Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/******************************************************************************
   3*******************************************************************************
   4**
   5**  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
   6**  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
   7**
 
 
 
   8**
   9*******************************************************************************
  10******************************************************************************/
  11
  12/*
  13 * lowcomms.c
  14 *
  15 * This is the "low-level" comms layer.
  16 *
  17 * It is responsible for sending/receiving messages
  18 * from other nodes in the cluster.
  19 *
  20 * Cluster nodes are referred to by their nodeids. nodeids are
  21 * simply 32 bit numbers to the locking module - if they need to
  22 * be expanded for the cluster infrastructure then that is its
  23 * responsibility. It is this layer's
  24 * responsibility to resolve these into IP address or
  25 * whatever it needs for inter-node communication.
  26 *
  27 * The comms level is two kernel threads that deal mainly with
  28 * the receiving of messages from other nodes and passing them
  29 * up to the mid-level comms layer (which understands the
  30 * message format) for execution by the locking core, and
  31 * a send thread which does all the setting up of connections
  32 * to remote nodes and the sending of data. Threads are not allowed
  33 * to send their own data because it may cause them to wait in times
  34 * of high load. Also, this way, the sending thread can collect together
  35 * messages bound for one node and send them in one block.
  36 *
  37 * lowcomms will choose to use either TCP or SCTP as its transport layer
  38 * depending on the configuration variable 'protocol'. This should be set
  39 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
  40 * cluster-wide mechanism as it must be the same on all nodes of the cluster
  41 * for the DLM to function.
  42 *
  43 */
  44
  45#include <asm/ioctls.h>
  46#include <net/sock.h>
  47#include <net/tcp.h>
  48#include <linux/pagemap.h>
  49#include <linux/file.h>
  50#include <linux/mutex.h>
  51#include <linux/sctp.h>
  52#include <linux/slab.h>
  53#include <net/sctp/sctp.h>
  54#include <net/ipv6.h>
  55
  56#include "dlm_internal.h"
  57#include "lowcomms.h"
  58#include "midcomms.h"
  59#include "config.h"
  60
  61#define NEEDED_RMEM (4*1024*1024)
  62#define CONN_HASH_SIZE 32
  63
  64/* Number of messages to send before rescheduling */
  65#define MAX_SEND_MSG_COUNT 25
  66
  67struct cbuf {
  68	unsigned int base;
  69	unsigned int len;
  70	unsigned int mask;
  71};
  72
  73static void cbuf_add(struct cbuf *cb, int n)
  74{
  75	cb->len += n;
  76}
  77
  78static int cbuf_data(struct cbuf *cb)
  79{
  80	return ((cb->base + cb->len) & cb->mask);
  81}
  82
  83static void cbuf_init(struct cbuf *cb, int size)
  84{
  85	cb->base = cb->len = 0;
  86	cb->mask = size-1;
  87}
  88
  89static void cbuf_eat(struct cbuf *cb, int n)
  90{
  91	cb->len  -= n;
  92	cb->base += n;
  93	cb->base &= cb->mask;
  94}
  95
  96static bool cbuf_empty(struct cbuf *cb)
  97{
  98	return cb->len == 0;
  99}
 100
 101struct connection {
 102	struct socket *sock;	/* NULL if not connected */
 103	uint32_t nodeid;	/* So we know who we are in the list */
 104	struct mutex sock_mutex;
 105	unsigned long flags;
 106#define CF_READ_PENDING 1
 107#define CF_WRITE_PENDING 2
 
 108#define CF_INIT_PENDING 4
 109#define CF_IS_OTHERCON 5
 110#define CF_CLOSE 6
 111#define CF_APP_LIMITED 7
 112#define CF_CLOSING 8
 113	struct list_head writequeue;  /* List of outgoing writequeue_entries */
 114	spinlock_t writequeue_lock;
 115	int (*rx_action) (struct connection *);	/* What to do when active */
 116	void (*connect_action) (struct connection *);	/* What to do to connect */
 117	struct page *rx_page;
 118	struct cbuf cb;
 119	int retries;
 120#define MAX_CONNECT_RETRIES 3
 121	struct hlist_node list;
 122	struct connection *othercon;
 123	struct work_struct rwork; /* Receive workqueue */
 124	struct work_struct swork; /* Send workqueue */
 
 
 
 
 125};
 126#define sock2con(x) ((struct connection *)(x)->sk_user_data)
 127
 128/* An entry waiting to be sent */
 129struct writequeue_entry {
 130	struct list_head list;
 131	struct page *page;
 132	int offset;
 133	int len;
 134	int end;
 135	int users;
 136	struct connection *con;
 137};
 138
 139struct dlm_node_addr {
 140	struct list_head list;
 141	int nodeid;
 142	int addr_count;
 143	int curr_addr_index;
 144	struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
 145};
 146
 147static struct listen_sock_callbacks {
 148	void (*sk_error_report)(struct sock *);
 149	void (*sk_data_ready)(struct sock *);
 150	void (*sk_state_change)(struct sock *);
 151	void (*sk_write_space)(struct sock *);
 152} listen_sock;
 153
 154static LIST_HEAD(dlm_node_addrs);
 155static DEFINE_SPINLOCK(dlm_node_addrs_spin);
 156
 157static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
 158static int dlm_local_count;
 159static int dlm_allow_conn;
 160
 161/* Work queues */
 162static struct workqueue_struct *recv_workqueue;
 163static struct workqueue_struct *send_workqueue;
 164
 165static struct hlist_head connection_hash[CONN_HASH_SIZE];
 166static DEFINE_MUTEX(connections_lock);
 167static struct kmem_cache *con_cache;
 168
 169static void process_recv_sockets(struct work_struct *work);
 170static void process_send_sockets(struct work_struct *work);
 171
 172
 173/* This is deliberately very simple because most clusters have simple
 174   sequential nodeids, so we should be able to go straight to a connection
 175   struct in the array */
 176static inline int nodeid_hash(int nodeid)
 177{
 178	return nodeid & (CONN_HASH_SIZE-1);
 179}
 180
 181static struct connection *__find_con(int nodeid)
 182{
 183	int r;
 184	struct connection *con;
 185
 186	r = nodeid_hash(nodeid);
 187
 188	hlist_for_each_entry(con, &connection_hash[r], list) {
 189		if (con->nodeid == nodeid)
 190			return con;
 191	}
 192	return NULL;
 193}
 194
 195/*
 196 * If 'allocation' is zero then we don't attempt to create a new
 197 * connection structure for this node.
 198 */
 199static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
 200{
 201	struct connection *con = NULL;
 202	int r;
 203
 204	con = __find_con(nodeid);
 205	if (con || !alloc)
 206		return con;
 207
 208	con = kmem_cache_zalloc(con_cache, alloc);
 209	if (!con)
 210		return NULL;
 211
 212	r = nodeid_hash(nodeid);
 213	hlist_add_head(&con->list, &connection_hash[r]);
 214
 215	con->nodeid = nodeid;
 216	mutex_init(&con->sock_mutex);
 217	INIT_LIST_HEAD(&con->writequeue);
 218	spin_lock_init(&con->writequeue_lock);
 219	INIT_WORK(&con->swork, process_send_sockets);
 220	INIT_WORK(&con->rwork, process_recv_sockets);
 221
 222	/* Setup action pointers for child sockets */
 223	if (con->nodeid) {
 224		struct connection *zerocon = __find_con(0);
 225
 226		con->connect_action = zerocon->connect_action;
 227		if (!con->rx_action)
 228			con->rx_action = zerocon->rx_action;
 229	}
 230
 231	return con;
 232}
 233
 234/* Loop round all connections */
 235static void foreach_conn(void (*conn_func)(struct connection *c))
 236{
 237	int i;
 238	struct hlist_node *n;
 239	struct connection *con;
 240
 241	for (i = 0; i < CONN_HASH_SIZE; i++) {
 242		hlist_for_each_entry_safe(con, n, &connection_hash[i], list)
 243			conn_func(con);
 244	}
 245}
 246
 247static struct connection *nodeid2con(int nodeid, gfp_t allocation)
 248{
 249	struct connection *con;
 250
 251	mutex_lock(&connections_lock);
 252	con = __nodeid2con(nodeid, allocation);
 253	mutex_unlock(&connections_lock);
 254
 255	return con;
 256}
 257
 258static struct dlm_node_addr *find_node_addr(int nodeid)
 259{
 260	struct dlm_node_addr *na;
 261
 262	list_for_each_entry(na, &dlm_node_addrs, list) {
 263		if (na->nodeid == nodeid)
 264			return na;
 265	}
 266	return NULL;
 267}
 268
 269static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y)
 270{
 271	switch (x->ss_family) {
 272	case AF_INET: {
 273		struct sockaddr_in *sinx = (struct sockaddr_in *)x;
 274		struct sockaddr_in *siny = (struct sockaddr_in *)y;
 275		if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
 276			return 0;
 277		if (sinx->sin_port != siny->sin_port)
 278			return 0;
 279		break;
 280	}
 281	case AF_INET6: {
 282		struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
 283		struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
 284		if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
 285			return 0;
 286		if (sinx->sin6_port != siny->sin6_port)
 287			return 0;
 288		break;
 289	}
 290	default:
 291		return 0;
 292	}
 293	return 1;
 294}
 295
 296static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
 297			  struct sockaddr *sa_out, bool try_new_addr)
 298{
 299	struct sockaddr_storage sas;
 300	struct dlm_node_addr *na;
 301
 302	if (!dlm_local_count)
 303		return -1;
 304
 305	spin_lock(&dlm_node_addrs_spin);
 306	na = find_node_addr(nodeid);
 307	if (na && na->addr_count) {
 308		memcpy(&sas, na->addr[na->curr_addr_index],
 309		       sizeof(struct sockaddr_storage));
 310
 311		if (try_new_addr) {
 312			na->curr_addr_index++;
 313			if (na->curr_addr_index == na->addr_count)
 314				na->curr_addr_index = 0;
 315		}
 316	}
 317	spin_unlock(&dlm_node_addrs_spin);
 318
 319	if (!na)
 320		return -EEXIST;
 321
 322	if (!na->addr_count)
 323		return -ENOENT;
 324
 325	if (sas_out)
 326		memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
 327
 328	if (!sa_out)
 329		return 0;
 330
 331	if (dlm_local_addr[0]->ss_family == AF_INET) {
 332		struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
 333		struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
 334		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
 335	} else {
 336		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
 337		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
 338		ret6->sin6_addr = in6->sin6_addr;
 339	}
 340
 341	return 0;
 342}
 343
 344static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid)
 345{
 346	struct dlm_node_addr *na;
 347	int rv = -EEXIST;
 348	int addr_i;
 349
 350	spin_lock(&dlm_node_addrs_spin);
 351	list_for_each_entry(na, &dlm_node_addrs, list) {
 352		if (!na->addr_count)
 353			continue;
 354
 355		for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
 356			if (addr_compare(na->addr[addr_i], addr)) {
 357				*nodeid = na->nodeid;
 358				rv = 0;
 359				goto unlock;
 360			}
 361		}
 362	}
 363unlock:
 364	spin_unlock(&dlm_node_addrs_spin);
 365	return rv;
 366}
 367
 368int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
 369{
 370	struct sockaddr_storage *new_addr;
 371	struct dlm_node_addr *new_node, *na;
 372
 373	new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
 374	if (!new_node)
 375		return -ENOMEM;
 376
 377	new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
 378	if (!new_addr) {
 379		kfree(new_node);
 380		return -ENOMEM;
 381	}
 382
 383	memcpy(new_addr, addr, len);
 384
 385	spin_lock(&dlm_node_addrs_spin);
 386	na = find_node_addr(nodeid);
 387	if (!na) {
 388		new_node->nodeid = nodeid;
 389		new_node->addr[0] = new_addr;
 390		new_node->addr_count = 1;
 391		list_add(&new_node->list, &dlm_node_addrs);
 392		spin_unlock(&dlm_node_addrs_spin);
 393		return 0;
 394	}
 395
 396	if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
 397		spin_unlock(&dlm_node_addrs_spin);
 398		kfree(new_addr);
 399		kfree(new_node);
 400		return -ENOSPC;
 401	}
 402
 403	na->addr[na->addr_count++] = new_addr;
 404	spin_unlock(&dlm_node_addrs_spin);
 405	kfree(new_node);
 406	return 0;
 407}
 408
 409/* Data available on socket or listen socket received a connect */
 410static void lowcomms_data_ready(struct sock *sk)
 411{
 412	struct connection *con;
 413
 414	read_lock_bh(&sk->sk_callback_lock);
 415	con = sock2con(sk);
 416	if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
 417		queue_work(recv_workqueue, &con->rwork);
 418	read_unlock_bh(&sk->sk_callback_lock);
 419}
 420
 421static void lowcomms_write_space(struct sock *sk)
 422{
 423	struct connection *con;
 424
 425	read_lock_bh(&sk->sk_callback_lock);
 426	con = sock2con(sk);
 427	if (!con)
 428		goto out;
 429
 430	clear_bit(SOCK_NOSPACE, &con->sock->flags);
 431
 432	if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
 433		con->sock->sk->sk_write_pending--;
 434		clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
 435	}
 436
 437	queue_work(send_workqueue, &con->swork);
 438out:
 439	read_unlock_bh(&sk->sk_callback_lock);
 440}
 441
 442static inline void lowcomms_connect_sock(struct connection *con)
 443{
 444	if (test_bit(CF_CLOSE, &con->flags))
 445		return;
 446	queue_work(send_workqueue, &con->swork);
 447	cond_resched();
 448}
 449
 450static void lowcomms_state_change(struct sock *sk)
 451{
 452	/* SCTP layer is not calling sk_data_ready when the connection
 453	 * is done, so we catch the signal through here. Also, it
 454	 * doesn't switch socket state when entering shutdown, so we
 455	 * skip the write in that case.
 456	 */
 457	if (sk->sk_shutdown) {
 458		if (sk->sk_shutdown == RCV_SHUTDOWN)
 459			lowcomms_data_ready(sk);
 460	} else if (sk->sk_state == TCP_ESTABLISHED) {
 461		lowcomms_write_space(sk);
 462	}
 463}
 464
 465int dlm_lowcomms_connect_node(int nodeid)
 466{
 467	struct connection *con;
 468
 469	if (nodeid == dlm_our_nodeid())
 470		return 0;
 471
 472	con = nodeid2con(nodeid, GFP_NOFS);
 473	if (!con)
 474		return -ENOMEM;
 475	lowcomms_connect_sock(con);
 476	return 0;
 477}
 478
 479static void lowcomms_error_report(struct sock *sk)
 480{
 481	struct connection *con;
 482	struct sockaddr_storage saddr;
 
