Linux Audio

Check our new training course

Loading...
v5.4
   1/*
   2 *  linux/net/sunrpc/gss_krb5_crypto.c
   3 *
   4 *  Copyright (c) 2000-2008 The Regents of the University of Michigan.
   5 *  All rights reserved.
   6 *
   7 *  Andy Adamson   <andros@umich.edu>
   8 *  Bruce Fields   <bfields@umich.edu>
   9 */
  10
  11/*
  12 * Copyright (C) 1998 by the FundsXpress, INC.
  13 *
  14 * All rights reserved.
  15 *
  16 * Export of this software from the United States of America may require
  17 * a specific license from the United States Government.  It is the
  18 * responsibility of any person or organization contemplating export to
  19 * obtain such a license before exporting.
  20 *
  21 * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
  22 * distribute this software and its documentation for any purpose and
  23 * without fee is hereby granted, provided that the above copyright
  24 * notice appear in all copies and that both that copyright notice and
  25 * this permission notice appear in supporting documentation, and that
  26 * the name of FundsXpress. not be used in advertising or publicity pertaining
  27 * to distribution of the software without specific, written prior
  28 * permission.  FundsXpress makes no representations about the suitability of
  29 * this software for any purpose.  It is provided "as is" without express
  30 * or implied warranty.
  31 *
  32 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
  33 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
  34 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
  35 */
  36
  37#include <crypto/algapi.h>
  38#include <crypto/hash.h>
  39#include <crypto/skcipher.h>
  40#include <linux/err.h>
  41#include <linux/types.h>
  42#include <linux/mm.h>
  43#include <linux/scatterlist.h>
  44#include <linux/highmem.h>
  45#include <linux/pagemap.h>
  46#include <linux/random.h>
  47#include <linux/sunrpc/gss_krb5.h>
  48#include <linux/sunrpc/xdr.h>
  49
  50#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
  51# define RPCDBG_FACILITY        RPCDBG_AUTH
  52#endif
  53
  54u32
  55krb5_encrypt(
  56	struct crypto_sync_skcipher *tfm,
  57	void * iv,
  58	void * in,
  59	void * out,
  60	int length)
  61{
  62	u32 ret = -EINVAL;
  63	struct scatterlist sg[1];
  64	u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
  65	SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
  66
  67	if (length % crypto_sync_skcipher_blocksize(tfm) != 0)
  68		goto out;
  69
  70	if (crypto_sync_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
  71		dprintk("RPC:       gss_k5encrypt: tfm iv size too large %d\n",
  72			crypto_sync_skcipher_ivsize(tfm));
  73		goto out;
  74	}
  75
  76	if (iv)
  77		memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm));
  78
  79	memcpy(out, in, length);
  80	sg_init_one(sg, out, length);
  81
  82	skcipher_request_set_sync_tfm(req, tfm);
  83	skcipher_request_set_callback(req, 0, NULL, NULL);
  84	skcipher_request_set_crypt(req, sg, sg, length, local_iv);
  85
  86	ret = crypto_skcipher_encrypt(req);
  87	skcipher_request_zero(req);
  88out:
  89	dprintk("RPC:       krb5_encrypt returns %d\n", ret);
  90	return ret;
  91}
  92
  93u32
  94krb5_decrypt(
  95     struct crypto_sync_skcipher *tfm,
  96     void * iv,
  97     void * in,
  98     void * out,
  99     int length)
 100{
 101	u32 ret = -EINVAL;
 102	struct scatterlist sg[1];
 103	u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
 104	SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
 105
 106	if (length % crypto_sync_skcipher_blocksize(tfm) != 0)
 107		goto out;
 108
 109	if (crypto_sync_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
 110		dprintk("RPC:       gss_k5decrypt: tfm iv size too large %d\n",
 111			crypto_sync_skcipher_ivsize(tfm));
 112		goto out;
 113	}
 114	if (iv)
 115		memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm));
 116
 117	memcpy(out, in, length);
 118	sg_init_one(sg, out, length);
 119
 120	skcipher_request_set_sync_tfm(req, tfm);
 121	skcipher_request_set_callback(req, 0, NULL, NULL);
 122	skcipher_request_set_crypt(req, sg, sg, length, local_iv);
 123
 124	ret = crypto_skcipher_decrypt(req);
 125	skcipher_request_zero(req);
 126out:
 127	dprintk("RPC:       gss_k5decrypt returns %d\n",ret);
 128	return ret;
 129}
 130
 131static int
 132checksummer(struct scatterlist *sg, void *data)
 133{
 134	struct ahash_request *req = data;
 135
 136	ahash_request_set_crypt(req, sg, NULL, sg->length);
 137
 138	return crypto_ahash_update(req);
 139}
 140
 141static int
 142arcfour_hmac_md5_usage_to_salt(unsigned int usage, u8 salt[4])
 143{
 144	unsigned int ms_usage;
 145
 146	switch (usage) {
 147	case KG_USAGE_SIGN:
 148		ms_usage = 15;
 149		break;
 150	case KG_USAGE_SEAL:
 151		ms_usage = 13;
 152		break;
 153	default:
 154		return -EINVAL;
 155	}
 156	salt[0] = (ms_usage >> 0) & 0xff;
 157	salt[1] = (ms_usage >> 8) & 0xff;
 158	salt[2] = (ms_usage >> 16) & 0xff;
 159	salt[3] = (ms_usage >> 24) & 0xff;
 160
 161	return 0;
 162}
 163
 164static u32
 165make_checksum_hmac_md5(struct krb5_ctx *kctx, char *header, int hdrlen,
 166		       struct xdr_buf *body, int body_offset, u8 *cksumkey,
 167		       unsigned int usage, struct xdr_netobj *cksumout)
 168{
 169	struct scatterlist              sg[1];
 170	int err = -1;
 171	u8 *checksumdata;
 172	u8 *rc4salt;
 173	struct crypto_ahash *md5;
 174	struct crypto_ahash *hmac_md5;
 175	struct ahash_request *req;
 176
 177	if (cksumkey == NULL)
 178		return GSS_S_FAILURE;
 179
 180	if (cksumout->len < kctx->gk5e->cksumlength) {
 181		dprintk("%s: checksum buffer length, %u, too small for %s\n",
 182			__func__, cksumout->len, kctx->gk5e->name);
 183		return GSS_S_FAILURE;
 184	}
 185
 186	rc4salt = kmalloc_array(4, sizeof(*rc4salt), GFP_NOFS);
 187	if (!rc4salt)
 188		return GSS_S_FAILURE;
 189
 190	if (arcfour_hmac_md5_usage_to_salt(usage, rc4salt)) {
 191		dprintk("%s: invalid usage value %u\n", __func__, usage);
 192		goto out_free_rc4salt;
 193	}
 194
 195	checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
 196	if (!checksumdata)
 197		goto out_free_rc4salt;
 198
 199	md5 = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
 200	if (IS_ERR(md5))
 201		goto out_free_cksum;
 202
 203	hmac_md5 = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0,
 204				      CRYPTO_ALG_ASYNC);
 205	if (IS_ERR(hmac_md5))
 206		goto out_free_md5;
 207
 208	req = ahash_request_alloc(md5, GFP_NOFS);
 209	if (!req)
 210		goto out_free_hmac_md5;
 211
 212	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 213
 214	err = crypto_ahash_init(req);
 215	if (err)
 216		goto out;
 217	sg_init_one(sg, rc4salt, 4);
 218	ahash_request_set_crypt(req, sg, NULL, 4);
 219	err = crypto_ahash_update(req);
 220	if (err)
 221		goto out;
 222
 223	sg_init_one(sg, header, hdrlen);
 224	ahash_request_set_crypt(req, sg, NULL, hdrlen);
 225	err = crypto_ahash_update(req);
 226	if (err)
 227		goto out;
 228	err = xdr_process_buf(body, body_offset, body->len - body_offset,
 229			      checksummer, req);
 230	if (err)
 231		goto out;
 232	ahash_request_set_crypt(req, NULL, checksumdata, 0);
 233	err = crypto_ahash_final(req);
 234	if (err)
 235		goto out;
 236
 237	ahash_request_free(req);
 238	req = ahash_request_alloc(hmac_md5, GFP_NOFS);
 239	if (!req)
 240		goto out_free_hmac_md5;
 241
 242	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 243
 
 
 
