Linux Audio

Check our new training course

Loading...
v5.4
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _ASM_GENERIC_PGTABLE_H
   3#define _ASM_GENERIC_PGTABLE_H
   4
   5#include <linux/pfn.h>
   6
   7#ifndef __ASSEMBLY__
   8#ifdef CONFIG_MMU
   9
  10#include <linux/mm_types.h>
  11#include <linux/bug.h>
  12#include <linux/errno.h>
  13
  14#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
  15	defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
  16#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
  17#endif
  18
  19/*
  20 * On almost all architectures and configurations, 0 can be used as the
  21 * upper ceiling to free_pgtables(): on many architectures it has the same
  22 * effect as using TASK_SIZE.  However, there is one configuration which
  23 * must impose a more careful limit, to avoid freeing kernel pgtables.
  24 */
  25#ifndef USER_PGTABLES_CEILING
  26#define USER_PGTABLES_CEILING	0UL
  27#endif
  28
  29#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
  30extern int ptep_set_access_flags(struct vm_area_struct *vma,
  31				 unsigned long address, pte_t *ptep,
  32				 pte_t entry, int dirty);
  33#endif
  34
  35#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
  36#ifdef CONFIG_TRANSPARENT_HUGEPAGE
  37extern int pmdp_set_access_flags(struct vm_area_struct *vma,
  38				 unsigned long address, pmd_t *pmdp,
  39				 pmd_t entry, int dirty);
  40extern int pudp_set_access_flags(struct vm_area_struct *vma,
  41				 unsigned long address, pud_t *pudp,
  42				 pud_t entry, int dirty);
  43#else
  44static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
  45					unsigned long address, pmd_t *pmdp,
  46					pmd_t entry, int dirty)
  47{
  48	BUILD_BUG();
  49	return 0;
  50}
  51static inline int pudp_set_access_flags(struct vm_area_struct *vma,
  52					unsigned long address, pud_t *pudp,
  53					pud_t entry, int dirty)
  54{
  55	BUILD_BUG();
  56	return 0;
  57}
  58#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  59#endif
  60
  61#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
  62static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
  63					    unsigned long address,
  64					    pte_t *ptep)
  65{
  66	pte_t pte = *ptep;
  67	int r = 1;
  68	if (!pte_young(pte))
  69		r = 0;
  70	else
  71		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
  72	return r;
  73}
  74#endif
  75
  76#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
  77#ifdef CONFIG_TRANSPARENT_HUGEPAGE
  78static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
  79					    unsigned long address,
  80					    pmd_t *pmdp)
  81{
  82	pmd_t pmd = *pmdp;
  83	int r = 1;
  84	if (!pmd_young(pmd))
  85		r = 0;
  86	else
  87		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
  88	return r;
  89}
  90#else
  91static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
  92					    unsigned long address,
  93					    pmd_t *pmdp)
  94{
  95	BUILD_BUG();
  96	return 0;
  97}
  98#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  99#endif
 100
 101#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
 102int ptep_clear_flush_young(struct vm_area_struct *vma,
 103			   unsigned long address, pte_t *ptep);
 104#endif
 105
 106#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
 107#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 108extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
 109				  unsigned long address, pmd_t *pmdp);
 110#else
 111/*
 112 * Despite relevant to THP only, this API is called from generic rmap code
 113 * under PageTransHuge(), hence needs a dummy implementation for !THP
 114 */
 115static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
 116					 unsigned long address, pmd_t *pmdp)
 117{
 118	BUILD_BUG();
 119	return 0;
 120}
 121#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 122#endif
 123
 124#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
 125static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
 126				       unsigned long address,
 127				       pte_t *ptep)
 128{
 129	pte_t pte = *ptep;
 130	pte_clear(mm, address, ptep);
 131	return pte;
 132}
 133#endif
 134
 
 135#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 136#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
 137static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
 138					    unsigned long address,
 139					    pmd_t *pmdp)
 140{
 141	pmd_t pmd = *pmdp;
 142	pmd_clear(pmdp);
 143	return pmd;
 144}
 145#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
 146#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
 147static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
 148					    unsigned long address,
 149					    pud_t *pudp)
 150{
 151	pud_t pud = *pudp;
 152
 153	pud_clear(pudp);
 154	return pud;
 155}
 156#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
 157#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 158
 159#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 160#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
 161static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
 162					    unsigned long address, pmd_t *pmdp,
 163					    int full)
 164{
 165	return pmdp_huge_get_and_clear(mm, address, pmdp);
 166}
 167#endif
 168
 169#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
 170static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
 171					    unsigned long address, pud_t *pudp,
 172					    int full)
 173{
 174	return pudp_huge_get_and_clear(mm, address, pudp);
 175}
 176#endif
 177#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 178
 179#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
 180static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
 181					    unsigned long address, pte_t *ptep,
 182					    int full)
 183{
 184	pte_t pte;
 185	pte = ptep_get_and_clear(mm, address, ptep);
 186	return pte;
 187}
 188#endif
 189
 190/*
 191 * Some architectures may be able to avoid expensive synchronization
 192 * primitives when modifications are made to PTE's which are already
 193 * not present, or in the process of an address space destruction.
 194 */
 195#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
 196static inline void pte_clear_not_present_full(struct mm_struct *mm,
 197					      unsigned long address,
 198					      pte_t *ptep,
 199					      int full)
 200{
 201	pte_clear(mm, address, ptep);
 202}
 203#endif
 204
 205#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
 206extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
 207			      unsigned long address,
 208			      pte_t *ptep);
 209#endif
 210
 211#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
 212extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
 213			      unsigned long address,
 214			      pmd_t *pmdp);
 215extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
 216			      unsigned long address,
 217			      pud_t *pudp);
 218#endif
 219
 220#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
 221struct mm_struct;
 222static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
 223{
 224	pte_t old_pte = *ptep;
 225	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
 226}
 227#endif
 228
 229#ifndef pte_savedwrite
 230#define pte_savedwrite pte_write
 231#endif
 232
 233#ifndef pte_mk_savedwrite
 234#define pte_mk_savedwrite pte_mkwrite
 235#endif
 236
 237#ifndef pte_clear_savedwrite
 238#define pte_clear_savedwrite pte_wrprotect
 239#endif
 240
 241#ifndef pmd_savedwrite
 242#define pmd_savedwrite pmd_write
 243#endif
 244
 245#ifndef pmd_mk_savedwrite
 246#define pmd_mk_savedwrite pmd_mkwrite
 247#endif
 248
 249#ifndef pmd_clear_savedwrite
 250#define pmd_clear_savedwrite pmd_wrprotect
 251#endif
 252
 253#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
 254#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 255static inline void pmdp_set_wrprotect(struct mm_struct *mm,
 256				      unsigned long address, pmd_t *pmdp)
 257{
 258	pmd_t old_pmd = *pmdp;
 259	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
 260}
 261#else
 262static inline void pmdp_set_wrprotect(struct mm_struct *mm,
 263				      unsigned long address, pmd_t *pmdp)
 264{
 265	BUILD_BUG();
 266}
 267#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 268#endif
 269#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
 270#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 271static inline void pudp_set_wrprotect(struct mm_struct *mm,
 272				      unsigned long address, pud_t *pudp)
 273{
 274	pud_t old_pud = *pudp;
 275
 276	set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
 277}
 278#else
 279static inline void pudp_set_wrprotect(struct mm_struct *mm,
 280				      unsigned long address, pud_t *pudp)
 281{
 282	BUILD_BUG();
 283}
 284#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
 285#endif
 286
 287#ifndef pmdp_collapse_flush
 288#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 289extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
 290				 unsigned long address, pmd_t *pmdp);
 291#else
 292static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
 293					unsigned long address,
 294					pmd_t *pmdp)
 295{
 296	BUILD_BUG();
 297	return *pmdp;
 298}
 299#define pmdp_collapse_flush pmdp_collapse_flush
 300#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 301#endif
 302
 303#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
 304extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
 305				       pgtable_t pgtable);
 306#endif
 307
 308#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
 309extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
 310#endif
 311
 312#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 313/*
 314 * This is an implementation of pmdp_establish() that is only suitable for an
 315 * architecture that doesn't have hardware dirty/accessed bits. In this case we
 316 * can't race with CPU which sets these bits and non-atomic aproach is fine.
 317 */
 318static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
 319		unsigned long address, pmd_t *pmdp, pmd_t pmd)
 320{
 321	pmd_t old_pmd = *pmdp;
 322	set_pmd_at(vma->vm_mm, address, pmdp, pmd);
 323	return old_pmd;
 324}
 325#endif
 326
 327#ifndef __HAVE_ARCH_PMDP_INVALIDATE
 328extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
 329			    pmd_t *pmdp);
 330#endif
 331
 332#ifndef __HAVE_ARCH_PTE_SAME
 333static inline int pte_same(pte_t pte_a, pte_t pte_b)
 334{
 335	return pte_val(pte_a) == pte_val(pte_b);
 336}
 337#endif
 338
 339#ifndef __HAVE_ARCH_PTE_UNUSED
 340/*
 341 * Some architectures provide facilities to virtualization guests
 342 * so that they can flag allocated pages as unused. This allows the
 343 * host to transparently reclaim unused pages. This function returns
 344 * whether the pte's page is unused.
 345 */
 346static inline int pte_unused(pte_t pte)
 347{
 348	return 0;
 349}
 350#endif
 351
 352#ifndef pte_access_permitted
 353#define pte_access_permitted(pte, write) \
 354	(pte_present(pte) && (!(write) || pte_write(pte)))
 355#endif
 356
 357#ifndef pmd_access_permitted
 358#define pmd_access_permitted(pmd, write) \
 359	(pmd_present(pmd) && (!(write) || pmd_write(pmd)))
 360#endif
 361
 362#ifndef pud_access_permitted
 363#define pud_access_permitted(pud, write) \
 364	(pud_present(pud) && (!(write) || pud_write(pud)))
 365#endif
 366
 367#ifndef p4d_access_permitted
 368#define p4d_access_permitted(p4d, write) \
 369	(p4d_present(p4d) && (!(write) || p4d_write(p4d)))
 370#endif
 371
 372#ifndef pgd_access_permitted
 373#define pgd_access_permitted(pgd, write) \
 374	(pgd_present(pgd) && (!(write) || pgd_write(pgd)))
 375#endif
 376
 377#ifndef __HAVE_ARCH_PMD_SAME
 