 483	void (*orig_report)(struct sock *) = NULL;
 484
 485	read_lock_bh(&sk->sk_callback_lock);
 486	con = sock2con(sk);
 487	if (con == NULL)
 488		goto out;
 489
 490	orig_report = listen_sock.sk_error_report;
 491	if (con->sock == NULL ||
 492	    kernel_getpeername(con->sock, (struct sockaddr *)&saddr) < 0) {
 493		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
 494				   "sending to node %d, port %d, "
 495				   "sk_err=%d/%d\n", dlm_our_nodeid(),
 496				   con->nodeid, dlm_config.ci_tcp_port,
 497				   sk->sk_err, sk->sk_err_soft);
 498	} else if (saddr.ss_family == AF_INET) {
 499		struct sockaddr_in *sin4 = (struct sockaddr_in *)&saddr;
 500
 501		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
 502				   "sending to node %d at %pI4, port %d, "
 503				   "sk_err=%d/%d\n", dlm_our_nodeid(),
 504				   con->nodeid, &sin4->sin_addr.s_addr,
 505				   dlm_config.ci_tcp_port, sk->sk_err,
 506				   sk->sk_err_soft);
 507	} else {
 508		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&saddr;
 509
 510		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
 511				   "sending to node %d at %u.%u.%u.%u, "
 512				   "port %d, sk_err=%d/%d\n", dlm_our_nodeid(),
 513				   con->nodeid, sin6->sin6_addr.s6_addr32[0],
 514				   sin6->sin6_addr.s6_addr32[1],
 515				   sin6->sin6_addr.s6_addr32[2],
 516				   sin6->sin6_addr.s6_addr32[3],
 517				   dlm_config.ci_tcp_port, sk->sk_err,
 518				   sk->sk_err_soft);
 519	}
 520out:
 521	read_unlock_bh(&sk->sk_callback_lock);
 522	if (orig_report)
 523		orig_report(sk);
 524}
 525
 526/* Note: sk_callback_lock must be locked before calling this function. */
 527static void save_listen_callbacks(struct socket *sock)
 528{
 529	struct sock *sk = sock->sk;
 530
 531	listen_sock.sk_data_ready = sk->sk_data_ready;
 532	listen_sock.sk_state_change = sk->sk_state_change;
 533	listen_sock.sk_write_space = sk->sk_write_space;
 534	listen_sock.sk_error_report = sk->sk_error_report;
 535}
 536
 537static void restore_callbacks(struct socket *sock)
 538{
 539	struct sock *sk = sock->sk;
 540
 541	write_lock_bh(&sk->sk_callback_lock);
 542	sk->sk_user_data = NULL;
 543	sk->sk_data_ready = listen_sock.sk_data_ready;
 544	sk->sk_state_change = listen_sock.sk_state_change;
 545	sk->sk_write_space = listen_sock.sk_write_space;
 546	sk->sk_error_report = listen_sock.sk_error_report;
 547	write_unlock_bh(&sk->sk_callback_lock);
 548}
 549
 550/* Make a socket active */
 551static void add_sock(struct socket *sock, struct connection *con)
 552{
 553	struct sock *sk = sock->sk;
 554
 555	write_lock_bh(&sk->sk_callback_lock);
 556	con->sock = sock;
 557
 558	sk->sk_user_data = con;
 
 
 559	/* Install a data_ready callback */
 560	sk->sk_data_ready = lowcomms_data_ready;
 561	sk->sk_write_space = lowcomms_write_space;
 562	sk->sk_state_change = lowcomms_state_change;
 563	sk->sk_allocation = GFP_NOFS;
 564	sk->sk_error_report = lowcomms_error_report;
 565	write_unlock_bh(&sk->sk_callback_lock);
 566}
 567
 568/* Add the port number to an IPv6 or 4 sockaddr and return the address
 569   length */
 570static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
 571			  int *addr_len)
 572{
 573	saddr->ss_family =  dlm_local_addr[0]->ss_family;
 574	if (saddr->ss_family == AF_INET) {
 575		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
 576		in4_addr->sin_port = cpu_to_be16(port);
 577		*addr_len = sizeof(struct sockaddr_in);
 578		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
 579	} else {
 580		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
 581		in6_addr->sin6_port = cpu_to_be16(port);
 582		*addr_len = sizeof(struct sockaddr_in6);
 583	}
 584	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
 585}
 586
 587/* Close a remote connection and tidy up */
 588static void close_connection(struct connection *con, bool and_other,
 589			     bool tx, bool rx)
 590{
 591	bool closing = test_and_set_bit(CF_CLOSING, &con->flags);
 592
 593	if (tx && !closing && cancel_work_sync(&con->swork)) {
 594		log_print("canceled swork for node %d", con->nodeid);
 595		clear_bit(CF_WRITE_PENDING, &con->flags);
 596	}
 597	if (rx && !closing && cancel_work_sync(&con->rwork)) {
 598		log_print("canceled rwork for node %d", con->nodeid);
 599		clear_bit(CF_READ_PENDING, &con->flags);
 600	}
 601
 602	mutex_lock(&con->sock_mutex);
 603	if (con->sock) {
 604		restore_callbacks(con->sock);
 
 605		sock_release(con->sock);
 606		con->sock = NULL;
 607	}
 608	if (con->othercon && and_other) {
 609		/* Will only re-enter once. */
 610		close_connection(con->othercon, false, true, true);
 611	}
 612	if (con->rx_page) {
 613		__free_page(con->rx_page);
 614		con->rx_page = NULL;
 615	}
 616
 617	con->retries = 0;
 618	mutex_unlock(&con->sock_mutex);
 619	clear_bit(CF_CLOSING, &con->flags);
 620}
 621
 622/* Data received from remote end */
 623static int receive_from_sock(struct connection *con)
 624{
 625	int ret = 0;
 626	struct msghdr msg = {};
 627	struct kvec iov[2];
 628	unsigned len;
 629	int r;
 630	int call_again_soon = 0;
 631	int nvec;
 632
 633	mutex_lock(&con->sock_mutex);
 634
 635	if (con->sock == NULL) {
 636		ret = -EAGAIN;
 637		goto out_close;
 638	}
 639	if (con->nodeid == 0) {
 640		ret = -EINVAL;
 641		goto out_close;
 642	}
 643
 644	if (con->rx_page == NULL) {
 645		/*
 646		 * This doesn't need to be atomic, but I think it should
 647		 * improve performance if it is.
 648		 */
 649		con->rx_page = alloc_page(GFP_ATOMIC);
 650		if (con->rx_page == NULL)
 651			goto out_resched;
 652		cbuf_init(&con->cb, PAGE_SIZE);
 653	}
 654
 655	/*
 656	 * iov[0] is the bit of the circular buffer between the current end
 657	 * point (cb.base + cb.len) and the end of the buffer.
 658	 */
 659	iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
 660	iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
 661	iov[1].iov_len = 0;
 662	nvec = 1;
 663
 664	/*
 665	 * iov[1] is the bit of the circular buffer between the start of the
 666	 * buffer and the start of the currently used section (cb.base)
 667	 */
 668	if (cbuf_data(&con->cb) >= con->cb.base) {
 669		iov[0].iov_len = PAGE_SIZE - cbuf_data(&con->cb);
 670		iov[1].iov_len = con->cb.base;
 671		iov[1].iov_base = page_address(con->rx_page);
 672		nvec = 2;
 673	}
 674	len = iov[0].iov_len + iov[1].iov_len;
 675	iov_iter_kvec(&msg.msg_iter, READ, iov, nvec, len);
 676
 677	r = ret = sock_recvmsg(con->sock, &msg, MSG_DONTWAIT | MSG_NOSIGNAL);
 
 678	if (ret <= 0)
 679		goto out_close;
 680	else if (ret == len)
 681		call_again_soon = 1;
 682
 683	cbuf_add(&con->cb, ret);
 684	ret = dlm_process_incoming_buffer(con->nodeid,
 685					  page_address(con->rx_page),
 686					  con->cb.base, con->cb.len,
 687					  PAGE_SIZE);
 688	if (ret == -EBADMSG) {
 689		log_print("lowcomms: addr=%p, base=%u, len=%u, read=%d",
 690			  page_address(con->rx_page), con->cb.base,
 691			  con->cb.len, r);
 692	}
 693	if (ret < 0)
 694		goto out_close;
 695	cbuf_eat(&con->cb, ret);
 696
 697	if (cbuf_empty(&con->cb) && !call_again_soon) {
 698		__free_page(con->rx_page);
 699		con->rx_page = NULL;
 700	}
 701
 702	if (call_again_soon)
 703		goto out_resched;
 704	mutex_unlock(&con->sock_mutex);
 705	return 0;
 706
 707out_resched:
 708	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
 709		queue_work(recv_workqueue, &con->rwork);
 710	mutex_unlock(&con->sock_mutex);
 711	return -EAGAIN;
 712
 713out_close:
 714	mutex_unlock(&con->sock_mutex);
 715	if (ret != -EAGAIN) {
 716		close_connection(con, true, true, false);
 717		/* Reconnect when there is something to send */
 718	}
 719	/* Don't return success if we really got EOF */
 720	if (ret == 0)
 721		ret = -EAGAIN;
 722
 723	return ret;
 724}
 725
 726/* Listening socket is busy, accept a connection */
 727static int tcp_accept_from_sock(struct connection *con)
 728{
 729	int result;
 730	struct sockaddr_storage peeraddr;
 731	struct socket *newsock;
 732	int len;
 733	int nodeid;
 734	struct connection *newcon;
 735	struct connection *addcon;
 736
 737	mutex_lock(&connections_lock);
 738	if (!dlm_allow_conn) {
 739		mutex_unlock(&connections_lock);
 740		return -1;
 741	}
 742	mutex_unlock(&connections_lock);
 743
 
 
 
 
 
 
 744	mutex_lock_nested(&con->sock_mutex, 0);
 745
 746	if (!con->sock) {
 747		mutex_unlock(&con->sock_mutex);
 748		return -ENOTCONN;
 749	}
 
 
 750
 751	result = kernel_accept(con->sock, &newsock, O_NONBLOCK);
 752	if (result < 0)
 753		goto accept_err;
 754
 755	/* Get the connected socket's peer */
 756	memset(&peeraddr, 0, sizeof(peeraddr));
 757	len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
 758	if (len < 0) {
 759		result = -ECONNABORTED;
 760		goto accept_err;
 761	}
 762
 763	/* Get the new node's NODEID */
 764	make_sockaddr(&peeraddr, 0, &len);
 765	if (addr_to_nodeid(&peeraddr, &nodeid)) {
 766		unsigned char *b=(unsigned char *)&peeraddr;
 767		log_print("connect from non cluster node");
 768		print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE, 
 769				     b, sizeof(struct sockaddr_storage));
 770		sock_release(newsock);
 771		mutex_unlock(&con->sock_mutex);
 772		return -1;
 773	}
 774
 775	log_print("got connection from %d", nodeid);
 776
 777	/*  Check to see if we already have a connection to this node. This
 778	 *  could happen if the two nodes initiate a connection at roughly
 779	 *  the same time and the connections cross on the wire.
 780	 *  In this case we store the incoming one in "othercon"
 781	 */
 782	newcon = nodeid2con(nodeid, GFP_NOFS);
 783	if (!newcon) {
 784		result = -ENOMEM;
 785		goto accept_err;
 786	}
 787	mutex_lock_nested(&newcon->sock_mutex, 1);
 788	if (newcon->sock) {
 789		struct connection *othercon = newcon->othercon;
 790
 791		if (!othercon) {
 792			othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
 793			if (!othercon) {
 794				log_print("failed to allocate incoming socket");
 795				mutex_unlock(&newcon->sock_mutex);
 796				result = -ENOMEM;
 797				goto accept_err;
 798			}
 799			othercon->nodeid = nodeid;
 800			othercon->rx_action = receive_from_sock;
 801			mutex_init(&othercon->sock_mutex);
 802			INIT_LIST_HEAD(&othercon->writequeue);
 803			spin_lock_init(&othercon->writequeue_lock);
 804			INIT_WORK(&othercon->swork, process_send_sockets);
 805			INIT_WORK(&othercon->rwork, process_recv_sockets);
 806			set_bit(CF_IS_OTHERCON, &othercon->flags);
 807		}
 808		mutex_lock_nested(&othercon->sock_mutex, 2);
 809		if (!othercon->sock) {
 810			newcon->othercon = othercon;
 811			add_sock(newsock, othercon);
 
 
 812			addcon = othercon;
 813			mutex_unlock(&othercon->sock_mutex);
 814		}
 815		else {
 816			printk("Extra connection from node %d attempted\n", nodeid);
 817			result = -EAGAIN;
 818			mutex_unlock(&othercon->sock_mutex);
 819			mutex_unlock(&newcon->sock_mutex);
 820			goto accept_err;
 821		}
 822	}
 823	else {
 
