Linux Audio

Check our new training course

Loading...
v5.4
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _ASM_GENERIC_PGTABLE_H
   3#define _ASM_GENERIC_PGTABLE_H
   4
   5#include <linux/pfn.h>
   6
   7#ifndef __ASSEMBLY__
   8#ifdef CONFIG_MMU
   9
  10#include <linux/mm_types.h>
  11#include <linux/bug.h>
  12#include <linux/errno.h>
  13
  14#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
  15	defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
  16#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
  17#endif
  18
  19/*
  20 * On almost all architectures and configurations, 0 can be used as the
  21 * upper ceiling to free_pgtables(): on many architectures it has the same
  22 * effect as using TASK_SIZE.  However, there is one configuration which
  23 * must impose a more careful limit, to avoid freeing kernel pgtables.
  24 */
  25#ifndef USER_PGTABLES_CEILING
  26#define USER_PGTABLES_CEILING	0UL
  27#endif
  28
  29#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
  30extern int ptep_set_access_flags(struct vm_area_struct *vma,
  31				 unsigned long address, pte_t *ptep,
  32				 pte_t entry, int dirty);
  33#endif
  34
  35#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
  36#ifdef CONFIG_TRANSPARENT_HUGEPAGE
  37extern int pmdp_set_access_flags(struct vm_area_struct *vma,
  38				 unsigned long address, pmd_t *pmdp,
  39				 pmd_t entry, int dirty);
  40extern int pudp_set_access_flags(struct vm_area_struct *vma,
  41				 unsigned long address, pud_t *pudp,
  42				 pud_t entry, int dirty);
  43#else
  44static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
  45					unsigned long address, pmd_t *pmdp,
  46					pmd_t entry, int dirty)
  47{
  48	BUILD_BUG();
  49	return 0;
  50}
  51static inline int pudp_set_access_flags(struct vm_area_struct *vma,
  52					unsigned long address, pud_t *pudp,
  53					pud_t entry, int dirty)
  54{
  55	BUILD_BUG();
  56	return 0;
  57}
  58#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  59#endif
  60
  61#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
  62static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
  63					    unsigned long address,
  64					    pte_t *ptep)
  65{
  66	pte_t pte = *ptep;
  67	int r = 1;
  68	if (!pte_young(pte))
  69		r = 0;
  70	else
  71		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
  72	return r;
  73}
  74#endif
  75
  76#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
  77#ifdef CONFIG_TRANSPARENT_HUGEPAGE
  78static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
  79					    unsigned long address,
  80					    pmd_t *pmdp)
  81{
  82	pmd_t pmd = *pmdp;
  83	int r = 1;
  84	if (!pmd_young(pmd))
  85		r = 0;
  86	else
  87		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
  88	return r;
  89}
  90#else
  91static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
  92					    unsigned long address,
  93					    pmd_t *pmdp)
  94{
  95	BUILD_BUG();
  96	return 0;
  97}
  98#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  99#endif
 100
 101#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
 102int ptep_clear_flush_young(struct vm_area_struct *vma,
 103			   unsigned long address, pte_t *ptep);
 104#endif
 105
 106#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
 107#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 108extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
 109				  unsigned long address, pmd_t *pmdp);
 110#else
 111/*
 112 * Despite relevant to THP only, this API is called from generic rmap code
 113 * under PageTransHuge(), hence needs a dummy implementation for !THP
 114 */
 115static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
 116					 unsigned long address, pmd_t *pmdp)
 117{
 118	BUILD_BUG();
 119	return 0;
 120}
 121#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 122#endif
 123
 124#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
 125static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
 126				       unsigned long address,
 127				       pte_t *ptep)
 128{
 129	pte_t pte = *ptep;
 130	pte_clear(mm, address, ptep);
 131	return pte;
 132}
 133#endif
 134
 135#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 136#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
 
 137static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
 138					    unsigned long address,
 139					    pmd_t *pmdp)
 140{
 141	pmd_t pmd = *pmdp;
 142	pmd_clear(pmdp);
 143	return pmd;
 144}
 145#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
 146#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
 147static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
 148					    unsigned long address,
 149					    pud_t *pudp)
 150{
 151	pud_t pud = *pudp;
 152
 153	pud_clear(pudp);
 154	return pud;
 155}
 156#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
 157#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 
 158
 159#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 160#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
 
 161static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
 162					    unsigned long address, pmd_t *pmdp,
 163					    int full)
 164{
 165	return pmdp_huge_get_and_clear(mm, address, pmdp);
 166}
 167#endif
 168
 169#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
 170static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
 171					    unsigned long address, pud_t *pudp,
 172					    int full)
 173{
 174	return pudp_huge_get_and_clear(mm, address, pudp);
 175}
 176#endif
 177#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 
 178
 179#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
 180static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
 181					    unsigned long address, pte_t *ptep,
 182					    int full)
 183{
 184	pte_t pte;
 185	pte = ptep_get_and_clear(mm, address, ptep);
 186	return pte;
 187}
 188#endif
 189
 190/*
 191 * Some architectures may be able to avoid expensive synchronization
 192 * primitives when modifications are made to PTE's which are already
 193 * not present, or in the process of an address space destruction.
 194 */
 195#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
 196static inline void pte_clear_not_present_full(struct mm_struct *mm,
 197					      unsigned long address,
 198					      pte_t *ptep,
 199					      int full)
 200{
 201	pte_clear(mm, address, ptep);
 202}
 203#endif
 204
 205#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
 206extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
 207			      unsigned long address,
 208			      pte_t *ptep);
 209#endif
 210
 211#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
 212extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
 213			      unsigned long address,
 214			      pmd_t *pmdp);
 215extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
 216			      unsigned long address,
 217			      pud_t *pudp);
 218#endif
 219
 220#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
 221struct mm_struct;
 222static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
 223{
 224	pte_t old_pte = *ptep;
 225	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
 226}
 227#endif
 228
 229#ifndef pte_savedwrite
 230#define pte_savedwrite pte_write
 231#endif
 232
 233#ifndef pte_mk_savedwrite
 234#define pte_mk_savedwrite pte_mkwrite
 235#endif
 236
 237#ifndef pte_clear_savedwrite
 238#define pte_clear_savedwrite pte_wrprotect
 239#endif
 240
 241#ifndef pmd_savedwrite
 242#define pmd_savedwrite pmd_write
 243#endif
 244
 245#ifndef pmd_mk_savedwrite
 246#define pmd_mk_savedwrite pmd_mkwrite
 247#endif
 248
 249#ifndef pmd_clear_savedwrite
 250#define pmd_clear_savedwrite pmd_wrprotect
 251#endif
 252
 253#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
 254#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 255static inline void pmdp_set_wrprotect(struct mm_struct *mm,
 256				      unsigned long address, pmd_t *pmdp)
 257{
 258	pmd_t old_pmd = *pmdp;
 259	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
 260}
 261#else
 262static inline void pmdp_set_wrprotect(struct mm_struct *mm,
 263				      unsigned long address, pmd_t *pmdp)
 264{
 265	BUILD_BUG();
 266}
 267#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 268#endif
 269#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
 270#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 271static inline void pudp_set_wrprotect(struct mm_struct *mm,
 272				      unsigned long address, pud_t *pudp)
 273{
 274	pud_t old_pud = *pudp;
 275
 276	set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
 277}
 278#else
 279static inline void pudp_set_wrprotect(struct mm_struct *mm,
 280				      unsigned long address, pud_t *pudp)
 281{
 282	BUILD_BUG();
 283}
 284#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
 285#endif
 286
 287#ifndef pmdp_collapse_flush
 288#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 289extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
 290				 unsigned long address, pmd_t *pmdp);
 291#else
 292static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
 293					unsigned long address,
 294					pmd_t *pmdp)
 295{
 296	BUILD_BUG();
 297	return *pmdp;
 298}
 299#define pmdp_collapse_flush pmdp_collapse_flush
 300#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 301#endif
 302
 303#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
 304extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
 305				       pgtable_t pgtable);
 306#endif
 307
 308#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
 309extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
 310#endif
 311
 312#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 313/*
 314 * This is an implementation of pmdp_establish() that is only suitable for an
 315 * architecture that doesn't have hardware dirty/accessed bits. In this case we
 316 * can't race with CPU which sets these bits and non-atomic aproach is fine.
 317 */
 318static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
 319		unsigned long address, pmd_t *pmdp, pmd_t pmd)
 320{
 321	pmd_t old_pmd = *pmdp;
 322	set_pmd_at(vma->vm_mm, address, pmdp, pmd);
 323	return old_pmd;
 324}
 325#endif
 326
 327#ifndef __HAVE_ARCH_PMDP_INVALIDATE
 328extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
 329			    pmd_t *pmdp);
 330#endif
 331
 
