Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * linux/arch/ia64/kernel/time.c
  4 *
  5 * Copyright (C) 1998-2003 Hewlett-Packard Co
  6 *	Stephane Eranian <eranian@hpl.hp.com>
  7 *	David Mosberger <davidm@hpl.hp.com>
  8 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
  9 * Copyright (C) 1999-2000 VA Linux Systems
 10 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
 11 */
 12
 13#include <linux/cpu.h>
 14#include <linux/init.h>
 15#include <linux/kernel.h>
 16#include <linux/module.h>
 17#include <linux/profile.h>
 18#include <linux/sched.h>
 19#include <linux/time.h>
 20#include <linux/nmi.h>
 21#include <linux/interrupt.h>
 22#include <linux/efi.h>
 23#include <linux/timex.h>
 24#include <linux/timekeeper_internal.h>
 25#include <linux/platform_device.h>
 26#include <linux/sched/cputime.h>
 27
 
 28#include <asm/delay.h>
 29#include <asm/hw_irq.h>
 30#include <asm/ptrace.h>
 31#include <asm/sal.h>
 32#include <asm/sections.h>
 33
 34#include "fsyscall_gtod_data.h"
 35
 36static u64 itc_get_cycles(struct clocksource *cs);
 37
 38struct fsyscall_gtod_data_t fsyscall_gtod_data;
 39
 40struct itc_jitter_data_t itc_jitter_data;
 41
 42volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
 43
 44#ifdef CONFIG_IA64_DEBUG_IRQ
 45
 46unsigned long last_cli_ip;
 47EXPORT_SYMBOL(last_cli_ip);
 48
 49#endif
 50
 51static struct clocksource clocksource_itc = {
 52	.name           = "itc",
 53	.rating         = 350,
 54	.read           = itc_get_cycles,
 55	.mask           = CLOCKSOURCE_MASK(64),
 56	.flags          = CLOCK_SOURCE_IS_CONTINUOUS,
 57};
 58static struct clocksource *itc_clocksource;
 59
 60#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 61
 62#include <linux/kernel_stat.h>
 63
 64extern u64 cycle_to_nsec(u64 cyc);
 65
 66void vtime_flush(struct task_struct *tsk)
 67{
 68	struct thread_info *ti = task_thread_info(tsk);
 69	u64 delta;
 70
 71	if (ti->utime)
 72		account_user_time(tsk, cycle_to_nsec(ti->utime));
 73
 74	if (ti->gtime)
 75		account_guest_time(tsk, cycle_to_nsec(ti->gtime));
 76
 77	if (ti->idle_time)
 78		account_idle_time(cycle_to_nsec(ti->idle_time));
 79
 80	if (ti->stime) {
 81		delta = cycle_to_nsec(ti->stime);
 82		account_system_index_time(tsk, delta, CPUTIME_SYSTEM);
 83	}
 84
 85	if (ti->hardirq_time) {
 86		delta = cycle_to_nsec(ti->hardirq_time);
 87		account_system_index_time(tsk, delta, CPUTIME_IRQ);
 88	}
 89
 90	if (ti->softirq_time) {
 91		delta = cycle_to_nsec(ti->softirq_time);
 92		account_system_index_time(tsk, delta, CPUTIME_SOFTIRQ);
 93	}
 94
 95	ti->utime = 0;
 96	ti->gtime = 0;
 97	ti->idle_time = 0;
 98	ti->stime = 0;
 99	ti->hardirq_time = 0;
100	ti->softirq_time = 0;
101}
102
103/*
104 * Called from the context switch with interrupts disabled, to charge all
105 * accumulated times to the current process, and to prepare accounting on
106 * the next process.
107 */
108void arch_vtime_task_switch(struct task_struct *prev)
109{
110	struct thread_info *pi = task_thread_info(prev);
111	struct thread_info *ni = task_thread_info(current);
112
113	ni->ac_stamp = pi->ac_stamp;
114	ni->ac_stime = ni->ac_utime = 0;
115}
116
117/*
118 * Account time for a transition between system, hard irq or soft irq state.
119 * Note that this function is called with interrupts enabled.
