Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.10.11.
   1/*
   2 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
   3 * All Rights Reserved.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the
   7 * "Software"), to deal in the Software without restriction, including
   8 * without limitation the rights to use, copy, modify, merge, publish,
   9 * distribute, sub license, and/or sell copies of the Software, and to
  10 * permit persons to whom the Software is furnished to do so, subject to
  11 * the following conditions:
  12 *
  13 * The above copyright notice and this permission notice (including the
  14 * next paragraph) shall be included in all copies or substantial portions
  15 * of the Software.
  16 *
  17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  20 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  24 *
  25 */
  26
  27#ifndef _UAPI_I915_DRM_H_
  28#define _UAPI_I915_DRM_H_
  29
  30#include "drm.h"
  31
  32#if defined(__cplusplus)
  33extern "C" {
  34#endif
  35
  36/* Please note that modifications to all structs defined here are
  37 * subject to backwards-compatibility constraints.
  38 */
  39
  40/**
  41 * DOC: uevents generated by i915 on it's device node
  42 *
  43 * I915_L3_PARITY_UEVENT - Generated when the driver receives a parity mismatch
  44 *	event from the gpu l3 cache. Additional information supplied is ROW,
  45 *	BANK, SUBBANK, SLICE of the affected cacheline. Userspace should keep
  46 *	track of these events and if a specific cache-line seems to have a
  47 *	persistent error remap it with the l3 remapping tool supplied in
  48 *	intel-gpu-tools.  The value supplied with the event is always 1.
  49 *
  50 * I915_ERROR_UEVENT - Generated upon error detection, currently only via
  51 *	hangcheck. The error detection event is a good indicator of when things
  52 *	began to go badly. The value supplied with the event is a 1 upon error
  53 *	detection, and a 0 upon reset completion, signifying no more error
  54 *	exists. NOTE: Disabling hangcheck or reset via module parameter will
  55 *	cause the related events to not be seen.
  56 *
  57 * I915_RESET_UEVENT - Event is generated just before an attempt to reset the
  58 *	the GPU. The value supplied with the event is always 1. NOTE: Disable
  59 *	reset via module parameter will cause this event to not be seen.
  60 */
  61#define I915_L3_PARITY_UEVENT		"L3_PARITY_ERROR"
  62#define I915_ERROR_UEVENT		"ERROR"
  63#define I915_RESET_UEVENT		"RESET"
  64
  65/*
  66 * i915_user_extension: Base class for defining a chain of extensions
  67 *
  68 * Many interfaces need to grow over time. In most cases we can simply
  69 * extend the struct and have userspace pass in more data. Another option,
  70 * as demonstrated by Vulkan's approach to providing extensions for forward
  71 * and backward compatibility, is to use a list of optional structs to
  72 * provide those extra details.
  73 *
  74 * The key advantage to using an extension chain is that it allows us to
  75 * redefine the interface more easily than an ever growing struct of
  76 * increasing complexity, and for large parts of that interface to be
  77 * entirely optional. The downside is more pointer chasing; chasing across
  78 * the __user boundary with pointers encapsulated inside u64.
  79 */
  80struct i915_user_extension {
  81	__u64 next_extension;
  82	__u32 name;
  83	__u32 flags; /* All undefined bits must be zero. */
  84	__u32 rsvd[4]; /* Reserved for future use; must be zero. */
  85};
  86
  87/*
  88 * MOCS indexes used for GPU surfaces, defining the cacheability of the
  89 * surface data and the coherency for this data wrt. CPU vs. GPU accesses.
  90 */
  91enum i915_mocs_table_index {
  92	/*
  93	 * Not cached anywhere, coherency between CPU and GPU accesses is
  94	 * guaranteed.
  95	 */
  96	I915_MOCS_UNCACHED,
  97	/*
  98	 * Cacheability and coherency controlled by the kernel automatically
  99	 * based on the DRM_I915_GEM_SET_CACHING IOCTL setting and the current
 100	 * usage of the surface (used for display scanout or not).
 101	 */
 102	I915_MOCS_PTE,
 103	/*
 104	 * Cached in all GPU caches available on the platform.
 105	 * Coherency between CPU and GPU accesses to the surface is not
 106	 * guaranteed without extra synchronization.
 107	 */
 108	I915_MOCS_CACHED,
 109};
 110
 111/*
 112 * Different engines serve different roles, and there may be more than one
 113 * engine serving each role. enum drm_i915_gem_engine_class provides a
 114 * classification of the role of the engine, which may be used when requesting
 115 * operations to be performed on a certain subset of engines, or for providing
 116 * information about that group.
 117 */
 118enum drm_i915_gem_engine_class {
 119	I915_ENGINE_CLASS_RENDER	= 0,
 120	I915_ENGINE_CLASS_COPY		= 1,
 121	I915_ENGINE_CLASS_VIDEO		= 2,
 122	I915_ENGINE_CLASS_VIDEO_ENHANCE	= 3,
 123
 124	/* should be kept compact */
 125
 126	I915_ENGINE_CLASS_INVALID	= -1
 127};
 128
 129/*
 130 * There may be more than one engine fulfilling any role within the system.
 131 * Each engine of a class is given a unique instance number and therefore
 132 * any engine can be specified by its class:instance tuplet. APIs that allow
 133 * access to any engine in the system will use struct i915_engine_class_instance
 134 * for this identification.
 135 */
 136struct i915_engine_class_instance {
 137	__u16 engine_class; /* see enum drm_i915_gem_engine_class */
 138	__u16 engine_instance;
 139#define I915_ENGINE_CLASS_INVALID_NONE -1
 140#define I915_ENGINE_CLASS_INVALID_VIRTUAL -2
 141};
 142
 143/**
 144 * DOC: perf_events exposed by i915 through /sys/bus/event_sources/drivers/i915
 145 *
 146 */
 147
 148enum drm_i915_pmu_engine_sample {
 149	I915_SAMPLE_BUSY = 0,
 150	I915_SAMPLE_WAIT = 1,
 151	I915_SAMPLE_SEMA = 2
 152};
 153
 154#define I915_PMU_SAMPLE_BITS (4)
 155#define I915_PMU_SAMPLE_MASK (0xf)
 156#define I915_PMU_SAMPLE_INSTANCE_BITS (8)
 157#define I915_PMU_CLASS_SHIFT \
 158	(I915_PMU_SAMPLE_BITS + I915_PMU_SAMPLE_INSTANCE_BITS)
 159
 160#define __I915_PMU_ENGINE(class, instance, sample) \
 161	((class) << I915_PMU_CLASS_SHIFT | \
 162	(instance) << I915_PMU_SAMPLE_BITS | \
 163	(sample))
 164
 165#define I915_PMU_ENGINE_BUSY(class, instance) \
 166	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_BUSY)
 167
 168#define I915_PMU_ENGINE_WAIT(class, instance) \
 169	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_WAIT)
 170
 171#define I915_PMU_ENGINE_SEMA(class, instance) \
 172	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_SEMA)
 173
 174#define __I915_PMU_OTHER(x) (__I915_PMU_ENGINE(0xff, 0xff, 0xf) + 1 + (x))
 175
 176#define I915_PMU_ACTUAL_FREQUENCY	__I915_PMU_OTHER(0)
 177#define I915_PMU_REQUESTED_FREQUENCY	__I915_PMU_OTHER(1)
 178#define I915_PMU_INTERRUPTS		__I915_PMU_OTHER(2)
 179#define I915_PMU_RC6_RESIDENCY		__I915_PMU_OTHER(3)
 180
 181#define I915_PMU_LAST I915_PMU_RC6_RESIDENCY
 182
 183/* Each region is a minimum of 16k, and there are at most 255 of them.
 184 */
 185#define I915_NR_TEX_REGIONS 255	/* table size 2k - maximum due to use
 186				 * of chars for next/prev indices */
 187#define I915_LOG_MIN_TEX_REGION_SIZE 14
 188
 189typedef struct _drm_i915_init {
 190	enum {
 191		I915_INIT_DMA = 0x01,
 192		I915_CLEANUP_DMA = 0x02,
 193		I915_RESUME_DMA = 0x03
 194	} func;
 195	unsigned int mmio_offset;
 196	int sarea_priv_offset;
 197	unsigned int ring_start;
 198	unsigned int ring_end;
 199	unsigned int ring_size;
 200	unsigned int front_offset;
 201	unsigned int back_offset;
 202	unsigned int depth_offset;
 203	unsigned int w;
 204	unsigned int h;
 205	unsigned int pitch;
 206	unsigned int pitch_bits;
 207	unsigned int back_pitch;
 208	unsigned int depth_pitch;
 209	unsigned int cpp;
 210	unsigned int chipset;
 211} drm_i915_init_t;
 212
 213typedef struct _drm_i915_sarea {
 214	struct drm_tex_region texList[I915_NR_TEX_REGIONS + 1];
 215	int last_upload;	/* last time texture was uploaded */
 216	int last_enqueue;	/* last time a buffer was enqueued */
 217	int last_dispatch;	/* age of the most recently dispatched buffer */
 218	int ctxOwner;		/* last context to upload state */
 219	int texAge;
 220	int pf_enabled;		/* is pageflipping allowed? */
 221	int pf_active;
 222	int pf_current_page;	/* which buffer is being displayed? */
 223	int perf_boxes;		/* performance boxes to be displayed */
 224	int width, height;      /* screen size in pixels */
 225
 226	drm_handle_t front_handle;
 227	int front_offset;
 228	int front_size;
 229
 230	drm_handle_t back_handle;
 231	int back_offset;
 232	int back_size;
 233
 234	drm_handle_t depth_handle;
 235	int depth_offset;
 236	int depth_size;
 237
 238	drm_handle_t tex_handle;
 239	int tex_offset;
 240	int tex_size;
 241	int log_tex_granularity;
 242	int pitch;
 243	int rotation;           /* 0, 90, 180 or 270 */
 244	int rotated_offset;
 245	int rotated_size;
 246	int rotated_pitch;
 247	int virtualX, virtualY;
 248
 249	unsigned int front_tiled;
 250	unsigned int back_tiled;
 251	unsigned int depth_tiled;
 252	unsigned int rotated_tiled;
 253	unsigned int rotated2_tiled;
 254
 255	int pipeA_x;
 256	int pipeA_y;
 257	int pipeA_w;
 258	int pipeA_h;
 259	int pipeB_x;
 260	int pipeB_y;
 261	int pipeB_w;
 262	int pipeB_h;
 263
 264	/* fill out some space for old userspace triple buffer */
 265	drm_handle_t unused_handle;
 266	__u32 unused1, unused2, unused3;
 267
 268	/* buffer object handles for static buffers. May change
 269	 * over the lifetime of the client.
 270	 */
 271	__u32 front_bo_handle;
 272	__u32 back_bo_handle;
 273	__u32 unused_bo_handle;
 274	__u32 depth_bo_handle;
 275
 276} drm_i915_sarea_t;
 277
 278/* due to userspace building against these headers we need some compat here */
 279#define planeA_x pipeA_x
 280#define planeA_y pipeA_y
 281#define planeA_w pipeA_w
 282#define planeA_h pipeA_h
 283#define planeB_x pipeB_x
 284#define planeB_y pipeB_y
 285#define planeB_w pipeB_w
 286#define planeB_h pipeB_h
 287
 288/* Flags for perf_boxes
 289 */
 290#define I915_BOX_RING_EMPTY    0x1
 291#define I915_BOX_FLIP          0x2
 292#define I915_BOX_WAIT          0x4
 293#define I915_BOX_TEXTURE_LOAD  0x8
 294#define I915_BOX_LOST_CONTEXT  0x10
 295
 296/*
 297 * i915 specific ioctls.
