, we simply
1192		 * return it. this should only happen if that (old) root is at
1193		 * level 0.
1194		 */
1195		if (!tm)
1196			break;
1197
1198		/*
1199		 * if there's an operation that's not a root replacement, we
1200		 * found the oldest version of our root. normally, we'll find a
1201		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1202		 */
1203		if (tm->op != MOD_LOG_ROOT_REPLACE)
1204			break;
1205
1206		found = tm;
1207		root_logical = tm->old_root.logical;
1208		looped = 1;
1209	}
1210
1211	/* if there's no old root to return, return what we found instead */
1212	if (!found)
1213		found = tm;
1214
1215	return found;
1216}
1217
1218/*
1219 * tm is a pointer to the first operation to rewind within eb. then, all
1220 * previous operations will be rewound (until we reach something older than
1221 * time_seq).
1222 */
1223static void
1224__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1225		      u64 time_seq, struct tree_mod_elem *first_tm)
1226{
1227	u32 n;
1228	struct rb_node *next;
1229	struct tree_mod_elem *tm = first_tm;
1230	unsigned long o_dst;
1231	unsigned long o_src;
1232	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1233
1234	n = btrfs_header_nritems(eb);
1235	read_lock(&fs_info->tree_mod_log_lock);
1236	while (tm && tm->seq >= time_seq) {
1237		/*
1238		 * all the operations are recorded with the operator used for
1239		 * the modification. as we're going backwards, we do the
1240		 * opposite of each operation here.
1241		 */
1242		switch (tm->op) {
1243		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1244			BUG_ON(tm->slot < n);
1245			/* Fallthrough */
1246		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1247		case MOD_LOG_KEY_REMOVE:
1248			btrfs_set_node_key(eb, &tm->key, tm->slot);
1249			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1250			btrfs_set_node_ptr_generation(eb, tm->slot,
1251						      tm->generation);
1252			n++;
1253			break;
1254		case MOD_LOG_KEY_REPLACE:
1255			BUG_ON(tm->slot >= n);
1256			btrfs_set_node_key(eb, &tm->key, tm->slot);
1257			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1258			btrfs_set_node_ptr_generation(eb, tm->slot,
1259						      tm->generation);
1260			break;
1261		case MOD_LOG_KEY_ADD:
1262			/* if a move operation is needed it's in the log */
1263			n--;
1264			break;
1265		case MOD_LOG_MOVE_KEYS:
1266			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1267			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1268			memmove_extent_buffer(eb, o_dst, o_src,
1269					      tm->move.nr_items * p_size);
1270			break;
1271		case MOD_LOG_ROOT_REPLACE:
1272			/*
1273			 * this operation is special. for roots, this must be
1274			 * handled explicitly before rewinding.
1275			 * for non-roots, this operation may exist if the node
1276			 * was a root: root A -> child B; then A gets empty and
1277			 * B is promoted to the new root. in the mod log, we'll
1278			 * have a root-replace operation for B, a tree block
1279			 * that is no root. we simply ignore that operation.
1280			 */
1281			break;
1282		}
1283		next = rb_next(&tm->node);
1284		if (!next)
1285			break;
1286		tm = rb_entry(next, struct tree_mod_elem, node);
1287		if (tm->logical != first_tm->logical)
1288			break;
1289	}
1290	read_unlock(&fs_info->tree_mod_log_lock);
1291	btrfs_set_header_nritems(eb, n);
1292}
1293
1294/*
1295 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1296 * is returned. If rewind operations happen, a fresh buffer is returned. The
1297 * returned buffer is always read-locked. If the returned buffer is not the
1298 * input buffer, the lock on the input buffer is released and the input buffer
1299 * is freed (its refcount is decremented).
1300 */
1301static struct extent_buffer *
1302tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1303		    struct extent_buffer *eb, u64 time_seq)
1304{
1305	struct extent_buffer *eb_rewin;
1306	struct tree_mod_elem *tm;
1307
1308	if (!time_seq)
1309		return eb;
1310
1311	if (btrfs_header_level(eb) == 0)
1312		return eb;
1313
1314	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1315	if (!tm)
1316		return eb;
1317
1318	btrfs_set_path_blocking(path);
1319	btrfs_set_lock_blocking_read(eb);
1320
1321	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1322		BUG_ON(tm->slot != 0);
1323		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1324		if (!eb_rewin) {
1325			btrfs_tree_read_unlock_blocking(eb);
1326			free_extent_buffer(eb);
1327			return NULL;
1328		}
1329		btrfs_set_header_bytenr(eb_rewin, eb->start);
1330		btrfs_set_header_backref_rev(eb_rewin,
1331					     btrfs_header_backref_rev(eb));
1332		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1333		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1334	} else {
1335		eb_rewin = btrfs_clone_extent_buffer(eb);
1336		if (!eb_rewin) {
1337			btrfs_tree_read_unlock_blocking(eb);
1338			free_extent_buffer(eb);
1339			return NULL;
1340		}
1341	}
1342
 
1343	btrfs_tree_read_unlock_blocking(eb);
1344	free_extent_buffer(eb);
1345
 
1346	btrfs_tree_read_lock(eb_rewin);
1347	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1348	WARN_ON(btrfs_header_nritems(eb_rewin) >
1349		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1350
1351	return eb_rewin;
1352}
1353
1354/*
1355 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1356 * value. If there are no changes, the current root->root_node is returned. If
1357 * anything changed in between, there's a fresh buffer allocated on which the
1358 * rewind operations are done. In any case, the returned buffer is read locked.
1359 * Returns NULL on error (with no locks held).
1360 */
1361static inline struct extent_buffer *
1362get_old_root(struct btrfs_root *root, u64 time_seq)
1363{
1364	struct btrfs_fs_info *fs_info = root->fs_info;
1365	struct tree_mod_elem *tm;
1366	struct extent_buffer *eb = NULL;
1367	struct extent_buffer *eb_root;
1368	u64 eb_root_owner = 0;
1369	struct extent_buffer *old;
1370	struct tree_mod_root *old_root = NULL;
1371	u64 old_generation = 0;
1372	u64 logical;
1373	int level;
1374
1375	eb_root = btrfs_read_lock_root_node(root);
1376	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1377	if (!tm)
1378		return eb_root;
1379
1380	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1381		old_root = &tm->old_root;
1382		old_generation = tm->generation;
1383		logical = old_root->logical;
1384		level = old_root->level;
1385	} else {
1386		logical = eb_root->start;
1387		level = btrfs_header_level(eb_root);
1388	}
1389
1390	tm = tree_mod_log_search(fs_info, logical, time_seq);
1391	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1392		btrfs_tree_read_unlock(eb_root);
1393		free_extent_buffer(eb_root);
1394		old = read_tree_block(fs_info, logical, 0, level, NULL);
1395		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1396			if (!IS_ERR(old))
1397				free_extent_buffer(old);
1398			btrfs_warn(fs_info,
1399				   "failed to read tree block %llu from get_old_root",
1400				   logical);
1401		} else {
1402			eb = btrfs_clone_extent_buffer(old);
1403			free_extent_buffer(old);
1404		}
1405	} else if (old_root) {
1406		eb_root_owner = btrfs_header_owner(eb_root);
1407		btrfs_tree_read_unlock(eb_root);
1408		free_extent_buffer(eb_root);
1409		eb = alloc_dummy_extent_buffer(fs_info, logical);
1410	} else {
1411		btrfs_set_lock_blocking_read(eb_root);
1412		eb = btrfs_clone_extent_buffer(eb_root);
1413		btrfs_tree_read_unlock_blocking(eb_root);
1414		free_extent_buffer(eb_root);
1415	}
1416
1417	if (!eb)
1418		return NULL;
 
1419	btrfs_tree_read_lock(eb);
1420	if (old_root) {
1421		btrfs_set_header_bytenr(eb, eb->start);
1422		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1423		btrfs_set_header_owner(eb, eb_root_owner);
1424		btrfs_set_header_level(eb, old_root->level);
1425		btrfs_set_header_generation(eb, old_generation);
1426	}
1427	if (tm)
1428		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1429	else
1430		WARN_ON(btrfs_header_level(eb) != 0);
1431	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1432
1433	return eb;
1434}
1435
1436int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1437{
1438	struct tree_mod_elem *tm;
1439	int level;
1440	struct extent_buffer *eb_root = btrfs_root_node(root);
1441
1442	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1443	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1444		level = tm->old_root.level;
1445	} else {
1446		level = btrfs_header_level(eb_root);
1447	}
1448	free_extent_buffer(eb_root);
1449
1450	return level;
1451}
1452
1453static inline int should_cow_block(struct btrfs_trans_handle *trans,
1454				   struct btrfs_root *root,
1455				   struct extent_buffer *buf)
1456{
1457	if (btrfs_is_testing(root->fs_info))
1458		return 0;
1459
1460	/* Ensure we can see the FORCE_COW bit */
1461	smp_mb__before_atomic();
1462
1463	/*
1464	 * We do not need to cow a block if
1465	 * 1) this block is not created or changed in this transaction;
1466	 * 2) this block does not belong to TREE_RELOC tree;
1467	 * 3) the root is not forced COW.
1468	 *
1469	 * What is forced COW:
1470	 *    when we create snapshot during committing the transaction,
1471	 *    after we've finished copying src root, we must COW the shared
1472	 *    block to ensure the metadata consistency.
1473	 */
1474	if (btrfs_header_generation(buf) == trans->transid &&
1475	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1476	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1477	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1478	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1479		return 0;
1480	return 1;
1481}
1482
1483/*
1484 * cows a single block, see __btrfs_cow_block for the real work.
1485 * This version of it has extra checks so that a block isn't COWed more than
1486 * once per transaction, as long as it hasn't been written yet
1487 */
1488noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1489		    struct btrfs_root *root, struct extent_buffer *buf,
1490		    struct extent_buffer *parent, int parent_slot,
1491		    struct extent_buffer **cow_ret)
1492{
1493	struct btrfs_fs_info *fs_info = root->fs_info;
1494	u64 search_start;
1495	int ret;
1496
1497	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1498		btrfs_err(fs_info,
1499			"COW'ing blocks on a fs root that's being dropped");
1500
1501	if (trans->transaction != fs_info->running_transaction)
1502		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1503		       trans->transid,
1504		       fs_info->running_transaction->transid);
1505
1506	if (trans->transid != fs_info->generation)
1507		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1508		       trans->transid, fs_info->generation);
1509
1510	if (!should_cow_block(trans, root, buf)) {
1511		trans->dirty = true;
1512		*cow_ret = buf;
1513		return 0;
1514	}
1515
1516	search_start = buf->start & ~((u64)SZ_1G - 1);
1517
1518	if (parent)
1519		btrfs_set_lock_blocking_write(parent);
1520	btrfs_set_lock_blocking_write(buf);
1521
1522	/*
1523	 * Before CoWing this block for later modification, check if it's
1524	 * the subtree root and do the delayed subtree trace if needed.
1525	 *
1526	 * Also We don't care about the error, as it's handled internally.
1527	 */
1528	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1529	ret = __btrfs_cow_block(trans, root, buf, parent,
1530				 parent_slot, cow_ret, search_start, 0);
1531
1532	trace_btrfs_cow_block(root, buf, *cow_ret);
1533
1534	return ret;
1535}
1536
1537/*
1538 * helper function for defrag to decide if two blocks pointed to by a
1539 * node are actually close by
1540 */
1541static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1542{
1543	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1544		return 1;
1545	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1546		return 1;
1547	return 0;
1548}
1549
1550/*
1551 * compare two keys in a memcmp fashion
1552 */
1553static int comp_keys(const struct btrfs_disk_key *disk,
1554		     const struct btrfs_key *k2)
1555{
1556	struct btrfs_key k1;
1557
1558	btrfs_disk_key_to_cpu(&k1, disk);
1559
1560	return btrfs_comp_cpu_keys(&k1, k2);
1561}
1562
1563/*
1564 * same as comp_keys only with two btrfs_key's
1565 */
1566int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1567{
1568	if (k1->objectid > k2->objectid)
1569		return 1;
1570	if (k1->objectid < k2->objectid)
1571		return -1;
1572	if (k1->type > k2->type)
1573		return 1;
1574	if (k1->type < k2->type)
1575		return -1;
1576	if (k1->offset > k2->offset)
1577		return 1;
1578	if (k1->offset < k2->offset)
1579		return -1;
1580	return 0;
1581}
1582
1583/*
1584 * this is used by the defrag code to go through all the
1585 * leaves pointed to by a node and reallocate them so that
1586 * disk order is close to key order
1587 */
1588int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1589		       struct btrfs_root *root, struct extent_buffer *parent,
1590		       int start_slot, u64 *last_ret,
1591		       struct btrfs_key *progress)
1592{
1593	struct btrfs_fs_info *fs_info = root->fs_info;
1594	struct extent_buffer *cur;
1595	u64 blocknr;
1596	u64 gen;
1597	u64 search_start = *last_ret;
1598	u64 last_block = 0;
1599	u64 other;
1600	u32 parent_nritems;
1601	int end_slot;
1602	int i;
1603	int err = 0;
1604	int parent_level;
1605	int uptodate;
1606	u32 blocksize;
1607	int progress_passed = 0;
1608	struct btrfs_disk_key disk_key;
1609
1610	parent_level = btrfs_header_level(parent);
1611
1612	WARN_ON(trans->transaction != fs_info->running_transaction);
1613	WARN_ON(trans->transid != fs_info->generation);
1614
1615	parent_nritems = btrfs_header_nritems(parent);
1616	blocksize = fs_info->nodesize;
1617	end_slot = parent_nritems - 1;
1618
1619	if (parent_nritems <= 1)
1620		return 0;
1621
1622	btrfs_set_lock_blocking_write(parent);
1623
1624	for (i = start_slot; i <= end_slot; i++) {
1625		struct btrfs_key first_key;
1626		int close = 1;
1627
1628		btrfs_node_key(parent, &disk_key, i);
1629		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1630			continue;
1631
1632		progress_passed = 1;
1633		blocknr = btrfs_node_blockptr(parent, i);
1634		gen = btrfs_node_ptr_generation(parent, i);
1635		btrfs_node_key_to_cpu(parent, &first_key, i);
1636		if (last_block == 0)
1637			last_block = blocknr;
1638
1639		if (i > 0) {
1640			other = btrfs_node_blockptr(parent, i - 1);
1641			close = close_blocks(blocknr, other, blocksize);
1642		}
1643		if (!close && i < end_slot) {
1644			other = btrfs_node_blockptr(parent, i + 1);
1645			close = close_blocks(blocknr, other, blocksize);
1646		}
1647		if (close) {
1648			last_block = blocknr;
1649			continue;
1650		}
1651
1652		cur = find_extent_buffer(fs_info, blocknr);
1653		if (cur)
1654			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1655		else
1656			uptodate = 0;
1657		if (!cur || !uptodate) {
1658			if (!cur) {
1659				cur = read_tree_block(fs_info, blocknr, gen,
1660						      parent_level - 1,
1661						      &first_key);
1662				if (IS_ERR(cur)) {
1663					return PTR_ERR(cur);
1664				} else if (!extent_buffer_uptodate(cur)) {
1665					free_extent_buffer(cur);
1666					return -EIO;
1667				}
1668			} else if (!uptodate) {
1669				err = btrfs_read_buffer(cur, gen,
1670						parent_level - 1,&first_key);
1671				if (err) {
1672					free_extent_buffer(cur);
1673					return err;
1674				}
1675			}
1676		}
1677		if (search_start == 0)
1678			search_start = last_block;
1679
1680		btrfs_tree_lock(cur);
1681		btrfs_set_lock_blocking_write(cur);
1682		err = __btrfs_cow_block(trans, root, cur, parent, i,
1683					&cur, search_start,
1684					min(16 * blocksize,
1685					    (end_slot - i) * blocksize));
1686		if (err) {
1687			btrfs_tree_unlock(cur);
1688			free_extent_buffer(cur);
1689			break;
1690		}
1691		search_start = cur->start;
1692		last_block = cur->start;
1693		*last_ret = search_start;
1694		btrfs_tree_unlock(cur);
1695		free_extent_buffer(cur);
1696	}
1697	return err;
1698}
1699
1700/*
1701 * search for key in the extent_buffer.  The items start at offset p,
1702 * and they are item_size apart.  There are 'max' items in p.
1703 *
1704 * the slot in the array is returned via slot, and it points to
1705 * the place where you would insert key if it is not found in
1706 * the array.
1707 *
1708 * slot may point to max if the key is bigger than all of the keys
1709 */
1710static noinline int generic_bin_search(struct extent_buffer *eb,
1711				       unsigned long p, int item_size,
1712				       const struct btrfs_key *key,
1713				       int max, int *slot)
1714{
1715	int low = 0;
1716	int high = max;
1717	int mid;
1718	int ret;
1719	struct btrfs_disk_key *tmp = NULL;
1720	struct btrfs_disk_key unaligned;
1721	unsigned long offset;
1722	char *kaddr = NULL;
1723	unsigned long map_start = 0;
1724	unsigned long map_len = 0;
1725	int err;
1726
1727	if (low > high) {
1728		btrfs_err(eb->fs_info,
1729		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1730			  __func__, low, high, eb->start,
1731			  btrfs_header_owner(eb), btrfs_header_level(eb));
1732		return -EINVAL;
1733	}
1734
1735	while (low < high) {
1736		mid = (low + high) / 2;
1737		offset = p + mid * item_size;
1738
1739		if (!kaddr || offset < map_start ||
1740		    (offset + sizeof(struct btrfs_disk_key)) >
1741		    map_start + map_len) {
1742
1743			err = map_private_extent_buffer(eb, offset,
1744						sizeof(struct btrfs_disk_key),
1745						&kaddr, &map_start, &map_len);
1746
1747			if (!err) {
1748				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1749							map_start);
1750			} else if (err == 1) {
1751				read_extent_buffer(eb, &unaligned,
1752						   offset, sizeof(unaligned));
1753				tmp = &unaligned;
1754			} else {
1755				return err;
1756			}
1757
1758		} else {
1759			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1760							map_start);
1761		}
1762		ret = comp_keys(tmp, key);
1763
1764		if (ret < 0)
1765			low = mid + 1;
1766		else if (ret > 0)
1767			high = mid;
1768		else {
1769			*slot = mid;
1770			return 0;
1771		}
1772	}
1773	*slot = low;
1774	return 1;
1775}
1776
1777/*
1778 * simple bin_search frontend that does the right thing for
1779 * leaves vs nodes
1780 */
1781int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1782		     int level, int *slot)
1783{
1784	if (level == 0)
1785		return generic_bin_search(eb,
1786					  offsetof(struct btrfs_leaf, items),
1787					  sizeof(struct btrfs_item),
1788					  key, btrfs_header_nritems(eb),
1789					  slot);
1790	else
1791		return generic_bin_search(eb,
1792					  offsetof(struct btrfs_node, ptrs),
1793					  sizeof(struct btrfs_key_ptr),
1794					  key, btrfs_header_nritems(eb),
1795					  slot);
1796}
1797
 
 
 
 
 
 
1798static void root_add_used(struct btrfs_root *root, u32 size)
1799{
1800	spin_lock(&root->accounting_lock);
1801	btrfs_set_root_used(&root->root_item,
1802			    btrfs_root_used(&root->root_item) + size);
1803	spin_unlock(&root->accounting_lock);
1804}
1805
1806static void root_sub_used(struct btrfs_root *root, u32 size)
1807{
1808	spin_lock(&root->accounting_lock);
1809	btrfs_set_root_used(&root->root_item,
1810			    btrfs_root_used(&root->root_item) - size);
1811	spin_unlock(&root->accounting_lock);
1812}
1813
1814/* given a node and slot number, this reads the blocks it points to.  The
1815 * extent buffer is returned with a reference taken (but unlocked).
1816 */
1817struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
1818					   int slot)
 
1819{
1820	int level = btrfs_header_level(parent);
1821	struct extent_buffer *eb;
1822	struct btrfs_key first_key;
1823
1824	if (slot < 0 || slot >= btrfs_header_nritems(parent))
1825		return ERR_PTR(-ENOENT);
1826
1827	BUG_ON(level == 0);
1828
1829	btrfs_node_key_to_cpu(parent, &first_key, slot);
1830	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1831			     btrfs_node_ptr_generation(parent, slot),
1832			     level - 1, &first_key);
1833	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1834		free_extent_buffer(eb);
1835		eb = ERR_PTR(-EIO);
1836	}
1837
1838	return eb;
1839}
1840
1841/*
1842 * node level balancing, used to make sure nodes are in proper order for
1843 * item deletion.  We balance from the top down, so we have to make sure
1844 * that a deletion won't leave an node completely empty later on.
1845 */
1846static noinline int balance_level(struct btrfs_trans_handle *trans,
1847			 struct btrfs_root *root,
1848			 struct btrfs_path *path, int level)
1849{
1850	struct btrfs_fs_info *fs_info = root->fs_info;
1851	struct extent_buffer *right = NULL;
1852	struct extent_buffer *mid;
1853	struct extent_buffer *left = NULL;
1854	struct extent_buffer *parent = NULL;
1855	int ret = 0;
1856	int wret;
1857	int pslot;
1858	int orig_slot = path->slots[level];
1859	u64 orig_ptr;
1860
1861	ASSERT(level > 0);
 
1862
1863	mid = path->nodes[level];
1864
1865	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1866		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1867	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1868
1869	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1870
1871	if (level < BTRFS_MAX_LEVEL - 1) {
1872		parent = path->nodes[level + 1];
1873		pslot = path->slots[level + 1];
1874	}
1875
1876	/*
1877	 * deal with the case where there is only one pointer in the root
1878	 * by promoting the node below to a root
1879	 */
1880	if (!parent) {
1881		struct extent_buffer *child;
1882
1883		if (btrfs_header_nritems(mid) != 1)
1884			return 0;
1885
1886		/* promote the child to a root */
1887		child = btrfs_read_node_slot(mid, 0);
1888		if (IS_ERR(child)) {
1889			ret = PTR_ERR(child);
1890			btrfs_handle_fs_error(fs_info, ret, NULL);
1891			goto enospc;
1892		}
1893
1894		btrfs_tree_lock(child);
1895		btrfs_set_lock_blocking_write(child);
1896		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1897		if (ret) {
1898			btrfs_tree_unlock(child);
1899			free_extent_buffer(child);
1900			goto enospc;
1901		}
1902
1903		ret = tree_mod_log_insert_root(root->node, child, 1);
1904		BUG_ON(ret < 0);
1905		rcu_assign_pointer(root->node, child);
1906
1907		add_root_to_dirty_list(root);
1908		btrfs_tree_unlock(child);
1909
1910		path->locks[level] = 0;
1911		path->nodes[level] = NULL;
1912		btrfs_clean_tree_block(mid);
1913		btrfs_tree_unlock(mid);
1914		/* once for the path */
1915		free_extent_buffer(mid);
1916
1917		root_sub_used(root, mid->len);
1918		btrfs_free_tree_block(trans, root, mid, 0, 1);
1919		/* once for the root ptr */
1920		free_extent_buffer_stale(mid);
1921		return 0;
1922	}
1923	if (btrfs_header_nritems(mid) >
1924	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1925		return 0;
1926
1927	left = btrfs_read_node_slot(parent, pslot - 1);
1928	if (IS_ERR(left))
1929		left = NULL;
1930
1931	if (left) {
1932		btrfs_tree_lock(left);
1933		btrfs_set_lock_blocking_write(left);
1934		wret = btrfs_cow_block(trans, root, left,
1935				       parent, pslot - 1, &left);
1936		if (wret) {
1937			ret = wret;
1938			goto enospc;
1939		}
1940	}
1941
1942	right = btrfs_read_node_slot(parent, pslot + 1);
1943	if (IS_ERR(right))
1944		right = NULL;
1945
1946	if (right) {
1947		btrfs_tree_lock(right);
1948		btrfs_set_lock_blocking_write(right);
1949		wret = btrfs_cow_block(trans, root, right,
1950				       parent, pslot + 1, &right);
1951		if (wret) {
1952			ret = wret;
1953			goto enospc;
1954		}
1955	}
1956
1957	/* first, try to make some room in the middle buffer */
1958	if (left) {
1959		orig_slot += btrfs_header_nritems(left);
1960		wret = push_node_left(trans, left, mid, 1);
1961		if (wret < 0)
1962			ret = wret;
1963	}
1964
1965	/*
1966	 * then try to empty the right most buffer into the middle
1967	 */
1968	if (right) {
1969		wret = push_node_left(trans, mid, right, 1);
1970		if (wret < 0 && wret != -ENOSPC)
1971			ret = wret;
1972		if (btrfs_header_nritems(right) == 0) {
1973			btrfs_clean_tree_block(right);
1974			btrfs_tree_unlock(right);
1975			del_ptr(root, path, level + 1, pslot + 1);
1976			root_sub_used(root, right->len);
1977			btrfs_free_tree_block(trans, root, right, 0, 1);
1978			free_extent_buffer_stale(right);
1979			right = NULL;
1980		} else {
1981			struct btrfs_disk_key right_key;
1982			btrfs_node_key(right, &right_key, 0);
1983			ret = tree_mod_log_insert_key(parent, pslot + 1,
1984					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1985			BUG_ON(ret < 0);
1986			btrfs_set_node_key(parent, &right_key, pslot + 1);
1987			btrfs_mark_buffer_dirty(parent);
1988		}
1989	}
1990	if (btrfs_header_nritems(mid) == 1) {
1991		/*
1992		 * we're not allowed to leave a node with one item in the
1993		 * tree during a delete.  A deletion from lower in the tree
1994		 * could try to delete the only pointer in this node.
1995		 * So, pull some keys from the left.
1996		 * There has to be a left pointer at this point because
1997		 * otherwise we would have pulled some pointers from the
1998		 * right
1999		 */
2000		if (!left) {
2001			ret = -EROFS;
2002			btrfs_handle_fs_error(fs_info, ret, NULL);
2003			goto enospc;
2004		}
2005		wret = balance_node_right(trans, mid, left);
2006		if (wret < 0) {
2007			ret = wret;
2008			goto enospc;
2009		}
2010		if (wret == 1) {
2011			wret = push_node_left(trans, left, mid, 1);
2012			if (wret < 0)
2013				ret = wret;
2014		}
2015		BUG_ON(wret == 1);
2016	}
2017	if (btrfs_header_nritems(mid) == 0) {
2018		btrfs_clean_tree_block(mid);
2019		btrfs_tree_unlock(mid);
2020		del_ptr(root, path, level + 1, pslot);
2021		root_sub_used(root, mid->len);
2022		btrfs_free_tree_block(trans, root, mid, 0, 1);
2023		free_extent_buffer_stale(mid);
2024		mid = NULL;
2025	} else {
2026		/* update the parent key to reflect our changes */
2027		struct btrfs_disk_key mid_key;
2028		btrfs_node_key(mid, &mid_key, 0);
2029		ret = tree_mod_log_insert_key(parent, pslot,
2030				MOD_LOG_KEY_REPLACE, GFP_NOFS);
2031		BUG_ON(ret < 0);
2032		btrfs_set_node_key(parent, &mid_key, pslot);
2033		btrfs_mark_buffer_dirty(parent);
2034	}
2035
2036	/* update the path */
2037	if (left) {
2038		if (btrfs_header_nritems(left) > orig_slot) {
2039			extent_buffer_get(left);
2040			/* left was locked after cow */
2041			path->nodes[level] = left;
2042			path->slots[level + 1] -= 1;
2043			path->slots[level] = orig_slot;
2044			if (mid) {
2045				btrfs_tree_unlock(mid);
2046				free_extent_buffer(mid);
2047			}
2048		} else {
2049			orig_slot -= btrfs_header_nritems(left);
2050			path->slots[level] = orig_slot;
2051		}
2052	}
2053	/* double check we haven't messed things up */
2054	if (orig_ptr !=
2055	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2056		BUG();
2057enospc:
2058	if (right) {
2059		btrfs_tree_unlock(right);
2060		free_extent_buffer(right);
2061	}
2062	if (left) {
2063		if (path->nodes[level] != left)
2064			btrfs_tree_unlock(left);
2065		free_extent_buffer(left);
2066	}
2067	return ret;
2068}
2069
2070/* Node balancing for insertion.  Here we only split or push nodes around
2071 * when they are completely full.  This is also done top down, so we
2072 * have to be pessimistic.
2073 */
2074static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2075					  struct btrfs_root *root,
2076					  struct btrfs_path *path, int level)
2077{
2078	struct btrfs_fs_info *fs_info = root->fs_info;
2079	struct extent_buffer *right = NULL;
2080	struct extent_buffer *mid;
2081	struct extent_buffer *left = NULL;
2082	struct extent_buffer *parent = NULL;
2083	int ret = 0;
2084	int wret;
2085	int pslot;
2086	int orig_slot = path->slots[level];
2087
2088	if (level == 0)
2089		return 1;
2090
2091	mid = path->nodes[level];
2092	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2093
2094	if (level < BTRFS_MAX_LEVEL - 1) {
2095		parent = path->nodes[level + 1];
2096		pslot = path->slots[level + 1];
2097	}
2098
2099	if (!parent)
2100		return 1;
2101
2102	left = btrfs_read_node_slot(parent, pslot - 1);
2103	if (IS_ERR(left))
2104		left = NULL;
2105
2106	/* first, try to make some room in the middle buffer */
2107	if (left) {
2108		u32 left_nr;
2109
2110		btrfs_tree_lock(left);
2111		btrfs_set_lock_blocking_write(left);
2112
2113		left_nr = btrfs_header_nritems(left);
2114		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2115			wret = 1;
2116		} else {
2117			ret = btrfs_cow_block(trans, root, left, parent,
2118					      pslot - 1, &left);
2119			if (ret)
2120				wret = 1;
2121			else {
2122				wret = push_node_left(trans, left, mid, 0);
 
2123			}
2124		}
2125		if (wret < 0)
2126			ret = wret;
2127		if (wret == 0) {
2128			struct btrfs_disk_key disk_key;
2129			orig_slot += left_nr;
2130			btrfs_node_key(mid, &disk_key, 0);
2131			ret = tree_mod_log_insert_key(parent, pslot,
2132					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2133			BUG_ON(ret < 0);
2134			btrfs_set_node_key(parent, &disk_key, pslot);
2135			btrfs_mark_buffer_dirty(parent);
2136			if (btrfs_header_nritems(left) > orig_slot) {
2137				path->nodes[level] = left;
2138				path->slots[level + 1] -= 1;
2139				path->slots[level] = orig_slot;
2140				btrfs_tree_unlock(mid);
2141				free_extent_buffer(mid);
2142			} else {
2143				orig_slot -=
2144					btrfs_header_nritems(left);
2145				path->slots[level] = orig_slot;
2146				btrfs_tree_unlock(left);
2147				free_extent_buffer(left);
2148			}
2149			return 0;
2150		}
2151		btrfs_tree_unlock(left);
2152		free_extent_buffer(left);
2153	}
2154	right = btrfs_read_node_slot(parent, pslot + 1);
2155	if (IS_ERR(right))
2156		right = NULL;
2157
2158	/*
2159	 * then try to empty the right most buffer into the middle
2160	 */
2161	if (right) {
2162		u32 right_nr;
2163
2164		btrfs_tree_lock(right);
2165		btrfs_set_lock_blocking_write(right);
2166
2167		right_nr = btrfs_header_nritems(right);
2168		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2169			wret = 1;
2170		} else {
2171			ret = btrfs_cow_block(trans, root, right,
2172					      parent, pslot + 1,
2173					      &right);
2174			if (ret)
2175				wret = 1;
2176			else {
2177				wret = balance_node_right(trans, right, mid);
 
2178			}
2179		}
2180		if (wret < 0)
2181			ret = wret;
2182		if (wret == 0) {
2183			struct btrfs_disk_key disk_key;
2184
2185			btrfs_node_key(right, &disk_key, 0);
2186			ret = tree_mod_log_insert_key(parent, pslot + 1,
2187					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2188			BUG_ON(ret < 0);
2189			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2190			btrfs_mark_buffer_dirty(parent);
2191
2192			if (btrfs_header_nritems(mid) <= orig_slot) {
2193				path->nodes[level] = right;
2194				path->slots[level + 1] += 1;
2195				path->slots[level] = orig_slot -
2196					btrfs_header_nritems(mid);
2197				btrfs_tree_unlock(mid);
2198				free_extent_buffer(mid);
2199			} else {
2200				btrfs_tree_unlock(right);
2201				free_extent_buffer(right);
2202			}
2203			return 0;
2204		}
2205		btrfs_tree_unlock(right);
2206		free_extent_buffer(right);
2207	}
2208	return 1;
2209}
2210
2211/*
2212 * readahead one full node of leaves, finding things that are close
2213 * to the block in 'slot', and triggering ra on them.
2214 */
2215static void reada_for_search(struct btrfs_fs_info *fs_info,
2216			     struct btrfs_path *path,
2217			     int level, int slot, u64 objectid)
2218{
2219	struct extent_buffer *node;
2220	struct btrfs_disk_key disk_key;
2221	u32 nritems;
2222	u64 search;
2223	u64 target;
2224	u64 nread = 0;
2225	struct extent_buffer *eb;
2226	u32 nr;
2227	u32 blocksize;
2228	u32 nscan = 0;
2229
2230	if (level != 1)
2231		return;
2232
2233	if (!path->nodes[level])
2234		return;
2235
2236	node = path->nodes[level];
2237
2238	search = btrfs_node_blockptr(node, slot);
2239	blocksize = fs_info->nodesize;
2240	eb = find_extent_buffer(fs_info, search);
2241	if (eb) {
2242		free_extent_buffer(eb);
2243		return;
2244	}
2245
2246	target = search;
2247
2248	nritems = btrfs_header_nritems(node);
2249	nr = slot;
2250
2251	while (1) {
2252		if (path->reada == READA_BACK) {
2253			if (nr == 0)
2254				break;
2255			nr--;
2256		} else if (path->reada == READA_FORWARD) {
2257			nr++;
2258			if (nr >= nritems)
2259				break;
2260		}
2261		if (path->reada == READA_BACK && objectid) {
2262			btrfs_node_key(node, &disk_key, nr);
2263			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2264				break;
2265		}
2266		search = btrfs_node_blockptr(node, nr);
2267		if ((search <= target && target - search <= 65536) ||
2268		    (search > target && search - target <= 65536)) {
2269			readahead_tree_block(fs_info, search);
2270			nread += blocksize;
2271		}
2272		nscan++;
2273		if ((nread > 65536 || nscan > 32))
2274			break;
2275	}
2276}
2277
2278static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2279				       struct btrfs_path *path, int level)
2280{
2281	int slot;
2282	int nritems;
2283	struct extent_buffer *parent;
2284	struct extent_buffer *eb;
2285	u64 gen;
2286	u64 block1 = 0;
2287	u64 block2 = 0;
2288
2289	parent = path->nodes[level + 1];
2290	if (!parent)
2291		return;
2292
2293	nritems = btrfs_header_nritems(parent);
2294	slot = path->slots[level + 1];
2295
2296	if (slot > 0) {
2297		block1 = btrfs_node_blockptr(parent, slot - 1);
2298		gen = btrfs_node_ptr_generation(parent, slot - 1);
2299		eb = find_extent_buffer(fs_info, block1);
2300		/*
2301		 * if we get -eagain from btrfs_buffer_uptodate, we
2302		 * don't want to return eagain here.  That will loop
2303		 * forever
2304		 */
2305		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2306			block1 = 0;
2307		free_extent_buffer(eb);
2308	}
2309	if (slot + 1 < nritems) {
2310		block2 = btrfs_node_blockptr(parent, slot + 1);
2311		gen = btrfs_node_ptr_generation(parent, slot + 1);
2312		eb = find_extent_buffer(fs_info, block2);
2313		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2314			block2 = 0;
2315		free_extent_buffer(eb);
2316	}
2317
2318	if (block1)
2319		readahead_tree_block(fs_info, block1);
2320	if (block2)
2321		readahead_tree_block(fs_info, block2);
2322}
2323
2324
2325/*
2326 * when we walk down the tree, it is usually safe to unlock the higher layers
2327 * in the tree.  The exceptions are when our path goes through slot 0, because
2328 * operations on the tree might require changing key pointers higher up in the
2329 * tree.
2330 *
2331 * callers might also have set path->keep_locks, which tells this code to keep
2332 * the lock if the path points to the last slot in the block.  This is part of
2333 * walking through the tree, and selecting the next slot in the higher block.
2334 *
2335 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2336 * if lowest_unlock is 1, level 0 won't be unlocked
2337 */
2338static noinline void unlock_up(struct btrfs_path *path, int level,
2339			       int lowest_unlock, int min_write_lock_level,
2340			       int *write_lock_level)
2341{
2342	int i;
2343	int skip_level = level;
2344	int no_skips = 0;
2345	struct extent_buffer *t;
2346
2347	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2348		if (!path->nodes[i])
2349			break;
2350		if (!path->locks[i])
2351			break;
2352		if (!no_skips && path->slots[i] == 0) {
2353			skip_level = i + 1;
2354			continue;
2355		}
2356		if (!no_skips && path->keep_locks) {
2357			u32 nritems;
2358			t = path->nodes[i];
2359			nritems = btrfs_header_nritems(t);
2360			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2361				skip_level = i + 1;
2362				continue;
2363			}
2364		}
2365		if (skip_level < i && i >= lowest_unlock)
2366			no_skips = 1;
2367
2368		t = path->nodes[i];
2369		if (i >= lowest_unlock && i > skip_level) {
2370			btrfs_tree_unlock_rw(t, path->locks[i]);
2371			path->locks[i] = 0;
2372			if (write_lock_level &&
2373			    i > min_write_lock_level &&
2374			    i <= *write_lock_level) {
2375				*write_lock_level = i - 1;
2376			}
2377		}
2378	}
2379}
2380
2381/*
2382 * This releases any locks held in the path starting at level and
2383 * going all the way up to the root.
2384 *
2385 * btrfs_search_slot will keep the lock held on higher nodes in a few
2386 * corner cases, such as COW of the block at slot zero in the node.  This
2387 * ignores those rules, and it should only be called when there are no
2388 * more updates to be done higher up in the tree.
2389 */
2390noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2391{
2392	int i;
2393
2394	if (path->keep_locks)
2395		return;
2396
2397	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2398		if (!path->nodes[i])
2399			continue;
2400		if (!path->locks[i])
2401			continue;
2402		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2403		path->locks[i] = 0;
2404	}
2405}
2406
2407/*
2408 * helper function for btrfs_search_slot.  The goal is to find a block
2409 * in cache without setting the path to blocking.  If we find the block
2410 * we return zero and the path is unchanged.
2411 *
2412 * If we can't find the block, we set the path blocking and do some
2413 * reada.  -EAGAIN is returned and the search must be repeated.
2414 */
2415static int
2416read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2417		      struct extent_buffer **eb_ret, int level, int slot,
2418		      const struct btrfs_key *key)
 
2419{
2420	struct btrfs_fs_info *fs_info = root->fs_info;
2421	u64 blocknr;
2422	u64 gen;
2423	struct extent_buffer *b = *eb_ret;
2424	struct extent_buffer *tmp;
2425	struct btrfs_key first_key;
2426	int ret;
2427	int parent_level;
2428
2429	blocknr = btrfs_node_blockptr(b, slot);
2430	gen = btrfs_node_ptr_generation(b, slot);
2431	parent_level = btrfs_header_level(b);
2432	btrfs_node_key_to_cpu(b, &first_key, slot);
2433
2434	tmp = find_extent_buffer(fs_info, blocknr);
2435	if (tmp) {
2436		/* first we do an atomic uptodate check */
2437		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2438			/*
2439			 * Do extra check for first_key, eb can be stale due to
2440			 * being cached, read from scrub, or have multiple
2441			 * parents (shared tree blocks).
2442			 */
2443			if (btrfs_verify_level_key(tmp,
2444					parent_level - 1, &first_key, gen)) {
2445				free_extent_buffer(tmp);
2446				return -EUCLEAN;
2447			}
2448			*eb_ret = tmp;
2449			return 0;
2450		}
2451
2452		/* the pages were up to date, but we failed
2453		 * the generation number check.  Do a full
2454		 * read for the generation number that is correct.
2455		 * We must do this without dropping locks so
2456		 * we can trust our generation number
2457		 */
2458		btrfs_set_path_blocking(p);
2459
2460		/* now we're allowed to do a blocking uptodate check */
2461		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2462		if (!ret) {
2463			*eb_ret = tmp;
2464			return 0;
2465		}
2466		free_extent_buffer(tmp);
2467		btrfs_release_path(p);
2468		return -EIO;
2469	}
2470
2471	/*
2472	 * reduce lock contention at high levels
2473	 * of the btree by dropping locks before
2474	 * we read.  Don't release the lock on the current
2475	 * level because we need to walk this node to figure
2476	 * out which blocks to read.
2477	 */
2478	btrfs_unlock_up_safe(p, level + 1);
2479	btrfs_set_path_blocking(p);
2480
 