120 */
121static __u64 vtime_delta(struct task_struct *tsk)
122{
123	struct thread_info *ti = task_thread_info(tsk);
124	__u64 now, delta_stime;
125
126	WARN_ON_ONCE(!irqs_disabled());
127
128	now = ia64_get_itc();
129	delta_stime = now - ti->ac_stamp;
130	ti->ac_stamp = now;
131
132	return delta_stime;
133}
134
135void vtime_account_system(struct task_struct *tsk)
136{
137	struct thread_info *ti = task_thread_info(tsk);
138	__u64 stime = vtime_delta(tsk);
139
140	if ((tsk->flags & PF_VCPU) && !irq_count())
141		ti->gtime += stime;
142	else if (hardirq_count())
143		ti->hardirq_time += stime;
144	else if (in_serving_softirq())
145		ti->softirq_time += stime;
146	else
147		ti->stime += stime;
148}
149EXPORT_SYMBOL_GPL(vtime_account_system);
150
151void vtime_account_idle(struct task_struct *tsk)
152{
153	struct thread_info *ti = task_thread_info(tsk);
154
155	ti->idle_time += vtime_delta(tsk);
156}
157
158#endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
159
160static irqreturn_t
161timer_interrupt (int irq, void *dev_id)
162{
163	unsigned long new_itm;
164
165	if (cpu_is_offline(smp_processor_id())) {
166		return IRQ_HANDLED;
167	}
 
 
168
169	new_itm = local_cpu_data->itm_next;
170
171	if (!time_after(ia64_get_itc(), new_itm))
172		printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
173		       ia64_get_itc(), new_itm);
174
175	profile_tick(CPU_PROFILING);
176
177	while (1) {
178		update_process_times(user_mode(get_irq_regs()));
179
180		new_itm += local_cpu_data->itm_delta;
181
182		if (smp_processor_id() == time_keeper_id)
183			xtime_update(1);
184
185		local_cpu_data->itm_next = new_itm;
186
187		if (time_after(new_itm, ia64_get_itc()))
188			break;
189
190		/*
191		 * Allow IPIs to interrupt the timer loop.
192		 */
193		local_irq_enable();
194		local_irq_disable();
195	}
196
197	do {
198		/*
199		 * If we're too close to the next clock tick for
200		 * comfort, we increase the safety margin by
201		 * intentionally dropping the next tick(s).  We do NOT
202		 * update itm.next because that would force us to call
203		 * xtime_update() which in turn would let our clock run
204		 * too fast (with the potentially devastating effect
205		 * of losing monotony of time).
206		 */
207		while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
208			new_itm += local_cpu_data->itm_delta;
209		ia64_set_itm(new_itm);
210		/* double check, in case we got hit by a (slow) PMI: */
211	} while (time_after_eq(ia64_get_itc(), new_itm));
212	return IRQ_HANDLED;
213}
214
215/*
216 * Encapsulate access to the itm structure for SMP.
217 */
218void
219ia64_cpu_local_tick (void)
220{
221	int cpu = smp_processor_id();
222	unsigned long shift = 0, delta;
223
224	/* arrange for the cycle counter to generate a timer interrupt: */
225	ia64_set_itv(IA64_TIMER_VECTOR);
226
227	delta = local_cpu_data->itm_delta;
228	/*
229	 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
230	 * same time:
231	 */
232	if (cpu) {
233		unsigned long hi = 1UL << ia64_fls(cpu);
234		shift = (2*(cpu - hi) + 1) * delta/hi/2;
235	}
236	local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
237	ia64_set_itm(local_cpu_data->itm_next);
238}
239
240static int nojitter;
241
242static int __init nojitter_setup(char *str)
243{
244	nojitter = 1;
245	printk("Jitter checking for ITC timers disabled\n");
246	return 1;
247}
248
249__setup("nojitter", nojitter_setup);
250
251
252void ia64_init_itm(void)
253{
254	unsigned long platform_base_freq, itc_freq;
255	struct pal_freq_ratio itc_ratio, proc_ratio;
256	long status, platform_base_drift, itc_drift;
257
258	/*
259	 * According to SAL v2.6, we need to use a SAL call to determine the platform base
260	 * frequency and then a PAL call to determine the frequency ratio between the ITC
261	 * and the base frequency.