 824		newcon->rx_action = receive_from_sock;
 825		/* accept copies the sk after we've saved the callbacks, so we
 826		   don't want to save them a second time or comm errors will
 827		   result in calling sk_error_report recursively. */
 828		add_sock(newsock, newcon);
 829		addcon = newcon;
 830	}
 831
 832	mutex_unlock(&newcon->sock_mutex);
 833
 834	/*
 835	 * Add it to the active queue in case we got data
 836	 * between processing the accept adding the socket
 837	 * to the read_sockets list
 838	 */
 839	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
 840		queue_work(recv_workqueue, &addcon->rwork);
 841	mutex_unlock(&con->sock_mutex);
 842
 843	return 0;
 844
 845accept_err:
 846	mutex_unlock(&con->sock_mutex);
 847	if (newsock)
 848		sock_release(newsock);
 849
 850	if (result != -EAGAIN)
 851		log_print("error accepting connection from node: %d", result);
 852	return result;
 853}
 854
 855static int sctp_accept_from_sock(struct connection *con)
 856{
 857	/* Check that the new node is in the lockspace */
 858	struct sctp_prim prim;
 859	int nodeid;
 860	int prim_len, ret;
 861	int addr_len;
 862	struct connection *newcon;
 863	struct connection *addcon;
 864	struct socket *newsock;
 865
 866	mutex_lock(&connections_lock);
 867	if (!dlm_allow_conn) {
 868		mutex_unlock(&connections_lock);
 869		return -1;
 870	}
 871	mutex_unlock(&connections_lock);
 872
 873	mutex_lock_nested(&con->sock_mutex, 0);
 874
 875	ret = kernel_accept(con->sock, &newsock, O_NONBLOCK);
 876	if (ret < 0)
 877		goto accept_err;
 878
 879	memset(&prim, 0, sizeof(struct sctp_prim));
 880	prim_len = sizeof(struct sctp_prim);
 881
 882	ret = kernel_getsockopt(newsock, IPPROTO_SCTP, SCTP_PRIMARY_ADDR,
 883				(char *)&prim, &prim_len);
 884	if (ret < 0) {
 885		log_print("getsockopt/sctp_primary_addr failed: %d", ret);
 886		goto accept_err;
 887	}
 888
 889	make_sockaddr(&prim.ssp_addr, 0, &addr_len);
 890	ret = addr_to_nodeid(&prim.ssp_addr, &nodeid);
 891	if (ret) {
 892		unsigned char *b = (unsigned char *)&prim.ssp_addr;
 893
 894		log_print("reject connect from unknown addr");
 895		print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
 896				     b, sizeof(struct sockaddr_storage));
 897		goto accept_err;
 898	}
 899
 900	newcon = nodeid2con(nodeid, GFP_NOFS);
 901	if (!newcon) {
 902		ret = -ENOMEM;
 903		goto accept_err;
 904	}
 905
 906	mutex_lock_nested(&newcon->sock_mutex, 1);
 907
 908	if (newcon->sock) {
 909		struct connection *othercon = newcon->othercon;
 910
 911		if (!othercon) {
 912			othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
 913			if (!othercon) {
 914				log_print("failed to allocate incoming socket");
 915				mutex_unlock(&newcon->sock_mutex);
 916				ret = -ENOMEM;
 917				goto accept_err;
 918			}
 919			othercon->nodeid = nodeid;
 920			othercon->rx_action = receive_from_sock;
 921			mutex_init(&othercon->sock_mutex);
 922			INIT_LIST_HEAD(&othercon->writequeue);
 923			spin_lock_init(&othercon->writequeue_lock);
 924			INIT_WORK(&othercon->swork, process_send_sockets);
 925			INIT_WORK(&othercon->rwork, process_recv_sockets);
 926			set_bit(CF_IS_OTHERCON, &othercon->flags);
 927		}
 928		mutex_lock_nested(&othercon->sock_mutex, 2);
 929		if (!othercon->sock) {
 930			newcon->othercon = othercon;
 931			add_sock(newsock, othercon);
 
 
 932			addcon = othercon;
 933			mutex_unlock(&othercon->sock_mutex);
 934		} else {
 935			printk("Extra connection from node %d attempted\n", nodeid);
 936			ret = -EAGAIN;
 937			mutex_unlock(&othercon->sock_mutex);
 938			mutex_unlock(&newcon->sock_mutex);
 939			goto accept_err;
 940		}
 941	} else {
 
 942		newcon->rx_action = receive_from_sock;
 943		add_sock(newsock, newcon);
 944		addcon = newcon;
 945	}
 946
 947	log_print("connected to %d", nodeid);
 948
 949	mutex_unlock(&newcon->sock_mutex);
 950
 951	/*
 952	 * Add it to the active queue in case we got data
 953	 * between processing the accept adding the socket
 954	 * to the read_sockets list
 955	 */
 956	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
 957		queue_work(recv_workqueue, &addcon->rwork);
 958	mutex_unlock(&con->sock_mutex);
 959
 960	return 0;
 961
 962accept_err:
 963	mutex_unlock(&con->sock_mutex);
 964	if (newsock)
 965		sock_release(newsock);
 966	if (ret != -EAGAIN)
 967		log_print("error accepting connection from node: %d", ret);
 968
 969	return ret;
 970}
 971
 972static void free_entry(struct writequeue_entry *e)
 973{
 974	__free_page(e->page);
 975	kfree(e);
 976}
 977
 978/*
 979 * writequeue_entry_complete - try to delete and free write queue entry
 980 * @e: write queue entry to try to delete
 981 * @completed: bytes completed
 982 *
 983 * writequeue_lock must be held.
 984 */
 985static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
 986{
 987	e->offset += completed;
 988	e->len -= completed;
 989
 990	if (e->len == 0 && e->users == 0) {
 991		list_del(&e->list);
 992		free_entry(e);
 993	}
 994}
 995
 996/*
 997 * sctp_bind_addrs - bind a SCTP socket to all our addresses
 998 */
 999static int sctp_bind_addrs(struct connection *con, uint16_t port)
1000{
1001	struct sockaddr_storage localaddr;
1002	int i, addr_len, result = 0;
1003
1004	for (i = 0; i < dlm_local_count; i++) {
1005		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1006		make_sockaddr(&localaddr, port, &addr_len);
1007
1008		if (!i)
1009			result = kernel_bind(con->sock,
1010					     (struct sockaddr *)&localaddr,
1011					     addr_len);
1012		else
1013			result = kernel_setsockopt(con->sock, SOL_SCTP,
1014						   SCTP_SOCKOPT_BINDX_ADD,
1015						   (char *)&localaddr, addr_len);
1016
1017		if (result < 0) {
1018			log_print("Can't bind to %d addr number %d, %d.\n",
1019				  port, i + 1, result);
1020			break;
1021		}
1022	}
1023	return result;
1024}
1025
1026/* Initiate an SCTP association.
1027   This is a special case of send_to_sock() in that we don't yet have a
1028   peeled-off socket for this association, so we use the listening socket
1029   and add the primary IP address of the remote node.
1030 */
1031static void sctp_connect_to_sock(struct connection *con)
1032{
1033	struct sockaddr_storage daddr;
1034	int one = 1;
1035	int result;
1036	int addr_len;
1037	struct socket *sock;
1038	struct timeval tv = { .tv_sec = 5, .tv_usec = 0 };
1039
1040	if (con->nodeid == 0) {
1041		log_print("attempt to connect sock 0 foiled");
1042		return;
1043	}
1044
1045	mutex_lock(&con->sock_mutex);
1046
1047	/* Some odd races can cause double-connects, ignore them */
1048	if (con->retries++ > MAX_CONNECT_RETRIES)
1049		goto out;
1050
1051	if (con->sock) {
1052		log_print("node %d already connected.", con->nodeid);
1053		goto out;
1054	}
1055
1056	memset(&daddr, 0, sizeof(daddr));
1057	result = nodeid_to_addr(con->nodeid, &daddr, NULL, true);
1058	if (result < 0) {
1059		log_print("no address for nodeid %d", con->nodeid);
1060		goto out;
1061	}
1062
1063	/* Create a socket to communicate with */
1064	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1065				  SOCK_STREAM, IPPROTO_SCTP, &sock);
1066	if (result < 0)
1067		goto socket_err;
1068
 
1069	con->rx_action = receive_from_sock;
1070	con->connect_action = sctp_connect_to_sock;
1071	add_sock(sock, con);
1072
1073	/* Bind to all addresses. */
1074	if (sctp_bind_addrs(con, 0))
1075		goto bind_err;
1076
1077	make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len);
1078
1079	log_print("connecting to %d", con->nodeid);
1080
1081	/* Turn off Nagle's algorithm */
1082	kernel_setsockopt(sock, SOL_SCTP, SCTP_NODELAY, (char *)&one,
1083			  sizeof(one));
1084
1085	/*
1086	 * Make sock->ops->connect() function return in specified time,
1087	 * since O_NONBLOCK argument in connect() function does not work here,
1088	 * then, we should restore the default value of this attribute.
1089	 */
1090	kernel_setsockopt(sock, SOL_SOCKET, SO_SNDTIMEO_OLD, (char *)&tv,
1091			  sizeof(tv));
1092	result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len,
1093				   0);
1094	memset(&tv, 0, sizeof(tv));
1095	kernel_setsockopt(sock, SOL_SOCKET, SO_SNDTIMEO_OLD, (char *)&tv,
1096			  sizeof(tv));
1097
1098	if (result == -EINPROGRESS)
1099		result = 0;
1100	if (result == 0)
1101		goto out;
1102
 
1103bind_err:
1104	con->sock = NULL;
1105	sock_release(sock);
1106
1107socket_err:
1108	/*
1109	 * Some errors are fatal and this list might need adjusting. For other
1110	 * errors we try again until the max number of retries is reached.
1111	 */
1112	if (result != -EHOSTUNREACH &&
1113	    result != -ENETUNREACH &&
1114	    result != -ENETDOWN &&
1115	    result != -EINVAL &&
1116	    result != -EPROTONOSUPPORT) {
1117		log_print("connect %d try %d error %d", con->nodeid,
1118			  con->retries, result);
1119		mutex_unlock(&con->sock_mutex);
1120		msleep(1000);
 
1121		lowcomms_connect_sock(con);
1122		return;
1123	}
1124
1125out:
1126	mutex_unlock(&con->sock_mutex);
 
1127}
1128
1129/* Connect a new socket to its peer */
1130static void tcp_connect_to_sock(struct connection *con)
1131{
1132	struct sockaddr_storage saddr, src_addr;
1133	int addr_len;
1134	struct socket *sock = NULL;
1135	int one = 1;
1136	int result;
1137
1138	if (con->nodeid == 0) {
1139		log_print("attempt to connect sock 0 foiled");
1140		return;
1141	}
1142
1143	mutex_lock(&con->sock_mutex);
1144	if (con->retries++ > MAX_CONNECT_RETRIES)
1145		goto out;
1146
1147	/* Some odd races can cause double-connects, ignore them */
1148	if (con->sock)
1149		goto out;
1150
1151	/* Create a socket to communicate with */
1152	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1153				  SOCK_STREAM, IPPROTO_TCP, &sock);
1154	if (result < 0)
1155		goto out_err;
1156
1157	memset(&saddr, 0, sizeof(saddr));
1158	result = nodeid_to_addr(con->nodeid, &saddr, NULL, false);
1159	if (result < 0) {
1160		log_print("no address for nodeid %d", con->nodeid);
1161		goto out_err;
1162	}
1163
 
1164	con->rx_action = receive_from_sock;
1165	con->connect_action = tcp_connect_to_sock;
1166	add_sock(sock, con);
1167
1168	/* Bind to our cluster-known address connecting to avoid
1169	   routing problems */
1170	memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1171	make_sockaddr(&src_addr, 0, &addr_len);
1172	result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1173				 addr_len);
1174	if (result < 0) {
1175		log_print("could not bind for connect: %d", result);
1176		/* This *may* not indicate a critical error */
1177	}
1178
1179	make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1180
1181	log_print("connecting to %d", con->nodeid);
1182
1183	/* Turn off Nagle's algorithm */
1184	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1185			  sizeof(one));
1186
1187	result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1188				   O_NONBLOCK);
1189	if (result == -EINPROGRESS)
1190		result = 0;
1191	if (result == 0)
1192		goto out;
1193
1194out_err:
1195	if (con->sock) {
1196		sock_release(con->sock);
1197		con->sock = NULL;
1198	} else if (sock) {
1199		sock_release(sock);
1200	}
1201	/*
1202	 * Some errors are fatal and this list might need adjusting. For other
1203	 * errors we try again until the max number of retries is reached.
1204	 */
1205	if (result != -EHOSTUNREACH &&
1206	    result != -ENETUNREACH &&
1207	    result != -ENETDOWN && 
1208	    result != -EINVAL &&
1209	    result != -EPROTONOSUPPORT) {
1210		log_print("connect %d try %d error %d", con->nodeid,
1211			  con->retries, result);
1212		mutex_unlock(&con->sock_mutex);
1213		msleep(1000);
 
1214		lowcomms_connect_sock(con);
1215		return;
1216	}
1217out:
1218	mutex_unlock(&con->sock_mutex);
 