 298 *
 299 * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
 300 * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
 301 * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
 302 */
 303#define DRM_I915_INIT		0x00
 304#define DRM_I915_FLUSH		0x01
 305#define DRM_I915_FLIP		0x02
 306#define DRM_I915_BATCHBUFFER	0x03
 307#define DRM_I915_IRQ_EMIT	0x04
 308#define DRM_I915_IRQ_WAIT	0x05
 309#define DRM_I915_GETPARAM	0x06
 310#define DRM_I915_SETPARAM	0x07
 311#define DRM_I915_ALLOC		0x08
 312#define DRM_I915_FREE		0x09
 313#define DRM_I915_INIT_HEAP	0x0a
 314#define DRM_I915_CMDBUFFER	0x0b
 315#define DRM_I915_DESTROY_HEAP	0x0c
 316#define DRM_I915_SET_VBLANK_PIPE	0x0d
 317#define DRM_I915_GET_VBLANK_PIPE	0x0e
 318#define DRM_I915_VBLANK_SWAP	0x0f
 319#define DRM_I915_HWS_ADDR	0x11
 320#define DRM_I915_GEM_INIT	0x13
 321#define DRM_I915_GEM_EXECBUFFER	0x14
 322#define DRM_I915_GEM_PIN	0x15
 323#define DRM_I915_GEM_UNPIN	0x16
 324#define DRM_I915_GEM_BUSY	0x17
 325#define DRM_I915_GEM_THROTTLE	0x18
 326#define DRM_I915_GEM_ENTERVT	0x19
 327#define DRM_I915_GEM_LEAVEVT	0x1a
 328#define DRM_I915_GEM_CREATE	0x1b
 329#define DRM_I915_GEM_PREAD	0x1c
 330#define DRM_I915_GEM_PWRITE	0x1d
 331#define DRM_I915_GEM_MMAP	0x1e
 332#define DRM_I915_GEM_SET_DOMAIN	0x1f
 333#define DRM_I915_GEM_SW_FINISH	0x20
 334#define DRM_I915_GEM_SET_TILING	0x21
 335#define DRM_I915_GEM_GET_TILING	0x22
 336#define DRM_I915_GEM_GET_APERTURE 0x23
 337#define DRM_I915_GEM_MMAP_GTT	0x24
 338#define DRM_I915_GET_PIPE_FROM_CRTC_ID	0x25
 339#define DRM_I915_GEM_MADVISE	0x26
 340#define DRM_I915_OVERLAY_PUT_IMAGE	0x27
 341#define DRM_I915_OVERLAY_ATTRS	0x28
 342#define DRM_I915_GEM_EXECBUFFER2	0x29
 343#define DRM_I915_GEM_EXECBUFFER2_WR	DRM_I915_GEM_EXECBUFFER2
 344#define DRM_I915_GET_SPRITE_COLORKEY	0x2a
 345#define DRM_I915_SET_SPRITE_COLORKEY	0x2b
 346#define DRM_I915_GEM_WAIT	0x2c
 347#define DRM_I915_GEM_CONTEXT_CREATE	0x2d
 348#define DRM_I915_GEM_CONTEXT_DESTROY	0x2e
 349#define DRM_I915_GEM_SET_CACHING	0x2f
 350#define DRM_I915_GEM_GET_CACHING	0x30
 351#define DRM_I915_REG_READ		0x31
 352#define DRM_I915_GET_RESET_STATS	0x32
 353#define DRM_I915_GEM_USERPTR		0x33
 354#define DRM_I915_GEM_CONTEXT_GETPARAM	0x34
 355#define DRM_I915_GEM_CONTEXT_SETPARAM	0x35
 356#define DRM_I915_PERF_OPEN		0x36
 357#define DRM_I915_PERF_ADD_CONFIG	0x37
 358#define DRM_I915_PERF_REMOVE_CONFIG	0x38
 359#define DRM_I915_QUERY			0x39
 360#define DRM_I915_GEM_VM_CREATE		0x3a
 361#define DRM_I915_GEM_VM_DESTROY		0x3b
 362/* Must be kept compact -- no holes */
 363
 364#define DRM_IOCTL_I915_INIT		DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT, drm_i915_init_t)
 365#define DRM_IOCTL_I915_FLUSH		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLUSH)
 366#define DRM_IOCTL_I915_FLIP		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLIP)
 367#define DRM_IOCTL_I915_BATCHBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_BATCHBUFFER, drm_i915_batchbuffer_t)
 368#define DRM_IOCTL_I915_IRQ_EMIT         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_IRQ_EMIT, drm_i915_irq_emit_t)
 369#define DRM_IOCTL_I915_IRQ_WAIT         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_IRQ_WAIT, drm_i915_irq_wait_t)
 370#define DRM_IOCTL_I915_GETPARAM         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GETPARAM, drm_i915_getparam_t)
 371#define DRM_IOCTL_I915_SETPARAM         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SETPARAM, drm_i915_setparam_t)
 372#define DRM_IOCTL_I915_ALLOC            DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_ALLOC, drm_i915_mem_alloc_t)
 373#define DRM_IOCTL_I915_FREE             DRM_IOW( DRM_COMMAND_BASE + DRM_I915_FREE, drm_i915_mem_free_t)
 374#define DRM_IOCTL_I915_INIT_HEAP        DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT_HEAP, drm_i915_mem_init_heap_t)
 375#define DRM_IOCTL_I915_CMDBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_CMDBUFFER, drm_i915_cmdbuffer_t)
 376#define DRM_IOCTL_I915_DESTROY_HEAP	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_DESTROY_HEAP, drm_i915_mem_destroy_heap_t)
 377#define DRM_IOCTL_I915_SET_VBLANK_PIPE	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
 378#define DRM_IOCTL_I915_GET_VBLANK_PIPE	DRM_IOR( DRM_COMMAND_BASE + DRM_I915_GET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
 379#define DRM_IOCTL_I915_VBLANK_SWAP	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_VBLANK_SWAP, drm_i915_vblank_swap_t)
 380#define DRM_IOCTL_I915_HWS_ADDR		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_HWS_ADDR, struct drm_i915_gem_init)
 381#define DRM_IOCTL_I915_GEM_INIT		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_INIT, struct drm_i915_gem_init)
 382#define DRM_IOCTL_I915_GEM_EXECBUFFER	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER, struct drm_i915_gem_execbuffer)
 383#define DRM_IOCTL_I915_GEM_EXECBUFFER2	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2, struct drm_i915_gem_execbuffer2)
 384#define DRM_IOCTL_I915_GEM_EXECBUFFER2_WR	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2_WR, struct drm_i915_gem_execbuffer2)
 385#define DRM_IOCTL_I915_GEM_PIN		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_PIN, struct drm_i915_gem_pin)
 386#define DRM_IOCTL_I915_GEM_UNPIN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_UNPIN, struct drm_i915_gem_unpin)
 387#define DRM_IOCTL_I915_GEM_BUSY		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_BUSY, struct drm_i915_gem_busy)
 388#define DRM_IOCTL_I915_GEM_SET_CACHING		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_SET_CACHING, struct drm_i915_gem_caching)
 389#define DRM_IOCTL_I915_GEM_GET_CACHING		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_GET_CACHING, struct drm_i915_gem_caching)
 390#define DRM_IOCTL_I915_GEM_THROTTLE	DRM_IO ( DRM_COMMAND_BASE + DRM_I915_GEM_THROTTLE)
 391#define DRM_IOCTL_I915_GEM_ENTERVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_ENTERVT)
 392#define DRM_IOCTL_I915_GEM_LEAVEVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_LEAVEVT)
 393#define DRM_IOCTL_I915_GEM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct drm_i915_gem_create)
 394#define DRM_IOCTL_I915_GEM_PREAD	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PREAD, struct drm_i915_gem_pread)
 395#define DRM_IOCTL_I915_GEM_PWRITE	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PWRITE, struct drm_i915_gem_pwrite)
 396#define DRM_IOCTL_I915_GEM_MMAP		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP, struct drm_i915_gem_mmap)
 397#define DRM_IOCTL_I915_GEM_MMAP_GTT	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_gtt)
 398#define DRM_IOCTL_I915_GEM_SET_DOMAIN	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SET_DOMAIN, struct drm_i915_gem_set_domain)
 399#define DRM_IOCTL_I915_GEM_SW_FINISH	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SW_FINISH, struct drm_i915_gem_sw_finish)
 400#define DRM_IOCTL_I915_GEM_SET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_SET_TILING, struct drm_i915_gem_set_tiling)
 401#define DRM_IOCTL_I915_GEM_GET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_TILING, struct drm_i915_gem_get_tiling)
 402#define DRM_IOCTL_I915_GEM_GET_APERTURE	DRM_IOR  (DRM_COMMAND_BASE + DRM_I915_GEM_GET_APERTURE, struct drm_i915_gem_get_aperture)
 403#define DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_PIPE_FROM_CRTC_ID, struct drm_i915_get_pipe_from_crtc_id)
 404#define DRM_IOCTL_I915_GEM_MADVISE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MADVISE, struct drm_i915_gem_madvise)
 405#define DRM_IOCTL_I915_OVERLAY_PUT_IMAGE	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_OVERLAY_PUT_IMAGE, struct drm_intel_overlay_put_image)
 406#define DRM_IOCTL_I915_OVERLAY_ATTRS	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_OVERLAY_ATTRS, struct drm_intel_overlay_attrs)
 407#define DRM_IOCTL_I915_SET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_SET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
 408#define DRM_IOCTL_I915_GET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
 409#define DRM_IOCTL_I915_GEM_WAIT		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_WAIT, struct drm_i915_gem_wait)
 410#define DRM_IOCTL_I915_GEM_CONTEXT_CREATE	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create)
 411#define DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create_ext)
 412#define DRM_IOCTL_I915_GEM_CONTEXT_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_DESTROY, struct drm_i915_gem_context_destroy)
 413#define DRM_IOCTL_I915_REG_READ			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_REG_READ, struct drm_i915_reg_read)
 414#define DRM_IOCTL_I915_GET_RESET_STATS		DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GET_RESET_STATS, struct drm_i915_reset_stats)
 415#define DRM_IOCTL_I915_GEM_USERPTR			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_USERPTR, struct drm_i915_gem_userptr)
 416#define DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_GETPARAM, struct drm_i915_gem_context_param)
 417#define DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_SETPARAM, struct drm_i915_gem_context_param)
 418#define DRM_IOCTL_I915_PERF_OPEN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_OPEN, struct drm_i915_perf_open_param)
 419#define DRM_IOCTL_I915_PERF_ADD_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_ADD_CONFIG, struct drm_i915_perf_oa_config)
 420#define DRM_IOCTL_I915_PERF_REMOVE_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_REMOVE_CONFIG, __u64)
 421#define DRM_IOCTL_I915_QUERY			DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_QUERY, struct drm_i915_query)
 422#define DRM_IOCTL_I915_GEM_VM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_VM_CREATE, struct drm_i915_gem_vm_control)
 423#define DRM_IOCTL_I915_GEM_VM_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_VM_DESTROY, struct drm_i915_gem_vm_control)
 424
 425/* Allow drivers to submit batchbuffers directly to hardware, relying
 426 * on the security mechanisms provided by hardware.