262	 */
263	status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
264				    &platform_base_freq, &platform_base_drift);
265	if (status != 0) {
266		printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
267	} else {
268		status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
269		if (status != 0)
270			printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
271	}
272	if (status != 0) {
273		/* invent "random" values */
274		printk(KERN_ERR
275		       "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
276		platform_base_freq = 100000000;
277		platform_base_drift = -1;	/* no drift info */
278		itc_ratio.num = 3;
279		itc_ratio.den = 1;
280	}
281	if (platform_base_freq < 40000000) {
282		printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
283		       platform_base_freq);
284		platform_base_freq = 75000000;
285		platform_base_drift = -1;
286	}
287	if (!proc_ratio.den)
288		proc_ratio.den = 1;	/* avoid division by zero */
289	if (!itc_ratio.den)
290		itc_ratio.den = 1;	/* avoid division by zero */
291
292	itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
293
294	local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
295	printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
296	       "ITC freq=%lu.%03luMHz", smp_processor_id(),
297	       platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
298	       itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
299
300	if (platform_base_drift != -1) {
301		itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
302		printk("+/-%ldppm\n", itc_drift);
303	} else {
304		itc_drift = -1;
305		printk("\n");
306	}
307
308	local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
309	local_cpu_data->itc_freq = itc_freq;
310	local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
311	local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
312					+ itc_freq/2)/itc_freq;
313
314	if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
315#ifdef CONFIG_SMP
316		/* On IA64 in an SMP configuration ITCs are never accurately synchronized.
317		 * Jitter compensation requires a cmpxchg which may limit
318		 * the scalability of the syscalls for retrieving time.
319		 * The ITC synchronization is usually successful to within a few
320		 * ITC ticks but this is not a sure thing. If you need to improve
321		 * timer performance in SMP situations then boot the kernel with the
322		 * "nojitter" option. However, doing so may result in time fluctuating (maybe
323		 * even going backward) if the ITC offsets between the individual CPUs
324		 * are too large.
325		 */
326		if (!nojitter)
327			itc_jitter_data.itc_jitter = 1;
328#endif
329	} else
330		/*
331		 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
332		 * ITC values may fluctuate significantly between processors.
333		 * Clock should not be used for hrtimers. Mark itc as only
334		 * useful for boot and testing.
335		 *
336		 * Note that jitter compensation is off! There is no point of
337		 * synchronizing ITCs since they may be large differentials
338		 * that change over time.
339		 *
340		 * The only way to fix this would be to repeatedly sync the
341		 * ITCs. Until that time we have to avoid ITC.
342		 */
343		clocksource_itc.rating = 50;
344
345	/* avoid softlock up message when cpu is unplug and plugged again. */
346	touch_softlockup_watchdog();
347
348	/* Setup the CPU local timer tick */
349	ia64_cpu_local_tick();
350
351	if (!itc_clocksource) {
352		clocksource_register_hz(&clocksource_itc,
353						local_cpu_data->itc_freq);
354		itc_clocksource = &clocksource_itc;
355	}
356}
357
358static u64 itc_get_cycles(struct clocksource *cs)
359{
360	unsigned long lcycle, now, ret;
361
362	if (!itc_jitter_data.itc_jitter)
363		return get_cycles();
364
365	lcycle = itc_jitter_data.itc_lastcycle;
366	now = get_cycles();
367	if (lcycle && time_after(lcycle, now))
368		return lcycle;
369
370	/*
371	 * Keep track of the last timer value returned.
372	 * In an SMP environment, you could lose out in contention of
373	 * cmpxchg. If so, your cmpxchg returns new value which the
374	 * winner of contention updated to. Use the new value instead.
375	 */
376	ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
377	if (unlikely(ret != lcycle))
378		return ret;
379
380	return now;
381}
382
383
384static struct irqaction timer_irqaction = {
385	.handler =	timer_interrupt,
386	.flags =	IRQF_IRQPOLL,
387	.name =		"timer"
388};
389
390void read_persistent_clock64(struct timespec64 *ts)
391{
392	efi_gettimeofday(ts);
393}
394
395void __init
396time_init (void)
397{
398	register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
399	ia64_init_itm();
400}
401
402/*
403 * Generic udelay assumes that if preemption is allowed and the thread
404 * migrates to another CPU, that the ITC values are synchronized across
405 * all CPUs.