1219	return;
1220}
1221
1222static struct socket *tcp_create_listen_sock(struct connection *con,
1223					     struct sockaddr_storage *saddr)
1224{
1225	struct socket *sock = NULL;
1226	int result = 0;
1227	int one = 1;
1228	int addr_len;
1229
1230	if (dlm_local_addr[0]->ss_family == AF_INET)
1231		addr_len = sizeof(struct sockaddr_in);
1232	else
1233		addr_len = sizeof(struct sockaddr_in6);
1234
1235	/* Create a socket to communicate with */
1236	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1237				  SOCK_STREAM, IPPROTO_TCP, &sock);
1238	if (result < 0) {
1239		log_print("Can't create listening comms socket");
1240		goto create_out;
1241	}
1242
1243	/* Turn off Nagle's algorithm */
1244	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1245			  sizeof(one));
1246
1247	result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
1248				   (char *)&one, sizeof(one));
1249
1250	if (result < 0) {
1251		log_print("Failed to set SO_REUSEADDR on socket: %d", result);
1252	}
1253	write_lock_bh(&sock->sk->sk_callback_lock);
1254	sock->sk->sk_user_data = con;
1255	save_listen_callbacks(sock);
1256	con->rx_action = tcp_accept_from_sock;
1257	con->connect_action = tcp_connect_to_sock;
1258	write_unlock_bh(&sock->sk->sk_callback_lock);
1259
1260	/* Bind to our port */
1261	make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1262	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1263	if (result < 0) {
1264		log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1265		sock_release(sock);
1266		sock = NULL;
1267		con->sock = NULL;
1268		goto create_out;
1269	}
1270	result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1271				 (char *)&one, sizeof(one));
1272	if (result < 0) {
1273		log_print("Set keepalive failed: %d", result);
1274	}
1275
1276	result = sock->ops->listen(sock, 5);
1277	if (result < 0) {
1278		log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1279		sock_release(sock);
1280		sock = NULL;
1281		goto create_out;
1282	}
1283
1284create_out:
1285	return sock;
1286}
1287
1288/* Get local addresses */
1289static void init_local(void)
1290{
1291	struct sockaddr_storage sas, *addr;
1292	int i;
1293
1294	dlm_local_count = 0;
1295	for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1296		if (dlm_our_addr(&sas, i))
1297			break;
1298
1299		addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS);
1300		if (!addr)
1301			break;
1302		dlm_local_addr[dlm_local_count++] = addr;
1303	}
1304}
1305
1306/* Initialise SCTP socket and bind to all interfaces */
1307static int sctp_listen_for_all(void)
1308{
1309	struct socket *sock = NULL;
1310	int result = -EINVAL;
1311	struct connection *con = nodeid2con(0, GFP_NOFS);
1312	int bufsize = NEEDED_RMEM;
1313	int one = 1;
1314
1315	if (!con)
1316		return -ENOMEM;
1317
1318	log_print("Using SCTP for communications");
1319
1320	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1321				  SOCK_STREAM, IPPROTO_SCTP, &sock);
1322	if (result < 0) {
1323		log_print("Can't create comms socket, check SCTP is loaded");
1324		goto out;
1325	}
1326
1327	result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1328				 (char *)&bufsize, sizeof(bufsize));
1329	if (result)
1330		log_print("Error increasing buffer space on socket %d", result);
1331
1332	result = kernel_setsockopt(sock, SOL_SCTP, SCTP_NODELAY, (char *)&one,
1333				   sizeof(one));
1334	if (result < 0)
1335		log_print("Could not set SCTP NODELAY error %d\n", result);
1336
1337	write_lock_bh(&sock->sk->sk_callback_lock);
1338	/* Init con struct */
1339	sock->sk->sk_user_data = con;
1340	save_listen_callbacks(sock);
1341	con->sock = sock;
1342	con->sock->sk->sk_data_ready = lowcomms_data_ready;
1343	con->rx_action = sctp_accept_from_sock;
1344	con->connect_action = sctp_connect_to_sock;
1345
1346	write_unlock_bh(&sock->sk->sk_callback_lock);
1347
1348	/* Bind to all addresses. */
1349	if (sctp_bind_addrs(con, dlm_config.ci_tcp_port))
1350		goto create_delsock;
1351
1352	result = sock->ops->listen(sock, 5);
1353	if (result < 0) {
1354		log_print("Can't set socket listening");
1355		goto create_delsock;
1356	}
1357
1358	return 0;
1359
1360create_delsock:
1361	sock_release(sock);
1362	con->sock = NULL;
1363out:
1364	return result;
1365}
1366
1367static int tcp_listen_for_all(void)
1368{
1369	struct socket *sock = NULL;
1370	struct connection *con = nodeid2con(0, GFP_NOFS);
1371	int result = -EINVAL;
1372
1373	if (!con)
1374		return -ENOMEM;
1375
1376	/* We don't support multi-homed hosts */
1377	if (dlm_local_addr[1] != NULL) {
1378		log_print("TCP protocol can't handle multi-homed hosts, "
1379			  "try SCTP");
1380		return -EINVAL;
1381	}
1382
1383	log_print("Using TCP for communications");
1384
1385	sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1386	if (sock) {
1387		add_sock(sock, con);
1388		result = 0;
1389	}
1390	else {
1391		result = -EADDRINUSE;
1392	}
1393
1394	return result;
1395}
1396
1397
1398
1399static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1400						     gfp_t allocation)
1401{
1402	struct writequeue_entry *entry;
1403
1404	entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1405	if (!entry)
1406		return NULL;
1407
1408	entry->page = alloc_page(allocation);
1409	if (!entry->page) {
1410		kfree(entry);
1411		return NULL;
1412	}
1413
1414	entry->offset = 0;
1415	entry->len = 0;
1416	entry->end = 0;
1417	entry->users = 0;
1418	entry->con = con;
1419
1420	return entry;
1421}
1422
1423void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1424{
1425	struct connection *con;
1426	struct writequeue_entry *e;
1427	int offset = 0;
1428
1429	con = nodeid2con(nodeid, allocation);
1430	if (!con)
1431		return NULL;
1432
1433	spin_lock(&con->writequeue_lock);
1434	e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1435	if ((&e->list == &con->writequeue) ||
1436	    (PAGE_SIZE - e->end < len)) {
1437		e = NULL;
1438	} else {
1439		offset = e->end;
1440		e->end += len;
1441		e->users++;
1442	}
1443	spin_unlock(&con->writequeue_lock);
1444
1445	if (e) {
1446	got_one:
1447		*ppc = page_address(e->page) + offset;
1448		return e;
1449	}
1450
1451	e = new_writequeue_entry(con, allocation);
1452	if (e) {
1453		spin_lock(&con->writequeue_lock);
1454		offset = e->end;
1455		e->end += len;
1456		e->users++;
1457		list_add_tail(&e->list, &con->writequeue);
1458		spin_unlock(&con->writequeue_lock);
1459		goto got_one;
1460	}
1461	return NULL;
1462}
1463
1464void dlm_lowcomms_commit_buffer(void *mh)
1465{
1466	struct writequeue_entry *e = (struct writequeue_entry *)mh;
1467	struct connection *con = e->con;
1468	int users;
1469
1470	spin_lock(&con->writequeue_lock);
1471	users = --e->users;
1472	if (users)
1473		goto out;
1474	e->len = e->end - e->offset;
1475	spin_unlock(&con->writequeue_lock);
1476
1477	queue_work(send_workqueue, &con->swork);
 
 
1478	return;
1479
1480out:
1481	spin_unlock(&con->writequeue_lock);
1482	return;
1483}
1484
1485/* Send a message */
1486static void send_to_sock(struct connection *con)
1487{
1488	int ret = 0;
1489	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1490	struct writequeue_entry *e;
1491	int len, offset;
1492	int count = 0;
1493
1494	mutex_lock(&con->sock_mutex);
1495	if (con->sock == NULL)
1496		goto out_connect;
1497
1498	spin_lock(&con->writequeue_lock);
1499	for (;;) {
1500		e = list_entry(con->writequeue.next, struct writequeue_entry,
1501			       list);
1502		if ((struct list_head *) e == &con->writequeue)
1503			break;
1504
1505		len = e->len;
1506		offset = e->offset;
1507		BUG_ON(len == 0 && e->users == 0);
1508		spin_unlock(&con->writequeue_lock);
1509
1510		ret = 0;
1511		if (len) {
1512			ret = kernel_sendpage(con->sock, e->page, offset, len,
1513					      msg_flags);
1514			if (ret == -EAGAIN || ret == 0) {
1515				if (ret == -EAGAIN &&
1516				    test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1517				    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1518					/* Notify TCP that we're limited by the
1519					 * application window size.
1520					 */
1521					set_bit(SOCK_NOSPACE, &con->sock->flags);
1522					con->sock->sk->sk_write_pending++;
1523				}
1524				cond_resched();
1525				goto out;
1526			} else if (ret < 0)
1527				goto send_error;
1528		}
1529
1530		/* Don't starve people filling buffers */
1531		if (++count >= MAX_SEND_MSG_COUNT) {
1532			cond_resched();
1533			count = 0;
1534		}
1535
1536		spin_lock(&con->writequeue_lock);
1537		writequeue_entry_complete(e, ret);
1538	}
1539	spin_unlock(&con->writequeue_lock);
1540out:
1541	mutex_unlock(&con->sock_mutex);
1542	return;
1543
1544send_error:
1545	mutex_unlock(&con->sock_mutex);
1546	close_connection(con, true, false, true);
1547	/* Requeue the send work. When the work daemon runs again, it will try
1548	   a new connection, then call this function again. */
1549	queue_work(send_workqueue, &con->swork);
1550	return;
1551
1552out_connect:
1553	mutex_unlock(&con->sock_mutex);
1554	queue_work(send_workqueue, &con->swork);
1555	cond_resched();
1556}
1557
1558static void clean_one_writequeue(struct connection *con)
1559{
1560	struct writequeue_entry *e, *safe;
1561
1562	spin_lock(&con->writequeue_lock);
1563	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1564		list_del(&e->list);
1565		free_entry(e);
1566	}
1567	spin_unlock(&con->writequeue_lock);
1568}
1569
1570/* Called from recovery when it knows that a node has
1571   left the cluster */
1572int dlm_lowcomms_close(int nodeid)
1573{
1574	struct connection *con;
1575	struct dlm_node_addr *na;
1576
1577	log_print("closing connection to node %d", nodeid);
1578	con = nodeid2con(nodeid, 0);
1579	if (con) {
1580		set_bit(CF_CLOSE, &con->flags);
1581		close_connection(con, true, true, true);
1582		clean_one_writequeue(con);
1583	}
1584
1585	spin_lock(&dlm_node_addrs_spin);
1586	na = find_node_addr(nodeid);
1587	if (na) {
1588		list_del(&na->list);
1589		while (na->addr_count--)
1590			kfree(na->addr[na->addr_count]);
1591		kfree(na);
1592	}
1593	spin_unlock(&dlm_node_addrs_spin);
1594
1595	return 0;
1596}
1597
1598/* Receive workqueue function */
1599static void process_recv_sockets(struct work_struct *work)
1600{
1601	struct connection *con = container_of(work, struct connection, rwork);
1602	int err;
1603
1604	clear_bit(CF_READ_PENDING, &con->flags);
1605	do {
1606		err = con->rx_action(con);
1607	} while (!err);
1608}
1609
1610/* Send workqueue function */
1611static void process_send_sockets(struct work_struct *work)
1612{
1613	struct connection *con = container_of(work, struct connection, swork);
1614
1615	clear_bit(CF_WRITE_PENDING, &con->flags);
1616	if (con->sock == NULL) /* not mutex protected so check it inside too */
1617		con->connect_action(con);
1618	if (!list_empty(&con->writequeue))
1619		send_to_sock(con);
1620}
1621
1622
1623/* Discard all entries on the write queues */
1624static void clean_writequeues(void)
1625{
1626	foreach_conn(clean_one_writequeue);
1627}
1628
1629static void work_stop(void)
1630{
1631	if (recv_workqueue)
1632		destroy_workqueue(recv_workqueue);
1633	if (send_workqueue)
1634		destroy_workqueue(send_workqueue);
1635}
1636
1637static int work_start(void)
1638{
1639	recv_workqueue = alloc_workqueue("dlm_recv",
1640					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1641	if (!recv_workqueue) {
1642		log_print("can't start dlm_recv");
1643		return -ENOMEM;
1644	}
1645
1646	send_workqueue = alloc_workqueue("dlm_send",
1647					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1648	if (!send_workqueue) {
1649		log_print("can't start dlm_send");
1650		destroy_workqueue(recv_workqueue);
1651		return -ENOMEM;
1652	}
1653
1654	return 0;
1655}
1656
1657static void _stop_conn(struct connection *con, bool and_other)
1658{
1659	mutex_lock(&con->sock_mutex);
1660	set_bit(CF_CLOSE, &con->flags);
1661	set_bit(CF_READ_PENDING, &con->flags);
1662	set_bit(CF_WRITE_PENDING, &con->flags);
1663	if (con->sock && con->sock->sk) {
1664		write_lock_bh(&con->sock->sk->sk_callback_lock);
1665		con->sock->sk->sk_user_data = NULL;
1666		write_unlock_bh(&con->sock->sk->sk_callback_lock);
1667	}
1668	if (con->othercon && and_other)
1669		_stop_conn(con->othercon, false);
1670	mutex_unlock(&con->sock_mutex);
1671}
1672
1673static void stop_conn(struct connection *con)
1674{
1675	_stop_conn(con, true);
 
 
1676}
1677
1678static void free_conn(struct connection *con)
1679{
1680	close_connection(con, true, true, true);
1681	if (con->othercon)
1682		kmem_cache_free(con_cache, con->othercon);
1683	hlist_del(&con->list);
1684	kmem_cache_free(con_cache, con);
1685}
1686
1687static void work_flush(void)
1688{
1689	int ok;
1690	int i;
1691	struct hlist_node *n;
1692	struct connection *con;
1693
1694	if (recv_workqueue)
1695		flush_workqueue(recv_workqueue);
1696	if (send_workqueue)
1697		flush_workqueue(send_workqueue);
1698	do {
1699		ok = 1;
1700		foreach_conn(stop_conn);
1701		if (recv_workqueue)
1702			flush_workqueue(recv_workqueue);
1703		if (send_workqueue)
1704			flush_workqueue(send_workqueue);
1705		for (i = 0; i < CONN_HASH_SIZE && ok; i++) {
1706			hlist_for_each_entry_safe(con, n,
1707						  &connection_hash[i], list) {
1708				ok &= test_bit(CF_READ_PENDING, &con->flags);
1709				ok &= test_bit(CF_WRITE_PENDING, &con->flags);
1710				if (con->othercon) {
1711					ok &= test_bit(CF_READ_PENDING,
1712						       &con->othercon->flags);
1713					ok &= test_bit(CF_WRITE_PENDING,
1714						       &con->othercon->flags);
1715				}
1716			}
1717		}
1718	} while (!ok);
1719}
1720
1721void dlm_lowcomms_stop(void)
1722{
1723	/* Set all the flags to prevent any
1724	   socket activity.
1725	*/
1726	mutex_lock(&connections_lock);
1727	dlm_allow_conn = 0;
1728	mutex_unlock(&connections_lock);
1729	work_flush();
1730	clean_writequeues();
1731	foreach_conn(free_conn);
 