 244	err = crypto_ahash_setkey(hmac_md5, cksumkey, kctx->gk5e->keylength);
 245	if (err)
 246		goto out;
 247
 248	sg_init_one(sg, checksumdata, crypto_ahash_digestsize(md5));
 249	ahash_request_set_crypt(req, sg, checksumdata,
 250				crypto_ahash_digestsize(md5));
 251	err = crypto_ahash_digest(req);
 252	if (err)
 253		goto out;
 254
 255	memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
 256	cksumout->len = kctx->gk5e->cksumlength;
 257out:
 258	ahash_request_free(req);
 259out_free_hmac_md5:
 260	crypto_free_ahash(hmac_md5);
 261out_free_md5:
 262	crypto_free_ahash(md5);
 263out_free_cksum:
 264	kfree(checksumdata);
 265out_free_rc4salt:
 266	kfree(rc4salt);
 267	return err ? GSS_S_FAILURE : 0;
 268}
 269
 270/*
 271 * checksum the plaintext data and hdrlen bytes of the token header
 272 * The checksum is performed over the first 8 bytes of the
 273 * gss token header and then over the data body
 274 */
 275u32
 276make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen,
 277	      struct xdr_buf *body, int body_offset, u8 *cksumkey,
 278	      unsigned int usage, struct xdr_netobj *cksumout)
 279{
 280	struct crypto_ahash *tfm;
 281	struct ahash_request *req;
 282	struct scatterlist              sg[1];
 283	int err = -1;
 284	u8 *checksumdata;
 285	unsigned int checksumlen;
 286
 287	if (kctx->gk5e->ctype == CKSUMTYPE_HMAC_MD5_ARCFOUR)
 288		return make_checksum_hmac_md5(kctx, header, hdrlen,
 289					      body, body_offset,
 290					      cksumkey, usage, cksumout);
 291
 292	if (cksumout->len < kctx->gk5e->cksumlength) {
 293		dprintk("%s: checksum buffer length, %u, too small for %s\n",
 294			__func__, cksumout->len, kctx->gk5e->name);
 295		return GSS_S_FAILURE;
 296	}
 297
 298	checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
 299	if (checksumdata == NULL)
 300		return GSS_S_FAILURE;
 301
 302	tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
 303	if (IS_ERR(tfm))
 304		goto out_free_cksum;
 305
 306	req = ahash_request_alloc(tfm, GFP_NOFS);
 307	if (!req)
 308		goto out_free_ahash;
 309
 310	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 311
 312	checksumlen = crypto_ahash_digestsize(tfm);
 313
 314	if (cksumkey != NULL) {
 315		err = crypto_ahash_setkey(tfm, cksumkey,
 316					  kctx->gk5e->keylength);
 317		if (err)
 318			goto out;
 319	}
 320
 321	err = crypto_ahash_init(req);
 322	if (err)
 323		goto out;
 324	sg_init_one(sg, header, hdrlen);
 325	ahash_request_set_crypt(req, sg, NULL, hdrlen);
 326	err = crypto_ahash_update(req);
 327	if (err)
 328		goto out;
 329	err = xdr_process_buf(body, body_offset, body->len - body_offset,
 330			      checksummer, req);
 331	if (err)
 332		goto out;
 333	ahash_request_set_crypt(req, NULL, checksumdata, 0);
 334	err = crypto_ahash_final(req);
 335	if (err)
 336		goto out;
 337
 338	switch (kctx->gk5e->ctype) {
 339	case CKSUMTYPE_RSA_MD5:
 340		err = kctx->gk5e->encrypt(kctx->seq, NULL, checksumdata,
 341					  checksumdata, checksumlen);
 342		if (err)
 343			goto out;
 344		memcpy(cksumout->data,
 345		       checksumdata + checksumlen - kctx->gk5e->cksumlength,
 346		       kctx->gk5e->cksumlength);
 347		break;
 348	case CKSUMTYPE_HMAC_SHA1_DES3:
 349		memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
 350		break;
 351	default:
 352		BUG();
 353		break;
 354	}
 355	cksumout->len = kctx->gk5e->cksumlength;
 356out:
 357	ahash_request_free(req);
 358out_free_ahash:
 359	crypto_free_ahash(tfm);
 360out_free_cksum:
 361	kfree(checksumdata);
 362	return err ? GSS_S_FAILURE : 0;
 363}
 364
 365/*
 366 * checksum the plaintext data and hdrlen bytes of the token header
 367 * Per rfc4121, sec. 4.2.4, the checksum is performed over the data
 368 * body then over the first 16 octets of the MIC token
 369 * Inclusion of the header data in the calculation of the
 370 * checksum is optional.
 371 */
 372u32
 373make_checksum_v2(struct krb5_ctx *kctx, char *header, int hdrlen,
 374		 struct xdr_buf *body, int body_offset, u8 *cksumkey,
 375		 unsigned int usage, struct xdr_netobj *cksumout)
 376{
 377	struct crypto_ahash *tfm;
 378	struct ahash_request *req;
 379	struct scatterlist sg[1];
 380	int err = -1;
 381	u8 *checksumdata;
 
 382
 383	if (kctx->gk5e->keyed_cksum == 0) {
 384		dprintk("%s: expected keyed hash for %s\n",
 385			__func__, kctx->gk5e->name);
 386		return GSS_S_FAILURE;
 387	}
 388	if (cksumkey == NULL) {
 389		dprintk("%s: no key supplied for %s\n",
 390			__func__, kctx->gk5e->name);
 391		return GSS_S_FAILURE;
 392	}
 393
 394	checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
 395	if (!checksumdata)
 396		return GSS_S_FAILURE;
 397
 398	tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
 399	if (IS_ERR(tfm))
 400		goto out_free_cksum;
 