 
 
 
 
 
 
 
 332#ifndef __HAVE_ARCH_PTE_SAME
 333static inline int pte_same(pte_t pte_a, pte_t pte_b)
 334{
 335	return pte_val(pte_a) == pte_val(pte_b);
 336}
 337#endif
 338
 339#ifndef __HAVE_ARCH_PTE_UNUSED
 340/*
 341 * Some architectures provide facilities to virtualization guests
 342 * so that they can flag allocated pages as unused. This allows the
 343 * host to transparently reclaim unused pages. This function returns
 344 * whether the pte's page is unused.
 345 */
 346static inline int pte_unused(pte_t pte)
 347{
 348	return 0;
 349}
 350#endif
 351
 352#ifndef pte_access_permitted
 353#define pte_access_permitted(pte, write) \
 354	(pte_present(pte) && (!(write) || pte_write(pte)))
 355#endif
 356
 357#ifndef pmd_access_permitted
 358#define pmd_access_permitted(pmd, write) \
 359	(pmd_present(pmd) && (!(write) || pmd_write(pmd)))
 360#endif
 361
 362#ifndef pud_access_permitted
 363#define pud_access_permitted(pud, write) \
 364	(pud_present(pud) && (!(write) || pud_write(pud)))
 365#endif
 366
 367#ifndef p4d_access_permitted
 368#define p4d_access_permitted(p4d, write) \
 369	(p4d_present(p4d) && (!(write) || p4d_write(p4d)))
 370#endif
 371
 372#ifndef pgd_access_permitted
 373#define pgd_access_permitted(pgd, write) \
 374	(pgd_present(pgd) && (!(write) || pgd_write(pgd)))
 375#endif
 376
 377#ifndef __HAVE_ARCH_PMD_SAME
 
 378static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
 379{
 380	return pmd_val(pmd_a) == pmd_val(pmd_b);
 381}
 382
 383static inline int pud_same(pud_t pud_a, pud_t pud_b)
 384{
 385	return pud_val(pud_a) == pud_val(pud_b);
 386}
 387#endif
 388
 389#ifndef __HAVE_ARCH_P4D_SAME
 390static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
 391{
 392	return p4d_val(p4d_a) == p4d_val(p4d_b);
 393}
 394#endif
 395
 396#ifndef __HAVE_ARCH_PGD_SAME
 397static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
 398{
 399	return pgd_val(pgd_a) == pgd_val(pgd_b);
 400}
 401#endif
 402
 403/*
 404 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
 405 * TLB flush will be required as a result of the "set". For example, use
 406 * in scenarios where it is known ahead of time that the routine is
 407 * setting non-present entries, or re-setting an existing entry to the
 408 * same value. Otherwise, use the typical "set" helpers and flush the
 409 * TLB.
 410 */
 411#define set_pte_safe(ptep, pte) \
 412({ \
 413	WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
 414	set_pte(ptep, pte); \
 415})
 416
 417#define set_pmd_safe(pmdp, pmd) \
 418({ \
 419	WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
 420	set_pmd(pmdp, pmd); \
 421})
 422
 423#define set_pud_safe(pudp, pud) \
 424({ \
 425	WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
 426	set_pud(pudp, pud); \
 427})
 428
 429#define set_p4d_safe(p4dp, p4d) \
 430({ \
 431	WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
 432	set_p4d(p4dp, p4d); \
 433})
 434
 435#define set_pgd_safe(pgdp, pgd) \
 436({ \
 437	WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
 438	set_pgd(pgdp, pgd); \
 439})
 440
 441#ifndef __HAVE_ARCH_DO_SWAP_PAGE
 442/*
 443 * Some architectures support metadata associated with a page. When a
 444 * page is being swapped out, this metadata must be saved so it can be
 445 * restored when the page is swapped back in. SPARC M7 and newer
 446 * processors support an ADI (Application Data Integrity) tag for the
 447 * page as metadata for the page. arch_do_swap_page() can restore this
 448 * metadata when a page is swapped back in.
 449 */
 450static inline void arch_do_swap_page(struct mm_struct *mm,
 451				     struct vm_area_struct *vma,
 452				     unsigned long addr,
 453				     pte_t pte, pte_t oldpte)
 454{
 455
 456}
 457#endif
 458
 459#ifndef __HAVE_ARCH_UNMAP_ONE
 460/*
 461 * Some architectures support metadata associated with a page. When a
 462 * page is being swapped out, this metadata must be saved so it can be
 463 * restored when the page is swapped back in. SPARC M7 and newer
 464 * processors support an ADI (Application Data Integrity) tag for the
 465 * page as metadata for the page. arch_unmap_one() can save this
 466 * metadata on a swap-out of a page.
 467 */
 468static inline int arch_unmap_one(struct mm_struct *mm,
 469				  struct vm_area_struct *vma,
 470				  unsigned long addr,
 471				  pte_t orig_pte)
 472{
 