 
1732	work_stop();
1733
1734	kmem_cache_destroy(con_cache);
1735}
1736
1737int dlm_lowcomms_start(void)
1738{
1739	int error = -EINVAL;
1740	struct connection *con;
1741	int i;
1742
1743	for (i = 0; i < CONN_HASH_SIZE; i++)
1744		INIT_HLIST_HEAD(&connection_hash[i]);
1745
1746	init_local();
1747	if (!dlm_local_count) {
1748		error = -ENOTCONN;
1749		log_print("no local IP address has been set");
1750		goto fail;
1751	}
1752
1753	error = -ENOMEM;
1754	con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1755				      __alignof__(struct connection), 0,
1756				      NULL);
1757	if (!con_cache)
1758		goto fail;
1759
1760	error = work_start();
1761	if (error)
1762		goto fail_destroy;
1763
1764	dlm_allow_conn = 1;
1765
1766	/* Start listening */
1767	if (dlm_config.ci_protocol == 0)
1768		error = tcp_listen_for_all();
1769	else
1770		error = sctp_listen_for_all();
1771	if (error)
1772		goto fail_unlisten;
1773
1774	return 0;
1775
1776fail_unlisten:
1777	dlm_allow_conn = 0;
1778	con = nodeid2con(0,0);
1779	if (con) {
1780		close_connection(con, false, true, true);
1781		kmem_cache_free(con_cache, con);
1782	}
1783fail_destroy:
1784	kmem_cache_destroy(con_cache);
1785fail:
1786	return error;
1787}
1788
1789void dlm_lowcomms_exit(void)
1790{
1791	struct dlm_node_addr *na, *safe;
1792
1793	spin_lock(&dlm_node_addrs_spin);
1794	list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
1795		list_del(&na->list);
1796		while (na->addr_count--)
1797			kfree(na->addr[na->addr_count]);
1798		kfree(na);
1799	}
1800	spin_unlock(&dlm_node_addrs_spin);
1801}
v4.10.11
 
   1/******************************************************************************
   2*******************************************************************************
   3**
   4**  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
   5**  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
   6**
   7**  This copyrighted material is made available to anyone wishing to use,
   8**  modify, copy, or redistribute it subject to the terms and conditions
   9**  of the GNU General Public License v.2.
  10**
  11*******************************************************************************
  12******************************************************************************/
  13
  14/*
  15 * lowcomms.c
  16 *
  17 * This is the "low-level" comms layer.
  18 *
  19 * It is responsible for sending/receiving messages
  20 * from other nodes in the cluster.
  21 *
  22 * Cluster nodes are referred to by their nodeids. nodeids are
  23 * simply 32 bit numbers to the locking module - if they need to
  24 * be expanded for the cluster infrastructure then that is its
  25 * responsibility. It is this layer's
  26 * responsibility to resolve these into IP address or
  27 * whatever it needs for inter-node communication.
  28 *
  29 * The comms level is two kernel threads that deal mainly with
  30 * the receiving of messages from other nodes and passing them
  31 * up to the mid-level comms layer (which understands the
  32 * message format) for execution by the locking core, and
  33 * a send thread which does all the setting up of connections
  34 * to remote nodes and the sending of data. Threads are not allowed
  35 * to send their own data because it may cause them to wait in times
  36 * of high load. Also, this way, the sending thread can collect together
  37 * messages bound for one node and send them in one block.
  38 *
  39 * lowcomms will choose to use either TCP or SCTP as its transport layer
  40 * depending on the configuration variable 'protocol'. This should be set
  41 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
  42 * cluster-wide mechanism as it must be the same on all nodes of the cluster
  43 * for the DLM to function.
  44 *
  45 */
  46
  47#include <asm/ioctls.h>
  48#include <net/sock.h>
  49#include <net/tcp.h>
  50#include <linux/pagemap.h>
  51#include <linux/file.h>
  52#include <linux/mutex.h>
  53#include <linux/sctp.h>
  54#include <linux/slab.h>
  55#include <net/sctp/sctp.h>
  56#include <net/ipv6.h>
  57
  58#include "dlm_internal.h"
  59#include "lowcomms.h"
  60#include "midcomms.h"
  61#include "config.h"
  62
  63#define NEEDED_RMEM (4*1024*1024)
  64#define CONN_HASH_SIZE 32
  65
  66/* Number of messages to send before rescheduling */
  67#define MAX_SEND_MSG_COUNT 25
  68
  69struct cbuf {
  70	unsigned int base;
  71	unsigned int len;
  72	unsigned int mask;
  73};
  74
  75static void cbuf_add(struct cbuf *cb, int n)
  76{
  77	cb->len += n;
  78}
  79
  80static int cbuf_data(struct cbuf *cb)
  81{
  82	return ((cb->base + cb->len) & cb->mask);
  83}
  84
  85static void cbuf_init(struct cbuf *cb, int size)
  86{
  87	cb->base = cb->len = 0;
  88	cb->mask = size-1;
  89}
  90
  91static void cbuf_eat(struct cbuf *cb, int n)
  92{
  93	cb->len  -= n;
  94	cb->base += n;
  95	cb->base &= cb->mask;
  96}
  97
  98static bool cbuf_empty(struct cbuf *cb)
  99{
 100	return cb->len == 0;
 101}
 102
 103struct connection {
 104	struct socket *sock;	/* NULL if not connected */
 105	uint32_t nodeid;	/* So we know who we are in the list */
 106	struct mutex sock_mutex;
 107	unsigned long flags;
 108#define CF_READ_PENDING 1
 109#define CF_WRITE_PENDING 2
 110#define CF_CONNECT_PENDING 3
 111#define CF_INIT_PENDING 4
 112#define CF_IS_OTHERCON 5
 113#define CF_CLOSE 6
 114#define CF_APP_LIMITED 7
 
 115	struct list_head writequeue;  /* List of outgoing writequeue_entries */
 116	spinlock_t writequeue_lock;
 117	int (*rx_action) (struct connection *);	/* What to do when active */
 118	void (*connect_action) (struct connection *);	/* What to do to connect */
 119	struct page *rx_page;
 120	struct cbuf cb;
 121	int retries;
 122#define MAX_CONNECT_RETRIES 3
 123	struct hlist_node list;
 124	struct connection *othercon;
 125	struct work_struct rwork; /* Receive workqueue */
 126	struct work_struct swork; /* Send workqueue */
 127	void (*orig_error_report)(struct sock *);
 128	void (*orig_data_ready)(struct sock *);
 129	void (*orig_state_change)(struct sock *);
 130	void (*orig_write_space)(struct sock *);
 131};
 132#define sock2con(x) ((struct connection *)(x)->sk_user_data)
 133
 134/* An entry waiting to be sent */
 135struct writequeue_entry {
 136	struct list_head list;
 137	struct page *page;
 138	int offset;
 139	int len;
 140	int end;
 141	int users;
 142	struct connection *con;
 143};
 144
 145struct dlm_node_addr {
 146	struct list_head list;
 147	int nodeid;
 148	int addr_count;
 149	int curr_addr_index;
 150	struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
 151};
 152
 
 
 
 
 
 
 
 153static LIST_HEAD(dlm_node_addrs);
 154static DEFINE_SPINLOCK(dlm_node_addrs_spin);
 155
 156static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
 157static int dlm_local_count;
 158static int dlm_allow_conn;
 159
 160/* Work queues */
 161static struct workqueue_struct *recv_workqueue;
 162static struct workqueue_struct *send_workqueue;
 163
 164static struct hlist_head connection_hash[CONN_HASH_SIZE];
 165static DEFINE_MUTEX(connections_lock);
 166static struct kmem_cache *con_cache;
 167
 168static void process_recv_sockets(struct work_struct *work);
 169static void process_send_sockets(struct work_struct *work);
 170
 171
 172/* This is deliberately very simple because most clusters have simple
 173   sequential nodeids, so we should be able to go straight to a connection
 174   struct in the array */
 175static inline int nodeid_hash(int nodeid)
 176{
 177	return nodeid & (CONN_HASH_SIZE-1);
 178}
 179
 180static struct connection *__find_con(int nodeid)
 181{
 182	int r;
 183	struct connection *con;
 184
 185	r = nodeid_hash(nodeid);
 186
 187	hlist_for_each_entry(con, &connection_hash[r], list) {
 188		if (con->nodeid == nodeid)
 189			return con;
 190	}
 191	return NULL;
 192}
 193
 194/*
 195 * If 'allocation' is zero then we don't attempt to create a new
 196 * connection structure for this node.
 197 */
 198static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
 199{
 200	struct connection *con = NULL;
 201	int r;
 202
 203	con = __find_con(nodeid);
 204	if (con || !alloc)
 205		return con;
 206
 207	con = kmem_cache_zalloc(con_cache, alloc);
 208	if (!con)
 209		return NULL;
 210
 211	r = nodeid_hash(nodeid);
 212	hlist_add_head(&con->list, &connection_hash[r]);
 213
 214	con->nodeid = nodeid;
 215	mutex_init(&con->sock_mutex);
 216	INIT_LIST_HEAD(&con->writequeue);
 217	spin_lock_init(&con->writequeue_lock);
 218	INIT_WORK(&con->swork, process_send_sockets);
 219	INIT_WORK(&con->rwork, process_recv_sockets);
 220
 221	/* Setup action pointers for child sockets */
 222	if (con->nodeid) {
 223		struct connection *zerocon = __find_con(0);
 224
 225		con->connect_action = zerocon->connect_action;
 226		if (!con->rx_action)
 227			con->rx_action = zerocon->rx_action;
 228	}
 229
 230	return con;
 231}
 232
 233/* Loop round all connections */
 234static void foreach_conn(void (*conn_func)(struct connection *c))
 235{
 236	int i;
 237	struct hlist_node *n;
 238	struct connection *con;
 239
 240	for (i = 0; i < CONN_HASH_SIZE; i++) {
 241		hlist_for_each_entry_safe(con, n, &connection_hash[i], list)
 242			conn_func(con);
 243	}
 244}
 245
 246static struct connection *nodeid2con(int nodeid, gfp_t allocation)
 247{
 248	struct connection *con;
 249
 250	mutex_lock(&connections_lock);
 251	con = __nodeid2con(nodeid, allocation);
 252	mutex_unlock(&connections_lock);
 253
 254	return con;
 255}
 256
 257static struct dlm_node_addr *find_node_addr(int nodeid)
 258{
 259	struct dlm_node_addr *na;
 260
 261	list_for_each_entry(na, &dlm_node_addrs, list) {
 262		if (na->nodeid == nodeid)
 263			return na;
 264	}
 265	return NULL;
 266}
 267
 268static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y)
 269{
 270	switch (x->ss_family) {
 271	case AF_INET: {
 272		struct sockaddr_in *sinx = (struct sockaddr_in *)x;
 273		struct sockaddr_in *siny = (struct sockaddr_in *)y;
 274		if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
 275			return 0;
 276		if (sinx->sin_port != siny->sin_port)
 277			return 0;
 278		break;
 279	}
 280	case AF_INET6: {
 281		struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
 282		struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
 283		if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
 284			return 0;
 285		if (sinx->sin6_port != siny->sin6_port)
 286			return 0;
 287		break;
 288	}
 289	default:
 290		return 0;
 291	}
 292	return 1;
 293}
 294
 295static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
 296			  struct sockaddr *sa_out, bool try_new_addr)
 297{
 298	struct sockaddr_storage sas;
 299	struct dlm_node_addr *na;
 300
 301	if (!dlm_local_count)
 302		return -1;
 303
 304	spin_lock(&dlm_node_addrs_spin);
 305	na = find_node_addr(nodeid);
 306	if (na && na->addr_count) {
 307		memcpy(&sas, na->addr[na->curr_addr_index],
 308		       sizeof(struct sockaddr_storage));
 309
 310		if (try_new_addr) {
 311			na->curr_addr_index++;
 312			if (na->curr_addr_index == na->addr_count)
 313				na->curr_addr_index = 0;
 314		}
 315	}
 316	spin_unlock(&dlm_node_addrs_spin);
 317
 318	if (!na)
 319		return -EEXIST;
 320
 321	if (!na->addr_count)
 322		return -ENOENT;
 323
 324	if (sas_out)
 325		memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
 326
 327	if (!sa_out)
 328		return 0;
 329
 330	if (dlm_local_addr[0]->ss_family == AF_INET) {
 331		struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
 332		struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
 333		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
 334	} else {
 335		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
 336		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
 337		ret6->sin6_addr = in6->sin6_addr;
 338	}
 339
 340	return 0;
 341}
 342
 343static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid)
 344{
 345	struct dlm_node_addr *na;
 346	int rv = -EEXIST;
 347	int addr_i;
 348
 349	spin_lock(&dlm_node_addrs_spin);
 350	list_for_each_entry(na, &dlm_node_addrs, list) {
 351		if (!na->addr_count)
 352			continue;
 353
 354		for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
 355			if (addr_compare(na->addr[addr_i], addr)) {
 356				*nodeid = na->nodeid;
 357				rv = 0;
 358				goto unlock;
 359			}
 360		}
 361	}
 362unlock:
 363	spin_unlock(&dlm_node_addrs_spin);
 364	return rv;
 365}
 366
 367int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
 368{
 369	struct sockaddr_storage *new_addr;
 370	struct dlm_node_addr *new_node, *na;
 371
 372	new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
 373	if (!new_node)
 374		return -ENOMEM;
 375
 376	new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
 377	if (!new_addr) {
 378		kfree(new_node);
 379		return -ENOMEM;
 380	}
 381
 382	memcpy(new_addr, addr, len);
 383
 384	spin_lock(&dlm_node_addrs_spin);
 385	na = find_node_addr(nodeid);
 386	if (!na) {
 387		new_node->nodeid = nodeid;
 388		new_node->addr[0] = new_addr;
 389		new_node->addr_count = 1;
 390		list_add(&new_node->list, &dlm_node_addrs);
 391		spin_unlock(&dlm_node_addrs_spin);
 392		return 0;
 393	}
 394
 395	if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
 396		spin_unlock(&dlm_node_addrs_spin);
 397		kfree(new_addr);
 398		kfree(new_node);
 399		return -ENOSPC;
 400	}
 401
 402	na->addr[na->addr_count++] = new_addr;
 403	spin_unlock(&dlm_node_addrs_spin);
 404	kfree(new_node);
 405	return 0;
 406}
 407
 408/* Data available on socket or listen socket received a connect */
 409static void lowcomms_data_ready(struct sock *sk)
 410{
 411	struct connection *con = sock2con(sk);
 