2481	if (p->reada != READA_NONE)
2482		reada_for_search(fs_info, p, level, slot, key->objectid);
2483
 
 
2484	ret = -EAGAIN;
2485	tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2486			      &first_key);
2487	if (!IS_ERR(tmp)) {
2488		/*
2489		 * If the read above didn't mark this buffer up to date,
2490		 * it will never end up being up to date.  Set ret to EIO now
2491		 * and give up so that our caller doesn't loop forever
2492		 * on our EAGAINs.
2493		 */
2494		if (!extent_buffer_uptodate(tmp))
2495			ret = -EIO;
2496		free_extent_buffer(tmp);
2497	} else {
2498		ret = PTR_ERR(tmp);
2499	}
2500
2501	btrfs_release_path(p);
2502	return ret;
2503}
2504
2505/*
2506 * helper function for btrfs_search_slot.  This does all of the checks
2507 * for node-level blocks and does any balancing required based on
2508 * the ins_len.
2509 *
2510 * If no extra work was required, zero is returned.  If we had to
2511 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2512 * start over
2513 */
2514static int
2515setup_nodes_for_search(struct btrfs_trans_handle *trans,
2516		       struct btrfs_root *root, struct btrfs_path *p,
2517		       struct extent_buffer *b, int level, int ins_len,
2518		       int *write_lock_level)
2519{
2520	struct btrfs_fs_info *fs_info = root->fs_info;
2521	int ret;
2522
2523	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2524	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2525		int sret;
2526
2527		if (*write_lock_level < level + 1) {
2528			*write_lock_level = level + 1;
2529			btrfs_release_path(p);
2530			goto again;
2531		}
2532
2533		btrfs_set_path_blocking(p);
2534		reada_for_balance(fs_info, p, level);
2535		sret = split_node(trans, root, p, level);
 
2536
2537		BUG_ON(sret > 0);
2538		if (sret) {
2539			ret = sret;
2540			goto done;
2541		}
2542		b = p->nodes[level];
2543	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2544		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2545		int sret;
2546
2547		if (*write_lock_level < level + 1) {
2548			*write_lock_level = level + 1;
2549			btrfs_release_path(p);
2550			goto again;
2551		}
2552
2553		btrfs_set_path_blocking(p);
2554		reada_for_balance(fs_info, p, level);
2555		sret = balance_level(trans, root, p, level);
 
2556
2557		if (sret) {
2558			ret = sret;
2559			goto done;
2560		}
2561		b = p->nodes[level];
2562		if (!b) {
2563			btrfs_release_path(p);
2564			goto again;
2565		}
2566		BUG_ON(btrfs_header_nritems(b) == 1);
2567	}
2568	return 0;
2569
2570again:
2571	ret = -EAGAIN;
2572done:
2573	return ret;
2574}
2575
2576static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2577		      int level, int *prev_cmp, int *slot)
2578{
2579	if (*prev_cmp != 0) {
2580		*prev_cmp = btrfs_bin_search(b, key, level, slot);
2581		return *prev_cmp;
2582	}
2583
 
2584	*slot = 0;
2585
2586	return 0;
2587}
2588
2589int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2590		u64 iobjectid, u64 ioff, u8 key_type,
2591		struct btrfs_key *found_key)
2592{
2593	int ret;
2594	struct btrfs_key key;
2595	struct extent_buffer *eb;
2596
2597	ASSERT(path);
2598	ASSERT(found_key);
2599
2600	key.type = key_type;
2601	key.objectid = iobjectid;
2602	key.offset = ioff;
2603
2604	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2605	if (ret < 0)
2606		return ret;
2607
2608	eb = path->nodes[0];
2609	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2610		ret = btrfs_next_leaf(fs_root, path);
2611		if (ret)
2612			return ret;
2613		eb = path->nodes[0];
2614	}
2615
2616	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2617	if (found_key->type != key.type ||
2618			found_key->objectid != key.objectid)
2619		return 1;
2620
2621	return 0;
2622}
2623
2624static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2625							struct btrfs_path *p,
2626							int write_lock_level)
2627{
2628	struct btrfs_fs_info *fs_info = root->fs_info;
2629	struct extent_buffer *b;
2630	int root_lock;
2631	int level = 0;
2632
2633	/* We try very hard to do read locks on the root */
2634	root_lock = BTRFS_READ_LOCK;
2635
2636	if (p->search_commit_root) {
2637		/*
2638		 * The commit roots are read only so we always do read locks,
2639		 * and we always must hold the commit_root_sem when doing
2640		 * searches on them, the only exception is send where we don't
2641		 * want to block transaction commits for a long time, so
2642		 * we need to clone the commit root in order to avoid races
2643		 * with transaction commits that create a snapshot of one of
2644		 * the roots used by a send operation.
2645		 */
2646		if (p->need_commit_sem) {
2647			down_read(&fs_info->commit_root_sem);
2648			b = btrfs_clone_extent_buffer(root->commit_root);
2649			up_read(&fs_info->commit_root_sem);
2650			if (!b)
2651				return ERR_PTR(-ENOMEM);
2652
2653		} else {
2654			b = root->commit_root;
2655			extent_buffer_get(b);
2656		}
2657		level = btrfs_header_level(b);
2658		/*
2659		 * Ensure that all callers have set skip_locking when
2660		 * p->search_commit_root = 1.
2661		 */
2662		ASSERT(p->skip_locking == 1);
2663
2664		goto out;
2665	}
2666
2667	if (p->skip_locking) {
2668		b = btrfs_root_node(root);
2669		level = btrfs_header_level(b);
2670		goto out;
2671	}
2672
2673	/*
2674	 * If the level is set to maximum, we can skip trying to get the read
2675	 * lock.
2676	 */
2677	if (write_lock_level < BTRFS_MAX_LEVEL) {
2678		/*
2679		 * We don't know the level of the root node until we actually
2680		 * have it read locked
2681		 */
2682		b = btrfs_read_lock_root_node(root);
2683		level = btrfs_header_level(b);
2684		if (level > write_lock_level)
2685			goto out;
2686
2687		/* Whoops, must trade for write lock */
2688		btrfs_tree_read_unlock(b);
2689		free_extent_buffer(b);
2690	}
2691
2692	b = btrfs_lock_root_node(root);
2693	root_lock = BTRFS_WRITE_LOCK;
2694
2695	/* The level might have changed, check again */
2696	level = btrfs_header_level(b);
2697
2698out:
2699	p->nodes[level] = b;
2700	if (!p->skip_locking)
2701		p->locks[level] = root_lock;
2702	/*
2703	 * Callers are responsible for dropping b's references.
2704	 */
2705	return b;
2706}
2707
2708
2709/*
2710 * btrfs_search_slot - look for a key in a tree and perform necessary
2711 * modifications to preserve tree invariants.
2712 *
2713 * @trans:	Handle of transaction, used when modifying the tree
2714 * @p:		Holds all btree nodes along the search path
2715 * @root:	The root node of the tree
2716 * @key:	The key we are looking for
2717 * @ins_len:	Indicates purpose of search, for inserts it is 1, for
2718 *		deletions it's -1. 0 for plain searches
2719 * @cow:	boolean should CoW operations be performed. Must always be 1
2720 *		when modifying the tree.
2721 *
2722 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2723 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2724 *
2725 * If @key is found, 0 is returned and you can find the item in the leaf level
2726 * of the path (level 0)
2727 *
2728 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2729 * points to the slot where it should be inserted
2730 *
2731 * If an error is encountered while searching the tree a negative error number
2732 * is returned
2733 */
2734int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2735		      const struct btrfs_key *key, struct btrfs_path *p,
2736		      int ins_len, int cow)
2737{
 
2738	struct extent_buffer *b;
2739	int slot;
2740	int ret;
2741	int err;
2742	int level;
2743	int lowest_unlock = 1;
 
2744	/* everything at write_lock_level or lower must be write locked */
2745	int write_lock_level = 0;
2746	u8 lowest_level = 0;
2747	int min_write_lock_level;
2748	int prev_cmp;
2749
2750	lowest_level = p->lowest_level;
2751	WARN_ON(lowest_level && ins_len > 0);
2752	WARN_ON(p->nodes[0] != NULL);
2753	BUG_ON(!cow && ins_len);
2754
2755	if (ins_len < 0) {
2756		lowest_unlock = 2;
2757
2758		/* when we are removing items, we might have to go up to level
2759		 * two as we update tree pointers  Make sure we keep write
2760		 * for those levels as well
2761		 */
2762		write_lock_level = 2;
2763	} else if (ins_len > 0) {
2764		/*
2765		 * for inserting items, make sure we have a write lock on
2766		 * level 1 so we can update keys
2767		 */
2768		write_lock_level = 1;
2769	}
2770
2771	if (!cow)
2772		write_lock_level = -1;
2773
2774	if (cow && (p->keep_locks || p->lowest_level))
2775		write_lock_level = BTRFS_MAX_LEVEL;
2776
2777	min_write_lock_level = write_lock_level;
2778
2779again:
2780	prev_cmp = -1;
2781	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2782	if (IS_ERR(b)) {
2783		ret = PTR_ERR(b);
2784		goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2785	}
 
 
 
2786
2787	while (b) {
2788		level = btrfs_header_level(b);
2789
2790		/*
2791		 * setup the path here so we can release it under lock
2792		 * contention with the cow code
2793		 */
2794		if (cow) {
2795			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2796
2797			/*
2798			 * if we don't really need to cow this block
2799			 * then we don't want to set the path blocking,
2800			 * so we test it here
2801			 */
2802			if (!should_cow_block(trans, root, b)) {
2803				trans->dirty = true;
2804				goto cow_done;
2805			}
2806
2807			/*
2808			 * must have write locks on this node and the
2809			 * parent
2810			 */
2811			if (level > write_lock_level ||
2812			    (level + 1 > write_lock_level &&
2813			    level + 1 < BTRFS_MAX_LEVEL &&
2814			    p->nodes[level + 1])) {
2815				write_lock_level = level + 1;
2816				btrfs_release_path(p);
2817				goto again;
2818			}
2819
2820			btrfs_set_path_blocking(p);
2821			if (last_level)
2822				err = btrfs_cow_block(trans, root, b, NULL, 0,
2823						      &b);
2824			else
2825				err = btrfs_cow_block(trans, root, b,
2826						      p->nodes[level + 1],
2827						      p->slots[level + 1], &b);
2828			if (err) {
2829				ret = err;
2830				goto done;
2831			}
2832		}
2833cow_done:
2834		p->nodes[level] = b;
2835		/*
2836		 * Leave path with blocking locks to avoid massive
2837		 * lock context switch, this is made on purpose.
2838		 */
2839
2840		/*
2841		 * we have a lock on b and as long as we aren't changing
2842		 * the tree, there is no way to for the items in b to change.
2843		 * It is safe to drop the lock on our parent before we
2844		 * go through the expensive btree search on b.
2845		 *
2846		 * If we're inserting or deleting (ins_len != 0), then we might
2847		 * be changing slot zero, which may require changing the parent.
2848		 * So, we can't drop the lock until after we know which slot
2849		 * we're operating on.
2850		 */
2851		if (!ins_len && !p->keep_locks) {
2852			int u = level + 1;
2853
2854			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2855				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2856				p->locks[u] = 0;
2857			}
2858		}
2859
2860		ret = key_search(b, key, level, &prev_cmp, &slot);
2861		if (ret < 0)
2862			goto done;
2863
2864		if (level != 0) {
2865			int dec = 0;
2866			if (ret && slot > 0) {
2867				dec = 1;
2868				slot -= 1;
2869			}
2870			p->slots[level] = slot;
2871			err = setup_nodes_for_search(trans, root, p, b, level,
2872					     ins_len, &write_lock_level);
2873			if (err == -EAGAIN)
2874				goto again;
2875			if (err) {
2876				ret = err;
2877				goto done;
2878			}
2879			b = p->nodes[level];
2880			slot = p->slots[level];
2881
2882			/*
2883			 * slot 0 is special, if we change the key
2884			 * we have to update the parent pointer
2885			 * which means we must have a write lock
2886			 * on the parent
2887			 */
2888			if (slot == 0 && ins_len &&
2889			    write_lock_level < level + 1) {
2890				write_lock_level = level + 1;
2891				btrfs_release_path(p);
2892				goto again;
2893			}
2894
2895			unlock_up(p, level, lowest_unlock,
2896				  min_write_lock_level, &write_lock_level);
2897
2898			if (level == lowest_level) {
2899				if (dec)
2900					p->slots[level]++;
2901				goto done;
2902			}
2903
2904			err = read_block_for_search(root, p, &b, level,
2905						    slot, key);
2906			if (err == -EAGAIN)
2907				goto again;
2908			if (err) {
2909				ret = err;
2910				goto done;
2911			}
2912
2913			if (!p->skip_locking) {
2914				level = btrfs_header_level(b);
2915				if (level <= write_lock_level) {
2916					if (!btrfs_try_tree_write_lock(b)) {
 
2917						btrfs_set_path_blocking(p);
2918						btrfs_tree_lock(b);
 
 
2919					}
2920					p->locks[level] = BTRFS_WRITE_LOCK;
2921				} else {
2922					if (!btrfs_tree_read_lock_atomic(b)) {
 
2923						btrfs_set_path_blocking(p);
2924						btrfs_tree_read_lock(b);
 
 
2925					}
2926					p->locks[level] = BTRFS_READ_LOCK;
2927				}
2928				p->nodes[level] = b;
2929			}
2930		} else {
2931			p->slots[level] = slot;
2932			if (ins_len > 0 &&
2933			    btrfs_leaf_free_space(b) < ins_len) {
2934				if (write_lock_level < 1) {
2935					write_lock_level = 1;
2936					btrfs_release_path(p);
2937					goto again;
2938				}
2939
2940				btrfs_set_path_blocking(p);
2941				err = split_leaf(trans, root, key,
2942						 p, ins_len, ret == 0);
 
2943
2944				BUG_ON(err > 0);
2945				if (err) {
2946					ret = err;
2947					goto done;
2948				}
2949			}
2950			if (!p->search_for_split)
2951				unlock_up(p, level, lowest_unlock,
2952					  min_write_lock_level, NULL);
2953			goto done;
2954		}
2955	}
2956	ret = 1;
2957done:
2958	/*
2959	 * we don't really know what they plan on doing with the path
2960	 * from here on, so for now just mark it as blocking
2961	 */
2962	if (!p->leave_spinning)
2963		btrfs_set_path_blocking(p);
2964	if (ret < 0 && !p->skip_release_on_error)
2965		btrfs_release_path(p);
2966	return ret;
2967}
2968
2969/*
2970 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2971 * current state of the tree together with the operations recorded in the tree
2972 * modification log to search for the key in a previous version of this tree, as
2973 * denoted by the time_seq parameter.
2974 *
2975 * Naturally, there is no support for insert, delete or cow operations.
2976 *
2977 * The resulting path and return value will be set up as if we called
2978 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2979 */
2980int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2981			  struct btrfs_path *p, u64 time_seq)
2982{
2983	struct btrfs_fs_info *fs_info = root->fs_info;
2984	struct extent_buffer *b;
2985	int slot;
2986	int ret;
2987	int err;
2988	int level;
2989	int lowest_unlock = 1;
2990	u8 lowest_level = 0;
2991	int prev_cmp = -1;
2992
2993	lowest_level = p->lowest_level;
2994	WARN_ON(p->nodes[0] != NULL);
2995
2996	if (p->search_commit_root) {
2997		BUG_ON(time_seq);
2998		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2999	}
3000
3001again:
3002	b = get_old_root(root, time_seq);
3003	if (!b) {
3004		ret = -EIO;
3005		goto done;
3006	}
3007	level = btrfs_header_level(b);
3008	p->locks[level] = BTRFS_READ_LOCK;
3009
3010	while (b) {
3011		level = btrfs_header_level(b);
3012		p->nodes[level] = b;
 
3013
3014		/*
3015		 * we have a lock on b and as long as we aren't changing
3016		 * the tree, there is no way to for the items in b to change.
3017		 * It is safe to drop the lock on our parent before we
3018		 * go through the expensive btree search on b.
3019		 */
3020		btrfs_unlock_up_safe(p, level + 1);
3021
3022		/*
3023		 * Since we can unwind ebs we want to do a real search every
3024		 * time.
3025		 */
3026		prev_cmp = -1;
3027		ret = key_search(b, key, level, &prev_cmp, &slot);
3028		if (ret < 0)
3029			goto done;
3030
3031		if (level != 0) {
3032			int dec = 0;
3033			if (ret && slot > 0) {
3034				dec = 1;
3035				slot -= 1;
3036			}
3037			p->slots[level] = slot;
3038			unlock_up(p, level, lowest_unlock, 0, NULL);
3039
3040			if (level == lowest_level) {
3041				if (dec)
3042					p->slots[level]++;
3043				goto done;
3044			}
3045
3046			err = read_block_for_search(root, p, &b, level,
3047						    slot, key);
3048			if (err == -EAGAIN)
3049				goto again;
3050			if (err) {
3051				ret = err;
3052				goto done;
3053			}
3054
3055			level = btrfs_header_level(b);
3056			if (!btrfs_tree_read_lock_atomic(b)) {
 
3057				btrfs_set_path_blocking(p);
3058				btrfs_tree_read_lock(b);
 
 
3059			}
3060			b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3061			if (!b) {
3062				ret = -ENOMEM;
3063				goto done;
3064			}
3065			p->locks[level] = BTRFS_READ_LOCK;
3066			p->nodes[level] = b;
3067		} else {
3068			p->slots[level] = slot;
3069			unlock_up(p, level, lowest_unlock, 0, NULL);
3070			goto done;
3071		}
3072	}
3073	ret = 1;
3074done:
3075	if (!p->leave_spinning)
3076		btrfs_set_path_blocking(p);
3077	if (ret < 0)
3078		btrfs_release_path(p);
3079
3080	return ret;
3081}
3082
3083/*
3084 * helper to use instead of search slot if no exact match is needed but
3085 * instead the next or previous item should be returned.
3086 * When find_higher is true, the next higher item is returned, the next lower
3087 * otherwise.
3088 * When return_any and find_higher are both true, and no higher item is found,
3089 * return the next lower instead.
3090 * When return_any is true and find_higher is false, and no lower item is found,
3091 * return the next higher instead.
3092 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3093 * < 0 on error
3094 */
3095int btrfs_search_slot_for_read(struct btrfs_root *root,
3096			       const struct btrfs_key *key,
3097			       struct btrfs_path *p, int find_higher,
3098			       int return_any)
3099{
3100	int ret;
3101	struct extent_buffer *leaf;
3102
3103again:
3104	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3105	if (ret <= 0)
3106		return ret;
3107	/*
3108	 * a return value of 1 means the path is at the position where the
3109	 * item should be inserted. Normally this is the next bigger item,
3110	 * but in case the previous item is the last in a leaf, path points
3111	 * to the first free slot in the previous leaf, i.e. at an invalid
3112	 * item.
3113	 */
3114	leaf = p->nodes[0];
3115
3116	if (find_higher) {
3117		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3118			ret = btrfs_next_leaf(root, p);
3119			if (ret <= 0)
3120				return ret;
3121			if (!return_any)
3122				return 1;
3123			/*
3124			 * no higher item found, return the next
3125			 * lower instead
3126			 */
3127			return_any = 0;
3128			find_higher = 0;
3129			btrfs_release_path(p);
3130			goto again;
3131		}
3132	} else {
3133		if (p->slots[0] == 0) {
3134			ret = btrfs_prev_leaf(root, p);
3135			if (ret < 0)
3136				return ret;
3137			if (!ret) {
3138				leaf = p->nodes[0];
3139				if (p->slots[0] == btrfs_header_nritems(leaf))
3140					p->slots[0]--;
3141				return 0;
3142			}
3143			if (!return_any)
3144				return 1;
3145			/*
3146			 * no lower item found, return the next
3147			 * higher instead
3148			 */
3149			return_any = 0;
3150			find_higher = 1;
3151			btrfs_release_path(p);
3152			goto again;
3153		} else {
3154			--p->slots[0];
3155		}
3156	}
3157	return 0;
3158}
3159
3160/*
3161 * adjust the pointers going up the tree, starting at level
3162 * making sure the right key of each node is points to 'key'.
3163 * This is used after shifting pointers to the left, so it stops
3164 * fixing up pointers when a given leaf/node is not in slot 0 of the
3165 * higher levels
3166 *
3167 */
3168static void fixup_low_keys(struct btrfs_path *path,
 
3169			   struct btrfs_disk_key *key, int level)
3170{
3171	int i;
3172	struct extent_buffer *t;
3173	int ret;
3174
3175	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3176		int tslot = path->slots[i];
3177
3178		if (!path->nodes[i])
3179			break;
3180		t = path->nodes[i];
3181		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3182				GFP_ATOMIC);
3183		BUG_ON(ret < 0);
3184		btrfs_set_node_key(t, key, tslot);
3185		btrfs_mark_buffer_dirty(path->nodes[i]);
3186		if (tslot != 0)
3187			break;
3188	}
3189}
3190
3191/*
3192 * update item key.
3193 *
3194 * This function isn't completely safe. It's the caller's responsibility
3195 * that the new key won't break the order
3196 */
3197void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3198			     struct btrfs_path *path,
3199			     const struct btrfs_key *new_key)
3200{
3201	struct btrfs_disk_key disk_key;
3202	struct extent_buffer *eb;
3203	int slot;
3204
3205	eb = path->nodes[0];
3206	slot = path->slots[0];
3207	if (slot > 0) {
3208		btrfs_item_key(eb, &disk_key, slot - 1);
3209		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
3210			btrfs_crit(fs_info,
3211		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3212				   slot, btrfs_disk_key_objectid(&disk_key),
3213				   btrfs_disk_key_type(&disk_key),
3214				   btrfs_disk_key_offset(&disk_key),
3215				   new_key->objectid, new_key->type,
3216				   new_key->offset);
3217			btrfs_print_leaf(eb);
3218			BUG();
3219		}
3220	}
3221	if (slot < btrfs_header_nritems(eb) - 1) {
3222		btrfs_item_key(eb, &disk_key, slot + 1);
3223		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
3224			btrfs_crit(fs_info,
3225		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3226				   slot, btrfs_disk_key_objectid(&disk_key),
3227				   btrfs_disk_key_type(&disk_key),
3228				   btrfs_disk_key_offset(&disk_key),
3229				   new_key->objectid, new_key->type,
3230				   new_key->offset);
3231			btrfs_print_leaf(eb);
3232			BUG();
3233		}
3234	}
3235
3236	btrfs_cpu_key_to_disk(&disk_key, new_key);
3237	btrfs_set_item_key(eb, &disk_key, slot);
3238	btrfs_mark_buffer_dirty(eb);
3239	if (slot == 0)
3240		fixup_low_keys(path, &disk_key, 1);
3241}
3242
3243/*
3244 * try to push data from one node into the next node left in the
3245 * tree.
3246 *
3247 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3248 * error, and > 0 if there was no room in the left hand block.
3249 */
3250static int push_node_left(struct btrfs_trans_handle *trans,
 
3251			  struct extent_buffer *dst,
3252			  struct extent_buffer *src, int empty)
3253{
3254	struct btrfs_fs_info *fs_info = trans->fs_info;
3255	int push_items = 0;
3256	int src_nritems;
3257	int dst_nritems;
3258	int ret = 0;
3259
3260	src_nritems = btrfs_header_nritems(src);
3261	dst_nritems = btrfs_header_nritems(dst);
3262	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3263	WARN_ON(btrfs_header_generation(src) != trans->transid);
3264	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3265
3266	if (!empty && src_nritems <= 8)
3267		return 1;
3268
3269	if (push_items <= 0)
3270		return 1;
3271
3272	if (empty) {
3273		push_items = min(src_nritems, push_items);
3274		if (push_items < src_nritems) {
3275			/* leave at least 8 pointers in the node if
3276			 * we aren't going to empty it
3277			 */
3278			if (src_nritems - push_items < 8) {
3279				if (push_items <= 8)
3280					return 1;
3281				push_items -= 8;
3282			}
3283		}
3284	} else
3285		push_items = min(src_nritems - 8, push_items);
3286
3287	ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
 
3288	if (ret) {
3289		btrfs_abort_transaction(trans, ret);
3290		return ret;
3291	}
3292	copy_extent_buffer(dst, src,
3293			   btrfs_node_key_ptr_offset(dst_nritems),
3294			   btrfs_node_key_ptr_offset(0),
3295			   push_items * sizeof(struct btrfs_key_ptr));
3296
3297	if (push_items < src_nritems) {
3298		/*
3299		 * Don't call tree_mod_log_insert_move here, key removal was
3300		 * already fully logged by tree_mod_log_eb_copy above.
3301		 */
3302		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3303				      btrfs_node_key_ptr_offset(push_items),
3304				      (src_nritems - push_items) *
3305				      sizeof(struct btrfs_key_ptr));
3306	}
3307	btrfs_set_header_nritems(src, src_nritems - push_items);
3308	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3309	btrfs_mark_buffer_dirty(src);
3310	btrfs_mark_buffer_dirty(dst);
3311
3312	return ret;
3313}
3314
3315/*
3316 * try to push data from one node into the next node right in the
3317 * tree.
3318 *
3319 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3320 * error, and > 0 if there was no room in the right hand block.
3321 *
3322 * this will  only push up to 1/2 the contents of the left node over
3323 */
3324static int balance_node_right(struct btrfs_trans_handle *trans,
 
3325			      struct extent_buffer *dst,
3326			      struct extent_buffer *src)
3327{
3328	struct btrfs_fs_info *fs_info = trans->fs_info;
3329	int push_items = 0;
3330	int max_push;
3331	int src_nritems;
3332	int dst_nritems;
3333	int ret = 0;
3334
3335	WARN_ON(btrfs_header_generation(src) != trans->transid);
3336	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3337
3338	src_nritems = btrfs_header_nritems(src);
3339	dst_nritems = btrfs_header_nritems(dst);
3340	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3341	if (push_items <= 0)
3342		return 1;
3343
3344	if (src_nritems < 4)
3345		return 1;
3346
3347	max_push = src_nritems / 2 + 1;
3348	/* don't try to empty the node */
3349	if (max_push >= src_nritems)
3350		return 1;
3351
3352	if (max_push < push_items)
3353		push_items = max_push;
3354
3355	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3356	BUG_ON(ret < 0);
3357	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3358				      btrfs_node_key_ptr_offset(0),
3359				      (dst_nritems) *
3360				      sizeof(struct btrfs_key_ptr));
3361
3362	ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
3363				   push_items);
3364	if (ret) {
3365		btrfs_abort_transaction(trans, ret);
3366		return ret;
3367	}
3368	copy_extent_buffer(dst, src,
3369			   btrfs_node_key_ptr_offset(0),
3370			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3371			   push_items * sizeof(struct btrfs_key_ptr));
3372
3373	btrfs_set_header_nritems(src, src_nritems - push_items);
3374	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3375
3376	btrfs_mark_buffer_dirty(src);
3377	btrfs_mark_buffer_dirty(dst);
3378
3379	return ret;
3380}
3381
3382/*
3383 * helper function to insert a new root level in the tree.
3384 * A new node is allocated, and a single item is inserted to
3385 * point to the existing root
3386 *
3387 * returns zero on success or < 0 on failure.
3388 */
3389static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3390			   struct btrfs_root *root,
3391			   struct btrfs_path *path, int level)
3392{
3393	struct btrfs_fs_info *fs_info = root->fs_info;
3394	u64 lower_gen;
3395	struct extent_buffer *lower;
3396	struct extent_buffer *c;
3397	struct extent_buffer *old;
3398	struct btrfs_disk_key lower_key;
3399	int ret;
3400
3401	BUG_ON(path->nodes[level]);
3402	BUG_ON(path->nodes[level-1] != root->node);
3403
3404	lower = path->nodes[level-1];
3405	if (level == 1)
3406		btrfs_item_key(lower, &lower_key, 0);
3407	else
3408		btrfs_node_key(lower, &lower_key, 0);
3409
3410	c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3411					 root->node->start, 0);
3412	if (IS_ERR(c))
3413		return PTR_ERR(c);
3414
3415	root_add_used(root, fs_info->nodesize);
3416
 
3417	btrfs_set_header_nritems(c, 1);
 
 
 
 
 
 
 
 
 
3418	btrfs_set_node_key(c, &lower_key, 0);
3419	btrfs_set_node_blockptr(c, 0, lower->start);
3420	lower_gen = btrfs_header_generation(lower);
3421	WARN_ON(lower_gen != trans->transid);
3422
3423	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3424
3425	btrfs_mark_buffer_dirty(c);
3426
3427	old = root->node;
3428	ret = tree_mod_log_insert_root(root->node, c, 0);
3429	BUG_ON(ret < 0);
3430	rcu_assign_pointer(root->node, c);
3431
3432	/* the super has an extra ref to root->node */
3433	free_extent_buffer(old);
3434
3435	add_root_to_dirty_list(root);
3436	extent_buffer_get(c);
3437	path->nodes[level] = c;
3438	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3439	path->slots[level] = 0;
3440	return 0;
3441}
3442
3443/*
3444 * worker function to insert a single pointer in a node.
3445 * the node should have enough room for the pointer already
3446 *
3447 * slot and level indicate where you want the key to go, and
3448 * blocknr is the block the key points to.
3449 */
3450static void insert_ptr(struct btrfs_trans_handle *trans,
3451		       struct btrfs_path *path,
3452		       struct btrfs_disk_key *key, u64 bytenr,
3453		       int slot, int level)
3454{
3455	struct extent_buffer *lower;
3456	int nritems;
3457	int ret;
3458
3459	BUG_ON(!path->nodes[level]);
3460	btrfs_assert_tree_locked(path->nodes[level]);
3461	lower = path->nodes[level];
3462	nritems = btrfs_header_nritems(lower);
3463	BUG_ON(slot > nritems);
3464	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3465	if (slot != nritems) {
3466		if (level) {
3467			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3468					nritems - slot);
3469			BUG_ON(ret < 0);
3470		}
3471		memmove_extent_buffer(lower,
3472			      btrfs_node_key_ptr_offset(slot + 1),
3473			      btrfs_node_key_ptr_offset(slot),
3474			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3475	}
3476	if (level) {
3477		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3478				GFP_NOFS);
3479		BUG_ON(ret < 0);
3480	}
3481	btrfs_set_node_key(lower, key, slot);
3482	btrfs_set_node_blockptr(lower, slot, bytenr);
3483	WARN_ON(trans->transid == 0);
3484	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3485	btrfs_set_header_nritems(lower, nritems + 1);
3486	btrfs_mark_buffer_dirty(lower);
3487}
3488
3489/*
3490 * split the node at the specified level in path in two.
3491 * The path is corrected to point to the appropriate node after the split
3492 *
3493 * Before splitting this tries to make some room in the node by pushing
3494 * left and right, if either one works, it returns right away.
3495 *
3496 * returns 0 on success and < 0 on failure
3497 */
3498static noinline int split_node(struct btrfs_trans_handle *trans,
3499			       struct btrfs_root *root,
3500			       struct btrfs_path *path, int level)
3501{
3502	struct btrfs_fs_info *fs_info = root->fs_info;
3503	struct extent_buffer *c;
3504	struct extent_buffer *split;
3505	struct btrfs_disk_key disk_key;
3506	int mid;
3507	int ret;
3508	u32 c_nritems;
3509
3510	c = path->nodes[level];
3511	WARN_ON(btrfs_header_generation(c) != trans->transid);
3512	if (c == root->node) {
3513		/*
3514		 * trying to split the root, lets make a new one
3515		 *
3516		 * tree mod log: We don't log_removal old root in
3517		 * insert_new_root, because that root buffer will be kept as a
3518		 * normal node. We are going to log removal of half of the
3519		 * elements below with tree_mod_log_eb_copy. We're holding a
3520		 * tree lock on the buffer, which is why we cannot race with
3521		 * other tree_mod_log users.
3522		 */
3523		ret = insert_new_root(trans, root, path, level + 1);
3524		if (ret)
3525			return ret;
3526	} else {
3527		ret = push_nodes_for_insert(trans, root, path, level);
3528		c = path->nodes[level];
3529		if (!ret && btrfs_header_nritems(c) <
3530		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3531			return 0;
3532		if (ret < 0)
3533			return ret;
3534	}
3535
3536	c_nritems = btrfs_header_nritems(c);
3537	mid = (c_nritems + 1) / 2;
3538	btrfs_node_key(c, &disk_key, mid);
3539
3540	split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3541					     c->start, 0);
3542	if (IS_ERR(split))
3543		return PTR_ERR(split);
3544
3545	root_add_used(root, fs_info->nodesize);
3546	ASSERT(btrfs_header_level(c) == level);
3547
3548	ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
 
 
 
 
 
 
 
 
 
3549	if (ret) {
3550		btrfs_abort_transaction(trans, ret);
3551		return ret;
3552	}
3553	copy_extent_buffer(split, c,
3554			   btrfs_node_key_ptr_offset(0),
3555			   btrfs_node_key_ptr_offset(mid),
3556			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3557	btrfs_set_header_nritems(split, c_nritems - mid);
3558	btrfs_set_header_nritems(c, mid);
3559	ret = 0;
3560
3561	btrfs_mark_buffer_dirty(c);
3562	btrfs_mark_buffer_dirty(split);
3563
3564	insert_ptr(trans, path, &disk_key, split->start,
3565		   path->slots[level + 1] + 1, level + 1);
3566
3567	if (path->slots[level] >= mid) {
3568		path->slots[level] -= mid;
3569		btrfs_tree_unlock(c);
3570		free_extent_buffer(c);
3571		path->nodes[level] = split;
3572		path->slots[level + 1] += 1;
3573	} else {
3574		btrfs_tree_unlock(split);
3575		free_extent_buffer(split);
3576	}
3577	return ret;
3578}
3579
3580/*
3581 * how many bytes are required to store the items in a leaf.  start
3582 * and nr indicate which items in the leaf to check.  This totals up the
3583 * space used both by the item structs and the item data
3584 */
3585static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3586{
3587	struct btrfs_item *start_item;
3588	struct btrfs_item *end_item;
3589	struct btrfs_map_token token;
3590	int data_len;
3591	int nritems = btrfs_header_nritems(l);
3592	int end = min(nritems, start + nr) - 1;
3593
3594	if (!nr)
3595		return 0;
3596	btrfs_init_map_token(&token, l);
3597	start_item = btrfs_item_nr(start);
3598	end_item = btrfs_item_nr(end);
3599	data_len = btrfs_token_item_offset(l, start_item, &token) +
3600		btrfs_token_item_size(l, start_item, &token);
3601	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3602	data_len += sizeof(struct btrfs_item) * nr;
3603	WARN_ON(data_len < 0);
3604	return data_len;
3605}
3606
3607/*
3608 * The space between the end of the leaf items and
3609 * the start of the leaf data.  IOW, how much room
3610 * the leaf has left for both items and data
3611 */
3612noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
 
3613{
3614	struct btrfs_fs_info *fs_info = leaf->fs_info;
3615	int nritems = btrfs_header_nritems(leaf);
3616	int ret;
3617
3618	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3619	if (ret < 0) {
3620		btrfs_crit(fs_info,
3621			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3622			   ret,
3623			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3624			   leaf_space_used(leaf, 0, nritems), nritems);
3625	}
3626	return ret;
3627}
3628
3629/*
3630 * min slot controls the lowest index we're willing to push to the
3631 * right.  We'll push up to and including min_slot, but no lower
3632 */
3633static noinline int __push_leaf_right(struct btrfs_path *path,
 
 
3634				      int data_size, int empty,
3635				      struct extent_buffer *right,
3636				      int free_space, u32 left_nritems,
3637				      u32 min_slot)
3638{
3639	struct btrfs_fs_info *fs_info = right->fs_info;
3640	struct extent_buffer *left = path->nodes[0];
3641	struct extent_buffer *upper = path->nodes[1];
3642	struct btrfs_map_token token;
3643	struct btrfs_disk_key disk_key;
3644	int slot;
3645	u32 i;
3646	int push_space = 0;
3647	int push_items = 0;
3648	struct btrfs_item *item;
3649	u32 nr;
3650	u32 right_nritems;
3651	u32 data_end;
3652	u32 this_item_size;
3653
 
 
3654	if (empty)
3655		nr = 0;
3656	else
3657		nr = max_t(u32, 1, min_slot);
3658
3659	if (path->slots[0] >= left_nritems)
3660		push_space += data_size;
3661
3662	slot = path->slots[1];
3663	i = left_nritems - 1;
3664	while (i >= nr) {
3665		item = btrfs_item_nr(i);
3666
3667		if (!empty && push_items > 0) {
3668			if (path->slots[0] > i)
3669				break;
3670			if (path->slots[0] == i) {
3671				int space = btrfs_leaf_free_space(left);
3672
3673				if (space + push_space * 2 > free_space)
3674					break;
3675			}
3676		}
3677
3678		if (path->slots[0] == i)
3679			push_space += data_size;
3680
3681		this_item_size = btrfs_item_size(left, item);
3682		if (this_item_size + sizeof(*item) + push_space > free_space)
3683			break;
3684
3685		push_items++;
3686		push_space += this_item_size + sizeof(*item);
3687		if (i == 0)
3688			break;
3689		i--;
3690	}
3691
3692	if (push_items == 0)
3693		goto out_unlock;
3694
3695	WARN_ON(!empty && push_items == left_nritems);
3696
3697	/* push left to right */
3698	right_nritems = btrfs_header_nritems(right);
3699
3700	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3701	push_space -= leaf_data_end(left);
3702
3703	/* make room in the right data area */
3704	data_end = leaf_data_end(right);
3705	memmove_extent_buffer(right,
3706			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3707			      BTRFS_LEAF_DATA_OFFSET + data_end,
3708			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3709
3710	/* copy from the left data area */
3711	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3712		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3713		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
3714		     push_space);
3715
3716	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3717			      btrfs_item_nr_offset(0),
3718			      right_nritems * sizeof(struct btrfs_item));
3719
3720	/* copy the items from left to right */
3721	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3722		   btrfs_item_nr_offset(left_nritems - push_items),
3723		   push_items * sizeof(struct btrfs_item));
3724
3725	/* update the item pointers */
3726	btrfs_init_map_token(&token, right);
3727	right_nritems += push_items;
3728	btrfs_set_header_nritems(right, right_nritems);
3729	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3730	for (i = 0; i < right_nritems; i++) {
3731		item = btrfs_item_nr(i);
3732		push_space -= btrfs_token_item_size(right, item, &token);
3733		btrfs_set_token_item_offset(right, item, push_space, &token);
3734	}
3735
3736	left_nritems -= push_items;
3737	btrfs_set_header_nritems(left, left_nritems);
3738
3739	if (left_nritems)
3740		btrfs_mark_buffer_dirty(left);
3741	else
3742		btrfs_clean_tree_block(left);
3743
3744	btrfs_mark_buffer_dirty(right);
3745
3746	btrfs_item_key(right, &disk_key, 0);
3747	btrfs_set_node_key(upper, &disk_key, slot + 1);
3748	btrfs_mark_buffer_dirty(upper);
3749
3750	/* then fixup the leaf pointer in the path */
3751	if (path->slots[0] >= left_nritems) {
3752		path->slots[0] -= left_nritems;
3753		if (btrfs_header_nritems(path->nodes[0]) == 0)
3754			btrfs_clean_tree_block(path->nodes[0]);
3755		btrfs_tree_unlock(path->nodes[0]);
3756		free_extent_buffer(path->nodes[0]);
3757		path->nodes[0] = right;
3758		path->slots[1] += 1;
3759	} else {
3760		btrfs_tree_unlock(right);
3761		free_extent_buffer(right);
3762	}
3763	return 0;
3764
3765out_unlock:
3766	btrfs_tree_unlock(right);
3767	free_extent_buffer(right);
3768	return 1;
3769}
3770
3771/*
3772 * push some data in the path leaf to the right, trying to free up at
3773 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3774 *
3775 * returns 1 if the push failed because the other node didn't have enough
3776 * room, 0 if everything worked out and < 0 if there were major errors.
3777 *
3778 * this will push starting from min_slot to the end of the leaf.  It won't
3779 * push any slot lower than min_slot
3780 */
3781static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3782			   *root, struct btrfs_path *path,
3783			   int min_data_size, int data_size,
3784			   int empty, u32 min_slot)
3785{
 