 473	return 0;
 474}
 
 475#endif
 476
 477#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
 478#define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
 479#endif
 480
 481#ifndef __HAVE_ARCH_MOVE_PTE
 482#define move_pte(pte, prot, old_addr, new_addr)	(pte)
 483#endif
 484
 485#ifndef pte_accessible
 486# define pte_accessible(mm, pte)	((void)(pte), 1)
 487#endif
 488
 489#ifndef flush_tlb_fix_spurious_fault
 490#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
 491#endif
 492
 493#ifndef pgprot_noncached
 494#define pgprot_noncached(prot)	(prot)
 495#endif
 496
 497#ifndef pgprot_writecombine
 498#define pgprot_writecombine pgprot_noncached
 499#endif
 500
 501#ifndef pgprot_writethrough
 502#define pgprot_writethrough pgprot_noncached
 503#endif
 504
 505#ifndef pgprot_device
 506#define pgprot_device pgprot_noncached
 507#endif
 508
 509#ifndef pgprot_modify
 510#define pgprot_modify pgprot_modify
 511static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
 512{
 513	if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
 514		newprot = pgprot_noncached(newprot);
 515	if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
 516		newprot = pgprot_writecombine(newprot);
 517	if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
 518		newprot = pgprot_device(newprot);
 519	return newprot;
 520}
 521#endif
 522
 523/*
 524 * When walking page tables, get the address of the next boundary,
 525 * or the end address of the range if that comes earlier.  Although no
 526 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
 527 */
 528
 529#define pgd_addr_end(addr, end)						\
 530({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
 531	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
 532})
 533
 534#ifndef p4d_addr_end
 535#define p4d_addr_end(addr, end)						\
 536({	unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;	\
 537	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
 538})
 539#endif
 540
 541#ifndef pud_addr_end
 542#define pud_addr_end(addr, end)						\
 543({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
 544	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
 545})
 546#endif
 547
 548#ifndef pmd_addr_end
 549#define pmd_addr_end(addr, end)						\
 550({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
 551	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
 552})
 553#endif
 554
 555/*
 556 * When walking page tables, we usually want to skip any p?d_none entries;
 557 * and any p?d_bad entries - reporting the error before resetting to none.
 558 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
 559 */
 560void pgd_clear_bad(pgd_t *);
 561void p4d_clear_bad(p4d_t *);
 562void pud_clear_bad(pud_t *);
 563void pmd_clear_bad(pmd_t *);
 564
 565static inline int pgd_none_or_clear_bad(pgd_t *pgd)
 566{
 567	if (pgd_none(*pgd))
 568		return 1;
 569	if (unlikely(pgd_bad(*pgd))) {
 570		pgd_clear_bad(pgd);
 571		return 1;
 572	}
 573	return 0;
 574}
 575
 576static inline int p4d_none_or_clear_bad(p4d_t *p4d)
 577{
 578	if (p4d_none(*p4d))
 579		return 1;
 580	if (unlikely(p4d_bad(*p4d))) {
 581		p4d_clear_bad(p4d);
 582		return 1;
 583	}
 584	return 0;
 585}
 586
 587static inline int pud_none_or_clear_bad(pud_t *pud)
 588{
 589	if (pud_none(*pud))
 590		return 1;
 591	if (unlikely(pud_bad(*pud))) {
 592		pud_clear_bad(pud);
 593		return 1;
 594	}
 595	return 0;
 596}
 597
 598static inline int pmd_none_or_clear_bad(pmd_t *pmd)
 599{
 600	if (pmd_none(*pmd))
 601		return 1;
 602	if (unlikely(pmd_bad(*pmd))) {
 603		pmd_clear_bad(pmd);
 604		return 1;
 605	}
 606	return 0;
 607}
 608
 609static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
 610					     unsigned long addr,
 611					     pte_t *ptep)
 612{
 613	/*
 614	 * Get the current pte state, but zero it out to make it
 615	 * non-present, preventing the hardware from asynchronously
 616	 * updating it.
 617	 */
 618	return ptep_get_and_clear(vma->vm_mm, addr, ptep);
 619}
 620
 621static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
 622					     unsigned long addr,
 623					     pte_t *ptep, pte_t pte)
 624{
 625	/*
 626	 * The pte is non-present, so there's no hardware state to
 627	 * preserve.
 628	 */
 629	set_pte_at(vma->vm_mm, addr, ptep, pte);
 630}
 631
 632#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
 633/*
 634 * Start a pte protection read-modify-write transaction, which
 635 * protects against asynchronous hardware modifications to the pte.
 636 * The intention is not to prevent the hardware from making pte
 637 * updates, but to prevent any updates it may make from being lost.
 638 *
 639 * This does not protect against other software modifications of the
 640 * pte; the appropriate pte lock must be held over the transation.
 641 *
 642 * Note that this interface is intended to be batchable, meaning that
 643 * ptep_modify_prot_commit may not actually update the pte, but merely
 644 * queue the update to be done at some later time.  The update must be
 645 * actually committed before the pte lock is released, however.
 646 */
 647static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
 648					   unsigned long addr,
 649					   pte_t *ptep)
 650{
 651	return __ptep_modify_prot_start(vma, addr, ptep);
 652}
 653
 654/*
 655 * Commit an update to a pte, leaving any hardware-controlled bits in
 656 * the PTE unmodified.
 657 */
 658static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
 659					   unsigned long addr,
 660					   pte_t *ptep, pte_t old_pte, pte_t pte)
 661{
 662	__ptep_modify_prot_commit(vma, addr, ptep, pte);
 663}
 664#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
 665#endif /* CONFIG_MMU */
 666
 667/*
 668 * No-op macros that just return the current protection value. Defined here
 669 * because these macros can be used used even if CONFIG_MMU is not defined.
 670 */
 671#ifndef pgprot_encrypted
 672#define pgprot_encrypted(prot)	(prot)
 673#endif
 674
 675#ifndef pgprot_decrypted
 676#define pgprot_decrypted(prot)	(prot)
 677#endif
 678
 679/*
 680 * A facility to provide lazy MMU batching.  This allows PTE updates and
 681 * page invalidations to be delayed until a call to leave lazy MMU mode
 682 * is issued.  Some architectures may benefit from doing this, and it is
 683 * beneficial for both shadow and direct mode hypervisors, which may batch
 684 * the PTE updates which happen during this window.  Note that using this
 685 * interface requires that read hazards be removed from the code.  A read
 686 * hazard could result in the direct mode hypervisor case, since the actual
 687 * write to the page tables may not yet have taken place, so reads though
 688 * a raw PTE pointer after it has been modified are not guaranteed to be
 689 * up to date.  This mode can only be entered and left under the protection of
 690 * the page table locks for all page tables which may be modified.  In the UP
 691 * case, this is required so that preemption is disabled, and in the SMP case,
 692 * it must synchronize the delayed page table writes properly on other CPUs.
 693 */
 694#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
 695#define arch_enter_lazy_mmu_mode()	do {} while (0)
 696#define arch_leave_lazy_mmu_mode()	do {} while (0)
 697#define arch_flush_lazy_mmu_mode()	do {} while (0)
 698#endif
 699
 700/*
 701 * A facility to provide batching of the reload of page tables and
 702 * other process state with the actual context switch code for
 703 * paravirtualized guests.  By convention, only one of the batched
 704 * update (lazy) modes (CPU, MMU) should be active at any given time,
 705 * entry should never be nested, and entry and exits should always be
 706 * paired.  This is for sanity of maintaining and reasoning about the
 707 * kernel code.  In this case, the exit (end of the context switch) is
 708 * in architecture-specific code, and so doesn't need a generic
 709 * definition.
 710 */
 711#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
 712#define arch_start_context_switch(prev)	do {} while (0)
 713#endif
 714
 715#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
 716#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
 717static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
 718{
 719	return pmd;
 720}
 721
 722static inline int pmd_swp_soft_dirty(pmd_t pmd)
 723{
 724	return 0;
 725}
 726
 727static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
 728{
 729	return pmd;
 730}
 731#endif
 732#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
 733static inline int pte_soft_dirty(pte_t pte)
 734{
 735	return 0;
 736}
 737
 738static inline int pmd_soft_dirty(pmd_t pmd)
 739{
 740	return 0;
 741}
 742
 743static inline pte_t pte_mksoft_dirty(pte_t pte)
 744{
 745	return pte;
 746}
 747
 748static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
 749{
 750	return pmd;
 751}
 752
 753static inline pte_t pte_clear_soft_dirty(pte_t pte)
 754{
 755	return pte;
 756}
 757
 758static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
 759{
 760	return pmd;
 761}
 762
 763static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
 764{
 765	return pte;
 766}
 767
 768static inline int pte_swp_soft_dirty(pte_t pte)
 769{
 770	return 0;
 771}
 772
 773static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
 774{
 775	return pte;
 776}
 777
 778static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
 779{
 780	return pmd;
 781}
 782
 783static inline int pmd_swp_soft_dirty(pmd_t pmd)
 784{
 785	return 0;
 786}
 787
 788static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
 789{
 790	return pmd;
 791}
 792#endif
 793
 794#ifndef __HAVE_PFNMAP_TRACKING
 795/*
 796 * Interfaces that can be used by architecture code to keep track of
 797 * memory type of pfn mappings specified by the remap_pfn_range,
 798 * vmf_insert_pfn.
 799 */
 800
 801/*
 802 * track_pfn_remap is called when a _new_ pfn mapping is being established
 803 * by remap_pfn_range() for physical range indicated by pfn and size.
 804 */
 805static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
 806				  unsigned long pfn, unsigned long addr,
 807				  unsigned long size)
 808{
 809	return 0;
 810}
 811
 812/*
 813 * track_pfn_insert is called when a _new_ single pfn is established
 814 * by vmf_insert_pfn().
 815 */
 816static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
 817				    pfn_t pfn)
 818{
 819}
 820
 821/*
 822 * track_pfn_copy is called when vma that is covering the pfnmap gets
 823 * copied through copy_page_range().
 824 */
 825static inline int track_pfn_copy(struct vm_area_struct *vma)
 826{
 827	return 0;
 828}
 829
 830/*
 831 * untrack_pfn is called while unmapping a pfnmap for a region.
 832 * untrack can be called for a specific region indicated by pfn and size or
 833 * can be for the entire vma (in which case pfn, size are zero).
 834 */
 835static inline void untrack_pfn(struct vm_area_struct *vma,
 836			       unsigned long pfn, unsigned long size)
 837{
 838}
 839
 840/*
 841 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
 842 */
 843static inline void untrack_pfn_moved(struct vm_area_struct *vma)
 844{
 845}
 846#else
 847extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
 848			   unsigned long pfn, unsigned long addr,
 849			   unsigned long size);
 850extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
 851			     pfn_t pfn);
 852extern int track_pfn_copy(struct vm_area_struct *vma);
 853extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
 854			unsigned long size);
 855extern void untrack_pfn_moved(struct vm_area_struct *vma);
 856#endif
 857
 858#ifdef __HAVE_COLOR_ZERO_PAGE
 859static inline int is_zero_pfn(unsigned long pfn)
 860{
 861	extern unsigned long zero_pfn;
 862	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
 863	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
 864}
 865
 866#define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))
 867
 868#else
 869static inline int is_zero_pfn(unsigned long pfn)
 870{
 871	extern unsigned long zero_pfn;
 872	return pfn == zero_pfn;
 873}
 874
 875static inline unsigned long my_zero_pfn(unsigned long addr)
 876{
 877	extern unsigned long zero_pfn;
 878	return zero_pfn;
 879}
 880#endif
 881
 882#ifdef CONFIG_MMU
 883
 884#ifndef CONFIG_TRANSPARENT_HUGEPAGE
 885static inline int pmd_trans_huge(pmd_t pmd)
 886{
 887	return 0;
 888}
 889#ifndef pmd_write
 890static inline int pmd_write(pmd_t pmd)
 891{
 892	BUG();
 893	return 0;
 894}
 895#endif /* pmd_write */
 896#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 897
 898#ifndef pud_write
 899static inline int pud_write(pud_t pud)
 900{
 901	BUG();
 902	return 0;
 903}
 904#endif /* pud_write */
 905
 906#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
 907	(defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
 908	 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
 909static inline int pud_trans_huge(pud_t pud)
 910{
 911	return 0;
 912}
 913#endif
 914
 915#ifndef pmd_read_atomic
 916static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
 917{
 918	/*
 919	 * Depend on compiler for an atomic pmd read. NOTE: this is
 920	 * only going to work, if the pmdval_t isn't larger than
 921	 * an unsigned long.
 922	 */
 923	return *pmdp;
 924}
 925#endif
 926
 927#ifndef arch_needs_pgtable_deposit
 928#define arch_needs_pgtable_deposit() (false)
 929#endif
 930/*
 931 * This function is meant to be used by sites walking pagetables with
 932 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
 933 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
 934 * into a null pmd and the transhuge page fault can convert a null pmd
 935 * into an hugepmd or into a regular pmd (if the hugepage allocation
 936 * fails). While holding the mmap_sem in read mode the pmd becomes
 937 * stable and stops changing under us only if it's not null and not a
 938 * transhuge pmd. When those races occurs and this function makes a
 939 * difference vs the standard pmd_none_or_clear_bad, the result is
 940 * undefined so behaving like if the pmd was none is safe (because it
 941 * can return none anyway). The compiler level barrier() is critically
 942 * important to compute the two checks atomically on the same pmdval.
 943 *
 944 * For 32bit kernels with a 64bit large pmd_t this automatically takes
 945 * care of reading the pmd atomically to avoid SMP race conditions
 946 * against pmd_populate() when the mmap_sem is hold for reading by the
 947 * caller (a special atomic read not done by "gcc" as in the generic
 948 * version above, is also needed when THP is disabled because the page
 949 * fault can populate the pmd from under us).
 950 */
 951static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
 952{
 953	pmd_t pmdval = pmd_read_atomic(pmd);
 954	/*
 955	 * The barrier will stabilize the pmdval in a register or on
 956	 * the stack so that it will stop changing under the code.
 957	 *
 958	 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
 959	 * pmd_read_atomic is allowed to return a not atomic pmdval
 960	 * (for example pointing to an hugepage that has never been
 961	 * mapped in the pmd). The below checks will only care about
 962	 * the low part of the pmd with 32bit PAE x86 anyway, with the
 963	 * exception of pmd_none(). So the important thing is that if
 964	 * the low part of the pmd is found null, the high part will
 965	 * be also null or the pmd_none() check below would be
 966	 * confused.
 967	 */
 968#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 969	barrier();
 970#endif
 971	/*
 972	 * !pmd_present() checks for pmd migration entries
 973	 *
 974	 * The complete check uses is_pmd_migration_entry() in linux/swapops.h
 975	 * But using that requires moving current function and pmd_trans_unstable()
 976	 * to linux/swapops.h to resovle dependency, which is too much code move.
 977	 *
 978	 * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
 979	 * because !pmd_present() pages can only be under migration not swapped
 980	 * out.
 981	 *
 982	 * pmd_none() is preseved for future condition checks on pmd migration
 983	 * entries and not confusing with this function name, although it is
 984	 * redundant with !pmd_present().
 985	 */
 986	if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
 987		(IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
 988		return 1;
 989	if (unlikely(pmd_bad(pmdval))) {
 990		pmd_clear_bad(pmd);
 991		return 1;
 992	}
 993	return 0;
 994}
 995
 996/*
 997 * This is a noop if Transparent Hugepage Support is not built into
 998 * the kernel. Otherwise it is equivalent to
 999 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
1000 * places that already verified the pmd is not none and they want to
1001 * walk ptes while holding the mmap sem in read mode (write mode don't
1002 * need this). If THP is not enabled, the pmd can't go away under the
1003 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
1004 * run a pmd_trans_unstable before walking the ptes after
1005 * split_huge_pmd returns (because it may have run when the pmd become
1006 * null, but then a page fault can map in a THP and not a regular page).
 
