Loading...
1/*
2 * linux/net/sunrpc/gss_krb5_crypto.c
3 *
4 * Copyright (c) 2000-2008 The Regents of the University of Michigan.
5 * All rights reserved.
6 *
7 * Andy Adamson <andros@umich.edu>
8 * Bruce Fields <bfields@umich.edu>
9 */
10
11/*
12 * Copyright (C) 1998 by the FundsXpress, INC.
13 *
14 * All rights reserved.
15 *
16 * Export of this software from the United States of America may require
17 * a specific license from the United States Government. It is the
18 * responsibility of any person or organization contemplating export to
19 * obtain such a license before exporting.
20 *
21 * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
22 * distribute this software and its documentation for any purpose and
23 * without fee is hereby granted, provided that the above copyright
24 * notice appear in all copies and that both that copyright notice and
25 * this permission notice appear in supporting documentation, and that
26 * the name of FundsXpress. not be used in advertising or publicity pertaining
27 * to distribution of the software without specific, written prior
28 * permission. FundsXpress makes no representations about the suitability of
29 * this software for any purpose. It is provided "as is" without express
30 * or implied warranty.
31 *
32 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
33 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
34 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
35 */
36
37#include <crypto/algapi.h>
38#include <crypto/hash.h>
39#include <crypto/skcipher.h>
40#include <linux/err.h>
41#include <linux/types.h>
42#include <linux/mm.h>
43#include <linux/scatterlist.h>
44#include <linux/highmem.h>
45#include <linux/pagemap.h>
46#include <linux/random.h>
47#include <linux/sunrpc/gss_krb5.h>
48#include <linux/sunrpc/xdr.h>
49
50#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
51# define RPCDBG_FACILITY RPCDBG_AUTH
52#endif
53
54u32
55krb5_encrypt(
56 struct crypto_sync_skcipher *tfm,
57 void * iv,
58 void * in,
59 void * out,
60 int length)
61{
62 u32 ret = -EINVAL;
63 struct scatterlist sg[1];
64 u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
65 SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
66
67 if (length % crypto_sync_skcipher_blocksize(tfm) != 0)
68 goto out;
69
70 if (crypto_sync_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
71 dprintk("RPC: gss_k5encrypt: tfm iv size too large %d\n",
72 crypto_sync_skcipher_ivsize(tfm));
73 goto out;
74 }
75
76 if (iv)
77 memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm));
78
79 memcpy(out, in, length);
80 sg_init_one(sg, out, length);
81
82 skcipher_request_set_sync_tfm(req, tfm);
83 skcipher_request_set_callback(req, 0, NULL, NULL);
84 skcipher_request_set_crypt(req, sg, sg, length, local_iv);
85
86 ret = crypto_skcipher_encrypt(req);
87 skcipher_request_zero(req);
88out:
89 dprintk("RPC: krb5_encrypt returns %d\n", ret);
90 return ret;
91}
92
93u32
94krb5_decrypt(
95 struct crypto_sync_skcipher *tfm,
96 void * iv,
97 void * in,
98 void * out,
99 int length)
100{
101 u32 ret = -EINVAL;
102 struct scatterlist sg[1];
103 u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
104 SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
105
106 if (length % crypto_sync_skcipher_blocksize(tfm) != 0)
107 goto out;
108
109 if (crypto_sync_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
110 dprintk("RPC: gss_k5decrypt: tfm iv size too large %d\n",
111 crypto_sync_skcipher_ivsize(tfm));
112 goto out;
113 }
114 if (iv)
115 memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm));
116
117 memcpy(out, in, length);
118 sg_init_one(sg, out, length);
119
120 skcipher_request_set_sync_tfm(req, tfm);
121 skcipher_request_set_callback(req, 0, NULL, NULL);
122 skcipher_request_set_crypt(req, sg, sg, length, local_iv);
123
124 ret = crypto_skcipher_decrypt(req);
125 skcipher_request_zero(req);
126out:
127 dprintk("RPC: gss_k5decrypt returns %d\n",ret);
128 return ret;
129}
130
131static int
132checksummer(struct scatterlist *sg, void *data)
133{
134 struct ahash_request *req = data;
135
136 ahash_request_set_crypt(req, sg, NULL, sg->length);
137
138 return crypto_ahash_update(req);
139}
140
141static int
142arcfour_hmac_md5_usage_to_salt(unsigned int usage, u8 salt[4])
143{
144 unsigned int ms_usage;
145
146 switch (usage) {
147 case KG_USAGE_SIGN:
148 ms_usage = 15;
149 break;
150 case KG_USAGE_SEAL:
151 ms_usage = 13;
152 break;
153 default:
154 return -EINVAL;
155 }
156 salt[0] = (ms_usage >> 0) & 0xff;
157 salt[1] = (ms_usage >> 8) & 0xff;
158 salt[2] = (ms_usage >> 16) & 0xff;
159 salt[3] = (ms_usage >> 24) & 0xff;
160
161 return 0;
162}
163
164static u32
165make_checksum_hmac_md5(struct krb5_ctx *kctx, char *header, int hdrlen,
166 struct xdr_buf *body, int body_offset, u8 *cksumkey,
167 unsigned int usage, struct xdr_netobj *cksumout)
168{
169 struct scatterlist sg[1];
170 int err = -1;
171 u8 *checksumdata;
172 u8 *rc4salt;
173 struct crypto_ahash *md5;
174 struct crypto_ahash *hmac_md5;
175 struct ahash_request *req;
176
177 if (cksumkey == NULL)
178 return GSS_S_FAILURE;
179
180 if (cksumout->len < kctx->gk5e->cksumlength) {
181 dprintk("%s: checksum buffer length, %u, too small for %s\n",
182 __func__, cksumout->len, kctx->gk5e->name);
183 return GSS_S_FAILURE;
184 }
185
186 rc4salt = kmalloc_array(4, sizeof(*rc4salt), GFP_NOFS);
187 if (!rc4salt)
188 return GSS_S_FAILURE;
189
190 if (arcfour_hmac_md5_usage_to_salt(usage, rc4salt)) {
191 dprintk("%s: invalid usage value %u\n", __func__, usage);
192 goto out_free_rc4salt;
193 }
194
195 checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
196 if (!checksumdata)
197 goto out_free_rc4salt;
198
199 md5 = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
200 if (IS_ERR(md5))
201 goto out_free_cksum;
202
203 hmac_md5 = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0,
204 CRYPTO_ALG_ASYNC);
205 if (IS_ERR(hmac_md5))
206 goto out_free_md5;
207
208 req = ahash_request_alloc(md5, GFP_NOFS);
209 if (!req)
210 goto out_free_hmac_md5;
211
212 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
213
214 err = crypto_ahash_init(req);
215 if (err)
216 goto out;
217 sg_init_one(sg, rc4salt, 4);
218 ahash_request_set_crypt(req, sg, NULL, 4);
219 err = crypto_ahash_update(req);
220 if (err)
221 goto out;
222
223 sg_init_one(sg, header, hdrlen);
224 ahash_request_set_crypt(req, sg, NULL, hdrlen);
225 err = crypto_ahash_update(req);
226 if (err)
227 goto out;
228 err = xdr_process_buf(body, body_offset, body->len - body_offset,
229 checksummer, req);
230 if (err)
231 goto out;
232 ahash_request_set_crypt(req, NULL, checksumdata, 0);
233 err = crypto_ahash_final(req);
234 if (err)
235 goto out;
236
237 ahash_request_free(req);
238 req = ahash_request_alloc(hmac_md5, GFP_NOFS);
239 if (!req)
240 goto out_free_hmac_md5;
241
242 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
243
244 err = crypto_ahash_setkey(hmac_md5, cksumkey, kctx->gk5e->keylength);
245 if (err)
246 goto out;
247
248 sg_init_one(sg, checksumdata, crypto_ahash_digestsize(md5));
249 ahash_request_set_crypt(req, sg, checksumdata,
250 crypto_ahash_digestsize(md5));
251 err = crypto_ahash_digest(req);
252 if (err)
253 goto out;
254
255 memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
256 cksumout->len = kctx->gk5e->cksumlength;
257out:
258 ahash_request_free(req);
259out_free_hmac_md5:
260 crypto_free_ahash(hmac_md5);
261out_free_md5:
262 crypto_free_ahash(md5);
263out_free_cksum:
264 kfree(checksumdata);
265out_free_rc4salt:
266 kfree(rc4salt);
267 return err ? GSS_S_FAILURE : 0;
268}
269
270/*
271 * checksum the plaintext data and hdrlen bytes of the token header
272 * The checksum is performed over the first 8 bytes of the
273 * gss token header and then over the data body
274 */
275u32
276make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen,
277 struct xdr_buf *body, int body_offset, u8 *cksumkey,
278 unsigned int usage, struct xdr_netobj *cksumout)
279{
280 struct crypto_ahash *tfm;
281 struct ahash_request *req;
282 struct scatterlist sg[1];
283 int err = -1;
284 u8 *checksumdata;
285 unsigned int checksumlen;
286
287 if (kctx->gk5e->ctype == CKSUMTYPE_HMAC_MD5_ARCFOUR)
288 return make_checksum_hmac_md5(kctx, header, hdrlen,
289 body, body_offset,
290 cksumkey, usage, cksumout);
291
292 if (cksumout->len < kctx->gk5e->cksumlength) {
293 dprintk("%s: checksum buffer length, %u, too small for %s\n",
294 __func__, cksumout->len, kctx->gk5e->name);
295 return GSS_S_FAILURE;
296 }
297
298 checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
299 if (checksumdata == NULL)
300 return GSS_S_FAILURE;
301
302 tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
303 if (IS_ERR(tfm))
304 goto out_free_cksum;
305
306 req = ahash_request_alloc(tfm, GFP_NOFS);
307 if (!req)
308 goto out_free_ahash;
309
310 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