 378static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
 379{
 380	return pmd_val(pmd_a) == pmd_val(pmd_b);
 381}
 382
 383static inline int pud_same(pud_t pud_a, pud_t pud_b)
 384{
 385	return pud_val(pud_a) == pud_val(pud_b);
 386}
 387#endif
 388
 389#ifndef __HAVE_ARCH_P4D_SAME
 390static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
 391{
 392	return p4d_val(p4d_a) == p4d_val(p4d_b);
 393}
 394#endif
 395
 396#ifndef __HAVE_ARCH_PGD_SAME
 397static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
 398{
 399	return pgd_val(pgd_a) == pgd_val(pgd_b);
 400}
 401#endif
 402
 403/*
 404 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
 405 * TLB flush will be required as a result of the "set". For example, use
 406 * in scenarios where it is known ahead of time that the routine is
 407 * setting non-present entries, or re-setting an existing entry to the
 408 * same value. Otherwise, use the typical "set" helpers and flush the
 409 * TLB.
 410 */
 411#define set_pte_safe(ptep, pte) \
 412({ \
 413	WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
 414	set_pte(ptep, pte); \
 415})
 416
 417#define set_pmd_safe(pmdp, pmd) \
 418({ \
 419	WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
 420	set_pmd(pmdp, pmd); \
 421})
 422
 423#define set_pud_safe(pudp, pud) \
 424({ \
 425	WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
 426	set_pud(pudp, pud); \
 427})
 428
 429#define set_p4d_safe(p4dp, p4d) \
 430({ \
 431	WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
 432	set_p4d(p4dp, p4d); \
 433})
 434
 435#define set_pgd_safe(pgdp, pgd) \
 436({ \
 437	WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
 438	set_pgd(pgdp, pgd); \
 439})
 440
 441#ifndef __HAVE_ARCH_DO_SWAP_PAGE
 442/*
 443 * Some architectures support metadata associated with a page. When a
 444 * page is being swapped out, this metadata must be saved so it can be
 445 * restored when the page is swapped back in. SPARC M7 and newer
 446 * processors support an ADI (Application Data Integrity) tag for the
 447 * page as metadata for the page. arch_do_swap_page() can restore this
 448 * metadata when a page is swapped back in.
 449 */
 450static inline void arch_do_swap_page(struct mm_struct *mm,
 451				     struct vm_area_struct *vma,
 452				     unsigned long addr,
 453				     pte_t pte, pte_t oldpte)
 454{
 455
 456}
 457#endif
 458
 459#ifndef __HAVE_ARCH_UNMAP_ONE
 460/*
 461 * Some architectures support metadata associated with a page. When a
 462 * page is being swapped out, this metadata must be saved so it can be
 463 * restored when the page is swapped back in. SPARC M7 and newer
 464 * processors support an ADI (Application Data Integrity) tag for the
 465 * page as metadata for the page. arch_unmap_one() can save this
 466 * metadata on a swap-out of a page.
 467 */
 468static inline int arch_unmap_one(struct mm_struct *mm,
 469				  struct vm_area_struct *vma,
 470				  unsigned long addr,
 471				  pte_t orig_pte)
 472{
 