406 */
407static void
408ia64_itc_udelay (unsigned long usecs)
409{
410	unsigned long start = ia64_get_itc();
411	unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
412
413	while (time_before(ia64_get_itc(), end))
414		cpu_relax();
415}
416
417void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
418
419void
420udelay (unsigned long usecs)
421{
422	(*ia64_udelay)(usecs);
423}
424EXPORT_SYMBOL(udelay);
425
426/* IA64 doesn't cache the timezone */
427void update_vsyscall_tz(void)
428{
429}
430
431void update_vsyscall(struct timekeeper *tk)
432{
433	write_seqcount_begin(&fsyscall_gtod_data.seq);
434
435	/* copy vsyscall data */
436	fsyscall_gtod_data.clk_mask = tk->tkr_mono.mask;
437	fsyscall_gtod_data.clk_mult = tk->tkr_mono.mult;
438	fsyscall_gtod_data.clk_shift = tk->tkr_mono.shift;
439	fsyscall_gtod_data.clk_fsys_mmio = tk->tkr_mono.clock->archdata.fsys_mmio;
440	fsyscall_gtod_data.clk_cycle_last = tk->tkr_mono.cycle_last;
441
442	fsyscall_gtod_data.wall_time.sec = tk->xtime_sec;
443	fsyscall_gtod_data.wall_time.snsec = tk->tkr_mono.xtime_nsec;
444
445	fsyscall_gtod_data.monotonic_time.sec = tk->xtime_sec
446					      + tk->wall_to_monotonic.tv_sec;
447	fsyscall_gtod_data.monotonic_time.snsec = tk->tkr_mono.xtime_nsec
448						+ ((u64)tk->wall_to_monotonic.tv_nsec
449							<< tk->tkr_mono.shift);
450
451	/* normalize */
452	while (fsyscall_gtod_data.monotonic_time.snsec >=
453					(((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
454		fsyscall_gtod_data.monotonic_time.snsec -=
455					((u64)NSEC_PER_SEC) << tk->tkr_mono.shift;
456		fsyscall_gtod_data.monotonic_time.sec++;
457	}
458
459	write_seqcount_end(&fsyscall_gtod_data.seq);
460}
461
v4.17
 
  1/*
  2 * linux/arch/ia64/kernel/time.c
  3 *
  4 * Copyright (C) 1998-2003 Hewlett-Packard Co
  5 *	Stephane Eranian <eranian@hpl.hp.com>
  6 *	David Mosberger <davidm@hpl.hp.com>
  7 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
  8 * Copyright (C) 1999-2000 VA Linux Systems
  9 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
 10 */
 11
 12#include <linux/cpu.h>
 13#include <linux/init.h>
 14#include <linux/kernel.h>
 15#include <linux/module.h>
 16#include <linux/profile.h>
 17#include <linux/sched.h>
 18#include <linux/time.h>
 19#include <linux/nmi.h>
 20#include <linux/interrupt.h>
 21#include <linux/efi.h>
 22#include <linux/timex.h>
 23#include <linux/timekeeper_internal.h>
 24#include <linux/platform_device.h>
 25#include <linux/sched/cputime.h>
 26
 27#include <asm/machvec.h>
 28#include <asm/delay.h>
 29#include <asm/hw_irq.h>
 30#include <asm/ptrace.h>
 31#include <asm/sal.h>
 32#include <asm/sections.h>
 33
 34#include "fsyscall_gtod_data.h"
 35
 36static u64 itc_get_cycles(struct clocksource *cs);
 37
 38struct fsyscall_gtod_data_t fsyscall_gtod_data;
 39
 40struct itc_jitter_data_t itc_jitter_data;
 41
 42volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
 43
 44#ifdef CONFIG_IA64_DEBUG_IRQ
 45
 46unsigned long last_cli_ip;
 47EXPORT_SYMBOL(last_cli_ip);
 48
 49#endif
 50
 51static struct clocksource clocksource_itc = {
 52	.name           = "itc",
 53	.rating         = 350,
 54	.read           = itc_get_cycles,
 55	.mask           = CLOCKSOURCE_MASK(64),
 56	.flags          = CLOCK_SOURCE_IS_CONTINUOUS,
 57};
 58static struct clocksource *itc_clocksource;
 59
 60#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 61