 
 
 412	if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
 413		queue_work(recv_workqueue, &con->rwork);
 
 414}
 415
 416static void lowcomms_write_space(struct sock *sk)
 417{
 418	struct connection *con = sock2con(sk);
 419
 
 
 420	if (!con)
 421		return;
 422
 423	clear_bit(SOCK_NOSPACE, &con->sock->flags);
 424
 425	if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
 426		con->sock->sk->sk_write_pending--;
 427		clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
 428	}
 429
 430	if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
 431		queue_work(send_workqueue, &con->swork);
 
 432}
 433
 434static inline void lowcomms_connect_sock(struct connection *con)
 435{
 436	if (test_bit(CF_CLOSE, &con->flags))
 437		return;
 438	if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
 439		queue_work(send_workqueue, &con->swork);
 440}
 441
 442static void lowcomms_state_change(struct sock *sk)
 443{
 444	/* SCTP layer is not calling sk_data_ready when the connection
 445	 * is done, so we catch the signal through here. Also, it
 446	 * doesn't switch socket state when entering shutdown, so we
 447	 * skip the write in that case.
 448	 */
 449	if (sk->sk_shutdown) {
 450		if (sk->sk_shutdown == RCV_SHUTDOWN)
 451			lowcomms_data_ready(sk);
 452	} else if (sk->sk_state == TCP_ESTABLISHED) {
 453		lowcomms_write_space(sk);
 454	}
 455}
 456
 457int dlm_lowcomms_connect_node(int nodeid)
 458{
 459	struct connection *con;
 460
 461	if (nodeid == dlm_our_nodeid())
 462		return 0;
 463
 464	con = nodeid2con(nodeid, GFP_NOFS);
 465	if (!con)
 466		return -ENOMEM;
 467	lowcomms_connect_sock(con);
 468	return 0;
 469}
 470
 471static void lowcomms_error_report(struct sock *sk)
 472{
 473	struct connection *con;
 474	struct sockaddr_storage saddr;
 475	int buflen;
 476	void (*orig_report)(struct sock *) = NULL;
 477
 478	read_lock_bh(&sk->sk_callback_lock);
 479	con = sock2con(sk);
 480	if (con == NULL)
 481		goto out;
 482
 483	orig_report = con->orig_error_report;
 484	if (con->sock == NULL ||
 485	    kernel_getpeername(con->sock, (struct sockaddr *)&saddr, &buflen)) {
 486		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
 487				   "sending to node %d, port %d, "
 488				   "sk_err=%d/%d\n", dlm_our_nodeid(),
 489				   con->nodeid, dlm_config.ci_tcp_port,
 490				   sk->sk_err, sk->sk_err_soft);
 491	} else if (saddr.ss_family == AF_INET) {
 492		struct sockaddr_in *sin4 = (struct sockaddr_in *)&saddr;
 493
 494		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
 495				   "sending to node %d at %pI4, port %d, "
 496				   "sk_err=%d/%d\n", dlm_our_nodeid(),
 497				   con->nodeid, &sin4->sin_addr.s_addr,
 498				   dlm_config.ci_tcp_port, sk->sk_err,
 499				   sk->sk_err_soft);
 500	} else {
 501		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&saddr;
 502
 503		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
 504				   "sending to node %d at %u.%u.%u.%u, "
 505				   "port %d, sk_err=%d/%d\n", dlm_our_nodeid(),
 506				   con->nodeid, sin6->sin6_addr.s6_addr32[0],
 507				   sin6->sin6_addr.s6_addr32[1],
 508				   sin6->sin6_addr.s6_addr32[2],
 509				   sin6->sin6_addr.s6_addr32[3],
 510				   dlm_config.ci_tcp_port, sk->sk_err,
 511				   sk->sk_err_soft);
 512	}
 513out:
 514	read_unlock_bh(&sk->sk_callback_lock);
 515	if (orig_report)
 516		orig_report(sk);
 517}
 518
 519/* Note: sk_callback_lock must be locked before calling this function. */
 520static void save_callbacks(struct connection *con, struct sock *sk)
 521{
 522	con->orig_data_ready = sk->sk_data_ready;
 523	con->orig_state_change = sk->sk_state_change;
 524	con->orig_write_space = sk->sk_write_space;
 525	con->orig_error_report = sk->sk_error_report;
 
 
 526}
 527
 528static void restore_callbacks(struct connection *con, struct sock *sk)
 529{
 
 
 530	write_lock_bh(&sk->sk_callback_lock);
 531	sk->sk_user_data = NULL;
 532	sk->sk_data_ready = con->orig_data_ready;
 533	sk->sk_state_change = con->orig_state_change;
 534	sk->sk_write_space = con->orig_write_space;
 535	sk->sk_error_report = con->orig_error_report;
 536	write_unlock_bh(&sk->sk_callback_lock);
 537}
 538
 539/* Make a socket active */
 540static void add_sock(struct socket *sock, struct connection *con, bool save_cb)
 541{
 542	struct sock *sk = sock->sk;
 543
 544	write_lock_bh(&sk->sk_callback_lock);
 545	con->sock = sock;
 546
 547	sk->sk_user_data = con;
 548	if (save_cb)
 549		save_callbacks(con, sk);
 550	/* Install a data_ready callback */
 551	sk->sk_data_ready = lowcomms_data_ready;
 552	sk->sk_write_space = lowcomms_write_space;
 553	sk->sk_state_change = lowcomms_state_change;
 554	sk->sk_allocation = GFP_NOFS;
 555	sk->sk_error_report = lowcomms_error_report;
 556	write_unlock_bh(&sk->sk_callback_lock);
 557}
 558
 559/* Add the port number to an IPv6 or 4 sockaddr and return the address
 560   length */
 561static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
 562			  int *addr_len)
 563{
 564	saddr->ss_family =  dlm_local_addr[0]->ss_family;
 565	if (saddr->ss_family == AF_INET) {
 566		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
 567		in4_addr->sin_port = cpu_to_be16(port);
 568		*addr_len = sizeof(struct sockaddr_in);
 569		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
 570	} else {
 571		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
 572		in6_addr->sin6_port = cpu_to_be16(port);
 573		*addr_len = sizeof(struct sockaddr_in6);
 574	}
 575	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
 576}
 577
 578/* Close a remote connection and tidy up */
 579static void close_connection(struct connection *con, bool and_other,
 580			     bool tx, bool rx)
 581{
 582	clear_bit(CF_CONNECT_PENDING, &con->flags);
 583	clear_bit(CF_WRITE_PENDING, &con->flags);
 584	if (tx && cancel_work_sync(&con->swork))
 585		log_print("canceled swork for node %d", con->nodeid);
 586	if (rx && cancel_work_sync(&con->rwork))
 
 
 587		log_print("canceled rwork for node %d", con->nodeid);
 
 
 588
 589	mutex_lock(&con->sock_mutex);
 590	if (con->sock) {
 591		if (!test_bit(CF_IS_OTHERCON, &con->flags))
 592			restore_callbacks(con, con->sock->sk);
 593		sock_release(con->sock);
 594		con->sock = NULL;
 595	}
 596	if (con->othercon && and_other) {
 597		/* Will only re-enter once. */
 598		close_connection(con->othercon, false, true, true);
 599	}
 600	if (con->rx_page) {
 601		__free_page(con->rx_page);
 602		con->rx_page = NULL;
 603	}
 604
 605	con->retries = 0;
 606	mutex_unlock(&con->sock_mutex);
 
 607}
 608
 609/* Data received from remote end */
 610static int receive_from_sock(struct connection *con)
 611{
 612	int ret = 0;
 613	struct msghdr msg = {};
 614	struct kvec iov[2];
 615	unsigned len;
 616	int r;
 617	int call_again_soon = 0;
 618	int nvec;
 619
 620	mutex_lock(&con->sock_mutex);
 621
 622	if (con->sock == NULL) {
 623		ret = -EAGAIN;
 624		goto out_close;
 625	}
 626	if (con->nodeid == 0) {
 627		ret = -EINVAL;
 628		goto out_close;
 629	}
 630
 631	if (con->rx_page == NULL) {
 632		/*
 633		 * This doesn't need to be atomic, but I think it should
 634		 * improve performance if it is.
 635		 */
 636		con->rx_page = alloc_page(GFP_ATOMIC);
 637		if (con->rx_page == NULL)
 638			goto out_resched;
 639		cbuf_init(&con->cb, PAGE_SIZE);
 640	}
 641
 642	/*
 643	 * iov[0] is the bit of the circular buffer between the current end
 644	 * point (cb.base + cb.len) and the end of the buffer.
 645	 */
 646	iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
 647	iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
 648	iov[1].iov_len = 0;
 649	nvec = 1;
 650
 651	/*
 652	 * iov[1] is the bit of the circular buffer between the start of the
 653	 * buffer and the start of the currently used section (cb.base)
 654	 */
 655	if (cbuf_data(&con->cb) >= con->cb.base) {
 656		iov[0].iov_len = PAGE_SIZE - cbuf_data(&con->cb);
 657		iov[1].iov_len = con->cb.base;
 658		iov[1].iov_base = page_address(con->rx_page);
 659		nvec = 2;
 660	}
 661	len = iov[0].iov_len + iov[1].iov_len;
 
 662
 663	r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
 664			       MSG_DONTWAIT | MSG_NOSIGNAL);
 665	if (ret <= 0)
 666		goto out_close;
 667	else if (ret == len)
 668		call_again_soon = 1;
 669
 670	cbuf_add(&con->cb, ret);
 671	ret = dlm_process_incoming_buffer(con->nodeid,
 672					  page_address(con->rx_page),
 673					  con->cb.base, con->cb.len,
 674					  PAGE_SIZE);
 675	if (ret == -EBADMSG) {
 676		log_print("lowcomms: addr=%p, base=%u, len=%u, read=%d",
 677			  page_address(con->rx_page), con->cb.base,
 678			  con->cb.len, r);
 679	}
 680	if (ret < 0)
 681		goto out_close;
 682	cbuf_eat(&con->cb, ret);
 683
 684	if (cbuf_empty(&con->cb) && !call_again_soon) {
 685		__free_page(con->rx_page);
 686		con->rx_page = NULL;
 687	}
 688
 689	if (call_again_soon)
 690		goto out_resched;
 691	mutex_unlock(&con->sock_mutex);
 692	return 0;
 693
 694out_resched:
 695	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
 696		queue_work(recv_workqueue, &con->rwork);
 697	mutex_unlock(&con->sock_mutex);
 698	return -EAGAIN;
 699
 700out_close:
 701	mutex_unlock(&con->sock_mutex);
 702	if (ret != -EAGAIN) {
 703		close_connection(con, false, true, false);
 704		/* Reconnect when there is something to send */
 705	}
 706	/* Don't return success if we really got EOF */
 707	if (ret == 0)
 708		ret = -EAGAIN;
 709
 710	return ret;
 711}
 712
 713/* Listening socket is busy, accept a connection */
 714static int tcp_accept_from_sock(struct connection *con)
 715{
 716	int result;
 717	struct sockaddr_storage peeraddr;
 718	struct socket *newsock;
 719	int len;
 720	int nodeid;
 721	struct connection *newcon;
 722	struct connection *addcon;
 723
 724	mutex_lock(&connections_lock);
 725	if (!dlm_allow_conn) {
 726		mutex_unlock(&connections_lock);
 727		return -1;
 728	}
 729	mutex_unlock(&connections_lock);
 730
 731	memset(&peeraddr, 0, sizeof(peeraddr));
 732	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
 733				  SOCK_STREAM, IPPROTO_TCP, &newsock);
 734	if (result < 0)
 735		return -ENOMEM;
 736
 737	mutex_lock_nested(&con->sock_mutex, 0);
 738
 739	result = -ENOTCONN;
 740	if (con->sock == NULL)
 741		goto accept_err;
 742
 743	newsock->type = con->sock->type;
 744	newsock->ops = con->sock->ops;
 745
 746	result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
 747	if (result < 0)
 748		goto accept_err;
 749
 750	/* Get the connected socket's peer */
 751	memset(&peeraddr, 0, sizeof(peeraddr));
 752	if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
 753				  &len, 2)) {
 754		result = -ECONNABORTED;
 755		goto accept_err;
 756	}
 757
 758	/* Get the new node's NODEID */
 759	make_sockaddr(&peeraddr, 0, &len);
 760	if (addr_to_nodeid(&peeraddr, &nodeid)) {
 761		unsigned char *b=(unsigned char *)&peeraddr;
 762		log_print("connect from non cluster node");
 763		print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE, 
 764				     b, sizeof(struct sockaddr_storage));
 765		sock_release(newsock);
 766		mutex_unlock(&con->sock_mutex);
 767		return -1;
 768	}
 769
 770	log_print("got connection from %d", nodeid);
 771
 772	/*  Check to see if we already have a connection to this node. This
 773	 *  could happen if the two nodes initiate a connection at roughly
 774	 *  the same time and the connections cross on the wire.
 775	 *  In this case we store the incoming one in "othercon"
 776	 */
 777	newcon = nodeid2con(nodeid, GFP_NOFS);
 778	if (!newcon) {
 779		result = -ENOMEM;
 780		goto accept_err;
 781	}
 782	mutex_lock_nested(&newcon->sock_mutex, 1);
 783	if (newcon->sock) {
 784		struct connection *othercon = newcon->othercon;
 785
 786		if (!othercon) {
 787			othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
 788			if (!othercon) {
 789				log_print("failed to allocate incoming socket");
 790				mutex_unlock(&newcon->sock_mutex);
 791				result = -ENOMEM;
 792				goto accept_err;
 793			}
 794			othercon->nodeid = nodeid;
 795			othercon->rx_action = receive_from_sock;
 796			mutex_init(&othercon->sock_mutex);
 
 
 797			INIT_WORK(&othercon->swork, process_send_sockets);
 798			INIT_WORK(&othercon->rwork, process_recv_sockets);
 799			set_bit(CF_IS_OTHERCON, &othercon->flags);
 800		}
 