 427 */
 428typedef struct drm_i915_batchbuffer {
 429	int start;		/* agp offset */
 430	int used;		/* nr bytes in use */
 431	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
 432	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
 433	int num_cliprects;	/* mulitpass with multiple cliprects? */
 434	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
 435} drm_i915_batchbuffer_t;
 436
 437/* As above, but pass a pointer to userspace buffer which can be
 438 * validated by the kernel prior to sending to hardware.
 439 */
 440typedef struct _drm_i915_cmdbuffer {
 441	char __user *buf;	/* pointer to userspace command buffer */
 442	int sz;			/* nr bytes in buf */
 443	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
 444	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
 445	int num_cliprects;	/* mulitpass with multiple cliprects? */
 446	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
 447} drm_i915_cmdbuffer_t;
 448
 449/* Userspace can request & wait on irq's:
 450 */
 451typedef struct drm_i915_irq_emit {
 452	int __user *irq_seq;
 453} drm_i915_irq_emit_t;
 454
 455typedef struct drm_i915_irq_wait {
 456	int irq_seq;
 457} drm_i915_irq_wait_t;
 458
 459/*
 460 * Different modes of per-process Graphics Translation Table,
 461 * see I915_PARAM_HAS_ALIASING_PPGTT
 462 */
 463#define I915_GEM_PPGTT_NONE	0
 464#define I915_GEM_PPGTT_ALIASING	1
 465#define I915_GEM_PPGTT_FULL	2
 466
 467/* Ioctl to query kernel params:
 468 */
 469#define I915_PARAM_IRQ_ACTIVE            1
 470#define I915_PARAM_ALLOW_BATCHBUFFER     2
 471#define I915_PARAM_LAST_DISPATCH         3
 472#define I915_PARAM_CHIPSET_ID            4
 473#define I915_PARAM_HAS_GEM               5
 474#define I915_PARAM_NUM_FENCES_AVAIL      6
 475#define I915_PARAM_HAS_OVERLAY           7
 476#define I915_PARAM_HAS_PAGEFLIPPING	 8
 477#define I915_PARAM_HAS_EXECBUF2          9
 478#define I915_PARAM_HAS_BSD		 10
 479#define I915_PARAM_HAS_BLT		 11
 480#define I915_PARAM_HAS_RELAXED_FENCING	 12
 481#define I915_PARAM_HAS_COHERENT_RINGS	 13
 482#define I915_PARAM_HAS_EXEC_CONSTANTS	 14
 483#define I915_PARAM_HAS_RELAXED_DELTA	 15
 484#define I915_PARAM_HAS_GEN7_SOL_RESET	 16
 485#define I915_PARAM_HAS_LLC     	 	 17
 486#define I915_PARAM_HAS_ALIASING_PPGTT	 18
 487#define I915_PARAM_HAS_WAIT_TIMEOUT	 19
 488#define I915_PARAM_HAS_SEMAPHORES	 20
 489#define I915_PARAM_HAS_PRIME_VMAP_FLUSH	 21
 490#define I915_PARAM_HAS_VEBOX		 22
 491#define I915_PARAM_HAS_SECURE_BATCHES	 23
 492#define I915_PARAM_HAS_PINNED_BATCHES	 24
 493#define I915_PARAM_HAS_EXEC_NO_RELOC	 25
 494#define I915_PARAM_HAS_EXEC_HANDLE_LUT   26
 495#define I915_PARAM_HAS_WT     	 	 27
 496#define I915_PARAM_CMD_PARSER_VERSION	 28
 497#define I915_PARAM_HAS_COHERENT_PHYS_GTT 29
 498#define I915_PARAM_MMAP_VERSION          30
 499#define I915_PARAM_HAS_BSD2		 31
 500#define I915_PARAM_REVISION              32
 501#define I915_PARAM_SUBSLICE_TOTAL	 33
 502#define I915_PARAM_EU_TOTAL		 34
 503#define I915_PARAM_HAS_GPU_RESET	 35
 504#define I915_PARAM_HAS_RESOURCE_STREAMER 36
 505#define I915_PARAM_HAS_EXEC_SOFTPIN	 37
 506#define I915_PARAM_HAS_POOLED_EU	 38
 507#define I915_PARAM_MIN_EU_IN_POOL	 39
 508#define I915_PARAM_MMAP_GTT_VERSION	 40
 509
 510/*
 511 * Query whether DRM_I915_GEM_EXECBUFFER2 supports user defined execution
 512 * priorities and the driver will attempt to execute batches in priority order.
 513 * The param returns a capability bitmask, nonzero implies that the scheduler
 514 * is enabled, with different features present according to the mask.
 515 *
 516 * The initial priority for each batch is supplied by the context and is
 517 * controlled via I915_CONTEXT_PARAM_PRIORITY.
 518 */
 519#define I915_PARAM_HAS_SCHEDULER	 41
 520#define   I915_SCHEDULER_CAP_ENABLED	(1ul << 0)
 521#define   I915_SCHEDULER_CAP_PRIORITY	(1ul << 1)
 522#define   I915_SCHEDULER_CAP_PREEMPTION	(1ul << 2)
 523#define   I915_SCHEDULER_CAP_SEMAPHORES	(1ul << 3)
 524#define   I915_SCHEDULER_CAP_ENGINE_BUSY_STATS	(1ul << 4)
 525
 526#define I915_PARAM_HUC_STATUS		 42
 527
 528/* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to opt-out of
 529 * synchronisation with implicit fencing on individual objects.
 530 * See EXEC_OBJECT_ASYNC.
 531 */
 532#define I915_PARAM_HAS_EXEC_ASYNC	 43
 533
 534/* Query whether DRM_I915_GEM_EXECBUFFER2 supports explicit fence support -
 535 * both being able to pass in a sync_file fd to wait upon before executing,
 536 * and being able to return a new sync_file fd that is signaled when the
 537 * current request is complete. See I915_EXEC_FENCE_IN and I915_EXEC_FENCE_OUT.
 538 */
 539#define I915_PARAM_HAS_EXEC_FENCE	 44
 540
 541/* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to capture
 542 * user specified bufffers for post-mortem debugging of GPU hangs. See
 543 * EXEC_OBJECT_CAPTURE.
 544 */
 545#define I915_PARAM_HAS_EXEC_CAPTURE	 45
 546
 547#define I915_PARAM_SLICE_MASK		 46
 548
 549/* Assuming it's uniform for each slice, this queries the mask of subslices
 550 * per-slice for this system.
 551 */
 552#define I915_PARAM_SUBSLICE_MASK	 47
 553
 554/*
 555 * Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying the batch buffer
 556 * as the first execobject as opposed to the last. See I915_EXEC_BATCH_FIRST.
 557 */
 558#define I915_PARAM_HAS_EXEC_BATCH_FIRST	 48
 559
 560/* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
 561 * drm_i915_gem_exec_fence structures.  See I915_EXEC_FENCE_ARRAY.
 562 */
 563#define I915_PARAM_HAS_EXEC_FENCE_ARRAY  49
 564
 565/*
 566 * Query whether every context (both per-file default and user created) is
 567 * isolated (insofar as HW supports). If this parameter is not true, then
 568 * freshly created contexts may inherit values from an existing context,
 569 * rather than default HW values. If true, it also ensures (insofar as HW
 570 * supports) that all state set by this context will not leak to any other
 571 * context.
 572 *
 573 * As not every engine across every gen support contexts, the returned
 574 * value reports the support of context isolation for individual engines by
 575 * returning a bitmask of each engine class set to true if that class supports
 576 * isolation.
 577 */
 578#define I915_PARAM_HAS_CONTEXT_ISOLATION 50
 579
 580/* Frequency of the command streamer timestamps given by the *_TIMESTAMP
 581 * registers. This used to be fixed per platform but from CNL onwards, this
 582 * might vary depending on the parts.
 583 */
 584#define I915_PARAM_CS_TIMESTAMP_FREQUENCY 51
 585
 586/*
 587 * Once upon a time we supposed that writes through the GGTT would be
 588 * immediately in physical memory (once flushed out of the CPU path). However,
 589 * on a few different processors and chipsets, this is not necessarily the case
 590 * as the writes appear to be buffered internally. Thus a read of the backing
 591 * storage (physical memory) via a different path (with different physical tags
 592 * to the indirect write via the GGTT) will see stale values from before
 593 * the GGTT write. Inside the kernel, we can for the most part keep track of
 594 * the different read/write domains in use (e.g. set-domain), but the assumption
 595 * of coherency is baked into the ABI, hence reporting its true state in this
 596 * parameter.
 597 *
 598 * Reports true when writes via mmap_gtt are immediately visible following an
 599 * lfence to flush the WCB.
 600 *
 601 * Reports false when writes via mmap_gtt are indeterminately delayed in an in
 602 * internal buffer and are _not_ immediately visible to third parties accessing
 603 * directly via mmap_cpu/mmap_wc. Use of mmap_gtt as part of an IPC
 604 * communications channel when reporting false is strongly disadvised.
 605 */
 606#define I915_PARAM_MMAP_GTT_COHERENT	52
 607
 608/*
 609 * Query whether DRM_I915_GEM_EXECBUFFER2 supports coordination of parallel
 610 * execution through use of explicit fence support.
 611 * See I915_EXEC_FENCE_OUT and I915_EXEC_FENCE_SUBMIT.
 612 */
 613#define I915_PARAM_HAS_EXEC_SUBMIT_FENCE 53
 614/* Must be kept compact -- no holes and well documented */
 615
 616typedef struct drm_i915_getparam {
 617	__s32 param;
 618	/*
 619	 * WARNING: Using pointers instead of fixed-size u64 means we need to write
 620	 * compat32 code. Don't repeat this mistake.
 621	 */
 622	int __user *value;
 623} drm_i915_getparam_t;
 624
 625/* Ioctl to set kernel params:
 626 */
 627#define I915_SETPARAM_USE_MI_BATCHBUFFER_START            1
 628#define I915_SETPARAM_TEX_LRU_LOG_GRANULARITY             2
 629#define I915_SETPARAM_ALLOW_BATCHBUFFER                   3
 630#define I915_SETPARAM_NUM_USED_FENCES                     4
 631/* Must be kept compact -- no holes */
 632
 633typedef struct drm_i915_setparam {
 634	int param;
 635	int value;
 636} drm_i915_setparam_t;
 637
 638/* A memory manager for regions of shared memory:
 639 */
 640#define I915_MEM_REGION_AGP 1
 641
 642typedef struct drm_i915_mem_alloc {
 643	int region;
 644	int alignment;
 645	int size;
 646	int __user *region_offset;	/* offset from start of fb or agp */
 647} drm_i915_mem_alloc_t;
 648
 649typedef struct drm_i915_mem_free {
 650	int region;
 651	int region_offset;
 652} drm_i915_mem_free_t;
 653
 654typedef struct drm_i915_mem_init_heap {
 655	int region;
 656	int size;
 657	int start;
 658} drm_i915_mem_init_heap_t;
 659
 660/* Allow memory manager to be torn down and re-initialized (eg on
 661 * rotate):
 662 */
 663typedef struct drm_i915_mem_destroy_heap {
 664	int region;
 665} drm_i915_mem_destroy_heap_t;
 666
 667/* Allow X server to configure which pipes to monitor for vblank signals
 668 */
 669#define	DRM_I915_VBLANK_PIPE_A	1
 670#define	DRM_I915_VBLANK_PIPE_B	2
 671
 672typedef struct drm_i915_vblank_pipe {
 673	int pipe;
 674} drm_i915_vblank_pipe_t;
 675
 676/* Schedule buffer swap at given vertical blank:
 677 */
 678typedef struct drm_i915_vblank_swap {
 679	drm_drawable_t drawable;
 680	enum drm_vblank_seq_type seqtype;
 681	unsigned int sequence;
 682} drm_i915_vblank_swap_t;
 683
 684typedef struct drm_i915_hws_addr {
 685	__u64 addr;
 686} drm_i915_hws_addr_t;
 687
 688struct drm_i915_gem_init {
 689	/**
 690	 * Beginning offset in the GTT to be managed by the DRM memory
 691	 * manager.