 401
 402	req = ahash_request_alloc(tfm, GFP_NOFS);
 403	if (!req)
 404		goto out_free_ahash;
 405
 406	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 407
 408	err = crypto_ahash_setkey(tfm, cksumkey, kctx->gk5e->keylength);
 409	if (err)
 410		goto out;
 411
 412	err = crypto_ahash_init(req);
 413	if (err)
 414		goto out;
 415	err = xdr_process_buf(body, body_offset, body->len - body_offset,
 416			      checksummer, req);
 417	if (err)
 418		goto out;
 419	if (header != NULL) {
 420		sg_init_one(sg, header, hdrlen);
 421		ahash_request_set_crypt(req, sg, NULL, hdrlen);
 422		err = crypto_ahash_update(req);
 423		if (err)
 424			goto out;
 425	}
 426	ahash_request_set_crypt(req, NULL, checksumdata, 0);
 427	err = crypto_ahash_final(req);
 428	if (err)
 429		goto out;
 430
 431	cksumout->len = kctx->gk5e->cksumlength;
 432
 433	switch (kctx->gk5e->ctype) {
 434	case CKSUMTYPE_HMAC_SHA1_96_AES128:
 435	case CKSUMTYPE_HMAC_SHA1_96_AES256:
 436		/* note that this truncates the hash */
 437		memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
 438		break;
 439	default:
 440		BUG();
 441		break;
 442	}
 443out:
 444	ahash_request_free(req);
 445out_free_ahash:
 446	crypto_free_ahash(tfm);
 447out_free_cksum:
 448	kfree(checksumdata);
 449	return err ? GSS_S_FAILURE : 0;
 450}
 451
 452struct encryptor_desc {
 453	u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
 454	struct skcipher_request *req;
 455	int pos;
 456	struct xdr_buf *outbuf;
 457	struct page **pages;
 458	struct scatterlist infrags[4];
 459	struct scatterlist outfrags[4];
 460	int fragno;
 461	int fraglen;
 462};
 463
 464static int
 465encryptor(struct scatterlist *sg, void *data)
 466{
 467	struct encryptor_desc *desc = data;
 468	struct xdr_buf *outbuf = desc->outbuf;
 469	struct crypto_sync_skcipher *tfm =
 470		crypto_sync_skcipher_reqtfm(desc->req);
 471	struct page *in_page;
 472	int thislen = desc->fraglen + sg->length;
 473	int fraglen, ret;
 474	int page_pos;
 475
 476	/* Worst case is 4 fragments: head, end of page 1, start
 477	 * of page 2, tail.  Anything more is a bug. */
 478	BUG_ON(desc->fragno > 3);
 479
 480	page_pos = desc->pos - outbuf->head[0].iov_len;
 481	if (page_pos >= 0 && page_pos < outbuf->page_len) {
 482		/* pages are not in place: */
 483		int i = (page_pos + outbuf->page_base) >> PAGE_SHIFT;
 484		in_page = desc->pages[i];
 485	} else {
 486		in_page = sg_page(sg);
 487	}
 488	sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length,
 489		    sg->offset);
 490	sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length,
 491		    sg->offset);
 492	desc->fragno++;
 493	desc->fraglen += sg->length;
 494	desc->pos += sg->length;
 495
 496	fraglen = thislen & (crypto_sync_skcipher_blocksize(tfm) - 1);
 497	thislen -= fraglen;
 498
 499	if (thislen == 0)
 500		return 0;
 501
 502	sg_mark_end(&desc->infrags[desc->fragno - 1]);
 503	sg_mark_end(&desc->outfrags[desc->fragno - 1]);
 504
 505	skcipher_request_set_crypt(desc->req, desc->infrags, desc->outfrags,
 506				   thislen, desc->iv);
 507
 508	ret = crypto_skcipher_encrypt(desc->req);
 509	if (ret)
 510		return ret;
 511
 512	sg_init_table(desc->infrags, 4);
 513	sg_init_table(desc->outfrags, 4);
 514
 515	if (fraglen) {
 516		sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen,
 517				sg->offset + sg->length - fraglen);
 518		desc->infrags[0] = desc->outfrags[0];
 519		sg_assign_page(&desc->infrags[0], in_page);
 520		desc->fragno = 1;
 521		desc->fraglen = fraglen;
 522	} else {
 523		desc->fragno = 0;
 524		desc->fraglen = 0;
 525	}
 526	return 0;
 527}
 528
 529int
 530gss_encrypt_xdr_buf(struct crypto_sync_skcipher *tfm, struct xdr_buf *buf,
 531		    int offset, struct page **pages)
 532{
 533	int ret;
 534	struct encryptor_desc desc;
 535	SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
 536
 537	BUG_ON((buf->len - offset) % crypto_sync_skcipher_blocksize(tfm) != 0);
 538
 539	skcipher_request_set_sync_tfm(req, tfm);
 540	skcipher_request_set_callback(req, 0, NULL, NULL);
 541
 542	memset(desc.iv, 0, sizeof(desc.iv));
 543	desc.req = req;
 544	desc.pos = offset;
 545	desc.outbuf = buf;
 546	desc.pages = pages;
 547	desc.fragno = 0;
 548	desc.fraglen = 0;
 549
 550	sg_init_table(desc.infrags, 4);
 551	sg_init_table(desc.outfrags, 4);
 552
 553	ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc);
 554	skcipher_request_zero(req);
 555	return ret;
 556}
 557
 558struct decryptor_desc {
 559	u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
 560	struct skcipher_request *req;
 561	struct scatterlist frags[4];
 562	int fragno;
 563	int fraglen;
 564};
 565
 566static int
 567decryptor(struct scatterlist *sg, void *data)
 568{
 569	struct decryptor_desc *desc = data;
 570	int thislen = desc->fraglen + sg->length;
 571	struct crypto_sync_skcipher *tfm =
 572		crypto_sync_skcipher_reqtfm(desc->req);
 573	int fraglen, ret;
 574
 575	/* Worst case is 4 fragments: head, end of page 1, start
 576	 * of page 2, tail.  Anything more is a bug. */
 577	BUG_ON(desc->fragno > 3);
 578	sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length,
 579		    sg->offset);
 580	desc->fragno++;
 581	desc->fraglen += sg->length;
 582
 583	fraglen = thislen & (crypto_sync_skcipher_blocksize(tfm) - 1);
 584	thislen -= fraglen;
 585
 586	if (thislen == 0)
 587		return 0;
 588
 589	sg_mark_end(&desc->frags[desc->fragno - 1]);
 590
 591	skcipher_request_set_crypt(desc->req, desc->frags, desc->frags,
 592				   thislen, desc->iv);
 593
 594	ret = crypto_skcipher_decrypt(desc->req);
 595	if (ret)
 596		return ret;
 597
 598	sg_init_table(desc->frags, 4);
 599
 600	if (fraglen) {
 601		sg_set_page(&desc->frags[0], sg_page(sg), fraglen,
 602				sg->offset + sg->length - fraglen);
 603		desc->fragno = 1;
 604		desc->fraglen = fraglen;
 605	} else {
 606		desc->fragno = 0;
 607		desc->fraglen = 0;
 608	}
 609	return 0;
 610}
 611
 612int
 613gss_decrypt_xdr_buf(struct crypto_sync_skcipher *tfm, struct xdr_buf *buf,
 614		    int offset)
 615{
 616	int ret;
 617	struct decryptor_desc desc;
 618	SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
 619
 620	/* XXXJBF: */
 621	BUG_ON((buf->len - offset) % crypto_sync_skcipher_blocksize(tfm) != 0);
 622
 623	skcipher_request_set_sync_tfm(req, tfm);
 624	skcipher_request_set_callback(req, 0, NULL, NULL);
 625
 626	memset(desc.iv, 0, sizeof(desc.iv));
 627	desc.req = req;
 628	desc.fragno = 0;
 629	desc.fraglen = 0;
 630
 631	sg_init_table(desc.frags, 4);
 632
 633	ret = xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc);
 634	skcipher_request_zero(req);
 635	return ret;
 636}
 637
 638/*
 639 * This function makes the assumption that it was ultimately called
 640 * from gss_wrap().
 641 *
 642 * The client auth_gss code moves any existing tail data into a
 643 * separate page before calling gss_wrap.
 644 * The server svcauth_gss code ensures that both the head and the
 645 * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap.
 646 *
 647 * Even with that guarantee, this function may be called more than
 648 * once in the processing of gss_wrap().  The best we can do is
 649 * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the
 650 * largest expected shift will fit within RPC_MAX_AUTH_SIZE.
 651 * At run-time we can verify that a single invocation of this
 652 * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE.
 653 */
 654
 655int
 656xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen)
 657{
 658	u8 *p;
 659
 660	if (shiftlen == 0)
 661		return 0;
 662
 663	BUILD_BUG_ON(GSS_KRB5_MAX_SLACK_NEEDED > RPC_MAX_AUTH_SIZE);
 664	BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE);
 665
 666	p = buf->head[0].iov_base + base;
 667
 668	memmove(p + shiftlen, p, buf->head[0].iov_len - base);
 669
 670	buf->head[0].iov_len += shiftlen;
 671	buf->len += shiftlen;
 672
 673	return 0;
 674}
 675
 676static u32
 677gss_krb5_cts_crypt(struct crypto_sync_skcipher *cipher, struct xdr_buf *buf,
 678		   u32 offset, u8 *iv, struct page **pages, int encrypt)
 679{
 680	u32 ret;
 681	struct scatterlist sg[1];
 682	SYNC_SKCIPHER_REQUEST_ON_STACK(req, cipher);
 683	u8 *data;
 684	struct page **save_pages;
 685	u32 len = buf->len - offset;
 686
 687	if (len > GSS_KRB5_MAX_BLOCKSIZE * 2) {
 688		WARN_ON(0);
 689		return -ENOMEM;
 690	}
 691	data = kmalloc(GSS_KRB5_MAX_BLOCKSIZE * 2, GFP_NOFS);
 692	if (!data)
 693		return -ENOMEM;
 694
 695	/*
 696	 * For encryption, we want to read from the cleartext
 697	 * page cache pages, and write the encrypted data to
 698	 * the supplied xdr_buf pages.
 699	 */
 700	save_pages = buf->pages;
 701	if (encrypt)
 702		buf->pages = pages;
 703
 704	ret = read_bytes_from_xdr_buf(buf, offset, data, len);
 705	buf->pages = save_pages;
 706	if (ret)
 707		goto out;
 708
 709	sg_init_one(sg, data, len);
 710
 711	skcipher_request_set_sync_tfm(req, cipher);
 712	skcipher_request_set_callback(req, 0, NULL, NULL);
 713	skcipher_request_set_crypt(req, sg, sg, len, iv);
 714
 715	if (encrypt)
 716		ret = crypto_skcipher_encrypt(req);
 717	else
 718		ret = crypto_skcipher_decrypt(req);
 719
 720	skcipher_request_zero(req);
 721
 722	if (ret)
 723		goto out;
 724
 725	ret = write_bytes_to_xdr_buf(buf, offset, data, len);
 726
 727out:
 728	kfree(data);
 729	return ret;
 730}
 731
 732u32
 733gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset,
 734		     struct xdr_buf *buf, struct page **pages)
 735{
 736	u32 err;
 737	struct xdr_netobj hmac;
 738	u8 *cksumkey;
 739	u8 *ecptr;
 740	struct crypto_sync_skcipher *cipher, *aux_cipher;
 741	int blocksize;
 742	struct page **save_pages;
 743	int nblocks, nbytes;
 744	struct encryptor_desc desc;
 745	u32 cbcbytes;
 746	unsigned int usage;
 747
 748	if (kctx->initiate) {
 749		cipher = kctx->initiator_enc;
 750		aux_cipher = kctx->initiator_enc_aux;
 751		cksumkey = kctx->initiator_integ;
 752		usage = KG_USAGE_INITIATOR_SEAL;
 753	} else {
 754		cipher = kctx->acceptor_enc;
 755		aux_cipher = kctx->acceptor_enc_aux;
 756		cksumkey = kctx->acceptor_integ;
 757		usage = KG_USAGE_ACCEPTOR_SEAL;
 758	}
 759	blocksize = crypto_sync_skcipher_blocksize(cipher);
 760
 761	/* hide the gss token header and insert the confounder */
 762	offset += GSS_KRB5_TOK_HDR_LEN;
 763	if (xdr_extend_head(buf, offset, kctx->gk5e->conflen))
 764		return GSS_S_FAILURE;
 765	gss_krb5_make_confounder(buf->head[0].iov_base + offset, kctx->gk5e->conflen);
 766	offset -= GSS_KRB5_TOK_HDR_LEN;
 767
 768	if (buf->tail[0].iov_base != NULL) {
 769		ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
 770	} else {
 771		buf->tail[0].iov_base = buf->head[0].iov_base
 772							+ buf->head[0].iov_len;
 773		buf->tail[0].iov_len = 0;
 774		ecptr = buf->tail[0].iov_base;
 775	}
 776
 777	/* copy plaintext gss token header after filler (if any) */
 778	memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
 779	buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
 780	buf->len += GSS_KRB5_TOK_HDR_LEN;
 781
 782	/* Do the HMAC */
 783	hmac.len = GSS_KRB5_MAX_CKSUM_LEN;
 784	hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
 785
 786	/*
 787	 * When we are called, pages points to the real page cache
 788	 * data -- which we can't go and encrypt!  buf->pages points
 789	 * to scratch pages which we are going to send off to the
 790	 * client/server.  Swap in the plaintext pages to calculate
 791	 * the hmac.
 792	 */
 793	save_pages = buf->pages;
 794	buf->pages = pages;
 795
 796	err = make_checksum_v2(kctx, NULL, 0, buf,
 797			       offset + GSS_KRB5_TOK_HDR_LEN,
 798			       cksumkey, usage, &hmac);
 799	buf->pages = save_pages;
 800	if (err)
 801		return GSS_S_FAILURE;
 802
 803	nbytes = buf->len - offset - GSS_KRB5_TOK_HDR_LEN;
 804	nblocks = (nbytes + blocksize - 1) / blocksize;
 805	cbcbytes = 0;
 806	if (nblocks > 2)
 807		cbcbytes = (nblocks - 2) * blocksize;
 808
 809	memset(desc.iv, 0, sizeof(desc.iv));
 810
 811	if (cbcbytes) {
 812		SYNC_SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
 813
 814		desc.pos = offset + GSS_KRB5_TOK_HDR_LEN;
 815		desc.fragno = 0;
 816		desc.fraglen = 0;
 817		desc.pages = pages;
 818		desc.outbuf = buf;
 819		desc.req = req;
 820
 821		skcipher_request_set_sync_tfm(req, aux_cipher);
 822		skcipher_request_set_callback(req, 0, NULL, NULL);
 823
 824		sg_init_table(desc.infrags, 4);
 825		sg_init_table(desc.outfrags, 4);
 826
 827		err = xdr_process_buf(buf, offset + GSS_KRB5_TOK_HDR_LEN,
 828				      cbcbytes, encryptor, &desc);
 829		skcipher_request_zero(req);
 830		if (err)
 831			goto out_err;
 832	}
 833
 834	/* Make sure IV carries forward from any CBC results. */
 835	err = gss_krb5_cts_crypt(cipher, buf,
 836				 offset + GSS_KRB5_TOK_HDR_LEN + cbcbytes,
 837				 desc.iv, pages, 1);
 838	if (err) {
 839		err = GSS_S_FAILURE;
 840		goto out_err;
 841	}
 842
 843	/* Now update buf to account for HMAC */
 844	buf->tail[0].iov_len += kctx->gk5e->cksumlength;
 845	buf->len += kctx->gk5e->cksumlength;
 846
 847out_err:
 848	if (err)
 849		err = GSS_S_FAILURE;
 850	return err;
 851}
 852
 853u32
 854gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, struct xdr_buf *buf,
 855		     u32 *headskip, u32 *tailskip)
 856{
 857	struct xdr_buf subbuf;
 858	u32 ret = 0;
 859	u8 *cksum_key;
 860	struct crypto_sync_skcipher *cipher, *aux_cipher;
 861	struct xdr_netobj our_hmac_obj;
 862	u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
 863	u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
 864	int nblocks, blocksize, cbcbytes;
 865	struct decryptor_desc desc;
 866	unsigned int usage;
 867
 868	if (kctx->initiate) {
 869		cipher = kctx->acceptor_enc;
 870		aux_cipher = kctx->acceptor_enc_aux;
 871		cksum_key = kctx->acceptor_integ;
 872		usage = KG_USAGE_ACCEPTOR_SEAL;
 873	} else {
 874		cipher = kctx->initiator_enc;
 875		aux_cipher = kctx->initiator_enc_aux;
 876		cksum_key = kctx->initiator_integ;
 877		usage = KG_USAGE_INITIATOR_SEAL;
 878	}
 879	blocksize = crypto_sync_skcipher_blocksize(cipher);
 880
 881
 882	/* create a segment skipping the header and leaving out the checksum */
 883	xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
 884				    (buf->len - offset - GSS_KRB5_TOK_HDR_LEN -
 885				     kctx->gk5e->cksumlength));
 886
 887	nblocks = (subbuf.len + blocksize - 1) / blocksize;
 888
 889	cbcbytes = 0;
 890	if (nblocks > 2)
 891		cbcbytes = (nblocks - 2) * blocksize;
 892
 893	memset(desc.iv, 0, sizeof(desc.iv));
 894
 895	if (cbcbytes) {
 896		SYNC_SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
 897
 898		desc.fragno = 0;
 899		desc.fraglen = 0;
 900		desc.req = req;
 901
 902		skcipher_request_set_sync_tfm(req, aux_cipher);
 903		skcipher_request_set_callback(req, 0, NULL, NULL);
 904
 905		sg_init_table(desc.frags, 4);
 906
 907		ret = xdr_process_buf(&subbuf, 0, cbcbytes, decryptor, &desc);
 908		skcipher_request_zero(req);
 909		if (ret)
 910			goto out_err;
 911	}
 912
 913	/* Make sure IV carries forward from any CBC results. */
 914	ret = gss_krb5_cts_crypt(cipher, &subbuf, cbcbytes, desc.iv, NULL, 0);
 915	if (ret)
 916		goto out_err;
 917
 918
 919	/* Calculate our hmac over the plaintext data */
 920	our_hmac_obj.len = sizeof(our_hmac);
 921	our_hmac_obj.data = our_hmac;
 922
 923	ret = make_checksum_v2(kctx, NULL, 0, &subbuf, 0,
 924			       cksum_key, usage, &our_hmac_obj);
 925	if (ret)
 926		goto out_err;
 927
 928	/* Get the packet's hmac value */
 929	ret = read_bytes_from_xdr_buf(buf, buf->len - kctx->gk5e->cksumlength,
 930				      pkt_hmac, kctx->gk5e->cksumlength);
 931	if (ret)
 932		goto out_err;
 933
 934	if (crypto_memneq(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
 935		ret = GSS_S_BAD_SIG;
 936		goto out_err;
 937	}
 938	*headskip = kctx->gk5e->conflen;
 939	*tailskip = kctx->gk5e->cksumlength;
 940out_err:
 941	if (ret && ret != GSS_S_BAD_SIG)
 942		ret = GSS_S_FAILURE;
 943	return ret;
 944}
 945
 946/*
 947 * Compute Kseq given the initial session key and the checksum.
 948 * Set the key of the given cipher.
 949 */
 950int
 951krb5_rc4_setup_seq_key(struct krb5_ctx *kctx,
 952		       struct crypto_sync_skcipher *cipher,
 953		       unsigned char *cksum)
 954{
 955	struct crypto_shash *hmac;
 956	struct shash_desc *desc;
 957	u8 Kseq[GSS_KRB5_MAX_KEYLEN];
 958	u32 zeroconstant = 0;
 959	int err;
 960
 961	dprintk("%s: entered\n", __func__);
 962
 963	hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
 964	if (IS_ERR(hmac)) {
 965		dprintk("%s: error %ld, allocating hash '%s'\n",
 966			__func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
 967		return PTR_ERR(hmac);
 968	}
 969
 970	desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac),
 971		       GFP_NOFS);
 972	if (!desc) {
 973		dprintk("%s: failed to allocate shash descriptor for '%s'\n",
 974			__func__, kctx->gk5e->cksum_name);
 975		crypto_free_shash(hmac);
 976		return -ENOMEM;
 977	}
 978
 979	desc->tfm = hmac;
 