3786	struct extent_buffer *left = path->nodes[0];
3787	struct extent_buffer *right;
3788	struct extent_buffer *upper;
3789	int slot;
3790	int free_space;
3791	u32 left_nritems;
3792	int ret;
3793
3794	if (!path->nodes[1])
3795		return 1;
3796
3797	slot = path->slots[1];
3798	upper = path->nodes[1];
3799	if (slot >= btrfs_header_nritems(upper) - 1)
3800		return 1;
3801
3802	btrfs_assert_tree_locked(path->nodes[1]);
3803
3804	right = btrfs_read_node_slot(upper, slot + 1);
3805	/*
3806	 * slot + 1 is not valid or we fail to read the right node,
3807	 * no big deal, just return.
3808	 */
3809	if (IS_ERR(right))
3810		return 1;
3811
3812	btrfs_tree_lock(right);
3813	btrfs_set_lock_blocking_write(right);
3814
3815	free_space = btrfs_leaf_free_space(right);
3816	if (free_space < data_size)
3817		goto out_unlock;
3818
3819	/* cow and double check */
3820	ret = btrfs_cow_block(trans, root, right, upper,
3821			      slot + 1, &right);
3822	if (ret)
3823		goto out_unlock;
3824
3825	free_space = btrfs_leaf_free_space(right);
3826	if (free_space < data_size)
3827		goto out_unlock;
3828
3829	left_nritems = btrfs_header_nritems(left);
3830	if (left_nritems == 0)
3831		goto out_unlock;
3832
3833	if (path->slots[0] == left_nritems && !empty) {
3834		/* Key greater than all keys in the leaf, right neighbor has
3835		 * enough room for it and we're not emptying our leaf to delete
3836		 * it, therefore use right neighbor to insert the new item and
3837		 * no need to touch/dirty our left leaf. */
3838		btrfs_tree_unlock(left);
3839		free_extent_buffer(left);
3840		path->nodes[0] = right;
3841		path->slots[0] = 0;
3842		path->slots[1]++;
3843		return 0;
3844	}
3845
3846	return __push_leaf_right(path, min_data_size, empty,
3847				right, free_space, left_nritems, min_slot);
3848out_unlock:
3849	btrfs_tree_unlock(right);
3850	free_extent_buffer(right);
3851	return 1;
3852}
3853
3854/*
3855 * push some data in the path leaf to the left, trying to free up at
3856 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3857 *
3858 * max_slot can put a limit on how far into the leaf we'll push items.  The
3859 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3860 * items
3861 */
3862static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
 
 
3863				     int empty, struct extent_buffer *left,
3864				     int free_space, u32 right_nritems,
3865				     u32 max_slot)
3866{
3867	struct btrfs_fs_info *fs_info = left->fs_info;
3868	struct btrfs_disk_key disk_key;
3869	struct extent_buffer *right = path->nodes[0];
3870	int i;
3871	int push_space = 0;
3872	int push_items = 0;
3873	struct btrfs_item *item;
3874	u32 old_left_nritems;
3875	u32 nr;
3876	int ret = 0;
3877	u32 this_item_size;
3878	u32 old_left_item_size;
3879	struct btrfs_map_token token;
3880
 
 
3881	if (empty)
3882		nr = min(right_nritems, max_slot);
3883	else
3884		nr = min(right_nritems - 1, max_slot);
3885
3886	for (i = 0; i < nr; i++) {
3887		item = btrfs_item_nr(i);
3888
3889		if (!empty && push_items > 0) {
3890			if (path->slots[0] < i)
3891				break;
3892			if (path->slots[0] == i) {
3893				int space = btrfs_leaf_free_space(right);
3894
3895				if (space + push_space * 2 > free_space)
3896					break;
3897			}
3898		}
3899
3900		if (path->slots[0] == i)
3901			push_space += data_size;
3902
3903		this_item_size = btrfs_item_size(right, item);
3904		if (this_item_size + sizeof(*item) + push_space > free_space)
3905			break;
3906
3907		push_items++;
3908		push_space += this_item_size + sizeof(*item);
3909	}
3910
3911	if (push_items == 0) {
3912		ret = 1;
3913		goto out;
3914	}
3915	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3916
3917	/* push data from right to left */
3918	copy_extent_buffer(left, right,
3919			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3920			   btrfs_item_nr_offset(0),
3921			   push_items * sizeof(struct btrfs_item));
3922
3923	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3924		     btrfs_item_offset_nr(right, push_items - 1);
3925
3926	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3927		     leaf_data_end(left) - push_space,
3928		     BTRFS_LEAF_DATA_OFFSET +
3929		     btrfs_item_offset_nr(right, push_items - 1),
3930		     push_space);
3931	old_left_nritems = btrfs_header_nritems(left);
3932	BUG_ON(old_left_nritems <= 0);
3933
3934	btrfs_init_map_token(&token, left);
3935	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3936	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3937		u32 ioff;
3938
3939		item = btrfs_item_nr(i);
3940
3941		ioff = btrfs_token_item_offset(left, item, &token);
3942		btrfs_set_token_item_offset(left, item,
3943		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3944		      &token);
3945	}
3946	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3947
3948	/* fixup right node */
3949	if (push_items > right_nritems)
3950		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3951		       right_nritems);
3952
3953	if (push_items < right_nritems) {
3954		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3955						  leaf_data_end(right);
3956		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3957				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3958				      BTRFS_LEAF_DATA_OFFSET +
3959				      leaf_data_end(right), push_space);
3960
3961		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3962			      btrfs_item_nr_offset(push_items),
3963			     (btrfs_header_nritems(right) - push_items) *
3964			     sizeof(struct btrfs_item));
3965	}
3966
3967	btrfs_init_map_token(&token, right);
3968	right_nritems -= push_items;
3969	btrfs_set_header_nritems(right, right_nritems);
3970	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3971	for (i = 0; i < right_nritems; i++) {
3972		item = btrfs_item_nr(i);
3973
3974		push_space = push_space - btrfs_token_item_size(right,
3975								item, &token);
3976		btrfs_set_token_item_offset(right, item, push_space, &token);
3977	}
3978
3979	btrfs_mark_buffer_dirty(left);
3980	if (right_nritems)
3981		btrfs_mark_buffer_dirty(right);
3982	else
3983		btrfs_clean_tree_block(right);
3984
3985	btrfs_item_key(right, &disk_key, 0);
3986	fixup_low_keys(path, &disk_key, 1);
3987
3988	/* then fixup the leaf pointer in the path */
3989	if (path->slots[0] < push_items) {
3990		path->slots[0] += old_left_nritems;
3991		btrfs_tree_unlock(path->nodes[0]);
3992		free_extent_buffer(path->nodes[0]);
3993		path->nodes[0] = left;
3994		path->slots[1] -= 1;
3995	} else {
3996		btrfs_tree_unlock(left);
3997		free_extent_buffer(left);
3998		path->slots[0] -= push_items;
3999	}
4000	BUG_ON(path->slots[0] < 0);
4001	return ret;
4002out:
4003	btrfs_tree_unlock(left);
4004	free_extent_buffer(left);
4005	return ret;
4006}
4007
4008/*
4009 * push some data in the path leaf to the left, trying to free up at
4010 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
4011 *
4012 * max_slot can put a limit on how far into the leaf we'll push items.  The
4013 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
4014 * items
4015 */
4016static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
4017			  *root, struct btrfs_path *path, int min_data_size,
4018			  int data_size, int empty, u32 max_slot)
4019{
 
4020	struct extent_buffer *right = path->nodes[0];
4021	struct extent_buffer *left;
4022	int slot;
4023	int free_space;
4024	u32 right_nritems;
4025	int ret = 0;
4026
4027	slot = path->slots[1];
4028	if (slot == 0)
4029		return 1;
4030	if (!path->nodes[1])
4031		return 1;
4032
4033	right_nritems = btrfs_header_nritems(right);
4034	if (right_nritems == 0)
4035		return 1;
4036
4037	btrfs_assert_tree_locked(path->nodes[1]);
4038
4039	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
4040	/*
4041	 * slot - 1 is not valid or we fail to read the left node,
4042	 * no big deal, just return.
4043	 */
4044	if (IS_ERR(left))
4045		return 1;
4046
4047	btrfs_tree_lock(left);
4048	btrfs_set_lock_blocking_write(left);
4049
4050	free_space = btrfs_leaf_free_space(left);
4051	if (free_space < data_size) {
4052		ret = 1;
4053		goto out;
4054	}
4055
4056	/* cow and double check */
4057	ret = btrfs_cow_block(trans, root, left,
4058			      path->nodes[1], slot - 1, &left);
4059	if (ret) {
4060		/* we hit -ENOSPC, but it isn't fatal here */
4061		if (ret == -ENOSPC)
4062			ret = 1;
4063		goto out;
4064	}
4065
4066	free_space = btrfs_leaf_free_space(left);
4067	if (free_space < data_size) {
4068		ret = 1;
4069		goto out;
4070	}
4071
4072	return __push_leaf_left(path, min_data_size,
4073			       empty, left, free_space, right_nritems,
4074			       max_slot);
4075out:
4076	btrfs_tree_unlock(left);
4077	free_extent_buffer(left);
4078	return ret;
4079}
4080
4081/*
4082 * split the path's leaf in two, making sure there is at least data_size
4083 * available for the resulting leaf level of the path.
4084 */
4085static noinline void copy_for_split(struct btrfs_trans_handle *trans,
 
4086				    struct btrfs_path *path,
4087				    struct extent_buffer *l,
4088				    struct extent_buffer *right,
4089				    int slot, int mid, int nritems)
4090{
4091	struct btrfs_fs_info *fs_info = trans->fs_info;
4092	int data_copy_size;
4093	int rt_data_off;
4094	int i;
4095	struct btrfs_disk_key disk_key;
4096	struct btrfs_map_token token;
4097
 
 
4098	nritems = nritems - mid;
4099	btrfs_set_header_nritems(right, nritems);
4100	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
4101
4102	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4103			   btrfs_item_nr_offset(mid),
4104			   nritems * sizeof(struct btrfs_item));
4105
4106	copy_extent_buffer(right, l,
4107		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4108		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4109		     leaf_data_end(l), data_copy_size);
4110
4111	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4112
4113	btrfs_init_map_token(&token, right);
4114	for (i = 0; i < nritems; i++) {
4115		struct btrfs_item *item = btrfs_item_nr(i);
4116		u32 ioff;
4117
4118		ioff = btrfs_token_item_offset(right, item, &token);
4119		btrfs_set_token_item_offset(right, item,
4120					    ioff + rt_data_off, &token);
4121	}
4122
4123	btrfs_set_header_nritems(l, mid);
4124	btrfs_item_key(right, &disk_key, 0);
4125	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
 
4126
4127	btrfs_mark_buffer_dirty(right);
4128	btrfs_mark_buffer_dirty(l);
4129	BUG_ON(path->slots[0] != slot);
4130
4131	if (mid <= slot) {
4132		btrfs_tree_unlock(path->nodes[0]);
4133		free_extent_buffer(path->nodes[0]);
4134		path->nodes[0] = right;
4135		path->slots[0] -= mid;
4136		path->slots[1] += 1;
4137	} else {
4138		btrfs_tree_unlock(right);
4139		free_extent_buffer(right);
4140	}
4141
4142	BUG_ON(path->slots[0] < 0);
4143}
4144
4145/*
4146 * double splits happen when we need to insert a big item in the middle
4147 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4148 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4149 *          A                 B                 C
4150 *
4151 * We avoid this by trying to push the items on either side of our target
4152 * into the adjacent leaves.  If all goes well we can avoid the double split
4153 * completely.
4154 */
4155static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4156					  struct btrfs_root *root,
4157					  struct btrfs_path *path,
4158					  int data_size)
4159{
 
4160	int ret;
4161	int progress = 0;
4162	int slot;
4163	u32 nritems;
4164	int space_needed = data_size;
4165
4166	slot = path->slots[0];
4167	if (slot < btrfs_header_nritems(path->nodes[0]))
4168		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4169
4170	/*
4171	 * try to push all the items after our slot into the
4172	 * right leaf
4173	 */
4174	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4175	if (ret < 0)
4176		return ret;
4177
4178	if (ret == 0)
4179		progress++;
4180
4181	nritems = btrfs_header_nritems(path->nodes[0]);
4182	/*
4183	 * our goal is to get our slot at the start or end of a leaf.  If
4184	 * we've done so we're done
4185	 */
4186	if (path->slots[0] == 0 || path->slots[0] == nritems)
4187		return 0;
4188
4189	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4190		return 0;
4191
4192	/* try to push all the items before our slot into the next leaf */
4193	slot = path->slots[0];
4194	space_needed = data_size;
4195	if (slot > 0)
4196		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4197	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4198	if (ret < 0)
4199		return ret;
4200
4201	if (ret == 0)
4202		progress++;
4203
4204	if (progress)
4205		return 0;
4206	return 1;
4207}
4208
4209/*
4210 * split the path's leaf in two, making sure there is at least data_size
4211 * available for the resulting leaf level of the path.
4212 *
4213 * returns 0 if all went well and < 0 on failure.
4214 */
4215static noinline int split_leaf(struct btrfs_trans_handle *trans,
4216			       struct btrfs_root *root,
4217			       const struct btrfs_key *ins_key,
4218			       struct btrfs_path *path, int data_size,
4219			       int extend)
4220{
4221	struct btrfs_disk_key disk_key;
4222	struct extent_buffer *l;
4223	u32 nritems;
4224	int mid;
4225	int slot;
4226	struct extent_buffer *right;
4227	struct btrfs_fs_info *fs_info = root->fs_info;
4228	int ret = 0;
4229	int wret;
4230	int split;
4231	int num_doubles = 0;
4232	int tried_avoid_double = 0;
4233
4234	l = path->nodes[0];
4235	slot = path->slots[0];
4236	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4237	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4238		return -EOVERFLOW;
4239
4240	/* first try to make some room by pushing left and right */
4241	if (data_size && path->nodes[1]) {
4242		int space_needed = data_size;
4243
4244		if (slot < btrfs_header_nritems(l))
4245			space_needed -= btrfs_leaf_free_space(l);
4246
4247		wret = push_leaf_right(trans, root, path, space_needed,
4248				       space_needed, 0, 0);
4249		if (wret < 0)
4250			return wret;
4251		if (wret) {
4252			space_needed = data_size;
4253			if (slot > 0)
4254				space_needed -= btrfs_leaf_free_space(l);
4255			wret = push_leaf_left(trans, root, path, space_needed,
4256					      space_needed, 0, (u32)-1);
4257			if (wret < 0)
4258				return wret;
4259		}
4260		l = path->nodes[0];
4261
4262		/* did the pushes work? */
4263		if (btrfs_leaf_free_space(l) >= data_size)
4264			return 0;
4265	}
4266
4267	if (!path->nodes[1]) {
4268		ret = insert_new_root(trans, root, path, 1);
4269		if (ret)
4270			return ret;
4271	}
4272again:
4273	split = 1;
4274	l = path->nodes[0];
4275	slot = path->slots[0];
4276	nritems = btrfs_header_nritems(l);
4277	mid = (nritems + 1) / 2;
4278
4279	if (mid <= slot) {
4280		if (nritems == 1 ||
4281		    leaf_space_used(l, mid, nritems - mid) + data_size >
4282			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4283			if (slot >= nritems) {
4284				split = 0;
4285			} else {
4286				mid = slot;
4287				if (mid != nritems &&
4288				    leaf_space_used(l, mid, nritems - mid) +
4289				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4290					if (data_size && !tried_avoid_double)
4291						goto push_for_double;
4292					split = 2;
4293				}
4294			}
4295		}
4296	} else {
4297		if (leaf_space_used(l, 0, mid) + data_size >
4298			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4299			if (!extend && data_size && slot == 0) {
4300				split = 0;
4301			} else if ((extend || !data_size) && slot == 0) {
4302				mid = 1;
4303			} else {
4304				mid = slot;
4305				if (mid != nritems &&
4306				    leaf_space_used(l, mid, nritems - mid) +
4307				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4308					if (data_size && !tried_avoid_double)
4309						goto push_for_double;
4310					split = 2;
4311				}
4312			}
4313		}
4314	}
4315
4316	if (split == 0)
4317		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4318	else
4319		btrfs_item_key(l, &disk_key, mid);
4320
4321	right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4322					     l->start, 0);
4323	if (IS_ERR(right))
4324		return PTR_ERR(right);
4325
4326	root_add_used(root, fs_info->nodesize);
4327
 
 
 
 
 
 
 
 
 
4328	if (split == 0) {
4329		if (mid <= slot) {
4330			btrfs_set_header_nritems(right, 0);
4331			insert_ptr(trans, path, &disk_key,
4332				   right->start, path->slots[1] + 1, 1);
4333			btrfs_tree_unlock(path->nodes[0]);
4334			free_extent_buffer(path->nodes[0]);
4335			path->nodes[0] = right;
4336			path->slots[0] = 0;
4337			path->slots[1] += 1;
4338		} else {
4339			btrfs_set_header_nritems(right, 0);
4340			insert_ptr(trans, path, &disk_key,
4341				   right->start, path->slots[1], 1);
4342			btrfs_tree_unlock(path->nodes[0]);
4343			free_extent_buffer(path->nodes[0]);
4344			path->nodes[0] = right;
4345			path->slots[0] = 0;
4346			if (path->slots[1] == 0)
4347				fixup_low_keys(path, &disk_key, 1);
4348		}
4349		/*
4350		 * We create a new leaf 'right' for the required ins_len and
4351		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4352		 * the content of ins_len to 'right'.
4353		 */
4354		return ret;
4355	}
4356
4357	copy_for_split(trans, path, l, right, slot, mid, nritems);
4358
4359	if (split == 2) {
4360		BUG_ON(num_doubles != 0);
4361		num_doubles++;
4362		goto again;
4363	}
4364
4365	return 0;
4366
4367push_for_double:
4368	push_for_double_split(trans, root, path, data_size);
4369	tried_avoid_double = 1;
4370	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4371		return 0;
4372	goto again;
4373}
4374
4375static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4376					 struct btrfs_root *root,
4377					 struct btrfs_path *path, int ins_len)
4378{
 
4379	struct btrfs_key key;
4380	struct extent_buffer *leaf;
4381	struct btrfs_file_extent_item *fi;
4382	u64 extent_len = 0;
4383	u32 item_size;
4384	int ret;
4385
4386	leaf = path->nodes[0];
4387	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4388
4389	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4390	       key.type != BTRFS_EXTENT_CSUM_KEY);
4391
4392	if (btrfs_leaf_free_space(leaf) >= ins_len)
4393		return 0;
4394
4395	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4396	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4397		fi = btrfs_item_ptr(leaf, path->slots[0],
4398				    struct btrfs_file_extent_item);
4399		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4400	}
4401	btrfs_release_path(path);
4402
4403	path->keep_locks = 1;
4404	path->search_for_split = 1;
4405	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4406	path->search_for_split = 0;
4407	if (ret > 0)
4408		ret = -EAGAIN;
4409	if (ret < 0)
4410		goto err;
4411
4412	ret = -EAGAIN;
4413	leaf = path->nodes[0];
4414	/* if our item isn't there, return now */
4415	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4416		goto err;
4417
4418	/* the leaf has  changed, it now has room.  return now */
4419	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4420		goto err;
4421
4422	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4423		fi = btrfs_item_ptr(leaf, path->slots[0],
4424				    struct btrfs_file_extent_item);
4425		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4426			goto err;
4427	}
4428
4429	btrfs_set_path_blocking(path);
4430	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4431	if (ret)
4432		goto err;
4433
4434	path->keep_locks = 0;
4435	btrfs_unlock_up_safe(path, 1);
4436	return 0;
4437err:
4438	path->keep_locks = 0;
4439	return ret;
4440}
4441
4442static noinline int split_item(struct btrfs_path *path,
4443			       const struct btrfs_key *new_key,
 
 
4444			       unsigned long split_offset)
4445{
4446	struct extent_buffer *leaf;
4447	struct btrfs_item *item;
4448	struct btrfs_item *new_item;
4449	int slot;
4450	char *buf;
4451	u32 nritems;
4452	u32 item_size;
4453	u32 orig_offset;
4454	struct btrfs_disk_key disk_key;
4455
4456	leaf = path->nodes[0];
4457	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
4458
4459	btrfs_set_path_blocking(path);
4460
4461	item = btrfs_item_nr(path->slots[0]);
4462	orig_offset = btrfs_item_offset(leaf, item);
4463	item_size = btrfs_item_size(leaf, item);
4464
4465	buf = kmalloc(item_size, GFP_NOFS);
4466	if (!buf)
4467		return -ENOMEM;
4468
4469	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4470			    path->slots[0]), item_size);
4471
4472	slot = path->slots[0] + 1;
4473	nritems = btrfs_header_nritems(leaf);
4474	if (slot != nritems) {
4475		/* shift the items */
4476		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4477				btrfs_item_nr_offset(slot),
4478				(nritems - slot) * sizeof(struct btrfs_item));
4479	}
4480
4481	btrfs_cpu_key_to_disk(&disk_key, new_key);
4482	btrfs_set_item_key(leaf, &disk_key, slot);
4483
4484	new_item = btrfs_item_nr(slot);
4485
4486	btrfs_set_item_offset(leaf, new_item, orig_offset);
4487	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4488
4489	btrfs_set_item_offset(leaf, item,
4490			      orig_offset + item_size - split_offset);
4491	btrfs_set_item_size(leaf, item, split_offset);
4492
4493	btrfs_set_header_nritems(leaf, nritems + 1);
4494
4495	/* write the data for the start of the original item */
4496	write_extent_buffer(leaf, buf,
4497			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4498			    split_offset);
4499
4500	/* write the data for the new item */
4501	write_extent_buffer(leaf, buf + split_offset,
4502			    btrfs_item_ptr_offset(leaf, slot),
4503			    item_size - split_offset);
4504	btrfs_mark_buffer_dirty(leaf);
4505
4506	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4507	kfree(buf);
4508	return 0;
4509}
4510
4511/*
4512 * This function splits a single item into two items,
4513 * giving 'new_key' to the new item and splitting the
4514 * old one at split_offset (from the start of the item).
4515 *
4516 * The path may be released by this operation.  After
4517 * the split, the path is pointing to the old item.  The
4518 * new item is going to be in the same node as the old one.
4519 *
4520 * Note, the item being split must be smaller enough to live alone on
4521 * a tree block with room for one extra struct btrfs_item
4522 *
4523 * This allows us to split the item in place, keeping a lock on the
4524 * leaf the entire time.
4525 */
4526int btrfs_split_item(struct btrfs_trans_handle *trans,
4527		     struct btrfs_root *root,
4528		     struct btrfs_path *path,
4529		     const struct btrfs_key *new_key,
4530		     unsigned long split_offset)
4531{
4532	int ret;
4533	ret = setup_leaf_for_split(trans, root, path,
4534				   sizeof(struct btrfs_item));
4535	if (ret)
4536		return ret;
4537
4538	ret = split_item(path, new_key, split_offset);
4539	return ret;
4540}
4541
4542/*
4543 * This function duplicate a item, giving 'new_key' to the new item.
4544 * It guarantees both items live in the same tree leaf and the new item
4545 * is contiguous with the original item.
4546 *
4547 * This allows us to split file extent in place, keeping a lock on the
4548 * leaf the entire time.
4549 */
4550int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4551			 struct btrfs_root *root,
4552			 struct btrfs_path *path,
4553			 const struct btrfs_key *new_key)
4554{
4555	struct extent_buffer *leaf;
4556	int ret;
4557	u32 item_size;
4558
4559	leaf = path->nodes[0];
4560	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4561	ret = setup_leaf_for_split(trans, root, path,
4562				   item_size + sizeof(struct btrfs_item));
4563	if (ret)
4564		return ret;
4565
4566	path->slots[0]++;
4567	setup_items_for_insert(root, path, new_key, &item_size,
4568			       item_size, item_size +
4569			       sizeof(struct btrfs_item), 1);
4570	leaf = path->nodes[0];
4571	memcpy_extent_buffer(leaf,
4572			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4573			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4574			     item_size);
4575	return 0;
4576}
4577
4578/*
4579 * make the item pointed to by the path smaller.  new_size indicates
4580 * how small to make it, and from_end tells us if we just chop bytes
4581 * off the end of the item or if we shift the item to chop bytes off
4582 * the front.
4583 */
4584void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
 
4585{
4586	int slot;
4587	struct extent_buffer *leaf;
4588	struct btrfs_item *item;
4589	u32 nritems;
4590	unsigned int data_end;
4591	unsigned int old_data_start;
4592	unsigned int old_size;
4593	unsigned int size_diff;
4594	int i;
4595	struct btrfs_map_token token;
4596
 
 
4597	leaf = path->nodes[0];
4598	slot = path->slots[0];
4599
4600	old_size = btrfs_item_size_nr(leaf, slot);
4601	if (old_size == new_size)
4602		return;
4603
4604	nritems = btrfs_header_nritems(leaf);
4605	data_end = leaf_data_end(leaf);
4606
4607	old_data_start = btrfs_item_offset_nr(leaf, slot);
4608
4609	size_diff = old_size - new_size;
4610
4611	BUG_ON(slot < 0);
4612	BUG_ON(slot >= nritems);
4613
4614	/*
4615	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4616	 */
4617	/* first correct the data pointers */
4618	btrfs_init_map_token(&token, leaf);
4619	for (i = slot; i < nritems; i++) {
4620		u32 ioff;
4621		item = btrfs_item_nr(i);
4622
4623		ioff = btrfs_token_item_offset(leaf, item, &token);
4624		btrfs_set_token_item_offset(leaf, item,
4625					    ioff + size_diff, &token);
4626	}
4627
4628	/* shift the data */
4629	if (from_end) {
4630		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4631			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4632			      data_end, old_data_start + new_size - data_end);
4633	} else {
4634		struct btrfs_disk_key disk_key;
4635		u64 offset;
4636
4637		btrfs_item_key(leaf, &disk_key, slot);
4638
4639		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4640			unsigned long ptr;
4641			struct btrfs_file_extent_item *fi;
4642
4643			fi = btrfs_item_ptr(leaf, slot,
4644					    struct btrfs_file_extent_item);
4645			fi = (struct btrfs_file_extent_item *)(
4646			     (unsigned long)fi - size_diff);
4647
4648			if (btrfs_file_extent_type(leaf, fi) ==
4649			    BTRFS_FILE_EXTENT_INLINE) {
4650				ptr = btrfs_item_ptr_offset(leaf, slot);
4651				memmove_extent_buffer(leaf, ptr,
4652				      (unsigned long)fi,
4653				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4654			}
4655		}
4656
4657		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4658			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4659			      data_end, old_data_start - data_end);
4660
4661		offset = btrfs_disk_key_offset(&disk_key);
4662		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4663		btrfs_set_item_key(leaf, &disk_key, slot);
4664		if (slot == 0)
4665			fixup_low_keys(path, &disk_key, 1);
4666	}
4667
4668	item = btrfs_item_nr(slot);
4669	btrfs_set_item_size(leaf, item, new_size);
4670	btrfs_mark_buffer_dirty(leaf);
4671
4672	if (btrfs_leaf_free_space(leaf) < 0) {
4673		btrfs_print_leaf(leaf);
4674		BUG();
4675	}
4676}
4677
4678/*
4679 * make the item pointed to by the path bigger, data_size is the added size.
4680 */
4681void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
 
4682{
4683	int slot;
4684	struct extent_buffer *leaf;
4685	struct btrfs_item *item;
4686	u32 nritems;
4687	unsigned int data_end;
4688	unsigned int old_data;
4689	unsigned int old_size;
4690	int i;
4691	struct btrfs_map_token token;
4692
 
 
4693	leaf = path->nodes[0];
4694
4695	nritems = btrfs_header_nritems(leaf);
4696	data_end = leaf_data_end(leaf);
4697
4698	if (btrfs_leaf_free_space(leaf) < data_size) {
4699		btrfs_print_leaf(leaf);
4700		BUG();
4701	}
4702	slot = path->slots[0];
4703	old_data = btrfs_item_end_nr(leaf, slot);
4704
4705	BUG_ON(slot < 0);
4706	if (slot >= nritems) {
4707		btrfs_print_leaf(leaf);
4708		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4709			   slot, nritems);
4710		BUG();
4711	}
4712
4713	/*
4714	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4715	 */
4716	/* first correct the data pointers */
4717	btrfs_init_map_token(&token, leaf);
4718	for (i = slot; i < nritems; i++) {
4719		u32 ioff;
4720		item = btrfs_item_nr(i);
4721
4722		ioff = btrfs_token_item_offset(leaf, item, &token);
4723		btrfs_set_token_item_offset(leaf, item,
4724					    ioff - data_size, &token);
4725	}
4726
4727	/* shift the data */
4728	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4729		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4730		      data_end, old_data - data_end);
4731
4732	data_end = old_data;
4733	old_size = btrfs_item_size_nr(leaf, slot);
4734	item = btrfs_item_nr(slot);
4735	btrfs_set_item_size(leaf, item, old_size + data_size);
4736	btrfs_mark_buffer_dirty(leaf);
4737
4738	if (btrfs_leaf_free_space(leaf) < 0) {
4739		btrfs_print_leaf(leaf);
4740		BUG();
4741	}
4742}
4743
4744/*
4745 * this is a helper for btrfs_insert_empty_items, the main goal here is
4746 * to save stack depth by doing the bulk of the work in a function
4747 * that doesn't call btrfs_search_slot
4748 */
4749void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4750			    const struct btrfs_key *cpu_key, u32 *data_size,
4751			    u32 total_data, u32 total_size, int nr)
4752{
4753	struct btrfs_fs_info *fs_info = root->fs_info;
4754	struct btrfs_item *item;
4755	int i;
4756	u32 nritems;
4757	unsigned int data_end;
4758	struct btrfs_disk_key disk_key;
4759	struct extent_buffer *leaf;
4760	int slot;
4761	struct btrfs_map_token token;
4762
4763	if (path->slots[0] == 0) {
4764		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4765		fixup_low_keys(path, &disk_key, 1);
4766	}
4767	btrfs_unlock_up_safe(path, 1);
4768
 
 
4769	leaf = path->nodes[0];
4770	slot = path->slots[0];
4771
4772	nritems = btrfs_header_nritems(leaf);
4773	data_end = leaf_data_end(leaf);
4774
4775	if (btrfs_leaf_free_space(leaf) < total_size) {
4776		btrfs_print_leaf(leaf);
4777		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4778			   total_size, btrfs_leaf_free_space(leaf));
4779		BUG();
4780	}
4781
4782	btrfs_init_map_token(&token, leaf);
4783	if (slot != nritems) {
4784		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4785
4786		if (old_data < data_end) {
4787			btrfs_print_leaf(leaf);
4788			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4789				   slot, old_data, data_end);
4790			BUG();
4791		}
4792		/*
4793		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4794		 */
4795		/* first correct the data pointers */
4796		for (i = slot; i < nritems; i++) {
4797			u32 ioff;
4798
4799			item = btrfs_item_nr(i);
4800			ioff = btrfs_token_item_offset(leaf, item, &token);
4801			btrfs_set_token_item_offset(leaf, item,
4802						    ioff - total_data, &token);
4803		}
4804		/* shift the items */
4805		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4806			      btrfs_item_nr_offset(slot),
4807			      (nritems - slot) * sizeof(struct btrfs_item));
4808
4809		/* shift the data */
4810		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4811			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4812			      data_end, old_data - data_end);
4813		data_end = old_data;
4814	}
4815
4816	/* setup the item for the new data */
4817	for (i = 0; i < nr; i++) {
4818		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4819		btrfs_set_item_key(leaf, &disk_key, slot + i);
4820		item = btrfs_item_nr(slot + i);
4821		btrfs_set_token_item_offset(leaf, item,
4822					    data_end - data_size[i], &token);
4823		data_end -= data_size[i];
4824		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4825	}
4826
4827	btrfs_set_header_nritems(leaf, nritems + nr);
4828	btrfs_mark_buffer_dirty(leaf);
4829
4830	if (btrfs_leaf_free_space(leaf) < 0) {
4831		btrfs_print_leaf(leaf);
4832		BUG();
4833	}
4834}
4835
4836/*
4837 * Given a key and some data, insert items into the tree.
4838 * This does all the path init required, making room in the tree if needed.
4839 */
4840int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4841			    struct btrfs_root *root,
4842			    struct btrfs_path *path,
4843			    const struct btrfs_key *cpu_key, u32 *data_size,
4844			    int nr)
4845{
4846	int ret = 0;
4847	int slot;
4848	int i;
4849	u32 total_size = 0;
4850	u32 total_data = 0;
4851
4852	for (i = 0; i < nr; i++)
4853		total_data += data_size[i];
4854
4855	total_size = total_data + (nr * sizeof(struct btrfs_item));
4856	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4857	if (ret == 0)
4858		return -EEXIST;
4859	if (ret < 0)
4860		return ret;
4861
4862	slot = path->slots[0];
4863	BUG_ON(slot < 0);
4864
4865	setup_items_for_insert(root, path, cpu_key, data_size,
4866			       total_data, total_size, nr);
4867	return 0;
4868}
4869
4870/*
4871 * Given a key and some data, insert an item into the tree.
4872 * This does all the path init required, making room in the tree if needed.
4873 */
4874int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4875		      const struct btrfs_key *cpu_key, void *data,
4876		      u32 data_size)
4877{
4878	int ret = 0;
4879	struct btrfs_path *path;
4880	struct extent_buffer *leaf;
4881	unsigned long ptr;
4882
4883	path = btrfs_alloc_path();
4884	if (!path)
4885		return -ENOMEM;
4886	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4887	if (!ret) {
4888		leaf = path->nodes[0];
4889		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4890		write_extent_buffer(leaf, data, ptr, data_size);
4891		btrfs_mark_buffer_dirty(leaf);
4892	}
4893	btrfs_free_path(path);
4894	return ret;
4895}
4896
4897/*
4898 * delete the pointer from a given node.
4899 *
4900 * the tree should have been previously balanced so the deletion does not
4901 * empty a node.
4902 */
4903static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4904		    int level, int slot)
4905{
 
4906	struct extent_buffer *parent = path->nodes[level];
4907	u32 nritems;
4908	int ret;
4909
4910	nritems = btrfs_header_nritems(parent);
4911	if (slot != nritems - 1) {
4912		if (level) {
4913			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4914					nritems - slot - 1);
4915			BUG_ON(ret < 0);
4916		}
4917		memmove_extent_buffer(parent,
4918			      btrfs_node_key_ptr_offset(slot),
4919			      btrfs_node_key_ptr_offset(slot + 1),
4920			      sizeof(struct btrfs_key_ptr) *
4921			      (nritems - slot - 1));
4922	} else if (level) {
4923		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4924				GFP_NOFS);
4925		BUG_ON(ret < 0);
4926	}
4927
4928	nritems--;
4929	btrfs_set_header_nritems(parent, nritems);
4930	if (nritems == 0 && parent == root->node) {
4931		BUG_ON(btrfs_header_level(root->node) != 1);
4932		/* just turn the root into a leaf and break */
4933		btrfs_set_header_level(root->node, 0);
4934	} else if (slot == 0) {
4935		struct btrfs_disk_key disk_key;
4936
4937		btrfs_node_key(parent, &disk_key, 0);
4938		fixup_low_keys(path, &disk_key, level + 1);
4939	}
4940	btrfs_mark_buffer_dirty(parent);
4941}
4942
4943/*
4944 * a helper function to delete the leaf pointed to by path->slots[1] and
4945 * path->nodes[1].
4946 *
4947 * This deletes the pointer in path->nodes[1] and frees the leaf
4948 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4949 *
4950 * The path must have already been setup for deleting the leaf, including
4951 * all the proper balancing.  path->nodes[1] must be locked.
4952 */
4953static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4954				    struct btrfs_root *root,
4955				    struct btrfs_path *path,
4956				    struct extent_buffer *leaf)
4957{
4958	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4959	del_ptr(root, path, 1, path->slots[1]);
4960
4961	/*
4962	 * btrfs_free_extent is expensive, we want to make sure we
4963	 * aren't holding any locks when we call it
4964	 */
4965	btrfs_unlock_up_safe(path, 0);
4966
4967	root_sub_used(root, leaf->len);
4968
4969	extent_buffer_get(leaf);
4970	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4971	free_extent_buffer_stale(leaf);
4972}
4973/*
4974 * delete the item at the leaf level in path.  If that empties
4975 * the leaf, remove it from the tree
4976 */
4977int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4978		    struct btrfs_path *path, int slot, int nr)
4979{
4980	struct btrfs_fs_info *fs_info = root->fs_info;
4981	struct extent_buffer *leaf;
4982	struct btrfs_item *item;
4983	u32 last_off;
4984	u32 dsize = 0;
4985	int ret = 0;
4986	int wret;
4987	int i;
4988	u32 nritems;
 
 
 
4989
4990	leaf = path->nodes[0];
4991	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4992
4993	for (i = 0; i < nr; i++)
4994		dsize += btrfs_item_size_nr(leaf, slot + i);
4995
4996	nritems = btrfs_header_nritems(leaf);
4997
4998	if (slot + nr != nritems) {
4999		int data_end = leaf_data_end(leaf);
5000		struct btrfs_map_token token;
5001
5002		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
5003			      data_end + dsize,
5004			      BTRFS_LEAF_DATA_OFFSET + data_end,
5005			      last_off - data_end);
5006
5007		btrfs_init_map_token(&token, leaf);
5008		for (i = slot + nr; i < nritems; i++) {
5009			u32 ioff;
5010
5011			item = btrfs_item_nr(i);
5012			ioff = btrfs_token_item_offset(leaf, item, &token);
5013			btrfs_set_token_item_offset(leaf, item,
5014						    ioff + dsize, &token);
5015		}
5016
5017		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
5018			      btrfs_item_nr_offset(slot + nr),
5019			      sizeof(struct btrfs_item) *
5020			      (nritems - slot - nr));
5021	}
5022	btrfs_set_header_nritems(leaf, nritems - nr);
5023	nritems -= nr;
5024
5025	/* delete the leaf if we've emptied it */
5026	if (nritems == 0) {
5027		if (leaf == root->node) {
5028			btrfs_set_header_level(leaf, 0);
5029		} else {
5030			btrfs_set_path_blocking(path);
5031			btrfs_clean_tree_block(leaf);
5032			btrfs_del_leaf(trans, root, path, leaf);
5033		}
5034	} else {
5035		int used = leaf_space_used(leaf, 0, nritems);
5036		if (slot == 0) {
5037			struct btrfs_disk_key disk_key;
5038
5039			btrfs_item_key(leaf, &disk_key, 0);
5040			fixup_low_keys(path, &disk_key, 1);
5041		}
5042
5043		/* delete the leaf if it is mostly empty */
5044		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5045			/* push_leaf_left fixes the path.
5046			 * make sure the path still points to our leaf
5047			 * for possible call to del_ptr below
5048			 */
5049			slot = path->slots[1];
5050			extent_buffer_get(leaf);
5051
5052			btrfs_set_path_blocking(path);
5053			wret = push_leaf_left(trans, root, path, 1, 1,
5054					      1, (u32)-1);
5055			if (wret < 0 && wret != -ENOSPC)
5056				ret = wret;
5057
5058			if (path->nodes[0] == leaf &&
5059			    btrfs_header_nritems(leaf)) {
5060				wret = push_leaf_right(trans, root, path, 1,
5061						       1, 1, 0);
5062				if (wret < 0 && wret != -ENOSPC)
5063					ret = wret;
5064			}
5065
5066			if (btrfs_header_nritems(leaf) == 0) {
5067				path->slots[1] = slot;
5068				btrfs_del_leaf(trans, root, path, leaf);
5069				free_extent_buffer(leaf);
5070				ret = 0;
5071			} else {
5072				/* if we're still in the path, make sure
5073				 * we're dirty.  Otherwise, one of the
5074				 * push_leaf functions must have already
5075				 * dirtied this buffer
5076				 */
5077				if (path->nodes[0] == leaf)
5078					btrfs_mark_buffer_dirty(leaf);
5079				free_extent_buffer(leaf);
5080			}
5081		} else {
5082			btrfs_mark_buffer_dirty(leaf);
5083		}
5084	}
5085	return ret;
5086}
5087
5088/*
5089 * search the tree again to find a leaf with lesser keys
5090 * returns 0 if it found something or 1 if there are no lesser leaves.
5091 * returns < 0 on io errors.
5092 *
5093 * This may release the path, and so you may lose any locks held at the
5094 * time you call it.
5095 */
5096int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5097{
5098	struct btrfs_key key;
5099	struct btrfs_disk_key found_key;
5100	int ret;
5101
5102	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5103
5104	if (key.offset > 0) {
5105		key.offset--;
5106	} else if (key.type > 0) {
5107		key.type--;
5108		key.offset = (u64)-1;
5109	} else if (key.objectid > 0) {
5110		key.objectid--;
5111		key.type = (u8)-1;
5112		key.offset = (u64)-1;
5113	} else {
5114		return 1;
5115	}
5116
5117	btrfs_release_path(path);
5118	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5119	if (ret < 0)
5120		return ret;
5121	btrfs_item_key(path->nodes[0], &found_key, 0);
5122	ret = comp_keys(&found_key, &key);
5123	/*
5124	 * We might have had an item with the previous key in the tree right
5125	 * before we released our path. And after we released our path, that
5126	 * item might have been pushed to the first slot (0) of the leaf we
5127	 * were holding due to a tree balance. Alternatively, an item with the
5128	 * previous key can exist as the only element of a leaf (big fat item).
5129	 * Therefore account for these 2 cases, so that our callers (like
5130	 * btrfs_previous_item) don't miss an existing item with a key matching
5131	 * the previous key we computed above.
5132	 */
5133	if (ret <= 0)
5134		return 0;
5135	return 1;
5136}
5137
5138/*
5139 * A helper function to walk down the tree starting at min_key, and looking
5140 * for nodes or leaves that are have a minimum transaction id.
5141 * This is used by the btree defrag code, and tree logging
5142 *
5143 * This does not cow, but it does stuff the starting key it finds back
5144 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5145 * key and get a writable path.
5146 *
 