 692	 */
 693	__u64 gtt_start;
 694	/**
 695	 * Ending offset in the GTT to be managed by the DRM memory
 696	 * manager.
 697	 */
 698	__u64 gtt_end;
 699};
 700
 701struct drm_i915_gem_create {
 702	/**
 703	 * Requested size for the object.
 704	 *
 705	 * The (page-aligned) allocated size for the object will be returned.
 706	 */
 707	__u64 size;
 708	/**
 709	 * Returned handle for the object.
 710	 *
 711	 * Object handles are nonzero.
 712	 */
 713	__u32 handle;
 714	__u32 pad;
 715};
 716
 717struct drm_i915_gem_pread {
 718	/** Handle for the object being read. */
 719	__u32 handle;
 720	__u32 pad;
 721	/** Offset into the object to read from */
 722	__u64 offset;
 723	/** Length of data to read */
 724	__u64 size;
 725	/**
 726	 * Pointer to write the data into.
 727	 *
 728	 * This is a fixed-size type for 32/64 compatibility.
 729	 */
 730	__u64 data_ptr;
 731};
 732
 733struct drm_i915_gem_pwrite {
 734	/** Handle for the object being written to. */
 735	__u32 handle;
 736	__u32 pad;
 737	/** Offset into the object to write to */
 738	__u64 offset;
 739	/** Length of data to write */
 740	__u64 size;
 741	/**
 742	 * Pointer to read the data from.
 743	 *
 744	 * This is a fixed-size type for 32/64 compatibility.
 745	 */
 746	__u64 data_ptr;
 747};
 748
 749struct drm_i915_gem_mmap {
 750	/** Handle for the object being mapped. */
 751	__u32 handle;
 752	__u32 pad;
 753	/** Offset in the object to map. */
 754	__u64 offset;
 755	/**
 756	 * Length of data to map.
 757	 *
 758	 * The value will be page-aligned.
 759	 */
 760	__u64 size;
 761	/**
 762	 * Returned pointer the data was mapped at.
 763	 *
 764	 * This is a fixed-size type for 32/64 compatibility.
 765	 */
 766	__u64 addr_ptr;
 767
 768	/**
 769	 * Flags for extended behaviour.
 770	 *
 771	 * Added in version 2.
 772	 */
 773	__u64 flags;
 774#define I915_MMAP_WC 0x1
 775};
 776
 777struct drm_i915_gem_mmap_gtt {
 778	/** Handle for the object being mapped. */
 779	__u32 handle;
 780	__u32 pad;
 781	/**
 782	 * Fake offset to use for subsequent mmap call
 783	 *
 784	 * This is a fixed-size type for 32/64 compatibility.
 785	 */
 786	__u64 offset;
 787};
 788
 789struct drm_i915_gem_set_domain {
 790	/** Handle for the object */
 791	__u32 handle;
 792
 793	/** New read domains */
 794	__u32 read_domains;
 795
 796	/** New write domain */
 797	__u32 write_domain;
 798};
 799
 800struct drm_i915_gem_sw_finish {
 801	/** Handle for the object */
 802	__u32 handle;
 803};
 804
 805struct drm_i915_gem_relocation_entry {
 806	/**
 807	 * Handle of the buffer being pointed to by this relocation entry.
 808	 *
 809	 * It's appealing to make this be an index into the mm_validate_entry
 810	 * list to refer to the buffer, but this allows the driver to create
 811	 * a relocation list for state buffers and not re-write it per
 812	 * exec using the buffer.
 813	 */
 814	__u32 target_handle;
 815
 816	/**
 817	 * Value to be added to the offset of the target buffer to make up
 818	 * the relocation entry.
 819	 */
 820	__u32 delta;
 821
 822	/** Offset in the buffer the relocation entry will be written into */
 823	__u64 offset;
 824
 825	/**
 826	 * Offset value of the target buffer that the relocation entry was last
 827	 * written as.
 828	 *
 829	 * If the buffer has the same offset as last time, we can skip syncing
 830	 * and writing the relocation.  This value is written back out by
 831	 * the execbuffer ioctl when the relocation is written.
 832	 */
 833	__u64 presumed_offset;
 834
 835	/**
 836	 * Target memory domains read by this operation.
 837	 */
 838	__u32 read_domains;
 839
 840	/**
 841	 * Target memory domains written by this operation.
 842	 *
 843	 * Note that only one domain may be written by the whole
 844	 * execbuffer operation, so that where there are conflicts,
 845	 * the application will get -EINVAL back.
 846	 */
 847	__u32 write_domain;
 848};
 849
 850/** @{
 851 * Intel memory domains
 852 *
 853 * Most of these just align with the various caches in
 854 * the system and are used to flush and invalidate as
 855 * objects end up cached in different domains.
 856 */
 857/** CPU cache */
 858#define I915_GEM_DOMAIN_CPU		0x00000001
 859/** Render cache, used by 2D and 3D drawing */
 860#define I915_GEM_DOMAIN_RENDER		0x00000002
 861/** Sampler cache, used by texture engine */
 862#define I915_GEM_DOMAIN_SAMPLER		0x00000004
 863/** Command queue, used to load batch buffers */
 864#define I915_GEM_DOMAIN_COMMAND		0x00000008
 865/** Instruction cache, used by shader programs */
 866#define I915_GEM_DOMAIN_INSTRUCTION	0x00000010
 867/** Vertex address cache */
 868#define I915_GEM_DOMAIN_VERTEX		0x00000020
 869/** GTT domain - aperture and scanout */
 870#define I915_GEM_DOMAIN_GTT		0x00000040
 871/** WC domain - uncached access */
 872#define I915_GEM_DOMAIN_WC		0x00000080
 873/** @} */
 874
 875struct drm_i915_gem_exec_object {
 876	/**
 877	 * User's handle for a buffer to be bound into the GTT for this
 878	 * operation.
 879	 */
 880	__u32 handle;
 881
 882	/** Number of relocations to be performed on this buffer */
 883	__u32 relocation_count;
 884	/**
 885	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
 886	 * the relocations to be performed in this buffer.
 887	 */
 888	__u64 relocs_ptr;
 889
 890	/** Required alignment in graphics aperture */
 891	__u64 alignment;
 892
 893	/**
 894	 * Returned value of the updated offset of the object, for future
 895	 * presumed_offset writes.
 896	 */
 897	__u64 offset;
 898};
 899
 900struct drm_i915_gem_execbuffer {
 901	/**
 902	 * List of buffers to be validated with their relocations to be
 903	 * performend on them.
 904	 *
 905	 * This is a pointer to an array of struct drm_i915_gem_validate_entry.
 906	 *
 907	 * These buffers must be listed in an order such that all relocations
 908	 * a buffer is performing refer to buffers that have already appeared
 909	 * in the validate list.
 910	 */
 911	__u64 buffers_ptr;
 912	__u32 buffer_count;
 913
 914	/** Offset in the batchbuffer to start execution from. */
 915	__u32 batch_start_offset;
 916	/** Bytes used in batchbuffer from batch_start_offset */
 917	__u32 batch_len;
 918	__u32 DR1;
 919	__u32 DR4;
 920	__u32 num_cliprects;
 921	/** This is a struct drm_clip_rect *cliprects */
 922	__u64 cliprects_ptr;
 923};
 924
 925struct drm_i915_gem_exec_object2 {
 926	/**
 927	 * User's handle for a buffer to be bound into the GTT for this
 928	 * operation.
 929	 */
 930	__u32 handle;
 931
 932	/** Number of relocations to be performed on this buffer */
 933	__u32 relocation_count;
 934	/**
 935	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
 936	 * the relocations to be performed in this buffer.
 937	 */
 938	__u64 relocs_ptr;
 939
 940	/** Required alignment in graphics aperture */
 941	__u64 alignment;
 942
 943	/**
 944	 * When the EXEC_OBJECT_PINNED flag is specified this is populated by
 945	 * the user with the GTT offset at which this object will be pinned.
 946	 * When the I915_EXEC_NO_RELOC flag is specified this must contain the
 947	 * presumed_offset of the object.
 948	 * During execbuffer2 the kernel populates it with the value of the
 949	 * current GTT offset of the object, for future presumed_offset writes.
 950	 */
 951	__u64 offset;
 952
 953#define EXEC_OBJECT_NEEDS_FENCE		 (1<<0)
 954#define EXEC_OBJECT_NEEDS_GTT		 (1<<1)
 955#define EXEC_OBJECT_WRITE		 (1<<2)
 956#define EXEC_OBJECT_SUPPORTS_48B_ADDRESS (1<<3)
 957#define EXEC_OBJECT_PINNED		 (1<<4)
 958#define EXEC_OBJECT_PAD_TO_SIZE		 (1<<5)
 959/* The kernel implicitly tracks GPU activity on all GEM objects, and
 960 * synchronises operations with outstanding rendering. This includes
 961 * rendering on other devices if exported via dma-buf. However, sometimes
 962 * this tracking is too coarse and the user knows better. For example,
 963 * if the object is split into non-overlapping ranges shared between different
 964 * clients or engines (i.e. suballocating objects), the implicit tracking
 965 * by kernel assumes that each operation affects the whole object rather
 966 * than an individual range, causing needless synchronisation between clients.
 967 * The kernel will also forgo any CPU cache flushes prior to rendering from
 968 * the object as the client is expected to be also handling such domain
 969 * tracking.
 970 *
 971 * The kernel maintains the implicit tracking in order to manage resources
 972 * used by the GPU - this flag only disables the synchronisation prior to
 973 * rendering with this object in this execbuf.
 974 *
 975 * Opting out of implicit synhronisation requires the user to do its own
 976 * explicit tracking to avoid rendering corruption. See, for example,
 977 * I915_PARAM_HAS_EXEC_FENCE to order execbufs and execute them asynchronously.
 978 */
 979#define EXEC_OBJECT_ASYNC		(1<<6)
 980/* Request that the contents of this execobject be copied into the error
 981 * state upon a GPU hang involving this batch for post-mortem debugging.
 982 * These buffers are recorded in no particular order as "user" in
 983 * /sys/class/drm/cardN/error. Query I915_PARAM_HAS_EXEC_CAPTURE to see
 984 * if the kernel supports this flag.