 473	return 0;
 474}
 
 475#endif
 476
 477#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
 478#define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
 479#endif
 480
 481#ifndef __HAVE_ARCH_MOVE_PTE
 482#define move_pte(pte, prot, old_addr, new_addr)	(pte)
 483#endif
 484
 485#ifndef pte_accessible
 486# define pte_accessible(mm, pte)	((void)(pte), 1)
 487#endif
 488
 489#ifndef flush_tlb_fix_spurious_fault
 490#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
 491#endif
 492
 493#ifndef pgprot_noncached
 494#define pgprot_noncached(prot)	(prot)
 495#endif
 496
 497#ifndef pgprot_writecombine
 498#define pgprot_writecombine pgprot_noncached
 499#endif
 500
 501#ifndef pgprot_writethrough
 502#define pgprot_writethrough pgprot_noncached
 503#endif
 504
 505#ifndef pgprot_device
 506#define pgprot_device pgprot_noncached
 507#endif
 508
 509#ifndef pgprot_modify
 510#define pgprot_modify pgprot_modify
 511static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
 512{
 513	if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
 514		newprot = pgprot_noncached(newprot);
 515	if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
 516		newprot = pgprot_writecombine(newprot);
 517	if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
 518		newprot = pgprot_device(newprot);
 519	return newprot;
 520}
 521#endif
 522
 523/*
 524 * When walking page tables, get the address of the next boundary,
 525 * or the end address of the range if that comes earlier.  Although no
 526 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
 527 */
 528
 529#define pgd_addr_end(addr, end)						\
 530({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
 531	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
 532})
 533
 534#ifndef p4d_addr_end
 535#define p4d_addr_end(addr, end)						\
 536({	unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;	\
 537	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
 538})
 539#endif
 540
 541#ifndef pud_addr_end
 542#define pud_addr_end(addr, end)						\
 543({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
 544	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
 545})
 546#endif
 547
 548#ifndef pmd_addr_end
 549#define pmd_addr_end(addr, end)						\
 550({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
 551	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
 552})
 553#endif
 554
 555/*
 556 * When walking page tables, we usually want to skip any p?d_none entries;
 557 * and any p?d_bad entries - reporting the error before resetting to none.
 558 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
 559 */
 560void pgd_clear_bad(pgd_t *);
 561void p4d_clear_bad(p4d_t *);
 562void pud_clear_bad(pud_t *);
 563void pmd_clear_bad(pmd_t *);
 564
 565static inline int pgd_none_or_clear_bad(pgd_t *pgd)
 566{
 567	if (pgd_none(*pgd))
 568		return 1;
 569	if (unlikely(pgd_bad(*pgd))) {
 570		pgd_clear_bad(pgd);
 571		return 1;
 572	}
 573	return 0;
 574}
 575
 576static inline int p4d_none_or_clear_bad(p4d_t *p4d)
 577{
 578	if (p4d_none(*p4d))
 579		return 1;
 580	if (unlikely(p4d_bad(*p4d))) {
 581		p4d_clear_bad(p4d);
 582		return 1;
 583	}
 584	return 0;
 585}
 586
 587static inline int pud_none_or_clear_bad(pud_t *pud)
 588{
 589	if (pud_none(*pud))
 590		return 1;
 591	if (unlikely(pud_bad(*pud))) {
 592		pud_clear_bad(pud);
 593		return 1;
 594	}
 595	return 0;
 596}
 597
 598static inline int pmd_none_or_clear_bad(pmd_t *pmd)
 599{
 600	if (pmd_none(*pmd))
 601		return 1;
 602	if (unlikely(pmd_bad(*pmd))) {
 603		pmd_clear_bad(pmd);
 604		return 1;
 605	}
 606	return 0;
 607}
 608
 609static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
 610					     unsigned long addr,
 611					     pte_t *ptep)
 612{
 613	/*
 614	 * Get the current pte state, but zero it out to make it
 615	 * non-present, preventing the hardware from asynchronously
 616	 * updating it.
 617	 */
 618	return ptep_get_and_clear(vma->vm_mm, addr, ptep);
 619}
 620
 621static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
 622					     unsigned long addr,
 623					     pte_t *ptep, pte_t pte)
 624{
 625	/*
 626	 * The pte is non-present, so there's no hardware state to
 627	 * preserve.
 628	 */
 629	set_pte_at(vma->vm_mm, addr, ptep, pte);
 630}
 631
 632#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
 633/*
 634 * Start a pte protection read-modify-write transaction, which
 635 * protects against asynchronous hardware modifications to the pte.
 636 * The intention is not to prevent the hardware from making pte
 637 * updates, but to prevent any updates it may make from being lost.
 638 *
 639 * This does not protect against other software modifications of the
 640 * pte; the appropriate pte lock must be held over the transation.
 641 *
 642 * Note that this interface is intended to be batchable, meaning that
 643 * ptep_modify_prot_commit may not actually update the pte, but merely
 644 * queue the update to be done at some later time.  The update must be
 645 * actually committed before the pte lock is released, however.
 646 */
 647static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
 648					   unsigned long addr,
 649					   pte_t *ptep)
 650{
 651	return __ptep_modify_prot_start(vma, addr, ptep);
 652}
 653
 654/*
 655 * Commit an update to a pte, leaving any hardware-controlled bits in
 656 * the PTE unmodified.
 657 */
 658static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
 659					   unsigned long addr,
 660					   pte_t *ptep, pte_t old_pte, pte_t pte)
 661{
 662	__ptep_modify_prot_commit(vma, addr, ptep, pte);
 663}
 664#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
 665#endif /* CONFIG_MMU */
 666
 667/*
 668 * No-op macros that just return the current protection value. Defined here
 669 * because these macros can be used used even if CONFIG_MMU is not defined.
 670 */
 671#ifndef pgprot_encrypted
 672#define pgprot_encrypted(prot)	(prot)
 673#endif
 674
 675#ifndef pgprot_decrypted
 676#define pgprot_decrypted(prot)	(prot)
 677#endif
 678
 679/*
 680 * A facility to provide lazy MMU batching.  This allows PTE updates and
 681 * page invalidations to be delayed until a call to leave lazy MMU mode
 682 * is issued.  Some architectures may benefit from doing this, and it is
 683 * beneficial for both shadow and direct mode hypervisors, which may batch
 684 * the PTE updates which happen during this window.  Note that using this
 685 * interface requires that read hazards be removed from the code.  A read
 686 * hazard could result in the direct mode hypervisor case, since the actual
 687 * write to the page tables may not yet have taken place, so reads though
 688 * a raw PTE pointer after it has been modified are not guaranteed to be
 689 * up to date.  This mode can only be entered and left under the protection of
 690 * the page table locks for all page tables which may be modified.  In the UP
 691 * case, this is required so that preemption is disabled, and in the SMP case,
 692 * it must synchronize the delayed page table writes properly on other CPUs.
 693 */
 694#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
 695#define arch_enter_lazy_mmu_mode()	do {} while (0)
 696#define arch_leave_lazy_mmu_mode()	do {} while (0)
 697#define arch_flush_lazy_mmu_mode()	do {} while (0)
 698#endif
 699
 700/*
 701 * A facility to provide batching of the reload of page tables and
 702 * other process state with the actual context switch code for
 703 * paravirtualized guests.  By convention, only one of the batched
 704 * update (lazy) modes (CPU, MMU) should be active at any given time,
 705 * entry should never be nested, and entry and exits should always be
 706 * paired.  This is for sanity of maintaining and reasoning about the
 707 * kernel code.  In this case, the exit (end of the context switch) is
 708 * in architecture-specific code, and so doesn't need a generic
 709 * definition.
 710 */
 711#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
 712#define arch_start_context_switch(prev)	do {} while (0)
 713#endif
 714
 715#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
 716#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
 717static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
 718{
 719	return pmd;
 720}
 721
 722static inline int pmd_swp_soft_dirty(pmd_t pmd)
 723{
 724	return 0;
 725}
 726
 727static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
 728{
 729	return pmd;
 730}
 731#endif
 732#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
 733static inline int pte_soft_dirty(pte_t pte)
 734{
 735	return 0;
 736}
 737
 738static inline int pmd_soft_dirty(pmd_t pmd)
 739{
 740	return 0;
 741}
 742
 743static inline pte_t pte_mksoft_dirty(pte_t pte)
 744{
 745	return pte;
 746}
 747
 748static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
 749{
 750	return pmd;
 751}
 752
 753static inline pte_t pte_clear_soft_dirty(pte_t pte)
 754{
 755	return pte;
 756}
 757
 758static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
 759{
 760	return pmd;
 761}
 762
 763static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
 764{
 765	return pte;
 766}
 767
 768static inline int pte_swp_soft_dirty(pte_t pte)
 769{
 770	return 0;
 771}
 772
 773static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
 774{
 775	return pte;
 776}
 777
 778static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
 779{
 780	return pmd;
 781}
 782
 783static inline int pmd_swp_soft_dirty(pmd_t pmd)
 784{
 785	return 0;
 786}
 787
 788static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
 789{
 790	return pmd;
 791}
 792#endif
 793
 794#ifndef __HAVE_PFNMAP_TRACKING
 795/*
 796 * Interfaces that can be used by architecture code to keep track of
 797 * memory type of pfn mappings specified by the remap_pfn_range,
 798 * vmf_insert_pfn.
 799 */
 800
 801/*
 802 * track_pfn_remap is called when a _new_ pfn mapping is being established
 803 * by remap_pfn_range() for physical range indicated by pfn and size.
 804 */
 805static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
 806				  unsigned long pfn, unsigned long addr,
 807				  unsigned long size)
 808{
 809	return 0;
 810}
 811
 812/*
 813 * track_pfn_insert is called when a _new_ single pfn is established
 814 * by vmf_insert_pfn().
 815 */
 816static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
 817				    pfn_t pfn)
 818{
 