 
 
5147 * This honors path->lowest_level to prevent descent past a given level
5148 * of the tree.
5149 *
5150 * min_trans indicates the oldest transaction that you are interested
5151 * in walking through.  Any nodes or leaves older than min_trans are
5152 * skipped over (without reading them).
5153 *
5154 * returns zero if something useful was found, < 0 on error and 1 if there
5155 * was nothing in the tree that matched the search criteria.
5156 */
5157int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5158			 struct btrfs_path *path,
5159			 u64 min_trans)
5160{
 
5161	struct extent_buffer *cur;
5162	struct btrfs_key found_key;
5163	int slot;
5164	int sret;
5165	u32 nritems;
5166	int level;
5167	int ret = 1;
5168	int keep_locks = path->keep_locks;
5169
5170	path->keep_locks = 1;
5171again:
5172	cur = btrfs_read_lock_root_node(root);
5173	level = btrfs_header_level(cur);
5174	WARN_ON(path->nodes[level]);
5175	path->nodes[level] = cur;
5176	path->locks[level] = BTRFS_READ_LOCK;
5177
5178	if (btrfs_header_generation(cur) < min_trans) {
5179		ret = 1;
5180		goto out;
5181	}
5182	while (1) {
5183		nritems = btrfs_header_nritems(cur);
5184		level = btrfs_header_level(cur);
5185		sret = btrfs_bin_search(cur, min_key, level, &slot);
5186		if (sret < 0) {
5187			ret = sret;
5188			goto out;
5189		}
5190
5191		/* at the lowest level, we're done, setup the path and exit */
5192		if (level == path->lowest_level) {
5193			if (slot >= nritems)
5194				goto find_next_key;
5195			ret = 0;
5196			path->slots[level] = slot;
5197			btrfs_item_key_to_cpu(cur, &found_key, slot);
5198			goto out;
5199		}
5200		if (sret && slot > 0)
5201			slot--;
5202		/*
5203		 * check this node pointer against the min_trans parameters.
5204		 * If it is too old, old, skip to the next one.
5205		 */
5206		while (slot < nritems) {
5207			u64 gen;
5208
5209			gen = btrfs_node_ptr_generation(cur, slot);
5210			if (gen < min_trans) {
5211				slot++;
5212				continue;
5213			}
5214			break;
5215		}
5216find_next_key:
5217		/*
5218		 * we didn't find a candidate key in this node, walk forward
5219		 * and find another one
5220		 */
5221		if (slot >= nritems) {
5222			path->slots[level] = slot;
5223			btrfs_set_path_blocking(path);
5224			sret = btrfs_find_next_key(root, path, min_key, level,
5225						  min_trans);
5226			if (sret == 0) {
5227				btrfs_release_path(path);
5228				goto again;
5229			} else {
5230				goto out;
5231			}
5232		}
5233		/* save our key for returning back */
5234		btrfs_node_key_to_cpu(cur, &found_key, slot);
5235		path->slots[level] = slot;
5236		if (level == path->lowest_level) {
5237			ret = 0;
5238			goto out;
5239		}
5240		btrfs_set_path_blocking(path);
5241		cur = btrfs_read_node_slot(cur, slot);
5242		if (IS_ERR(cur)) {
5243			ret = PTR_ERR(cur);
5244			goto out;
5245		}
5246
5247		btrfs_tree_read_lock(cur);
5248
5249		path->locks[level - 1] = BTRFS_READ_LOCK;
5250		path->nodes[level - 1] = cur;
5251		unlock_up(path, level, 1, 0, NULL);
 
5252	}
5253out:
5254	path->keep_locks = keep_locks;
5255	if (ret == 0) {
5256		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5257		btrfs_set_path_blocking(path);
5258		memcpy(min_key, &found_key, sizeof(found_key));
5259	}
5260	return ret;
5261}
5262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5263/*
5264 * this is similar to btrfs_next_leaf, but does not try to preserve
5265 * and fixup the path.  It looks for and returns the next key in the
5266 * tree based on the current path and the min_trans parameters.
5267 *
5268 * 0 is returned if another key is found, < 0 if there are any errors
5269 * and 1 is returned if there are no higher keys in the tree
5270 *
5271 * path->keep_locks should be set to 1 on the search made before
5272 * calling this function.
5273 */
5274int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5275			struct btrfs_key *key, int level, u64 min_trans)
5276{
5277	int slot;
5278	struct extent_buffer *c;
5279
5280	WARN_ON(!path->keep_locks && !path->skip_locking);
5281	while (level < BTRFS_MAX_LEVEL) {
5282		if (!path->nodes[level])
5283			return 1;
5284
5285		slot = path->slots[level] + 1;
5286		c = path->nodes[level];
5287next:
5288		if (slot >= btrfs_header_nritems(c)) {
5289			int ret;
5290			int orig_lowest;
5291			struct btrfs_key cur_key;
5292			if (level + 1 >= BTRFS_MAX_LEVEL ||
5293			    !path->nodes[level + 1])
5294				return 1;
5295
5296			if (path->locks[level + 1] || path->skip_locking) {
5297				level++;
5298				continue;
5299			}
5300
5301			slot = btrfs_header_nritems(c) - 1;
5302			if (level == 0)
5303				btrfs_item_key_to_cpu(c, &cur_key, slot);
5304			else
5305				btrfs_node_key_to_cpu(c, &cur_key, slot);
5306
5307			orig_lowest = path->lowest_level;
5308			btrfs_release_path(path);
5309			path->lowest_level = level;
5310			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5311						0, 0);
5312			path->lowest_level = orig_lowest;
5313			if (ret < 0)
5314				return ret;
5315
5316			c = path->nodes[level];
5317			slot = path->slots[level];
5318			if (ret == 0)
5319				slot++;
5320			goto next;
5321		}
5322
5323		if (level == 0)
5324			btrfs_item_key_to_cpu(c, key, slot);
5325		else {
5326			u64 gen = btrfs_node_ptr_generation(c, slot);
5327
5328			if (gen < min_trans) {
5329				slot++;
5330				goto next;
5331			}
5332			btrfs_node_key_to_cpu(c, key, slot);
5333		}
5334		return 0;
5335	}
5336	return 1;
5337}
5338
5339/*
5340 * search the tree again to find a leaf with greater keys
5341 * returns 0 if it found something or 1 if there are no greater leaves.
5342 * returns < 0 on io errors.
5343 */
5344int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5345{
5346	return btrfs_next_old_leaf(root, path, 0);
5347}
5348
5349int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5350			u64 time_seq)
5351{
5352	int slot;
5353	int level;
5354	struct extent_buffer *c;
5355	struct extent_buffer *next;
5356	struct btrfs_key key;
5357	u32 nritems;
5358	int ret;
5359	int old_spinning = path->leave_spinning;
5360	int next_rw_lock = 0;
5361
5362	nritems = btrfs_header_nritems(path->nodes[0]);
5363	if (nritems == 0)
5364		return 1;
5365
5366	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5367again:
5368	level = 1;
5369	next = NULL;
5370	next_rw_lock = 0;
5371	btrfs_release_path(path);
5372
5373	path->keep_locks = 1;
5374	path->leave_spinning = 1;
5375
5376	if (time_seq)
5377		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5378	else
5379		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5380	path->keep_locks = 0;
5381
5382	if (ret < 0)
5383		return ret;
5384
5385	nritems = btrfs_header_nritems(path->nodes[0]);
5386	/*
5387	 * by releasing the path above we dropped all our locks.  A balance
5388	 * could have added more items next to the key that used to be
5389	 * at the very end of the block.  So, check again here and
5390	 * advance the path if there are now more items available.
5391	 */
5392	if (nritems > 0 && path->slots[0] < nritems - 1) {
5393		if (ret == 0)
5394			path->slots[0]++;
5395		ret = 0;
5396		goto done;
5397	}
5398	/*
5399	 * So the above check misses one case:
5400	 * - after releasing the path above, someone has removed the item that
5401	 *   used to be at the very end of the block, and balance between leafs
5402	 *   gets another one with bigger key.offset to replace it.
5403	 *
5404	 * This one should be returned as well, or we can get leaf corruption
5405	 * later(esp. in __btrfs_drop_extents()).
5406	 *
5407	 * And a bit more explanation about this check,
5408	 * with ret > 0, the key isn't found, the path points to the slot
5409	 * where it should be inserted, so the path->slots[0] item must be the
5410	 * bigger one.
5411	 */
5412	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5413		ret = 0;
5414		goto done;
5415	}
5416
5417	while (level < BTRFS_MAX_LEVEL) {
5418		if (!path->nodes[level]) {
5419			ret = 1;
5420			goto done;
5421		}
5422
5423		slot = path->slots[level] + 1;
5424		c = path->nodes[level];
5425		if (slot >= btrfs_header_nritems(c)) {
5426			level++;
5427			if (level == BTRFS_MAX_LEVEL) {
5428				ret = 1;
5429				goto done;
5430			}
5431			continue;
5432		}
5433
5434		if (next) {
5435			btrfs_tree_unlock_rw(next, next_rw_lock);
5436			free_extent_buffer(next);
5437		}
5438
5439		next = c;
5440		next_rw_lock = path->locks[level];
5441		ret = read_block_for_search(root, path, &next, level,
5442					    slot, &key);
5443		if (ret == -EAGAIN)
5444			goto again;
5445
5446		if (ret < 0) {
5447			btrfs_release_path(path);
5448			goto done;
5449		}
5450
5451		if (!path->skip_locking) {
5452			ret = btrfs_try_tree_read_lock(next);
5453			if (!ret && time_seq) {
5454				/*
5455				 * If we don't get the lock, we may be racing
5456				 * with push_leaf_left, holding that lock while
5457				 * itself waiting for the leaf we've currently
5458				 * locked. To solve this situation, we give up
5459				 * on our lock and cycle.
5460				 */
5461				free_extent_buffer(next);
5462				btrfs_release_path(path);
5463				cond_resched();
5464				goto again;
5465			}
5466			if (!ret) {
5467				btrfs_set_path_blocking(path);
5468				btrfs_tree_read_lock(next);
 
 
5469			}
5470			next_rw_lock = BTRFS_READ_LOCK;
5471		}
5472		break;
5473	}
5474	path->slots[level] = slot;
5475	while (1) {
5476		level--;
5477		c = path->nodes[level];
5478		if (path->locks[level])
5479			btrfs_tree_unlock_rw(c, path->locks[level]);
5480
5481		free_extent_buffer(c);
5482		path->nodes[level] = next;
5483		path->slots[level] = 0;
5484		if (!path->skip_locking)
5485			path->locks[level] = next_rw_lock;
5486		if (!level)
5487			break;
5488
5489		ret = read_block_for_search(root, path, &next, level,
5490					    0, &key);
5491		if (ret == -EAGAIN)
5492			goto again;
5493
5494		if (ret < 0) {
5495			btrfs_release_path(path);
5496			goto done;
5497		}
5498
5499		if (!path->skip_locking) {
5500			ret = btrfs_try_tree_read_lock(next);
5501			if (!ret) {
5502				btrfs_set_path_blocking(path);
5503				btrfs_tree_read_lock(next);
 
 
5504			}
5505			next_rw_lock = BTRFS_READ_LOCK;
5506		}
5507	}
5508	ret = 0;
5509done:
5510	unlock_up(path, 0, 1, 0, NULL);
5511	path->leave_spinning = old_spinning;
5512	if (!old_spinning)
5513		btrfs_set_path_blocking(path);
5514
5515	return ret;
5516}
5517
5518/*
5519 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5520 * searching until it gets past min_objectid or finds an item of 'type'
5521 *
5522 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5523 */
5524int btrfs_previous_item(struct btrfs_root *root,
5525			struct btrfs_path *path, u64 min_objectid,
5526			int type)
5527{
5528	struct btrfs_key found_key;
5529	struct extent_buffer *leaf;
5530	u32 nritems;
5531	int ret;
5532
5533	while (1) {
5534		if (path->slots[0] == 0) {
5535			btrfs_set_path_blocking(path);
5536			ret = btrfs_prev_leaf(root, path);
5537			if (ret != 0)
5538				return ret;
5539		} else {
5540			path->slots[0]--;
5541		}
5542		leaf = path->nodes[0];
5543		nritems = btrfs_header_nritems(leaf);
5544		if (nritems == 0)
5545			return 1;
5546		if (path->slots[0] == nritems)
5547			path->slots[0]--;
5548
5549		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5550		if (found_key.objectid < min_objectid)
5551			break;
5552		if (found_key.type == type)
5553			return 0;
5554		if (found_key.objectid == min_objectid &&
5555		    found_key.type < type)
5556			break;
5557	}
5558	return 1;
5559}
5560
5561/*
5562 * search in extent tree to find a previous Metadata/Data extent item with
5563 * min objecitd.
5564 *
5565 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5566 */
5567int btrfs_previous_extent_item(struct btrfs_root *root,
5568			struct btrfs_path *path, u64 min_objectid)
5569{
5570	struct btrfs_key found_key;
5571	struct extent_buffer *leaf;
5572	u32 nritems;
5573	int ret;
5574
5575	while (1) {
5576		if (path->slots[0] == 0) {
5577			btrfs_set_path_blocking(path);
5578			ret = btrfs_prev_leaf(root, path);
5579			if (ret != 0)
5580				return ret;
5581		} else {
5582			path->slots[0]--;
5583		}
5584		leaf = path->nodes[0];
5585		nritems = btrfs_header_nritems(leaf);
5586		if (nritems == 0)
5587			return 1;
5588		if (path->slots[0] == nritems)
5589			path->slots[0]--;
5590
5591		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5592		if (found_key.objectid < min_objectid)
5593			break;
5594		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5595		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5596			return 0;
5597		if (found_key.objectid == min_objectid &&
5598		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5599			break;
5600	}
5601	return 1;
5602}
v4.10.11
 
   1/*
   2 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/slab.h>
  21#include <linux/rbtree.h>
  22#include <linux/vmalloc.h>
  23#include "ctree.h"
  24#include "disk-io.h"
  25#include "transaction.h"
  26#include "print-tree.h"
  27#include "locking.h"
 
 
  28
  29static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  30		      *root, struct btrfs_path *path, int level);
  31static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  32		      *root, struct btrfs_key *ins_key,
  33		      struct btrfs_path *path, int data_size, int extend);
  34static int push_node_left(struct btrfs_trans_handle *trans,
  35			  struct btrfs_fs_info *fs_info,
  36			  struct extent_buffer *dst,
  37			  struct extent_buffer *src, int empty);
  38static int balance_node_right(struct btrfs_trans_handle *trans,
  39			      struct btrfs_fs_info *fs_info,
  40			      struct extent_buffer *dst_buf,
  41			      struct extent_buffer *src_buf);
  42static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  43		    int level, int slot);
  44static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
  45				 struct extent_buffer *eb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  46
  47struct btrfs_path *btrfs_alloc_path(void)
  48{
  49	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  50}
  51
  52/*
  53 * set all locked nodes in the path to blocking locks.  This should
  54 * be done before scheduling
  55 */
  56noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  57{
  58	int i;
  59	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  60		if (!p->nodes[i] || !p->locks[i])
  61			continue;
  62		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
  63		if (p->locks[i] == BTRFS_READ_LOCK)
 
 
 
 
 
  64			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  65		else if (p->locks[i] == BTRFS_WRITE_LOCK)
 
  66			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  67	}
  68}
  69
  70/*
  71 * reset all the locked nodes in the patch to spinning locks.
  72 *
  73 * held is used to keep lockdep happy, when lockdep is enabled
  74 * we set held to a blocking lock before we go around and
  75 * retake all the spinlocks in the path.  You can safely use NULL
  76 * for held
  77 */
  78noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  79					struct extent_buffer *held, int held_rw)
  80{
  81	int i;
  82
  83	if (held) {
  84		btrfs_set_lock_blocking_rw(held, held_rw);
  85		if (held_rw == BTRFS_WRITE_LOCK)
  86			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
  87		else if (held_rw == BTRFS_READ_LOCK)
  88			held_rw = BTRFS_READ_LOCK_BLOCKING;
  89	}
  90	btrfs_set_path_blocking(p);
  91
  92	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  93		if (p->nodes[i] && p->locks[i]) {
  94			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
  95			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
  96				p->locks[i] = BTRFS_WRITE_LOCK;
  97			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
  98				p->locks[i] = BTRFS_READ_LOCK;
  99		}
 100	}
 101
 102	if (held)
 103		btrfs_clear_lock_blocking_rw(held, held_rw);
 104}
 105
 106/* this also releases the path */
 107void btrfs_free_path(struct btrfs_path *p)
 108{
 109	if (!p)
 110		return;
 111	btrfs_release_path(p);
 112	kmem_cache_free(btrfs_path_cachep, p);
 113}
 114
 115/*
 116 * path release drops references on the extent buffers in the path
 117 * and it drops any locks held by this path
 118 *
 119 * It is safe to call this on paths that no locks or extent buffers held.
 120 */
 121noinline void btrfs_release_path(struct btrfs_path *p)
 122{
 123	int i;
 124
 125	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 126		p->slots[i] = 0;
 127		if (!p->nodes[i])
 128			continue;
 129		if (p->locks[i]) {
 130			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 131			p->locks[i] = 0;
 132		}
 133		free_extent_buffer(p->nodes[i]);
 134		p->nodes[i] = NULL;
 135	}
 136}
 137
 138/*
 139 * safely gets a reference on the root node of a tree.  A lock
 140 * is not taken, so a concurrent writer may put a different node
 141 * at the root of the tree.  See btrfs_lock_root_node for the
 142 * looping required.
 143 *
 144 * The extent buffer returned by this has a reference taken, so
 145 * it won't disappear.  It may stop being the root of the tree
 146 * at any time because there are no locks held.
 147 */
 148struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 149{
 150	struct extent_buffer *eb;
 151
 152	while (1) {
 153		rcu_read_lock();
 154		eb = rcu_dereference(root->node);
 155
 156		/*
 157		 * RCU really hurts here, we could free up the root node because
 158		 * it was COWed but we may not get the new root node yet so do
 159		 * the inc_not_zero dance and if it doesn't work then
 160		 * synchronize_rcu and try again.
 161		 */
 162		if (atomic_inc_not_zero(&eb->refs)) {
 163			rcu_read_unlock();
 164			break;
 165		}
 166		rcu_read_unlock();
 167		synchronize_rcu();
 168	}
 169	return eb;
 170}
 171
 172/* loop around taking references on and locking the root node of the
 173 * tree until you end up with a lock on the root.  A locked buffer
 174 * is returned, with a reference held.
 175 */
 176struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
 177{
 178	struct extent_buffer *eb;
 179
 180	while (1) {
 181		eb = btrfs_root_node(root);
 182		btrfs_tree_lock(eb);
 183		if (eb == root->node)
 184			break;
 185		btrfs_tree_unlock(eb);
 186		free_extent_buffer(eb);
 187	}
 188	return eb;
 189}
 190
 191/* loop around taking references on and locking the root node of the
 192 * tree until you end up with a lock on the root.  A locked buffer
 193 * is returned, with a reference held.
 194 */
 195static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
 196{
 197	struct extent_buffer *eb;
 198
 199	while (1) {
 200		eb = btrfs_root_node(root);
 201		btrfs_tree_read_lock(eb);
 202		if (eb == root->node)
 203			break;
 204		btrfs_tree_read_unlock(eb);
 205		free_extent_buffer(eb);
 206	}
 207	return eb;
 208}
 209
 210/* cowonly root (everything not a reference counted cow subvolume), just get
 211 * put onto a simple dirty list.  transaction.c walks this to make sure they
 212 * get properly updated on disk.
 213 */
 214static void add_root_to_dirty_list(struct btrfs_root *root)
 215{
 216	struct btrfs_fs_info *fs_info = root->fs_info;
 217
 218	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 219	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 220		return;
 221
 222	spin_lock(&fs_info->trans_lock);
 223	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 224		/* Want the extent tree to be the last on the list */
 225		if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
 226			list_move_tail(&root->dirty_list,
 227				       &fs_info->dirty_cowonly_roots);
 228		else
 229			list_move(&root->dirty_list,
 230				  &fs_info->dirty_cowonly_roots);
 231	}
 232	spin_unlock(&fs_info->trans_lock);
 233}
 234
 235/*
 236 * used by snapshot creation to make a copy of a root for a tree with
 237 * a given objectid.  The buffer with the new root node is returned in
 238 * cow_ret, and this func returns zero on success or a negative error code.
 239 */
 240int btrfs_copy_root(struct btrfs_trans_handle *trans,
 241		      struct btrfs_root *root,
 242		      struct extent_buffer *buf,
 243		      struct extent_buffer **cow_ret, u64 new_root_objectid)
 244{
 245	struct btrfs_fs_info *fs_info = root->fs_info;
 246	struct extent_buffer *cow;
 247	int ret = 0;
 248	int level;
 249	struct btrfs_disk_key disk_key;
 250
 251	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 252		trans->transid != fs_info->running_transaction->transid);
 253	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 254		trans->transid != root->last_trans);
 255
 256	level = btrfs_header_level(buf);
 257	if (level == 0)
 258		btrfs_item_key(buf, &disk_key, 0);
 259	else
 260		btrfs_node_key(buf, &disk_key, 0);
 261
 262	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 263			&disk_key, level, buf->start, 0);
 264	if (IS_ERR(cow))
 265		return PTR_ERR(cow);
 266
 267	copy_extent_buffer_full(cow, buf);
 268	btrfs_set_header_bytenr(cow, cow->start);
 269	btrfs_set_header_generation(cow, trans->transid);
 270	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 271	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 272				     BTRFS_HEADER_FLAG_RELOC);
 273	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 274		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 275	else
 276		btrfs_set_header_owner(cow, new_root_objectid);
 277
 278	write_extent_buffer_fsid(cow, fs_info->fsid);
 279
 280	WARN_ON(btrfs_header_generation(buf) > trans->transid);
 281	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 282		ret = btrfs_inc_ref(trans, root, cow, 1);
 283	else
 284		ret = btrfs_inc_ref(trans, root, cow, 0);
 285
 286	if (ret)
 287		return ret;
 288
 289	btrfs_mark_buffer_dirty(cow);
 290	*cow_ret = cow;
 291	return 0;
 292}
 293
 294enum mod_log_op {
 295	MOD_LOG_KEY_REPLACE,
 296	MOD_LOG_KEY_ADD,
 297	MOD_LOG_KEY_REMOVE,
 298	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
 299	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
 300	MOD_LOG_MOVE_KEYS,
 301	MOD_LOG_ROOT_REPLACE,
 302};
 303
 304struct tree_mod_move {
 305	int dst_slot;
 306	int nr_items;
 307};
 308
 309struct tree_mod_root {
 310	u64 logical;
 311	u8 level;
 312};
 313
 314struct tree_mod_elem {
 315	struct rb_node node;
 316	u64 logical;
 317	u64 seq;
 318	enum mod_log_op op;
 319
 320	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
 321	int slot;
 322
 323	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
 324	u64 generation;
 325
 326	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
 327	struct btrfs_disk_key key;
 328	u64 blockptr;
 329
 330	/* this is used for op == MOD_LOG_MOVE_KEYS */
 331	struct tree_mod_move move;
 
 
 
 332
 333	/* this is used for op == MOD_LOG_ROOT_REPLACE */
 334	struct tree_mod_root old_root;
 335};
 336
 337static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
 338{
 339	read_lock(&fs_info->tree_mod_log_lock);
 340}
 341
 342static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
 343{
 344	read_unlock(&fs_info->tree_mod_log_lock);
 345}
 346
 347static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
 348{
 349	write_lock(&fs_info->tree_mod_log_lock);
 350}
 351
 352static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
 353{
 354	write_unlock(&fs_info->tree_mod_log_lock);
 355}
 356
 357/*
 358 * Pull a new tree mod seq number for our operation.
 359 */
 360static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
 361{
 362	return atomic64_inc_return(&fs_info->tree_mod_seq);
 363}
 364
 365/*
 366 * This adds a new blocker to the tree mod log's blocker list if the @elem
 367 * passed does not already have a sequence number set. So when a caller expects
 368 * to record tree modifications, it should ensure to set elem->seq to zero
 369 * before calling btrfs_get_tree_mod_seq.
 370 * Returns a fresh, unused tree log modification sequence number, even if no new
 371 * blocker was added.
 372 */
 373u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
 374			   struct seq_list *elem)
 375{
 376	tree_mod_log_write_lock(fs_info);
 377	spin_lock(&fs_info->tree_mod_seq_lock);
 378	if (!elem->seq) {
 379		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
 380		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
 381	}
 382	spin_unlock(&fs_info->tree_mod_seq_lock);
 383	tree_mod_log_write_unlock(fs_info);
 384
 385	return elem->seq;
 386}
 387
 388void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
 389			    struct seq_list *elem)
 390{
 391	struct rb_root *tm_root;
 392	struct rb_node *node;
 393	struct rb_node *next;
 394	struct seq_list *cur_elem;
 395	struct tree_mod_elem *tm;
 396	u64 min_seq = (u64)-1;
 397	u64 seq_putting = elem->seq;
 398
 399	if (!seq_putting)
 400		return;
 401
 402	spin_lock(&fs_info->tree_mod_seq_lock);
 403	list_del(&elem->list);
 404	elem->seq = 0;
 405
 406	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
 407		if (cur_elem->seq < min_seq) {
 408			if (seq_putting > cur_elem->seq) {
 409				/*
 410				 * blocker with lower sequence number exists, we
 411				 * cannot remove anything from the log
 412				 */
 413				spin_unlock(&fs_info->tree_mod_seq_lock);
 414				return;
 415			}
 416			min_seq = cur_elem->seq;
 417		}
 418	}
 419	spin_unlock(&fs_info->tree_mod_seq_lock);
 420
 421	/*
 422	 * anything that's lower than the lowest existing (read: blocked)
 423	 * sequence number can be removed from the tree.
 424	 */
 425	tree_mod_log_write_lock(fs_info);
 426	tm_root = &fs_info->tree_mod_log;
 427	for (node = rb_first(tm_root); node; node = next) {
 428		next = rb_next(node);
 429		tm = container_of(node, struct tree_mod_elem, node);
 430		if (tm->seq > min_seq)
 431			continue;
 432		rb_erase(node, tm_root);
 433		kfree(tm);
 434	}
 435	tree_mod_log_write_unlock(fs_info);
 436}
 437
 438/*
 439 * key order of the log:
 440 *       node/leaf start address -> sequence
 441 *
 442 * The 'start address' is the logical address of the *new* root node
 443 * for root replace operations, or the logical address of the affected
 444 * block for all other operations.
 445 *
 446 * Note: must be called with write lock (tree_mod_log_write_lock).
 447 */
 448static noinline int
 449__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
 450{
 451	struct rb_root *tm_root;
 452	struct rb_node **new;
 453	struct rb_node *parent = NULL;
 454	struct tree_mod_elem *cur;
 455
 456	BUG_ON(!tm);
 457
 458	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
 459
 460	tm_root = &fs_info->tree_mod_log;
 461	new = &tm_root->rb_node;
 462	while (*new) {
 463		cur = container_of(*new, struct tree_mod_elem, node);
 464		parent = *new;
 465		if (cur->logical < tm->logical)
 466			new = &((*new)->rb_left);
 467		else if (cur->logical > tm->logical)
 468			new = &((*new)->rb_right);
 469		else if (cur->seq < tm->seq)
 470			new = &((*new)->rb_left);
 471		else if (cur->seq > tm->seq)
 472			new = &((*new)->rb_right);
 473		else
 474			return -EEXIST;
 475	}
 476
 477	rb_link_node(&tm->node, parent, new);
 478	rb_insert_color(&tm->node, tm_root);
 479	return 0;
 480}
 481
 482/*
 483 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 484 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 485 * this until all tree mod log insertions are recorded in the rb tree and then
 486 * call tree_mod_log_write_unlock() to release.
 487 */
 488static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
 489				    struct extent_buffer *eb) {
 490	smp_mb();
 491	if (list_empty(&(fs_info)->tree_mod_seq_list))
 492		return 1;
 493	if (eb && btrfs_header_level(eb) == 0)
 494		return 1;
 495
 496	tree_mod_log_write_lock(fs_info);
 497	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
 498		tree_mod_log_write_unlock(fs_info);
 499		return 1;
 500	}
 501
 502	return 0;
 503}
 504
 505/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
 506static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
 507				    struct extent_buffer *eb)
 508{
 509	smp_mb();
 510	if (list_empty(&(fs_info)->tree_mod_seq_list))
 511		return 0;
 512	if (eb && btrfs_header_level(eb) == 0)
 513		return 0;
 514
 515	return 1;
 516}
 517
 518static struct tree_mod_elem *
 519alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
 520		    enum mod_log_op op, gfp_t flags)
 521{
 522	struct tree_mod_elem *tm;
 523
 524	tm = kzalloc(sizeof(*tm), flags);
 525	if (!tm)
 526		return NULL;
 527
 528	tm->logical = eb->start;
 529	if (op != MOD_LOG_KEY_ADD) {
 530		btrfs_node_key(eb, &tm->key, slot);
 531		tm->blockptr = btrfs_node_blockptr(eb, slot);
 532	}
 533	tm->op = op;
 534	tm->slot = slot;
 535	tm->generation = btrfs_node_ptr_generation(eb, slot);
 536	RB_CLEAR_NODE(&tm->node);
 537
 538	return tm;
 539}
 540
 541static noinline int
 542tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
 543			struct extent_buffer *eb, int slot,
 544			enum mod_log_op op, gfp_t flags)
 545{
 546	struct tree_mod_elem *tm;
 547	int ret;
 548
 549	if (!tree_mod_need_log(fs_info, eb))
 550		return 0;
 551
 552	tm = alloc_tree_mod_elem(eb, slot, op, flags);
 553	if (!tm)
 554		return -ENOMEM;
 555
 556	if (tree_mod_dont_log(fs_info, eb)) {
 557		kfree(tm);
 558		return 0;
 559	}
 560
 561	ret = __tree_mod_log_insert(fs_info, tm);
 562	tree_mod_log_write_unlock(fs_info);
 563	if (ret)
 564		kfree(tm);
 565
 566	return ret;
 567}
 568
 569static noinline int
 570tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
 571			 struct extent_buffer *eb, int dst_slot, int src_slot,
 572			 int nr_items, gfp_t flags)
 573{
 574	struct tree_mod_elem *tm = NULL;
 575	struct tree_mod_elem **tm_list = NULL;
 576	int ret = 0;
 577	int i;
 578	int locked = 0;
 579
 580	if (!tree_mod_need_log(fs_info, eb))
 581		return 0;
 582
 583	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
 584	if (!tm_list)
 585		return -ENOMEM;
 586
 587	tm = kzalloc(sizeof(*tm), flags);
 588	if (!tm) {
 589		ret = -ENOMEM;
 590		goto free_tms;
 591	}
 592
 593	tm->logical = eb->start;
 594	tm->slot = src_slot;
 595	tm->move.dst_slot = dst_slot;
 596	tm->move.nr_items = nr_items;
 597	tm->op = MOD_LOG_MOVE_KEYS;
 598
 599	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 600		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
 601		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
 602		if (!tm_list[i]) {
 603			ret = -ENOMEM;
 604			goto free_tms;
 605		}
 606	}
 607
 608	if (tree_mod_dont_log(fs_info, eb))
 609		goto free_tms;
 610	locked = 1;
 611
 612	/*
 613	 * When we override something during the move, we log these removals.
 614	 * This can only happen when we move towards the beginning of the
 615	 * buffer, i.e. dst_slot < src_slot.
 616	 */
 617	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 618		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 619		if (ret)
 620			goto free_tms;
 621	}
 622
 623	ret = __tree_mod_log_insert(fs_info, tm);
 624	if (ret)
 625		goto free_tms;
 626	tree_mod_log_write_unlock(fs_info);
 627	kfree(tm_list);
 628
 629	return 0;
 630free_tms:
 631	for (i = 0; i < nr_items; i++) {
 632		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 633			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 634		kfree(tm_list[i]);
 635	}
 636	if (locked)
 637		tree_mod_log_write_unlock(fs_info);
 638	kfree(tm_list);
 639	kfree(tm);
 640
 641	return ret;
 642}
 643
 644static inline int
 645__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
 646		       struct tree_mod_elem **tm_list,
 647		       int nritems)
 648{
 649	int i, j;
 650	int ret;
 651
 652	for (i = nritems - 1; i >= 0; i--) {
 653		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 654		if (ret) {
 655			for (j = nritems - 1; j > i; j--)
 656				rb_erase(&tm_list[j]->node,
 657					 &fs_info->tree_mod_log);
 658			return ret;
 659		}
 660	}
 661
 662	return 0;
 663}
 664
 665static noinline int
 666tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
 667			 struct extent_buffer *old_root,
 668			 struct extent_buffer *new_root, gfp_t flags,
 669			 int log_removal)
 670{
 
 671	struct tree_mod_elem *tm = NULL;
 672	struct tree_mod_elem **tm_list = NULL;
 673	int nritems = 0;
 674	int ret = 0;
 675	int i;
 676
 677	if (!tree_mod_need_log(fs_info, NULL))
 678		return 0;
 679
 680	if (log_removal && btrfs_header_level(old_root) > 0) {
 681		nritems = btrfs_header_nritems(old_root);
 682		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
 683				  flags);
 684		if (!tm_list) {
 685			ret = -ENOMEM;
 686			goto free_tms;
 687		}
 688		for (i = 0; i < nritems; i++) {
 689			tm_list[i] = alloc_tree_mod_elem(old_root, i,
 690			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
 691			if (!tm_list[i]) {
 692				ret = -ENOMEM;
 693				goto free_tms;
 694			}
 695		}
 696	}
 697
 698	tm = kzalloc(sizeof(*tm), flags);
 699	if (!tm) {
 700		ret = -ENOMEM;
 701		goto free_tms;
 702	}
 703
 704	tm->logical = new_root->start;
 705	tm->old_root.logical = old_root->start;
 706	tm->old_root.level = btrfs_header_level(old_root);
 707	tm->generation = btrfs_header_generation(old_root);
 708	tm->op = MOD_LOG_ROOT_REPLACE;
 709
 710	if (tree_mod_dont_log(fs_info, NULL))
 711		goto free_tms;
 712
 713	if (tm_list)
 714		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 715	if (!ret)
 716		ret = __tree_mod_log_insert(fs_info, tm);
 717
 718	tree_mod_log_write_unlock(fs_info);
 719	if (ret)
 720		goto free_tms;
 721	kfree(tm_list);
 722
 723	return ret;
 724
 725free_tms:
 726	if (tm_list) {
 727		for (i = 0; i < nritems; i++)
 728			kfree(tm_list[i]);
 729		kfree(tm_list);
 730	}
 731	kfree(tm);
 732
 733	return ret;
 734}
 735
 736static struct tree_mod_elem *
 737__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
 738		      int smallest)
 739{
 740	struct rb_root *tm_root;
 741	struct rb_node *node;
 742	struct tree_mod_elem *cur = NULL;
 743	struct tree_mod_elem *found = NULL;
 744
 745	tree_mod_log_read_lock(fs_info);
 746	tm_root = &fs_info->tree_mod_log;
 747	node = tm_root->rb_node;
 748	while (node) {
 749		cur = container_of(node, struct tree_mod_elem, node);
 750		if (cur->logical < start) {
 751			node = node->rb_left;
 752		} else if (cur->logical > start) {
 753			node = node->rb_right;
 754		} else if (cur->seq < min_seq) {
 755			node = node->rb_left;
 756		} else if (!smallest) {
 757			/* we want the node with the highest seq */
 758			if (found)
 759				BUG_ON(found->seq > cur->seq);
 760			found = cur;
 761			node = node->rb_left;
 762		} else if (cur->seq > min_seq) {
 763			/* we want the node with the smallest seq */
 764			if (found)
 765				BUG_ON(found->seq < cur->seq);
 766			found = cur;
 767			node = node->rb_right;
 768		} else {
 769			found = cur;
 770			break;
 771		}
 772	}
 773	tree_mod_log_read_unlock(fs_info);
 774
 775	return found;
 776}
 777
 778/*
 779 * this returns the element from the log with the smallest time sequence
 780 * value that's in the log (the oldest log item). any element with a time
 781 * sequence lower than min_seq will be ignored.
 782 */
 783static struct tree_mod_elem *
 784tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
 785			   u64 min_seq)
 786{
 787	return __tree_mod_log_search(fs_info, start, min_seq, 1);
 788}
 789
 790/*
 791 * this returns the element from the log with the largest time sequence
 792 * value that's in the log (the most recent log item). any element with
 793 * a time sequence lower than min_seq will be ignored.
 794 */
 795static struct tree_mod_elem *
 796tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
 797{
 798	return __tree_mod_log_search(fs_info, start, min_seq, 0);
 799}
 800
 801static noinline int
 802tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
 803		     struct extent_buffer *src, unsigned long dst_offset,
 804		     unsigned long src_offset, int nr_items)
 805{
 