 985 */
 986#define EXEC_OBJECT_CAPTURE		(1<<7)
 987/* All remaining bits are MBZ and RESERVED FOR FUTURE USE */
 988#define __EXEC_OBJECT_UNKNOWN_FLAGS -(EXEC_OBJECT_CAPTURE<<1)
 989	__u64 flags;
 990
 991	union {
 992		__u64 rsvd1;
 993		__u64 pad_to_size;
 994	};
 995	__u64 rsvd2;
 996};
 997
 998struct drm_i915_gem_exec_fence {
 999	/**
1000	 * User's handle for a drm_syncobj to wait on or signal.
1001	 */
1002	__u32 handle;
1003
1004#define I915_EXEC_FENCE_WAIT            (1<<0)
1005#define I915_EXEC_FENCE_SIGNAL          (1<<1)
1006#define __I915_EXEC_FENCE_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_SIGNAL << 1))
1007	__u32 flags;
1008};
1009
1010struct drm_i915_gem_execbuffer2 {
1011	/**
1012	 * List of gem_exec_object2 structs
1013	 */
1014	__u64 buffers_ptr;
1015	__u32 buffer_count;
1016
1017	/** Offset in the batchbuffer to start execution from. */
1018	__u32 batch_start_offset;
1019	/** Bytes used in batchbuffer from batch_start_offset */
1020	__u32 batch_len;
1021	__u32 DR1;
1022	__u32 DR4;
1023	__u32 num_cliprects;
1024	/**
1025	 * This is a struct drm_clip_rect *cliprects if I915_EXEC_FENCE_ARRAY
1026	 * is not set.  If I915_EXEC_FENCE_ARRAY is set, then this is a
1027	 * struct drm_i915_gem_exec_fence *fences.
1028	 */
1029	__u64 cliprects_ptr;
1030#define I915_EXEC_RING_MASK              (0x3f)
1031#define I915_EXEC_DEFAULT                (0<<0)
1032#define I915_EXEC_RENDER                 (1<<0)
1033#define I915_EXEC_BSD                    (2<<0)
1034#define I915_EXEC_BLT                    (3<<0)
1035#define I915_EXEC_VEBOX                  (4<<0)
1036
1037/* Used for switching the constants addressing mode on gen4+ RENDER ring.
1038 * Gen6+ only supports relative addressing to dynamic state (default) and
1039 * absolute addressing.
1040 *
1041 * These flags are ignored for the BSD and BLT rings.
1042 */
1043#define I915_EXEC_CONSTANTS_MASK 	(3<<6)
1044#define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
1045#define I915_EXEC_CONSTANTS_ABSOLUTE 	(1<<6)
1046#define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
1047	__u64 flags;
1048	__u64 rsvd1; /* now used for context info */
1049	__u64 rsvd2;
1050};
1051
1052/** Resets the SO write offset registers for transform feedback on gen7. */
1053#define I915_EXEC_GEN7_SOL_RESET	(1<<8)
1054
1055/** Request a privileged ("secure") batch buffer. Note only available for
1056 * DRM_ROOT_ONLY | DRM_MASTER processes.
1057 */
1058#define I915_EXEC_SECURE		(1<<9)
1059
1060/** Inform the kernel that the batch is and will always be pinned. This
1061 * negates the requirement for a workaround to be performed to avoid
1062 * an incoherent CS (such as can be found on 830/845). If this flag is
1063 * not passed, the kernel will endeavour to make sure the batch is
1064 * coherent with the CS before execution. If this flag is passed,
1065 * userspace assumes the responsibility for ensuring the same.
1066 */
1067#define I915_EXEC_IS_PINNED		(1<<10)
1068
1069/** Provide a hint to the kernel that the command stream and auxiliary
1070 * state buffers already holds the correct presumed addresses and so the
1071 * relocation process may be skipped if no buffers need to be moved in
1072 * preparation for the execbuffer.
1073 */
1074#define I915_EXEC_NO_RELOC		(1<<11)
1075
1076/** Use the reloc.handle as an index into the exec object array rather
1077 * than as the per-file handle.
1078 */
1079#define I915_EXEC_HANDLE_LUT		(1<<12)
1080
1081/** Used for switching BSD rings on the platforms with two BSD rings */
1082#define I915_EXEC_BSD_SHIFT	 (13)
1083#define I915_EXEC_BSD_MASK	 (3 << I915_EXEC_BSD_SHIFT)
1084/* default ping-pong mode */
1085#define I915_EXEC_BSD_DEFAULT	 (0 << I915_EXEC_BSD_SHIFT)
1086#define I915_EXEC_BSD_RING1	 (1 << I915_EXEC_BSD_SHIFT)
1087#define I915_EXEC_BSD_RING2	 (2 << I915_EXEC_BSD_SHIFT)
1088
1089/** Tell the kernel that the batchbuffer is processed by
1090 *  the resource streamer.
1091 */
1092#define I915_EXEC_RESOURCE_STREAMER     (1<<15)
1093
1094/* Setting I915_EXEC_FENCE_IN implies that lower_32_bits(rsvd2) represent
1095 * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1096 * the batch.
1097 *
1098 * Returns -EINVAL if the sync_file fd cannot be found.
1099 */
1100#define I915_EXEC_FENCE_IN		(1<<16)
1101
1102/* Setting I915_EXEC_FENCE_OUT causes the ioctl to return a sync_file fd
1103 * in the upper_32_bits(rsvd2) upon success. Ownership of the fd is given
1104 * to the caller, and it should be close() after use. (The fd is a regular
1105 * file descriptor and will be cleaned up on process termination. It holds
1106 * a reference to the request, but nothing else.)
1107 *
1108 * The sync_file fd can be combined with other sync_file and passed either
1109 * to execbuf using I915_EXEC_FENCE_IN, to atomic KMS ioctls (so that a flip
1110 * will only occur after this request completes), or to other devices.
1111 *
1112 * Using I915_EXEC_FENCE_OUT requires use of
1113 * DRM_IOCTL_I915_GEM_EXECBUFFER2_WR ioctl so that the result is written
1114 * back to userspace. Failure to do so will cause the out-fence to always
1115 * be reported as zero, and the real fence fd to be leaked.
1116 */
1117#define I915_EXEC_FENCE_OUT		(1<<17)
1118
1119/*
1120 * Traditionally the execbuf ioctl has only considered the final element in
1121 * the execobject[] to be the executable batch. Often though, the client
1122 * will known the batch object prior to construction and being able to place
1123 * it into the execobject[] array first can simplify the relocation tracking.
1124 * Setting I915_EXEC_BATCH_FIRST tells execbuf to use element 0 of the
1125 * execobject[] as the * batch instead (the default is to use the last
1126 * element).
1127 */
1128#define I915_EXEC_BATCH_FIRST		(1<<18)
1129
1130/* Setting I915_FENCE_ARRAY implies that num_cliprects and cliprects_ptr
1131 * define an array of i915_gem_exec_fence structures which specify a set of
1132 * dma fences to wait upon or signal.
1133 */
1134#define I915_EXEC_FENCE_ARRAY   (1<<19)
1135
1136/*
1137 * Setting I915_EXEC_FENCE_SUBMIT implies that lower_32_bits(rsvd2) represent
1138 * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1139 * the batch.
1140 *
1141 * Returns -EINVAL if the sync_file fd cannot be found.
1142 */
1143#define I915_EXEC_FENCE_SUBMIT		(1 << 20)
1144
1145#define __I915_EXEC_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_SUBMIT << 1))
1146
1147#define I915_EXEC_CONTEXT_ID_MASK	(0xffffffff)
1148#define i915_execbuffer2_set_context_id(eb2, context) \
1149	(eb2).rsvd1 = context & I915_EXEC_CONTEXT_ID_MASK
1150#define i915_execbuffer2_get_context_id(eb2) \
1151	((eb2).rsvd1 & I915_EXEC_CONTEXT_ID_MASK)
1152
1153struct drm_i915_gem_pin {
1154	/** Handle of the buffer to be pinned. */
1155	__u32 handle;
1156	__u32 pad;
1157
1158	/** alignment required within the aperture */
1159	__u64 alignment;
1160
1161	/** Returned GTT offset of the buffer. */
1162	__u64 offset;
1163};
1164
1165struct drm_i915_gem_unpin {
1166	/** Handle of the buffer to be unpinned. */
1167	__u32 handle;
1168	__u32 pad;
1169};
1170
1171struct drm_i915_gem_busy {
1172	/** Handle of the buffer to check for busy */
1173	__u32 handle;
1174
1175	/** Return busy status
1176	 *
1177	 * A return of 0 implies that the object is idle (after
1178	 * having flushed any pending activity), and a non-zero return that
1179	 * the object is still in-flight on the GPU. (The GPU has not yet
1180	 * signaled completion for all pending requests that reference the
1181	 * object.) An object is guaranteed to become idle eventually (so
1182	 * long as no new GPU commands are executed upon it). Due to the
1183	 * asynchronous nature of the hardware, an object reported
1184	 * as busy may become idle before the ioctl is completed.
1185	 *
1186	 * Furthermore, if the object is busy, which engine is busy is only
1187	 * provided as a guide and only indirectly by reporting its class
1188	 * (there may be more than one engine in each class). There are race
1189	 * conditions which prevent the report of which engines are busy from
1190	 * being always accurate.  However, the converse is not true. If the
1191	 * object is idle, the result of the ioctl, that all engines are idle,
1192	 * is accurate.
1193	 *
1194	 * The returned dword is split into two fields to indicate both
1195	 * the engine classess on which the object is being read, and the
1196	 * engine class on which it is currently being written (if any).
1197	 *
1198	 * The low word (bits 0:15) indicate if the object is being written
1199	 * to by any engine (there can only be one, as the GEM implicit
1200	 * synchronisation rules force writes to be serialised). Only the
1201	 * engine class (offset by 1, I915_ENGINE_CLASS_RENDER is reported as
1202	 * 1 not 0 etc) for the last write is reported.
1203	 *
1204	 * The high word (bits 16:31) are a bitmask of which engines classes
1205	 * are currently reading from the object. Multiple engines may be
1206	 * reading from the object simultaneously.
1207	 *
1208	 * The value of each engine class is the same as specified in the
1209	 * I915_CONTEXT_SET_ENGINES parameter and via perf, i.e.
1210	 * I915_ENGINE_CLASS_RENDER, I915_ENGINE_CLASS_COPY, etc.
1211	 * reported as active itself. Some hardware may have parallel
1212	 * execution engines, e.g. multiple media engines, which are
1213	 * mapped to the same class identifier and so are not separately
1214	 * reported for busyness.
1215	 *
1216	 * Caveat emptor:
1217	 * Only the boolean result of this query is reliable; that is whether
1218	 * the object is idle or busy. The report of which engines are busy
1219	 * should be only used as a heuristic.
1220	 */
1221	__u32 busy;
1222};
1223
1224/**
1225 * I915_CACHING_NONE
1226 *
1227 * GPU access is not coherent with cpu caches. Default for machines without an
1228 * LLC.
1229 */
1230#define I915_CACHING_NONE		0
1231/**
1232 * I915_CACHING_CACHED
1233 *
1234 * GPU access is coherent with cpu caches and furthermore the data is cached in
1235 * last-level caches shared between cpu cores and the gpu GT. Default on
1236 * machines with HAS_LLC.