1007 */
1008static inline int pmd_trans_unstable(pmd_t *pmd)
1009{
1010#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1011	return pmd_none_or_trans_huge_or_clear_bad(pmd);
1012#else
1013	return 0;
1014#endif
1015}
1016
1017#ifndef CONFIG_NUMA_BALANCING
1018/*
1019 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1020 * the only case the kernel cares is for NUMA balancing and is only ever set
1021 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1022 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It
1023 * is the responsibility of the caller to distinguish between PROT_NONE
1024 * protections and NUMA hinting fault protections.
1025 */
1026static inline int pte_protnone(pte_t pte)
1027{
1028	return 0;
1029}
1030
1031static inline int pmd_protnone(pmd_t pmd)
1032{
1033	return 0;
1034}
1035#endif /* CONFIG_NUMA_BALANCING */
1036
1037#endif /* CONFIG_MMU */
1038
1039#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1040
1041#ifndef __PAGETABLE_P4D_FOLDED
1042int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1043int p4d_clear_huge(p4d_t *p4d);
1044#else
1045static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1046{
1047	return 0;
1048}
1049static inline int p4d_clear_huge(p4d_t *p4d)
1050{
1051	return 0;
1052}
1053#endif /* !__PAGETABLE_P4D_FOLDED */
1054
1055int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1056int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1057int pud_clear_huge(pud_t *pud);
1058int pmd_clear_huge(pmd_t *pmd);
1059int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1060int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1061int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1062#else	/* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1063static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1064{
1065	return 0;
1066}
1067static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1068{
1069	return 0;
1070}
1071static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1072{
1073	return 0;
1074}
1075static inline int p4d_clear_huge(p4d_t *p4d)
1076{
1077	return 0;
1078}
1079static inline int pud_clear_huge(pud_t *pud)
1080{
1081	return 0;
1082}
1083static inline int pmd_clear_huge(pmd_t *pmd)
1084{
1085	return 0;
1086}
1087static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1088{
1089	return 0;
1090}
1091static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1092{
1093	return 0;
1094}
1095static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1096{
1097	return 0;
1098}
1099#endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
1100
1101#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1102#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1103/*
1104 * ARCHes with special requirements for evicting THP backing TLB entries can
1105 * implement this. Otherwise also, it can help optimize normal TLB flush in
1106 * THP regime. stock flush_tlb_range() typically has optimization to nuke the
1107 * entire TLB TLB if flush span is greater than a threshold, which will
1108 * likely be true for a single huge page. Thus a single thp flush will
1109 * invalidate the entire TLB which is not desitable.
1110 * e.g. see arch/arc: flush_pmd_tlb_range
1111 */
1112#define flush_pmd_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1113#define flush_pud_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1114#else
1115#define flush_pmd_tlb_range(vma, addr, end)	BUILD_BUG()
1116#define flush_pud_tlb_range(vma, addr, end)	BUILD_BUG()
1117#endif
1118#endif
1119
1120struct file;
1121int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1122			unsigned long size, pgprot_t *vma_prot);
1123
1124#ifndef CONFIG_X86_ESPFIX64
1125static inline void init_espfix_bsp(void) { }
1126#endif
1127
1128extern void __init pgtable_cache_init(void);
1129
1130#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1131static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1132{
1133	return true;
1134}
1135
1136static inline bool arch_has_pfn_modify_check(void)
1137{
1138	return false;
1139}
1140#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1141
1142/*
1143 * Architecture PAGE_KERNEL_* fallbacks
1144 *
1145 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1146 * because they really don't support them, or the port needs to be updated to
1147 * reflect the required functionality. Below are a set of relatively safe
1148 * fallbacks, as best effort, which we can count on in lieu of the architectures
1149 * not defining them on their own yet.
1150 */
1151
1152#ifndef PAGE_KERNEL_RO
1153# define PAGE_KERNEL_RO PAGE_KERNEL
1154#endif
1155
1156#ifndef PAGE_KERNEL_EXEC
1157# define PAGE_KERNEL_EXEC PAGE_KERNEL
1158#endif
1159
1160#endif /* !__ASSEMBLY__ */
1161
1162#ifndef io_remap_pfn_range
1163#define io_remap_pfn_range remap_pfn_range
1164#endif
1165
1166#ifndef has_transparent_hugepage
1167#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1168#define has_transparent_hugepage() 1
1169#else
1170#define has_transparent_hugepage() 0
1171#endif
1172#endif
1173
1174/*
1175 * On some architectures it depends on the mm if the p4d/pud or pmd
1176 * layer of the page table hierarchy is folded or not.
1177 */
1178#ifndef mm_p4d_folded
1179#define mm_p4d_folded(mm)	__is_defined(__PAGETABLE_P4D_FOLDED)
1180#endif
1181
1182#ifndef mm_pud_folded
1183#define mm_pud_folded(mm)	__is_defined(__PAGETABLE_PUD_FOLDED)
1184#endif
1185
1186#ifndef mm_pmd_folded
1187#define mm_pmd_folded(mm)	__is_defined(__PAGETABLE_PMD_FOLDED)
1188#endif
1189
1190#endif /* _ASM_GENERIC_PGTABLE_H */
v4.10.11
 