 806	int ret = 0;
 807	struct tree_mod_elem **tm_list = NULL;
 808	struct tree_mod_elem **tm_list_add, **tm_list_rem;
 809	int i;
 810	int locked = 0;
 811
 812	if (!tree_mod_need_log(fs_info, NULL))
 813		return 0;
 814
 815	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
 816		return 0;
 817
 818	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
 819			  GFP_NOFS);
 820	if (!tm_list)
 821		return -ENOMEM;
 822
 823	tm_list_add = tm_list;
 824	tm_list_rem = tm_list + nr_items;
 825	for (i = 0; i < nr_items; i++) {
 826		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
 827		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
 828		if (!tm_list_rem[i]) {
 829			ret = -ENOMEM;
 830			goto free_tms;
 831		}
 832
 833		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
 834		    MOD_LOG_KEY_ADD, GFP_NOFS);
 835		if (!tm_list_add[i]) {
 836			ret = -ENOMEM;
 837			goto free_tms;
 838		}
 839	}
 840
 841	if (tree_mod_dont_log(fs_info, NULL))
 842		goto free_tms;
 843	locked = 1;
 844
 845	for (i = 0; i < nr_items; i++) {
 846		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
 847		if (ret)
 848			goto free_tms;
 849		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
 850		if (ret)
 851			goto free_tms;
 852	}
 853
 854	tree_mod_log_write_unlock(fs_info);
 855	kfree(tm_list);
 856
 857	return 0;
 858
 859free_tms:
 860	for (i = 0; i < nr_items * 2; i++) {
 861		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 862			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 863		kfree(tm_list[i]);
 864	}
 865	if (locked)
 866		tree_mod_log_write_unlock(fs_info);
 867	kfree(tm_list);
 868
 869	return ret;
 870}
 871
 872static inline void
 873tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
 874		     int dst_offset, int src_offset, int nr_items)
 875{
 876	int ret;
 877	ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
 878				       nr_items, GFP_NOFS);
 879	BUG_ON(ret < 0);
 880}
 881
 882static noinline void
 883tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
 884			  struct extent_buffer *eb, int slot, int atomic)
 885{
 886	int ret;
 887
 888	ret = tree_mod_log_insert_key(fs_info, eb, slot,
 889					MOD_LOG_KEY_REPLACE,
 890					atomic ? GFP_ATOMIC : GFP_NOFS);
 891	BUG_ON(ret < 0);
 892}
 893
 894static noinline int
 895tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
 896{
 897	struct tree_mod_elem **tm_list = NULL;
 898	int nritems = 0;
 899	int i;
 900	int ret = 0;
 901
 902	if (btrfs_header_level(eb) == 0)
 903		return 0;
 904
 905	if (!tree_mod_need_log(fs_info, NULL))
 906		return 0;
 907
 908	nritems = btrfs_header_nritems(eb);
 909	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
 910	if (!tm_list)
 911		return -ENOMEM;
 912
 913	for (i = 0; i < nritems; i++) {
 914		tm_list[i] = alloc_tree_mod_elem(eb, i,
 915		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 916		if (!tm_list[i]) {
 917			ret = -ENOMEM;
 918			goto free_tms;
 919		}
 920	}
 921
 922	if (tree_mod_dont_log(fs_info, eb))
 923		goto free_tms;
 924
 925	ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 926	tree_mod_log_write_unlock(fs_info);
 927	if (ret)
 928		goto free_tms;
 929	kfree(tm_list);
 930
 931	return 0;
 932
 933free_tms:
 934	for (i = 0; i < nritems; i++)
 935		kfree(tm_list[i]);
 936	kfree(tm_list);
 937
 938	return ret;
 939}
 940
 941static noinline void
 942tree_mod_log_set_root_pointer(struct btrfs_root *root,
 943			      struct extent_buffer *new_root_node,
 944			      int log_removal)
 945{
 946	int ret;
 947	ret = tree_mod_log_insert_root(root->fs_info, root->node,
 948				       new_root_node, GFP_NOFS, log_removal);
 949	BUG_ON(ret < 0);
 950}
 951
 952/*
 953 * check if the tree block can be shared by multiple trees
 954 */
 955int btrfs_block_can_be_shared(struct btrfs_root *root,
 956			      struct extent_buffer *buf)
 957{
 958	/*
 959	 * Tree blocks not in reference counted trees and tree roots
 960	 * are never shared. If a block was allocated after the last
 961	 * snapshot and the block was not allocated by tree relocation,
 962	 * we know the block is not shared.
 963	 */
 964	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 965	    buf != root->node && buf != root->commit_root &&
 966	    (btrfs_header_generation(buf) <=
 967	     btrfs_root_last_snapshot(&root->root_item) ||
 968	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 969		return 1;
 970#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 971	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 972	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 973		return 1;
 974#endif
 975	return 0;
 976}
 977
 978static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 979				       struct btrfs_root *root,
 980				       struct extent_buffer *buf,
 981				       struct extent_buffer *cow,
 982				       int *last_ref)
 983{
 984	struct btrfs_fs_info *fs_info = root->fs_info;
 985	u64 refs;
 986	u64 owner;
 987	u64 flags;
 988	u64 new_flags = 0;
 989	int ret;
 990
 991	/*
 992	 * Backrefs update rules:
 993	 *
 994	 * Always use full backrefs for extent pointers in tree block
 995	 * allocated by tree relocation.
 996	 *
 997	 * If a shared tree block is no longer referenced by its owner
 998	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 999	 * use full backrefs for extent pointers in tree block.
1000	 *
1001	 * If a tree block is been relocating
1002	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1003	 * use full backrefs for extent pointers in tree block.
1004	 * The reason for this is some operations (such as drop tree)
1005	 * are only allowed for blocks use full backrefs.
1006	 */
1007
1008	if (btrfs_block_can_be_shared(root, buf)) {
1009		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
1010					       btrfs_header_level(buf), 1,
1011					       &refs, &flags);
1012		if (ret)
1013			return ret;
1014		if (refs == 0) {
1015			ret = -EROFS;
1016			btrfs_handle_fs_error(fs_info, ret, NULL);
1017			return ret;
1018		}
1019	} else {
1020		refs = 1;
1021		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1022		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1023			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1024		else
1025			flags = 0;
1026	}
1027
1028	owner = btrfs_header_owner(buf);
1029	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1030	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1031
1032	if (refs > 1) {
1033		if ((owner == root->root_key.objectid ||
1034		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1035		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1036			ret = btrfs_inc_ref(trans, root, buf, 1);
1037			BUG_ON(ret); /* -ENOMEM */
 
1038
1039			if (root->root_key.objectid ==
1040			    BTRFS_TREE_RELOC_OBJECTID) {
1041				ret = btrfs_dec_ref(trans, root, buf, 0);
1042				BUG_ON(ret); /* -ENOMEM */
 
1043				ret = btrfs_inc_ref(trans, root, cow, 1);
1044				BUG_ON(ret); /* -ENOMEM */
 
1045			}
1046			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1047		} else {
1048
1049			if (root->root_key.objectid ==
1050			    BTRFS_TREE_RELOC_OBJECTID)
1051				ret = btrfs_inc_ref(trans, root, cow, 1);
1052			else
1053				ret = btrfs_inc_ref(trans, root, cow, 0);
1054			BUG_ON(ret); /* -ENOMEM */
 
1055		}
1056		if (new_flags != 0) {
1057			int level = btrfs_header_level(buf);
1058
1059			ret = btrfs_set_disk_extent_flags(trans, fs_info,
1060							  buf->start,
1061							  buf->len,
1062							  new_flags, level, 0);
1063			if (ret)
1064				return ret;
1065		}
1066	} else {
1067		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1068			if (root->root_key.objectid ==
1069			    BTRFS_TREE_RELOC_OBJECTID)
1070				ret = btrfs_inc_ref(trans, root, cow, 1);
1071			else
1072				ret = btrfs_inc_ref(trans, root, cow, 0);
1073			BUG_ON(ret); /* -ENOMEM */
 
1074			ret = btrfs_dec_ref(trans, root, buf, 1);
1075			BUG_ON(ret); /* -ENOMEM */
 
1076		}
1077		clean_tree_block(trans, fs_info, buf);
1078		*last_ref = 1;
1079	}
1080	return 0;
1081}
1082
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1083/*
1084 * does the dirty work in cow of a single block.  The parent block (if
1085 * supplied) is updated to point to the new cow copy.  The new buffer is marked
1086 * dirty and returned locked.  If you modify the block it needs to be marked
1087 * dirty again.
1088 *
1089 * search_start -- an allocation hint for the new block
1090 *
1091 * empty_size -- a hint that you plan on doing more cow.  This is the size in
1092 * bytes the allocator should try to find free next to the block it returns.
1093 * This is just a hint and may be ignored by the allocator.
1094 */
1095static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1096			     struct btrfs_root *root,
1097			     struct extent_buffer *buf,
1098			     struct extent_buffer *parent, int parent_slot,
1099			     struct extent_buffer **cow_ret,
1100			     u64 search_start, u64 empty_size)
1101{
1102	struct btrfs_fs_info *fs_info = root->fs_info;
1103	struct btrfs_disk_key disk_key;
1104	struct extent_buffer *cow;
1105	int level, ret;
1106	int last_ref = 0;
1107	int unlock_orig = 0;
1108	u64 parent_start = 0;
1109
1110	if (*cow_ret == buf)
1111		unlock_orig = 1;
1112
1113	btrfs_assert_tree_locked(buf);
1114
1115	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1116		trans->transid != fs_info->running_transaction->transid);
1117	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1118		trans->transid != root->last_trans);
1119
1120	level = btrfs_header_level(buf);
1121
1122	if (level == 0)
1123		btrfs_item_key(buf, &disk_key, 0);
1124	else
1125		btrfs_node_key(buf, &disk_key, 0);
1126
1127	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1128		parent_start = parent->start;
1129
1130	cow = btrfs_alloc_tree_block(trans, root, parent_start,
1131			root->root_key.objectid, &disk_key, level,
1132			search_start, empty_size);
1133	if (IS_ERR(cow))
1134		return PTR_ERR(cow);
1135
1136	/* cow is set to blocking by btrfs_init_new_buffer */
1137
1138	copy_extent_buffer_full(cow, buf);
1139	btrfs_set_header_bytenr(cow, cow->start);
1140	btrfs_set_header_generation(cow, trans->transid);
1141	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1142	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1143				     BTRFS_HEADER_FLAG_RELOC);
1144	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1145		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1146	else
1147		btrfs_set_header_owner(cow, root->root_key.objectid);
1148
1149	write_extent_buffer_fsid(cow, fs_info->fsid);
1150
1151	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1152	if (ret) {
1153		btrfs_abort_transaction(trans, ret);
1154		return ret;
1155	}
1156
1157	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1158		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1159		if (ret) {
1160			btrfs_abort_transaction(trans, ret);
1161			return ret;
1162		}
1163	}
1164
1165	if (buf == root->node) {
1166		WARN_ON(parent && parent != buf);
1167		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1168		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1169			parent_start = buf->start;
1170
1171		extent_buffer_get(cow);
1172		tree_mod_log_set_root_pointer(root, cow, 1);
 
1173		rcu_assign_pointer(root->node, cow);
1174
1175		btrfs_free_tree_block(trans, root, buf, parent_start,
1176				      last_ref);
1177		free_extent_buffer(buf);
1178		add_root_to_dirty_list(root);
1179	} else {
1180		WARN_ON(trans->transid != btrfs_header_generation(parent));
1181		tree_mod_log_insert_key(fs_info, parent, parent_slot,
1182					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1183		btrfs_set_node_blockptr(parent, parent_slot,
1184					cow->start);
1185		btrfs_set_node_ptr_generation(parent, parent_slot,
1186					      trans->transid);
1187		btrfs_mark_buffer_dirty(parent);
1188		if (last_ref) {
1189			ret = tree_mod_log_free_eb(fs_info, buf);
1190			if (ret) {
1191				btrfs_abort_transaction(trans, ret);
1192				return ret;
1193			}
1194		}
1195		btrfs_free_tree_block(trans, root, buf, parent_start,
1196				      last_ref);
1197	}
1198	if (unlock_orig)
1199		btrfs_tree_unlock(buf);
1200	free_extent_buffer_stale(buf);
1201	btrfs_mark_buffer_dirty(cow);
1202	*cow_ret = cow;
1203	return 0;
1204}
1205
1206/*
1207 * returns the logical address of the oldest predecessor of the given root.
1208 * entries older than time_seq are ignored.
1209 */
1210static struct tree_mod_elem *
1211__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1212			   struct extent_buffer *eb_root, u64 time_seq)
1213{
1214	struct tree_mod_elem *tm;
1215	struct tree_mod_elem *found = NULL;
1216	u64 root_logical = eb_root->start;
1217	int looped = 0;
1218
1219	if (!time_seq)
1220		return NULL;
1221
1222	/*
1223	 * the very last operation that's logged for a root is the
1224	 * replacement operation (if it is replaced at all). this has
1225	 * the logical address of the *new* root, making it the very
1226	 * first operation that's logged for this root.
1227	 */
1228	while (1) {
1229		tm = tree_mod_log_search_oldest(fs_info, root_logical,
1230						time_seq);
1231		if (!looped && !tm)
1232			return NULL;
1233		/*
1234		 * if there are no tree operation for the oldest root, we simply
1235		 * return it. this should only happen if that (old) root is at
1236		 * level 0.
1237		 */
1238		if (!tm)
1239			break;
1240
1241		/*
1242		 * if there's an operation that's not a root replacement, we
1243		 * found the oldest version of our root. normally, we'll find a
1244		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1245		 */
1246		if (tm->op != MOD_LOG_ROOT_REPLACE)
1247			break;
1248
1249		found = tm;
1250		root_logical = tm->old_root.logical;
1251		looped = 1;
1252	}
1253
1254	/* if there's no old root to return, return what we found instead */
1255	if (!found)
1256		found = tm;
1257
1258	return found;
1259}
1260
1261/*
1262 * tm is a pointer to the first operation to rewind within eb. then, all
1263 * previous operations will be rewound (until we reach something older than
1264 * time_seq).
1265 */
1266static void
1267__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1268		      u64 time_seq, struct tree_mod_elem *first_tm)
1269{
1270	u32 n;
1271	struct rb_node *next;
1272	struct tree_mod_elem *tm = first_tm;
1273	unsigned long o_dst;
1274	unsigned long o_src;
1275	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1276
1277	n = btrfs_header_nritems(eb);
1278	tree_mod_log_read_lock(fs_info);
1279	while (tm && tm->seq >= time_seq) {
1280		/*
1281		 * all the operations are recorded with the operator used for
1282		 * the modification. as we're going backwards, we do the
1283		 * opposite of each operation here.
1284		 */
1285		switch (tm->op) {
1286		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1287			BUG_ON(tm->slot < n);
1288			/* Fallthrough */
1289		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1290		case MOD_LOG_KEY_REMOVE:
1291			btrfs_set_node_key(eb, &tm->key, tm->slot);
1292			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1293			btrfs_set_node_ptr_generation(eb, tm->slot,
1294						      tm->generation);
1295			n++;
1296			break;
1297		case MOD_LOG_KEY_REPLACE:
1298			BUG_ON(tm->slot >= n);
1299			btrfs_set_node_key(eb, &tm->key, tm->slot);
1300			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1301			btrfs_set_node_ptr_generation(eb, tm->slot,
1302						      tm->generation);
1303			break;
1304		case MOD_LOG_KEY_ADD:
1305			/* if a move operation is needed it's in the log */
1306			n--;
1307			break;
1308		case MOD_LOG_MOVE_KEYS:
1309			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1310			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1311			memmove_extent_buffer(eb, o_dst, o_src,
1312					      tm->move.nr_items * p_size);
1313			break;
1314		case MOD_LOG_ROOT_REPLACE:
1315			/*
1316			 * this operation is special. for roots, this must be
1317			 * handled explicitly before rewinding.
1318			 * for non-roots, this operation may exist if the node
1319			 * was a root: root A -> child B; then A gets empty and
1320			 * B is promoted to the new root. in the mod log, we'll
1321			 * have a root-replace operation for B, a tree block
1322			 * that is no root. we simply ignore that operation.
1323			 */
1324			break;
1325		}
1326		next = rb_next(&tm->node);
1327		if (!next)
1328			break;
1329		tm = container_of(next, struct tree_mod_elem, node);
1330		if (tm->logical != first_tm->logical)
1331			break;
1332	}
1333	tree_mod_log_read_unlock(fs_info);
1334	btrfs_set_header_nritems(eb, n);
1335}
1336
1337/*
1338 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1339 * is returned. If rewind operations happen, a fresh buffer is returned. The
1340 * returned buffer is always read-locked. If the returned buffer is not the
1341 * input buffer, the lock on the input buffer is released and the input buffer
1342 * is freed (its refcount is decremented).
1343 */
1344static struct extent_buffer *
1345tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1346		    struct extent_buffer *eb, u64 time_seq)
1347{
1348	struct extent_buffer *eb_rewin;
1349	struct tree_mod_elem *tm;
1350
1351	if (!time_seq)
1352		return eb;
1353
1354	if (btrfs_header_level(eb) == 0)
1355		return eb;
1356
1357	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1358	if (!tm)
1359		return eb;
1360
1361	btrfs_set_path_blocking(path);
1362	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1363
1364	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1365		BUG_ON(tm->slot != 0);
1366		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1367		if (!eb_rewin) {
1368			btrfs_tree_read_unlock_blocking(eb);
1369			free_extent_buffer(eb);
1370			return NULL;
1371		}
1372		btrfs_set_header_bytenr(eb_rewin, eb->start);
1373		btrfs_set_header_backref_rev(eb_rewin,
1374					     btrfs_header_backref_rev(eb));
1375		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1376		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1377	} else {
1378		eb_rewin = btrfs_clone_extent_buffer(eb);
1379		if (!eb_rewin) {
1380			btrfs_tree_read_unlock_blocking(eb);
1381			free_extent_buffer(eb);
1382			return NULL;
1383		}
1384	}
1385
1386	btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1387	btrfs_tree_read_unlock_blocking(eb);
1388	free_extent_buffer(eb);
1389
1390	extent_buffer_get(eb_rewin);
1391	btrfs_tree_read_lock(eb_rewin);
1392	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1393	WARN_ON(btrfs_header_nritems(eb_rewin) >
1394		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1395
1396	return eb_rewin;
1397}
1398
1399/*
1400 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1401 * value. If there are no changes, the current root->root_node is returned. If
1402 * anything changed in between, there's a fresh buffer allocated on which the
1403 * rewind operations are done. In any case, the returned buffer is read locked.
1404 * Returns NULL on error (with no locks held).
1405 */
1406static inline struct extent_buffer *
1407get_old_root(struct btrfs_root *root, u64 time_seq)
1408{
1409	struct btrfs_fs_info *fs_info = root->fs_info;
1410	struct tree_mod_elem *tm;
1411	struct extent_buffer *eb = NULL;
1412	struct extent_buffer *eb_root;
 
1413	struct extent_buffer *old;
1414	struct tree_mod_root *old_root = NULL;
1415	u64 old_generation = 0;
1416	u64 logical;
 
1417
1418	eb_root = btrfs_read_lock_root_node(root);
1419	tm = __tree_mod_log_oldest_root(fs_info, eb_root, time_seq);
1420	if (!tm)
1421		return eb_root;
1422
1423	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1424		old_root = &tm->old_root;
1425		old_generation = tm->generation;
1426		logical = old_root->logical;
 
1427	} else {
1428		logical = eb_root->start;
 
1429	}
1430
1431	tm = tree_mod_log_search(fs_info, logical, time_seq);
1432	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1433		btrfs_tree_read_unlock(eb_root);
1434		free_extent_buffer(eb_root);
1435		old = read_tree_block(fs_info, logical, 0);
1436		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1437			if (!IS_ERR(old))
1438				free_extent_buffer(old);
1439			btrfs_warn(fs_info,
1440				   "failed to read tree block %llu from get_old_root",
1441				   logical);
1442		} else {
1443			eb = btrfs_clone_extent_buffer(old);
1444			free_extent_buffer(old);
1445		}
1446	} else if (old_root) {
 
1447		btrfs_tree_read_unlock(eb_root);
1448		free_extent_buffer(eb_root);
1449		eb = alloc_dummy_extent_buffer(fs_info, logical);
1450	} else {
1451		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1452		eb = btrfs_clone_extent_buffer(eb_root);
1453		btrfs_tree_read_unlock_blocking(eb_root);
1454		free_extent_buffer(eb_root);
1455	}
1456
1457	if (!eb)
1458		return NULL;
1459	extent_buffer_get(eb);
1460	btrfs_tree_read_lock(eb);
1461	if (old_root) {
1462		btrfs_set_header_bytenr(eb, eb->start);
1463		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1464		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1465		btrfs_set_header_level(eb, old_root->level);
1466		btrfs_set_header_generation(eb, old_generation);
1467	}
1468	if (tm)
1469		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1470	else
1471		WARN_ON(btrfs_header_level(eb) != 0);
1472	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1473
1474	return eb;
1475}
1476
1477int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1478{
1479	struct tree_mod_elem *tm;
1480	int level;
1481	struct extent_buffer *eb_root = btrfs_root_node(root);
1482
1483	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1484	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1485		level = tm->old_root.level;
1486	} else {
1487		level = btrfs_header_level(eb_root);
1488	}
1489	free_extent_buffer(eb_root);
1490
1491	return level;
1492}
1493
1494static inline int should_cow_block(struct btrfs_trans_handle *trans,
1495				   struct btrfs_root *root,
1496				   struct extent_buffer *buf)
1497{
1498	if (btrfs_is_testing(root->fs_info))
1499		return 0;
1500
1501	/* ensure we can see the force_cow */
1502	smp_rmb();
1503
1504	/*
1505	 * We do not need to cow a block if
1506	 * 1) this block is not created or changed in this transaction;
1507	 * 2) this block does not belong to TREE_RELOC tree;
1508	 * 3) the root is not forced COW.
1509	 *
1510	 * What is forced COW:
1511	 *    when we create snapshot during committing the transaction,
1512	 *    after we've finished coping src root, we must COW the shared
1513	 *    block to ensure the metadata consistency.
1514	 */
1515	if (btrfs_header_generation(buf) == trans->transid &&
1516	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1517	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1518	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1519	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1520		return 0;
1521	return 1;
1522}
1523
1524/*
1525 * cows a single block, see __btrfs_cow_block for the real work.
1526 * This version of it has extra checks so that a block isn't COWed more than
1527 * once per transaction, as long as it hasn't been written yet
1528 */
1529noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1530		    struct btrfs_root *root, struct extent_buffer *buf,
1531		    struct extent_buffer *parent, int parent_slot,
1532		    struct extent_buffer **cow_ret)
1533{
1534	struct btrfs_fs_info *fs_info = root->fs_info;
1535	u64 search_start;
1536	int ret;
1537
 
 
 
 
1538	if (trans->transaction != fs_info->running_transaction)
1539		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1540		       trans->transid,
1541		       fs_info->running_transaction->transid);
1542
1543	if (trans->transid != fs_info->generation)
1544		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1545		       trans->transid, fs_info->generation);
1546
1547	if (!should_cow_block(trans, root, buf)) {
1548		trans->dirty = true;
1549		*cow_ret = buf;
1550		return 0;
1551	}
1552
1553	search_start = buf->start & ~((u64)SZ_1G - 1);
1554
1555	if (parent)
1556		btrfs_set_lock_blocking(parent);
1557	btrfs_set_lock_blocking(buf);
1558
 
 
 
 
 
 
 
1559	ret = __btrfs_cow_block(trans, root, buf, parent,
1560				 parent_slot, cow_ret, search_start, 0);
1561
1562	trace_btrfs_cow_block(root, buf, *cow_ret);
1563
1564	return ret;
1565}
1566
1567/*
1568 * helper function for defrag to decide if two blocks pointed to by a
1569 * node are actually close by
1570 */
1571static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1572{
1573	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1574		return 1;
1575	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1576		return 1;
1577	return 0;
1578}
1579
1580/*
1581 * compare two keys in a memcmp fashion
1582 */
1583static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
 
1584{
1585	struct btrfs_key k1;
1586
1587	btrfs_disk_key_to_cpu(&k1, disk);
1588
1589	return btrfs_comp_cpu_keys(&k1, k2);
1590}
1591
1592/*
1593 * same as comp_keys only with two btrfs_key's
1594 */
1595int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1596{
1597	if (k1->objectid > k2->objectid)
1598		return 1;
1599	if (k1->objectid < k2->objectid)
1600		return -1;
1601	if (k1->type > k2->type)
1602		return 1;
1603	if (k1->type < k2->type)
1604		return -1;
1605	if (k1->offset > k2->offset)
1606		return 1;
1607	if (k1->offset < k2->offset)
1608		return -1;
1609	return 0;
1610}
1611
1612/*
1613 * this is used by the defrag code to go through all the
1614 * leaves pointed to by a node and reallocate them so that
1615 * disk order is close to key order
1616 */
1617int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1618		       struct btrfs_root *root, struct extent_buffer *parent,
1619		       int start_slot, u64 *last_ret,
1620		       struct btrfs_key *progress)
1621{
1622	struct btrfs_fs_info *fs_info = root->fs_info;
1623	struct extent_buffer *cur;
1624	u64 blocknr;
1625	u64 gen;
1626	u64 search_start = *last_ret;
1627	u64 last_block = 0;
1628	u64 other;
1629	u32 parent_nritems;
1630	int end_slot;
1631	int i;
1632	int err = 0;
1633	int parent_level;
1634	int uptodate;
1635	u32 blocksize;
1636	int progress_passed = 0;
1637	struct btrfs_disk_key disk_key;
1638
1639	parent_level = btrfs_header_level(parent);
1640
1641	WARN_ON(trans->transaction != fs_info->running_transaction);
1642	WARN_ON(trans->transid != fs_info->generation);
1643
1644	parent_nritems = btrfs_header_nritems(parent);
1645	blocksize = fs_info->nodesize;
1646	end_slot = parent_nritems - 1;
1647
1648	if (parent_nritems <= 1)
1649		return 0;
1650
1651	btrfs_set_lock_blocking(parent);
1652
1653	for (i = start_slot; i <= end_slot; i++) {
 
1654		int close = 1;
1655
1656		btrfs_node_key(parent, &disk_key, i);
1657		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1658			continue;
1659
1660		progress_passed = 1;
1661		blocknr = btrfs_node_blockptr(parent, i);
1662		gen = btrfs_node_ptr_generation(parent, i);
 
1663		if (last_block == 0)
1664			last_block = blocknr;
1665
1666		if (i > 0) {
1667			other = btrfs_node_blockptr(parent, i - 1);
1668			close = close_blocks(blocknr, other, blocksize);
1669		}
1670		if (!close && i < end_slot) {
1671			other = btrfs_node_blockptr(parent, i + 1);
1672			close = close_blocks(blocknr, other, blocksize);
1673		}
1674		if (close) {
1675			last_block = blocknr;
1676			continue;
1677		}
1678
1679		cur = find_extent_buffer(fs_info, blocknr);
1680		if (cur)
1681			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1682		else
1683			uptodate = 0;
1684		if (!cur || !uptodate) {
1685			if (!cur) {
1686				cur = read_tree_block(fs_info, blocknr, gen);
 
 
1687				if (IS_ERR(cur)) {
1688					return PTR_ERR(cur);
1689				} else if (!extent_buffer_uptodate(cur)) {
1690					free_extent_buffer(cur);
1691					return -EIO;
1692				}
1693			} else if (!uptodate) {
1694				err = btrfs_read_buffer(cur, gen);
 
1695				if (err) {
1696					free_extent_buffer(cur);
1697					return err;
1698				}
1699			}
1700		}
1701		if (search_start == 0)
1702			search_start = last_block;
1703
1704		btrfs_tree_lock(cur);
1705		btrfs_set_lock_blocking(cur);
1706		err = __btrfs_cow_block(trans, root, cur, parent, i,
1707					&cur, search_start,
1708					min(16 * blocksize,
1709					    (end_slot - i) * blocksize));
1710		if (err) {
1711			btrfs_tree_unlock(cur);
1712			free_extent_buffer(cur);
1713			break;
1714		}
1715		search_start = cur->start;
1716		last_block = cur->start;
1717		*last_ret = search_start;
1718		btrfs_tree_unlock(cur);
1719		free_extent_buffer(cur);
1720	}
1721	return err;
1722}
1723
1724/*
1725 * search for key in the extent_buffer.  The items start at offset p,
1726 * and they are item_size apart.  There are 'max' items in p.
1727 *
1728 * the slot in the array is returned via slot, and it points to
1729 * the place where you would insert key if it is not found in
1730 * the array.
1731 *
1732 * slot may point to max if the key is bigger than all of the keys
1733 */
1734static noinline int generic_bin_search(struct extent_buffer *eb,
1735				       unsigned long p,
1736				       int item_size, struct btrfs_key *key,
1737				       int max, int *slot)
1738{
1739	int low = 0;
1740	int high = max;
1741	int mid;
1742	int ret;
1743	struct btrfs_disk_key *tmp = NULL;
1744	struct btrfs_disk_key unaligned;
1745	unsigned long offset;
1746	char *kaddr = NULL;
1747	unsigned long map_start = 0;
1748	unsigned long map_len = 0;
1749	int err;
1750
1751	if (low > high) {
1752		btrfs_err(eb->fs_info,
1753		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1754			  __func__, low, high, eb->start,
1755			  btrfs_header_owner(eb), btrfs_header_level(eb));
1756		return -EINVAL;
1757	}
1758
1759	while (low < high) {
1760		mid = (low + high) / 2;
1761		offset = p + mid * item_size;
1762
1763		if (!kaddr || offset < map_start ||
1764		    (offset + sizeof(struct btrfs_disk_key)) >
1765		    map_start + map_len) {
1766
1767			err = map_private_extent_buffer(eb, offset,
1768						sizeof(struct btrfs_disk_key),
1769						&kaddr, &map_start, &map_len);
1770
1771			if (!err) {
1772				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1773							map_start);
1774			} else if (err == 1) {
1775				read_extent_buffer(eb, &unaligned,
1776						   offset, sizeof(unaligned));
1777				tmp = &unaligned;
1778			} else {
1779				return err;
1780			}
1781
1782		} else {
1783			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1784							map_start);
1785		}
1786		ret = comp_keys(tmp, key);
1787
1788		if (ret < 0)
1789			low = mid + 1;
1790		else if (ret > 0)
1791			high = mid;
1792		else {
1793			*slot = mid;
1794			return 0;
1795		}
1796	}
1797	*slot = low;
1798	return 1;
1799}
1800
1801/*
1802 * simple bin_search frontend that does the right thing for
1803 * leaves vs nodes
1804 */
1805static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1806		      int level, int *slot)
1807{
1808	if (level == 0)
1809		return generic_bin_search(eb,
1810					  offsetof(struct btrfs_leaf, items),
1811					  sizeof(struct btrfs_item),
1812					  key, btrfs_header_nritems(eb),
1813					  slot);
1814	else
1815		return generic_bin_search(eb,
1816					  offsetof(struct btrfs_node, ptrs),
1817					  sizeof(struct btrfs_key_ptr),
1818					  key, btrfs_header_nritems(eb),
1819					  slot);
1820}
1821
1822int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1823		     int level, int *slot)
1824{
1825	return bin_search(eb, key, level, slot);
1826}
1827
1828static void root_add_used(struct btrfs_root *root, u32 size)
1829{
1830	spin_lock(&root->accounting_lock);
1831	btrfs_set_root_used(&root->root_item,
1832			    btrfs_root_used(&root->root_item) + size);
1833	spin_unlock(&root->accounting_lock);
1834}
1835
1836static void root_sub_used(struct btrfs_root *root, u32 size)
1837{
1838	spin_lock(&root->accounting_lock);
1839	btrfs_set_root_used(&root->root_item,
1840			    btrfs_root_used(&root->root_item) - size);
1841	spin_unlock(&root->accounting_lock);
1842}
1843
1844/* given a node and slot number, this reads the blocks it points to.  The
1845 * extent buffer is returned with a reference taken (but unlocked).
1846 */
1847static noinline struct extent_buffer *
1848read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1849	       int slot)
1850{
1851	int level = btrfs_header_level(parent);
1852	struct extent_buffer *eb;
 
1853
1854	if (slot < 0 || slot >= btrfs_header_nritems(parent))
1855		return ERR_PTR(-ENOENT);
1856
1857	BUG_ON(level == 0);
1858
1859	eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1860			     btrfs_node_ptr_generation(parent, slot));
 
 
1861	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1862		free_extent_buffer(eb);
1863		eb = ERR_PTR(-EIO);
1864	}
1865
1866	return eb;
1867}
1868
1869/*
1870 * node level balancing, used to make sure nodes are in proper order for
1871 * item deletion.  We balance from the top down, so we have to make sure
1872 * that a deletion won't leave an node completely empty later on.
1873 */
1874static noinline int balance_level(struct btrfs_trans_handle *trans,
1875			 struct btrfs_root *root,
1876			 struct btrfs_path *path, int level)
1877{
1878	struct btrfs_fs_info *fs_info = root->fs_info;
1879	struct extent_buffer *right = NULL;
1880	struct extent_buffer *mid;
1881	struct extent_buffer *left = NULL;
1882	struct extent_buffer *parent = NULL;
1883	int ret = 0;
1884	int wret;
1885	int pslot;
1886	int orig_slot = path->slots[level];
1887	u64 orig_ptr;
1888
1889	if (level == 0)
1890		return 0;
1891
1892	mid = path->nodes[level];
1893
1894	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1895		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1896	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1897
1898	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1899
1900	if (level < BTRFS_MAX_LEVEL - 1) {
1901		parent = path->nodes[level + 1];
1902		pslot = path->slots[level + 1];
1903	}
1904
1905	/*
1906	 * deal with the case where there is only one pointer in the root
1907	 * by promoting the node below to a root
1908	 */
1909	if (!parent) {
1910		struct extent_buffer *child;
1911
1912		if (btrfs_header_nritems(mid) != 1)
1913			return 0;
1914
1915		/* promote the child to a root */
1916		child = read_node_slot(fs_info, mid, 0);
1917		if (IS_ERR(child)) {
1918			ret = PTR_ERR(child);
1919			btrfs_handle_fs_error(fs_info, ret, NULL);
1920			goto enospc;
1921		}
1922
1923		btrfs_tree_lock(child);
1924		btrfs_set_lock_blocking(child);
1925		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1926		if (ret) {
1927			btrfs_tree_unlock(child);
1928			free_extent_buffer(child);
1929			goto enospc;
1930		}
1931
1932		tree_mod_log_set_root_pointer(root, child, 1);
 
1933		rcu_assign_pointer(root->node, child);
1934
1935		add_root_to_dirty_list(root);
1936		btrfs_tree_unlock(child);
1937
1938		path->locks[level] = 0;
1939		path->nodes[level] = NULL;
1940		clean_tree_block(trans, fs_info, mid);
1941		btrfs_tree_unlock(mid);
1942		/* once for the path */
1943		free_extent_buffer(mid);
1944
1945		root_sub_used(root, mid->len);
1946		btrfs_free_tree_block(trans, root, mid, 0, 1);
1947		/* once for the root ptr */
1948		free_extent_buffer_stale(mid);
1949		return 0;
1950	}
1951	if (btrfs_header_nritems(mid) >
1952	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1953		return 0;
1954
1955	left = read_node_slot(fs_info, parent, pslot - 1);
1956	if (IS_ERR(left))
1957		left = NULL;
1958
1959	if (left) {
1960		btrfs_tree_lock(left);
1961		btrfs_set_lock_blocking(left);
1962		wret = btrfs_cow_block(trans, root, left,
1963				       parent, pslot - 1, &left);
1964		if (wret) {
1965			ret = wret;
1966			goto enospc;
1967		}
1968	}
1969
1970	right = read_node_slot(fs_info, parent, pslot + 1);
1971	if (IS_ERR(right))
1972		right = NULL;
1973
1974	if (right) {
1975		btrfs_tree_lock(right);
1976		btrfs_set_lock_blocking(right);
1977		wret = btrfs_cow_block(trans, root, right,
1978				       parent, pslot + 1, &right);
1979		if (wret) {
1980			ret = wret;
1981			goto enospc;
1982		}
1983	}
1984
1985	/* first, try to make some room in the middle buffer */
1986	if (left) {
1987		orig_slot += btrfs_header_nritems(left);
1988		wret = push_node_left(trans, fs_info, left, mid, 1);
1989		if (wret < 0)
1990			ret = wret;
1991	}
1992
1993	/*
1994	 * then try to empty the right most buffer into the middle
1995	 */
1996	if (right) {
1997		wret = push_node_left(trans, fs_info, mid, right, 1);
1998		if (wret < 0 && wret != -ENOSPC)
1999			ret = wret;
2000		if (btrfs_header_nritems(right) == 0) {
2001			clean_tree_block(trans, fs_info, right);
2002			btrfs_tree_unlock(right);
2003			del_ptr(root, path, level + 1, pslot + 1);
2004			root_sub_used(root, right->len);
2005			btrfs_free_tree_block(trans, root, right, 0, 1);
2006			free_extent_buffer_stale(right);
2007			right = NULL;
2008		} else {
2009			struct btrfs_disk_key right_key;
2010			btrfs_node_key(right, &right_key, 0);
2011			tree_mod_log_set_node_key(fs_info, parent,
2012						  pslot + 1, 0);
 
2013			btrfs_set_node_key(parent, &right_key, pslot + 1);
2014			btrfs_mark_buffer_dirty(parent);
2015		}
2016	}
2017	if (btrfs_header_nritems(mid) == 1) {
2018		/*
2019		 * we're not allowed to leave a node with one item in the
2020		 * tree during a delete.  A deletion from lower in the tree
2021		 * could try to delete the only pointer in this node.
2022		 * So, pull some keys from the left.
2023		 * There has to be a left pointer at this point because
2024		 * otherwise we would have pulled some pointers from the
2025		 * right
2026		 */
2027		if (!left) {
2028			ret = -EROFS;
2029			btrfs_handle_fs_error(fs_info, ret, NULL);
2030			goto enospc;
2031		}
2032		wret = balance_node_right(trans, fs_info, mid, left);
2033		if (wret < 0) {
2034			ret = wret;
2035			goto enospc;
2036		}
2037		if (wret == 1) {
2038			wret = push_node_left(trans, fs_info, left, mid, 1);
2039			if (wret < 0)
2040				ret = wret;
2041		}
2042		BUG_ON(wret == 1);
2043	}
2044	if (btrfs_header_nritems(mid) == 0) {
2045		clean_tree_block(trans, fs_info, mid);
2046		btrfs_tree_unlock(mid);
2047		del_ptr(root, path, level + 1, pslot);
2048		root_sub_used(root, mid->len);
2049		btrfs_free_tree_block(trans, root, mid, 0, 1);
2050		free_extent_buffer_stale(mid);
2051		mid = NULL;
2052	} else {
2053		/* update the parent key to reflect our changes */
2054		struct btrfs_disk_key mid_key;
2055		btrfs_node_key(mid, &mid_key, 0);
2056		tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
 
 
2057		btrfs_set_node_key(parent, &mid_key, pslot);
2058		btrfs_mark_buffer_dirty(parent);
2059	}
2060
2061	/* update the path */
2062	if (left) {
2063		if (btrfs_header_nritems(left) > orig_slot) {
2064			extent_buffer_get(left);
2065			/* left was locked after cow */
2066			path->nodes[level] = left;
2067			path->slots[level + 1] -= 1;
2068			path->slots[level] = orig_slot;
2069			if (mid) {
2070				btrfs_tree_unlock(mid);
2071				free_extent_buffer(mid);
2072			}
2073		} else {
2074			orig_slot -= btrfs_header_nritems(left);
2075			path->slots[level] = orig_slot;
2076		}
2077	}
2078	/* double check we haven't messed things up */
2079	if (orig_ptr !=
2080	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2081		BUG();
2082enospc:
2083	if (right) {
2084		btrfs_tree_unlock(right);
2085		free_extent_buffer(right);
2086	}
2087	if (left) {
2088		if (path->nodes[level] != left)
2089			btrfs_tree_unlock(left);
2090		free_extent_buffer(left);
2091	}
2092	return ret;
2093}
2094
2095/* Node balancing for insertion.  Here we only split or push nodes around
2096 * when they are completely full.  This is also done top down, so we
2097 * have to be pessimistic.
2098 */
2099static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2100					  struct btrfs_root *root,
2101					  struct btrfs_path *path, int level)
2102{
2103	struct btrfs_fs_info *fs_info = root->fs_info;
2104	struct extent_buffer *right = NULL;
2105	struct extent_buffer *mid;
2106	struct extent_buffer *left = NULL;
2107	struct extent_buffer *parent = NULL;
2108	int ret = 0;
2109	int wret;
2110	int pslot;
2111	int orig_slot = path->slots[level];
2112
2113	if (level == 0)
2114		return 1;
2115
2116	mid = path->nodes[level];
2117	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2118
2119	if (level < BTRFS_MAX_LEVEL - 1) {
2120		parent = path->nodes[level + 1];
2121		pslot = path->slots[level + 1];
2122	}
2123
2124	if (!parent)
2125		return 1;
2126
2127	left = read_node_slot(fs_info, parent, pslot - 1);
2128	if (IS_ERR(left))
2129		left = NULL;
2130
2131	/* first, try to make some room in the middle buffer */
2132	if (left) {
2133		u32 left_nr;
2134
2135		btrfs_tree_lock(left);
2136		btrfs_set_lock_blocking(left);
2137
2138		left_nr = btrfs_header_nritems(left);
2139		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2140			wret = 1;
2141		} else {
2142			ret = btrfs_cow_block(trans, root, left, parent,
2143					      pslot - 1, &left);
2144			if (ret)
2145				wret = 1;
2146			else {
2147				wret = push_node_left(trans, fs_info,
2148						      left, mid, 0);
2149			}
2150		}
2151		if (wret < 0)
2152			ret = wret;
2153		if (wret == 0) {
2154			struct btrfs_disk_key disk_key;
2155			orig_slot += left_nr;
2156			btrfs_node_key(mid, &disk_key, 0);
2157			tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
 