311
312 checksumlen = crypto_ahash_digestsize(tfm);
313
314 if (cksumkey != NULL) {
315 err = crypto_ahash_setkey(tfm, cksumkey,
316 kctx->gk5e->keylength);
317 if (err)
318 goto out;
319 }
320
321 err = crypto_ahash_init(req);
322 if (err)
323 goto out;
324 sg_init_one(sg, header, hdrlen);
325 ahash_request_set_crypt(req, sg, NULL, hdrlen);
326 err = crypto_ahash_update(req);
327 if (err)
328 goto out;
329 err = xdr_process_buf(body, body_offset, body->len - body_offset,
330 checksummer, req);
331 if (err)
332 goto out;
333 ahash_request_set_crypt(req, NULL, checksumdata, 0);
334 err = crypto_ahash_final(req);
335 if (err)
336 goto out;
337
338 switch (kctx->gk5e->ctype) {
339 case CKSUMTYPE_RSA_MD5:
340 err = kctx->gk5e->encrypt(kctx->seq, NULL, checksumdata,
341 checksumdata, checksumlen);
342 if (err)
343 goto out;
344 memcpy(cksumout->data,
345 checksumdata + checksumlen - kctx->gk5e->cksumlength,
346 kctx->gk5e->cksumlength);
347 break;
348 case CKSUMTYPE_HMAC_SHA1_DES3:
349 memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
350 break;
351 default:
352 BUG();
353 break;
354 }
355 cksumout->len = kctx->gk5e->cksumlength;
356out:
357 ahash_request_free(req);
358out_free_ahash:
359 crypto_free_ahash(tfm);
360out_free_cksum:
361 kfree(checksumdata);
362 return err ? GSS_S_FAILURE : 0;
363}
364
365/*
366 * checksum the plaintext data and hdrlen bytes of the token header
367 * Per rfc4121, sec. 4.2.4, the checksum is performed over the data
368 * body then over the first 16 octets of the MIC token
369 * Inclusion of the header data in the calculation of the
370 * checksum is optional.
371 */
372u32
373make_checksum_v2(struct krb5_ctx *kctx, char *header, int hdrlen,
374 struct xdr_buf *body, int body_offset, u8 *cksumkey,
375 unsigned int usage, struct xdr_netobj *cksumout)
376{
377 struct crypto_ahash *tfm;
378 struct ahash_request *req;
379 struct scatterlist sg[1];
380 int err = -1;
381 u8 *checksumdata;
382
383 if (kctx->gk5e->keyed_cksum == 0) {
384 dprintk("%s: expected keyed hash for %s\n",
385 __func__, kctx->gk5e->name);
386 return GSS_S_FAILURE;
387 }
388 if (cksumkey == NULL) {
389 dprintk("%s: no key supplied for %s\n",
390 __func__, kctx->gk5e->name);
391 return GSS_S_FAILURE;
392 }
393
394 checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
395 if (!checksumdata)
396 return GSS_S_FAILURE;
397
398 tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
399 if (IS_ERR(tfm))
400 goto out_free_cksum;
401
402 req = ahash_request_alloc(tfm, GFP_NOFS);
403 if (!req)
404 goto out_free_ahash;
405
406 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
407
408 err = crypto_ahash_setkey(tfm, cksumkey, kctx->gk5e->keylength);
409 if (err)
410 goto out;
411
412 err = crypto_ahash_init(req);
413 if (err)
414 goto out;
415 err = xdr_process_buf(body, body_offset, body->len - body_offset,
416 checksummer, req);
417 if (err)
418 goto out;
419 if (header != NULL) {
420 sg_init_one(sg, header, hdrlen);
421 ahash_request_set_crypt(req, sg, NULL, hdrlen);
422 err = crypto_ahash_update(req);
423 if (err)
424 goto out;
425 }
426 ahash_request_set_crypt(req, NULL, checksumdata, 0);
427 err = crypto_ahash_final(req);
428 if (err)
429 goto out;
430
431 cksumout->len = kctx->gk5e->cksumlength;
432
433 switch (kctx->gk5e->ctype) {
434 case CKSUMTYPE_HMAC_SHA1_96_AES128:
435 case CKSUMTYPE_HMAC_SHA1_96_AES256:
436 /* note that this truncates the hash */
437 memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
438 break;
439 default:
440 BUG();
441 break;
442 }
443out:
444 ahash_request_free(req);
445out_free_ahash:
446 crypto_free_ahash(tfm);
447out_free_cksum:
448 kfree(checksumdata);
449 return err ? GSS_S_FAILURE : 0;
450}
451
452struct encryptor_desc {
453 u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
454 struct skcipher_request *req;
455 int pos;
456 struct xdr_buf *outbuf;
457 struct page **pages;
458 struct scatterlist infrags[4];
459 struct scatterlist outfrags[4];
460 int fragno;
461 int fraglen;
462};
463
464static int
465encryptor(struct scatterlist *sg, void *data)
466{
467 struct encryptor_desc *desc = data;
468 struct xdr_buf *outbuf = desc->outbuf;
469 struct crypto_sync_skcipher *tfm =
470 crypto_sync_skcipher_reqtfm(desc->req);
471 struct page *in_page;
472 int thislen = desc->fraglen + sg->length;
473 int fraglen, ret;
474 int page_pos;
475
476 /* Worst case is 4 fragments: head, end of page 1, start
477 * of page 2, tail. Anything more is a bug. */
478 BUG_ON(desc->fragno > 3);
479
480 page_pos = desc->pos - outbuf->head[0].iov_len;
481 if (page_pos >= 0 && page_pos < outbuf->page_len) {
482 /* pages are not in place: */
483 int i = (page_pos + outbuf->page_base) >> PAGE_SHIFT;
484 in_page = desc->pages[i];
485 } else {
486 in_page = sg_page(sg);
487 }
488 sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length,
489 sg->offset);
490 sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length,
491 sg->offset);
492 desc->fragno++;
493 desc->fraglen += sg->length;
494 desc->pos += sg->length;
495
496 fraglen = thislen & (crypto_sync_skcipher_blocksize(tfm) - 1);
497 thislen -= fraglen;
498
499 if (thislen == 0)
500 return 0;
501
502 sg_mark_end(&desc->infrags[desc->fragno - 1]);
503 sg_mark_end(&desc->outfrags[desc->fragno - 1]);
504
505 skcipher_request_set_crypt(desc->req, desc->infrags, desc->outfrags,
506 thislen, desc->iv);
507
508 ret = crypto_skcipher_encrypt(desc->req);
509 if (ret)
510 return ret;
511
512 sg_init_table(desc->infrags, 4);
513 sg_init_table(desc->outfrags, 4);
514
515 if (fraglen) {
516 sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen,
517 sg->offset + sg->length - fraglen);
518 desc->infrags[0] = desc->outfrags[0];
519 sg_assign_page(&desc->infrags[0], in_page);
520 desc->fragno = 1;
521 desc->fraglen = fraglen;
522 } else {
523 desc->fragno = 0;
524 desc->fraglen = 0;
525 }
526 return 0;
527}
528
529int
530gss_encrypt_xdr_buf(struct crypto_sync_skcipher *tfm, struct xdr_buf *buf,
531 int offset, struct page **pages)
532{
533 int ret;
534 struct encryptor_desc desc;
535 SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
536
537 BUG_ON((buf->len - offset) % crypto_sync_skcipher_blocksize(tfm) != 0);
538
539 skcipher_request_set_sync_tfm(req, tfm);
540 skcipher_request_set_callback(req, 0, NULL, NULL);
541
542 memset(desc.iv, 0, sizeof(desc.iv));
543 desc.req = req;
544 desc.pos = offset;
545 desc.outbuf = buf;
546 desc.pages = pages;
547 desc.fragno = 0;
548 desc.fraglen = 0;
549
550 sg_init_table(desc.infrags, 4);
551 sg_init_table(desc.outfrags, 4);
552
553 ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc);
554 skcipher_request_zero(req);
555 return ret;
556}
557
558struct decryptor_desc {
559 u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
560 struct skcipher_request *req;
561 struct scatterlist frags[4];
562 int fragno;
563 int fraglen;
564};
565
566static int
567decryptor(struct scatterlist *sg, void *data)
568{
569 struct decryptor_desc *desc = data;
570 int thislen = desc->fraglen + sg->length;
571 struct crypto_sync_skcipher *tfm =
572 crypto_sync_skcipher_reqtfm(desc->req);
573 int fraglen, ret;
574
575 /* Worst case is 4 fragments: head, end of page 1, start
576 * of page 2, tail. Anything more is a bug. */
577 BUG_ON(desc->fragno > 3);
578 sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length,
579 sg->offset);
580 desc->fragno++;
581 desc->fraglen += sg->length;
582
583 fraglen = thislen & (crypto_sync_skcipher_blocksize(tfm) - 1);
584 thislen -= fraglen;
585
586 if (thislen == 0)
587 return 0;
588
589 sg_mark_end(&desc->frags[desc->fragno - 1]);
590
591 skcipher_request_set_crypt(desc->req, desc->frags, desc->frags,
592 thislen, desc->iv);
593
594 ret = crypto_skcipher_decrypt(desc->req);
595 if (ret)
596 return ret;
597
598 sg_init_table(desc->frags, 4);
599
600 if (fraglen) {
601 sg_set_page(&desc->frags[0], sg_page(sg), fraglen,
602 sg->offset + sg->length - fraglen);
603 desc->fragno = 1;
604 desc->fraglen = fraglen;
605 } else {
606 desc->fragno = 0;
607 desc->fraglen = 0;
608 }
609 return 0;
610}
611
612int
613gss_decrypt_xdr_buf(struct crypto_sync_skcipher *tfm, struct xdr_buf *buf,
614 int offset)
615{
616 int ret;
617 struct decryptor_desc desc;
618 SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
619
620 /* XXXJBF: */
621 BUG_ON((buf->len - offset) % crypto_sync_skcipher_blocksize(tfm) != 0);
622
623 skcipher_request_set_sync_tfm(req, tfm);
624 skcipher_request_set_callback(req, 0, NULL, NULL);
625
626 memset(desc.iv, 0, sizeof(desc.iv));
627 desc.req = req;
628 desc.fragno = 0;
629 desc.fraglen = 0;
630
631 sg_init_table(desc.frags, 4);
632
633 ret = xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc);
634 skcipher_request_zero(req);
635 return ret;
636}
637
638/*
639 * This function makes the assumption that it was ultimately called
640 * from gss_wrap().