  1#ifndef _ASM_GENERIC_PGTABLE_H
  2#define _ASM_GENERIC_PGTABLE_H
  3
  4#include <linux/pfn.h>
  5
  6#ifndef __ASSEMBLY__
  7#ifdef CONFIG_MMU
  8
  9#include <linux/mm_types.h>
 10#include <linux/bug.h>
 11#include <linux/errno.h>
 12
 13#if 4 - defined(__PAGETABLE_PUD_FOLDED) - defined(__PAGETABLE_PMD_FOLDED) != \
 14	CONFIG_PGTABLE_LEVELS
 15#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{PUD,PMD}_FOLDED
 16#endif
 17
 18/*
 19 * On almost all architectures and configurations, 0 can be used as the
 20 * upper ceiling to free_pgtables(): on many architectures it has the same
 21 * effect as using TASK_SIZE.  However, there is one configuration which
 22 * must impose a more careful limit, to avoid freeing kernel pgtables.
 23 */
 24#ifndef USER_PGTABLES_CEILING
 25#define USER_PGTABLES_CEILING	0UL
 26#endif
 27
 28#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
 29extern int ptep_set_access_flags(struct vm_area_struct *vma,
 30				 unsigned long address, pte_t *ptep,
 31				 pte_t entry, int dirty);
 32#endif
 33
 34#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
 35#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 36extern int pmdp_set_access_flags(struct vm_area_struct *vma,
 37				 unsigned long address, pmd_t *pmdp,
 38				 pmd_t entry, int dirty);
 