 
2158			btrfs_set_node_key(parent, &disk_key, pslot);
2159			btrfs_mark_buffer_dirty(parent);
2160			if (btrfs_header_nritems(left) > orig_slot) {
2161				path->nodes[level] = left;
2162				path->slots[level + 1] -= 1;
2163				path->slots[level] = orig_slot;
2164				btrfs_tree_unlock(mid);
2165				free_extent_buffer(mid);
2166			} else {
2167				orig_slot -=
2168					btrfs_header_nritems(left);
2169				path->slots[level] = orig_slot;
2170				btrfs_tree_unlock(left);
2171				free_extent_buffer(left);
2172			}
2173			return 0;
2174		}
2175		btrfs_tree_unlock(left);
2176		free_extent_buffer(left);
2177	}
2178	right = read_node_slot(fs_info, parent, pslot + 1);
2179	if (IS_ERR(right))
2180		right = NULL;
2181
2182	/*
2183	 * then try to empty the right most buffer into the middle
2184	 */
2185	if (right) {
2186		u32 right_nr;
2187
2188		btrfs_tree_lock(right);
2189		btrfs_set_lock_blocking(right);
2190
2191		right_nr = btrfs_header_nritems(right);
2192		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2193			wret = 1;
2194		} else {
2195			ret = btrfs_cow_block(trans, root, right,
2196					      parent, pslot + 1,
2197					      &right);
2198			if (ret)
2199				wret = 1;
2200			else {
2201				wret = balance_node_right(trans, fs_info,
2202							  right, mid);
2203			}
2204		}
2205		if (wret < 0)
2206			ret = wret;
2207		if (wret == 0) {
2208			struct btrfs_disk_key disk_key;
2209
2210			btrfs_node_key(right, &disk_key, 0);
2211			tree_mod_log_set_node_key(fs_info, parent,
2212						  pslot + 1, 0);
 
2213			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2214			btrfs_mark_buffer_dirty(parent);
2215
2216			if (btrfs_header_nritems(mid) <= orig_slot) {
2217				path->nodes[level] = right;
2218				path->slots[level + 1] += 1;
2219				path->slots[level] = orig_slot -
2220					btrfs_header_nritems(mid);
2221				btrfs_tree_unlock(mid);
2222				free_extent_buffer(mid);
2223			} else {
2224				btrfs_tree_unlock(right);
2225				free_extent_buffer(right);
2226			}
2227			return 0;
2228		}
2229		btrfs_tree_unlock(right);
2230		free_extent_buffer(right);
2231	}
2232	return 1;
2233}
2234
2235/*
2236 * readahead one full node of leaves, finding things that are close
2237 * to the block in 'slot', and triggering ra on them.
2238 */
2239static void reada_for_search(struct btrfs_fs_info *fs_info,
2240			     struct btrfs_path *path,
2241			     int level, int slot, u64 objectid)
2242{
2243	struct extent_buffer *node;
2244	struct btrfs_disk_key disk_key;
2245	u32 nritems;
2246	u64 search;
2247	u64 target;
2248	u64 nread = 0;
2249	struct extent_buffer *eb;
2250	u32 nr;
2251	u32 blocksize;
2252	u32 nscan = 0;
2253
2254	if (level != 1)
2255		return;
2256
2257	if (!path->nodes[level])
2258		return;
2259
2260	node = path->nodes[level];
2261
2262	search = btrfs_node_blockptr(node, slot);
2263	blocksize = fs_info->nodesize;
2264	eb = find_extent_buffer(fs_info, search);
2265	if (eb) {
2266		free_extent_buffer(eb);
2267		return;
2268	}
2269
2270	target = search;
2271
2272	nritems = btrfs_header_nritems(node);
2273	nr = slot;
2274
2275	while (1) {
2276		if (path->reada == READA_BACK) {
2277			if (nr == 0)
2278				break;
2279			nr--;
2280		} else if (path->reada == READA_FORWARD) {
2281			nr++;
2282			if (nr >= nritems)
2283				break;
2284		}
2285		if (path->reada == READA_BACK && objectid) {
2286			btrfs_node_key(node, &disk_key, nr);
2287			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2288				break;
2289		}
2290		search = btrfs_node_blockptr(node, nr);
2291		if ((search <= target && target - search <= 65536) ||
2292		    (search > target && search - target <= 65536)) {
2293			readahead_tree_block(fs_info, search);
2294			nread += blocksize;
2295		}
2296		nscan++;
2297		if ((nread > 65536 || nscan > 32))
2298			break;
2299	}
2300}
2301
2302static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2303				       struct btrfs_path *path, int level)
2304{
2305	int slot;
2306	int nritems;
2307	struct extent_buffer *parent;
2308	struct extent_buffer *eb;
2309	u64 gen;
2310	u64 block1 = 0;
2311	u64 block2 = 0;
2312
2313	parent = path->nodes[level + 1];
2314	if (!parent)
2315		return;
2316
2317	nritems = btrfs_header_nritems(parent);
2318	slot = path->slots[level + 1];
2319
2320	if (slot > 0) {
2321		block1 = btrfs_node_blockptr(parent, slot - 1);
2322		gen = btrfs_node_ptr_generation(parent, slot - 1);
2323		eb = find_extent_buffer(fs_info, block1);
2324		/*
2325		 * if we get -eagain from btrfs_buffer_uptodate, we
2326		 * don't want to return eagain here.  That will loop
2327		 * forever
2328		 */
2329		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2330			block1 = 0;
2331		free_extent_buffer(eb);
2332	}
2333	if (slot + 1 < nritems) {
2334		block2 = btrfs_node_blockptr(parent, slot + 1);
2335		gen = btrfs_node_ptr_generation(parent, slot + 1);
2336		eb = find_extent_buffer(fs_info, block2);
2337		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2338			block2 = 0;
2339		free_extent_buffer(eb);
2340	}
2341
2342	if (block1)
2343		readahead_tree_block(fs_info, block1);
2344	if (block2)
2345		readahead_tree_block(fs_info, block2);
2346}
2347
2348
2349/*
2350 * when we walk down the tree, it is usually safe to unlock the higher layers
2351 * in the tree.  The exceptions are when our path goes through slot 0, because
2352 * operations on the tree might require changing key pointers higher up in the
2353 * tree.
2354 *
2355 * callers might also have set path->keep_locks, which tells this code to keep
2356 * the lock if the path points to the last slot in the block.  This is part of
2357 * walking through the tree, and selecting the next slot in the higher block.
2358 *
2359 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2360 * if lowest_unlock is 1, level 0 won't be unlocked
2361 */
2362static noinline void unlock_up(struct btrfs_path *path, int level,
2363			       int lowest_unlock, int min_write_lock_level,
2364			       int *write_lock_level)
2365{
2366	int i;
2367	int skip_level = level;
2368	int no_skips = 0;
2369	struct extent_buffer *t;
2370
2371	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2372		if (!path->nodes[i])
2373			break;
2374		if (!path->locks[i])
2375			break;
2376		if (!no_skips && path->slots[i] == 0) {
2377			skip_level = i + 1;
2378			continue;
2379		}
2380		if (!no_skips && path->keep_locks) {
2381			u32 nritems;
2382			t = path->nodes[i];
2383			nritems = btrfs_header_nritems(t);
2384			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2385				skip_level = i + 1;
2386				continue;
2387			}
2388		}
2389		if (skip_level < i && i >= lowest_unlock)
2390			no_skips = 1;
2391
2392		t = path->nodes[i];
2393		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2394			btrfs_tree_unlock_rw(t, path->locks[i]);
2395			path->locks[i] = 0;
2396			if (write_lock_level &&
2397			    i > min_write_lock_level &&
2398			    i <= *write_lock_level) {
2399				*write_lock_level = i - 1;
2400			}
2401		}
2402	}
2403}
2404
2405/*
2406 * This releases any locks held in the path starting at level and
2407 * going all the way up to the root.
2408 *
2409 * btrfs_search_slot will keep the lock held on higher nodes in a few
2410 * corner cases, such as COW of the block at slot zero in the node.  This
2411 * ignores those rules, and it should only be called when there are no
2412 * more updates to be done higher up in the tree.
2413 */
2414noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2415{
2416	int i;
2417
2418	if (path->keep_locks)
2419		return;
2420
2421	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2422		if (!path->nodes[i])
2423			continue;
2424		if (!path->locks[i])
2425			continue;
2426		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2427		path->locks[i] = 0;
2428	}
2429}
2430
2431/*
2432 * helper function for btrfs_search_slot.  The goal is to find a block
2433 * in cache without setting the path to blocking.  If we find the block
2434 * we return zero and the path is unchanged.
2435 *
2436 * If we can't find the block, we set the path blocking and do some
2437 * reada.  -EAGAIN is returned and the search must be repeated.
2438 */
2439static int
2440read_block_for_search(struct btrfs_trans_handle *trans,
2441		       struct btrfs_root *root, struct btrfs_path *p,
2442		       struct extent_buffer **eb_ret, int level, int slot,
2443		       struct btrfs_key *key, u64 time_seq)
2444{
2445	struct btrfs_fs_info *fs_info = root->fs_info;
2446	u64 blocknr;
2447	u64 gen;
2448	struct extent_buffer *b = *eb_ret;
2449	struct extent_buffer *tmp;
 
2450	int ret;
 
2451
2452	blocknr = btrfs_node_blockptr(b, slot);
2453	gen = btrfs_node_ptr_generation(b, slot);
 
 
2454
2455	tmp = find_extent_buffer(fs_info, blocknr);
2456	if (tmp) {
2457		/* first we do an atomic uptodate check */
2458		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
 
 
 
 
 
 
 
 
 
 
2459			*eb_ret = tmp;
2460			return 0;
2461		}
2462
2463		/* the pages were up to date, but we failed
2464		 * the generation number check.  Do a full
2465		 * read for the generation number that is correct.
2466		 * We must do this without dropping locks so
2467		 * we can trust our generation number
2468		 */
2469		btrfs_set_path_blocking(p);
2470
2471		/* now we're allowed to do a blocking uptodate check */
2472		ret = btrfs_read_buffer(tmp, gen);
2473		if (!ret) {
2474			*eb_ret = tmp;
2475			return 0;
2476		}
2477		free_extent_buffer(tmp);
2478		btrfs_release_path(p);
2479		return -EIO;
2480	}
2481
2482	/*
2483	 * reduce lock contention at high levels
2484	 * of the btree by dropping locks before
2485	 * we read.  Don't release the lock on the current
2486	 * level because we need to walk this node to figure
2487	 * out which blocks to read.
2488	 */
2489	btrfs_unlock_up_safe(p, level + 1);
2490	btrfs_set_path_blocking(p);
2491
2492	free_extent_buffer(tmp);
2493	if (p->reada != READA_NONE)
2494		reada_for_search(fs_info, p, level, slot, key->objectid);
2495
2496	btrfs_release_path(p);
2497
2498	ret = -EAGAIN;
2499	tmp = read_tree_block(fs_info, blocknr, 0);
 
2500	if (!IS_ERR(tmp)) {
2501		/*
2502		 * If the read above didn't mark this buffer up to date,
2503		 * it will never end up being up to date.  Set ret to EIO now
2504		 * and give up so that our caller doesn't loop forever
2505		 * on our EAGAINs.
2506		 */
2507		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2508			ret = -EIO;
2509		free_extent_buffer(tmp);
2510	} else {
2511		ret = PTR_ERR(tmp);
2512	}
 
 
2513	return ret;
2514}
2515
2516/*
2517 * helper function for btrfs_search_slot.  This does all of the checks
2518 * for node-level blocks and does any balancing required based on
2519 * the ins_len.
2520 *
2521 * If no extra work was required, zero is returned.  If we had to
2522 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2523 * start over
2524 */
2525static int
2526setup_nodes_for_search(struct btrfs_trans_handle *trans,
2527		       struct btrfs_root *root, struct btrfs_path *p,
2528		       struct extent_buffer *b, int level, int ins_len,
2529		       int *write_lock_level)
2530{
2531	struct btrfs_fs_info *fs_info = root->fs_info;
2532	int ret;
2533
2534	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2535	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2536		int sret;
2537
2538		if (*write_lock_level < level + 1) {
2539			*write_lock_level = level + 1;
2540			btrfs_release_path(p);
2541			goto again;
2542		}
2543
2544		btrfs_set_path_blocking(p);
2545		reada_for_balance(fs_info, p, level);
2546		sret = split_node(trans, root, p, level);
2547		btrfs_clear_path_blocking(p, NULL, 0);
2548
2549		BUG_ON(sret > 0);
2550		if (sret) {
2551			ret = sret;
2552			goto done;
2553		}
2554		b = p->nodes[level];
2555	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2556		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2557		int sret;
2558
2559		if (*write_lock_level < level + 1) {
2560			*write_lock_level = level + 1;
2561			btrfs_release_path(p);
2562			goto again;
2563		}
2564
2565		btrfs_set_path_blocking(p);
2566		reada_for_balance(fs_info, p, level);
2567		sret = balance_level(trans, root, p, level);
2568		btrfs_clear_path_blocking(p, NULL, 0);
2569
2570		if (sret) {
2571			ret = sret;
2572			goto done;
2573		}
2574		b = p->nodes[level];
2575		if (!b) {
2576			btrfs_release_path(p);
2577			goto again;
2578		}
2579		BUG_ON(btrfs_header_nritems(b) == 1);
2580	}
2581	return 0;
2582
2583again:
2584	ret = -EAGAIN;
2585done:
2586	return ret;
2587}
2588
2589static void key_search_validate(struct extent_buffer *b,
2590				struct btrfs_key *key,
2591				int level)
2592{
2593#ifdef CONFIG_BTRFS_ASSERT
2594	struct btrfs_disk_key disk_key;
2595
2596	btrfs_cpu_key_to_disk(&disk_key, key);
2597
2598	if (level == 0)
2599		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2600		    offsetof(struct btrfs_leaf, items[0].key),
2601		    sizeof(disk_key)));
2602	else
2603		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2604		    offsetof(struct btrfs_node, ptrs[0].key),
2605		    sizeof(disk_key)));
2606#endif
2607}
2608
2609static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2610		      int level, int *prev_cmp, int *slot)
2611{
2612	if (*prev_cmp != 0) {
2613		*prev_cmp = bin_search(b, key, level, slot);
2614		return *prev_cmp;
2615	}
2616
2617	key_search_validate(b, key, level);
2618	*slot = 0;
2619
2620	return 0;
2621}
2622
2623int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2624		u64 iobjectid, u64 ioff, u8 key_type,
2625		struct btrfs_key *found_key)
2626{
2627	int ret;
2628	struct btrfs_key key;
2629	struct extent_buffer *eb;
2630
2631	ASSERT(path);
2632	ASSERT(found_key);
2633
2634	key.type = key_type;
2635	key.objectid = iobjectid;
2636	key.offset = ioff;
2637
2638	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2639	if (ret < 0)
2640		return ret;
2641
2642	eb = path->nodes[0];
2643	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2644		ret = btrfs_next_leaf(fs_root, path);
2645		if (ret)
2646			return ret;
2647		eb = path->nodes[0];
2648	}
2649
2650	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2651	if (found_key->type != key.type ||
2652			found_key->objectid != key.objectid)
2653		return 1;
2654
2655	return 0;
2656}
2657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2658/*
2659 * look for key in the tree.  path is filled in with nodes along the way
2660 * if key is found, we return zero and you can find the item in the leaf
2661 * level of the path (level 0)
2662 *
2663 * If the key isn't found, the path points to the slot where it should
2664 * be inserted, and 1 is returned.  If there are other errors during the
2665 * search a negative error number is returned.
2666 *
2667 * if ins_len > 0, nodes and leaves will be split as we walk down the
2668 * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2669 * possible)
2670 */
2671int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2672		      *root, struct btrfs_key *key, struct btrfs_path *p, int
2673		      ins_len, int cow)
 
 
 
 
 
 
 
 
 
 
 
 
2674{
2675	struct btrfs_fs_info *fs_info = root->fs_info;
2676	struct extent_buffer *b;
2677	int slot;
2678	int ret;
2679	int err;
2680	int level;
2681	int lowest_unlock = 1;
2682	int root_lock;
2683	/* everything at write_lock_level or lower must be write locked */
2684	int write_lock_level = 0;
2685	u8 lowest_level = 0;
2686	int min_write_lock_level;
2687	int prev_cmp;
2688
2689	lowest_level = p->lowest_level;
2690	WARN_ON(lowest_level && ins_len > 0);
2691	WARN_ON(p->nodes[0] != NULL);
2692	BUG_ON(!cow && ins_len);
2693
2694	if (ins_len < 0) {
2695		lowest_unlock = 2;
2696
2697		/* when we are removing items, we might have to go up to level
2698		 * two as we update tree pointers  Make sure we keep write
2699		 * for those levels as well
2700		 */
2701		write_lock_level = 2;
2702	} else if (ins_len > 0) {
2703		/*
2704		 * for inserting items, make sure we have a write lock on
2705		 * level 1 so we can update keys
2706		 */
2707		write_lock_level = 1;
2708	}
2709
2710	if (!cow)
2711		write_lock_level = -1;
2712
2713	if (cow && (p->keep_locks || p->lowest_level))
2714		write_lock_level = BTRFS_MAX_LEVEL;
2715
2716	min_write_lock_level = write_lock_level;
2717
2718again:
2719	prev_cmp = -1;
2720	/*
2721	 * we try very hard to do read locks on the root
2722	 */
2723	root_lock = BTRFS_READ_LOCK;
2724	level = 0;
2725	if (p->search_commit_root) {
2726		/*
2727		 * the commit roots are read only
2728		 * so we always do read locks
2729		 */
2730		if (p->need_commit_sem)
2731			down_read(&fs_info->commit_root_sem);
2732		b = root->commit_root;
2733		extent_buffer_get(b);
2734		level = btrfs_header_level(b);
2735		if (p->need_commit_sem)
2736			up_read(&fs_info->commit_root_sem);
2737		if (!p->skip_locking)
2738			btrfs_tree_read_lock(b);
2739	} else {
2740		if (p->skip_locking) {
2741			b = btrfs_root_node(root);
2742			level = btrfs_header_level(b);
2743		} else {
2744			/* we don't know the level of the root node
2745			 * until we actually have it read locked
2746			 */
2747			b = btrfs_read_lock_root_node(root);
2748			level = btrfs_header_level(b);
2749			if (level <= write_lock_level) {
2750				/* whoops, must trade for write lock */
2751				btrfs_tree_read_unlock(b);
2752				free_extent_buffer(b);
2753				b = btrfs_lock_root_node(root);
2754				root_lock = BTRFS_WRITE_LOCK;
2755
2756				/* the level might have changed, check again */
2757				level = btrfs_header_level(b);
2758			}
2759		}
2760	}
2761	p->nodes[level] = b;
2762	if (!p->skip_locking)
2763		p->locks[level] = root_lock;
2764
2765	while (b) {
2766		level = btrfs_header_level(b);
2767
2768		/*
2769		 * setup the path here so we can release it under lock
2770		 * contention with the cow code
2771		 */
2772		if (cow) {
 
 
2773			/*
2774			 * if we don't really need to cow this block
2775			 * then we don't want to set the path blocking,
2776			 * so we test it here
2777			 */
2778			if (!should_cow_block(trans, root, b)) {
2779				trans->dirty = true;
2780				goto cow_done;
2781			}
2782
2783			/*
2784			 * must have write locks on this node and the
2785			 * parent
2786			 */
2787			if (level > write_lock_level ||
2788			    (level + 1 > write_lock_level &&
2789			    level + 1 < BTRFS_MAX_LEVEL &&
2790			    p->nodes[level + 1])) {
2791				write_lock_level = level + 1;
2792				btrfs_release_path(p);
2793				goto again;
2794			}
2795
2796			btrfs_set_path_blocking(p);
2797			err = btrfs_cow_block(trans, root, b,
2798					      p->nodes[level + 1],
2799					      p->slots[level + 1], &b);
 
 
 
 
2800			if (err) {
2801				ret = err;
2802				goto done;
2803			}
2804		}
2805cow_done:
2806		p->nodes[level] = b;
2807		btrfs_clear_path_blocking(p, NULL, 0);
 
 
 
2808
2809		/*
2810		 * we have a lock on b and as long as we aren't changing
2811		 * the tree, there is no way to for the items in b to change.
2812		 * It is safe to drop the lock on our parent before we
2813		 * go through the expensive btree search on b.
2814		 *
2815		 * If we're inserting or deleting (ins_len != 0), then we might
2816		 * be changing slot zero, which may require changing the parent.
2817		 * So, we can't drop the lock until after we know which slot
2818		 * we're operating on.
2819		 */
2820		if (!ins_len && !p->keep_locks) {
2821			int u = level + 1;
2822
2823			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2824				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2825				p->locks[u] = 0;
2826			}
2827		}
2828
2829		ret = key_search(b, key, level, &prev_cmp, &slot);
2830		if (ret < 0)
2831			goto done;
2832
2833		if (level != 0) {
2834			int dec = 0;
2835			if (ret && slot > 0) {
2836				dec = 1;
2837				slot -= 1;
2838			}
2839			p->slots[level] = slot;
2840			err = setup_nodes_for_search(trans, root, p, b, level,
2841					     ins_len, &write_lock_level);
2842			if (err == -EAGAIN)
2843				goto again;
2844			if (err) {
2845				ret = err;
2846				goto done;
2847			}
2848			b = p->nodes[level];
2849			slot = p->slots[level];
2850
2851			/*
2852			 * slot 0 is special, if we change the key
2853			 * we have to update the parent pointer
2854			 * which means we must have a write lock
2855			 * on the parent
2856			 */
2857			if (slot == 0 && ins_len &&
2858			    write_lock_level < level + 1) {
2859				write_lock_level = level + 1;
2860				btrfs_release_path(p);
2861				goto again;
2862			}
2863
2864			unlock_up(p, level, lowest_unlock,
2865				  min_write_lock_level, &write_lock_level);
2866
2867			if (level == lowest_level) {
2868				if (dec)
2869					p->slots[level]++;
2870				goto done;
2871			}
2872
2873			err = read_block_for_search(trans, root, p,
2874						    &b, level, slot, key, 0);
2875			if (err == -EAGAIN)
2876				goto again;
2877			if (err) {
2878				ret = err;
2879				goto done;
2880			}
2881
2882			if (!p->skip_locking) {
2883				level = btrfs_header_level(b);
2884				if (level <= write_lock_level) {
2885					err = btrfs_try_tree_write_lock(b);
2886					if (!err) {
2887						btrfs_set_path_blocking(p);
2888						btrfs_tree_lock(b);
2889						btrfs_clear_path_blocking(p, b,
2890								  BTRFS_WRITE_LOCK);
2891					}
2892					p->locks[level] = BTRFS_WRITE_LOCK;
2893				} else {
2894					err = btrfs_tree_read_lock_atomic(b);
2895					if (!err) {
2896						btrfs_set_path_blocking(p);
2897						btrfs_tree_read_lock(b);
2898						btrfs_clear_path_blocking(p, b,
2899								  BTRFS_READ_LOCK);
2900					}
2901					p->locks[level] = BTRFS_READ_LOCK;
2902				}
2903				p->nodes[level] = b;
2904			}
2905		} else {
2906			p->slots[level] = slot;
2907			if (ins_len > 0 &&
2908			    btrfs_leaf_free_space(fs_info, b) < ins_len) {
2909				if (write_lock_level < 1) {
2910					write_lock_level = 1;
2911					btrfs_release_path(p);
2912					goto again;
2913				}
2914
2915				btrfs_set_path_blocking(p);
2916				err = split_leaf(trans, root, key,
2917						 p, ins_len, ret == 0);
2918				btrfs_clear_path_blocking(p, NULL, 0);
2919
2920				BUG_ON(err > 0);
2921				if (err) {
2922					ret = err;
2923					goto done;
2924				}
2925			}
2926			if (!p->search_for_split)
2927				unlock_up(p, level, lowest_unlock,
2928					  min_write_lock_level, &write_lock_level);
2929			goto done;
2930		}
2931	}
2932	ret = 1;
2933done:
2934	/*
2935	 * we don't really know what they plan on doing with the path
2936	 * from here on, so for now just mark it as blocking
2937	 */
2938	if (!p->leave_spinning)
2939		btrfs_set_path_blocking(p);
2940	if (ret < 0 && !p->skip_release_on_error)
2941		btrfs_release_path(p);
2942	return ret;
2943}
2944
2945/*
2946 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2947 * current state of the tree together with the operations recorded in the tree
2948 * modification log to search for the key in a previous version of this tree, as
2949 * denoted by the time_seq parameter.
2950 *
2951 * Naturally, there is no support for insert, delete or cow operations.
2952 *
2953 * The resulting path and return value will be set up as if we called
2954 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2955 */
2956int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2957			  struct btrfs_path *p, u64 time_seq)
2958{
2959	struct btrfs_fs_info *fs_info = root->fs_info;
2960	struct extent_buffer *b;
2961	int slot;
2962	int ret;
2963	int err;
2964	int level;
2965	int lowest_unlock = 1;
2966	u8 lowest_level = 0;
2967	int prev_cmp = -1;
2968
2969	lowest_level = p->lowest_level;
2970	WARN_ON(p->nodes[0] != NULL);
2971
2972	if (p->search_commit_root) {
2973		BUG_ON(time_seq);
2974		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2975	}
2976
2977again:
2978	b = get_old_root(root, time_seq);
 
 
 
 
2979	level = btrfs_header_level(b);
2980	p->locks[level] = BTRFS_READ_LOCK;
2981
2982	while (b) {
2983		level = btrfs_header_level(b);
2984		p->nodes[level] = b;
2985		btrfs_clear_path_blocking(p, NULL, 0);
2986
2987		/*
2988		 * we have a lock on b and as long as we aren't changing
2989		 * the tree, there is no way to for the items in b to change.
2990		 * It is safe to drop the lock on our parent before we
2991		 * go through the expensive btree search on b.
2992		 */
2993		btrfs_unlock_up_safe(p, level + 1);
2994
2995		/*
2996		 * Since we can unwind ebs we want to do a real search every
2997		 * time.
2998		 */
2999		prev_cmp = -1;
3000		ret = key_search(b, key, level, &prev_cmp, &slot);
 
 
3001
3002		if (level != 0) {
3003			int dec = 0;
3004			if (ret && slot > 0) {
3005				dec = 1;
3006				slot -= 1;
3007			}
3008			p->slots[level] = slot;
3009			unlock_up(p, level, lowest_unlock, 0, NULL);
3010
3011			if (level == lowest_level) {
3012				if (dec)
3013					p->slots[level]++;
3014				goto done;
3015			}
3016
3017			err = read_block_for_search(NULL, root, p, &b, level,
3018						    slot, key, time_seq);
3019			if (err == -EAGAIN)
3020				goto again;
3021			if (err) {
3022				ret = err;
3023				goto done;
3024			}
3025
3026			level = btrfs_header_level(b);
3027			err = btrfs_tree_read_lock_atomic(b);
3028			if (!err) {
3029				btrfs_set_path_blocking(p);
3030				btrfs_tree_read_lock(b);
3031				btrfs_clear_path_blocking(p, b,
3032							  BTRFS_READ_LOCK);
3033			}
3034			b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3035			if (!b) {
3036				ret = -ENOMEM;
3037				goto done;
3038			}
3039			p->locks[level] = BTRFS_READ_LOCK;
3040			p->nodes[level] = b;
3041		} else {
3042			p->slots[level] = slot;
3043			unlock_up(p, level, lowest_unlock, 0, NULL);
3044			goto done;
3045		}
3046	}
3047	ret = 1;
3048done:
3049	if (!p->leave_spinning)
3050		btrfs_set_path_blocking(p);
3051	if (ret < 0)
3052		btrfs_release_path(p);
3053
3054	return ret;
3055}
3056
3057/*
3058 * helper to use instead of search slot if no exact match is needed but
3059 * instead the next or previous item should be returned.
3060 * When find_higher is true, the next higher item is returned, the next lower
3061 * otherwise.
3062 * When return_any and find_higher are both true, and no higher item is found,
3063 * return the next lower instead.
3064 * When return_any is true and find_higher is false, and no lower item is found,
3065 * return the next higher instead.
3066 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3067 * < 0 on error
3068 */
3069int btrfs_search_slot_for_read(struct btrfs_root *root,
3070			       struct btrfs_key *key, struct btrfs_path *p,
3071			       int find_higher, int return_any)
 
3072{
3073	int ret;
3074	struct extent_buffer *leaf;
3075
3076again:
3077	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3078	if (ret <= 0)
3079		return ret;
3080	/*
3081	 * a return value of 1 means the path is at the position where the
3082	 * item should be inserted. Normally this is the next bigger item,
3083	 * but in case the previous item is the last in a leaf, path points
3084	 * to the first free slot in the previous leaf, i.e. at an invalid
3085	 * item.
3086	 */
3087	leaf = p->nodes[0];
3088
3089	if (find_higher) {
3090		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3091			ret = btrfs_next_leaf(root, p);
3092			if (ret <= 0)
3093				return ret;
3094			if (!return_any)
3095				return 1;
3096			/*
3097			 * no higher item found, return the next
3098			 * lower instead
3099			 */
3100			return_any = 0;
3101			find_higher = 0;
3102			btrfs_release_path(p);
3103			goto again;
3104		}
3105	} else {
3106		if (p->slots[0] == 0) {
3107			ret = btrfs_prev_leaf(root, p);
3108			if (ret < 0)
3109				return ret;
3110			if (!ret) {
3111				leaf = p->nodes[0];
3112				if (p->slots[0] == btrfs_header_nritems(leaf))
3113					p->slots[0]--;
3114				return 0;
3115			}
3116			if (!return_any)
3117				return 1;
3118			/*
3119			 * no lower item found, return the next
3120			 * higher instead
3121			 */
3122			return_any = 0;
3123			find_higher = 1;
3124			btrfs_release_path(p);
3125			goto again;
3126		} else {
3127			--p->slots[0];
3128		}
3129	}
3130	return 0;
3131}
3132
3133/*
3134 * adjust the pointers going up the tree, starting at level
3135 * making sure the right key of each node is points to 'key'.
3136 * This is used after shifting pointers to the left, so it stops
3137 * fixing up pointers when a given leaf/node is not in slot 0 of the
3138 * higher levels
3139 *
3140 */
3141static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3142			   struct btrfs_path *path,
3143			   struct btrfs_disk_key *key, int level)
3144{
3145	int i;
3146	struct extent_buffer *t;
 
3147
3148	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3149		int tslot = path->slots[i];
 
3150		if (!path->nodes[i])
3151			break;
3152		t = path->nodes[i];
3153		tree_mod_log_set_node_key(fs_info, t, tslot, 1);
 
 
3154		btrfs_set_node_key(t, key, tslot);
3155		btrfs_mark_buffer_dirty(path->nodes[i]);
3156		if (tslot != 0)
3157			break;
3158	}
3159}
3160
3161/*
3162 * update item key.
3163 *
3164 * This function isn't completely safe. It's the caller's responsibility
3165 * that the new key won't break the order
3166 */
3167void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3168			     struct btrfs_path *path,
3169			     struct btrfs_key *new_key)
3170{
3171	struct btrfs_disk_key disk_key;
3172	struct extent_buffer *eb;
3173	int slot;
3174
3175	eb = path->nodes[0];
3176	slot = path->slots[0];
3177	if (slot > 0) {
3178		btrfs_item_key(eb, &disk_key, slot - 1);
3179		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
 
 
 
 
 
 
 
 
 
 
3180	}
3181	if (slot < btrfs_header_nritems(eb) - 1) {
3182		btrfs_item_key(eb, &disk_key, slot + 1);
3183		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
 
 
 
 
 
 
 
 
 
 
3184	}
3185
3186	btrfs_cpu_key_to_disk(&disk_key, new_key);
3187	btrfs_set_item_key(eb, &disk_key, slot);
3188	btrfs_mark_buffer_dirty(eb);
3189	if (slot == 0)
3190		fixup_low_keys(fs_info, path, &disk_key, 1);
3191}
3192
3193/*
3194 * try to push data from one node into the next node left in the
3195 * tree.
3196 *
3197 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3198 * error, and > 0 if there was no room in the left hand block.
3199 */
3200static int push_node_left(struct btrfs_trans_handle *trans,
3201			  struct btrfs_fs_info *fs_info,
3202			  struct extent_buffer *dst,
3203			  struct extent_buffer *src, int empty)
3204{
 
3205	int push_items = 0;
3206	int src_nritems;
3207	int dst_nritems;
3208	int ret = 0;
3209
3210	src_nritems = btrfs_header_nritems(src);
3211	dst_nritems = btrfs_header_nritems(dst);
3212	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3213	WARN_ON(btrfs_header_generation(src) != trans->transid);
3214	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3215
3216	if (!empty && src_nritems <= 8)
3217		return 1;
3218
3219	if (push_items <= 0)
3220		return 1;
3221
3222	if (empty) {
3223		push_items = min(src_nritems, push_items);
3224		if (push_items < src_nritems) {
3225			/* leave at least 8 pointers in the node if
3226			 * we aren't going to empty it
3227			 */
3228			if (src_nritems - push_items < 8) {
3229				if (push_items <= 8)
3230					return 1;
3231				push_items -= 8;
3232			}
3233		}
3234	} else
3235		push_items = min(src_nritems - 8, push_items);
3236
3237	ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
3238				   push_items);
3239	if (ret) {
3240		btrfs_abort_transaction(trans, ret);
3241		return ret;
3242	}
3243	copy_extent_buffer(dst, src,
3244			   btrfs_node_key_ptr_offset(dst_nritems),
3245			   btrfs_node_key_ptr_offset(0),
3246			   push_items * sizeof(struct btrfs_key_ptr));
3247
3248	if (push_items < src_nritems) {
3249		/*
3250		 * don't call tree_mod_log_eb_move here, key removal was already
3251		 * fully logged by tree_mod_log_eb_copy above.
3252		 */
3253		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3254				      btrfs_node_key_ptr_offset(push_items),
3255				      (src_nritems - push_items) *
3256				      sizeof(struct btrfs_key_ptr));
3257	}
3258	btrfs_set_header_nritems(src, src_nritems - push_items);
3259	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3260	btrfs_mark_buffer_dirty(src);
3261	btrfs_mark_buffer_dirty(dst);
3262
3263	return ret;
3264}
3265
3266/*
3267 * try to push data from one node into the next node right in the
3268 * tree.
3269 *
3270 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3271 * error, and > 0 if there was no room in the right hand block.
3272 *
3273 * this will  only push up to 1/2 the contents of the left node over
3274 */
3275static int balance_node_right(struct btrfs_trans_handle *trans,
3276			      struct btrfs_fs_info *fs_info,
3277			      struct extent_buffer *dst,
3278			      struct extent_buffer *src)
3279{
 
3280	int push_items = 0;
3281	int max_push;
3282	int src_nritems;
3283	int dst_nritems;
3284	int ret = 0;
3285
3286	WARN_ON(btrfs_header_generation(src) != trans->transid);
3287	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3288
3289	src_nritems = btrfs_header_nritems(src);
3290	dst_nritems = btrfs_header_nritems(dst);
3291	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3292	if (push_items <= 0)
3293		return 1;
3294
3295	if (src_nritems < 4)
3296		return 1;
3297
3298	max_push = src_nritems / 2 + 1;
3299	/* don't try to empty the node */
3300	if (max_push >= src_nritems)
3301		return 1;
3302
3303	if (max_push < push_items)
3304		push_items = max_push;
3305
3306	tree_mod_log_eb_move(fs_info, dst, push_items, 0, dst_nritems);
 
3307	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3308				      btrfs_node_key_ptr_offset(0),
3309				      (dst_nritems) *
3310				      sizeof(struct btrfs_key_ptr));
3311
3312	ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
3313				   src_nritems - push_items, push_items);
3314	if (ret) {
3315		btrfs_abort_transaction(trans, ret);
3316		return ret;
3317	}
3318	copy_extent_buffer(dst, src,
3319			   btrfs_node_key_ptr_offset(0),
3320			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3321			   push_items * sizeof(struct btrfs_key_ptr));
3322
3323	btrfs_set_header_nritems(src, src_nritems - push_items);
3324	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3325
3326	btrfs_mark_buffer_dirty(src);
3327	btrfs_mark_buffer_dirty(dst);
3328
3329	return ret;
3330}
3331
3332/*
3333 * helper function to insert a new root level in the tree.
3334 * A new node is allocated, and a single item is inserted to
3335 * point to the existing root
3336 *
3337 * returns zero on success or < 0 on failure.
3338 */
3339static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3340			   struct btrfs_root *root,
3341			   struct btrfs_path *path, int level)
3342{
3343	struct btrfs_fs_info *fs_info = root->fs_info;
3344	u64 lower_gen;
3345	struct extent_buffer *lower;
3346	struct extent_buffer *c;
3347	struct extent_buffer *old;
3348	struct btrfs_disk_key lower_key;
 
3349
3350	BUG_ON(path->nodes[level]);
3351	BUG_ON(path->nodes[level-1] != root->node);
3352
3353	lower = path->nodes[level-1];
3354	if (level == 1)
3355		btrfs_item_key(lower, &lower_key, 0);
3356	else
3357		btrfs_node_key(lower, &lower_key, 0);
3358
3359	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3360				   &lower_key, level, root->node->start, 0);
3361	if (IS_ERR(c))
3362		return PTR_ERR(c);
3363
3364	root_add_used(root, fs_info->nodesize);
3365
3366	memzero_extent_buffer(c, 0, sizeof(struct btrfs_header));
3367	btrfs_set_header_nritems(c, 1);
3368	btrfs_set_header_level(c, level);
3369	btrfs_set_header_bytenr(c, c->start);
3370	btrfs_set_header_generation(c, trans->transid);
3371	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3372	btrfs_set_header_owner(c, root->root_key.objectid);
3373
3374	write_extent_buffer_fsid(c, fs_info->fsid);
3375	write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid);
3376
3377	btrfs_set_node_key(c, &lower_key, 0);
3378	btrfs_set_node_blockptr(c, 0, lower->start);
3379	lower_gen = btrfs_header_generation(lower);
3380	WARN_ON(lower_gen != trans->transid);
3381
3382	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3383
3384	btrfs_mark_buffer_dirty(c);
3385
3386	old = root->node;
3387	tree_mod_log_set_root_pointer(root, c, 0);
 
3388	rcu_assign_pointer(root->node, c);
3389
3390	/* the super has an extra ref to root->node */
3391	free_extent_buffer(old);
3392
3393	add_root_to_dirty_list(root);
3394	extent_buffer_get(c);
3395	path->nodes[level] = c;
3396	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3397	path->slots[level] = 0;
3398	return 0;
3399}
3400
3401/*
3402 * worker function to insert a single pointer in a node.
3403 * the node should have enough room for the pointer already
3404 *
3405 * slot and level indicate where you want the key to go, and
3406 * blocknr is the block the key points to.
3407 */
3408static void insert_ptr(struct btrfs_trans_handle *trans,
3409		       struct btrfs_fs_info *fs_info, struct btrfs_path *path,
3410		       struct btrfs_disk_key *key, u64 bytenr,
3411		       int slot, int level)
3412{
3413	struct extent_buffer *lower;
3414	int nritems;
3415	int ret;
3416
3417	BUG_ON(!path->nodes[level]);
3418	btrfs_assert_tree_locked(path->nodes[level]);
3419	lower = path->nodes[level];
3420	nritems = btrfs_header_nritems(lower);
3421	BUG_ON(slot > nritems);
3422	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
3423	if (slot != nritems) {
3424		if (level)
3425			tree_mod_log_eb_move(fs_info, lower, slot + 1,
3426					     slot, nritems - slot);
 