641 *
642 * The client auth_gss code moves any existing tail data into a
643 * separate page before calling gss_wrap.
644 * The server svcauth_gss code ensures that both the head and the
645 * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap.
646 *
647 * Even with that guarantee, this function may be called more than
648 * once in the processing of gss_wrap(). The best we can do is
649 * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the
650 * largest expected shift will fit within RPC_MAX_AUTH_SIZE.
651 * At run-time we can verify that a single invocation of this
652 * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE.
653 */
654
655int
656xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen)
657{
658 u8 *p;
659
660 if (shiftlen == 0)
661 return 0;
662
663 BUILD_BUG_ON(GSS_KRB5_MAX_SLACK_NEEDED > RPC_MAX_AUTH_SIZE);
664 BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE);
665
666 p = buf->head[0].iov_base + base;
667
668 memmove(p + shiftlen, p, buf->head[0].iov_len - base);
669
670 buf->head[0].iov_len += shiftlen;
671 buf->len += shiftlen;
672
673 return 0;
674}
675
676static u32
677gss_krb5_cts_crypt(struct crypto_sync_skcipher *cipher, struct xdr_buf *buf,
678 u32 offset, u8 *iv, struct page **pages, int encrypt)
679{
680 u32 ret;
681 struct scatterlist sg[1];
682 SYNC_SKCIPHER_REQUEST_ON_STACK(req, cipher);
683 u8 *data;
684 struct page **save_pages;
685 u32 len = buf->len - offset;
686
687 if (len > GSS_KRB5_MAX_BLOCKSIZE * 2) {
688 WARN_ON(0);
689 return -ENOMEM;
690 }
691 data = kmalloc(GSS_KRB5_MAX_BLOCKSIZE * 2, GFP_NOFS);
692 if (!data)
693 return -ENOMEM;
694
695 /*
696 * For encryption, we want to read from the cleartext
697 * page cache pages, and write the encrypted data to
698 * the supplied xdr_buf pages.
699 */
700 save_pages = buf->pages;
701 if (encrypt)
702 buf->pages = pages;
703
704 ret = read_bytes_from_xdr_buf(buf, offset, data, len);
705 buf->pages = save_pages;
706 if (ret)
707 goto out;
708
709 sg_init_one(sg, data, len);
710
711 skcipher_request_set_sync_tfm(req, cipher);
712 skcipher_request_set_callback(req, 0, NULL, NULL);
713 skcipher_request_set_crypt(req, sg, sg, len, iv);
714
715 if (encrypt)
716 ret = crypto_skcipher_encrypt(req);
717 else
718 ret = crypto_skcipher_decrypt(req);
719
720 skcipher_request_zero(req);
721
722 if (ret)
723 goto out;
724
725 ret = write_bytes_to_xdr_buf(buf, offset, data, len);
726
727out:
728 kfree(data);
729 return ret;
730}
731
732u32
733gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset,
734 struct xdr_buf *buf, struct page **pages)
735{
736 u32 err;
737 struct xdr_netobj hmac;
738 u8 *cksumkey;
739 u8 *ecptr;
740 struct crypto_sync_skcipher *cipher, *aux_cipher;
741 int blocksize;
742 struct page **save_pages;
743 int nblocks, nbytes;
744 struct encryptor_desc desc;
745 u32 cbcbytes;
746 unsigned int usage;
747
748 if (kctx->initiate) {
749 cipher = kctx->initiator_enc;
750 aux_cipher = kctx->initiator_enc_aux;
751 cksumkey = kctx->initiator_integ;
752 usage = KG_USAGE_INITIATOR_SEAL;
753 } else {
754 cipher = kctx->acceptor_enc;
755 aux_cipher = kctx->acceptor_enc_aux;
756 cksumkey = kctx->acceptor_integ;
757 usage = KG_USAGE_ACCEPTOR_SEAL;
758 }
759 blocksize = crypto_sync_skcipher_blocksize(cipher);
760
761 /* hide the gss token header and insert the confounder */
762 offset += GSS_KRB5_TOK_HDR_LEN;
763 if (xdr_extend_head(buf, offset, kctx->gk5e->conflen))
764 return GSS_S_FAILURE;
765 gss_krb5_make_confounder(buf->head[0].iov_base + offset, kctx->gk5e->conflen);
766 offset -= GSS_KRB5_TOK_HDR_LEN;
767
768 if (buf->tail[0].iov_base != NULL) {
769 ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
770 } else {
771 buf->tail[0].iov_base = buf->head[0].iov_base
772 + buf->head[0].iov_len;
773 buf->tail[0].iov_len = 0;
774 ecptr = buf->tail[0].iov_base;
775 }
776
777 /* copy plaintext gss token header after filler (if any) */
778 memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
779 buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
780 buf->len += GSS_KRB5_TOK_HDR_LEN;
781
782 /* Do the HMAC */
783 hmac.len = GSS_KRB5_MAX_CKSUM_LEN;
784 hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
785
786 /*
787 * When we are called, pages points to the real page cache
788 * data -- which we can't go and encrypt! buf->pages points
789 * to scratch pages which we are going to send off to the
790 * client/server. Swap in the plaintext pages to calculate
791 * the hmac.