 801		if (!othercon->sock) {
 802			newcon->othercon = othercon;
 803			othercon->sock = newsock;
 804			newsock->sk->sk_user_data = othercon;
 805			add_sock(newsock, othercon, false);
 806			addcon = othercon;
 
 807		}
 808		else {
 809			printk("Extra connection from node %d attempted\n", nodeid);
 810			result = -EAGAIN;
 
 811			mutex_unlock(&newcon->sock_mutex);
 812			goto accept_err;
 813		}
 814	}
 815	else {
 816		newsock->sk->sk_user_data = newcon;
 817		newcon->rx_action = receive_from_sock;
 818		/* accept copies the sk after we've saved the callbacks, so we
 819		   don't want to save them a second time or comm errors will
 820		   result in calling sk_error_report recursively. */
 821		add_sock(newsock, newcon, false);
 822		addcon = newcon;
 823	}
 824
 825	mutex_unlock(&newcon->sock_mutex);
 826
 827	/*
 828	 * Add it to the active queue in case we got data
 829	 * between processing the accept adding the socket
 830	 * to the read_sockets list
 831	 */
 832	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
 833		queue_work(recv_workqueue, &addcon->rwork);
 834	mutex_unlock(&con->sock_mutex);
 835
 836	return 0;
 837
 838accept_err:
 839	mutex_unlock(&con->sock_mutex);
 840	sock_release(newsock);
 
 841
 842	if (result != -EAGAIN)
 843		log_print("error accepting connection from node: %d", result);
 844	return result;
 845}
 846
 847static int sctp_accept_from_sock(struct connection *con)
 848{
 849	/* Check that the new node is in the lockspace */
 850	struct sctp_prim prim;
 851	int nodeid;
 852	int prim_len, ret;
 853	int addr_len;
 854	struct connection *newcon;
 855	struct connection *addcon;
 856	struct socket *newsock;
 857
 858	mutex_lock(&connections_lock);
 859	if (!dlm_allow_conn) {
 860		mutex_unlock(&connections_lock);
 861		return -1;
 862	}
 863	mutex_unlock(&connections_lock);
 864
 865	mutex_lock_nested(&con->sock_mutex, 0);
 866
 867	ret = kernel_accept(con->sock, &newsock, O_NONBLOCK);
 868	if (ret < 0)
 869		goto accept_err;
 870
 871	memset(&prim, 0, sizeof(struct sctp_prim));
 872	prim_len = sizeof(struct sctp_prim);
 873
 874	ret = kernel_getsockopt(newsock, IPPROTO_SCTP, SCTP_PRIMARY_ADDR,
 875				(char *)&prim, &prim_len);
 876	if (ret < 0) {
 877		log_print("getsockopt/sctp_primary_addr failed: %d", ret);
 878		goto accept_err;
 879	}
 880
 881	make_sockaddr(&prim.ssp_addr, 0, &addr_len);
 882	ret = addr_to_nodeid(&prim.ssp_addr, &nodeid);
 883	if (ret) {
 884		unsigned char *b = (unsigned char *)&prim.ssp_addr;
 885
 886		log_print("reject connect from unknown addr");
 887		print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
 888				     b, sizeof(struct sockaddr_storage));
 889		goto accept_err;
 890	}
 891
 892	newcon = nodeid2con(nodeid, GFP_NOFS);
 893	if (!newcon) {
 894		ret = -ENOMEM;
 895		goto accept_err;
 896	}
 897
 898	mutex_lock_nested(&newcon->sock_mutex, 1);
 899
 900	if (newcon->sock) {
 901		struct connection *othercon = newcon->othercon;
 902
 903		if (!othercon) {
 904			othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
 905			if (!othercon) {
 906				log_print("failed to allocate incoming socket");
 907				mutex_unlock(&newcon->sock_mutex);
 908				ret = -ENOMEM;
 909				goto accept_err;
 910			}
 911			othercon->nodeid = nodeid;
 912			othercon->rx_action = receive_from_sock;
 913			mutex_init(&othercon->sock_mutex);
 
 
 914			INIT_WORK(&othercon->swork, process_send_sockets);
 915			INIT_WORK(&othercon->rwork, process_recv_sockets);
 916			set_bit(CF_IS_OTHERCON, &othercon->flags);
 917		}
 
 918		if (!othercon->sock) {
 919			newcon->othercon = othercon;
 920			othercon->sock = newsock;
 921			newsock->sk->sk_user_data = othercon;
 922			add_sock(newsock, othercon, false);
 923			addcon = othercon;
 
 924		} else {
 925			printk("Extra connection from node %d attempted\n", nodeid);
 926			ret = -EAGAIN;
 
 927			mutex_unlock(&newcon->sock_mutex);
 928			goto accept_err;
 929		}
 930	} else {
 931		newsock->sk->sk_user_data = newcon;
 932		newcon->rx_action = receive_from_sock;
 933		add_sock(newsock, newcon, false);
 934		addcon = newcon;
 935	}
 936
 937	log_print("connected to %d", nodeid);
 938
 939	mutex_unlock(&newcon->sock_mutex);
 940
 941	/*
 942	 * Add it to the active queue in case we got data
 943	 * between processing the accept adding the socket
 944	 * to the read_sockets list
 945	 */
 946	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
 947		queue_work(recv_workqueue, &addcon->rwork);
 948	mutex_unlock(&con->sock_mutex);
 949
 950	return 0;
 951
 952accept_err:
 953	mutex_unlock(&con->sock_mutex);
 954	if (newsock)
 955		sock_release(newsock);
 956	if (ret != -EAGAIN)
 957		log_print("error accepting connection from node: %d", ret);
 958
 959	return ret;
 960}
 961
 962static void free_entry(struct writequeue_entry *e)
 963{
 964	__free_page(e->page);
 965	kfree(e);
 966}
 967
 968/*
 969 * writequeue_entry_complete - try to delete and free write queue entry
 970 * @e: write queue entry to try to delete
 971 * @completed: bytes completed
 972 *
 973 * writequeue_lock must be held.
 974 */
 975static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
 976{
 977	e->offset += completed;
 978	e->len -= completed;
 979
 980	if (e->len == 0 && e->users == 0) {
 981		list_del(&e->list);
 982		free_entry(e);
 983	}
 984}
 985
 986/*
 987 * sctp_bind_addrs - bind a SCTP socket to all our addresses
 988 */
 989static int sctp_bind_addrs(struct connection *con, uint16_t port)
 990{
 991	struct sockaddr_storage localaddr;
 992	int i, addr_len, result = 0;
 993
 994	for (i = 0; i < dlm_local_count; i++) {
 995		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
 996		make_sockaddr(&localaddr, port, &addr_len);
 997
 998		if (!i)
 999			result = kernel_bind(con->sock,
1000					     (struct sockaddr *)&localaddr,
1001					     addr_len);
1002		else
1003			result = kernel_setsockopt(con->sock, SOL_SCTP,
1004						   SCTP_SOCKOPT_BINDX_ADD,
1005						   (char *)&localaddr, addr_len);
1006
1007		if (result < 0) {
1008			log_print("Can't bind to %d addr number %d, %d.\n",
1009				  port, i + 1, result);
1010			break;
1011		}
1012	}
1013	return result;
1014}
1015
1016/* Initiate an SCTP association.
1017   This is a special case of send_to_sock() in that we don't yet have a
1018   peeled-off socket for this association, so we use the listening socket
1019   and add the primary IP address of the remote node.
1020 */
1021static void sctp_connect_to_sock(struct connection *con)
1022{
1023	struct sockaddr_storage daddr;
1024	int one = 1;
1025	int result;
1026	int addr_len;
1027	struct socket *sock;
 
1028
1029	if (con->nodeid == 0) {
1030		log_print("attempt to connect sock 0 foiled");
1031		return;
1032	}
1033
1034	mutex_lock(&con->sock_mutex);
1035
1036	/* Some odd races can cause double-connects, ignore them */
1037	if (con->retries++ > MAX_CONNECT_RETRIES)
1038		goto out;
1039
1040	if (con->sock) {
1041		log_print("node %d already connected.", con->nodeid);
1042		goto out;
1043	}
1044
1045	memset(&daddr, 0, sizeof(daddr));
1046	result = nodeid_to_addr(con->nodeid, &daddr, NULL, true);
1047	if (result < 0) {
1048		log_print("no address for nodeid %d", con->nodeid);
1049		goto out;
1050	}
1051
1052	/* Create a socket to communicate with */
1053	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1054				  SOCK_STREAM, IPPROTO_SCTP, &sock);
1055	if (result < 0)
1056		goto socket_err;
1057
1058	sock->sk->sk_user_data = con;
1059	con->rx_action = receive_from_sock;
1060	con->connect_action = sctp_connect_to_sock;
1061	add_sock(sock, con, true);
1062
1063	/* Bind to all addresses. */
1064	if (sctp_bind_addrs(con, 0))
1065		goto bind_err;
1066
1067	make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len);
1068
1069	log_print("connecting to %d", con->nodeid);
1070
1071	/* Turn off Nagle's algorithm */
1072	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1073			  sizeof(one));
1074
 
 
 
 
 
 
 
1075	result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len,
1076				   O_NONBLOCK);
 
 
 
 
1077	if (result == -EINPROGRESS)
1078		result = 0;
1079	if (result == 0)
1080		goto out;
1081
1082
1083bind_err:
1084	con->sock = NULL;
1085	sock_release(sock);
1086
1087socket_err:
1088	/*
1089	 * Some errors are fatal and this list might need adjusting. For other
1090	 * errors we try again until the max number of retries is reached.
1091	 */
1092	if (result != -EHOSTUNREACH &&
1093	    result != -ENETUNREACH &&
1094	    result != -ENETDOWN &&
1095	    result != -EINVAL &&
1096	    result != -EPROTONOSUPPORT) {
1097		log_print("connect %d try %d error %d", con->nodeid,
1098			  con->retries, result);
1099		mutex_unlock(&con->sock_mutex);
1100		msleep(1000);
1101		clear_bit(CF_CONNECT_PENDING, &con->flags);
1102		lowcomms_connect_sock(con);
1103		return;
1104	}
1105
1106out:
1107	mutex_unlock(&con->sock_mutex);
1108	set_bit(CF_WRITE_PENDING, &con->flags);
1109}
1110
1111/* Connect a new socket to its peer */
1112static void tcp_connect_to_sock(struct connection *con)
1113{
1114	struct sockaddr_storage saddr, src_addr;
1115	int addr_len;
1116	struct socket *sock = NULL;
1117	int one = 1;
1118	int result;
1119
1120	if (con->nodeid == 0) {
1121		log_print("attempt to connect sock 0 foiled");
1122		return;
1123	}
1124
1125	mutex_lock(&con->sock_mutex);
1126	if (con->retries++ > MAX_CONNECT_RETRIES)
1127		goto out;
1128
1129	/* Some odd races can cause double-connects, ignore them */
1130	if (con->sock)
1131		goto out;
1132
1133	/* Create a socket to communicate with */
1134	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1135				  SOCK_STREAM, IPPROTO_TCP, &sock);
1136	if (result < 0)
1137		goto out_err;
1138
1139	memset(&saddr, 0, sizeof(saddr));
1140	result = nodeid_to_addr(con->nodeid, &saddr, NULL, false);
1141	if (result < 0) {
1142		log_print("no address for nodeid %d", con->nodeid);
1143		goto out_err;
1144	}
1145
1146	sock->sk->sk_user_data = con;
1147	con->rx_action = receive_from_sock;
1148	con->connect_action = tcp_connect_to_sock;
1149	add_sock(sock, con, true);
1150
1151	/* Bind to our cluster-known address connecting to avoid
1152	   routing problems */
1153	memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1154	make_sockaddr(&src_addr, 0, &addr_len);
1155	result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1156				 addr_len);
1157	if (result < 0) {
1158		log_print("could not bind for connect: %d", result);
1159		/* This *may* not indicate a critical error */
1160	}
1161
1162	make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1163
1164	log_print("connecting to %d", con->nodeid);
1165
1166	/* Turn off Nagle's algorithm */
1167	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1168			  sizeof(one));
1169
1170	result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1171				   O_NONBLOCK);
1172	if (result == -EINPROGRESS)
1173		result = 0;
1174	if (result == 0)
1175		goto out;
1176
1177out_err:
1178	if (con->sock) {
1179		sock_release(con->sock);
1180		con->sock = NULL;
1181	} else if (sock) {
1182		sock_release(sock);
1183	}
1184	/*
1185	 * Some errors are fatal and this list might need adjusting. For other
1186	 * errors we try again until the max number of retries is reached.
1187	 */
1188	if (result != -EHOSTUNREACH &&
1189	    result != -ENETUNREACH &&
1190	    result != -ENETDOWN && 
1191	    result != -EINVAL &&
1192	    result != -EPROTONOSUPPORT) {
1193		log_print("connect %d try %d error %d", con->nodeid,
1194			  con->retries, result);
1195		mutex_unlock(&con->sock_mutex);
1196		msleep(1000);
1197		clear_bit(CF_CONNECT_PENDING, &con->flags);
1198		lowcomms_connect_sock(con);
1199		return;
1200	}
1201out:
1202	mutex_unlock(&con->sock_mutex);
1203	set_bit(CF_WRITE_PENDING, &con->flags);
1204	return;
1205}
1206
1207static struct socket *tcp_create_listen_sock(struct connection *con,
1208					     struct sockaddr_storage *saddr)
1209{
1210	struct socket *sock = NULL;
1211	int result = 0;
1212	int one = 1;
1213	int addr_len;
1214
1215	if (dlm_local_addr[0]->ss_family == AF_INET)
1216		addr_len = sizeof(struct sockaddr_in);
1217	else
1218		addr_len = sizeof(struct sockaddr_in6);
1219
1220	/* Create a socket to communicate with */
1221	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1222				  SOCK_STREAM, IPPROTO_TCP, &sock);
1223	if (result < 0) {
1224		log_print("Can't create listening comms socket");
1225		goto create_out;
1226	}
1227
1228	/* Turn off Nagle's algorithm */
1229	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1230			  sizeof(one));
1231
1232	result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
1233				   (char *)&one, sizeof(one));
1234
1235	if (result < 0) {
1236		log_print("Failed to set SO_REUSEADDR on socket: %d", result);
1237	}
 