 
3427		memmove_extent_buffer(lower,
3428			      btrfs_node_key_ptr_offset(slot + 1),
3429			      btrfs_node_key_ptr_offset(slot),
3430			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3431	}
3432	if (level) {
3433		ret = tree_mod_log_insert_key(fs_info, lower, slot,
3434					      MOD_LOG_KEY_ADD, GFP_NOFS);
3435		BUG_ON(ret < 0);
3436	}
3437	btrfs_set_node_key(lower, key, slot);
3438	btrfs_set_node_blockptr(lower, slot, bytenr);
3439	WARN_ON(trans->transid == 0);
3440	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3441	btrfs_set_header_nritems(lower, nritems + 1);
3442	btrfs_mark_buffer_dirty(lower);
3443}
3444
3445/*
3446 * split the node at the specified level in path in two.
3447 * The path is corrected to point to the appropriate node after the split
3448 *
3449 * Before splitting this tries to make some room in the node by pushing
3450 * left and right, if either one works, it returns right away.
3451 *
3452 * returns 0 on success and < 0 on failure
3453 */
3454static noinline int split_node(struct btrfs_trans_handle *trans,
3455			       struct btrfs_root *root,
3456			       struct btrfs_path *path, int level)
3457{
3458	struct btrfs_fs_info *fs_info = root->fs_info;
3459	struct extent_buffer *c;
3460	struct extent_buffer *split;
3461	struct btrfs_disk_key disk_key;
3462	int mid;
3463	int ret;
3464	u32 c_nritems;
3465
3466	c = path->nodes[level];
3467	WARN_ON(btrfs_header_generation(c) != trans->transid);
3468	if (c == root->node) {
3469		/*
3470		 * trying to split the root, lets make a new one
3471		 *
3472		 * tree mod log: We don't log_removal old root in
3473		 * insert_new_root, because that root buffer will be kept as a
3474		 * normal node. We are going to log removal of half of the
3475		 * elements below with tree_mod_log_eb_copy. We're holding a
3476		 * tree lock on the buffer, which is why we cannot race with
3477		 * other tree_mod_log users.
3478		 */
3479		ret = insert_new_root(trans, root, path, level + 1);
3480		if (ret)
3481			return ret;
3482	} else {
3483		ret = push_nodes_for_insert(trans, root, path, level);
3484		c = path->nodes[level];
3485		if (!ret && btrfs_header_nritems(c) <
3486		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3487			return 0;
3488		if (ret < 0)
3489			return ret;
3490	}
3491
3492	c_nritems = btrfs_header_nritems(c);
3493	mid = (c_nritems + 1) / 2;
3494	btrfs_node_key(c, &disk_key, mid);
3495
3496	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3497			&disk_key, level, c->start, 0);
3498	if (IS_ERR(split))
3499		return PTR_ERR(split);
3500
3501	root_add_used(root, fs_info->nodesize);
 
3502
3503	memzero_extent_buffer(split, 0, sizeof(struct btrfs_header));
3504	btrfs_set_header_level(split, btrfs_header_level(c));
3505	btrfs_set_header_bytenr(split, split->start);
3506	btrfs_set_header_generation(split, trans->transid);
3507	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3508	btrfs_set_header_owner(split, root->root_key.objectid);
3509	write_extent_buffer_fsid(split, fs_info->fsid);
3510	write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid);
3511
3512	ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
3513	if (ret) {
3514		btrfs_abort_transaction(trans, ret);
3515		return ret;
3516	}
3517	copy_extent_buffer(split, c,
3518			   btrfs_node_key_ptr_offset(0),
3519			   btrfs_node_key_ptr_offset(mid),
3520			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3521	btrfs_set_header_nritems(split, c_nritems - mid);
3522	btrfs_set_header_nritems(c, mid);
3523	ret = 0;
3524
3525	btrfs_mark_buffer_dirty(c);
3526	btrfs_mark_buffer_dirty(split);
3527
3528	insert_ptr(trans, fs_info, path, &disk_key, split->start,
3529		   path->slots[level + 1] + 1, level + 1);
3530
3531	if (path->slots[level] >= mid) {
3532		path->slots[level] -= mid;
3533		btrfs_tree_unlock(c);
3534		free_extent_buffer(c);
3535		path->nodes[level] = split;
3536		path->slots[level + 1] += 1;
3537	} else {
3538		btrfs_tree_unlock(split);
3539		free_extent_buffer(split);
3540	}
3541	return ret;
3542}
3543
3544/*
3545 * how many bytes are required to store the items in a leaf.  start
3546 * and nr indicate which items in the leaf to check.  This totals up the
3547 * space used both by the item structs and the item data
3548 */
3549static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3550{
3551	struct btrfs_item *start_item;
3552	struct btrfs_item *end_item;
3553	struct btrfs_map_token token;
3554	int data_len;
3555	int nritems = btrfs_header_nritems(l);
3556	int end = min(nritems, start + nr) - 1;
3557
3558	if (!nr)
3559		return 0;
3560	btrfs_init_map_token(&token);
3561	start_item = btrfs_item_nr(start);
3562	end_item = btrfs_item_nr(end);
3563	data_len = btrfs_token_item_offset(l, start_item, &token) +
3564		btrfs_token_item_size(l, start_item, &token);
3565	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3566	data_len += sizeof(struct btrfs_item) * nr;
3567	WARN_ON(data_len < 0);
3568	return data_len;
3569}
3570
3571/*
3572 * The space between the end of the leaf items and
3573 * the start of the leaf data.  IOW, how much room
3574 * the leaf has left for both items and data
3575 */
3576noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
3577				   struct extent_buffer *leaf)
3578{
 
3579	int nritems = btrfs_header_nritems(leaf);
3580	int ret;
3581
3582	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3583	if (ret < 0) {
3584		btrfs_crit(fs_info,
3585			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3586			   ret,
3587			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3588			   leaf_space_used(leaf, 0, nritems), nritems);
3589	}
3590	return ret;
3591}
3592
3593/*
3594 * min slot controls the lowest index we're willing to push to the
3595 * right.  We'll push up to and including min_slot, but no lower
3596 */
3597static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3598				      struct btrfs_fs_info *fs_info,
3599				      struct btrfs_path *path,
3600				      int data_size, int empty,
3601				      struct extent_buffer *right,
3602				      int free_space, u32 left_nritems,
3603				      u32 min_slot)
3604{
 
3605	struct extent_buffer *left = path->nodes[0];
3606	struct extent_buffer *upper = path->nodes[1];
3607	struct btrfs_map_token token;
3608	struct btrfs_disk_key disk_key;
3609	int slot;
3610	u32 i;
3611	int push_space = 0;
3612	int push_items = 0;
3613	struct btrfs_item *item;
3614	u32 nr;
3615	u32 right_nritems;
3616	u32 data_end;
3617	u32 this_item_size;
3618
3619	btrfs_init_map_token(&token);
3620
3621	if (empty)
3622		nr = 0;
3623	else
3624		nr = max_t(u32, 1, min_slot);
3625
3626	if (path->slots[0] >= left_nritems)
3627		push_space += data_size;
3628
3629	slot = path->slots[1];
3630	i = left_nritems - 1;
3631	while (i >= nr) {
3632		item = btrfs_item_nr(i);
3633
3634		if (!empty && push_items > 0) {
3635			if (path->slots[0] > i)
3636				break;
3637			if (path->slots[0] == i) {
3638				int space = btrfs_leaf_free_space(fs_info, left);
 
3639				if (space + push_space * 2 > free_space)
3640					break;
3641			}
3642		}
3643
3644		if (path->slots[0] == i)
3645			push_space += data_size;
3646
3647		this_item_size = btrfs_item_size(left, item);
3648		if (this_item_size + sizeof(*item) + push_space > free_space)
3649			break;
3650
3651		push_items++;
3652		push_space += this_item_size + sizeof(*item);
3653		if (i == 0)
3654			break;
3655		i--;
3656	}
3657
3658	if (push_items == 0)
3659		goto out_unlock;
3660
3661	WARN_ON(!empty && push_items == left_nritems);
3662
3663	/* push left to right */
3664	right_nritems = btrfs_header_nritems(right);
3665
3666	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3667	push_space -= leaf_data_end(fs_info, left);
3668
3669	/* make room in the right data area */
3670	data_end = leaf_data_end(fs_info, right);
3671	memmove_extent_buffer(right,
3672			      btrfs_leaf_data(right) + data_end - push_space,
3673			      btrfs_leaf_data(right) + data_end,
3674			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3675
3676	/* copy from the left data area */
3677	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3678		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3679		     btrfs_leaf_data(left) + leaf_data_end(fs_info, left),
3680		     push_space);
3681
3682	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3683			      btrfs_item_nr_offset(0),
3684			      right_nritems * sizeof(struct btrfs_item));
3685
3686	/* copy the items from left to right */
3687	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3688		   btrfs_item_nr_offset(left_nritems - push_items),
3689		   push_items * sizeof(struct btrfs_item));
3690
3691	/* update the item pointers */
 
3692	right_nritems += push_items;
3693	btrfs_set_header_nritems(right, right_nritems);
3694	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3695	for (i = 0; i < right_nritems; i++) {
3696		item = btrfs_item_nr(i);
3697		push_space -= btrfs_token_item_size(right, item, &token);
3698		btrfs_set_token_item_offset(right, item, push_space, &token);
3699	}
3700
3701	left_nritems -= push_items;
3702	btrfs_set_header_nritems(left, left_nritems);
3703
3704	if (left_nritems)
3705		btrfs_mark_buffer_dirty(left);
3706	else
3707		clean_tree_block(trans, fs_info, left);
3708
3709	btrfs_mark_buffer_dirty(right);
3710
3711	btrfs_item_key(right, &disk_key, 0);
3712	btrfs_set_node_key(upper, &disk_key, slot + 1);
3713	btrfs_mark_buffer_dirty(upper);
3714
3715	/* then fixup the leaf pointer in the path */
3716	if (path->slots[0] >= left_nritems) {
3717		path->slots[0] -= left_nritems;
3718		if (btrfs_header_nritems(path->nodes[0]) == 0)
3719			clean_tree_block(trans, fs_info, path->nodes[0]);
3720		btrfs_tree_unlock(path->nodes[0]);
3721		free_extent_buffer(path->nodes[0]);
3722		path->nodes[0] = right;
3723		path->slots[1] += 1;
3724	} else {
3725		btrfs_tree_unlock(right);
3726		free_extent_buffer(right);
3727	}
3728	return 0;
3729
3730out_unlock:
3731	btrfs_tree_unlock(right);
3732	free_extent_buffer(right);
3733	return 1;
3734}
3735
3736/*
3737 * push some data in the path leaf to the right, trying to free up at
3738 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3739 *
3740 * returns 1 if the push failed because the other node didn't have enough
3741 * room, 0 if everything worked out and < 0 if there were major errors.
3742 *
3743 * this will push starting from min_slot to the end of the leaf.  It won't
3744 * push any slot lower than min_slot
3745 */
3746static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3747			   *root, struct btrfs_path *path,
3748			   int min_data_size, int data_size,
3749			   int empty, u32 min_slot)
3750{
3751	struct btrfs_fs_info *fs_info = root->fs_info;
3752	struct extent_buffer *left = path->nodes[0];
3753	struct extent_buffer *right;
3754	struct extent_buffer *upper;
3755	int slot;
3756	int free_space;
3757	u32 left_nritems;
3758	int ret;
3759
3760	if (!path->nodes[1])
3761		return 1;
3762
3763	slot = path->slots[1];
3764	upper = path->nodes[1];
3765	if (slot >= btrfs_header_nritems(upper) - 1)
3766		return 1;
3767
3768	btrfs_assert_tree_locked(path->nodes[1]);
3769
3770	right = read_node_slot(fs_info, upper, slot + 1);
3771	/*
3772	 * slot + 1 is not valid or we fail to read the right node,
3773	 * no big deal, just return.
3774	 */
3775	if (IS_ERR(right))
3776		return 1;
3777
3778	btrfs_tree_lock(right);
3779	btrfs_set_lock_blocking(right);
3780
3781	free_space = btrfs_leaf_free_space(fs_info, right);
3782	if (free_space < data_size)
3783		goto out_unlock;
3784
3785	/* cow and double check */
3786	ret = btrfs_cow_block(trans, root, right, upper,
3787			      slot + 1, &right);
3788	if (ret)
3789		goto out_unlock;
3790
3791	free_space = btrfs_leaf_free_space(fs_info, right);
3792	if (free_space < data_size)
3793		goto out_unlock;
3794
3795	left_nritems = btrfs_header_nritems(left);
3796	if (left_nritems == 0)
3797		goto out_unlock;
3798
3799	if (path->slots[0] == left_nritems && !empty) {
3800		/* Key greater than all keys in the leaf, right neighbor has
3801		 * enough room for it and we're not emptying our leaf to delete
3802		 * it, therefore use right neighbor to insert the new item and
3803		 * no need to touch/dirty our left leaft. */
3804		btrfs_tree_unlock(left);
3805		free_extent_buffer(left);
3806		path->nodes[0] = right;
3807		path->slots[0] = 0;
3808		path->slots[1]++;
3809		return 0;
3810	}
3811
3812	return __push_leaf_right(trans, fs_info, path, min_data_size, empty,
3813				right, free_space, left_nritems, min_slot);
3814out_unlock:
3815	btrfs_tree_unlock(right);
3816	free_extent_buffer(right);
3817	return 1;
3818}
3819
3820/*
3821 * push some data in the path leaf to the left, trying to free up at
3822 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3823 *
3824 * max_slot can put a limit on how far into the leaf we'll push items.  The
3825 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3826 * items
3827 */
3828static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3829				     struct btrfs_fs_info *fs_info,
3830				     struct btrfs_path *path, int data_size,
3831				     int empty, struct extent_buffer *left,
3832				     int free_space, u32 right_nritems,
3833				     u32 max_slot)
3834{
 
3835	struct btrfs_disk_key disk_key;
3836	struct extent_buffer *right = path->nodes[0];
3837	int i;
3838	int push_space = 0;
3839	int push_items = 0;
3840	struct btrfs_item *item;
3841	u32 old_left_nritems;
3842	u32 nr;
3843	int ret = 0;
3844	u32 this_item_size;
3845	u32 old_left_item_size;
3846	struct btrfs_map_token token;
3847
3848	btrfs_init_map_token(&token);
3849
3850	if (empty)
3851		nr = min(right_nritems, max_slot);
3852	else
3853		nr = min(right_nritems - 1, max_slot);
3854
3855	for (i = 0; i < nr; i++) {
3856		item = btrfs_item_nr(i);
3857
3858		if (!empty && push_items > 0) {
3859			if (path->slots[0] < i)
3860				break;
3861			if (path->slots[0] == i) {
3862				int space = btrfs_leaf_free_space(fs_info, right);
 
3863				if (space + push_space * 2 > free_space)
3864					break;
3865			}
3866		}
3867
3868		if (path->slots[0] == i)
3869			push_space += data_size;
3870
3871		this_item_size = btrfs_item_size(right, item);
3872		if (this_item_size + sizeof(*item) + push_space > free_space)
3873			break;
3874
3875		push_items++;
3876		push_space += this_item_size + sizeof(*item);
3877	}
3878
3879	if (push_items == 0) {
3880		ret = 1;
3881		goto out;
3882	}
3883	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3884
3885	/* push data from right to left */
3886	copy_extent_buffer(left, right,
3887			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3888			   btrfs_item_nr_offset(0),
3889			   push_items * sizeof(struct btrfs_item));
3890
3891	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3892		     btrfs_item_offset_nr(right, push_items - 1);
3893
3894	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3895		     leaf_data_end(fs_info, left) - push_space,
3896		     btrfs_leaf_data(right) +
3897		     btrfs_item_offset_nr(right, push_items - 1),
3898		     push_space);
3899	old_left_nritems = btrfs_header_nritems(left);
3900	BUG_ON(old_left_nritems <= 0);
3901
 
3902	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3903	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3904		u32 ioff;
3905
3906		item = btrfs_item_nr(i);
3907
3908		ioff = btrfs_token_item_offset(left, item, &token);
3909		btrfs_set_token_item_offset(left, item,
3910		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3911		      &token);
3912	}
3913	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3914
3915	/* fixup right node */
3916	if (push_items > right_nritems)
3917		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3918		       right_nritems);
3919
3920	if (push_items < right_nritems) {
3921		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3922						  leaf_data_end(fs_info, right);
3923		memmove_extent_buffer(right, btrfs_leaf_data(right) +
3924				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3925				      btrfs_leaf_data(right) +
3926				      leaf_data_end(fs_info, right), push_space);
3927
3928		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3929			      btrfs_item_nr_offset(push_items),
3930			     (btrfs_header_nritems(right) - push_items) *
3931			     sizeof(struct btrfs_item));
3932	}
 
 
3933	right_nritems -= push_items;
3934	btrfs_set_header_nritems(right, right_nritems);
3935	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3936	for (i = 0; i < right_nritems; i++) {
3937		item = btrfs_item_nr(i);
3938
3939		push_space = push_space - btrfs_token_item_size(right,
3940								item, &token);
3941		btrfs_set_token_item_offset(right, item, push_space, &token);
3942	}
3943
3944	btrfs_mark_buffer_dirty(left);
3945	if (right_nritems)
3946		btrfs_mark_buffer_dirty(right);
3947	else
3948		clean_tree_block(trans, fs_info, right);
3949
3950	btrfs_item_key(right, &disk_key, 0);
3951	fixup_low_keys(fs_info, path, &disk_key, 1);
3952
3953	/* then fixup the leaf pointer in the path */
3954	if (path->slots[0] < push_items) {
3955		path->slots[0] += old_left_nritems;
3956		btrfs_tree_unlock(path->nodes[0]);
3957		free_extent_buffer(path->nodes[0]);
3958		path->nodes[0] = left;
3959		path->slots[1] -= 1;
3960	} else {
3961		btrfs_tree_unlock(left);
3962		free_extent_buffer(left);
3963		path->slots[0] -= push_items;
3964	}
3965	BUG_ON(path->slots[0] < 0);
3966	return ret;
3967out:
3968	btrfs_tree_unlock(left);
3969	free_extent_buffer(left);
3970	return ret;
3971}
3972
3973/*
3974 * push some data in the path leaf to the left, trying to free up at
3975 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3976 *
3977 * max_slot can put a limit on how far into the leaf we'll push items.  The
3978 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3979 * items
3980 */
3981static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3982			  *root, struct btrfs_path *path, int min_data_size,
3983			  int data_size, int empty, u32 max_slot)
3984{
3985	struct btrfs_fs_info *fs_info = root->fs_info;
3986	struct extent_buffer *right = path->nodes[0];
3987	struct extent_buffer *left;
3988	int slot;
3989	int free_space;
3990	u32 right_nritems;
3991	int ret = 0;
3992
3993	slot = path->slots[1];
3994	if (slot == 0)
3995		return 1;
3996	if (!path->nodes[1])
3997		return 1;
3998
3999	right_nritems = btrfs_header_nritems(right);
4000	if (right_nritems == 0)
4001		return 1;
4002
4003	btrfs_assert_tree_locked(path->nodes[1]);
4004
4005	left = read_node_slot(fs_info, path->nodes[1], slot - 1);
4006	/*
4007	 * slot - 1 is not valid or we fail to read the left node,
4008	 * no big deal, just return.
4009	 */
4010	if (IS_ERR(left))
4011		return 1;
4012
4013	btrfs_tree_lock(left);
4014	btrfs_set_lock_blocking(left);
4015
4016	free_space = btrfs_leaf_free_space(fs_info, left);
4017	if (free_space < data_size) {
4018		ret = 1;
4019		goto out;
4020	}
4021
4022	/* cow and double check */
4023	ret = btrfs_cow_block(trans, root, left,
4024			      path->nodes[1], slot - 1, &left);
4025	if (ret) {
4026		/* we hit -ENOSPC, but it isn't fatal here */
4027		if (ret == -ENOSPC)
4028			ret = 1;
4029		goto out;
4030	}
4031
4032	free_space = btrfs_leaf_free_space(fs_info, left);
4033	if (free_space < data_size) {
4034		ret = 1;
4035		goto out;
4036	}
4037
4038	return __push_leaf_left(trans, fs_info, path, min_data_size,
4039			       empty, left, free_space, right_nritems,
4040			       max_slot);
4041out:
4042	btrfs_tree_unlock(left);
4043	free_extent_buffer(left);
4044	return ret;
4045}
4046
4047/*
4048 * split the path's leaf in two, making sure there is at least data_size
4049 * available for the resulting leaf level of the path.
4050 */
4051static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4052				    struct btrfs_fs_info *fs_info,
4053				    struct btrfs_path *path,
4054				    struct extent_buffer *l,
4055				    struct extent_buffer *right,
4056				    int slot, int mid, int nritems)
4057{
 
4058	int data_copy_size;
4059	int rt_data_off;
4060	int i;
4061	struct btrfs_disk_key disk_key;
4062	struct btrfs_map_token token;
4063
4064	btrfs_init_map_token(&token);
4065
4066	nritems = nritems - mid;
4067	btrfs_set_header_nritems(right, nritems);
4068	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
4069
4070	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4071			   btrfs_item_nr_offset(mid),
4072			   nritems * sizeof(struct btrfs_item));
4073
4074	copy_extent_buffer(right, l,
4075		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(fs_info) -
4076		     data_copy_size, btrfs_leaf_data(l) +
4077		     leaf_data_end(fs_info, l), data_copy_size);
4078
4079	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4080
 
4081	for (i = 0; i < nritems; i++) {
4082		struct btrfs_item *item = btrfs_item_nr(i);
4083		u32 ioff;
4084
4085		ioff = btrfs_token_item_offset(right, item, &token);
4086		btrfs_set_token_item_offset(right, item,
4087					    ioff + rt_data_off, &token);
4088	}
4089
4090	btrfs_set_header_nritems(l, mid);
4091	btrfs_item_key(right, &disk_key, 0);
4092	insert_ptr(trans, fs_info, path, &disk_key, right->start,
4093		   path->slots[1] + 1, 1);
4094
4095	btrfs_mark_buffer_dirty(right);
4096	btrfs_mark_buffer_dirty(l);
4097	BUG_ON(path->slots[0] != slot);
4098
4099	if (mid <= slot) {
4100		btrfs_tree_unlock(path->nodes[0]);
4101		free_extent_buffer(path->nodes[0]);
4102		path->nodes[0] = right;
4103		path->slots[0] -= mid;
4104		path->slots[1] += 1;
4105	} else {
4106		btrfs_tree_unlock(right);
4107		free_extent_buffer(right);
4108	}
4109
4110	BUG_ON(path->slots[0] < 0);
4111}
4112
4113/*
4114 * double splits happen when we need to insert a big item in the middle
4115 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4116 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4117 *          A                 B                 C
4118 *
4119 * We avoid this by trying to push the items on either side of our target
4120 * into the adjacent leaves.  If all goes well we can avoid the double split
4121 * completely.
4122 */
4123static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4124					  struct btrfs_root *root,
4125					  struct btrfs_path *path,
4126					  int data_size)
4127{
4128	struct btrfs_fs_info *fs_info = root->fs_info;
4129	int ret;
4130	int progress = 0;
4131	int slot;
4132	u32 nritems;
4133	int space_needed = data_size;
4134
4135	slot = path->slots[0];
4136	if (slot < btrfs_header_nritems(path->nodes[0]))
4137		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4138
4139	/*
4140	 * try to push all the items after our slot into the
4141	 * right leaf
4142	 */
4143	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4144	if (ret < 0)
4145		return ret;
4146
4147	if (ret == 0)
4148		progress++;
4149
4150	nritems = btrfs_header_nritems(path->nodes[0]);
4151	/*
4152	 * our goal is to get our slot at the start or end of a leaf.  If
4153	 * we've done so we're done
4154	 */
4155	if (path->slots[0] == 0 || path->slots[0] == nritems)
4156		return 0;
4157
4158	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4159		return 0;
4160
4161	/* try to push all the items before our slot into the next leaf */
4162	slot = path->slots[0];
 
 
 
4163	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4164	if (ret < 0)
4165		return ret;
4166
4167	if (ret == 0)
4168		progress++;
4169
4170	if (progress)
4171		return 0;
4172	return 1;
4173}
4174
4175/*
4176 * split the path's leaf in two, making sure there is at least data_size
4177 * available for the resulting leaf level of the path.
4178 *
4179 * returns 0 if all went well and < 0 on failure.
4180 */
4181static noinline int split_leaf(struct btrfs_trans_handle *trans,
4182			       struct btrfs_root *root,
4183			       struct btrfs_key *ins_key,
4184			       struct btrfs_path *path, int data_size,
4185			       int extend)
4186{
4187	struct btrfs_disk_key disk_key;
4188	struct extent_buffer *l;
4189	u32 nritems;
4190	int mid;
4191	int slot;
4192	struct extent_buffer *right;
4193	struct btrfs_fs_info *fs_info = root->fs_info;
4194	int ret = 0;
4195	int wret;
4196	int split;
4197	int num_doubles = 0;
4198	int tried_avoid_double = 0;
4199
4200	l = path->nodes[0];
4201	slot = path->slots[0];
4202	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4203	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4204		return -EOVERFLOW;
4205
4206	/* first try to make some room by pushing left and right */
4207	if (data_size && path->nodes[1]) {
4208		int space_needed = data_size;
4209
4210		if (slot < btrfs_header_nritems(l))
4211			space_needed -= btrfs_leaf_free_space(fs_info, l);
4212
4213		wret = push_leaf_right(trans, root, path, space_needed,
4214				       space_needed, 0, 0);
4215		if (wret < 0)
4216			return wret;
4217		if (wret) {
 
 
 
4218			wret = push_leaf_left(trans, root, path, space_needed,
4219					      space_needed, 0, (u32)-1);
4220			if (wret < 0)
4221				return wret;
4222		}
4223		l = path->nodes[0];
4224
4225		/* did the pushes work? */
4226		if (btrfs_leaf_free_space(fs_info, l) >= data_size)
4227			return 0;
4228	}
4229
4230	if (!path->nodes[1]) {
4231		ret = insert_new_root(trans, root, path, 1);
4232		if (ret)
4233			return ret;
4234	}
4235again:
4236	split = 1;
4237	l = path->nodes[0];
4238	slot = path->slots[0];
4239	nritems = btrfs_header_nritems(l);
4240	mid = (nritems + 1) / 2;
4241
4242	if (mid <= slot) {
4243		if (nritems == 1 ||
4244		    leaf_space_used(l, mid, nritems - mid) + data_size >
4245			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4246			if (slot >= nritems) {
4247				split = 0;
4248			} else {
4249				mid = slot;
4250				if (mid != nritems &&
4251				    leaf_space_used(l, mid, nritems - mid) +
4252				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4253					if (data_size && !tried_avoid_double)
4254						goto push_for_double;
4255					split = 2;
4256				}
4257			}
4258		}
4259	} else {
4260		if (leaf_space_used(l, 0, mid) + data_size >
4261			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4262			if (!extend && data_size && slot == 0) {
4263				split = 0;
4264			} else if ((extend || !data_size) && slot == 0) {
4265				mid = 1;
4266			} else {
4267				mid = slot;
4268				if (mid != nritems &&
4269				    leaf_space_used(l, mid, nritems - mid) +
4270				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4271					if (data_size && !tried_avoid_double)
4272						goto push_for_double;
4273					split = 2;
4274				}
4275			}
4276		}
4277	}
4278
4279	if (split == 0)
4280		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4281	else
4282		btrfs_item_key(l, &disk_key, mid);
4283
4284	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4285			&disk_key, 0, l->start, 0);
4286	if (IS_ERR(right))
4287		return PTR_ERR(right);
4288
4289	root_add_used(root, fs_info->nodesize);
4290
4291	memzero_extent_buffer(right, 0, sizeof(struct btrfs_header));
4292	btrfs_set_header_bytenr(right, right->start);
4293	btrfs_set_header_generation(right, trans->transid);
4294	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4295	btrfs_set_header_owner(right, root->root_key.objectid);
4296	btrfs_set_header_level(right, 0);
4297	write_extent_buffer_fsid(right, fs_info->fsid);
4298	write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid);
4299
4300	if (split == 0) {
4301		if (mid <= slot) {
4302			btrfs_set_header_nritems(right, 0);
4303			insert_ptr(trans, fs_info, path, &disk_key,
4304				   right->start, path->slots[1] + 1, 1);
4305			btrfs_tree_unlock(path->nodes[0]);
4306			free_extent_buffer(path->nodes[0]);
4307			path->nodes[0] = right;
4308			path->slots[0] = 0;
4309			path->slots[1] += 1;
4310		} else {
4311			btrfs_set_header_nritems(right, 0);
4312			insert_ptr(trans, fs_info, path, &disk_key,
4313				   right->start, path->slots[1], 1);
4314			btrfs_tree_unlock(path->nodes[0]);
4315			free_extent_buffer(path->nodes[0]);
4316			path->nodes[0] = right;
4317			path->slots[0] = 0;
4318			if (path->slots[1] == 0)
4319				fixup_low_keys(fs_info, path, &disk_key, 1);
4320		}
4321		/*
4322		 * We create a new leaf 'right' for the required ins_len and
4323		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4324		 * the content of ins_len to 'right'.
4325		 */
4326		return ret;
4327	}
4328
4329	copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
4330
4331	if (split == 2) {
4332		BUG_ON(num_doubles != 0);
4333		num_doubles++;
4334		goto again;
4335	}
4336
4337	return 0;
4338
4339push_for_double:
4340	push_for_double_split(trans, root, path, data_size);
4341	tried_avoid_double = 1;
4342	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4343		return 0;
4344	goto again;
4345}
4346
4347static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4348					 struct btrfs_root *root,
4349					 struct btrfs_path *path, int ins_len)
4350{
4351	struct btrfs_fs_info *fs_info = root->fs_info;
4352	struct btrfs_key key;
4353	struct extent_buffer *leaf;
4354	struct btrfs_file_extent_item *fi;
4355	u64 extent_len = 0;
4356	u32 item_size;
4357	int ret;
4358
4359	leaf = path->nodes[0];
4360	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4361
4362	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4363	       key.type != BTRFS_EXTENT_CSUM_KEY);
4364
4365	if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
4366		return 0;
4367
4368	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4369	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4370		fi = btrfs_item_ptr(leaf, path->slots[0],
4371				    struct btrfs_file_extent_item);
4372		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4373	}
4374	btrfs_release_path(path);
4375
4376	path->keep_locks = 1;
4377	path->search_for_split = 1;
4378	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4379	path->search_for_split = 0;
4380	if (ret > 0)
4381		ret = -EAGAIN;
4382	if (ret < 0)
4383		goto err;
4384
4385	ret = -EAGAIN;
4386	leaf = path->nodes[0];
4387	/* if our item isn't there, return now */
4388	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4389		goto err;
4390
4391	/* the leaf has  changed, it now has room.  return now */
4392	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
4393		goto err;
4394
4395	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4396		fi = btrfs_item_ptr(leaf, path->slots[0],
4397				    struct btrfs_file_extent_item);
4398		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4399			goto err;
4400	}
4401
4402	btrfs_set_path_blocking(path);
4403	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4404	if (ret)
4405		goto err;
4406
4407	path->keep_locks = 0;
4408	btrfs_unlock_up_safe(path, 1);
4409	return 0;
4410err:
4411	path->keep_locks = 0;
4412	return ret;
4413}
4414
4415static noinline int split_item(struct btrfs_trans_handle *trans,
4416			       struct btrfs_fs_info *fs_info,
4417			       struct btrfs_path *path,
4418			       struct btrfs_key *new_key,
4419			       unsigned long split_offset)
4420{
4421	struct extent_buffer *leaf;
4422	struct btrfs_item *item;
4423	struct btrfs_item *new_item;
4424	int slot;
4425	char *buf;
4426	u32 nritems;
4427	u32 item_size;
4428	u32 orig_offset;
4429	struct btrfs_disk_key disk_key;
4430
4431	leaf = path->nodes[0];
4432	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
4433
4434	btrfs_set_path_blocking(path);
4435
4436	item = btrfs_item_nr(path->slots[0]);
4437	orig_offset = btrfs_item_offset(leaf, item);
4438	item_size = btrfs_item_size(leaf, item);
4439
4440	buf = kmalloc(item_size, GFP_NOFS);
4441	if (!buf)
4442		return -ENOMEM;
4443
4444	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4445			    path->slots[0]), item_size);
4446
4447	slot = path->slots[0] + 1;
4448	nritems = btrfs_header_nritems(leaf);
4449	if (slot != nritems) {
4450		/* shift the items */
4451		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4452				btrfs_item_nr_offset(slot),
4453				(nritems - slot) * sizeof(struct btrfs_item));
4454	}
4455
4456	btrfs_cpu_key_to_disk(&disk_key, new_key);
4457	btrfs_set_item_key(leaf, &disk_key, slot);
4458
4459	new_item = btrfs_item_nr(slot);
4460
4461	btrfs_set_item_offset(leaf, new_item, orig_offset);
4462	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4463
4464	btrfs_set_item_offset(leaf, item,
4465			      orig_offset + item_size - split_offset);
4466	btrfs_set_item_size(leaf, item, split_offset);
4467
4468	btrfs_set_header_nritems(leaf, nritems + 1);
4469
4470	/* write the data for the start of the original item */
4471	write_extent_buffer(leaf, buf,
4472			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4473			    split_offset);
4474
4475	/* write the data for the new item */
4476	write_extent_buffer(leaf, buf + split_offset,
4477			    btrfs_item_ptr_offset(leaf, slot),
4478			    item_size - split_offset);
4479	btrfs_mark_buffer_dirty(leaf);
4480
4481	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
4482	kfree(buf);
4483	return 0;
4484}
4485
4486/*
4487 * This function splits a single item into two items,
4488 * giving 'new_key' to the new item and splitting the
4489 * old one at split_offset (from the start of the item).
4490 *
4491 * The path may be released by this operation.  After
4492 * the split, the path is pointing to the old item.  The
4493 * new item is going to be in the same node as the old one.
4494 *
4495 * Note, the item being split must be smaller enough to live alone on
4496 * a tree block with room for one extra struct btrfs_item
4497 *
4498 * This allows us to split the item in place, keeping a lock on the
4499 * leaf the entire time.
4500 */
4501int btrfs_split_item(struct btrfs_trans_handle *trans,
4502		     struct btrfs_root *root,
4503		     struct btrfs_path *path,
4504		     struct btrfs_key *new_key,
4505		     unsigned long split_offset)
4506{
4507	int ret;
4508	ret = setup_leaf_for_split(trans, root, path,
4509				   sizeof(struct btrfs_item));
4510	if (ret)
4511		return ret;
4512
4513	ret = split_item(trans, root->fs_info, path, new_key, split_offset);
4514	return ret;
4515}
4516
4517/*
4518 * This function duplicate a item, giving 'new_key' to the new item.
4519 * It guarantees both items live in the same tree leaf and the new item
4520 * is contiguous with the original item.
4521 *
4522 * This allows us to split file extent in place, keeping a lock on the
4523 * leaf the entire time.
4524 */
4525int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4526			 struct btrfs_root *root,
4527			 struct btrfs_path *path,
4528			 struct btrfs_key *new_key)
4529{
4530	struct extent_buffer *leaf;
4531	int ret;
4532	u32 item_size;
4533
4534	leaf = path->nodes[0];
4535	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4536	ret = setup_leaf_for_split(trans, root, path,
4537				   item_size + sizeof(struct btrfs_item));
4538	if (ret)
4539		return ret;
4540
4541	path->slots[0]++;
4542	setup_items_for_insert(root, path, new_key, &item_size,
4543			       item_size, item_size +
4544			       sizeof(struct btrfs_item), 1);
4545	leaf = path->nodes[0];
4546	memcpy_extent_buffer(leaf,
4547			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4548			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4549			     item_size);
4550	return 0;
4551}
4552
4553/*
4554 * make the item pointed to by the path smaller.  new_size indicates
4555 * how small to make it, and from_end tells us if we just chop bytes
4556 * off the end of the item or if we shift the item to chop bytes off
4557 * the front.
4558 */
4559void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4560			 struct btrfs_path *path, u32 new_size, int from_end)
4561{
4562	int slot;
4563	struct extent_buffer *leaf;
4564	struct btrfs_item *item;
4565	u32 nritems;
4566	unsigned int data_end;
4567	unsigned int old_data_start;
4568	unsigned int old_size;
4569	unsigned int size_diff;
4570	int i;
4571	struct btrfs_map_token token;
4572
4573	btrfs_init_map_token(&token);
4574
4575	leaf = path->nodes[0];
4576	slot = path->slots[0];
4577
4578	old_size = btrfs_item_size_nr(leaf, slot);
4579	if (old_size == new_size)
4580		return;
4581
4582	nritems = btrfs_header_nritems(leaf);
4583	data_end = leaf_data_end(fs_info, leaf);
4584
4585	old_data_start = btrfs_item_offset_nr(leaf, slot);
4586
4587	size_diff = old_size - new_size;
4588
4589	BUG_ON(slot < 0);
4590	BUG_ON(slot >= nritems);
4591
4592	/*
4593	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4594	 */
4595	/* first correct the data pointers */
 
4596	for (i = slot; i < nritems; i++) {
4597		u32 ioff;
4598		item = btrfs_item_nr(i);
4599
4600		ioff = btrfs_token_item_offset(leaf, item, &token);
4601		btrfs_set_token_item_offset(leaf, item,
4602					    ioff + size_diff, &token);
4603	}
4604
4605	/* shift the data */
4606	if (from_end) {
4607		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4608			      data_end + size_diff, btrfs_leaf_data(leaf) +
4609			      data_end, old_data_start + new_size - data_end);
4610	} else {
4611		struct btrfs_disk_key disk_key;
4612		u64 offset;
4613
4614		btrfs_item_key(leaf, &disk_key, slot);
4615
4616		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4617			unsigned long ptr;
4618			struct btrfs_file_extent_item *fi;
4619
4620			fi = btrfs_item_ptr(leaf, slot,
4621					    struct btrfs_file_extent_item);
4622			fi = (struct btrfs_file_extent_item *)(
4623			     (unsigned long)fi - size_diff);
4624
4625			if (btrfs_file_extent_type(leaf, fi) ==
4626			    BTRFS_FILE_EXTENT_INLINE) {
4627				ptr = btrfs_item_ptr_offset(leaf, slot);
4628				memmove_extent_buffer(leaf, ptr,
4629				      (unsigned long)fi,
4630				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4631			}
4632		}
4633
4634		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4635			      data_end + size_diff, btrfs_leaf_data(leaf) +
4636			      data_end, old_data_start - data_end);
4637
4638		offset = btrfs_disk_key_offset(&disk_key);
4639		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4640		btrfs_set_item_key(leaf, &disk_key, slot);
4641		if (slot == 0)
4642			fixup_low_keys(fs_info, path, &disk_key, 1);
4643	}
4644
4645	item = btrfs_item_nr(slot);
4646	btrfs_set_item_size(leaf, item, new_size);
4647	btrfs_mark_buffer_dirty(leaf);
4648
4649	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4650		btrfs_print_leaf(fs_info, leaf);
4651		BUG();
4652	}
4653}
4654
4655/*
4656 * make the item pointed to by the path bigger, data_size is the added size.
4657 */
4658void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
4659		       u32 data_size)
4660{
4661	int slot;
4662	struct extent_buffer *leaf;
4663	struct btrfs_item *item;
4664	u32 nritems;
4665	unsigned int data_end;
4666	unsigned int old_data;
4667	unsigned int old_size;
4668	int i;
4669	struct btrfs_map_token token;
4670
4671	btrfs_init_map_token(&token);
4672
4673	leaf = path->nodes[0];
4674
4675	nritems = btrfs_header_nritems(leaf);
4676	data_end = leaf_data_end(fs_info, leaf);
4677
4678	if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
4679		btrfs_print_leaf(fs_info, leaf);
4680		BUG();
4681	}
4682	slot = path->slots[0];
4683	old_data = btrfs_item_end_nr(leaf, slot);
4684
4685	BUG_ON(slot < 0);
4686	if (slot >= nritems) {
4687		btrfs_print_leaf(fs_info, leaf);
4688		btrfs_crit(fs_info, "slot %d too large, nritems %d",
4689			   slot, nritems);
4690		BUG_ON(1);
4691	}
4692
4693	/*
4694	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4695	 */
4696	/* first correct the data pointers */
 