792 */
793 save_pages = buf->pages;
794 buf->pages = pages;
795
796 err = make_checksum_v2(kctx, NULL, 0, buf,
797 offset + GSS_KRB5_TOK_HDR_LEN,
798 cksumkey, usage, &hmac);
799 buf->pages = save_pages;
800 if (err)
801 return GSS_S_FAILURE;
802
803 nbytes = buf->len - offset - GSS_KRB5_TOK_HDR_LEN;
804 nblocks = (nbytes + blocksize - 1) / blocksize;
805 cbcbytes = 0;
806 if (nblocks > 2)
807 cbcbytes = (nblocks - 2) * blocksize;
808
809 memset(desc.iv, 0, sizeof(desc.iv));
810
811 if (cbcbytes) {
812 SYNC_SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
813
814 desc.pos = offset + GSS_KRB5_TOK_HDR_LEN;
815 desc.fragno = 0;
816 desc.fraglen = 0;
817 desc.pages = pages;
818 desc.outbuf = buf;
819 desc.req = req;
820
821 skcipher_request_set_sync_tfm(req, aux_cipher);
822 skcipher_request_set_callback(req, 0, NULL, NULL);
823
824 sg_init_table(desc.infrags, 4);
825 sg_init_table(desc.outfrags, 4);
826
827 err = xdr_process_buf(buf, offset + GSS_KRB5_TOK_HDR_LEN,
828 cbcbytes, encryptor, &desc);
829 skcipher_request_zero(req);
830 if (err)
831 goto out_err;
832 }
833
834 /* Make sure IV carries forward from any CBC results. */
835 err = gss_krb5_cts_crypt(cipher, buf,
836 offset + GSS_KRB5_TOK_HDR_LEN + cbcbytes,
837 desc.iv, pages, 1);
838 if (err) {
839 err = GSS_S_FAILURE;
840 goto out_err;
841 }
842
843 /* Now update buf to account for HMAC */
844 buf->tail[0].iov_len += kctx->gk5e->cksumlength;
845 buf->len += kctx->gk5e->cksumlength;
846
847out_err:
848 if (err)
849 err = GSS_S_FAILURE;
850 return err;
851}
852
853u32
854gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, struct xdr_buf *buf,
855 u32 *headskip, u32 *tailskip)
856{
857 struct xdr_buf subbuf;
858 u32 ret = 0;
859 u8 *cksum_key;
860 struct crypto_sync_skcipher *cipher, *aux_cipher;
861 struct xdr_netobj our_hmac_obj;
862 u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
863 u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
864 int nblocks, blocksize, cbcbytes;
865 struct decryptor_desc desc;
866 unsigned int usage;
867
868 if (kctx->initiate) {
869 cipher = kctx->acceptor_enc;
870 aux_cipher = kctx->acceptor_enc_aux;
871 cksum_key = kctx->acceptor_integ;
872 usage = KG_USAGE_ACCEPTOR_SEAL;
873 } else {
874 cipher = kctx->initiator_enc;
875 aux_cipher = kctx->initiator_enc_aux;
876 cksum_key = kctx->initiator_integ;
877 usage = KG_USAGE_INITIATOR_SEAL;
878 }
879 blocksize = crypto_sync_skcipher_blocksize(cipher);
880
881
882 /* create a segment skipping the header and leaving out the checksum */
883 xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
884 (buf->len - offset - GSS_KRB5_TOK_HDR_LEN -
885 kctx->gk5e->cksumlength));
886
887 nblocks = (subbuf.len + blocksize - 1) / blocksize;
888
889 cbcbytes = 0;
890 if (nblocks > 2)
891 cbcbytes = (nblocks - 2) * blocksize;
892
893 memset(desc.iv, 0, sizeof(desc.iv));
894
895 if (cbcbytes) {
896 SYNC_SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
897
898 desc.fragno = 0;
899 desc.fraglen = 0;
900 desc.req = req;
901
902 skcipher_request_set_sync_tfm(req, aux_cipher);
903 skcipher_request_set_callback(req, 0, NULL, NULL);
904
905 sg_init_table(desc.frags, 4);
906
907 ret = xdr_process_buf(&subbuf, 0, cbcbytes, decryptor, &desc);
908 skcipher_request_zero(req);
909 if (ret)
910 goto out_err;
911 }
912
913 /* Make sure IV carries forward from any CBC results. */
914 ret = gss_krb5_cts_crypt(cipher, &subbuf, cbcbytes, desc.iv, NULL, 0);
915 if (ret)
916 goto out_err;
917
918
919 /* Calculate our hmac over the plaintext data */
920 our_hmac_obj.len = sizeof(our_hmac);
921 our_hmac_obj.data = our_hmac;
922
923 ret = make_checksum_v2(kctx, NULL, 0, &subbuf, 0,
924 cksum_key, usage, &our_hmac_obj);
925 if (ret)
926 goto out_err;
927
928 /* Get the packet's hmac value */
929 ret = read_bytes_from_xdr_buf(buf, buf->len - kctx->gk5e->cksumlength,
930 pkt_hmac, kctx->gk5e->cksumlength);
931 if (ret)
932 goto out_err;
933
934 if (crypto_memneq(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
935 ret = GSS_S_BAD_SIG;
936 goto out_err;
937 }
938 *headskip = kctx->gk5e->conflen;
939 *tailskip = kctx->gk5e->cksumlength;
940out_err:
941 if (ret && ret != GSS_S_BAD_SIG)
942 ret = GSS_S_FAILURE;
943 return ret;
944}
945
946/*
947 * Compute Kseq given the initial session key and the checksum.
948 * Set the key of the given cipher.
949 */
950int
951krb5_rc4_setup_seq_key(struct krb5_ctx *kctx,
952 struct crypto_sync_skcipher *cipher,
953 unsigned char *cksum)
954{
955 struct crypto_shash *hmac;
956 struct shash_desc *desc;
957 u8 Kseq[GSS_KRB5_MAX_KEYLEN];
958 u32 zeroconstant = 0;
959 int err;
960
961 dprintk("%s: entered\n", __func__);
962
963 hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
964 if (IS_ERR(hmac)) {
965 dprintk("%s: error %ld, allocating hash '%s'\n",
966 __func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
967 return PTR_ERR(hmac);
968 }
969
970 desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac),
971 GFP_NOFS);
972 if (!desc) {
973 dprintk("%s: failed to allocate shash descriptor for '%s'\n",
974 __func__, kctx->gk5e->cksum_name);
975 crypto_free_shash(hmac);
976 return -ENOMEM;
977 }
978
979 desc->tfm = hmac;
980
981 /* Compute intermediate Kseq from session key */
982 err = crypto_shash_setkey(hmac, kctx->Ksess, kctx->gk5e->keylength);
983 if (err)
984 goto out_err;
985
986 err = crypto_shash_digest(desc, (u8 *)&zeroconstant, 4, Kseq);
987 if (err)
988 goto out_err;
989
990 /* Compute final Kseq from the checksum and intermediate Kseq */
991 err = crypto_shash_setkey(hmac, Kseq, kctx->gk5e->keylength);
992 if (err)
993 goto out_err;
994
995 err = crypto_shash_digest(desc, cksum, 8, Kseq);
996 if (err)
997 goto out_err;
998
999 err = crypto_sync_skcipher_setkey(cipher, Kseq, kctx->gk5e->keylength);
1000 if (err)
1001 goto out_err;
1002
1003 err = 0;
1004
1005out_err:
1006 kzfree(desc);
1007 crypto_free_shash(hmac);
1008 dprintk("%s: returning %d\n", __func__, err);
1009 return err;
1010}
1011
1012/*
1013 * Compute Kcrypt given the initial session key and the plaintext seqnum.
1014 * Set the key of cipher kctx->enc.
1015 */
1016int
1017krb5_rc4_setup_enc_key(struct krb5_ctx *kctx,
1018 struct crypto_sync_skcipher *cipher,
1019 s32 seqnum)
1020{
1021 struct crypto_shash *hmac;
1022 struct shash_desc *desc;
1023 u8 Kcrypt[GSS_KRB5_MAX_KEYLEN];
1024 u8 zeroconstant[4] = {0};
1025 u8 seqnumarray[4];
1026 int err, i;
1027
1028 dprintk("%s: entered, seqnum %u\n", __func__, seqnum);
1029
1030 hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
1031 if (IS_ERR(hmac)) {
1032 dprintk("%s: error %ld, allocating hash '%s'\n",
1033 __func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
1034 return PTR_ERR(hmac);
1035 }
1036
1037 desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac),
1038 GFP_NOFS);
1039 if (!desc) {
1040 dprintk("%s: failed to allocate shash descriptor for '%s'\n",
1041 __func__, kctx->gk5e->cksum_name);
1042 crypto_free_shash(hmac);
1043 return -ENOMEM;
1044 }
1045
1046 desc->tfm = hmac;
1047
1048 /* Compute intermediate Kcrypt from session key */
1049 for (i = 0; i < kctx->gk5e->keylength; i++)
1050 Kcrypt[i] = kctx->Ksess[i] ^ 0xf0;
1051
1052 err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
1053 if (err)
1054 goto out_err;
1055
1056 err = crypto_shash_digest(desc, zeroconstant, 4, Kcrypt);
1057 if (err)
1058 goto out_err;
1059
1060 /* Compute final Kcrypt from the seqnum and intermediate Kcrypt */
1061 err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
1062 if (err)
1063 goto out_err;
1064
1065 seqnumarray[0] = (unsigned char) ((seqnum >> 24) & 0xff);
1066 seqnumarray[1] = (unsigned char) ((seqnum >> 16) & 0xff);
1067 seqnumarray[2] = (unsigned char) ((seqnum >> 8) & 0xff);
1068 seqnumarray[3] = (unsigned char) ((seqnum >> 0) & 0xff);
1069
1070 err = crypto_shash_digest(desc, seqnumarray, 4, Kcrypt);
1071 if (err)
1072 goto out_err;
1073
1074 err = crypto_sync_skcipher_setkey(cipher, Kcrypt,
1075 kctx->gk5e->keylength);
1076 if (err)
1077 goto out_err;
1078
1079 err = 0;
1080
1081out_err:
1082 kzfree(desc);
1083 crypto_free_shash(hmac);
1084 dprintk("%s: returning %d\n", __func__, err);
1085 return err;
1086}
1/*
2 * linux/net/sunrpc/gss_krb5_crypto.c
3 *
4 * Copyright (c) 2000-2008 The Regents of the University of Michigan.