 819}
 820
 821/*
 822 * track_pfn_copy is called when vma that is covering the pfnmap gets
 823 * copied through copy_page_range().
 824 */
 825static inline int track_pfn_copy(struct vm_area_struct *vma)
 826{
 827	return 0;
 828}
 829
 830/*
 831 * untrack_pfn is called while unmapping a pfnmap for a region.
 832 * untrack can be called for a specific region indicated by pfn and size or
 833 * can be for the entire vma (in which case pfn, size are zero).
 834 */
 835static inline void untrack_pfn(struct vm_area_struct *vma,
 836			       unsigned long pfn, unsigned long size)
 837{
 838}
 839
 840/*
 841 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
 842 */
 843static inline void untrack_pfn_moved(struct vm_area_struct *vma)
 844{
 845}
 846#else
 847extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
 848			   unsigned long pfn, unsigned long addr,
 849			   unsigned long size);
 850extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
 851			     pfn_t pfn);
 852extern int track_pfn_copy(struct vm_area_struct *vma);
 853extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
 854			unsigned long size);
 855extern void untrack_pfn_moved(struct vm_area_struct *vma);
 856#endif
 857
 858#ifdef __HAVE_COLOR_ZERO_PAGE
 859static inline int is_zero_pfn(unsigned long pfn)
 860{
 861	extern unsigned long zero_pfn;
 862	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
 863	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
 864}
 865
 866#define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))
 867
 868#else
 869static inline int is_zero_pfn(unsigned long pfn)
 870{
 871	extern unsigned long zero_pfn;
 872	return pfn == zero_pfn;
 873}
 874
 875static inline unsigned long my_zero_pfn(unsigned long addr)
 876{
 877	extern unsigned long zero_pfn;
 878	return zero_pfn;
 879}
 880#endif
 881
 882#ifdef CONFIG_MMU
 883
 884#ifndef CONFIG_TRANSPARENT_HUGEPAGE
 885static inline int pmd_trans_huge(pmd_t pmd)
 886{
 887	return 0;
 888}
 889#ifndef pmd_write
 890static inline int pmd_write(pmd_t pmd)
 891{
 892	BUG();
 893	return 0;
 894}
 895#endif /* pmd_write */
 896#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 897
 898#ifndef pud_write
 899static inline int pud_write(pud_t pud)
 900{
 901	BUG();
 902	return 0;
 903}
 904#endif /* pud_write */
 905
 906#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
 907	(defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
 908	 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
 909static inline int pud_trans_huge(pud_t pud)
 910{
 911	return 0;
 912}
 913#endif
 914
 915#ifndef pmd_read_atomic
 916static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
 917{
 918	/*
 919	 * Depend on compiler for an atomic pmd read. NOTE: this is
 920	 * only going to work, if the pmdval_t isn't larger than
 921	 * an unsigned long.
 922	 */
 923	return *pmdp;
 924}
 925#endif
 926
 927#ifndef arch_needs_pgtable_deposit
 928#define arch_needs_pgtable_deposit() (false)
 
 
 
 
 
 
 
 
 929#endif
 
 930/*
 931 * This function is meant to be used by sites walking pagetables with
 932 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
 933 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
 934 * into a null pmd and the transhuge page fault can convert a null pmd
 935 * into an hugepmd or into a regular pmd (if the hugepage allocation
 936 * fails). While holding the mmap_sem in read mode the pmd becomes
 937 * stable and stops changing under us only if it's not null and not a
 938 * transhuge pmd. When those races occurs and this function makes a
 939 * difference vs the standard pmd_none_or_clear_bad, the result is
 940 * undefined so behaving like if the pmd was none is safe (because it
 941 * can return none anyway). The compiler level barrier() is critically
 942 * important to compute the two checks atomically on the same pmdval.
 943 *
 944 * For 32bit kernels with a 64bit large pmd_t this automatically takes
 945 * care of reading the pmd atomically to avoid SMP race conditions
 946 * against pmd_populate() when the mmap_sem is hold for reading by the
 947 * caller (a special atomic read not done by "gcc" as in the generic
 948 * version above, is also needed when THP is disabled because the page
 949 * fault can populate the pmd from under us).
 950 */
 951static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
 952{
 953	pmd_t pmdval = pmd_read_atomic(pmd);
 954	/*
 955	 * The barrier will stabilize the pmdval in a register or on
 956	 * the stack so that it will stop changing under the code.
 957	 *
 958	 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
 959	 * pmd_read_atomic is allowed to return a not atomic pmdval
 960	 * (for example pointing to an hugepage that has never been
 961	 * mapped in the pmd). The below checks will only care about
 962	 * the low part of the pmd with 32bit PAE x86 anyway, with the
 963	 * exception of pmd_none(). So the important thing is that if
 964	 * the low part of the pmd is found null, the high part will
 965	 * be also null or the pmd_none() check below would be
 966	 * confused.
 967	 */
 968#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 969	barrier();
 970#endif
 971	/*
 972	 * !pmd_present() checks for pmd migration entries
 973	 *
 974	 * The complete check uses is_pmd_migration_entry() in linux/swapops.h
 975	 * But using that requires moving current function and pmd_trans_unstable()
 976	 * to linux/swapops.h to resovle dependency, which is too much code move.
 977	 *
 978	 * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
 979	 * because !pmd_present() pages can only be under migration not swapped
 980	 * out.
 981	 *
 982	 * pmd_none() is preseved for future condition checks on pmd migration
 983	 * entries and not confusing with this function name, although it is
 984	 * redundant with !pmd_present().
 985	 */
 986	if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
 987		(IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
 988		return 1;
 989	if (unlikely(pmd_bad(pmdval))) {
 990		pmd_clear_bad(pmd);
 991		return 1;
 992	}
 993	return 0;
 994}
 995
 996/*
 997 * This is a noop if Transparent Hugepage Support is not built into
 998 * the kernel. Otherwise it is equivalent to
 999 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
1000 * places that already verified the pmd is not none and they want to
1001 * walk ptes while holding the mmap sem in read mode (write mode don't
1002 * need this). If THP is not enabled, the pmd can't go away under the
1003 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
1004 * run a pmd_trans_unstable before walking the ptes after
1005 * split_huge_pmd returns (because it may have run when the pmd become
1006 * null, but then a page fault can map in a THP and not a regular page).
 