1238	sock->sk->sk_user_data = con;
1239
1240	con->rx_action = tcp_accept_from_sock;
1241	con->connect_action = tcp_connect_to_sock;
 
1242
1243	/* Bind to our port */
1244	make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1245	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1246	if (result < 0) {
1247		log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1248		sock_release(sock);
1249		sock = NULL;
1250		con->sock = NULL;
1251		goto create_out;
1252	}
1253	result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1254				 (char *)&one, sizeof(one));
1255	if (result < 0) {
1256		log_print("Set keepalive failed: %d", result);
1257	}
1258
1259	result = sock->ops->listen(sock, 5);
1260	if (result < 0) {
1261		log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1262		sock_release(sock);
1263		sock = NULL;
1264		goto create_out;
1265	}
1266
1267create_out:
1268	return sock;
1269}
1270
1271/* Get local addresses */
1272static void init_local(void)
1273{
1274	struct sockaddr_storage sas, *addr;
1275	int i;
1276
1277	dlm_local_count = 0;
1278	for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1279		if (dlm_our_addr(&sas, i))
1280			break;
1281
1282		addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS);
1283		if (!addr)
1284			break;
1285		dlm_local_addr[dlm_local_count++] = addr;
1286	}
1287}
1288
1289/* Initialise SCTP socket and bind to all interfaces */
1290static int sctp_listen_for_all(void)
1291{
1292	struct socket *sock = NULL;
1293	int result = -EINVAL;
1294	struct connection *con = nodeid2con(0, GFP_NOFS);
1295	int bufsize = NEEDED_RMEM;
1296	int one = 1;
1297
1298	if (!con)
1299		return -ENOMEM;
1300
1301	log_print("Using SCTP for communications");
1302
1303	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1304				  SOCK_STREAM, IPPROTO_SCTP, &sock);
1305	if (result < 0) {
1306		log_print("Can't create comms socket, check SCTP is loaded");
1307		goto out;
1308	}
1309
1310	result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1311				 (char *)&bufsize, sizeof(bufsize));
1312	if (result)
1313		log_print("Error increasing buffer space on socket %d", result);
1314
1315	result = kernel_setsockopt(sock, SOL_SCTP, SCTP_NODELAY, (char *)&one,
1316				   sizeof(one));
1317	if (result < 0)
1318		log_print("Could not set SCTP NODELAY error %d\n", result);
1319
1320	write_lock_bh(&sock->sk->sk_callback_lock);
1321	/* Init con struct */
1322	sock->sk->sk_user_data = con;
 
1323	con->sock = sock;
1324	con->sock->sk->sk_data_ready = lowcomms_data_ready;
1325	con->rx_action = sctp_accept_from_sock;
1326	con->connect_action = sctp_connect_to_sock;
1327
1328	write_unlock_bh(&sock->sk->sk_callback_lock);
1329
1330	/* Bind to all addresses. */
1331	if (sctp_bind_addrs(con, dlm_config.ci_tcp_port))
1332		goto create_delsock;
1333
1334	result = sock->ops->listen(sock, 5);
1335	if (result < 0) {
1336		log_print("Can't set socket listening");
1337		goto create_delsock;
1338	}
1339
1340	return 0;
1341
1342create_delsock:
1343	sock_release(sock);
1344	con->sock = NULL;
1345out:
1346	return result;
1347}
1348
1349static int tcp_listen_for_all(void)
1350{
1351	struct socket *sock = NULL;
1352	struct connection *con = nodeid2con(0, GFP_NOFS);
1353	int result = -EINVAL;
1354
1355	if (!con)
1356		return -ENOMEM;
1357
1358	/* We don't support multi-homed hosts */
1359	if (dlm_local_addr[1] != NULL) {
1360		log_print("TCP protocol can't handle multi-homed hosts, "
1361			  "try SCTP");
1362		return -EINVAL;
1363	}
1364
1365	log_print("Using TCP for communications");
1366
1367	sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1368	if (sock) {
1369		add_sock(sock, con, true);
1370		result = 0;
1371	}
1372	else {
1373		result = -EADDRINUSE;
1374	}
1375
1376	return result;
1377}
1378
1379
1380
1381static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1382						     gfp_t allocation)
1383{
1384	struct writequeue_entry *entry;
1385
1386	entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1387	if (!entry)
1388		return NULL;
1389
1390	entry->page = alloc_page(allocation);
1391	if (!entry->page) {
1392		kfree(entry);
1393		return NULL;
1394	}
1395
1396	entry->offset = 0;
1397	entry->len = 0;
1398	entry->end = 0;
1399	entry->users = 0;
1400	entry->con = con;
1401
1402	return entry;
1403}
1404
1405void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1406{
1407	struct connection *con;
1408	struct writequeue_entry *e;
1409	int offset = 0;
1410
1411	con = nodeid2con(nodeid, allocation);
1412	if (!con)
1413		return NULL;
1414
1415	spin_lock(&con->writequeue_lock);
1416	e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1417	if ((&e->list == &con->writequeue) ||
1418	    (PAGE_SIZE - e->end < len)) {
1419		e = NULL;
1420	} else {
1421		offset = e->end;
1422		e->end += len;
1423		e->users++;
1424	}
1425	spin_unlock(&con->writequeue_lock);
1426
1427	if (e) {
1428	got_one:
1429		*ppc = page_address(e->page) + offset;
1430		return e;
1431	}
1432
1433	e = new_writequeue_entry(con, allocation);
1434	if (e) {
1435		spin_lock(&con->writequeue_lock);
1436		offset = e->end;
1437		e->end += len;
1438		e->users++;
1439		list_add_tail(&e->list, &con->writequeue);
1440		spin_unlock(&con->writequeue_lock);
1441		goto got_one;
1442	}
1443	return NULL;
1444}
1445
1446void dlm_lowcomms_commit_buffer(void *mh)
1447{
1448	struct writequeue_entry *e = (struct writequeue_entry *)mh;
1449	struct connection *con = e->con;
1450	int users;
1451
1452	spin_lock(&con->writequeue_lock);
1453	users = --e->users;
1454	if (users)
1455		goto out;
1456	e->len = e->end - e->offset;
1457	spin_unlock(&con->writequeue_lock);
1458
1459	if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
1460		queue_work(send_workqueue, &con->swork);
1461	}
1462	return;
1463
1464out:
1465	spin_unlock(&con->writequeue_lock);
1466	return;
1467}
1468
1469/* Send a message */
1470static void send_to_sock(struct connection *con)
1471{
1472	int ret = 0;
1473	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1474	struct writequeue_entry *e;
1475	int len, offset;
1476	int count = 0;
1477
1478	mutex_lock(&con->sock_mutex);
1479	if (con->sock == NULL)
1480		goto out_connect;
1481
1482	spin_lock(&con->writequeue_lock);
1483	for (;;) {
1484		e = list_entry(con->writequeue.next, struct writequeue_entry,
1485			       list);
1486		if ((struct list_head *) e == &con->writequeue)
1487			break;
1488
1489		len = e->len;
1490		offset = e->offset;
1491		BUG_ON(len == 0 && e->users == 0);
1492		spin_unlock(&con->writequeue_lock);
1493
1494		ret = 0;
1495		if (len) {
1496			ret = kernel_sendpage(con->sock, e->page, offset, len,
1497					      msg_flags);
1498			if (ret == -EAGAIN || ret == 0) {
1499				if (ret == -EAGAIN &&
1500				    test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1501				    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1502					/* Notify TCP that we're limited by the
1503					 * application window size.
1504					 */
1505					set_bit(SOCK_NOSPACE, &con->sock->flags);
1506					con->sock->sk->sk_write_pending++;
1507				}
1508				cond_resched();
1509				goto out;
1510			} else if (ret < 0)
1511				goto send_error;
1512		}
1513
1514		/* Don't starve people filling buffers */
1515		if (++count >= MAX_SEND_MSG_COUNT) {
1516			cond_resched();
1517			count = 0;
1518		}
1519
1520		spin_lock(&con->writequeue_lock);
1521		writequeue_entry_complete(e, ret);
1522	}
1523	spin_unlock(&con->writequeue_lock);
1524out:
1525	mutex_unlock(&con->sock_mutex);
1526	return;
1527
1528send_error:
1529	mutex_unlock(&con->sock_mutex);
1530	close_connection(con, false, false, true);
1531	lowcomms_connect_sock(con);
 
 
1532	return;
1533
1534out_connect:
1535	mutex_unlock(&con->sock_mutex);
1536	lowcomms_connect_sock(con);
 
1537}
1538
1539static void clean_one_writequeue(struct connection *con)
1540{
1541	struct writequeue_entry *e, *safe;
1542
1543	spin_lock(&con->writequeue_lock);
1544	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1545		list_del(&e->list);
1546		free_entry(e);
1547	}
1548	spin_unlock(&con->writequeue_lock);
1549}
1550
1551/* Called from recovery when it knows that a node has
1552   left the cluster */
1553int dlm_lowcomms_close(int nodeid)
1554{
1555	struct connection *con;
1556	struct dlm_node_addr *na;
1557
1558	log_print("closing connection to node %d", nodeid);
1559	con = nodeid2con(nodeid, 0);
1560	if (con) {
1561		set_bit(CF_CLOSE, &con->flags);
1562		close_connection(con, true, true, true);
1563		clean_one_writequeue(con);
1564	}
1565
1566	spin_lock(&dlm_node_addrs_spin);
1567	na = find_node_addr(nodeid);
1568	if (na) {
1569		list_del(&na->list);
1570		while (na->addr_count--)
1571			kfree(na->addr[na->addr_count]);
1572		kfree(na);
1573	}
1574	spin_unlock(&dlm_node_addrs_spin);
1575
1576	return 0;
1577}
1578
1579/* Receive workqueue function */
1580static void process_recv_sockets(struct work_struct *work)
1581{
1582	struct connection *con = container_of(work, struct connection, rwork);
1583	int err;
1584
1585	clear_bit(CF_READ_PENDING, &con->flags);
1586	do {
1587		err = con->rx_action(con);
1588	} while (!err);
1589}
1590
1591/* Send workqueue function */
1592static void process_send_sockets(struct work_struct *work)
1593{
1594	struct connection *con = container_of(work, struct connection, swork);
1595
1596	if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags))
 
1597		con->connect_action(con);
1598	if (test_and_clear_bit(CF_WRITE_PENDING, &con->flags))
1599		send_to_sock(con);
1600}
1601
1602
1603/* Discard all entries on the write queues */
1604static void clean_writequeues(void)
1605{
1606	foreach_conn(clean_one_writequeue);
1607}
1608
1609static void work_stop(void)
1610{
1611	destroy_workqueue(recv_workqueue);
1612	destroy_workqueue(send_workqueue);
 
 
1613}
1614
1615static int work_start(void)
1616{
1617	recv_workqueue = alloc_workqueue("dlm_recv",
1618					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1619	if (!recv_workqueue) {
1620		log_print("can't start dlm_recv");
1621		return -ENOMEM;
1622	}
1623
1624	send_workqueue = alloc_workqueue("dlm_send",
1625					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1626	if (!send_workqueue) {
1627		log_print("can't start dlm_send");
1628		destroy_workqueue(recv_workqueue);
1629		return -ENOMEM;
1630	}
1631
1632	return 0;
1633}
1634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1635static void stop_conn(struct connection *con)
1636{
1637	con->flags |= 0x0F;
1638	if (con->sock && con->sock->sk)
1639		con->sock->sk->sk_user_data = NULL;
1640}
1641
1642static void free_conn(struct connection *con)
1643{
1644	close_connection(con, true, true, true);
1645	if (con->othercon)
1646		kmem_cache_free(con_cache, con->othercon);
1647	hlist_del(&con->list);
1648	kmem_cache_free(con_cache, con);
1649}
1650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1651void dlm_lowcomms_stop(void)
1652{
1653	/* Set all the flags to prevent any
1654	   socket activity.
1655	*/
1656	mutex_lock(&connections_lock);
1657	dlm_allow_conn = 0;
1658	foreach_conn(stop_conn);
 
1659	clean_writequeues();
1660	foreach_conn(free_conn);
1661	mutex_unlock(&connections_lock);
1662
1663	work_stop();
1664
1665	kmem_cache_destroy(con_cache);
1666}
1667
1668int dlm_lowcomms_start(void)
1669{
1670	int error = -EINVAL;
1671	struct connection *con;
1672	int i;
1673
1674	for (i = 0; i < CONN_HASH_SIZE; i++)
1675		INIT_HLIST_HEAD(&connection_hash[i]);
1676
1677	init_local();
1678	if (!dlm_local_count) {
1679		error = -ENOTCONN;
1680		log_print("no local IP address has been set");
1681		goto fail;
1682	}
1683
1684	error = -ENOMEM;
1685	con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1686				      __alignof__(struct connection), 0,
1687				      NULL);
1688	if (!con_cache)
1689		goto fail;
1690
1691	error = work_start();
1692	if (error)
1693		goto fail_destroy;
1694
1695	dlm_allow_conn = 1;
1696
1697	/* Start listening */
1698	if (dlm_config.ci_protocol == 0)
1699		error = tcp_listen_for_all();
1700	else
1701		error = sctp_listen_for_all();
1702	if (error)
1703		goto fail_unlisten;
1704
1705	return 0;
1706
1707fail_unlisten:
1708	dlm_allow_conn = 0;
1709	con = nodeid2con(0,0);
1710	if (con) {
1711		close_connection(con, false, true, true);
1712		kmem_cache_free(con_cache, con);
1713	}
1714fail_destroy:
1715	kmem_cache_destroy(con_cache);
1716fail:
1717	return error;
1718}
1719
1720void dlm_lowcomms_exit(void)
1721{
1722	struct dlm_node_addr *na, *safe;
1723
1724	spin_lock(&dlm_node_addrs_spin);
1725	list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
1726		list_del(&na->list);
1727		while (na->addr_count--)
1728			kfree(na->addr[na->addr_count]);
1729		kfree(na);
1730	}
1731	spin_unlock(&dlm_node_addrs_spin);
1732}