 980
 981	/* Compute intermediate Kseq from session key */
 982	err = crypto_shash_setkey(hmac, kctx->Ksess, kctx->gk5e->keylength);
 983	if (err)
 984		goto out_err;
 985
 986	err = crypto_shash_digest(desc, (u8 *)&zeroconstant, 4, Kseq);
 987	if (err)
 988		goto out_err;
 989
 990	/* Compute final Kseq from the checksum and intermediate Kseq */
 991	err = crypto_shash_setkey(hmac, Kseq, kctx->gk5e->keylength);
 992	if (err)
 993		goto out_err;
 994
 995	err = crypto_shash_digest(desc, cksum, 8, Kseq);
 996	if (err)
 997		goto out_err;
 998
 999	err = crypto_sync_skcipher_setkey(cipher, Kseq, kctx->gk5e->keylength);
1000	if (err)
1001		goto out_err;
1002
1003	err = 0;
1004
1005out_err:
1006	kzfree(desc);
1007	crypto_free_shash(hmac);
1008	dprintk("%s: returning %d\n", __func__, err);
1009	return err;
1010}
1011
1012/*
1013 * Compute Kcrypt given the initial session key and the plaintext seqnum.
1014 * Set the key of cipher kctx->enc.
1015 */
1016int
1017krb5_rc4_setup_enc_key(struct krb5_ctx *kctx,
1018		       struct crypto_sync_skcipher *cipher,
1019		       s32 seqnum)
1020{
1021	struct crypto_shash *hmac;
1022	struct shash_desc *desc;
1023	u8 Kcrypt[GSS_KRB5_MAX_KEYLEN];
1024	u8 zeroconstant[4] = {0};
1025	u8 seqnumarray[4];
1026	int err, i;
1027
1028	dprintk("%s: entered, seqnum %u\n", __func__, seqnum);
1029
1030	hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
1031	if (IS_ERR(hmac)) {
1032		dprintk("%s: error %ld, allocating hash '%s'\n",
1033			__func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
1034		return PTR_ERR(hmac);
1035	}
1036
1037	desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac),
1038		       GFP_NOFS);
1039	if (!desc) {
1040		dprintk("%s: failed to allocate shash descriptor for '%s'\n",
1041			__func__, kctx->gk5e->cksum_name);
1042		crypto_free_shash(hmac);
1043		return -ENOMEM;
1044	}
1045
1046	desc->tfm = hmac;
 
1047
1048	/* Compute intermediate Kcrypt from session key */
1049	for (i = 0; i < kctx->gk5e->keylength; i++)
1050		Kcrypt[i] = kctx->Ksess[i] ^ 0xf0;
1051
1052	err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
1053	if (err)
1054		goto out_err;
1055
1056	err = crypto_shash_digest(desc, zeroconstant, 4, Kcrypt);
1057	if (err)
1058		goto out_err;
1059
1060	/* Compute final Kcrypt from the seqnum and intermediate Kcrypt */
1061	err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
1062	if (err)
1063		goto out_err;
1064
1065	seqnumarray[0] = (unsigned char) ((seqnum >> 24) & 0xff);
1066	seqnumarray[1] = (unsigned char) ((seqnum >> 16) & 0xff);
1067	seqnumarray[2] = (unsigned char) ((seqnum >> 8) & 0xff);
1068	seqnumarray[3] = (unsigned char) ((seqnum >> 0) & 0xff);
1069
1070	err = crypto_shash_digest(desc, seqnumarray, 4, Kcrypt);
1071	if (err)
1072		goto out_err;
1073
1074	err = crypto_sync_skcipher_setkey(cipher, Kcrypt,
1075					  kctx->gk5e->keylength);
1076	if (err)
1077		goto out_err;
1078
1079	err = 0;
1080
1081out_err:
1082	kzfree(desc);
1083	crypto_free_shash(hmac);
1084	dprintk("%s: returning %d\n", __func__, err);
1085	return err;
1086}
v4.10.11
   1/*
   2 *  linux/net/sunrpc/gss_krb5_crypto.c
   3 *
   4 *  Copyright (c) 2000-2008 The Regents of the University of Michigan.
   5 *  All rights reserved.
   6 *
   7 *  Andy Adamson   <andros@umich.edu>
   8 *  Bruce Fields   <bfields@umich.edu>
   9 */
  10
  11/*
  12 * Copyright (C) 1998 by the FundsXpress, INC.
  13 *
  14 * All rights reserved.
  15 *
  16 * Export of this software from the United States of America may require
  17 * a specific license from the United States Government.  It is the
  18 * responsibility of any person or organization contemplating export to
  19 * obtain such a license before exporting.
  20 *
  21 * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
  22 * distribute this software and its documentation for any purpose and
  23 * without fee is hereby granted, provided that the above copyright
  24 * notice appear in all copies and that both that copyright notice and
  25 * this permission notice appear in supporting documentation, and that
  26 * the name of FundsXpress. not be used in advertising or publicity pertaining
  27 * to distribution of the software without specific, written prior
  28 * permission.  FundsXpress makes no representations about the suitability of
  29 * this software for any purpose.  It is provided "as is" without express
  30 * or implied warranty.
  31 *
  32 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
  33 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
  34 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
  35 */
  36
 