1007 */
1008static inline int pmd_trans_unstable(pmd_t *pmd)
1009{
1010#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1011	return pmd_none_or_trans_huge_or_clear_bad(pmd);
1012#else
1013	return 0;
1014#endif
1015}
1016
1017#ifndef CONFIG_NUMA_BALANCING
 
1018/*
1019 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1020 * the only case the kernel cares is for NUMA balancing and is only ever set
1021 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1022 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It
1023 * is the responsibility of the caller to distinguish between PROT_NONE
1024 * protections and NUMA hinting fault protections.
 
1025 */
1026static inline int pte_protnone(pte_t pte)
 
1027{
1028	return 0;
 
1029}
 
1030
1031static inline int pmd_protnone(pmd_t pmd)
 
1032{
1033	return 0;
 
1034}
1035#endif /* CONFIG_NUMA_BALANCING */
1036
1037#endif /* CONFIG_MMU */
 
 
 
 
 
 
 
 
 
 
 
1038
1039#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
 
 
 
 
1040
1041#ifndef __PAGETABLE_P4D_FOLDED
1042int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1043int p4d_clear_huge(p4d_t *p4d);
1044#else
1045static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1046{
1047	return 0;
 
 
 
 
 
1048}
1049static inline int p4d_clear_huge(p4d_t *p4d)
 
 
 
1050{
1051	return 0;
 
 
 
 
 
1052}
1053#endif /* !__PAGETABLE_P4D_FOLDED */
1054
1055int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1056int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1057int pud_clear_huge(pud_t *pud);
1058int pmd_clear_huge(pmd_t *pmd);
1059int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1060int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1061int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1062#else	/* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1063static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1064{
1065	return 0;
 
 
 
 
1066}
1067static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
 
 
 
1068{
1069	return 0;
 
 
 
 
 
1070}
1071static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
 
 
 
 
1072{
1073	return 0;
 
 
 
 
1074}
1075static inline int p4d_clear_huge(p4d_t *p4d)
 
 
 
 
 
 
 
 
 
 
 
 
1076{
1077	return 0;
1078}
1079static inline int pud_clear_huge(pud_t *pud)
 
1080{
1081	return 0;
1082}
1083static inline int pmd_clear_huge(pmd_t *pmd)
 
1084{
1085	return 0;
1086}
1087static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
 
1088{
1089	return 0;
1090}
1091static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
 
1092{
1093	return 0;
1094}
1095static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
 
 
1096{
1097	return 0;
1098}
1099#endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
1100
1101#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1102#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1103/*
1104 * ARCHes with special requirements for evicting THP backing TLB entries can
1105 * implement this. Otherwise also, it can help optimize normal TLB flush in
1106 * THP regime. stock flush_tlb_range() typically has optimization to nuke the
1107 * entire TLB TLB if flush span is greater than a threshold, which will
1108 * likely be true for a single huge page. Thus a single thp flush will
1109 * invalidate the entire TLB which is not desitable.
1110 * e.g. see arch/arc: flush_pmd_tlb_range
1111 */
1112#define flush_pmd_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1113#define flush_pud_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1114#else
1115#define flush_pmd_tlb_range(vma, addr, end)	BUILD_BUG()
1116#define flush_pud_tlb_range(vma, addr, end)	BUILD_BUG()
1117#endif
1118#endif
1119
1120struct file;
1121int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1122			unsigned long size, pgprot_t *vma_prot);
1123
1124#ifndef CONFIG_X86_ESPFIX64
1125static inline void init_espfix_bsp(void) { }
1126#endif
1127
1128extern void __init pgtable_cache_init(void);
1129
1130#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1131static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1132{
1133	return true;
1134}
1135
1136static inline bool arch_has_pfn_modify_check(void)
 
1137{
1138	return false;
1139}
1140#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1141
1142/*
1143 * Architecture PAGE_KERNEL_* fallbacks
1144 *
1145 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1146 * because they really don't support them, or the port needs to be updated to
1147 * reflect the required functionality. Below are a set of relatively safe
1148 * fallbacks, as best effort, which we can count on in lieu of the architectures
1149 * not defining them on their own yet.
1150 */
1151
1152#ifndef PAGE_KERNEL_RO
1153# define PAGE_KERNEL_RO PAGE_KERNEL
1154#endif
1155
1156#ifndef PAGE_KERNEL_EXEC
1157# define PAGE_KERNEL_EXEC PAGE_KERNEL
1158#endif
1159
1160#endif /* !__ASSEMBLY__ */
1161
1162#ifndef io_remap_pfn_range
1163#define io_remap_pfn_range remap_pfn_range
1164#endif
1165
1166#ifndef has_transparent_hugepage
1167#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1168#define has_transparent_hugepage() 1
1169#else
1170#define has_transparent_hugepage() 0
1171#endif
1172#endif
1173
1174/*
1175 * On some architectures it depends on the mm if the p4d/pud or pmd
1176 * layer of the page table hierarchy is folded or not.
1177 */
1178#ifndef mm_p4d_folded
1179#define mm_p4d_folded(mm)	__is_defined(__PAGETABLE_P4D_FOLDED)
1180#endif
1181
1182#ifndef mm_pud_folded
1183#define mm_pud_folded(mm)	__is_defined(__PAGETABLE_PUD_FOLDED)
1184#endif
1185
1186#ifndef mm_pmd_folded
1187#define mm_pmd_folded(mm)	__is_defined(__PAGETABLE_PMD_FOLDED)
1188#endif
1189
1190#endif /* _ASM_GENERIC_PGTABLE_H */
v3.15
 
  1#ifndef _ASM_GENERIC_PGTABLE_H
  2#define _ASM_GENERIC_PGTABLE_H
  3
 
 
  4#ifndef __ASSEMBLY__
  5#ifdef CONFIG_MMU
  6
  7#include <linux/mm_types.h>
  8#include <linux/bug.h>
 
 
 
 
 
 
  9
 10/*
 11 * On almost all architectures and configurations, 0 can be used as the
 12 * upper ceiling to free_pgtables(): on many architectures it has the same
 13 * effect as using TASK_SIZE.  However, there is one configuration which
 14 * must impose a more careful limit, to avoid freeing kernel pgtables.
 15 */
 16#ifndef USER_PGTABLES_CEILING
 17#define USER_PGTABLES_CEILING	0UL
 18#endif
 19
 20#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
 21extern int ptep_set_access_flags(struct vm_area_struct *vma,
 22				 unsigned long address, pte_t *ptep,
 23				 pte_t entry, int dirty);
 24#endif
 25
 26#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
 
 27extern int pmdp_set_access_flags(struct vm_area_struct *vma,
 28				 unsigned long address, pmd_t *pmdp,
 29				 pmd_t entry, int dirty);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 30#endif
 31
 32#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 33static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
 34					    unsigned long address,
 35					    pte_t *ptep)
 36{
 37	pte_t pte = *ptep;
 38	int r = 1;
 39	if (!pte_young(pte))
 40		r = 0;
 41	else
 42		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
 43	return r;
 44}
 45#endif
 46
 47#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
 48#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 49static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
 50					    unsigned long address,
 51					    pmd_t *pmdp)
 52{
 53	pmd_t pmd = *pmdp;
 54	int r = 1;
 55	if (!pmd_young(pmd))
 56		r = 0;
 57	else
 58		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
 59	return r;
 60}
 61#else /* CONFIG_TRANSPARENT_HUGEPAGE */
 62static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
 63					    unsigned long address,
 64					    pmd_t *pmdp)
 65{
 66	BUG();
 67	return 0;
 68}
 69#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 70#endif
 71
 72#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
 73int ptep_clear_flush_young(struct vm_area_struct *vma,
 74			   unsigned long address, pte_t *ptep);
 75#endif
 76
 77#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
 78int pmdp_clear_flush_young(struct vm_area_struct *vma,
 79			   unsigned long address, pmd_t *pmdp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 80#endif
 81
 82#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
 83static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
 84				       unsigned long address,
 85				       pte_t *ptep)
 86{
 87	pte_t pte = *ptep;
 88	pte_clear(mm, address, ptep);
 89	return pte;
 90}
 91#endif
 92
 93#ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
 94#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 95static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
 96				       unsigned long address,
 97				       pmd_t *pmdp)
 