 
 
 39#else
 40static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
 41					unsigned long address, pmd_t *pmdp,
 42					pmd_t entry, int dirty)
 43{
 44	BUILD_BUG();
 45	return 0;
 46}
 
 
 
 
 
 
 
 47#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 48#endif
 49
 50#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 51static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
 52					    unsigned long address,
 53					    pte_t *ptep)
 54{
 55	pte_t pte = *ptep;
 56	int r = 1;
 57	if (!pte_young(pte))
 58		r = 0;
 59	else
 60		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
 61	return r;
 62}
 63#endif
 64
 65#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
 66#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 67static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
 68					    unsigned long address,
 69					    pmd_t *pmdp)
 70{
 71	pmd_t pmd = *pmdp;
 72	int r = 1;
 73	if (!pmd_young(pmd))
 74		r = 0;
 75	else
 76		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
 77	return r;
 78}
 79#else
 80static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
 81					    unsigned long address,
 82					    pmd_t *pmdp)
 83{
 84	BUILD_BUG();
 85	return 0;
 86}
 87#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 88#endif
 89
 90#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
 91int ptep_clear_flush_young(struct vm_area_struct *vma,
 92			   unsigned long address, pte_t *ptep);
 93#endif
 94
 95#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
 96#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 97extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
 98				  unsigned long address, pmd_t *pmdp);
 99#else
100/*
101 * Despite relevant to THP only, this API is called from generic rmap code
102 * under PageTransHuge(), hence needs a dummy implementation for !THP
103 */
104static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
105					 unsigned long address, pmd_t *pmdp)
106{
107	BUILD_BUG();
108	return 0;
109}
110#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
111#endif
112
113#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
114static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
115				       unsigned long address,
116				       pte_t *ptep)
117{
118	pte_t pte = *ptep;
119	pte_clear(mm, address, ptep);
120	return pte;
121}
122#endif
123
 
124#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
125#ifdef CONFIG_TRANSPARENT_HUGEPAGE
126static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
127					    unsigned long address,
128					    pmd_t *pmdp)
129{
130	pmd_t pmd = *pmdp;
131	pmd_clear(pmdp);
132	return pmd;
133}
 
 
 
 
 
 
 
 
 
 
 
 
134#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
135#endif
136
 
137#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
138#ifdef CONFIG_TRANSPARENT_HUGEPAGE
139static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
140					    unsigned long address, pmd_t *pmdp,
141					    int full)
142{
143	return pmdp_huge_get_and_clear(mm, address, pmdp);
144}
 
 
 
 
 
 
 
 
 
 
145#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
146#endif
147
148#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
149static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
150					    unsigned long address, pte_t *ptep,
151					    int full)
152{
153	pte_t pte;
154	pte = ptep_get_and_clear(mm, address, ptep);
155	return pte;
156}
157#endif
158
159/*
160 * Some architectures may be able to avoid expensive synchronization
161 * primitives when modifications are made to PTE's which are already
162 * not present, or in the process of an address space destruction.
163 */
164#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
165static inline void pte_clear_not_present_full(struct mm_struct *mm,
166					      unsigned long address,
167					      pte_t *ptep,
168					      int full)
169{
170	pte_clear(mm, address, ptep);
171}
172#endif
173
174#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
175extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
176			      unsigned long address,
177			      pte_t *ptep);
178#endif
179
180#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
181extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
182			      unsigned long address,
183			      pmd_t *pmdp);
 
 
 
184#endif
185
186#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
187struct mm_struct;
188static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
189{
190	pte_t old_pte = *ptep;
191	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
192}
193#endif
194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
196#ifdef CONFIG_TRANSPARENT_HUGEPAGE
197static inline void pmdp_set_wrprotect(struct mm_struct *mm,
198				      unsigned long address, pmd_t *pmdp)
199{
200	pmd_t old_pmd = *pmdp;
201	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
202}
203#else
204static inline void pmdp_set_wrprotect(struct mm_struct *mm,
205				      unsigned long address, pmd_t *pmdp)
206{
207	BUILD_BUG();
208}
209#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
210#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
211
212#ifndef pmdp_collapse_flush
213#ifdef CONFIG_TRANSPARENT_HUGEPAGE
214extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
215				 unsigned long address, pmd_t *pmdp);
216#else
217static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
218					unsigned long address,
219					pmd_t *pmdp)
220{
221	BUILD_BUG();
222	return *pmdp;
223}
224#define pmdp_collapse_flush pmdp_collapse_flush
225#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
226#endif
227
228#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
229extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
230				       pgtable_t pgtable);
231#endif
232
233#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
234extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
235#endif
236
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
237#ifndef __HAVE_ARCH_PMDP_INVALIDATE
238extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
239			    pmd_t *pmdp);
240#endif
241
242#ifndef __HAVE_ARCH_PMDP_HUGE_SPLIT_PREPARE
243static inline void pmdp_huge_split_prepare(struct vm_area_struct *vma,
244					   unsigned long address, pmd_t *pmdp)
245{
246
247}
248#endif
249
250#ifndef __HAVE_ARCH_PTE_SAME
251static inline int pte_same(pte_t pte_a, pte_t pte_b)
252{
253	return pte_val(pte_a) == pte_val(pte_b);
254}
255#endif
256
257#ifndef __HAVE_ARCH_PTE_UNUSED
258/*
259 * Some architectures provide facilities to virtualization guests
260 * so that they can flag allocated pages as unused. This allows the
261 * host to transparently reclaim unused pages. This function returns
262 * whether the pte's page is unused.
263 */
264static inline int pte_unused(pte_t pte)
265{
266	return 0;
267}
268#endif
269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
270#ifndef __HAVE_ARCH_PMD_SAME
271#ifdef CONFIG_TRANSPARENT_HUGEPAGE
272static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
273{
274	return pmd_val(pmd_a) == pmd_val(pmd_b);
275}
276#else /* CONFIG_TRANSPARENT_HUGEPAGE */
277static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
278{
279	BUILD_BUG();
280	return 0;
281}
282#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
283#endif
284
285#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
286#define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
287#endif
288
289#ifndef __HAVE_ARCH_MOVE_PTE
290#define move_pte(pte, prot, old_addr, new_addr)	(pte)
291#endif
292
293#ifndef pte_accessible
294# define pte_accessible(mm, pte)	((void)(pte), 1)
295#endif
296
297#ifndef flush_tlb_fix_spurious_fault
298#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
299#endif
300
301#ifndef pgprot_noncached
302#define pgprot_noncached(prot)	(prot)
303#endif
304
305#ifndef pgprot_writecombine
306#define pgprot_writecombine pgprot_noncached
307#endif
308
309#ifndef pgprot_writethrough
310#define pgprot_writethrough pgprot_noncached
311#endif
312
313#ifndef pgprot_device
314#define pgprot_device pgprot_noncached
315#endif
316
317#ifndef pgprot_modify
318#define pgprot_modify pgprot_modify
319static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
320{
321	if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
322		newprot = pgprot_noncached(newprot);
323	if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
324		newprot = pgprot_writecombine(newprot);
325	if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
326		newprot = pgprot_device(newprot);
327	return newprot;
328}
329#endif
330
331/*
332 * When walking page tables, get the address of the next boundary,
333 * or the end address of the range if that comes earlier.  Although no
334 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
335 */
336
337#define pgd_addr_end(addr, end)						\
338({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
339	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
340})
341
 