  37#include <crypto/hash.h>
  38#include <crypto/skcipher.h>
  39#include <linux/err.h>
  40#include <linux/types.h>
  41#include <linux/mm.h>
  42#include <linux/scatterlist.h>
  43#include <linux/highmem.h>
  44#include <linux/pagemap.h>
  45#include <linux/random.h>
  46#include <linux/sunrpc/gss_krb5.h>
  47#include <linux/sunrpc/xdr.h>
  48
  49#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
  50# define RPCDBG_FACILITY        RPCDBG_AUTH
  51#endif
  52
  53u32
  54krb5_encrypt(
  55	struct crypto_skcipher *tfm,
  56	void * iv,
  57	void * in,
  58	void * out,
  59	int length)
  60{
  61	u32 ret = -EINVAL;
  62	struct scatterlist sg[1];
  63	u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
  64	SKCIPHER_REQUEST_ON_STACK(req, tfm);
  65
  66	if (length % crypto_skcipher_blocksize(tfm) != 0)
  67		goto out;
  68
  69	if (crypto_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
  70		dprintk("RPC:       gss_k5encrypt: tfm iv size too large %d\n",
  71			crypto_skcipher_ivsize(tfm));
  72		goto out;
  73	}
  74
  75	if (iv)
  76		memcpy(local_iv, iv, crypto_skcipher_ivsize(tfm));
  77
  78	memcpy(out, in, length);
  79	sg_init_one(sg, out, length);
  80
  81	skcipher_request_set_tfm(req, tfm);
  82	skcipher_request_set_callback(req, 0, NULL, NULL);
  83	skcipher_request_set_crypt(req, sg, sg, length, local_iv);
  84
  85	ret = crypto_skcipher_encrypt(req);
  86	skcipher_request_zero(req);
  87out:
  88	dprintk("RPC:       krb5_encrypt returns %d\n", ret);
  89	return ret;
  90}
  91
  92u32
  93krb5_decrypt(
  94     struct crypto_skcipher *tfm,
  95     void * iv,
  96     void * in,
  97     void * out,
  98     int length)
  99{
 100	u32 ret = -EINVAL;
 101	struct scatterlist sg[1];
 102	u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
 103	SKCIPHER_REQUEST_ON_STACK(req, tfm);
 104
 105	if (length % crypto_skcipher_blocksize(tfm) != 0)
 106		goto out;
 107
 108	if (crypto_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
 109		dprintk("RPC:       gss_k5decrypt: tfm iv size too large %d\n",
 110			crypto_skcipher_ivsize(tfm));
 111		goto out;
 112	}
 113	if (iv)
 114		memcpy(local_iv,iv, crypto_skcipher_ivsize(tfm));
 115
 116	memcpy(out, in, length);
 117	sg_init_one(sg, out, length);
 118
 119	skcipher_request_set_tfm(req, tfm);
 120	skcipher_request_set_callback(req, 0, NULL, NULL);
 121	skcipher_request_set_crypt(req, sg, sg, length, local_iv);
 122
 123	ret = crypto_skcipher_decrypt(req);
 124	skcipher_request_zero(req);
 125out:
 126	dprintk("RPC:       gss_k5decrypt returns %d\n",ret);
 127	return ret;
 128}
 129
 130static int
 131checksummer(struct scatterlist *sg, void *data)
 132{
 133	struct ahash_request *req = data;
 134
 135	ahash_request_set_crypt(req, sg, NULL, sg->length);
 136
 137	return crypto_ahash_update(req);
 138}
 139
 140static int
 141arcfour_hmac_md5_usage_to_salt(unsigned int usage, u8 salt[4])
 142{
 143	unsigned int ms_usage;
 144
 145	switch (usage) {
 146	case KG_USAGE_SIGN:
 147		ms_usage = 15;
 148		break;
 149	case KG_USAGE_SEAL:
 150		ms_usage = 13;
 151		break;
 152	default:
 153		return -EINVAL;
 154	}
 155	salt[0] = (ms_usage >> 0) & 0xff;
 156	salt[1] = (ms_usage >> 8) & 0xff;
 157	salt[2] = (ms_usage >> 16) & 0xff;
 158	salt[3] = (ms_usage >> 24) & 0xff;
 159
 160	return 0;
 161}
 162
 163static u32
 164make_checksum_hmac_md5(struct krb5_ctx *kctx, char *header, int hdrlen,
 165		       struct xdr_buf *body, int body_offset, u8 *cksumkey,
 166		       unsigned int usage, struct xdr_netobj *cksumout)
 167{
 168	struct scatterlist              sg[1];
 169	int err = -1;
 170	u8 *checksumdata;
 171	u8 rc4salt[4];
 172	struct crypto_ahash *md5;
 173	struct crypto_ahash *hmac_md5;
 174	struct ahash_request *req;
 175
 176	if (cksumkey == NULL)
 177		return GSS_S_FAILURE;
 178
 179	if (cksumout->len < kctx->gk5e->cksumlength) {
 180		dprintk("%s: checksum buffer length, %u, too small for %s\n",
 181			__func__, cksumout->len, kctx->gk5e->name);
 182		return GSS_S_FAILURE;
 183	}
 184
 
 
 
 
 185	if (arcfour_hmac_md5_usage_to_salt(usage, rc4salt)) {
 186		dprintk("%s: invalid usage value %u\n", __func__, usage);
 187		return GSS_S_FAILURE;
 188	}
 189
 190	checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
 191	if (!checksumdata)
 192		return GSS_S_FAILURE;
 193
 194	md5 = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
 195	if (IS_ERR(md5))
 196		goto out_free_cksum;
 197
 198	hmac_md5 = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0,
 199				      CRYPTO_ALG_ASYNC);
 200	if (IS_ERR(hmac_md5))
 201		goto out_free_md5;
 202
 203	req = ahash_request_alloc(md5, GFP_NOFS);
 204	if (!req)
 205		goto out_free_hmac_md5;
 206
 207	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 208
 209	err = crypto_ahash_init(req);
 210	if (err)
 211		goto out;
 212	sg_init_one(sg, rc4salt, 4);
 213	ahash_request_set_crypt(req, sg, NULL, 4);
 214	err = crypto_ahash_update(req);
 215	if (err)
 216		goto out;
 217
 218	sg_init_one(sg, header, hdrlen);
 219	ahash_request_set_crypt(req, sg, NULL, hdrlen);
 220	err = crypto_ahash_update(req);
 221	if (err)
 222		goto out;
 223	err = xdr_process_buf(body, body_offset, body->len - body_offset,
 224			      checksummer, req);
 225	if (err)
 226		goto out;
 227	ahash_request_set_crypt(req, NULL, checksumdata, 0);
 228	err = crypto_ahash_final(req);
 229	if (err)
 230		goto out;
 231
 232	ahash_request_free(req);
 233	req = ahash_request_alloc(hmac_md5, GFP_NOFS);
 234	if (!req)
 235		goto out_free_hmac_md5;
 236
 237	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 238
 239	err = crypto_ahash_init(req);
 240	if (err)
 241		goto out;
 242	err = crypto_ahash_setkey(hmac_md5, cksumkey, kctx->gk5e->keylength);
 243	if (err)
 244		goto out;
 245
 246	sg_init_one(sg, checksumdata, crypto_ahash_digestsize(md5));
 247	ahash_request_set_crypt(req, sg, checksumdata,
 248				crypto_ahash_digestsize(md5));
 249	err = crypto_ahash_digest(req);
 250	if (err)
 251		goto out;
 252
 253	memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
 254	cksumout->len = kctx->gk5e->cksumlength;
 255out:
 256	ahash_request_free(req);
 257out_free_hmac_md5:
 258	crypto_free_ahash(hmac_md5);
 259out_free_md5:
 260	crypto_free_ahash(md5);
 261out_free_cksum:
 262	kfree(checksumdata);
 