 98{
 99	pmd_t pmd = *pmdp;
100	pmd_clear(pmdp);
101	return pmd;
102}
 
 
 
 
 
 
 
 
 
 
 
 
103#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 
 
 
 
 
 
 
 
 
104#endif
105
 
 
 
 
 
 
 
 
 
 
106#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
107static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
108					    unsigned long address, pte_t *ptep,
109					    int full)
110{
111	pte_t pte;
112	pte = ptep_get_and_clear(mm, address, ptep);
113	return pte;
114}
115#endif
116
117/*
118 * Some architectures may be able to avoid expensive synchronization
119 * primitives when modifications are made to PTE's which are already
120 * not present, or in the process of an address space destruction.
121 */
122#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
123static inline void pte_clear_not_present_full(struct mm_struct *mm,
124					      unsigned long address,
125					      pte_t *ptep,
126					      int full)
127{
128	pte_clear(mm, address, ptep);
129}
130#endif
131
132#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
133extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
134			      unsigned long address,
135			      pte_t *ptep);
136#endif
137
138#ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
139extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
140			      unsigned long address,
141			      pmd_t *pmdp);
 
 
 
142#endif
143
144#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
145struct mm_struct;
146static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
147{
148	pte_t old_pte = *ptep;
149	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
150}
151#endif
152
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
154#ifdef CONFIG_TRANSPARENT_HUGEPAGE
155static inline void pmdp_set_wrprotect(struct mm_struct *mm,
156				      unsigned long address, pmd_t *pmdp)
157{
158	pmd_t old_pmd = *pmdp;
159	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
160}
161#else /* CONFIG_TRANSPARENT_HUGEPAGE */
162static inline void pmdp_set_wrprotect(struct mm_struct *mm,
163				      unsigned long address, pmd_t *pmdp)
164{
165	BUG();
166}
167#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
168#endif
 
 
 
 
 
 
169
170#ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
171extern void pmdp_splitting_flush(struct vm_area_struct *vma,
 
 
 
 
 
 
 
 
 
 
 
 
172				 unsigned long address, pmd_t *pmdp);
 
 
 
 
 
 
 
 
 
 
173#endif
174
175#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
176extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
177				       pgtable_t pgtable);
178#endif
179
180#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
181extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
182#endif
183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184#ifndef __HAVE_ARCH_PMDP_INVALIDATE
185extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
186			    pmd_t *pmdp);
187#endif
188
189#ifndef __HAVE_ARCH_PTE_SAME
190static inline int pte_same(pte_t pte_a, pte_t pte_b)
191{
192	return pte_val(pte_a) == pte_val(pte_b);
193}
194#endif
195
196#ifndef __HAVE_ARCH_PTE_UNUSED
197/*
198 * Some architectures provide facilities to virtualization guests
199 * so that they can flag allocated pages as unused. This allows the
200 * host to transparently reclaim unused pages. This function returns
201 * whether the pte's page is unused.
202 */
203static inline int pte_unused(pte_t pte)
204{
205	return 0;
206}
207#endif
208
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
209#ifndef __HAVE_ARCH_PMD_SAME
210#ifdef CONFIG_TRANSPARENT_HUGEPAGE
211static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
212{
213	return pmd_val(pmd_a) == pmd_val(pmd_b);
214}
215#else /* CONFIG_TRANSPARENT_HUGEPAGE */
216static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217{
218	BUG();
219	return 0;
220}
221#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
222#endif
223
224#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
225#define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
226#endif
227
228#ifndef __HAVE_ARCH_MOVE_PTE
229#define move_pte(pte, prot, old_addr, new_addr)	(pte)
230#endif
231
232#ifndef pte_accessible
233# define pte_accessible(mm, pte)	((void)(pte), 1)
234#endif
235
236#ifndef flush_tlb_fix_spurious_fault
237#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
238#endif
239
240#ifndef pgprot_noncached
241#define pgprot_noncached(prot)	(prot)
242#endif
243
244#ifndef pgprot_writecombine
245#define pgprot_writecombine pgprot_noncached
246#endif
247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
248/*
249 * When walking page tables, get the address of the next boundary,
250 * or the end address of the range if that comes earlier.  Although no
251 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
252 */
253
254#define pgd_addr_end(addr, end)						\
255({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
256	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
257})
258
 
 
 
 
 
 
 
259#ifndef pud_addr_end
260#define pud_addr_end(addr, end)						\
261({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
262	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
263})
264#endif
265
266#ifndef pmd_addr_end
267#define pmd_addr_end(addr, end)						\
268({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
269	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
270})
271#endif
272
273/*
274 * When walking page tables, we usually want to skip any p?d_none entries;
275 * and any p?d_bad entries - reporting the error before resetting to none.
276 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
277 */
278void pgd_clear_bad(pgd_t *);
 
279void pud_clear_bad(pud_t *);
280void pmd_clear_bad(pmd_t *);
281
282static inline int pgd_none_or_clear_bad(pgd_t *pgd)
283{
284	if (pgd_none(*pgd))
285		return 1;
286	if (unlikely(pgd_bad(*pgd))) {
287		pgd_clear_bad(pgd);
288		return 1;
289	}
290	return 0;
291}
292
 
 
 
 
 
 
 
 
 
 
 
293static inline int pud_none_or_clear_bad(pud_t *pud)
294{
295	if (pud_none(*pud))
296		return 1;
297	if (unlikely(pud_bad(*pud))) {
298		pud_clear_bad(pud);
299		return 1;
300	}
301	return 0;
302}
303
304static inline int pmd_none_or_clear_bad(pmd_t *pmd)
305{
306	if (pmd_none(*pmd))
307		return 1;
308	if (unlikely(pmd_bad(*pmd))) {
309		pmd_clear_bad(pmd);
310		return 1;
311	}
312	return 0;
313}
314
315static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
316					     unsigned long addr,
317					     pte_t *ptep)
318{
319	/*
320	 * Get the current pte state, but zero it out to make it
321	 * non-present, preventing the hardware from asynchronously
322	 * updating it.
323	 */
324	return ptep_get_and_clear(mm, addr, ptep);
325}
326
327static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
328					     unsigned long addr,
329					     pte_t *ptep, pte_t pte)
330{
331	/*
332	 * The pte is non-present, so there's no hardware state to
333	 * preserve.
334	 */
335	set_pte_at(mm, addr, ptep, pte);
336}
337
338#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
339/*
340 * Start a pte protection read-modify-write transaction, which
341 * protects against asynchronous hardware modifications to the pte.
342 * The intention is not to prevent the hardware from making pte
343 * updates, but to prevent any updates it may make from being lost.
344 *
345 * This does not protect against other software modifications of the
346 * pte; the appropriate pte lock must be held over the transation.
347 *
348 * Note that this interface is intended to be batchable, meaning that
349 * ptep_modify_prot_commit may not actually update the pte, but merely
350 * queue the update to be done at some later time.  The update must be
351 * actually committed before the pte lock is released, however.
352 */
353static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
354					   unsigned long addr,
355					   pte_t *ptep)
356{
357	return __ptep_modify_prot_start(mm, addr, ptep);
358}
359
360/*
361 * Commit an update to a pte, leaving any hardware-controlled bits in
362 * the PTE unmodified.
363 */
364static inline void ptep_modify_prot_commit(struct mm_struct *mm,
365					   unsigned long addr,
366					   pte_t *ptep, pte_t pte)
367{
368	__ptep_modify_prot_commit(mm, addr, ptep, pte);
369}
370#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
371#endif /* CONFIG_MMU */
372
373/*
 