1237 */
1238#define I915_CACHING_CACHED		1
1239/**
1240 * I915_CACHING_DISPLAY
1241 *
1242 * Special GPU caching mode which is coherent with the scanout engines.
1243 * Transparently falls back to I915_CACHING_NONE on platforms where no special
1244 * cache mode (like write-through or gfdt flushing) is available. The kernel
1245 * automatically sets this mode when using a buffer as a scanout target.
1246 * Userspace can manually set this mode to avoid a costly stall and clflush in
1247 * the hotpath of drawing the first frame.
1248 */
1249#define I915_CACHING_DISPLAY		2
1250
1251struct drm_i915_gem_caching {
1252	/**
1253	 * Handle of the buffer to set/get the caching level of. */
1254	__u32 handle;
1255
1256	/**
1257	 * Cacheing level to apply or return value
1258	 *
1259	 * bits0-15 are for generic caching control (i.e. the above defined
1260	 * values). bits16-31 are reserved for platform-specific variations
1261	 * (e.g. l3$ caching on gen7). */
1262	__u32 caching;
1263};
1264
1265#define I915_TILING_NONE	0
1266#define I915_TILING_X		1
1267#define I915_TILING_Y		2
1268#define I915_TILING_LAST	I915_TILING_Y
1269
1270#define I915_BIT_6_SWIZZLE_NONE		0
1271#define I915_BIT_6_SWIZZLE_9		1
1272#define I915_BIT_6_SWIZZLE_9_10		2
1273#define I915_BIT_6_SWIZZLE_9_11		3
1274#define I915_BIT_6_SWIZZLE_9_10_11	4
1275/* Not seen by userland */
1276#define I915_BIT_6_SWIZZLE_UNKNOWN	5
1277/* Seen by userland. */
1278#define I915_BIT_6_SWIZZLE_9_17		6
1279#define I915_BIT_6_SWIZZLE_9_10_17	7
1280
1281struct drm_i915_gem_set_tiling {
1282	/** Handle of the buffer to have its tiling state updated */
1283	__u32 handle;
1284
1285	/**
1286	 * Tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1287	 * I915_TILING_Y).
1288	 *
1289	 * This value is to be set on request, and will be updated by the
1290	 * kernel on successful return with the actual chosen tiling layout.
1291	 *
1292	 * The tiling mode may be demoted to I915_TILING_NONE when the system
1293	 * has bit 6 swizzling that can't be managed correctly by GEM.
1294	 *
1295	 * Buffer contents become undefined when changing tiling_mode.
1296	 */
1297	__u32 tiling_mode;
1298
1299	/**
1300	 * Stride in bytes for the object when in I915_TILING_X or
1301	 * I915_TILING_Y.
1302	 */
1303	__u32 stride;
1304
1305	/**
1306	 * Returned address bit 6 swizzling required for CPU access through
1307	 * mmap mapping.
1308	 */
1309	__u32 swizzle_mode;
1310};
1311
1312struct drm_i915_gem_get_tiling {
1313	/** Handle of the buffer to get tiling state for. */
1314	__u32 handle;
1315
1316	/**
1317	 * Current tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1318	 * I915_TILING_Y).
1319	 */
1320	__u32 tiling_mode;
1321
1322	/**
1323	 * Returned address bit 6 swizzling required for CPU access through
1324	 * mmap mapping.
1325	 */
1326	__u32 swizzle_mode;
1327
1328	/**
1329	 * Returned address bit 6 swizzling required for CPU access through
1330	 * mmap mapping whilst bound.
1331	 */
1332	__u32 phys_swizzle_mode;
1333};
1334
1335struct drm_i915_gem_get_aperture {
1336	/** Total size of the aperture used by i915_gem_execbuffer, in bytes */
1337	__u64 aper_size;
1338
1339	/**
1340	 * Available space in the aperture used by i915_gem_execbuffer, in
1341	 * bytes
1342	 */
1343	__u64 aper_available_size;
1344};
1345
1346struct drm_i915_get_pipe_from_crtc_id {
1347	/** ID of CRTC being requested **/
1348	__u32 crtc_id;
1349
1350	/** pipe of requested CRTC **/
1351	__u32 pipe;
1352};
1353
1354#define I915_MADV_WILLNEED 0
1355#define I915_MADV_DONTNEED 1
1356#define __I915_MADV_PURGED 2 /* internal state */
1357
1358struct drm_i915_gem_madvise {
1359	/** Handle of the buffer to change the backing store advice */
1360	__u32 handle;
1361
1362	/* Advice: either the buffer will be needed again in the near future,
1363	 *         or wont be and could be discarded under memory pressure.
1364	 */
1365	__u32 madv;
1366
1367	/** Whether the backing store still exists. */
1368	__u32 retained;
1369};
1370
1371/* flags */
1372#define I915_OVERLAY_TYPE_MASK 		0xff
1373#define I915_OVERLAY_YUV_PLANAR 	0x01
1374#define I915_OVERLAY_YUV_PACKED 	0x02
1375#define I915_OVERLAY_RGB		0x03
1376
1377#define I915_OVERLAY_DEPTH_MASK		0xff00
1378#define I915_OVERLAY_RGB24		0x1000
1379#define I915_OVERLAY_RGB16		0x2000
1380#define I915_OVERLAY_RGB15		0x3000
1381#define I915_OVERLAY_YUV422		0x0100
1382#define I915_OVERLAY_YUV411		0x0200
1383#define I915_OVERLAY_YUV420		0x0300
1384#define I915_OVERLAY_YUV410		0x0400
1385
1386#define I915_OVERLAY_SWAP_MASK		0xff0000
1387#define I915_OVERLAY_NO_SWAP		0x000000
1388#define I915_OVERLAY_UV_SWAP		0x010000
1389#define I915_OVERLAY_Y_SWAP		0x020000
1390#define I915_OVERLAY_Y_AND_UV_SWAP	0x030000
1391
1392#define I915_OVERLAY_FLAGS_MASK		0xff000000
1393#define I915_OVERLAY_ENABLE		0x01000000
1394
1395struct drm_intel_overlay_put_image {
1396	/* various flags and src format description */
1397	__u32 flags;
1398	/* source picture description */
1399	__u32 bo_handle;
1400	/* stride values and offsets are in bytes, buffer relative */
1401	__u16 stride_Y; /* stride for packed formats */
1402	__u16 stride_UV;
1403	__u32 offset_Y; /* offset for packet formats */
1404	__u32 offset_U;
1405	__u32 offset_V;
1406	/* in pixels */
1407	__u16 src_width;
1408	__u16 src_height;
1409	/* to compensate the scaling factors for partially covered surfaces */
1410	__u16 src_scan_width;
1411	__u16 src_scan_height;
1412	/* output crtc description */
1413	__u32 crtc_id;
1414	__u16 dst_x;
1415	__u16 dst_y;
1416	__u16 dst_width;
1417	__u16 dst_height;
1418};
1419
1420/* flags */
1421#define I915_OVERLAY_UPDATE_ATTRS	(1<<0)
1422#define I915_OVERLAY_UPDATE_GAMMA	(1<<1)
1423#define I915_OVERLAY_DISABLE_DEST_COLORKEY	(1<<2)
1424struct drm_intel_overlay_attrs {
1425	__u32 flags;
1426	__u32 color_key;
1427	__s32 brightness;
1428	__u32 contrast;
1429	__u32 saturation;
1430	__u32 gamma0;
1431	__u32 gamma1;
1432	__u32 gamma2;
1433	__u32 gamma3;
1434	__u32 gamma4;
1435	__u32 gamma5;
1436};
1437
1438/*
1439 * Intel sprite handling
1440 *
1441 * Color keying works with a min/mask/max tuple.  Both source and destination
1442 * color keying is allowed.
1443 *
1444 * Source keying:
1445 * Sprite pixels within the min & max values, masked against the color channels
1446 * specified in the mask field, will be transparent.  All other pixels will
1447 * be displayed on top of the primary plane.  For RGB surfaces, only the min
1448 * and mask fields will be used; ranged compares are not allowed.
1449 *
1450 * Destination keying:
1451 * Primary plane pixels that match the min value, masked against the color
1452 * channels specified in the mask field, will be replaced by corresponding
1453 * pixels from the sprite plane.
1454 *
1455 * Note that source & destination keying are exclusive; only one can be
1456 * active on a given plane.
1457 */
1458
1459#define I915_SET_COLORKEY_NONE		(1<<0) /* Deprecated. Instead set
1460						* flags==0 to disable colorkeying.
1461						*/
1462#define I915_SET_COLORKEY_DESTINATION	(1<<1)
1463#define I915_SET_COLORKEY_SOURCE	(1<<2)
1464struct drm_intel_sprite_colorkey {
1465	__u32 plane_id;
1466	__u32 min_value;
1467	__u32 channel_mask;
1468	__u32 max_value;
1469	__u32 flags;
1470};
1471
1472struct drm_i915_gem_wait {
1473	/** Handle of BO we shall wait on */
1474	__u32 bo_handle;
1475	__u32 flags;
1476	/** Number of nanoseconds to wait, Returns time remaining. */
1477	__s64 timeout_ns;
1478};
1479
1480struct drm_i915_gem_context_create {
1481	__u32 ctx_id; /* output: id of new context*/
1482	__u32 pad;
1483};
1484
1485struct drm_i915_gem_context_create_ext {
1486	__u32 ctx_id; /* output: id of new context*/
1487	__u32 flags;
1488#define I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS	(1u << 0)
1489#define I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE	(1u << 1)
1490#define I915_CONTEXT_CREATE_FLAGS_UNKNOWN \
1491	(-(I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE << 1))
1492	__u64 extensions;
1493};
1494
1495struct drm_i915_gem_context_param {
1496	__u32 ctx_id;
1497	__u32 size;
1498	__u64 param;
1499#define I915_CONTEXT_PARAM_BAN_PERIOD	0x1
1500#define I915_CONTEXT_PARAM_NO_ZEROMAP	0x2
1501#define I915_CONTEXT_PARAM_GTT_SIZE	0x3
1502#define I915_CONTEXT_PARAM_NO_ERROR_CAPTURE	0x4
1503#define I915_CONTEXT_PARAM_BANNABLE	0x5
1504#define I915_CONTEXT_PARAM_PRIORITY	0x6
1505#define   I915_CONTEXT_MAX_USER_PRIORITY	1023 /* inclusive */
1506#define   I915_CONTEXT_DEFAULT_PRIORITY		0
1507#define   I915_CONTEXT_MIN_USER_PRIORITY	-1023 /* inclusive */
1508	/*
1509	 * When using the following param, value should be a pointer to
1510	 * drm_i915_gem_context_param_sseu.
1511	 */
1512#define I915_CONTEXT_PARAM_SSEU		0x7
1513
1514/*
1515 * Not all clients may want to attempt automatic recover of a context after
1516 * a hang (for example, some clients may only submit very small incremental
1517 * batches relying on known logical state of previous batches which will never
1518 * recover correctly and each attempt will hang), and so would prefer that
1519 * the context is forever banned instead.
1520 *
1521 * If set to false (0), after a reset, subsequent (and in flight) rendering
1522 * from this context is discarded, and the client will need to create a new
1523 * context to use instead.