 
 263	return err ? GSS_S_FAILURE : 0;
 264}
 265
 266/*
 267 * checksum the plaintext data and hdrlen bytes of the token header
 268 * The checksum is performed over the first 8 bytes of the
 269 * gss token header and then over the data body
 270 */
 271u32
 272make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen,
 273	      struct xdr_buf *body, int body_offset, u8 *cksumkey,
 274	      unsigned int usage, struct xdr_netobj *cksumout)
 275{
 276	struct crypto_ahash *tfm;
 277	struct ahash_request *req;
 278	struct scatterlist              sg[1];
 279	int err = -1;
 280	u8 *checksumdata;
 281	unsigned int checksumlen;
 282
 283	if (kctx->gk5e->ctype == CKSUMTYPE_HMAC_MD5_ARCFOUR)
 284		return make_checksum_hmac_md5(kctx, header, hdrlen,
 285					      body, body_offset,
 286					      cksumkey, usage, cksumout);
 287
 288	if (cksumout->len < kctx->gk5e->cksumlength) {
 289		dprintk("%s: checksum buffer length, %u, too small for %s\n",
 290			__func__, cksumout->len, kctx->gk5e->name);
 291		return GSS_S_FAILURE;
 292	}
 293
 294	checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
 295	if (checksumdata == NULL)
 296		return GSS_S_FAILURE;
 297
 298	tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
 299	if (IS_ERR(tfm))
 300		goto out_free_cksum;
 301
 302	req = ahash_request_alloc(tfm, GFP_NOFS);
 303	if (!req)
 304		goto out_free_ahash;
 305
 306	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 307
 308	checksumlen = crypto_ahash_digestsize(tfm);
 309
 310	if (cksumkey != NULL) {
 311		err = crypto_ahash_setkey(tfm, cksumkey,
 312					  kctx->gk5e->keylength);
 313		if (err)
 314			goto out;
 315	}
 316
 317	err = crypto_ahash_init(req);
 318	if (err)
 319		goto out;
 320	sg_init_one(sg, header, hdrlen);
 321	ahash_request_set_crypt(req, sg, NULL, hdrlen);
 322	err = crypto_ahash_update(req);
 323	if (err)
 324		goto out;
 325	err = xdr_process_buf(body, body_offset, body->len - body_offset,
 326			      checksummer, req);
 327	if (err)
 328		goto out;
 329	ahash_request_set_crypt(req, NULL, checksumdata, 0);
 330	err = crypto_ahash_final(req);
 331	if (err)
 332		goto out;
 333
 334	switch (kctx->gk5e->ctype) {
 335	case CKSUMTYPE_RSA_MD5:
 336		err = kctx->gk5e->encrypt(kctx->seq, NULL, checksumdata,
 337					  checksumdata, checksumlen);
 338		if (err)
 339			goto out;
 340		memcpy(cksumout->data,
 341		       checksumdata + checksumlen - kctx->gk5e->cksumlength,
 342		       kctx->gk5e->cksumlength);
 343		break;
 344	case CKSUMTYPE_HMAC_SHA1_DES3:
 345		memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
 346		break;
 347	default:
 348		BUG();
 349		break;
 350	}
 351	cksumout->len = kctx->gk5e->cksumlength;
 352out:
 353	ahash_request_free(req);
 354out_free_ahash:
 355	crypto_free_ahash(tfm);
 356out_free_cksum:
 357	kfree(checksumdata);
 358	return err ? GSS_S_FAILURE : 0;
 359}
 360
 361/*
 362 * checksum the plaintext data and hdrlen bytes of the token header
 363 * Per rfc4121, sec. 4.2.4, the checksum is performed over the data
 364 * body then over the first 16 octets of the MIC token
 365 * Inclusion of the header data in the calculation of the
 366 * checksum is optional.
 367 */
 368u32
 369make_checksum_v2(struct krb5_ctx *kctx, char *header, int hdrlen,
 370		 struct xdr_buf *body, int body_offset, u8 *cksumkey,
 371		 unsigned int usage, struct xdr_netobj *cksumout)
 372{
 373	struct crypto_ahash *tfm;
 374	struct ahash_request *req;
 375	struct scatterlist sg[1];
 376	int err = -1;
 377	u8 *checksumdata;
 378	unsigned int checksumlen;
 379
 380	if (kctx->gk5e->keyed_cksum == 0) {
 381		dprintk("%s: expected keyed hash for %s\n",
 382			__func__, kctx->gk5e->name);
 383		return GSS_S_FAILURE;
 384	}
 385	if (cksumkey == NULL) {
 386		dprintk("%s: no key supplied for %s\n",
 387			__func__, kctx->gk5e->name);
 388		return GSS_S_FAILURE;
 389	}
 390
 391	checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
 392	if (!checksumdata)
 393		return GSS_S_FAILURE;
 394
 395	tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
 396	if (IS_ERR(tfm))
 397		goto out_free_cksum;
 398	checksumlen = crypto_ahash_digestsize(tfm);
 399
 400	req = ahash_request_alloc(tfm, GFP_NOFS);
 401	if (!req)
 402		goto out_free_ahash;
 403
 404	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 405
 406	err = crypto_ahash_setkey(tfm, cksumkey, kctx->gk5e->keylength);
 407	if (err)
 408		goto out;
 409
 410	err = crypto_ahash_init(req);
 411	if (err)
 412		goto out;
 413	err = xdr_process_buf(body, body_offset, body->len - body_offset,
 414			      checksummer, req);
 415	if (err)
 416		goto out;
 417	if (header != NULL) {
 418		sg_init_one(sg, header, hdrlen);
 419		ahash_request_set_crypt(req, sg, NULL, hdrlen);
 420		err = crypto_ahash_update(req);
 421		if (err)
 422			goto out;
 423	}
 424	ahash_request_set_crypt(req, NULL, checksumdata, 0);
 425	err = crypto_ahash_final(req);
 426	if (err)
 427		goto out;
 428
 429	cksumout->len = kctx->gk5e->cksumlength;
 430
 431	switch (kctx->gk5e->ctype) {
 432	case CKSUMTYPE_HMAC_SHA1_96_AES128:
 433	case CKSUMTYPE_HMAC_SHA1_96_AES256:
 434		/* note that this truncates the hash */
 435		memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
 436		break;
 437	default:
 438		BUG();
 439		break;
 440	}
 441out:
 442	ahash_request_free(req);
 443out_free_ahash:
 444	crypto_free_ahash(tfm);
 445out_free_cksum:
 446	kfree(checksumdata);
 447	return err ? GSS_S_FAILURE : 0;
 448}
 449
 450struct encryptor_desc {
 451	u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
 452	struct skcipher_request *req;
 453	int pos;
 454	struct xdr_buf *outbuf;
 455	struct page **pages;
 456	struct scatterlist infrags[4];
 457	struct scatterlist outfrags[4];
 458	int fragno;
 459	int fraglen;
 460};
 461
 462static int
 463encryptor(struct scatterlist *sg, void *data)
 464{
 465	struct encryptor_desc *desc = data;
 466	struct xdr_buf *outbuf = desc->outbuf;
 467	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(desc->req);
 
 468	struct page *in_page;
 469	int thislen = desc->fraglen + sg->length;
 470	int fraglen, ret;
 471	int page_pos;
 472
 473	/* Worst case is 4 fragments: head, end of page 1, start
 474	 * of page 2, tail.  Anything more is a bug. */
 475	BUG_ON(desc->fragno > 3);
 476
 477	page_pos = desc->pos - outbuf->head[0].iov_len;
 478	if (page_pos >= 0 && page_pos < outbuf->page_len) {
 479		/* pages are not in place: */
 480		int i = (page_pos + outbuf->page_base) >> PAGE_SHIFT;
 481		in_page = desc->pages[i];
 482	} else {
 483		in_page = sg_page(sg);
 484	}
 485	sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length,
 486		    sg->offset);
 487	sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length,
 488		    sg->offset);
 489	desc->fragno++;
 490	desc->fraglen += sg->length;
 491	desc->pos += sg->length;
 492
 493	fraglen = thislen & (crypto_skcipher_blocksize(tfm) - 1);
 494	thislen -= fraglen;
 495
 496	if (thislen == 0)
 497		return 0;
 498
 499	sg_mark_end(&desc->infrags[desc->fragno - 1]);
 500	sg_mark_end(&desc->outfrags[desc->fragno - 1]);
 501
 502	skcipher_request_set_crypt(desc->req, desc->infrags, desc->outfrags,
 503				   thislen, desc->iv);
 504
 505	ret = crypto_skcipher_encrypt(desc->req);
 506	if (ret)
 507		return ret;
 508
 509	sg_init_table(desc->infrags, 4);
 510	sg_init_table(desc->outfrags, 4);
 511
 512	if (fraglen) {
 513		sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen,
 514				sg->offset + sg->length - fraglen);
 515		desc->infrags[0] = desc->outfrags[0];
 516		sg_assign_page(&desc->infrags[0], in_page);
 517		desc->fragno = 1;
 518		desc->fraglen = fraglen;
 519	} else {
 520		desc->fragno = 0;
 521		desc->fraglen = 0;
 522	}
 523	return 0;
 524}
 525
 526int
 527gss_encrypt_xdr_buf(struct crypto_skcipher *tfm, struct xdr_buf *buf,
 528		    int offset, struct page **pages)
 529{
 530	int ret;
 531	struct encryptor_desc desc;
 532	SKCIPHER_REQUEST_ON_STACK(req, tfm);
 533
 534	BUG_ON((buf->len - offset) % crypto_skcipher_blocksize(tfm) != 0);
 535
 536	skcipher_request_set_tfm(req, tfm);
 537	skcipher_request_set_callback(req, 0, NULL, NULL);
 538
 539	memset(desc.iv, 0, sizeof(desc.iv));
 540	desc.req = req;
 541	desc.pos = offset;
 542	desc.outbuf = buf;
 543	desc.pages = pages;
 544	desc.fragno = 0;
 545	desc.fraglen = 0;
 546
 547	sg_init_table(desc.infrags, 4);
 548	sg_init_table(desc.outfrags, 4);
 549
 550	ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc);
 551	skcipher_request_zero(req);
 552	return ret;
 553}
 554
 555struct decryptor_desc {
 556	u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
 557	struct skcipher_request *req;
 558	struct scatterlist frags[4];
 559	int fragno;
 560	int fraglen;
 561};
 562
 563static int
 564decryptor(struct scatterlist *sg, void *data)
 565{
 566	struct decryptor_desc *desc = data;
 567	int thislen = desc->fraglen + sg->length;
 568	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(desc->req);
 