 
 
 
 
 
 
 
 
 
 
 
374 * A facility to provide lazy MMU batching.  This allows PTE updates and
375 * page invalidations to be delayed until a call to leave lazy MMU mode
376 * is issued.  Some architectures may benefit from doing this, and it is
377 * beneficial for both shadow and direct mode hypervisors, which may batch
378 * the PTE updates which happen during this window.  Note that using this
379 * interface requires that read hazards be removed from the code.  A read
380 * hazard could result in the direct mode hypervisor case, since the actual
381 * write to the page tables may not yet have taken place, so reads though
382 * a raw PTE pointer after it has been modified are not guaranteed to be
383 * up to date.  This mode can only be entered and left under the protection of
384 * the page table locks for all page tables which may be modified.  In the UP
385 * case, this is required so that preemption is disabled, and in the SMP case,
386 * it must synchronize the delayed page table writes properly on other CPUs.
387 */
388#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
389#define arch_enter_lazy_mmu_mode()	do {} while (0)
390#define arch_leave_lazy_mmu_mode()	do {} while (0)
391#define arch_flush_lazy_mmu_mode()	do {} while (0)
392#endif
393
394/*
395 * A facility to provide batching of the reload of page tables and
396 * other process state with the actual context switch code for
397 * paravirtualized guests.  By convention, only one of the batched
398 * update (lazy) modes (CPU, MMU) should be active at any given time,
399 * entry should never be nested, and entry and exits should always be
400 * paired.  This is for sanity of maintaining and reasoning about the
401 * kernel code.  In this case, the exit (end of the context switch) is
402 * in architecture-specific code, and so doesn't need a generic
403 * definition.
404 */
405#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
406#define arch_start_context_switch(prev)	do {} while (0)
407#endif
408
409#ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
410static inline int pte_soft_dirty(pte_t pte)
411{
412	return 0;
413}
414
415static inline int pmd_soft_dirty(pmd_t pmd)
416{
417	return 0;
418}
419
420static inline pte_t pte_mksoft_dirty(pte_t pte)
421{
422	return pte;
423}
424
425static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
426{
427	return pmd;
428}
429
 
 
 
 
 
 
 
 
 
 
430static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
431{
432	return pte;
433}
434
435static inline int pte_swp_soft_dirty(pte_t pte)
436{
437	return 0;
438}
439
440static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
441{
442	return pte;
443}
444
445static inline pte_t pte_file_clear_soft_dirty(pte_t pte)
446{
447       return pte;
448}
449
450static inline pte_t pte_file_mksoft_dirty(pte_t pte)
451{
452       return pte;
453}
454
455static inline int pte_file_soft_dirty(pte_t pte)
456{
457       return 0;
458}
459#endif
460
461#ifndef __HAVE_PFNMAP_TRACKING
462/*
463 * Interfaces that can be used by architecture code to keep track of
464 * memory type of pfn mappings specified by the remap_pfn_range,
465 * vm_insert_pfn.
466 */
467
468/*
469 * track_pfn_remap is called when a _new_ pfn mapping is being established
470 * by remap_pfn_range() for physical range indicated by pfn and size.
471 */
472static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
473				  unsigned long pfn, unsigned long addr,
474				  unsigned long size)
475{
476	return 0;
477}
478
479/*
480 * track_pfn_insert is called when a _new_ single pfn is established
481 * by vm_insert_pfn().
482 */
483static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
484				   unsigned long pfn)
485{
486	return 0;
487}
488
489/*
490 * track_pfn_copy is called when vma that is covering the pfnmap gets
491 * copied through copy_page_range().
492 */
493static inline int track_pfn_copy(struct vm_area_struct *vma)
494{
495	return 0;
496}
497
498/*
499 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
500 * untrack can be called for a specific region indicated by pfn and size or
501 * can be for the entire vma (in which case pfn, size are zero).
502 */
503static inline void untrack_pfn(struct vm_area_struct *vma,
504			       unsigned long pfn, unsigned long size)
505{
506}
 
 
 
 
 
 
 
507#else
508extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
509			   unsigned long pfn, unsigned long addr,
510			   unsigned long size);
511extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
512			    unsigned long pfn);
513extern int track_pfn_copy(struct vm_area_struct *vma);
514extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
515			unsigned long size);
 
516#endif
517
518#ifdef __HAVE_COLOR_ZERO_PAGE
519static inline int is_zero_pfn(unsigned long pfn)
520{
521	extern unsigned long zero_pfn;
522	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
523	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
524}
525
526#define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))
527
528#else
529static inline int is_zero_pfn(unsigned long pfn)
530{
531	extern unsigned long zero_pfn;
532	return pfn == zero_pfn;
533}
534
535static inline unsigned long my_zero_pfn(unsigned long addr)
536{
537	extern unsigned long zero_pfn;
538	return zero_pfn;
539}
540#endif
541
542#ifdef CONFIG_MMU
543
544#ifndef CONFIG_TRANSPARENT_HUGEPAGE
545static inline int pmd_trans_huge(pmd_t pmd)
546{
547	return 0;
548}
549static inline int pmd_trans_splitting(pmd_t pmd)
 
550{
 
551	return 0;
552}
553#ifndef __HAVE_ARCH_PMD_WRITE
554static inline int pmd_write(pmd_t pmd)
 
 
 
555{
556	BUG();
557	return 0;
558}
559#endif /* __HAVE_ARCH_PMD_WRITE */
560#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 
 
 
 
 
 
 
 