5 * All rights reserved.
6 *
7 * Andy Adamson <andros@umich.edu>
8 * Bruce Fields <bfields@umich.edu>
9 */
10
11/*
12 * Copyright (C) 1998 by the FundsXpress, INC.
13 *
14 * All rights reserved.
15 *
16 * Export of this software from the United States of America may require
17 * a specific license from the United States Government. It is the
18 * responsibility of any person or organization contemplating export to
19 * obtain such a license before exporting.
20 *
21 * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
22 * distribute this software and its documentation for any purpose and
23 * without fee is hereby granted, provided that the above copyright
24 * notice appear in all copies and that both that copyright notice and
25 * this permission notice appear in supporting documentation, and that
26 * the name of FundsXpress. not be used in advertising or publicity pertaining
27 * to distribution of the software without specific, written prior
28 * permission. FundsXpress makes no representations about the suitability of
29 * this software for any purpose. It is provided "as is" without express
30 * or implied warranty.
31 *
32 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
33 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
34 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
35 */
36
37#include <crypto/hash.h>
38#include <crypto/skcipher.h>
39#include <linux/err.h>
40#include <linux/types.h>
41#include <linux/mm.h>
42#include <linux/scatterlist.h>
43#include <linux/highmem.h>
44#include <linux/pagemap.h>
45#include <linux/random.h>
46#include <linux/sunrpc/gss_krb5.h>
47#include <linux/sunrpc/xdr.h>
48
49#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
50# define RPCDBG_FACILITY RPCDBG_AUTH
51#endif
52
53u32
54krb5_encrypt(
55 struct crypto_skcipher *tfm,
56 void * iv,
57 void * in,
58 void * out,
59 int length)
60{
61 u32 ret = -EINVAL;
62 struct scatterlist sg[1];
63 u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
64 SKCIPHER_REQUEST_ON_STACK(req, tfm);
65
66 if (length % crypto_skcipher_blocksize(tfm) != 0)
67 goto out;
68
69 if (crypto_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
70 dprintk("RPC: gss_k5encrypt: tfm iv size too large %d\n",
71 crypto_skcipher_ivsize(tfm));
72 goto out;
73 }
74
75 if (iv)
76 memcpy(local_iv, iv, crypto_skcipher_ivsize(tfm));
77
78 memcpy(out, in, length);
79 sg_init_one(sg, out, length);
80
81 skcipher_request_set_tfm(req, tfm);
82 skcipher_request_set_callback(req, 0, NULL, NULL);
83 skcipher_request_set_crypt(req, sg, sg, length, local_iv);
84
85 ret = crypto_skcipher_encrypt(req);
86 skcipher_request_zero(req);
87out:
88 dprintk("RPC: krb5_encrypt returns %d\n", ret);
89 return ret;
90}
91
92u32
93krb5_decrypt(
94 struct crypto_skcipher *tfm,
95 void * iv,
96 void * in,
97 void * out,
98 int length)
99{
100 u32 ret = -EINVAL;
101 struct scatterlist sg[1];
102 u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
103 SKCIPHER_REQUEST_ON_STACK(req, tfm);
104
105 if (length % crypto_skcipher_blocksize(tfm) != 0)
106 goto out;
107
108 if (crypto_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
109 dprintk("RPC: gss_k5decrypt: tfm iv size too large %d\n",
110 crypto_skcipher_ivsize(tfm));
111 goto out;
112 }
113 if (iv)
114 memcpy(local_iv,iv, crypto_skcipher_ivsize(tfm));
115
116 memcpy(out, in, length);
117 sg_init_one(sg, out, length);
118
119 skcipher_request_set_tfm(req, tfm);
120 skcipher_request_set_callback(req, 0, NULL, NULL);
121 skcipher_request_set_crypt(req, sg, sg, length, local_iv);
122
123 ret = crypto_skcipher_decrypt(req);
124 skcipher_request_zero(req);
125out:
126 dprintk("RPC: gss_k5decrypt returns %d\n",ret);
127 return ret;
128}
129
130static int
131checksummer(struct scatterlist *sg, void *data)
132{
133 struct ahash_request *req = data;
134
135 ahash_request_set_crypt(req, sg, NULL, sg->length);
136
137 return crypto_ahash_update(req);
138}
139
140static int
141arcfour_hmac_md5_usage_to_salt(unsigned int usage, u8 salt[4])
142{
143 unsigned int ms_usage;
144
145 switch (usage) {
146 case KG_USAGE_SIGN:
147 ms_usage = 15;
148 break;
149 case KG_USAGE_SEAL:
150 ms_usage = 13;
151 break;
152 default:
153 return -EINVAL;
154 }
155 salt[0] = (ms_usage >> 0) & 0xff;
156 salt[1] = (ms_usage >> 8) & 0xff;
157 salt[2] = (ms_usage >> 16) & 0xff;
158 salt[3] = (ms_usage >> 24) & 0xff;
159
160 return 0;
161}
162
163static u32
164make_checksum_hmac_md5(struct krb5_ctx *kctx, char *header, int hdrlen,
165 struct xdr_buf *body, int body_offset, u8 *cksumkey,
166 unsigned int usage, struct xdr_netobj *cksumout)
167{
168 struct scatterlist sg[1];
169 int err = -1;
170 u8 *checksumdata;
171 u8 rc4salt[4];
172 struct crypto_ahash *md5;
173 struct crypto_ahash *hmac_md5;
174 struct ahash_request *req;
175
176 if (cksumkey == NULL)
177 return GSS_S_FAILURE;
178
179 if (cksumout->len < kctx->gk5e->cksumlength) {
180 dprintk("%s: checksum buffer length, %u, too small for %s\n",
181 __func__, cksumout->len, kctx->gk5e->name);
182 return GSS_S_FAILURE;
183 }
184
185 if (arcfour_hmac_md5_usage_to_salt(usage, rc4salt)) {
186 dprintk("%s: invalid usage value %u\n", __func__, usage);
187 return GSS_S_FAILURE;
188 }
189
190 checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
191 if (!checksumdata)
192 return GSS_S_FAILURE;
193
194 md5 = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
195 if (IS_ERR(md5))
196 goto out_free_cksum;
197
198 hmac_md5 = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0,
199 CRYPTO_ALG_ASYNC);
200 if (IS_ERR(hmac_md5))
201 goto out_free_md5;
202
203 req = ahash_request_alloc(md5, GFP_NOFS);
204 if (!req)
205 goto out_free_hmac_md5;
206
207 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
208
209 err = crypto_ahash_init(req);
210 if (err)
211 goto out;
212 sg_init_one(sg, rc4salt, 4);
213 ahash_request_set_crypt(req, sg, NULL, 4);
214 err = crypto_ahash_update(req);
215 if (err)
216 goto out;
217
218 sg_init_one(sg, header, hdrlen);
219 ahash_request_set_crypt(req, sg, NULL, hdrlen);
220 err = crypto_ahash_update(req);
221 if (err)
222 goto out;
223 err = xdr_process_buf(body, body_offset, body->len - body_offset,
224 checksummer, req);
225 if (err)
226 goto out;
227 ahash_request_set_crypt(req, NULL, checksumdata, 0);
228 err = crypto_ahash_final(req);
229 if (err)
230 goto out;
231
232 ahash_request_free(req);
233 req = ahash_request_alloc(hmac_md5, GFP_NOFS);
234 if (!req)
235 goto out_free_hmac_md5;
236
237 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
238
239 err = crypto_ahash_init(req);
240 if (err)
241 goto out;
242 err = crypto_ahash_setkey(hmac_md5, cksumkey, kctx->gk5e->keylength);
243 if (err)
244 goto out;
245
246 sg_init_one(sg, checksumdata, crypto_ahash_digestsize(md5));
247 ahash_request_set_crypt(req, sg, checksumdata,
248 crypto_ahash_digestsize(md5));
249 err = crypto_ahash_digest(req);
250 if (err)
251 goto out;
252
253 memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
254 cksumout->len = kctx->gk5e->cksumlength;
255out:
256 ahash_request_free(req);
257out_free_hmac_md5:
258 crypto_free_ahash(hmac_md5);
259out_free_md5:
260 crypto_free_ahash(md5);
261out_free_cksum:
262 kfree(checksumdata);
263 return err ? GSS_S_FAILURE : 0;
264}
265
266/*
267 * checksum the plaintext data and hdrlen bytes of the token header
268 * The checksum is performed over the first 8 bytes of the
269 * gss token header and then over the data body
270 */
271u32
272make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen,
273 struct xdr_buf *body, int body_offset, u8 *cksumkey,
274 unsigned int usage, struct xdr_netobj *cksumout)
275{
276 struct crypto_ahash *tfm;
277 struct ahash_request *req;
278 struct scatterlist sg[1];
279 int err = -1;
280 u8 *checksumdata;
281 unsigned int checksumlen;
282
283 if (kctx->gk5e->ctype == CKSUMTYPE_HMAC_MD5_ARCFOUR)
284 return make_checksum_hmac_md5(kctx, header, hdrlen,
285 body, body_offset,
286 cksumkey, usage, cksumout);
287
288 if (cksumout->len < kctx->gk5e->cksumlength) {
289 dprintk("%s: checksum buffer length, %u, too small for %s\n",
290 __func__, cksumout->len, kctx->gk5e->name);
291 return GSS_S_FAILURE;
292 }
293
294 checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
295 if (checksumdata == NULL)
296 return GSS_S_FAILURE;
297
298 tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
299 if (IS_ERR(tfm))
300 goto out_free_cksum;
301
302 req = ahash_request_alloc(tfm, GFP_NOFS);
303 if (!req)
304 goto out_free_ahash;
305
306 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
307
308 checksumlen = crypto_ahash_digestsize(tfm);
309
310 if (cksumkey != NULL) {
311 err = crypto_ahash_setkey(tfm, cksumkey,
312 kctx->gk5e->keylength);