 569	int fraglen, ret;
 570
 571	/* Worst case is 4 fragments: head, end of page 1, start
 572	 * of page 2, tail.  Anything more is a bug. */
 573	BUG_ON(desc->fragno > 3);
 574	sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length,
 575		    sg->offset);
 576	desc->fragno++;
 577	desc->fraglen += sg->length;
 578
 579	fraglen = thislen & (crypto_skcipher_blocksize(tfm) - 1);
 580	thislen -= fraglen;
 581
 582	if (thislen == 0)
 583		return 0;
 584
 585	sg_mark_end(&desc->frags[desc->fragno - 1]);
 586
 587	skcipher_request_set_crypt(desc->req, desc->frags, desc->frags,
 588				   thislen, desc->iv);
 589
 590	ret = crypto_skcipher_decrypt(desc->req);
 591	if (ret)
 592		return ret;
 593
 594	sg_init_table(desc->frags, 4);
 595
 596	if (fraglen) {
 597		sg_set_page(&desc->frags[0], sg_page(sg), fraglen,
 598				sg->offset + sg->length - fraglen);
 599		desc->fragno = 1;
 600		desc->fraglen = fraglen;
 601	} else {
 602		desc->fragno = 0;
 603		desc->fraglen = 0;
 604	}
 605	return 0;
 606}
 607
 608int
 609gss_decrypt_xdr_buf(struct crypto_skcipher *tfm, struct xdr_buf *buf,
 610		    int offset)
 611{
 612	int ret;
 613	struct decryptor_desc desc;
 614	SKCIPHER_REQUEST_ON_STACK(req, tfm);
 615
 616	/* XXXJBF: */
 617	BUG_ON((buf->len - offset) % crypto_skcipher_blocksize(tfm) != 0);
 618
 619	skcipher_request_set_tfm(req, tfm);
 620	skcipher_request_set_callback(req, 0, NULL, NULL);
 621
 622	memset(desc.iv, 0, sizeof(desc.iv));
 623	desc.req = req;
 624	desc.fragno = 0;
 625	desc.fraglen = 0;
 626
 627	sg_init_table(desc.frags, 4);
 628
 629	ret = xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc);
 630	skcipher_request_zero(req);
 631	return ret;
 632}
 633
 634/*
 635 * This function makes the assumption that it was ultimately called
 636 * from gss_wrap().
 637 *
 638 * The client auth_gss code moves any existing tail data into a
 639 * separate page before calling gss_wrap.
 640 * The server svcauth_gss code ensures that both the head and the
 641 * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap.
 642 *
 643 * Even with that guarantee, this function may be called more than
 644 * once in the processing of gss_wrap().  The best we can do is
 645 * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the
 646 * largest expected shift will fit within RPC_MAX_AUTH_SIZE.
 647 * At run-time we can verify that a single invocation of this
 648 * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE.
 649 */
 650
 651int
 652xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen)
 653{
 654	u8 *p;
 655
 656	if (shiftlen == 0)
 657		return 0;
 658
 659	BUILD_BUG_ON(GSS_KRB5_MAX_SLACK_NEEDED > RPC_MAX_AUTH_SIZE);
 660	BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE);
 661
 662	p = buf->head[0].iov_base + base;
 663
 664	memmove(p + shiftlen, p, buf->head[0].iov_len - base);
 665
 666	buf->head[0].iov_len += shiftlen;
 667	buf->len += shiftlen;
 668
 669	return 0;
 670}
 671
 672static u32
 673gss_krb5_cts_crypt(struct crypto_skcipher *cipher, struct xdr_buf *buf,
 674		   u32 offset, u8 *iv, struct page **pages, int encrypt)
 675{
 676	u32 ret;
 677	struct scatterlist sg[1];
 678	SKCIPHER_REQUEST_ON_STACK(req, cipher);
 679	u8 *data;
 680	struct page **save_pages;
 681	u32 len = buf->len - offset;
 682
 683	if (len > GSS_KRB5_MAX_BLOCKSIZE * 2) {
 684		WARN_ON(0);
 685		return -ENOMEM;
 686	}
 687	data = kmalloc(GSS_KRB5_MAX_BLOCKSIZE * 2, GFP_NOFS);
 688	if (!data)
 689		return -ENOMEM;
 690
 691	/*
 692	 * For encryption, we want to read from the cleartext
 693	 * page cache pages, and write the encrypted data to
 694	 * the supplied xdr_buf pages.
 695	 */
 696	save_pages = buf->pages;
 697	if (encrypt)
 698		buf->pages = pages;
 699
 700	ret = read_bytes_from_xdr_buf(buf, offset, data, len);
 701	buf->pages = save_pages;
 702	if (ret)
 703		goto out;
 704
 705	sg_init_one(sg, data, len);
 706
 707	skcipher_request_set_tfm(req, cipher);
 708	skcipher_request_set_callback(req, 0, NULL, NULL);
 709	skcipher_request_set_crypt(req, sg, sg, len, iv);
 710
 711	if (encrypt)
 712		ret = crypto_skcipher_encrypt(req);
 713	else
 714		ret = crypto_skcipher_decrypt(req);
 715
 716	skcipher_request_zero(req);
 717
 718	if (ret)
 719		goto out;
 720
 721	ret = write_bytes_to_xdr_buf(buf, offset, data, len);
 722
 723out:
 724	kfree(data);
 725	return ret;
 726}
 727
 728u32
 729gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset,
 730		     struct xdr_buf *buf, struct page **pages)
 731{
 732	u32 err;
 733	struct xdr_netobj hmac;
 734	u8 *cksumkey;
 735	u8 *ecptr;
 736	struct crypto_skcipher *cipher, *aux_cipher;
 737	int blocksize;
 738	struct page **save_pages;
 739	int nblocks, nbytes;
 740	struct encryptor_desc desc;
 741	u32 cbcbytes;
 742	unsigned int usage;
 743
 744	if (kctx->initiate) {
 745		cipher = kctx->initiator_enc;
 746		aux_cipher = kctx->initiator_enc_aux;
 747		cksumkey = kctx->initiator_integ;
 748		usage = KG_USAGE_INITIATOR_SEAL;
 749	} else {
 750		cipher = kctx->acceptor_enc;
 751		aux_cipher = kctx->acceptor_enc_aux;
 752		cksumkey = kctx->acceptor_integ;
 753		usage = KG_USAGE_ACCEPTOR_SEAL;
 754	}
 755	blocksize = crypto_skcipher_blocksize(cipher);
 756
 757	/* hide the gss token header and insert the confounder */
 758	offset += GSS_KRB5_TOK_HDR_LEN;
 759	if (xdr_extend_head(buf, offset, kctx->gk5e->conflen))
 760		return GSS_S_FAILURE;
 761	gss_krb5_make_confounder(buf->head[0].iov_base + offset, kctx->gk5e->conflen);
 762	offset -= GSS_KRB5_TOK_HDR_LEN;
 763
 764	if (buf->tail[0].iov_base != NULL) {
 765		ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
 766	} else {
 767		buf->tail[0].iov_base = buf->head[0].iov_base
 768							+ buf->head[0].iov_len;
 769		buf->tail[0].iov_len = 0;
 770		ecptr = buf->tail[0].iov_base;
 771	}
 772
 773	/* copy plaintext gss token header after filler (if any) */
 774	memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
 775	buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
 776	buf->len += GSS_KRB5_TOK_HDR_LEN;
 777
 778	/* Do the HMAC */
 779	hmac.len = GSS_KRB5_MAX_CKSUM_LEN;
 780	hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
 781
 782	/*
 783	 * When we are called, pages points to the real page cache
 784	 * data -- which we can't go and encrypt!  buf->pages points
 785	 * to scratch pages which we are going to send off to the
 786	 * client/server.  Swap in the plaintext pages to calculate
 787	 * the hmac.
 788	 */
 789	save_pages = buf->pages;
 790	buf->pages = pages;
 791
 792	err = make_checksum_v2(kctx, NULL, 0, buf,
 793			       offset + GSS_KRB5_TOK_HDR_LEN,
 794			       cksumkey, usage, &hmac);
 795	buf->pages = save_pages;
 796	if (err)
 797		return GSS_S_FAILURE;
 798
 799	nbytes = buf->len - offset - GSS_KRB5_TOK_HDR_LEN;
 800	nblocks = (nbytes + blocksize - 1) / blocksize;
 801	cbcbytes = 0;
 802	if (nblocks > 2)
 803		cbcbytes = (nblocks - 2) * blocksize;
 804
 805	memset(desc.iv, 0, sizeof(desc.iv));
 806
 807	if (cbcbytes) {
 808		SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
 809
 810		desc.pos = offset + GSS_KRB5_TOK_HDR_LEN;
 811		desc.fragno = 0;
 812		desc.fraglen = 0;
 813		desc.pages = pages;
 814		desc.outbuf = buf;
 815		desc.req = req;
 816
 817		skcipher_request_set_tfm(req, aux_cipher);
 818		skcipher_request_set_callback(req, 0, NULL, NULL);
 819
 820		sg_init_table(desc.infrags, 4);
 821		sg_init_table(desc.outfrags, 4);
 822
 823		err = xdr_process_buf(buf, offset + GSS_KRB5_TOK_HDR_LEN,
 824				      cbcbytes, encryptor, &desc);
 825		skcipher_request_zero(req);
 826		if (err)
 827			goto out_err;
 828	}
 829
 830	/* Make sure IV carries forward from any CBC results. */
 831	err = gss_krb5_cts_crypt(cipher, buf,
 832				 offset + GSS_KRB5_TOK_HDR_LEN + cbcbytes,
 833				 desc.iv, pages, 1);
 834	if (err) {
 835		err = GSS_S_FAILURE;
 836		goto out_err;
 837	}
 838
 839	/* Now update buf to account for HMAC */
 840	buf->tail[0].iov_len += kctx->gk5e->cksumlength;
 841	buf->len += kctx->gk5e->cksumlength;
 842
 843out_err:
 844	if (err)
 845		err = GSS_S_FAILURE;
 846	return err;
 847}
 848
 849u32
 850gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, struct xdr_buf *buf,
 851		     u32 *headskip, u32 *tailskip)
 852{
 853	struct xdr_buf subbuf;
 854	u32 ret = 0;
 855	u8 *cksum_key;
 856	struct crypto_skcipher *cipher, *aux_cipher;
 857	struct xdr_netobj our_hmac_obj;
 858	u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
 859	u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
 860	int nblocks, blocksize, cbcbytes;
 861	struct decryptor_desc desc;
 862	unsigned int usage;
 863
 864	if (kctx->initiate) {
 865		cipher = kctx->acceptor_enc;
 866		aux_cipher = kctx->acceptor_enc_aux;
 867		cksum_key = kctx->acceptor_integ;
 868		usage = KG_USAGE_ACCEPTOR_SEAL;
 869	} else {
 870		cipher = kctx->initiator_enc;
 871		aux_cipher = kctx->initiator_enc_aux;
 872		cksum_key = kctx->initiator_integ;
 873		usage = KG_USAGE_INITIATOR_SEAL;
 874	}
 875	blocksize = crypto_skcipher_blocksize(cipher);
 876
 877
 878	/* create a segment skipping the header and leaving out the checksum */
 879	xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
 880				    (buf->len - offset - GSS_KRB5_TOK_HDR_LEN -
 881				     kctx->gk5e->cksumlength));
 882
 883	nblocks = (subbuf.len + blocksize - 1) / blocksize;
 884
 885	cbcbytes = 0;
 886	if (nblocks > 2)
 887		cbcbytes = (nblocks - 2) * blocksize;
 888
 889	memset(desc.iv, 0, sizeof(desc.iv));
 890
 891	if (cbcbytes) {
 892		SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
 893
 894		desc.fragno = 0;
 895		desc.fraglen = 0;
 896		desc.req = req;
 897
 898		skcipher_request_set_tfm(req, aux_cipher);
 899		skcipher_request_set_callback(req, 0, NULL, NULL);
 900
 901		sg_init_table(desc.frags, 4);
 902
 903		ret = xdr_process_buf(&subbuf, 0, cbcbytes, decryptor, &desc);
 904		skcipher_request_zero(req);
 905		if (ret)
 906			goto out_err;
 907	}
 908
 909	/* Make sure IV carries forward from any CBC results. */
 910	ret = gss_krb5_cts_crypt(cipher, &subbuf, cbcbytes, desc.iv, NULL, 0);
 911	if (ret)
 912		goto out_err;
 913
 914
 915	/* Calculate our hmac over the plaintext data */
 916	our_hmac_obj.len = sizeof(our_hmac);
 917	our_hmac_obj.data = our_hmac;
 918
 919	ret = make_checksum_v2(kctx, NULL, 0, &subbuf, 0,
 920			       cksum_key, usage, &our_hmac_obj);
 921	if (ret)
 922		goto out_err;
 923
 924	/* Get the packet's hmac value */
 925	ret = read_bytes_from_xdr_buf(buf, buf->len - kctx->gk5e->cksumlength,
 926				      pkt_hmac, kctx->gk5e->cksumlength);
 927	if (ret)
 928		goto out_err;
 929
 930	if (memcmp(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
 931		ret = GSS_S_BAD_SIG;
 932		goto out_err;
 933	}
 934	*headskip = kctx->gk5e->conflen;
 935	*tailskip = kctx->gk5e->cksumlength;
 936out_err:
 937	if (ret && ret != GSS_S_BAD_SIG)
 938		ret = GSS_S_FAILURE;
 939	return ret;
 940}
 941
 942/*
 943 * Compute Kseq given the initial session key and the checksum.
 944 * Set the key of the given cipher.
 945 */
 946int
 947krb5_rc4_setup_seq_key(struct krb5_ctx *kctx, struct crypto_skcipher *cipher,
 