561
562#ifndef pmd_read_atomic
563static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
564{
565	/*
566	 * Depend on compiler for an atomic pmd read. NOTE: this is
567	 * only going to work, if the pmdval_t isn't larger than
568	 * an unsigned long.
569	 */
570	return *pmdp;
571}
572#endif
573
574#ifndef pmd_move_must_withdraw
575static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
576					 spinlock_t *old_pmd_ptl)
577{
578	/*
579	 * With split pmd lock we also need to move preallocated
580	 * PTE page table if new_pmd is on different PMD page table.
581	 */
582	return new_pmd_ptl != old_pmd_ptl;
583}
584#endif
585
586/*
587 * This function is meant to be used by sites walking pagetables with
588 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
589 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
590 * into a null pmd and the transhuge page fault can convert a null pmd
591 * into an hugepmd or into a regular pmd (if the hugepage allocation
592 * fails). While holding the mmap_sem in read mode the pmd becomes
593 * stable and stops changing under us only if it's not null and not a
594 * transhuge pmd. When those races occurs and this function makes a
595 * difference vs the standard pmd_none_or_clear_bad, the result is
596 * undefined so behaving like if the pmd was none is safe (because it
597 * can return none anyway). The compiler level barrier() is critically
598 * important to compute the two checks atomically on the same pmdval.
599 *
600 * For 32bit kernels with a 64bit large pmd_t this automatically takes
601 * care of reading the pmd atomically to avoid SMP race conditions
602 * against pmd_populate() when the mmap_sem is hold for reading by the
603 * caller (a special atomic read not done by "gcc" as in the generic
604 * version above, is also needed when THP is disabled because the page
605 * fault can populate the pmd from under us).
606 */
607static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
608{
609	pmd_t pmdval = pmd_read_atomic(pmd);
610	/*
611	 * The barrier will stabilize the pmdval in a register or on
612	 * the stack so that it will stop changing under the code.
613	 *
614	 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
615	 * pmd_read_atomic is allowed to return a not atomic pmdval
616	 * (for example pointing to an hugepage that has never been
617	 * mapped in the pmd). The below checks will only care about
618	 * the low part of the pmd with 32bit PAE x86 anyway, with the
619	 * exception of pmd_none(). So the important thing is that if
620	 * the low part of the pmd is found null, the high part will
621	 * be also null or the pmd_none() check below would be
622	 * confused.
623	 */
624#ifdef CONFIG_TRANSPARENT_HUGEPAGE
625	barrier();
626#endif
627	if (pmd_none(pmdval) || pmd_trans_huge(pmdval))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
628		return 1;
629	if (unlikely(pmd_bad(pmdval))) {
630		pmd_clear_bad(pmd);
631		return 1;
632	}
633	return 0;
634}
635
636/*
637 * This is a noop if Transparent Hugepage Support is not built into
638 * the kernel. Otherwise it is equivalent to
639 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
640 * places that already verified the pmd is not none and they want to
641 * walk ptes while holding the mmap sem in read mode (write mode don't
642 * need this). If THP is not enabled, the pmd can't go away under the
643 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
644 * run a pmd_trans_unstable before walking the ptes after
645 * split_huge_page_pmd returns (because it may have run when the pmd
646 * become null, but then a page fault can map in a THP and not a
647 * regular page).
648 */
649static inline int pmd_trans_unstable(pmd_t *pmd)
650{
651#ifdef CONFIG_TRANSPARENT_HUGEPAGE
652	return pmd_none_or_trans_huge_or_clear_bad(pmd);
653#else
654	return 0;
655#endif
656}
657
658#ifdef CONFIG_NUMA_BALANCING
659#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
660/*
661 * _PAGE_NUMA works identical to _PAGE_PROTNONE (it's actually the
662 * same bit too). It's set only when _PAGE_PRESET is not set and it's
663 * never set if _PAGE_PRESENT is set.
664 *
665 * pte/pmd_present() returns true if pte/pmd_numa returns true. Page
666 * fault triggers on those regions if pte/pmd_numa returns true
667 * (because _PAGE_PRESENT is not set).
668 */
669#ifndef pte_numa
670static inline int pte_numa(pte_t pte)
671{
672	return (pte_flags(pte) &
673		(_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA;
674}
675#endif
676
677#ifndef pmd_numa
678static inline int pmd_numa(pmd_t pmd)
679{
680	return (pmd_flags(pmd) &
681		(_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA;
682}
683#endif
684
685/*
686 * pte/pmd_mknuma sets the _PAGE_ACCESSED bitflag automatically
687 * because they're called by the NUMA hinting minor page fault. If we
688 * wouldn't set the _PAGE_ACCESSED bitflag here, the TLB miss handler
689 * would be forced to set it later while filling the TLB after we
690 * return to userland. That would trigger a second write to memory
691 * that we optimize away by setting _PAGE_ACCESSED here.
692 */
693#ifndef pte_mknonnuma
694static inline pte_t pte_mknonnuma(pte_t pte)
695{
696	pteval_t val = pte_val(pte);
697
698	val &= ~_PAGE_NUMA;
699	val |= (_PAGE_PRESENT|_PAGE_ACCESSED);
700	return __pte(val);
701}
702#endif
703
704#ifndef pmd_mknonnuma
705static inline pmd_t pmd_mknonnuma(pmd_t pmd)
 
 
 
706{
707	pmdval_t val = pmd_val(pmd);
708
709	val &= ~_PAGE_NUMA;
710	val |= (_PAGE_PRESENT|_PAGE_ACCESSED);
711
712	return __pmd(val);
713}
714#endif
715
716#ifndef pte_mknuma
717static inline pte_t pte_mknuma(pte_t pte)
718{
719	pteval_t val = pte_val(pte);
720
721	val &= ~_PAGE_PRESENT;
722	val |= _PAGE_NUMA;
723
724	return __pte(val);
725}
726#endif
727
728#ifndef ptep_set_numa
729static inline void ptep_set_numa(struct mm_struct *mm, unsigned long addr,
730				 pte_t *ptep)
 
 
 
 
 
 
731{
732	pte_t ptent = *ptep;
733
734	ptent = pte_mknuma(ptent);
735	set_pte_at(mm, addr, ptep, ptent);
736	return;
737}
738#endif
739
740#ifndef pmd_mknuma
741static inline pmd_t pmd_mknuma(pmd_t pmd)
742{
743	pmdval_t val = pmd_val(pmd);
744
745	val &= ~_PAGE_PRESENT;
746	val |= _PAGE_NUMA;
747
748	return __pmd(val);
749}
750#endif
751
752#ifndef pmdp_set_numa
753static inline void pmdp_set_numa(struct mm_struct *mm, unsigned long addr,
754				 pmd_t *pmdp)
755{
756	pmd_t pmd = *pmdp;
757
758	pmd = pmd_mknuma(pmd);
759	set_pmd_at(mm, addr, pmdp, pmd);
760	return;
761}
762#endif
763#else
764extern int pte_numa(pte_t pte);
765extern int pmd_numa(pmd_t pmd);
766extern pte_t pte_mknonnuma(pte_t pte);
767extern pmd_t pmd_mknonnuma(pmd_t pmd);
768extern pte_t pte_mknuma(pte_t pte);
769extern pmd_t pmd_mknuma(pmd_t pmd);
770extern void ptep_set_numa(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
771extern void pmdp_set_numa(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp);
772#endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */
773#else
774static inline int pmd_numa(pmd_t pmd)
775{
776	return 0;
777}
778
779static inline int pte_numa(pte_t pte)
780{
781	return 0;
782}
783
784static inline pte_t pte_mknonnuma(pte_t pte)
785{
786	return pte;
787}
788
789static inline pmd_t pmd_mknonnuma(pmd_t pmd)
790{
791	return pmd;
792}
793
794static inline pte_t pte_mknuma(pte_t pte)
795{
796	return pte;
797}
798
799static inline void ptep_set_numa(struct mm_struct *mm, unsigned long addr,
800				 pte_t *ptep)
801{
802	return;
803}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
804
 
 
 
805
806static inline pmd_t pmd_mknuma(pmd_t pmd)
 
 
 
 
 
 
 
807{
808	return pmd;
809}
810
811static inline void pmdp_set_numa(struct mm_struct *mm, unsigned long addr,
812				 pmd_t *pmdp)
813{
814	return ;
815}
816#endif /* CONFIG_NUMA_BALANCING */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
817
818#endif /* CONFIG_MMU */
 
 
819
820#endif /* !__ASSEMBLY__ */
821
822#ifndef io_remap_pfn_range
823#define io_remap_pfn_range remap_pfn_range
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
824#endif
825
826#endif /* _ASM_GENERIC_PGTABLE_H */