313 if (err)
314 goto out;
315 }
316
317 err = crypto_ahash_init(req);
318 if (err)
319 goto out;
320 sg_init_one(sg, header, hdrlen);
321 ahash_request_set_crypt(req, sg, NULL, hdrlen);
322 err = crypto_ahash_update(req);
323 if (err)
324 goto out;
325 err = xdr_process_buf(body, body_offset, body->len - body_offset,
326 checksummer, req);
327 if (err)
328 goto out;
329 ahash_request_set_crypt(req, NULL, checksumdata, 0);
330 err = crypto_ahash_final(req);
331 if (err)
332 goto out;
333
334 switch (kctx->gk5e->ctype) {
335 case CKSUMTYPE_RSA_MD5:
336 err = kctx->gk5e->encrypt(kctx->seq, NULL, checksumdata,
337 checksumdata, checksumlen);
338 if (err)
339 goto out;
340 memcpy(cksumout->data,
341 checksumdata + checksumlen - kctx->gk5e->cksumlength,
342 kctx->gk5e->cksumlength);
343 break;
344 case CKSUMTYPE_HMAC_SHA1_DES3:
345 memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
346 break;
347 default:
348 BUG();
349 break;
350 }
351 cksumout->len = kctx->gk5e->cksumlength;
352out:
353 ahash_request_free(req);
354out_free_ahash:
355 crypto_free_ahash(tfm);
356out_free_cksum:
357 kfree(checksumdata);
358 return err ? GSS_S_FAILURE : 0;
359}
360
361/*
362 * checksum the plaintext data and hdrlen bytes of the token header
363 * Per rfc4121, sec. 4.2.4, the checksum is performed over the data
364 * body then over the first 16 octets of the MIC token
365 * Inclusion of the header data in the calculation of the
366 * checksum is optional.
367 */
368u32
369make_checksum_v2(struct krb5_ctx *kctx, char *header, int hdrlen,
370 struct xdr_buf *body, int body_offset, u8 *cksumkey,
371 unsigned int usage, struct xdr_netobj *cksumout)
372{
373 struct crypto_ahash *tfm;
374 struct ahash_request *req;
375 struct scatterlist sg[1];
376 int err = -1;
377 u8 *checksumdata;
378 unsigned int checksumlen;
379
380 if (kctx->gk5e->keyed_cksum == 0) {
381 dprintk("%s: expected keyed hash for %s\n",
382 __func__, kctx->gk5e->name);
383 return GSS_S_FAILURE;
384 }
385 if (cksumkey == NULL) {
386 dprintk("%s: no key supplied for %s\n",
387 __func__, kctx->gk5e->name);
388 return GSS_S_FAILURE;
389 }
390
391 checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
392 if (!checksumdata)
393 return GSS_S_FAILURE;
394
395 tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
396 if (IS_ERR(tfm))
397 goto out_free_cksum;
398 checksumlen = crypto_ahash_digestsize(tfm);
399
400 req = ahash_request_alloc(tfm, GFP_NOFS);
401 if (!req)
402 goto out_free_ahash;
403
404 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
405
406 err = crypto_ahash_setkey(tfm, cksumkey, kctx->gk5e->keylength);
407 if (err)
408 goto out;
409
410 err = crypto_ahash_init(req);
411 if (err)
412 goto out;
413 err = xdr_process_buf(body, body_offset, body->len - body_offset,
414 checksummer, req);
415 if (err)
416 goto out;
417 if (header != NULL) {
418 sg_init_one(sg, header, hdrlen);
419 ahash_request_set_crypt(req, sg, NULL, hdrlen);
420 err = crypto_ahash_update(req);
421 if (err)
422 goto out;
423 }
424 ahash_request_set_crypt(req, NULL, checksumdata, 0);
425 err = crypto_ahash_final(req);
426 if (err)
427 goto out;
428
429 cksumout->len = kctx->gk5e->cksumlength;
430
431 switch (kctx->gk5e->ctype) {
432 case CKSUMTYPE_HMAC_SHA1_96_AES128:
433 case CKSUMTYPE_HMAC_SHA1_96_AES256:
434 /* note that this truncates the hash */
435 memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
436 break;
437 default:
438 BUG();
439 break;
440 }
441out:
442 ahash_request_free(req);
443out_free_ahash:
444 crypto_free_ahash(tfm);
445out_free_cksum:
446 kfree(checksumdata);
447 return err ? GSS_S_FAILURE : 0;
448}
449
450struct encryptor_desc {
451 u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
452 struct skcipher_request *req;
453 int pos;
454 struct xdr_buf *outbuf;
455 struct page **pages;
456 struct scatterlist infrags[4];
457 struct scatterlist outfrags[4];
458 int fragno;
459 int fraglen;
460};
461
462static int
463encryptor(struct scatterlist *sg, void *data)
464{
465 struct encryptor_desc *desc = data;
466 struct xdr_buf *outbuf = desc->outbuf;
467 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(desc->req);
468 struct page *in_page;
469 int thislen = desc->fraglen + sg->length;
470 int fraglen, ret;
471 int page_pos;
472
473 /* Worst case is 4 fragments: head, end of page 1, start
474 * of page 2, tail. Anything more is a bug. */
475 BUG_ON(desc->fragno > 3);
476
477 page_pos = desc->pos - outbuf->head[0].iov_len;
478 if (page_pos >= 0 && page_pos < outbuf->page_len) {
479 /* pages are not in place: */
480 int i = (page_pos + outbuf->page_base) >> PAGE_SHIFT;
481 in_page = desc->pages[i];
482 } else {
483 in_page = sg_page(sg);
484 }
485 sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length,
486 sg->offset);
487 sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length,
488 sg->offset);
489 desc->fragno++;
490 desc->fraglen += sg->length;
491 desc->pos += sg->length;
492
493 fraglen = thislen & (crypto_skcipher_blocksize(tfm) - 1);
494 thislen -= fraglen;
495
496 if (thislen == 0)
497 return 0;
498
499 sg_mark_end(&desc->infrags[desc->fragno - 1]);
500 sg_mark_end(&desc->outfrags[desc->fragno - 1]);
501
502 skcipher_request_set_crypt(desc->req, desc->infrags, desc->outfrags,
503 thislen, desc->iv);
504
505 ret = crypto_skcipher_encrypt(desc->req);
506 if (ret)
507 return ret;
508
509 sg_init_table(desc->infrags, 4);
510 sg_init_table(desc->outfrags, 4);
511
512 if (fraglen) {
513 sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen,
514 sg->offset + sg->length - fraglen);
515 desc->infrags[0] = desc->outfrags[0];
516 sg_assign_page(&desc->infrags[0], in_page);
517 desc->fragno = 1;
518 desc->fraglen = fraglen;
519 } else {
520 desc->fragno = 0;
521 desc->fraglen = 0;
522 }
523 return 0;
524}
525
526int
527gss_encrypt_xdr_buf(struct crypto_skcipher *tfm, struct xdr_buf *buf,
528 int offset, struct page **pages)
529{
530 int ret;
531 struct encryptor_desc desc;
532 SKCIPHER_REQUEST_ON_STACK(req, tfm);
533
534 BUG_ON((buf->len - offset) % crypto_skcipher_blocksize(tfm) != 0);
535
536 skcipher_request_set_tfm(req, tfm);
537 skcipher_request_set_callback(req, 0, NULL, NULL);
538
539 memset(desc.iv, 0, sizeof(desc.iv));
540 desc.req = req;
541 desc.pos = offset;
542 desc.outbuf = buf;
543 desc.pages = pages;
544 desc.fragno = 0;
545 desc.fraglen = 0;
546
547 sg_init_table(desc.infrags, 4);
548 sg_init_table(desc.outfrags, 4);
549
550 ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc);
551 skcipher_request_zero(req);
552 return ret;
553}
554
555struct decryptor_desc {
556 u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
557 struct skcipher_request *req;
558 struct scatterlist frags[4];
559 int fragno;
560 int fraglen;
561};
562
563static int
564decryptor(struct scatterlist *sg, void *data)
565{
566 struct decryptor_desc *desc = data;
567 int thislen = desc->fraglen + sg->length;
568 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(desc->req);
569 int fraglen, ret;
570
571 /* Worst case is 4 fragments: head, end of page 1, start
572 * of page 2, tail. Anything more is a bug. */
573 BUG_ON(desc->fragno > 3);
574 sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length,
575 sg->offset);
576 desc->fragno++;
577 desc->fraglen += sg->length;
578
579 fraglen = thislen & (crypto_skcipher_blocksize(tfm) - 1);
580 thislen -= fraglen;
581
582 if (thislen == 0)
583 return 0;
584
585 sg_mark_end(&desc->frags[desc->fragno - 1]);
586
587 skcipher_request_set_crypt(desc->req, desc->frags, desc->frags,
588 thislen, desc->iv);
589
590 ret = crypto_skcipher_decrypt(desc->req);
591 if (ret)
592 return ret;
593
594 sg_init_table(desc->frags, 4);
595
596 if (fraglen) {
597 sg_set_page(&desc->frags[0], sg_page(sg), fraglen,
598 sg->offset + sg->length - fraglen);
599 desc->fragno = 1;
600 desc->fraglen = fraglen;
601 } else {
602 desc->fragno = 0;
603 desc->fraglen = 0;
604 }
605 return 0;
606}
607
608int
609gss_decrypt_xdr_buf(struct crypto_skcipher *tfm, struct xdr_buf *buf,
610 int offset)
611{
612 int ret;
613 struct decryptor_desc desc;
614 SKCIPHER_REQUEST_ON_STACK(req, tfm);
615
616 /* XXXJBF: */
617 BUG_ON((buf->len - offset) % crypto_skcipher_blocksize(tfm) != 0);
618
619 skcipher_request_set_tfm(req, tfm);
620 skcipher_request_set_callback(req, 0, NULL, NULL);
621
622 memset(desc.iv, 0, sizeof(desc.iv));
623 desc.req = req;
624 desc.fragno = 0;
625 desc.fraglen = 0;
626
627 sg_init_table(desc.frags, 4);
628
629 ret = xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc);
630 skcipher_request_zero(req);
631 return ret;
632}
633
634/*
635 * This function makes the assumption that it was ultimately called
636 * from gss_wrap().