 
 
 
 
 
 
342#ifndef pud_addr_end
343#define pud_addr_end(addr, end)						\
344({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
345	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
346})
347#endif
348
349#ifndef pmd_addr_end
350#define pmd_addr_end(addr, end)						\
351({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
352	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
353})
354#endif
355
356/*
357 * When walking page tables, we usually want to skip any p?d_none entries;
358 * and any p?d_bad entries - reporting the error before resetting to none.
359 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
360 */
361void pgd_clear_bad(pgd_t *);
 
362void pud_clear_bad(pud_t *);
363void pmd_clear_bad(pmd_t *);
364
365static inline int pgd_none_or_clear_bad(pgd_t *pgd)
366{
367	if (pgd_none(*pgd))
368		return 1;
369	if (unlikely(pgd_bad(*pgd))) {
370		pgd_clear_bad(pgd);
371		return 1;
372	}
373	return 0;
374}
375
 
 
 
 
 
 
 
 
 
 
 
376static inline int pud_none_or_clear_bad(pud_t *pud)
377{
378	if (pud_none(*pud))
379		return 1;
380	if (unlikely(pud_bad(*pud))) {
381		pud_clear_bad(pud);
382		return 1;
383	}
384	return 0;
385}
386
387static inline int pmd_none_or_clear_bad(pmd_t *pmd)
388{
389	if (pmd_none(*pmd))
390		return 1;
391	if (unlikely(pmd_bad(*pmd))) {
392		pmd_clear_bad(pmd);
393		return 1;
394	}
395	return 0;
396}
397
398static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
399					     unsigned long addr,
400					     pte_t *ptep)
401{
402	/*
403	 * Get the current pte state, but zero it out to make it
404	 * non-present, preventing the hardware from asynchronously
405	 * updating it.
406	 */
407	return ptep_get_and_clear(mm, addr, ptep);
408}
409
410static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
411					     unsigned long addr,
412					     pte_t *ptep, pte_t pte)
413{
414	/*
415	 * The pte is non-present, so there's no hardware state to
416	 * preserve.
417	 */
418	set_pte_at(mm, addr, ptep, pte);
419}
420
421#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
422/*
423 * Start a pte protection read-modify-write transaction, which
424 * protects against asynchronous hardware modifications to the pte.
425 * The intention is not to prevent the hardware from making pte
426 * updates, but to prevent any updates it may make from being lost.
427 *
428 * This does not protect against other software modifications of the
429 * pte; the appropriate pte lock must be held over the transation.
430 *
431 * Note that this interface is intended to be batchable, meaning that
432 * ptep_modify_prot_commit may not actually update the pte, but merely
433 * queue the update to be done at some later time.  The update must be
434 * actually committed before the pte lock is released, however.
435 */
436static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
437					   unsigned long addr,
438					   pte_t *ptep)
439{
440	return __ptep_modify_prot_start(mm, addr, ptep);
441}
442
443/*
444 * Commit an update to a pte, leaving any hardware-controlled bits in
445 * the PTE unmodified.
446 */
447static inline void ptep_modify_prot_commit(struct mm_struct *mm,
448					   unsigned long addr,
449					   pte_t *ptep, pte_t pte)
450{
451	__ptep_modify_prot_commit(mm, addr, ptep, pte);
452}
453#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
454#endif /* CONFIG_MMU */
455
456/*
 
 
 
 
 
 
 
 
 
 
 