 62#include <linux/kernel_stat.h>
 63
 64extern u64 cycle_to_nsec(u64 cyc);
 65
 66void vtime_flush(struct task_struct *tsk)
 67{
 68	struct thread_info *ti = task_thread_info(tsk);
 69	u64 delta;
 70
 71	if (ti->utime)
 72		account_user_time(tsk, cycle_to_nsec(ti->utime));
 73
 74	if (ti->gtime)
 75		account_guest_time(tsk, cycle_to_nsec(ti->gtime));
 76
 77	if (ti->idle_time)
 78		account_idle_time(cycle_to_nsec(ti->idle_time));
 79
 80	if (ti->stime) {
 81		delta = cycle_to_nsec(ti->stime);
 82		account_system_index_time(tsk, delta, CPUTIME_SYSTEM);
 83	}
 84
 85	if (ti->hardirq_time) {
 86		delta = cycle_to_nsec(ti->hardirq_time);
 87		account_system_index_time(tsk, delta, CPUTIME_IRQ);
 88	}
 89
 90	if (ti->softirq_time) {
 91		delta = cycle_to_nsec(ti->softirq_time);
 92		account_system_index_time(tsk, delta, CPUTIME_SOFTIRQ);
 93	}
 94
 95	ti->utime = 0;
 96	ti->gtime = 0;
 97	ti->idle_time = 0;
 98	ti->stime = 0;
 99	ti->hardirq_time = 0;
100	ti->softirq_time = 0;
101}
102
103/*
104 * Called from the context switch with interrupts disabled, to charge all
105 * accumulated times to the current process, and to prepare accounting on
106 * the next process.
107 */
108void arch_vtime_task_switch(struct task_struct *prev)
109{
110	struct thread_info *pi = task_thread_info(prev);
111	struct thread_info *ni = task_thread_info(current);
112
113	ni->ac_stamp = pi->ac_stamp;
114	ni->ac_stime = ni->ac_utime = 0;
115}
116
117/*
118 * Account time for a transition between system, hard irq or soft irq state.
119 * Note that this function is called with interrupts enabled.
120 */
121static __u64 vtime_delta(struct task_struct *tsk)
122{
123	struct thread_info *ti = task_thread_info(tsk);
124	__u64 now, delta_stime;
125
126	WARN_ON_ONCE(!irqs_disabled());
127
128	now = ia64_get_itc();
129	delta_stime = now - ti->ac_stamp;
130	ti->ac_stamp = now;
131
132	return delta_stime;
133}
134
135void vtime_account_system(struct task_struct *tsk)
136{
137	struct thread_info *ti = task_thread_info(tsk);
138	__u64 stime = vtime_delta(tsk);
139
140	if ((tsk->flags & PF_VCPU) && !irq_count())
141		ti->gtime += stime;
142	else if (hardirq_count())
143		ti->hardirq_time += stime;
144	else if (in_serving_softirq())
145		ti->softirq_time += stime;
146	else
147		ti->stime += stime;
148}
149EXPORT_SYMBOL_GPL(vtime_account_system);
150
151void vtime_account_idle(struct task_struct *tsk)
152{
153	struct thread_info *ti = task_thread_info(tsk);
154
155	ti->idle_time += vtime_delta(tsk);
156}
157
158#endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
159
160static irqreturn_t
161timer_interrupt (int irq, void *dev_id)
162{
163	unsigned long new_itm;
164
165	if (cpu_is_offline(smp_processor_id())) {
166		return IRQ_HANDLED;
167	}
168
169	platform_timer_interrupt(irq, dev_id);
170
171	new_itm = local_cpu_data->itm_next;
172
173	if (!time_after(ia64_get_itc(), new_itm))
174		printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
175		       ia64_get_itc(), new_itm);
176
177	profile_tick(CPU_PROFILING);
178
179	while (1) {
180		update_process_times(user_mode(get_irq_regs()));
181
182		new_itm += local_cpu_data->itm_delta;
183
184		if (smp_processor_id() == time_keeper_id)
185			xtime_update(1);
186
187		local_cpu_data->itm_next = new_itm;
188
189		if (time_after(new_itm, ia64_get_itc()))
190			break;
191
192		/*
193		 * Allow IPIs to interrupt the timer loop.