637 *
638 * The client auth_gss code moves any existing tail data into a
639 * separate page before calling gss_wrap.
640 * The server svcauth_gss code ensures that both the head and the
641 * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap.
642 *
643 * Even with that guarantee, this function may be called more than
644 * once in the processing of gss_wrap(). The best we can do is
645 * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the
646 * largest expected shift will fit within RPC_MAX_AUTH_SIZE.
647 * At run-time we can verify that a single invocation of this
648 * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE.
649 */
650
651int
652xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen)
653{
654 u8 *p;
655
656 if (shiftlen == 0)
657 return 0;
658
659 BUILD_BUG_ON(GSS_KRB5_MAX_SLACK_NEEDED > RPC_MAX_AUTH_SIZE);
660 BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE);
661
662 p = buf->head[0].iov_base + base;
663
664 memmove(p + shiftlen, p, buf->head[0].iov_len - base);
665
666 buf->head[0].iov_len += shiftlen;
667 buf->len += shiftlen;
668
669 return 0;
670}
671
672static u32
673gss_krb5_cts_crypt(struct crypto_skcipher *cipher, struct xdr_buf *buf,
674 u32 offset, u8 *iv, struct page **pages, int encrypt)
675{
676 u32 ret;
677 struct scatterlist sg[1];
678 SKCIPHER_REQUEST_ON_STACK(req, cipher);
679 u8 *data;
680 struct page **save_pages;
681 u32 len = buf->len - offset;
682
683 if (len > GSS_KRB5_MAX_BLOCKSIZE * 2) {
684 WARN_ON(0);
685 return -ENOMEM;
686 }
687 data = kmalloc(GSS_KRB5_MAX_BLOCKSIZE * 2, GFP_NOFS);
688 if (!data)
689 return -ENOMEM;
690
691 /*
692 * For encryption, we want to read from the cleartext
693 * page cache pages, and write the encrypted data to
694 * the supplied xdr_buf pages.
695 */
696 save_pages = buf->pages;
697 if (encrypt)
698 buf->pages = pages;
699
700 ret = read_bytes_from_xdr_buf(buf, offset, data, len);
701 buf->pages = save_pages;
702 if (ret)
703 goto out;
704
705 sg_init_one(sg, data, len);
706
707 skcipher_request_set_tfm(req, cipher);
708 skcipher_request_set_callback(req, 0, NULL, NULL);
709 skcipher_request_set_crypt(req, sg, sg, len, iv);
710
711 if (encrypt)
712 ret = crypto_skcipher_encrypt(req);
713 else
714 ret = crypto_skcipher_decrypt(req);
715
716 skcipher_request_zero(req);
717
718 if (ret)
719 goto out;
720
721 ret = write_bytes_to_xdr_buf(buf, offset, data, len);
722
723out:
724 kfree(data);
725 return ret;
726}
727
728u32
729gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset,
730 struct xdr_buf *buf, struct page **pages)
731{
732 u32 err;
733 struct xdr_netobj hmac;
734 u8 *cksumkey;
735 u8 *ecptr;
736 struct crypto_skcipher *cipher, *aux_cipher;
737 int blocksize;
738 struct page **save_pages;
739 int nblocks, nbytes;
740 struct encryptor_desc desc;
741 u32 cbcbytes;
742 unsigned int usage;
743
744 if (kctx->initiate) {
745 cipher = kctx->initiator_enc;
746 aux_cipher = kctx->initiator_enc_aux;
747 cksumkey = kctx->initiator_integ;
748 usage = KG_USAGE_INITIATOR_SEAL;
749 } else {
750 cipher = kctx->acceptor_enc;
751 aux_cipher = kctx->acceptor_enc_aux;
752 cksumkey = kctx->acceptor_integ;
753 usage = KG_USAGE_ACCEPTOR_SEAL;
754 }
755 blocksize = crypto_skcipher_blocksize(cipher);
756
757 /* hide the gss token header and insert the confounder */
758 offset += GSS_KRB5_TOK_HDR_LEN;
759 if (xdr_extend_head(buf, offset, kctx->gk5e->conflen))
760 return GSS_S_FAILURE;
761 gss_krb5_make_confounder(buf->head[0].iov_base + offset, kctx->gk5e->conflen);
762 offset -= GSS_KRB5_TOK_HDR_LEN;
763
764 if (buf->tail[0].iov_base != NULL) {
765 ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
766 } else {
767 buf->tail[0].iov_base = buf->head[0].iov_base
768 + buf->head[0].iov_len;
769 buf->tail[0].iov_len = 0;
770 ecptr = buf->tail[0].iov_base;
771 }
772
773 /* copy plaintext gss token header after filler (if any) */
774 memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
775 buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
776 buf->len += GSS_KRB5_TOK_HDR_LEN;
777
778 /* Do the HMAC */
779 hmac.len = GSS_KRB5_MAX_CKSUM_LEN;
780 hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
781
782 /*
783 * When we are called, pages points to the real page cache
784 * data -- which we can't go and encrypt! buf->pages points
785 * to scratch pages which we are going to send off to the
786 * client/server. Swap in the plaintext pages to calculate
787 * the hmac.