 
457 * A facility to provide lazy MMU batching.  This allows PTE updates and
458 * page invalidations to be delayed until a call to leave lazy MMU mode
459 * is issued.  Some architectures may benefit from doing this, and it is
460 * beneficial for both shadow and direct mode hypervisors, which may batch
461 * the PTE updates which happen during this window.  Note that using this
462 * interface requires that read hazards be removed from the code.  A read
463 * hazard could result in the direct mode hypervisor case, since the actual
464 * write to the page tables may not yet have taken place, so reads though
465 * a raw PTE pointer after it has been modified are not guaranteed to be
466 * up to date.  This mode can only be entered and left under the protection of
467 * the page table locks for all page tables which may be modified.  In the UP
468 * case, this is required so that preemption is disabled, and in the SMP case,
469 * it must synchronize the delayed page table writes properly on other CPUs.
470 */
471#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
472#define arch_enter_lazy_mmu_mode()	do {} while (0)
473#define arch_leave_lazy_mmu_mode()	do {} while (0)
474#define arch_flush_lazy_mmu_mode()	do {} while (0)
475#endif
476
477/*
478 * A facility to provide batching of the reload of page tables and
479 * other process state with the actual context switch code for
480 * paravirtualized guests.  By convention, only one of the batched
481 * update (lazy) modes (CPU, MMU) should be active at any given time,
482 * entry should never be nested, and entry and exits should always be
483 * paired.  This is for sanity of maintaining and reasoning about the
484 * kernel code.  In this case, the exit (end of the context switch) is
485 * in architecture-specific code, and so doesn't need a generic
486 * definition.
487 */
488#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
489#define arch_start_context_switch(prev)	do {} while (0)
490#endif
491
492#ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
493static inline int pte_soft_dirty(pte_t pte)
494{
495	return 0;
496}
497
498static inline int pmd_soft_dirty(pmd_t pmd)
499{
500	return 0;
501}
502
503static inline pte_t pte_mksoft_dirty(pte_t pte)
504{
505	return pte;
506}
507
508static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
509{
510	return pmd;
511}
512
513static inline pte_t pte_clear_soft_dirty(pte_t pte)
514{
515	return pte;
516}
517
518static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
519{
520	return pmd;
521}
522
523static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
524{
525	return pte;
526}
527
528static inline int pte_swp_soft_dirty(pte_t pte)
529{
530	return 0;
531}
532
533static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
534{
535	return pte;
536}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
537#endif
538
539#ifndef __HAVE_PFNMAP_TRACKING
540/*
541 * Interfaces that can be used by architecture code to keep track of
542 * memory type of pfn mappings specified by the remap_pfn_range,
543 * vm_insert_pfn.
544 */
545
546/*
547 * track_pfn_remap is called when a _new_ pfn mapping is being established
548 * by remap_pfn_range() for physical range indicated by pfn and size.
549 */
550static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
551				  unsigned long pfn, unsigned long addr,
552				  unsigned long size)
553{
554	return 0;
555}
556
557/*
558 * track_pfn_insert is called when a _new_ single pfn is established
559 * by vm_insert_pfn().
560 */
561static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
562				    pfn_t pfn)
563{
564}
565
566/*
567 * track_pfn_copy is called when vma that is covering the pfnmap gets
568 * copied through copy_page_range().
569 */
570static inline int track_pfn_copy(struct vm_area_struct *vma)
571{
572	return 0;
573}
574
575/*
576 * untrack_pfn is called while unmapping a pfnmap for a region.
577 * untrack can be called for a specific region indicated by pfn and size or
578 * can be for the entire vma (in which case pfn, size are zero).
579 */
580static inline void untrack_pfn(struct vm_area_struct *vma,
581			       unsigned long pfn, unsigned long size)
582{
583}
584
585/*
586 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
587 */
588static inline void untrack_pfn_moved(struct vm_area_struct *vma)
589{
590}
591#else
592extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
593			   unsigned long pfn, unsigned long addr,
594			   unsigned long size);
595extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
596			     pfn_t pfn);
597extern int track_pfn_copy(struct vm_area_struct *vma);
598extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
599			unsigned long size);
600extern void untrack_pfn_moved(struct vm_area_struct *vma);
601#endif
602
603#ifdef __HAVE_COLOR_ZERO_PAGE
604static inline int is_zero_pfn(unsigned long pfn)
605{
606	extern unsigned long zero_pfn;
607	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
608	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
609}
610
611#define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))
612
613#else
614static inline int is_zero_pfn(unsigned long pfn)
615{
616	extern unsigned long zero_pfn;
617	return pfn == zero_pfn;
618}
619
620static inline unsigned long my_zero_pfn(unsigned long addr)
621{
622	extern unsigned long zero_pfn;
623	return zero_pfn;
624}
625#endif
626
627#ifdef CONFIG_MMU
628
629#ifndef CONFIG_TRANSPARENT_HUGEPAGE
630static inline int pmd_trans_huge(pmd_t pmd)
631{
632	return 0;
633}
634#ifndef __HAVE_ARCH_PMD_WRITE
635static inline int pmd_write(pmd_t pmd)
636{
637	BUG();
638	return 0;
639}
640#endif /* __HAVE_ARCH_PMD_WRITE */
641#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
642
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
643#ifndef pmd_read_atomic
644static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
645{
646	/*
647	 * Depend on compiler for an atomic pmd read. NOTE: this is
648	 * only going to work, if the pmdval_t isn't larger than
649	 * an unsigned long.
650	 */
651	return *pmdp;
652}
653#endif
654
655#ifndef arch_needs_pgtable_deposit
656#define arch_needs_pgtable_deposit() (false)
657#endif
658/*
659 * This function is meant to be used by sites walking pagetables with
660 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
661 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
662 * into a null pmd and the transhuge page fault can convert a null pmd
663 * into an hugepmd or into a regular pmd (if the hugepage allocation
664 * fails). While holding the mmap_sem in read mode the pmd becomes
665 * stable and stops changing under us only if it's not null and not a
666 * transhuge pmd. When those races occurs and this function makes a
667 * difference vs the standard pmd_none_or_clear_bad, the result is
668 * undefined so behaving like if the pmd was none is safe (because it
669 * can return none anyway). The compiler level barrier() is critically
670 * important to compute the two checks atomically on the same pmdval.
671 *
672 * For 32bit kernels with a 64bit large pmd_t this automatically takes
673 * care of reading the pmd atomically to avoid SMP race conditions
674 * against pmd_populate() when the mmap_sem is hold for reading by the
675 * caller (a special atomic read not done by "gcc" as in the generic
676 * version above, is also needed when THP is disabled because the page
677 * fault can populate the pmd from under us).
678 */
679static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
680{
681	pmd_t pmdval = pmd_read_atomic(pmd);
682	/*
683	 * The barrier will stabilize the pmdval in a register or on
684	 * the stack so that it will stop changing under the code.
685	 *
686	 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
687	 * pmd_read_atomic is allowed to return a not atomic pmdval
688	 * (for example pointing to an hugepage that has never been
689	 * mapped in the pmd). The below checks will only care about
690	 * the low part of the pmd with 32bit PAE x86 anyway, with the
691	 * exception of pmd_none(). So the important thing is that if
692	 * the low part of the pmd is found null, the high part will
693	 * be also null or the pmd_none() check below would be
694	 * confused.
695	 */
696#ifdef CONFIG_TRANSPARENT_HUGEPAGE
697	barrier();
698#endif
699	if (pmd_none(pmdval) || pmd_trans_huge(pmdval))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
700		return 1;
701	if (unlikely(pmd_bad(pmdval))) {
702		pmd_clear_bad(pmd);
703		return 1;
704	}
705	return 0;
706}
707
708/*
709 * This is a noop if Transparent Hugepage Support is not built into
710 * the kernel. Otherwise it is equivalent to
711 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
712 * places that already verified the pmd is not none and they want to
713 * walk ptes while holding the mmap sem in read mode (write mode don't
714 * need this). If THP is not enabled, the pmd can't go away under the
715 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
716 * run a pmd_trans_unstable before walking the ptes after
717 * split_huge_page_pmd returns (because it may have run when the pmd
718 * become null, but then a page fault can map in a THP and not a
719 * regular page).
720 */
721static inline int pmd_trans_unstable(pmd_t *pmd)
722{
723#ifdef CONFIG_TRANSPARENT_HUGEPAGE
724	return pmd_none_or_trans_huge_or_clear_bad(pmd);
725#else
726	return 0;
727#endif
728}
729
730#ifndef CONFIG_NUMA_BALANCING
731/*
732 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
733 * the only case the kernel cares is for NUMA balancing and is only ever set
734 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
735 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It
736 * is the responsibility of the caller to distinguish between PROT_NONE
737 * protections and NUMA hinting fault protections.
738 */
739static inline int pte_protnone(pte_t pte)
740{
741	return 0;
742}
743
744static inline int pmd_protnone(pmd_t pmd)
745{
746	return 0;
747}
748#endif /* CONFIG_NUMA_BALANCING */
749
750#endif /* CONFIG_MMU */
751
752#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
753int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
754int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
755int pud_clear_huge(pud_t *pud);
756int pmd_clear_huge(pmd_t *pmd);
 
 
 
757#else	/* !CONFIG_HAVE_ARCH_HUGE_VMAP */
 
 
 
 
758static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
759{
760	return 0;
761}
762static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
763{
764	return 0;
765}
 
 
 
 
766static inline int pud_clear_huge(pud_t *pud)
767{
768	return 0;
769}
770static inline int pmd_clear_huge(pmd_t *pmd)
771{
772	return 0;
773}
 
 
 
 
 
 
 
 
 
 
 
 
774#endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
775
776#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
777#ifdef CONFIG_TRANSPARENT_HUGEPAGE
778/*
779 * ARCHes with special requirements for evicting THP backing TLB entries can
780 * implement this. Otherwise also, it can help optimize normal TLB flush in
781 * THP regime. stock flush_tlb_range() typically has optimization to nuke the
782 * entire TLB TLB if flush span is greater than a threshold, which will
783 * likely be true for a single huge page. Thus a single thp flush will
784 * invalidate the entire TLB which is not desitable.
785 * e.g. see arch/arc: flush_pmd_tlb_range
786 */
787#define flush_pmd_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
 
788#else
789#define flush_pmd_tlb_range(vma, addr, end)	BUILD_BUG()
 
790#endif
791#endif
792
793struct file;
794int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
795			unsigned long size, pgprot_t *vma_prot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
796#endif /* !__ASSEMBLY__ */
797
798#ifndef io_remap_pfn_range
799#define io_remap_pfn_range remap_pfn_range
800#endif
801
802#ifndef has_transparent_hugepage
803#ifdef CONFIG_TRANSPARENT_HUGEPAGE
804#define has_transparent_hugepage() 1
805#else
806#define has_transparent_hugepage() 0
807#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
808#endif
809
810#endif /* _ASM_GENERIC_PGTABLE_H */