194		 */
195		local_irq_enable();
196		local_irq_disable();
197	}
198
199	do {
200		/*
201		 * If we're too close to the next clock tick for
202		 * comfort, we increase the safety margin by
203		 * intentionally dropping the next tick(s).  We do NOT
204		 * update itm.next because that would force us to call
205		 * xtime_update() which in turn would let our clock run
206		 * too fast (with the potentially devastating effect
207		 * of losing monotony of time).
208		 */
209		while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
210			new_itm += local_cpu_data->itm_delta;
211		ia64_set_itm(new_itm);
212		/* double check, in case we got hit by a (slow) PMI: */
213	} while (time_after_eq(ia64_get_itc(), new_itm));
214	return IRQ_HANDLED;
215}
216
217/*
218 * Encapsulate access to the itm structure for SMP.
219 */
220void
221ia64_cpu_local_tick (void)
222{
223	int cpu = smp_processor_id();
224	unsigned long shift = 0, delta;
225
226	/* arrange for the cycle counter to generate a timer interrupt: */
227	ia64_set_itv(IA64_TIMER_VECTOR);
228
229	delta = local_cpu_data->itm_delta;
230	/*
231	 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
232	 * same time:
233	 */
234	if (cpu) {
235		unsigned long hi = 1UL << ia64_fls(cpu);
236		shift = (2*(cpu - hi) + 1) * delta/hi/2;
237	}
238	local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
239	ia64_set_itm(local_cpu_data->itm_next);
240}
241
242static int nojitter;
243
244static int __init nojitter_setup(char *str)
245{
246	nojitter = 1;
247	printk("Jitter checking for ITC timers disabled\n");
248	return 1;
249}
250
251__setup("nojitter", nojitter_setup);
252
253
254void ia64_init_itm(void)
255{
256	unsigned long platform_base_freq, itc_freq;
257	struct pal_freq_ratio itc_ratio, proc_ratio;
258	long status, platform_base_drift, itc_drift;
259
260	/*
261	 * According to SAL v2.6, we need to use a SAL call to determine the platform base
262	 * frequency and then a PAL call to determine the frequency ratio between the ITC
263	 * and the base frequency.
264	 */
265	status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
266				    &platform_base_freq, &platform_base_drift);
267	if (status != 0) {
268		printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
269	} else {
270		status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
271		if (status != 0)
272			printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
273	}
274	if (status != 0) {
275		/* invent "random" values */
276		printk(KERN_ERR
277		       "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
278		platform_base_freq = 100000000;
279		platform_base_drift = -1;	/* no drift info */
280		itc_ratio.num = 3;
281		itc_ratio.den = 1;
282	}
283	if (platform_base_freq < 40000000) {
284		printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
285		       platform_base_freq);
286		platform_base_freq = 75000000;
287		platform_base_drift = -1;
288	}
289	if (!proc_ratio.den)
290		proc_ratio.den = 1;	/* avoid division by zero */
291	if (!itc_ratio.den)
292		itc_ratio.den = 1;	/* avoid division by zero */
293
294	itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
295
296	local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
297	printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
298	       "ITC freq=%lu.%03luMHz", smp_processor_id(),
299	       platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
300	       itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
301
302	if (platform_base_drift != -1) {
303		itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
304		printk("+/-%ldppm\n", itc_drift);
305	} else {
306		itc_drift = -1;
307		printk("\n");
308	}
309
310	local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
311	local_cpu_data->itc_freq = itc_freq;
312	local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
313	local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
314					+ itc_freq/2)/itc_freq;
315
316	if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
317#ifdef CONFIG_SMP
318		/* On IA64 in an SMP configuration ITCs are never accurately synchronized.
319		 * Jitter compensation requires a cmpxchg which may limit
320		 * the scalability of the syscalls for retrieving time.
321		 * The ITC synchronization is usually successful to within a few
322		 * ITC ticks but this is not a sure thing. If you need to improve
323		 * timer performance in SMP situations then boot the kernel with the
324		 * "nojitter" option. However, doing so may result in time fluctuating (maybe
325		 * even going backward) if the ITC offsets between the individual CPUs
326		 * are too large.
327		 */
328		if (!nojitter)
329			itc_jitter_data.itc_jitter = 1;
330#endif
331	} else
332		/*
333		 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
334		 * ITC values may fluctuate significantly between processors.
335		 * Clock should not be used for hrtimers. Mark itc as only
336		 * useful for boot and testing.