788 */
789 save_pages = buf->pages;
790 buf->pages = pages;
791
792 err = make_checksum_v2(kctx, NULL, 0, buf,
793 offset + GSS_KRB5_TOK_HDR_LEN,
794 cksumkey, usage, &hmac);
795 buf->pages = save_pages;
796 if (err)
797 return GSS_S_FAILURE;
798
799 nbytes = buf->len - offset - GSS_KRB5_TOK_HDR_LEN;
800 nblocks = (nbytes + blocksize - 1) / blocksize;
801 cbcbytes = 0;
802 if (nblocks > 2)
803 cbcbytes = (nblocks - 2) * blocksize;
804
805 memset(desc.iv, 0, sizeof(desc.iv));
806
807 if (cbcbytes) {
808 SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
809
810 desc.pos = offset + GSS_KRB5_TOK_HDR_LEN;
811 desc.fragno = 0;
812 desc.fraglen = 0;
813 desc.pages = pages;
814 desc.outbuf = buf;
815 desc.req = req;
816
817 skcipher_request_set_tfm(req, aux_cipher);
818 skcipher_request_set_callback(req, 0, NULL, NULL);
819
820 sg_init_table(desc.infrags, 4);
821 sg_init_table(desc.outfrags, 4);
822
823 err = xdr_process_buf(buf, offset + GSS_KRB5_TOK_HDR_LEN,
824 cbcbytes, encryptor, &desc);
825 skcipher_request_zero(req);
826 if (err)
827 goto out_err;
828 }
829
830 /* Make sure IV carries forward from any CBC results. */
831 err = gss_krb5_cts_crypt(cipher, buf,
832 offset + GSS_KRB5_TOK_HDR_LEN + cbcbytes,
833 desc.iv, pages, 1);
834 if (err) {
835 err = GSS_S_FAILURE;
836 goto out_err;
837 }
838
839 /* Now update buf to account for HMAC */
840 buf->tail[0].iov_len += kctx->gk5e->cksumlength;
841 buf->len += kctx->gk5e->cksumlength;
842
843out_err:
844 if (err)
845 err = GSS_S_FAILURE;
846 return err;
847}
848
849u32
850gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, struct xdr_buf *buf,
851 u32 *headskip, u32 *tailskip)
852{
853 struct xdr_buf subbuf;
854 u32 ret = 0;
855 u8 *cksum_key;
856 struct crypto_skcipher *cipher, *aux_cipher;
857 struct xdr_netobj our_hmac_obj;
858 u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
859 u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
860 int nblocks, blocksize, cbcbytes;
861 struct decryptor_desc desc;
862 unsigned int usage;
863
864 if (kctx->initiate) {
865 cipher = kctx->acceptor_enc;
866 aux_cipher = kctx->acceptor_enc_aux;
867 cksum_key = kctx->acceptor_integ;
868 usage = KG_USAGE_ACCEPTOR_SEAL;
869 } else {
870 cipher = kctx->initiator_enc;
871 aux_cipher = kctx->initiator_enc_aux;
872 cksum_key = kctx->initiator_integ;
873 usage = KG_USAGE_INITIATOR_SEAL;
874 }
875 blocksize = crypto_skcipher_blocksize(cipher);
876
877
878 /* create a segment skipping the header and leaving out the checksum */
879 xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
880 (buf->len - offset - GSS_KRB5_TOK_HDR_LEN -
881 kctx->gk5e->cksumlength));
882
883 nblocks = (subbuf.len + blocksize - 1) / blocksize;
884
885 cbcbytes = 0;
886 if (nblocks > 2)
887 cbcbytes = (nblocks - 2) * blocksize;
888
889 memset(desc.iv, 0, sizeof(desc.iv));
890
891 if (cbcbytes) {
892 SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
893
894 desc.fragno = 0;
895 desc.fraglen = 0;
896 desc.req = req;
897
898 skcipher_request_set_tfm(req, aux_cipher);
899 skcipher_request_set_callback(req, 0, NULL, NULL);
900
901 sg_init_table(desc.frags, 4);
902
903 ret = xdr_process_buf(&subbuf, 0, cbcbytes, decryptor, &desc);
904 skcipher_request_zero(req);
905 if (ret)
906 goto out_err;
907 }
908
909 /* Make sure IV carries forward from any CBC results. */
910 ret = gss_krb5_cts_crypt(cipher, &subbuf, cbcbytes, desc.iv, NULL, 0);
911 if (ret)
912 goto out_err;
913
914
915 /* Calculate our hmac over the plaintext data */
916 our_hmac_obj.len = sizeof(our_hmac);
917 our_hmac_obj.data = our_hmac;
918
919 ret = make_checksum_v2(kctx, NULL, 0, &subbuf, 0,
920 cksum_key, usage, &our_hmac_obj);
921 if (ret)
922 goto out_err;
923
924 /* Get the packet's hmac value */
925 ret = read_bytes_from_xdr_buf(buf, buf->len - kctx->gk5e->cksumlength,
926 pkt_hmac, kctx->gk5e->cksumlength);
927 if (ret)
928 goto out_err;
929
930 if (memcmp(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
931 ret = GSS_S_BAD_SIG;
932 goto out_err;
933 }
934 *headskip = kctx->gk5e->conflen;
935 *tailskip = kctx->gk5e->cksumlength;
936out_err:
937 if (ret && ret != GSS_S_BAD_SIG)
938 ret = GSS_S_FAILURE;
939 return ret;
940}
941
942/*
943 * Compute Kseq given the initial session key and the checksum.
944 * Set the key of the given cipher.
945 */
946int
947krb5_rc4_setup_seq_key(struct krb5_ctx *kctx, struct crypto_skcipher *cipher,
948 unsigned char *cksum)
949{
950 struct crypto_shash *hmac;
951 struct shash_desc *desc;
952 u8 Kseq[GSS_KRB5_MAX_KEYLEN];
953 u32 zeroconstant = 0;
954 int err;
955
956 dprintk("%s: entered\n", __func__);
957
958 hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
959 if (IS_ERR(hmac)) {
960 dprintk("%s: error %ld, allocating hash '%s'\n",
961 __func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
962 return PTR_ERR(hmac);
963 }
964
965 desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac),
966 GFP_NOFS);
967 if (!desc) {
968 dprintk("%s: failed to allocate shash descriptor for '%s'\n",
969 __func__, kctx->gk5e->cksum_name);
970 crypto_free_shash(hmac);
971 return -ENOMEM;
972 }
973
974 desc->tfm = hmac;
975 desc->flags = 0;
976
977 /* Compute intermediate Kseq from session key */
978 err = crypto_shash_setkey(hmac, kctx->Ksess, kctx->gk5e->keylength);
979 if (err)
980 goto out_err;
981
982 err = crypto_shash_digest(desc, (u8 *)&zeroconstant, 4, Kseq);
983 if (err)
984 goto out_err;
985
986 /* Compute final Kseq from the checksum and intermediate Kseq */
987 err = crypto_shash_setkey(hmac, Kseq, kctx->gk5e->keylength);
988 if (err)
989 goto out_err;
990
991 err = crypto_shash_digest(desc, cksum, 8, Kseq);
992 if (err)
993 goto out_err;
994
995 err = crypto_skcipher_setkey(cipher, Kseq, kctx->gk5e->keylength);
996 if (err)
997 goto out_err;
998
999 err = 0;
1000
1001out_err:
1002 kzfree(desc);
1003 crypto_free_shash(hmac);
1004 dprintk("%s: returning %d\n", __func__, err);
1005 return err;
1006}
1007
1008/*
1009 * Compute Kcrypt given the initial session key and the plaintext seqnum.
1010 * Set the key of cipher kctx->enc.
1011 */
1012int
1013krb5_rc4_setup_enc_key(struct krb5_ctx *kctx, struct crypto_skcipher *cipher,
1014 s32 seqnum)
1015{
1016 struct crypto_shash *hmac;
1017 struct shash_desc *desc;
1018 u8 Kcrypt[GSS_KRB5_MAX_KEYLEN];
1019 u8 zeroconstant[4] = {0};
1020 u8 seqnumarray[4];
1021 int err, i;
1022
1023 dprintk("%s: entered, seqnum %u\n", __func__, seqnum);
1024
1025 hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
1026 if (IS_ERR(hmac)) {
1027 dprintk("%s: error %ld, allocating hash '%s'\n",
1028 __func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
1029 return PTR_ERR(hmac);
1030 }
1031
1032 desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac),
1033 GFP_NOFS);
1034 if (!desc) {
1035 dprintk("%s: failed to allocate shash descriptor for '%s'\n",
1036 __func__, kctx->gk5e->cksum_name);
1037 crypto_free_shash(hmac);
1038 return -ENOMEM;
1039 }
1040
1041 desc->tfm = hmac;
1042 desc->flags = 0;
1043
1044 /* Compute intermediate Kcrypt from session key */
1045 for (i = 0; i < kctx->gk5e->keylength; i++)
1046 Kcrypt[i] = kctx->Ksess[i] ^ 0xf0;
1047
1048 err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
1049 if (err)
1050 goto out_err;
1051
1052 err = crypto_shash_digest(desc, zeroconstant, 4, Kcrypt);
1053 if (err)
1054 goto out_err;
1055
1056 /* Compute final Kcrypt from the seqnum and intermediate Kcrypt */
1057 err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
1058 if (err)
1059 goto out_err;
1060
1061 seqnumarray[0] = (unsigned char) ((seqnum >> 24) & 0xff);
1062 seqnumarray[1] = (unsigned char) ((seqnum >> 16) & 0xff);
1063 seqnumarray[2] = (unsigned char) ((seqnum >> 8) & 0xff);
1064 seqnumarray[3] = (unsigned char) ((seqnum >> 0) & 0xff);
1065
1066 err = crypto_shash_digest(desc, seqnumarray, 4, Kcrypt);
1067 if (err)
1068 goto out_err;
1069
1070 err = crypto_skcipher_setkey(cipher, Kcrypt, kctx->gk5e->keylength);
1071 if (err)
1072 goto out_err;
1073
1074 err = 0;
1075
1076out_err:
1077 kzfree(desc);
1078 crypto_free_shash(hmac);
1079 dprintk("%s: returning %d\n", __func__, err);
1080 return err;
1081}
1082