1524 *
1525 * If set to true (1), the kernel will automatically attempt to recover the
1526 * context by skipping the hanging batch and executing the next batch starting
1527 * from the default context state (discarding the incomplete logical context
1528 * state lost due to the reset).
1529 *
1530 * On creation, all new contexts are marked as recoverable.
1531 */
1532#define I915_CONTEXT_PARAM_RECOVERABLE	0x8
1533
1534	/*
1535	 * The id of the associated virtual memory address space (ppGTT) of
1536	 * this context. Can be retrieved and passed to another context
1537	 * (on the same fd) for both to use the same ppGTT and so share
1538	 * address layouts, and avoid reloading the page tables on context
1539	 * switches between themselves.
1540	 *
1541	 * See DRM_I915_GEM_VM_CREATE and DRM_I915_GEM_VM_DESTROY.
1542	 */
1543#define I915_CONTEXT_PARAM_VM		0x9
1544
1545/*
1546 * I915_CONTEXT_PARAM_ENGINES:
1547 *
1548 * Bind this context to operate on this subset of available engines. Henceforth,
1549 * the I915_EXEC_RING selector for DRM_IOCTL_I915_GEM_EXECBUFFER2 operates as
1550 * an index into this array of engines; I915_EXEC_DEFAULT selecting engine[0]
1551 * and upwards. Slots 0...N are filled in using the specified (class, instance).
1552 * Use
1553 *	engine_class: I915_ENGINE_CLASS_INVALID,
1554 *	engine_instance: I915_ENGINE_CLASS_INVALID_NONE
1555 * to specify a gap in the array that can be filled in later, e.g. by a
1556 * virtual engine used for load balancing.
1557 *
1558 * Setting the number of engines bound to the context to 0, by passing a zero
1559 * sized argument, will revert back to default settings.
1560 *
1561 * See struct i915_context_param_engines.
1562 *
1563 * Extensions:
1564 *   i915_context_engines_load_balance (I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE)
1565 *   i915_context_engines_bond (I915_CONTEXT_ENGINES_EXT_BOND)
1566 */
1567#define I915_CONTEXT_PARAM_ENGINES	0xa
1568/* Must be kept compact -- no holes and well documented */
1569
1570	__u64 value;
1571};
1572
1573/**
1574 * Context SSEU programming
1575 *
1576 * It may be necessary for either functional or performance reason to configure
1577 * a context to run with a reduced number of SSEU (where SSEU stands for Slice/
1578 * Sub-slice/EU).
1579 *
1580 * This is done by configuring SSEU configuration using the below
1581 * @struct drm_i915_gem_context_param_sseu for every supported engine which
1582 * userspace intends to use.
1583 *
1584 * Not all GPUs or engines support this functionality in which case an error
1585 * code -ENODEV will be returned.
1586 *
1587 * Also, flexibility of possible SSEU configuration permutations varies between
1588 * GPU generations and software imposed limitations. Requesting such a
1589 * combination will return an error code of -EINVAL.
1590 *
1591 * NOTE: When perf/OA is active the context's SSEU configuration is ignored in
1592 * favour of a single global setting.
1593 */
1594struct drm_i915_gem_context_param_sseu {
1595	/*
1596	 * Engine class & instance to be configured or queried.
1597	 */
1598	struct i915_engine_class_instance engine;
1599
1600	/*
1601	 * Unknown flags must be cleared to zero.
1602	 */
1603	__u32 flags;
1604#define I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX (1u << 0)
1605
1606	/*
1607	 * Mask of slices to enable for the context. Valid values are a subset
1608	 * of the bitmask value returned for I915_PARAM_SLICE_MASK.
1609	 */
1610	__u64 slice_mask;
1611
1612	/*
1613	 * Mask of subslices to enable for the context. Valid values are a
1614	 * subset of the bitmask value return by I915_PARAM_SUBSLICE_MASK.
1615	 */
1616	__u64 subslice_mask;
1617
1618	/*
1619	 * Minimum/Maximum number of EUs to enable per subslice for the
1620	 * context. min_eus_per_subslice must be inferior or equal to
1621	 * max_eus_per_subslice.
1622	 */
1623	__u16 min_eus_per_subslice;
1624	__u16 max_eus_per_subslice;
1625
1626	/*
1627	 * Unused for now. Must be cleared to zero.
1628	 */
1629	__u32 rsvd;
1630};
1631
1632/*
1633 * i915_context_engines_load_balance:
1634 *
1635 * Enable load balancing across this set of engines.
1636 *
1637 * Into the I915_EXEC_DEFAULT slot [0], a virtual engine is created that when
1638 * used will proxy the execbuffer request onto one of the set of engines
1639 * in such a way as to distribute the load evenly across the set.
1640 *
1641 * The set of engines must be compatible (e.g. the same HW class) as they
1642 * will share the same logical GPU context and ring.
1643 *
1644 * To intermix rendering with the virtual engine and direct rendering onto
1645 * the backing engines (bypassing the load balancing proxy), the context must
1646 * be defined to use a single timeline for all engines.
1647 */
1648struct i915_context_engines_load_balance {
1649	struct i915_user_extension base;
1650
1651	__u16 engine_index;
1652	__u16 num_siblings;
1653	__u32 flags; /* all undefined flags must be zero */
1654
1655	__u64 mbz64; /* reserved for future use; must be zero */
1656
1657	struct i915_engine_class_instance engines[0];
1658} __attribute__((packed));
1659
1660#define I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(name__, N__) struct { \
1661	struct i915_user_extension base; \
1662	__u16 engine_index; \
1663	__u16 num_siblings; \
1664	__u32 flags; \
1665	__u64 mbz64; \
1666	struct i915_engine_class_instance engines[N__]; \
1667} __attribute__((packed)) name__
1668
1669/*
1670 * i915_context_engines_bond:
1671 *
1672 * Constructed bonded pairs for execution within a virtual engine.
1673 *
1674 * All engines are equal, but some are more equal than others. Given
1675 * the distribution of resources in the HW, it may be preferable to run
1676 * a request on a given subset of engines in parallel to a request on a
1677 * specific engine. We enable this selection of engines within a virtual
1678 * engine by specifying bonding pairs, for any given master engine we will
1679 * only execute on one of the corresponding siblings within the virtual engine.
1680 *
1681 * To execute a request in parallel on the master engine and a sibling requires
1682 * coordination with a I915_EXEC_FENCE_SUBMIT.
1683 */
1684struct i915_context_engines_bond {
1685	struct i915_user_extension base;
1686
1687	struct i915_engine_class_instance master;
1688
1689	__u16 virtual_index; /* index of virtual engine in ctx->engines[] */
1690	__u16 num_bonds;
1691
1692	__u64 flags; /* all undefined flags must be zero */
1693	__u64 mbz64[4]; /* reserved for future use; must be zero */
1694
1695	struct i915_engine_class_instance engines[0];
1696} __attribute__((packed));
1697
1698#define I915_DEFINE_CONTEXT_ENGINES_BOND(name__, N__) struct { \
1699	struct i915_user_extension base; \
1700	struct i915_engine_class_instance master; \
1701	__u16 virtual_index; \
1702	__u16 num_bonds; \
1703	__u64 flags; \
1704	__u64 mbz64[4]; \
1705	struct i915_engine_class_instance engines[N__]; \
1706} __attribute__((packed)) name__
1707
1708struct i915_context_param_engines {
1709	__u64 extensions; /* linked chain of extension blocks, 0 terminates */
1710#define I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE 0 /* see i915_context_engines_load_balance */
1711#define I915_CONTEXT_ENGINES_EXT_BOND 1 /* see i915_context_engines_bond */
1712	struct i915_engine_class_instance engines[0];
1713} __attribute__((packed));
1714
1715#define I915_DEFINE_CONTEXT_PARAM_ENGINES(name__, N__) struct { \
1716	__u64 extensions; \
1717	struct i915_engine_class_instance engines[N__]; \
1718} __attribute__((packed)) name__
1719
1720struct drm_i915_gem_context_create_ext_setparam {
1721#define I915_CONTEXT_CREATE_EXT_SETPARAM 0
1722	struct i915_user_extension base;
1723	struct drm_i915_gem_context_param param;
1724};
1725
1726struct drm_i915_gem_context_create_ext_clone {
1727#define I915_CONTEXT_CREATE_EXT_CLONE 1
1728	struct i915_user_extension base;
1729	__u32 clone_id;
1730	__u32 flags;
1731#define I915_CONTEXT_CLONE_ENGINES	(1u << 0)
1732#define I915_CONTEXT_CLONE_FLAGS	(1u << 1)
1733#define I915_CONTEXT_CLONE_SCHEDATTR	(1u << 2)
1734#define I915_CONTEXT_CLONE_SSEU		(1u << 3)
1735#define I915_CONTEXT_CLONE_TIMELINE	(1u << 4)
1736#define I915_CONTEXT_CLONE_VM		(1u << 5)
1737#define I915_CONTEXT_CLONE_UNKNOWN -(I915_CONTEXT_CLONE_VM << 1)
1738	__u64 rsvd;
1739};
1740
1741struct drm_i915_gem_context_destroy {
1742	__u32 ctx_id;
1743	__u32 pad;
1744};
1745
1746/*
1747 * DRM_I915_GEM_VM_CREATE -
1748 *
1749 * Create a new virtual memory address space (ppGTT) for use within a context
1750 * on the same file. Extensions can be provided to configure exactly how the
1751 * address space is setup upon creation.
1752 *
1753 * The id of new VM (bound to the fd) for use with I915_CONTEXT_PARAM_VM is
1754 * returned in the outparam @id.
1755 *
1756 * No flags are defined, with all bits reserved and must be zero.
1757 *
1758 * An extension chain maybe provided, starting with @extensions, and terminated
1759 * by the @next_extension being 0. Currently, no extensions are defined.
1760 *
1761 * DRM_I915_GEM_VM_DESTROY -
1762 *
1763 * Destroys a previously created VM id, specified in @id.
1764 *
1765 * No extensions or flags are allowed currently, and so must be zero.
1766 */
1767struct drm_i915_gem_vm_control {
1768	__u64 extensions;
1769	__u32 flags;
1770	__u32 vm_id;
1771};
1772
1773struct drm_i915_reg_read {
1774	/*
1775	 * Register offset.
1776	 * For 64bit wide registers where the upper 32bits don't immediately
1777	 * follow the lower 32bits, the offset of the lower 32bits must
1778	 * be specified
1779	 */
1780	__u64 offset;
1781#define I915_REG_READ_8B_WA (1ul << 0)
1782
1783	__u64 val; /* Return value */
1784};
1785
1786/* Known registers:
1787 *
1788 * Render engine timestamp - 0x2358 + 64bit - gen7+
1789 * - Note this register returns an invalid value if using the default
1790 *   single instruction 8byte read, in order to workaround that pass
1791 *   flag I915_REG_READ_8B_WA in offset field.