4697	for (i = slot; i < nritems; i++) {
4698		u32 ioff;
4699		item = btrfs_item_nr(i);
4700
4701		ioff = btrfs_token_item_offset(leaf, item, &token);
4702		btrfs_set_token_item_offset(leaf, item,
4703					    ioff - data_size, &token);
4704	}
4705
4706	/* shift the data */
4707	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4708		      data_end - data_size, btrfs_leaf_data(leaf) +
4709		      data_end, old_data - data_end);
4710
4711	data_end = old_data;
4712	old_size = btrfs_item_size_nr(leaf, slot);
4713	item = btrfs_item_nr(slot);
4714	btrfs_set_item_size(leaf, item, old_size + data_size);
4715	btrfs_mark_buffer_dirty(leaf);
4716
4717	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4718		btrfs_print_leaf(fs_info, leaf);
4719		BUG();
4720	}
4721}
4722
4723/*
4724 * this is a helper for btrfs_insert_empty_items, the main goal here is
4725 * to save stack depth by doing the bulk of the work in a function
4726 * that doesn't call btrfs_search_slot
4727 */
4728void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4729			    struct btrfs_key *cpu_key, u32 *data_size,
4730			    u32 total_data, u32 total_size, int nr)
4731{
4732	struct btrfs_fs_info *fs_info = root->fs_info;
4733	struct btrfs_item *item;
4734	int i;
4735	u32 nritems;
4736	unsigned int data_end;
4737	struct btrfs_disk_key disk_key;
4738	struct extent_buffer *leaf;
4739	int slot;
4740	struct btrfs_map_token token;
4741
4742	if (path->slots[0] == 0) {
4743		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4744		fixup_low_keys(fs_info, path, &disk_key, 1);
4745	}
4746	btrfs_unlock_up_safe(path, 1);
4747
4748	btrfs_init_map_token(&token);
4749
4750	leaf = path->nodes[0];
4751	slot = path->slots[0];
4752
4753	nritems = btrfs_header_nritems(leaf);
4754	data_end = leaf_data_end(fs_info, leaf);
4755
4756	if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
4757		btrfs_print_leaf(fs_info, leaf);
4758		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4759			   total_size, btrfs_leaf_free_space(fs_info, leaf));
4760		BUG();
4761	}
4762
 
4763	if (slot != nritems) {
4764		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4765
4766		if (old_data < data_end) {
4767			btrfs_print_leaf(fs_info, leaf);
4768			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4769				   slot, old_data, data_end);
4770			BUG_ON(1);
4771		}
4772		/*
4773		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4774		 */
4775		/* first correct the data pointers */
4776		for (i = slot; i < nritems; i++) {
4777			u32 ioff;
4778
4779			item = btrfs_item_nr(i);
4780			ioff = btrfs_token_item_offset(leaf, item, &token);
4781			btrfs_set_token_item_offset(leaf, item,
4782						    ioff - total_data, &token);
4783		}
4784		/* shift the items */
4785		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4786			      btrfs_item_nr_offset(slot),
4787			      (nritems - slot) * sizeof(struct btrfs_item));
4788
4789		/* shift the data */
4790		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4791			      data_end - total_data, btrfs_leaf_data(leaf) +
4792			      data_end, old_data - data_end);
4793		data_end = old_data;
4794	}
4795
4796	/* setup the item for the new data */
4797	for (i = 0; i < nr; i++) {
4798		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4799		btrfs_set_item_key(leaf, &disk_key, slot + i);
4800		item = btrfs_item_nr(slot + i);
4801		btrfs_set_token_item_offset(leaf, item,
4802					    data_end - data_size[i], &token);
4803		data_end -= data_size[i];
4804		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4805	}
4806
4807	btrfs_set_header_nritems(leaf, nritems + nr);
4808	btrfs_mark_buffer_dirty(leaf);
4809
4810	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4811		btrfs_print_leaf(fs_info, leaf);
4812		BUG();
4813	}
4814}
4815
4816/*
4817 * Given a key and some data, insert items into the tree.
4818 * This does all the path init required, making room in the tree if needed.
4819 */
4820int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4821			    struct btrfs_root *root,
4822			    struct btrfs_path *path,
4823			    struct btrfs_key *cpu_key, u32 *data_size,
4824			    int nr)
4825{
4826	int ret = 0;
4827	int slot;
4828	int i;
4829	u32 total_size = 0;
4830	u32 total_data = 0;
4831
4832	for (i = 0; i < nr; i++)
4833		total_data += data_size[i];
4834
4835	total_size = total_data + (nr * sizeof(struct btrfs_item));
4836	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4837	if (ret == 0)
4838		return -EEXIST;
4839	if (ret < 0)
4840		return ret;
4841
4842	slot = path->slots[0];
4843	BUG_ON(slot < 0);
4844
4845	setup_items_for_insert(root, path, cpu_key, data_size,
4846			       total_data, total_size, nr);
4847	return 0;
4848}
4849
4850/*
4851 * Given a key and some data, insert an item into the tree.
4852 * This does all the path init required, making room in the tree if needed.
4853 */
4854int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4855		      *root, struct btrfs_key *cpu_key, void *data, u32
4856		      data_size)
4857{
4858	int ret = 0;
4859	struct btrfs_path *path;
4860	struct extent_buffer *leaf;
4861	unsigned long ptr;
4862
4863	path = btrfs_alloc_path();
4864	if (!path)
4865		return -ENOMEM;
4866	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4867	if (!ret) {
4868		leaf = path->nodes[0];
4869		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4870		write_extent_buffer(leaf, data, ptr, data_size);
4871		btrfs_mark_buffer_dirty(leaf);
4872	}
4873	btrfs_free_path(path);
4874	return ret;
4875}
4876
4877/*
4878 * delete the pointer from a given node.
4879 *
4880 * the tree should have been previously balanced so the deletion does not
4881 * empty a node.
4882 */
4883static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4884		    int level, int slot)
4885{
4886	struct btrfs_fs_info *fs_info = root->fs_info;
4887	struct extent_buffer *parent = path->nodes[level];
4888	u32 nritems;
4889	int ret;
4890
4891	nritems = btrfs_header_nritems(parent);
4892	if (slot != nritems - 1) {
4893		if (level)
4894			tree_mod_log_eb_move(fs_info, parent, slot,
4895					     slot + 1, nritems - slot - 1);
 
 
4896		memmove_extent_buffer(parent,
4897			      btrfs_node_key_ptr_offset(slot),
4898			      btrfs_node_key_ptr_offset(slot + 1),
4899			      sizeof(struct btrfs_key_ptr) *
4900			      (nritems - slot - 1));
4901	} else if (level) {
4902		ret = tree_mod_log_insert_key(fs_info, parent, slot,
4903					      MOD_LOG_KEY_REMOVE, GFP_NOFS);
4904		BUG_ON(ret < 0);
4905	}
4906
4907	nritems--;
4908	btrfs_set_header_nritems(parent, nritems);
4909	if (nritems == 0 && parent == root->node) {
4910		BUG_ON(btrfs_header_level(root->node) != 1);
4911		/* just turn the root into a leaf and break */
4912		btrfs_set_header_level(root->node, 0);
4913	} else if (slot == 0) {
4914		struct btrfs_disk_key disk_key;
4915
4916		btrfs_node_key(parent, &disk_key, 0);
4917		fixup_low_keys(fs_info, path, &disk_key, level + 1);
4918	}
4919	btrfs_mark_buffer_dirty(parent);
4920}
4921
4922/*
4923 * a helper function to delete the leaf pointed to by path->slots[1] and
4924 * path->nodes[1].
4925 *
4926 * This deletes the pointer in path->nodes[1] and frees the leaf
4927 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4928 *
4929 * The path must have already been setup for deleting the leaf, including
4930 * all the proper balancing.  path->nodes[1] must be locked.
4931 */
4932static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4933				    struct btrfs_root *root,
4934				    struct btrfs_path *path,
4935				    struct extent_buffer *leaf)
4936{
4937	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4938	del_ptr(root, path, 1, path->slots[1]);
4939
4940	/*
4941	 * btrfs_free_extent is expensive, we want to make sure we
4942	 * aren't holding any locks when we call it
4943	 */
4944	btrfs_unlock_up_safe(path, 0);
4945
4946	root_sub_used(root, leaf->len);
4947
4948	extent_buffer_get(leaf);
4949	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4950	free_extent_buffer_stale(leaf);
4951}
4952/*
4953 * delete the item at the leaf level in path.  If that empties
4954 * the leaf, remove it from the tree
4955 */
4956int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4957		    struct btrfs_path *path, int slot, int nr)
4958{
4959	struct btrfs_fs_info *fs_info = root->fs_info;
4960	struct extent_buffer *leaf;
4961	struct btrfs_item *item;
4962	u32 last_off;
4963	u32 dsize = 0;
4964	int ret = 0;
4965	int wret;
4966	int i;
4967	u32 nritems;
4968	struct btrfs_map_token token;
4969
4970	btrfs_init_map_token(&token);
4971
4972	leaf = path->nodes[0];
4973	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4974
4975	for (i = 0; i < nr; i++)
4976		dsize += btrfs_item_size_nr(leaf, slot + i);
4977
4978	nritems = btrfs_header_nritems(leaf);
4979
4980	if (slot + nr != nritems) {
4981		int data_end = leaf_data_end(fs_info, leaf);
 
4982
4983		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4984			      data_end + dsize,
4985			      btrfs_leaf_data(leaf) + data_end,
4986			      last_off - data_end);
4987
 
4988		for (i = slot + nr; i < nritems; i++) {
4989			u32 ioff;
4990
4991			item = btrfs_item_nr(i);
4992			ioff = btrfs_token_item_offset(leaf, item, &token);
4993			btrfs_set_token_item_offset(leaf, item,
4994						    ioff + dsize, &token);
4995		}
4996
4997		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4998			      btrfs_item_nr_offset(slot + nr),
4999			      sizeof(struct btrfs_item) *
5000			      (nritems - slot - nr));
5001	}
5002	btrfs_set_header_nritems(leaf, nritems - nr);
5003	nritems -= nr;
5004
5005	/* delete the leaf if we've emptied it */
5006	if (nritems == 0) {
5007		if (leaf == root->node) {
5008			btrfs_set_header_level(leaf, 0);
5009		} else {
5010			btrfs_set_path_blocking(path);
5011			clean_tree_block(trans, fs_info, leaf);
5012			btrfs_del_leaf(trans, root, path, leaf);
5013		}
5014	} else {
5015		int used = leaf_space_used(leaf, 0, nritems);
5016		if (slot == 0) {
5017			struct btrfs_disk_key disk_key;
5018
5019			btrfs_item_key(leaf, &disk_key, 0);
5020			fixup_low_keys(fs_info, path, &disk_key, 1);
5021		}
5022
5023		/* delete the leaf if it is mostly empty */
5024		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5025			/* push_leaf_left fixes the path.
5026			 * make sure the path still points to our leaf
5027			 * for possible call to del_ptr below
5028			 */
5029			slot = path->slots[1];
5030			extent_buffer_get(leaf);
5031
5032			btrfs_set_path_blocking(path);
5033			wret = push_leaf_left(trans, root, path, 1, 1,
5034					      1, (u32)-1);
5035			if (wret < 0 && wret != -ENOSPC)
5036				ret = wret;
5037
5038			if (path->nodes[0] == leaf &&
5039			    btrfs_header_nritems(leaf)) {
5040				wret = push_leaf_right(trans, root, path, 1,
5041						       1, 1, 0);
5042				if (wret < 0 && wret != -ENOSPC)
5043					ret = wret;
5044			}
5045
5046			if (btrfs_header_nritems(leaf) == 0) {
5047				path->slots[1] = slot;
5048				btrfs_del_leaf(trans, root, path, leaf);
5049				free_extent_buffer(leaf);
5050				ret = 0;
5051			} else {
5052				/* if we're still in the path, make sure
5053				 * we're dirty.  Otherwise, one of the
5054				 * push_leaf functions must have already
5055				 * dirtied this buffer
5056				 */
5057				if (path->nodes[0] == leaf)
5058					btrfs_mark_buffer_dirty(leaf);
5059				free_extent_buffer(leaf);
5060			}
5061		} else {
5062			btrfs_mark_buffer_dirty(leaf);
5063		}
5064	}
5065	return ret;
5066}
5067
5068/*
5069 * search the tree again to find a leaf with lesser keys
5070 * returns 0 if it found something or 1 if there are no lesser leaves.
5071 * returns < 0 on io errors.
5072 *
5073 * This may release the path, and so you may lose any locks held at the
5074 * time you call it.
5075 */
5076int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5077{
5078	struct btrfs_key key;
5079	struct btrfs_disk_key found_key;
5080	int ret;
5081
5082	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5083
5084	if (key.offset > 0) {
5085		key.offset--;
5086	} else if (key.type > 0) {
5087		key.type--;
5088		key.offset = (u64)-1;
5089	} else if (key.objectid > 0) {
5090		key.objectid--;
5091		key.type = (u8)-1;
5092		key.offset = (u64)-1;
5093	} else {
5094		return 1;
5095	}
5096
5097	btrfs_release_path(path);
5098	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5099	if (ret < 0)
5100		return ret;
5101	btrfs_item_key(path->nodes[0], &found_key, 0);
5102	ret = comp_keys(&found_key, &key);
5103	/*
5104	 * We might have had an item with the previous key in the tree right
5105	 * before we released our path. And after we released our path, that
5106	 * item might have been pushed to the first slot (0) of the leaf we
5107	 * were holding due to a tree balance. Alternatively, an item with the
5108	 * previous key can exist as the only element of a leaf (big fat item).
5109	 * Therefore account for these 2 cases, so that our callers (like
5110	 * btrfs_previous_item) don't miss an existing item with a key matching
5111	 * the previous key we computed above.
5112	 */
5113	if (ret <= 0)
5114		return 0;
5115	return 1;
5116}
5117
5118/*
5119 * A helper function to walk down the tree starting at min_key, and looking
5120 * for nodes or leaves that are have a minimum transaction id.
5121 * This is used by the btree defrag code, and tree logging
5122 *
5123 * This does not cow, but it does stuff the starting key it finds back
5124 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5125 * key and get a writable path.
5126 *
5127 * This does lock as it descends, and path->keep_locks should be set
5128 * to 1 by the caller.
5129 *
5130 * This honors path->lowest_level to prevent descent past a given level
5131 * of the tree.
5132 *
5133 * min_trans indicates the oldest transaction that you are interested
5134 * in walking through.  Any nodes or leaves older than min_trans are
5135 * skipped over (without reading them).
5136 *
5137 * returns zero if something useful was found, < 0 on error and 1 if there
5138 * was nothing in the tree that matched the search criteria.
5139 */
5140int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5141			 struct btrfs_path *path,
5142			 u64 min_trans)
5143{
5144	struct btrfs_fs_info *fs_info = root->fs_info;
5145	struct extent_buffer *cur;
5146	struct btrfs_key found_key;
5147	int slot;
5148	int sret;
5149	u32 nritems;
5150	int level;
5151	int ret = 1;
5152	int keep_locks = path->keep_locks;
5153
5154	path->keep_locks = 1;
5155again:
5156	cur = btrfs_read_lock_root_node(root);
5157	level = btrfs_header_level(cur);
5158	WARN_ON(path->nodes[level]);
5159	path->nodes[level] = cur;
5160	path->locks[level] = BTRFS_READ_LOCK;
5161
5162	if (btrfs_header_generation(cur) < min_trans) {
5163		ret = 1;
5164		goto out;
5165	}
5166	while (1) {
5167		nritems = btrfs_header_nritems(cur);
5168		level = btrfs_header_level(cur);
5169		sret = bin_search(cur, min_key, level, &slot);
 
 
 
 
5170
5171		/* at the lowest level, we're done, setup the path and exit */
5172		if (level == path->lowest_level) {
5173			if (slot >= nritems)
5174				goto find_next_key;
5175			ret = 0;
5176			path->slots[level] = slot;
5177			btrfs_item_key_to_cpu(cur, &found_key, slot);
5178			goto out;
5179		}
5180		if (sret && slot > 0)
5181			slot--;
5182		/*
5183		 * check this node pointer against the min_trans parameters.
5184		 * If it is too old, old, skip to the next one.
5185		 */
5186		while (slot < nritems) {
5187			u64 gen;
5188
5189			gen = btrfs_node_ptr_generation(cur, slot);
5190			if (gen < min_trans) {
5191				slot++;
5192				continue;
5193			}
5194			break;
5195		}
5196find_next_key:
5197		/*
5198		 * we didn't find a candidate key in this node, walk forward
5199		 * and find another one
5200		 */
5201		if (slot >= nritems) {
5202			path->slots[level] = slot;
5203			btrfs_set_path_blocking(path);
5204			sret = btrfs_find_next_key(root, path, min_key, level,
5205						  min_trans);
5206			if (sret == 0) {
5207				btrfs_release_path(path);
5208				goto again;
5209			} else {
5210				goto out;
5211			}
5212		}
5213		/* save our key for returning back */
5214		btrfs_node_key_to_cpu(cur, &found_key, slot);
5215		path->slots[level] = slot;
5216		if (level == path->lowest_level) {
5217			ret = 0;
5218			goto out;
5219		}
5220		btrfs_set_path_blocking(path);
5221		cur = read_node_slot(fs_info, cur, slot);
5222		if (IS_ERR(cur)) {
5223			ret = PTR_ERR(cur);
5224			goto out;
5225		}
5226
5227		btrfs_tree_read_lock(cur);
5228
5229		path->locks[level - 1] = BTRFS_READ_LOCK;
5230		path->nodes[level - 1] = cur;
5231		unlock_up(path, level, 1, 0, NULL);
5232		btrfs_clear_path_blocking(path, NULL, 0);
5233	}
5234out:
5235	path->keep_locks = keep_locks;
5236	if (ret == 0) {
5237		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5238		btrfs_set_path_blocking(path);
5239		memcpy(min_key, &found_key, sizeof(found_key));
5240	}
5241	return ret;
5242}
5243
5244static int tree_move_down(struct btrfs_fs_info *fs_info,
5245			   struct btrfs_path *path,
5246			   int *level, int root_level)
5247{
5248	struct extent_buffer *eb;
5249
5250	BUG_ON(*level == 0);
5251	eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
5252	if (IS_ERR(eb))
5253		return PTR_ERR(eb);
5254
5255	path->nodes[*level - 1] = eb;
5256	path->slots[*level - 1] = 0;
5257	(*level)--;
5258	return 0;
5259}
5260
5261static int tree_move_next_or_upnext(struct btrfs_fs_info *fs_info,
5262				    struct btrfs_path *path,
5263				    int *level, int root_level)
5264{
5265	int ret = 0;
5266	int nritems;
5267	nritems = btrfs_header_nritems(path->nodes[*level]);
5268
5269	path->slots[*level]++;
5270
5271	while (path->slots[*level] >= nritems) {
5272		if (*level == root_level)
5273			return -1;
5274
5275		/* move upnext */
5276		path->slots[*level] = 0;
5277		free_extent_buffer(path->nodes[*level]);
5278		path->nodes[*level] = NULL;
5279		(*level)++;
5280		path->slots[*level]++;
5281
5282		nritems = btrfs_header_nritems(path->nodes[*level]);
5283		ret = 1;
5284	}
5285	return ret;
5286}
5287
5288/*
5289 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5290 * or down.
5291 */
5292static int tree_advance(struct btrfs_fs_info *fs_info,
5293			struct btrfs_path *path,
5294			int *level, int root_level,
5295			int allow_down,
5296			struct btrfs_key *key)
5297{
5298	int ret;
5299
5300	if (*level == 0 || !allow_down) {
5301		ret = tree_move_next_or_upnext(fs_info, path, level,
5302					       root_level);
5303	} else {
5304		ret = tree_move_down(fs_info, path, level, root_level);
5305	}
5306	if (ret >= 0) {
5307		if (*level == 0)
5308			btrfs_item_key_to_cpu(path->nodes[*level], key,
5309					path->slots[*level]);
5310		else
5311			btrfs_node_key_to_cpu(path->nodes[*level], key,
5312					path->slots[*level]);
5313	}
5314	return ret;
5315}
5316
5317static int tree_compare_item(struct btrfs_path *left_path,
5318			     struct btrfs_path *right_path,
5319			     char *tmp_buf)
5320{
5321	int cmp;
5322	int len1, len2;
5323	unsigned long off1, off2;
5324
5325	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5326	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5327	if (len1 != len2)
5328		return 1;
5329
5330	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5331	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5332				right_path->slots[0]);
5333
5334	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5335
5336	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5337	if (cmp)
5338		return 1;
5339	return 0;
5340}
5341
5342#define ADVANCE 1
5343#define ADVANCE_ONLY_NEXT -1
5344
5345/*
5346 * This function compares two trees and calls the provided callback for
5347 * every changed/new/deleted item it finds.
5348 * If shared tree blocks are encountered, whole subtrees are skipped, making
5349 * the compare pretty fast on snapshotted subvolumes.
5350 *
5351 * This currently works on commit roots only. As commit roots are read only,
5352 * we don't do any locking. The commit roots are protected with transactions.
5353 * Transactions are ended and rejoined when a commit is tried in between.
5354 *
5355 * This function checks for modifications done to the trees while comparing.
5356 * If it detects a change, it aborts immediately.
5357 */
5358int btrfs_compare_trees(struct btrfs_root *left_root,
5359			struct btrfs_root *right_root,
5360			btrfs_changed_cb_t changed_cb, void *ctx)
5361{
5362	struct btrfs_fs_info *fs_info = left_root->fs_info;
5363	int ret;
5364	int cmp;
5365	struct btrfs_path *left_path = NULL;
5366	struct btrfs_path *right_path = NULL;
5367	struct btrfs_key left_key;
5368	struct btrfs_key right_key;
5369	char *tmp_buf = NULL;
5370	int left_root_level;
5371	int right_root_level;
5372	int left_level;
5373	int right_level;
5374	int left_end_reached;
5375	int right_end_reached;
5376	int advance_left;
5377	int advance_right;
5378	u64 left_blockptr;
5379	u64 right_blockptr;
5380	u64 left_gen;
5381	u64 right_gen;
5382
5383	left_path = btrfs_alloc_path();
5384	if (!left_path) {
5385		ret = -ENOMEM;
5386		goto out;
5387	}
5388	right_path = btrfs_alloc_path();
5389	if (!right_path) {
5390		ret = -ENOMEM;
5391		goto out;
5392	}
5393
5394	tmp_buf = kmalloc(fs_info->nodesize, GFP_KERNEL | __GFP_NOWARN);
5395	if (!tmp_buf) {
5396		tmp_buf = vmalloc(fs_info->nodesize);
5397		if (!tmp_buf) {
5398			ret = -ENOMEM;
5399			goto out;
5400		}
5401	}
5402
5403	left_path->search_commit_root = 1;
5404	left_path->skip_locking = 1;
5405	right_path->search_commit_root = 1;
5406	right_path->skip_locking = 1;
5407
5408	/*
5409	 * Strategy: Go to the first items of both trees. Then do
5410	 *
5411	 * If both trees are at level 0
5412	 *   Compare keys of current items
5413	 *     If left < right treat left item as new, advance left tree
5414	 *       and repeat
5415	 *     If left > right treat right item as deleted, advance right tree
5416	 *       and repeat
5417	 *     If left == right do deep compare of items, treat as changed if
5418	 *       needed, advance both trees and repeat
5419	 * If both trees are at the same level but not at level 0
5420	 *   Compare keys of current nodes/leafs
5421	 *     If left < right advance left tree and repeat
5422	 *     If left > right advance right tree and repeat
5423	 *     If left == right compare blockptrs of the next nodes/leafs
5424	 *       If they match advance both trees but stay at the same level
5425	 *         and repeat
5426	 *       If they don't match advance both trees while allowing to go
5427	 *         deeper and repeat
5428	 * If tree levels are different
5429	 *   Advance the tree that needs it and repeat
5430	 *
5431	 * Advancing a tree means:
5432	 *   If we are at level 0, try to go to the next slot. If that's not
5433	 *   possible, go one level up and repeat. Stop when we found a level
5434	 *   where we could go to the next slot. We may at this point be on a
5435	 *   node or a leaf.
5436	 *
5437	 *   If we are not at level 0 and not on shared tree blocks, go one
5438	 *   level deeper.
5439	 *
5440	 *   If we are not at level 0 and on shared tree blocks, go one slot to
5441	 *   the right if possible or go up and right.
5442	 */
5443
5444	down_read(&fs_info->commit_root_sem);
5445	left_level = btrfs_header_level(left_root->commit_root);
5446	left_root_level = left_level;
5447	left_path->nodes[left_level] = left_root->commit_root;
5448	extent_buffer_get(left_path->nodes[left_level]);
5449
5450	right_level = btrfs_header_level(right_root->commit_root);
5451	right_root_level = right_level;
5452	right_path->nodes[right_level] = right_root->commit_root;
5453	extent_buffer_get(right_path->nodes[right_level]);
5454	up_read(&fs_info->commit_root_sem);
5455
5456	if (left_level == 0)
5457		btrfs_item_key_to_cpu(left_path->nodes[left_level],
5458				&left_key, left_path->slots[left_level]);
5459	else
5460		btrfs_node_key_to_cpu(left_path->nodes[left_level],
5461				&left_key, left_path->slots[left_level]);
5462	if (right_level == 0)
5463		btrfs_item_key_to_cpu(right_path->nodes[right_level],
5464				&right_key, right_path->slots[right_level]);
5465	else
5466		btrfs_node_key_to_cpu(right_path->nodes[right_level],
5467				&right_key, right_path->slots[right_level]);
5468
5469	left_end_reached = right_end_reached = 0;
5470	advance_left = advance_right = 0;
5471
5472	while (1) {
5473		if (advance_left && !left_end_reached) {
5474			ret = tree_advance(fs_info, left_path, &left_level,
5475					left_root_level,
5476					advance_left != ADVANCE_ONLY_NEXT,
5477					&left_key);
5478			if (ret == -1)
5479				left_end_reached = ADVANCE;
5480			else if (ret < 0)
5481				goto out;
5482			advance_left = 0;
5483		}
5484		if (advance_right && !right_end_reached) {
5485			ret = tree_advance(fs_info, right_path, &right_level,
5486					right_root_level,
5487					advance_right != ADVANCE_ONLY_NEXT,
5488					&right_key);
5489			if (ret == -1)
5490				right_end_reached = ADVANCE;
5491			else if (ret < 0)
5492				goto out;
5493			advance_right = 0;
5494		}
5495
5496		if (left_end_reached && right_end_reached) {
5497			ret = 0;
5498			goto out;
5499		} else if (left_end_reached) {
5500			if (right_level == 0) {
5501				ret = changed_cb(left_root, right_root,
5502						left_path, right_path,
5503						&right_key,
5504						BTRFS_COMPARE_TREE_DELETED,
5505						ctx);
5506				if (ret < 0)
5507					goto out;
5508			}
5509			advance_right = ADVANCE;
5510			continue;
5511		} else if (right_end_reached) {
5512			if (left_level == 0) {
5513				ret = changed_cb(left_root, right_root,
5514						left_path, right_path,
5515						&left_key,
5516						BTRFS_COMPARE_TREE_NEW,
5517						ctx);
5518				if (ret < 0)
5519					goto out;
5520			}
5521			advance_left = ADVANCE;
5522			continue;
5523		}
5524
5525		if (left_level == 0 && right_level == 0) {
5526			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5527			if (cmp < 0) {
5528				ret = changed_cb(left_root, right_root,
5529						left_path, right_path,
5530						&left_key,
5531						BTRFS_COMPARE_TREE_NEW,
5532						ctx);
5533				if (ret < 0)
5534					goto out;
5535				advance_left = ADVANCE;
5536			} else if (cmp > 0) {
5537				ret = changed_cb(left_root, right_root,
5538						left_path, right_path,
5539						&right_key,
5540						BTRFS_COMPARE_TREE_DELETED,
5541						ctx);
5542				if (ret < 0)
5543					goto out;
5544				advance_right = ADVANCE;
5545			} else {
5546				enum btrfs_compare_tree_result result;
5547
5548				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5549				ret = tree_compare_item(left_path, right_path,
5550							tmp_buf);
5551				if (ret)
5552					result = BTRFS_COMPARE_TREE_CHANGED;
5553				else
5554					result = BTRFS_COMPARE_TREE_SAME;
5555				ret = changed_cb(left_root, right_root,
5556						 left_path, right_path,
5557						 &left_key, result, ctx);
5558				if (ret < 0)
5559					goto out;
5560				advance_left = ADVANCE;
5561				advance_right = ADVANCE;
5562			}
5563		} else if (left_level == right_level) {
5564			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5565			if (cmp < 0) {
5566				advance_left = ADVANCE;
5567			} else if (cmp > 0) {
5568				advance_right = ADVANCE;
5569			} else {
5570				left_blockptr = btrfs_node_blockptr(
5571						left_path->nodes[left_level],
5572						left_path->slots[left_level]);
5573				right_blockptr = btrfs_node_blockptr(
5574						right_path->nodes[right_level],
5575						right_path->slots[right_level]);
5576				left_gen = btrfs_node_ptr_generation(
5577						left_path->nodes[left_level],
5578						left_path->slots[left_level]);
5579				right_gen = btrfs_node_ptr_generation(
5580						right_path->nodes[right_level],
5581						right_path->slots[right_level]);
5582				if (left_blockptr == right_blockptr &&
5583				    left_gen == right_gen) {
5584					/*
5585					 * As we're on a shared block, don't
5586					 * allow to go deeper.
5587					 */
5588					advance_left = ADVANCE_ONLY_NEXT;
5589					advance_right = ADVANCE_ONLY_NEXT;
5590				} else {
5591					advance_left = ADVANCE;
5592					advance_right = ADVANCE;
5593				}
5594			}
5595		} else if (left_level < right_level) {
5596			advance_right = ADVANCE;
5597		} else {
5598			advance_left = ADVANCE;
5599		}
5600	}
5601
5602out:
5603	btrfs_free_path(left_path);
5604	btrfs_free_path(right_path);
5605	kvfree(tmp_buf);
5606	return ret;
5607}
5608
5609/*
5610 * this is similar to btrfs_next_leaf, but does not try to preserve
5611 * and fixup the path.  It looks for and returns the next key in the
5612 * tree based on the current path and the min_trans parameters.
5613 *
5614 * 0 is returned if another key is found, < 0 if there are any errors
5615 * and 1 is returned if there are no higher keys in the tree
5616 *
5617 * path->keep_locks should be set to 1 on the search made before
5618 * calling this function.
5619 */
5620int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5621			struct btrfs_key *key, int level, u64 min_trans)
5622{
5623	int slot;
5624	struct extent_buffer *c;
5625
5626	WARN_ON(!path->keep_locks);
5627	while (level < BTRFS_MAX_LEVEL) {
5628		if (!path->nodes[level])
5629			return 1;
5630
5631		slot = path->slots[level] + 1;
5632		c = path->nodes[level];
5633next:
5634		if (slot >= btrfs_header_nritems(c)) {
5635			int ret;
5636			int orig_lowest;
5637			struct btrfs_key cur_key;
5638			if (level + 1 >= BTRFS_MAX_LEVEL ||
5639			    !path->nodes[level + 1])
5640				return 1;
5641
5642			if (path->locks[level + 1]) {
5643				level++;
5644				continue;
5645			}
5646
5647			slot = btrfs_header_nritems(c) - 1;
5648			if (level == 0)
5649				btrfs_item_key_to_cpu(c, &cur_key, slot);
5650			else
5651				btrfs_node_key_to_cpu(c, &cur_key, slot);
5652
5653			orig_lowest = path->lowest_level;
5654			btrfs_release_path(path);
5655			path->lowest_level = level;
5656			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5657						0, 0);
5658			path->lowest_level = orig_lowest;
5659			if (ret < 0)
5660				return ret;
5661
5662			c = path->nodes[level];
5663			slot = path->slots[level];
5664			if (ret == 0)
5665				slot++;
5666			goto next;
5667		}
5668
5669		if (level == 0)
5670			btrfs_item_key_to_cpu(c, key, slot);
5671		else {
5672			u64 gen = btrfs_node_ptr_generation(c, slot);
5673
5674			if (gen < min_trans) {
5675				slot++;
5676				goto next;
5677			}
5678			btrfs_node_key_to_cpu(c, key, slot);
5679		}
5680		return 0;
5681	}
5682	return 1;
5683}
5684
5685/*
5686 * search the tree again to find a leaf with greater keys
5687 * returns 0 if it found something or 1 if there are no greater leaves.
5688 * returns < 0 on io errors.
5689 */
5690int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5691{
5692	return btrfs_next_old_leaf(root, path, 0);
5693}
5694
5695int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5696			u64 time_seq)
5697{
5698	int slot;
5699	int level;
5700	struct extent_buffer *c;
5701	struct extent_buffer *next;
5702	struct btrfs_key key;
5703	u32 nritems;
5704	int ret;
5705	int old_spinning = path->leave_spinning;
5706	int next_rw_lock = 0;
5707
5708	nritems = btrfs_header_nritems(path->nodes[0]);
5709	if (nritems == 0)
5710		return 1;
5711
5712	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5713again:
5714	level = 1;
5715	next = NULL;
5716	next_rw_lock = 0;
5717	btrfs_release_path(path);
5718
5719	path->keep_locks = 1;
5720	path->leave_spinning = 1;
5721
5722	if (time_seq)
5723		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5724	else
5725		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5726	path->keep_locks = 0;
5727
5728	if (ret < 0)
5729		return ret;
5730
5731	nritems = btrfs_header_nritems(path->nodes[0]);
5732	/*
5733	 * by releasing the path above we dropped all our locks.  A balance
5734	 * could have added more items next to the key that used to be
5735	 * at the very end of the block.  So, check again here and
5736	 * advance the path if there are now more items available.
5737	 */
5738	if (nritems > 0 && path->slots[0] < nritems - 1) {
5739		if (ret == 0)
5740			path->slots[0]++;
5741		ret = 0;
5742		goto done;
5743	}
5744	/*
5745	 * So the above check misses one case:
5746	 * - after releasing the path above, someone has removed the item that
5747	 *   used to be at the very end of the block, and balance between leafs
5748	 *   gets another one with bigger key.offset to replace it.
5749	 *
5750	 * This one should be returned as well, or we can get leaf corruption
5751	 * later(esp. in __btrfs_drop_extents()).
5752	 *
5753	 * And a bit more explanation about this check,
5754	 * with ret > 0, the key isn't found, the path points to the slot
5755	 * where it should be inserted, so the path->slots[0] item must be the
5756	 * bigger one.
5757	 */
5758	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5759		ret = 0;
5760		goto done;
5761	}
5762
5763	while (level < BTRFS_MAX_LEVEL) {
5764		if (!path->nodes[level]) {
5765			ret = 1;
5766			goto done;
5767		}
5768
5769		slot = path->slots[level] + 1;
5770		c = path->nodes[level];
5771		if (slot >= btrfs_header_nritems(c)) {
5772			level++;
5773			if (level == BTRFS_MAX_LEVEL) {
5774				ret = 1;
5775				goto done;
5776			}
5777			continue;
5778		}
5779
5780		if (next) {
5781			btrfs_tree_unlock_rw(next, next_rw_lock);
5782			free_extent_buffer(next);
5783		}
5784
5785		next = c;
5786		next_rw_lock = path->locks[level];
5787		ret = read_block_for_search(NULL, root, path, &next, level,
5788					    slot, &key, 0);
5789		if (ret == -EAGAIN)
5790			goto again;
5791
5792		if (ret < 0) {
5793			btrfs_release_path(path);
5794			goto done;
5795		}
5796
5797		if (!path->skip_locking) {
5798			ret = btrfs_try_tree_read_lock(next);
5799			if (!ret && time_seq) {
5800				/*
5801				 * If we don't get the lock, we may be racing
5802				 * with push_leaf_left, holding that lock while
5803				 * itself waiting for the leaf we've currently
5804				 * locked. To solve this situation, we give up
5805				 * on our lock and cycle.
5806				 */
5807				free_extent_buffer(next);
5808				btrfs_release_path(path);
5809				cond_resched();
5810				goto again;
5811			}
5812			if (!ret) {
5813				btrfs_set_path_blocking(path);
5814				btrfs_tree_read_lock(next);
5815				btrfs_clear_path_blocking(path, next,
5816							  BTRFS_READ_LOCK);
5817			}
5818			next_rw_lock = BTRFS_READ_LOCK;
5819		}
5820		break;
5821	}
5822	path->slots[level] = slot;
5823	while (1) {
5824		level--;
5825		c = path->nodes[level];
5826		if (path->locks[level])
5827			btrfs_tree_unlock_rw(c, path->locks[level]);
5828
5829		free_extent_buffer(c);
5830		path->nodes[level] = next;
5831		path->slots[level] = 0;
5832		if (!path->skip_locking)
5833			path->locks[level] = next_rw_lock;
5834		if (!level)
5835			break;
5836
5837		ret = read_block_for_search(NULL, root, path, &next, level,
5838					    0, &key, 0);
5839		if (ret == -EAGAIN)
5840			goto again;
5841
5842		if (ret < 0) {
5843			btrfs_release_path(path);
5844			goto done;
5845		}
5846
5847		if (!path->skip_locking) {
5848			ret = btrfs_try_tree_read_lock(next);
5849			if (!ret) {
5850				btrfs_set_path_blocking(path);
5851				btrfs_tree_read_lock(next);
5852				btrfs_clear_path_blocking(path, next,
5853							  BTRFS_READ_LOCK);
5854			}
5855			next_rw_lock = BTRFS_READ_LOCK;
5856		}
5857	}
5858	ret = 0;
5859done:
5860	unlock_up(path, 0, 1, 0, NULL);
5861	path->leave_spinning = old_spinning;
5862	if (!old_spinning)
5863		btrfs_set_path_blocking(path);
5864
5865	return ret;
5866}
5867
5868/*
5869 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5870 * searching until it gets past min_objectid or finds an item of 'type'
5871 *
5872 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5873 */
5874int btrfs_previous_item(struct btrfs_root *root,
5875			struct btrfs_path *path, u64 min_objectid,
5876			int type)
5877{
5878	struct btrfs_key found_key;
5879	struct extent_buffer *leaf;
5880	u32 nritems;
5881	int ret;
5882
5883	while (1) {
5884		if (path->slots[0] == 0) {
5885			btrfs_set_path_blocking(path);
5886			ret = btrfs_prev_leaf(root, path);
5887			if (ret != 0)
5888				return ret;
5889		} else {
5890			path->slots[0]--;
5891		}
5892		leaf = path->nodes[0];
5893		nritems = btrfs_header_nritems(leaf);
5894		if (nritems == 0)
5895			return 1;
5896		if (path->slots[0] == nritems)
5897			path->slots[0]--;
5898
5899		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5900		if (found_key.objectid < min_objectid)
5901			break;
5902		if (found_key.type == type)
5903			return 0;
5904		if (found_key.objectid == min_objectid &&
5905		    found_key.type < type)
5906			break;
5907	}
5908	return 1;
5909}
5910
5911/*
5912 * search in extent tree to find a previous Metadata/Data extent item with
5913 * min objecitd.
5914 *
5915 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5916 */
5917int btrfs_previous_extent_item(struct btrfs_root *root,
5918			struct btrfs_path *path, u64 min_objectid)
5919{
5920	struct btrfs_key found_key;
5921	struct extent_buffer *leaf;
5922	u32 nritems;
5923	int ret;
5924
5925	while (1) {
5926		if (path->slots[0] == 0) {
5927			btrfs_set_path_blocking(path);
5928			ret = btrfs_prev_leaf(root, path);
5929			if (ret != 0)
5930				return ret;
5931		} else {
5932			path->slots[0]--;
5933		}
5934		leaf = path->nodes[0];
5935		nritems = btrfs_header_nritems(leaf);
5936		if (nritems == 0)
5937			return 1;
5938		if (path->slots[0] == nritems)
5939			path->slots[0]--;
5940
5941		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5942		if (found_key.objectid < min_objectid)
5943			break;
5944		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5945		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5946			return 0;
5947		if (found_key.objectid == min_objectid &&
5948		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5949			break;
5950	}
5951	return 1;
5952}