 948		       unsigned char *cksum)
 949{
 950	struct crypto_shash *hmac;
 951	struct shash_desc *desc;
 952	u8 Kseq[GSS_KRB5_MAX_KEYLEN];
 953	u32 zeroconstant = 0;
 954	int err;
 955
 956	dprintk("%s: entered\n", __func__);
 957
 958	hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
 959	if (IS_ERR(hmac)) {
 960		dprintk("%s: error %ld, allocating hash '%s'\n",
 961			__func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
 962		return PTR_ERR(hmac);
 963	}
 964
 965	desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac),
 966		       GFP_NOFS);
 967	if (!desc) {
 968		dprintk("%s: failed to allocate shash descriptor for '%s'\n",
 969			__func__, kctx->gk5e->cksum_name);
 970		crypto_free_shash(hmac);
 971		return -ENOMEM;
 972	}
 973
 974	desc->tfm = hmac;
 975	desc->flags = 0;
 976
 977	/* Compute intermediate Kseq from session key */
 978	err = crypto_shash_setkey(hmac, kctx->Ksess, kctx->gk5e->keylength);
 979	if (err)
 980		goto out_err;
 981
 982	err = crypto_shash_digest(desc, (u8 *)&zeroconstant, 4, Kseq);
 983	if (err)
 984		goto out_err;
 985
 986	/* Compute final Kseq from the checksum and intermediate Kseq */
 987	err = crypto_shash_setkey(hmac, Kseq, kctx->gk5e->keylength);
 988	if (err)
 989		goto out_err;
 990
 991	err = crypto_shash_digest(desc, cksum, 8, Kseq);
 992	if (err)
 993		goto out_err;
 994
 995	err = crypto_skcipher_setkey(cipher, Kseq, kctx->gk5e->keylength);
 996	if (err)
 997		goto out_err;
 998
 999	err = 0;
1000
1001out_err:
1002	kzfree(desc);
1003	crypto_free_shash(hmac);
1004	dprintk("%s: returning %d\n", __func__, err);
1005	return err;
1006}
1007
1008/*
1009 * Compute Kcrypt given the initial session key and the plaintext seqnum.
1010 * Set the key of cipher kctx->enc.
1011 */
1012int
1013krb5_rc4_setup_enc_key(struct krb5_ctx *kctx, struct crypto_skcipher *cipher,
 
1014		       s32 seqnum)
1015{
1016	struct crypto_shash *hmac;
1017	struct shash_desc *desc;
1018	u8 Kcrypt[GSS_KRB5_MAX_KEYLEN];
1019	u8 zeroconstant[4] = {0};
1020	u8 seqnumarray[4];
1021	int err, i;
1022
1023	dprintk("%s: entered, seqnum %u\n", __func__, seqnum);
1024
1025	hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
1026	if (IS_ERR(hmac)) {
1027		dprintk("%s: error %ld, allocating hash '%s'\n",
1028			__func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
1029		return PTR_ERR(hmac);
1030	}
1031
1032	desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac),
1033		       GFP_NOFS);
1034	if (!desc) {
1035		dprintk("%s: failed to allocate shash descriptor for '%s'\n",
1036			__func__, kctx->gk5e->cksum_name);
1037		crypto_free_shash(hmac);
1038		return -ENOMEM;
1039	}
1040
1041	desc->tfm = hmac;
1042	desc->flags = 0;
1043
1044	/* Compute intermediate Kcrypt from session key */
1045	for (i = 0; i < kctx->gk5e->keylength; i++)
1046		Kcrypt[i] = kctx->Ksess[i] ^ 0xf0;
1047
1048	err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
1049	if (err)
1050		goto out_err;
1051
1052	err = crypto_shash_digest(desc, zeroconstant, 4, Kcrypt);
1053	if (err)
1054		goto out_err;
1055
1056	/* Compute final Kcrypt from the seqnum and intermediate Kcrypt */
1057	err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
1058	if (err)
1059		goto out_err;
1060
1061	seqnumarray[0] = (unsigned char) ((seqnum >> 24) & 0xff);
1062	seqnumarray[1] = (unsigned char) ((seqnum >> 16) & 0xff);
1063	seqnumarray[2] = (unsigned char) ((seqnum >> 8) & 0xff);
1064	seqnumarray[3] = (unsigned char) ((seqnum >> 0) & 0xff);
1065
1066	err = crypto_shash_digest(desc, seqnumarray, 4, Kcrypt);
1067	if (err)
1068		goto out_err;
1069
1070	err = crypto_skcipher_setkey(cipher, Kcrypt, kctx->gk5e->keylength);
 
1071	if (err)
1072		goto out_err;
1073
1074	err = 0;
1075
1076out_err:
1077	kzfree(desc);
1078	crypto_free_shash(hmac);
1079	dprintk("%s: returning %d\n", __func__, err);
1080	return err;
1081}
1082