1792 *
1793 */
1794
1795struct drm_i915_reset_stats {
1796	__u32 ctx_id;
1797	__u32 flags;
1798
1799	/* All resets since boot/module reload, for all contexts */
1800	__u32 reset_count;
1801
1802	/* Number of batches lost when active in GPU, for this context */
1803	__u32 batch_active;
1804
1805	/* Number of batches lost pending for execution, for this context */
1806	__u32 batch_pending;
1807
1808	__u32 pad;
1809};
1810
1811struct drm_i915_gem_userptr {
1812	__u64 user_ptr;
1813	__u64 user_size;
1814	__u32 flags;
1815#define I915_USERPTR_READ_ONLY 0x1
1816#define I915_USERPTR_UNSYNCHRONIZED 0x80000000
1817	/**
1818	 * Returned handle for the object.
1819	 *
1820	 * Object handles are nonzero.
1821	 */
1822	__u32 handle;
1823};
1824
1825enum drm_i915_oa_format {
1826	I915_OA_FORMAT_A13 = 1,	    /* HSW only */
1827	I915_OA_FORMAT_A29,	    /* HSW only */
1828	I915_OA_FORMAT_A13_B8_C8,   /* HSW only */
1829	I915_OA_FORMAT_B4_C8,	    /* HSW only */
1830	I915_OA_FORMAT_A45_B8_C8,   /* HSW only */
1831	I915_OA_FORMAT_B4_C8_A16,   /* HSW only */
1832	I915_OA_FORMAT_C4_B8,	    /* HSW+ */
1833
1834	/* Gen8+ */
1835	I915_OA_FORMAT_A12,
1836	I915_OA_FORMAT_A12_B8_C8,
1837	I915_OA_FORMAT_A32u40_A4u32_B8_C8,
1838
1839	I915_OA_FORMAT_MAX	    /* non-ABI */
1840};
1841
1842enum drm_i915_perf_property_id {
1843	/**
1844	 * Open the stream for a specific context handle (as used with
1845	 * execbuffer2). A stream opened for a specific context this way
1846	 * won't typically require root privileges.
1847	 */
1848	DRM_I915_PERF_PROP_CTX_HANDLE = 1,
1849
1850	/**
1851	 * A value of 1 requests the inclusion of raw OA unit reports as
1852	 * part of stream samples.
1853	 */
1854	DRM_I915_PERF_PROP_SAMPLE_OA,
1855
1856	/**
1857	 * The value specifies which set of OA unit metrics should be
1858	 * be configured, defining the contents of any OA unit reports.
1859	 */
1860	DRM_I915_PERF_PROP_OA_METRICS_SET,
1861
1862	/**
1863	 * The value specifies the size and layout of OA unit reports.
1864	 */
1865	DRM_I915_PERF_PROP_OA_FORMAT,
1866
1867	/**
1868	 * Specifying this property implicitly requests periodic OA unit
1869	 * sampling and (at least on Haswell) the sampling frequency is derived
1870	 * from this exponent as follows:
1871	 *
1872	 *   80ns * 2^(period_exponent + 1)
1873	 */
1874	DRM_I915_PERF_PROP_OA_EXPONENT,
1875
1876	DRM_I915_PERF_PROP_MAX /* non-ABI */
1877};
1878
1879struct drm_i915_perf_open_param {
1880	__u32 flags;
1881#define I915_PERF_FLAG_FD_CLOEXEC	(1<<0)
1882#define I915_PERF_FLAG_FD_NONBLOCK	(1<<1)
1883#define I915_PERF_FLAG_DISABLED		(1<<2)
1884
1885	/** The number of u64 (id, value) pairs */
1886	__u32 num_properties;
1887
1888	/**
1889	 * Pointer to array of u64 (id, value) pairs configuring the stream
1890	 * to open.
1891	 */
1892	__u64 properties_ptr;
1893};
1894
1895/**
1896 * Enable data capture for a stream that was either opened in a disabled state
1897 * via I915_PERF_FLAG_DISABLED or was later disabled via
1898 * I915_PERF_IOCTL_DISABLE.
1899 *
1900 * It is intended to be cheaper to disable and enable a stream than it may be
1901 * to close and re-open a stream with the same configuration.
1902 *
1903 * It's undefined whether any pending data for the stream will be lost.
1904 */
1905#define I915_PERF_IOCTL_ENABLE	_IO('i', 0x0)
1906
1907/**
1908 * Disable data capture for a stream.
1909 *
1910 * It is an error to try and read a stream that is disabled.
1911 */
1912#define I915_PERF_IOCTL_DISABLE	_IO('i', 0x1)
1913
1914/**
1915 * Common to all i915 perf records
1916 */
1917struct drm_i915_perf_record_header {
1918	__u32 type;
1919	__u16 pad;
1920	__u16 size;
1921};
1922
1923enum drm_i915_perf_record_type {
1924
1925	/**
1926	 * Samples are the work horse record type whose contents are extensible
1927	 * and defined when opening an i915 perf stream based on the given
1928	 * properties.
1929	 *
1930	 * Boolean properties following the naming convention
1931	 * DRM_I915_PERF_SAMPLE_xyz_PROP request the inclusion of 'xyz' data in
1932	 * every sample.
1933	 *
1934	 * The order of these sample properties given by userspace has no
1935	 * affect on the ordering of data within a sample. The order is
1936	 * documented here.
1937	 *
1938	 * struct {
1939	 *     struct drm_i915_perf_record_header header;
1940	 *
1941	 *     { u32 oa_report[]; } && DRM_I915_PERF_PROP_SAMPLE_OA
1942	 * };
1943	 */
1944	DRM_I915_PERF_RECORD_SAMPLE = 1,
1945
1946	/*
1947	 * Indicates that one or more OA reports were not written by the
1948	 * hardware. This can happen for example if an MI_REPORT_PERF_COUNT
1949	 * command collides with periodic sampling - which would be more likely
1950	 * at higher sampling frequencies.
1951	 */
1952	DRM_I915_PERF_RECORD_OA_REPORT_LOST = 2,
1953
1954	/**
1955	 * An error occurred that resulted in all pending OA reports being lost.
1956	 */
1957	DRM_I915_PERF_RECORD_OA_BUFFER_LOST = 3,
1958
1959	DRM_I915_PERF_RECORD_MAX /* non-ABI */
1960};
1961
1962/**
1963 * Structure to upload perf dynamic configuration into the kernel.
1964 */
1965struct drm_i915_perf_oa_config {
1966	/** String formatted like "%08x-%04x-%04x-%04x-%012x" */
1967	char uuid[36];
1968
1969	__u32 n_mux_regs;
1970	__u32 n_boolean_regs;
1971	__u32 n_flex_regs;
1972
1973	/*
1974	 * These fields are pointers to tuples of u32 values (register address,
1975	 * value). For example the expected length of the buffer pointed by
1976	 * mux_regs_ptr is (2 * sizeof(u32) * n_mux_regs).
1977	 */
1978	__u64 mux_regs_ptr;
1979	__u64 boolean_regs_ptr;
1980	__u64 flex_regs_ptr;
1981};
1982
1983struct drm_i915_query_item {
1984	__u64 query_id;
1985#define DRM_I915_QUERY_TOPOLOGY_INFO    1
1986#define DRM_I915_QUERY_ENGINE_INFO	2
1987/* Must be kept compact -- no holes and well documented */
1988
1989	/*
1990	 * When set to zero by userspace, this is filled with the size of the
1991	 * data to be written at the data_ptr pointer. The kernel sets this
1992	 * value to a negative value to signal an error on a particular query
1993	 * item.
1994	 */
1995	__s32 length;
1996
1997	/*
1998	 * Unused for now. Must be cleared to zero.
1999	 */
2000	__u32 flags;
2001
2002	/*
2003	 * Data will be written at the location pointed by data_ptr when the
2004	 * value of length matches the length of the data to be written by the
2005	 * kernel.
2006	 */
2007	__u64 data_ptr;
2008};
2009
2010struct drm_i915_query {
2011	__u32 num_items;
2012
2013	/*
2014	 * Unused for now. Must be cleared to zero.
2015	 */
2016	__u32 flags;
2017
2018	/*
2019	 * This points to an array of num_items drm_i915_query_item structures.
2020	 */
2021	__u64 items_ptr;
2022};
2023
2024/*
2025 * Data written by the kernel with query DRM_I915_QUERY_TOPOLOGY_INFO :
2026 *
2027 * data: contains the 3 pieces of information :
2028 *
2029 * - the slice mask with one bit per slice telling whether a slice is
2030 *   available. The availability of slice X can be queried with the following
2031 *   formula :
2032 *
2033 *           (data[X / 8] >> (X % 8)) & 1
2034 *
2035 * - the subslice mask for each slice with one bit per subslice telling
2036 *   whether a subslice is available. The availability of subslice Y in slice
2037 *   X can be queried with the following formula :
2038 *
2039 *           (data[subslice_offset +
2040 *                 X * subslice_stride +
2041 *                 Y / 8] >> (Y % 8)) & 1
2042 *
2043 * - the EU mask for each subslice in each slice with one bit per EU telling
2044 *   whether an EU is available. The availability of EU Z in subslice Y in
2045 *   slice X can be queried with the following formula :
2046 *
2047 *           (data[eu_offset +
2048 *                 (X * max_subslices + Y) * eu_stride +
2049 *                 Z / 8] >> (Z % 8)) & 1
2050 */
2051struct drm_i915_query_topology_info {
2052	/*
2053	 * Unused for now. Must be cleared to zero.
2054	 */
2055	__u16 flags;
2056
2057	__u16 max_slices;
2058	__u16 max_subslices;
2059	__u16 max_eus_per_subslice;
2060
2061	/*
2062	 * Offset in data[] at which the subslice masks are stored.
2063	 */
2064	__u16 subslice_offset;
2065
2066	/*
2067	 * Stride at which each of the subslice masks for each slice are
2068	 * stored.
2069	 */
2070	__u16 subslice_stride;
2071
2072	/*
2073	 * Offset in data[] at which the EU masks are stored.
2074	 */
2075	__u16 eu_offset;
2076
2077	/*
2078	 * Stride at which each of the EU masks for each subslice are stored.
2079	 */
2080	__u16 eu_stride;
2081
2082	__u8 data[];
2083};
2084
2085/**
2086 * struct drm_i915_engine_info
2087 *
2088 * Describes one engine and it's capabilities as known to the driver.
2089 */
2090struct drm_i915_engine_info {
2091	/** Engine class and instance. */
2092	struct i915_engine_class_instance engine;
2093
2094	/** Reserved field. */
2095	__u32 rsvd0;
2096
2097	/** Engine flags. */
2098	__u64 flags;
2099
2100	/** Capabilities of this engine. */
2101	__u64 capabilities;
2102#define I915_VIDEO_CLASS_CAPABILITY_HEVC		(1 << 0)
2103#define I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC	(1 << 1)
2104
2105	/** Reserved fields. */
2106	__u64 rsvd1[4];
2107};
2108
2109/**
2110 * struct drm_i915_query_engine_info
2111 *
2112 * Engine info query enumerates all engines known to the driver by filling in
2113 * an array of struct drm_i915_engine_info structures.
2114 */
2115struct drm_i915_query_engine_info {
2116	/** Number of struct drm_i915_engine_info structs following. */
2117	__u32 num_engines;
2118
2119	/** MBZ */
2120	__u32 rsvd[3];
2121
2122	/** Marker for drm_i915_engine_info structures. */
2123	struct drm_i915_engine_info engines[];
2124};
2125
2126#if defined(__cplusplus)
2127}
2128#endif
2129
2130#endif /* _UAPI_I915_DRM_H_ */