337		 *
338		 * Note that jitter compensation is off! There is no point of
339		 * synchronizing ITCs since they may be large differentials
340		 * that change over time.
341		 *
342		 * The only way to fix this would be to repeatedly sync the
343		 * ITCs. Until that time we have to avoid ITC.
344		 */
345		clocksource_itc.rating = 50;
346
347	/* avoid softlock up message when cpu is unplug and plugged again. */
348	touch_softlockup_watchdog();
349
350	/* Setup the CPU local timer tick */
351	ia64_cpu_local_tick();
352
353	if (!itc_clocksource) {
354		clocksource_register_hz(&clocksource_itc,
355						local_cpu_data->itc_freq);
356		itc_clocksource = &clocksource_itc;
357	}
358}
359
360static u64 itc_get_cycles(struct clocksource *cs)
361{
362	unsigned long lcycle, now, ret;
363
364	if (!itc_jitter_data.itc_jitter)
365		return get_cycles();
366
367	lcycle = itc_jitter_data.itc_lastcycle;
368	now = get_cycles();
369	if (lcycle && time_after(lcycle, now))
370		return lcycle;
371
372	/*
373	 * Keep track of the last timer value returned.
374	 * In an SMP environment, you could lose out in contention of
375	 * cmpxchg. If so, your cmpxchg returns new value which the
376	 * winner of contention updated to. Use the new value instead.
377	 */
378	ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
379	if (unlikely(ret != lcycle))
380		return ret;
381
382	return now;
383}
384
385
386static struct irqaction timer_irqaction = {
387	.handler =	timer_interrupt,
388	.flags =	IRQF_IRQPOLL,
389	.name =		"timer"
390};
391
392void read_persistent_clock64(struct timespec64 *ts)
393{
394	efi_gettimeofday(ts);
395}
396
397void __init
398time_init (void)
399{
400	register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
401	ia64_init_itm();
402}
403
404/*
405 * Generic udelay assumes that if preemption is allowed and the thread
406 * migrates to another CPU, that the ITC values are synchronized across
407 * all CPUs.
408 */
409static void
410ia64_itc_udelay (unsigned long usecs)
411{
412	unsigned long start = ia64_get_itc();
413	unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
414
415	while (time_before(ia64_get_itc(), end))
416		cpu_relax();
417}
418
419void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
420
421void
422udelay (unsigned long usecs)
423{
424	(*ia64_udelay)(usecs);
425}
426EXPORT_SYMBOL(udelay);
427
428/* IA64 doesn't cache the timezone */
429void update_vsyscall_tz(void)
430{
431}
432
433void update_vsyscall(struct timekeeper *tk)
434{
435	write_seqcount_begin(&fsyscall_gtod_data.seq);
436
437	/* copy vsyscall data */
438	fsyscall_gtod_data.clk_mask = tk->tkr_mono.mask;
439	fsyscall_gtod_data.clk_mult = tk->tkr_mono.mult;
440	fsyscall_gtod_data.clk_shift = tk->tkr_mono.shift;
441	fsyscall_gtod_data.clk_fsys_mmio = tk->tkr_mono.clock->archdata.fsys_mmio;
442	fsyscall_gtod_data.clk_cycle_last = tk->tkr_mono.cycle_last;
443
444	fsyscall_gtod_data.wall_time.sec = tk->xtime_sec;
445	fsyscall_gtod_data.wall_time.snsec = tk->tkr_mono.xtime_nsec;
446
447	fsyscall_gtod_data.monotonic_time.sec = tk->xtime_sec
448					      + tk->wall_to_monotonic.tv_sec;
449	fsyscall_gtod_data.monotonic_time.snsec = tk->tkr_mono.xtime_nsec
450						+ ((u64)tk->wall_to_monotonic.tv_nsec
451							<< tk->tkr_mono.shift);
452
453	/* normalize */
454	while (fsyscall_gtod_data.monotonic_time.snsec >=
455					(((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
456		fsyscall_gtod_data.monotonic_time.snsec -=
457					((u64)NSEC_PER_SEC) << tk->tkr_mono.shift;
458		fsyscall_gtod_data.monotonic_time.sec++;
459	}
460
461	write_seqcount_end(&fsyscall_gtod_data.seq);
462}
463