Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/******************************************************************************
3*******************************************************************************
4**
5** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
6** Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved.
7**
8**
9*******************************************************************************
10******************************************************************************/
11
12/*
13 * lowcomms.c
14 *
15 * This is the "low-level" comms layer.
16 *
17 * It is responsible for sending/receiving messages
18 * from other nodes in the cluster.
19 *
20 * Cluster nodes are referred to by their nodeids. nodeids are
21 * simply 32 bit numbers to the locking module - if they need to
22 * be expanded for the cluster infrastructure then that is its
23 * responsibility. It is this layer's
24 * responsibility to resolve these into IP address or
25 * whatever it needs for inter-node communication.
26 *
27 * The comms level is two kernel threads that deal mainly with
28 * the receiving of messages from other nodes and passing them
29 * up to the mid-level comms layer (which understands the
30 * message format) for execution by the locking core, and
31 * a send thread which does all the setting up of connections
32 * to remote nodes and the sending of data. Threads are not allowed
33 * to send their own data because it may cause them to wait in times
34 * of high load. Also, this way, the sending thread can collect together
35 * messages bound for one node and send them in one block.
36 *
37 * lowcomms will choose to use either TCP or SCTP as its transport layer
38 * depending on the configuration variable 'protocol'. This should be set
39 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40 * cluster-wide mechanism as it must be the same on all nodes of the cluster
41 * for the DLM to function.
42 *
43 */
44
45#include <asm/ioctls.h>
46#include <net/sock.h>
47#include <net/tcp.h>
48#include <linux/pagemap.h>
49#include <linux/file.h>
50#include <linux/mutex.h>
51#include <linux/sctp.h>
52#include <linux/slab.h>
53#include <net/sctp/sctp.h>
54#include <net/ipv6.h>
55
56#include "dlm_internal.h"
57#include "lowcomms.h"
58#include "midcomms.h"
59#include "config.h"
60
61#define NEEDED_RMEM (4*1024*1024)
62#define CONN_HASH_SIZE 32
63
64/* Number of messages to send before rescheduling */
65#define MAX_SEND_MSG_COUNT 25
66
67struct cbuf {
68 unsigned int base;
69 unsigned int len;
70 unsigned int mask;
71};
72
73static void cbuf_add(struct cbuf *cb, int n)
74{
75 cb->len += n;
76}
77
78static int cbuf_data(struct cbuf *cb)
79{
80 return ((cb->base + cb->len) & cb->mask);
81}
82
83static void cbuf_init(struct cbuf *cb, int size)
84{
85 cb->base = cb->len = 0;
86 cb->mask = size-1;
87}
88
89static void cbuf_eat(struct cbuf *cb, int n)
90{
91 cb->len -= n;
92 cb->base += n;
93 cb->base &= cb->mask;
94}
95
96static bool cbuf_empty(struct cbuf *cb)
97{
98 return cb->len == 0;
99}
100
101struct connection {
102 struct socket *sock; /* NULL if not connected */
103 uint32_t nodeid; /* So we know who we are in the list */
104 struct mutex sock_mutex;
105 unsigned long flags;
106#define CF_READ_PENDING 1
107#define CF_WRITE_PENDING 2
108#define CF_INIT_PENDING 4
109#define CF_IS_OTHERCON 5
110#define CF_CLOSE 6
111#define CF_APP_LIMITED 7
112#define CF_CLOSING 8
113 struct list_head writequeue; /* List of outgoing writequeue_entries */
114 spinlock_t writequeue_lock;
115 int (*rx_action) (struct connection *); /* What to do when active */
116 void (*connect_action) (struct connection *); /* What to do to connect */
117 struct page *rx_page;
118 struct cbuf cb;
119 int retries;
120#define MAX_CONNECT_RETRIES 3
121 struct hlist_node list;
122 struct connection *othercon;
123 struct work_struct rwork; /* Receive workqueue */
124 struct work_struct swork; /* Send workqueue */
125};
126#define sock2con(x) ((struct connection *)(x)->sk_user_data)
127
128/* An entry waiting to be sent */
129struct writequeue_entry {
130 struct list_head list;
131 struct page *page;
132 int offset;
133 int len;
134 int end;
135 int users;
136 struct connection *con;
137};
138
139struct dlm_node_addr {
140 struct list_head list;
141 int nodeid;
142 int addr_count;
143 int curr_addr_index;
144 struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
145};
146
147static struct listen_sock_callbacks {
148 void (*sk_error_report)(struct sock *);
149 void (*sk_data_ready)(struct sock *);
150 void (*sk_state_change)(struct sock *);
151 void (*sk_write_space)(struct sock *);
152} listen_sock;
153
154static LIST_HEAD(dlm_node_addrs);
155static DEFINE_SPINLOCK(dlm_node_addrs_spin);
156
157static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
158static int dlm_local_count;
159static int dlm_allow_conn;
160
161/* Work queues */
162static struct workqueue_struct *recv_workqueue;
163static struct workqueue_struct *send_workqueue;
164
165static struct hlist_head connection_hash[CONN_HASH_SIZE];
166static DEFINE_MUTEX(connections_lock);
167static struct kmem_cache *con_cache;
168
169static void process_recv_sockets(struct work_struct *work);
170static void process_send_sockets(struct work_struct *work);
171
172
173/* This is deliberately very simple because most clusters have simple
174 sequential nodeids, so we should be able to go straight to a connection
175 struct in the array */
176static inline int nodeid_hash(int nodeid)
177{
178 return nodeid & (CONN_HASH_SIZE-1);
179}
180
181static struct connection *__find_con(int nodeid)
182{
183 int r;
184 struct connection *con;
185
186 r = nodeid_hash(nodeid);
187
188 hlist_for_each_entry(con, &connection_hash[r], list) {
189 if (con->nodeid == nodeid)
190 return con;
191 }
192 return NULL;
193}
194
195/*
196 * If 'allocation' is zero then we don't attempt to create a new
197 * connection structure for this node.
198 */
199static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
200{
201 struct connection *con = NULL;
202 int r;
203
204 con = __find_con(nodeid);
205 if (con || !alloc)
206 return con;
207
208 con = kmem_cache_zalloc(con_cache, alloc);
209 if (!con)
210 return NULL;
211
212 r = nodeid_hash(nodeid);
213 hlist_add_head(&con->list, &connection_hash[r]);
214
215 con->nodeid = nodeid;
216 mutex_init(&con->sock_mutex);
217 INIT_LIST_HEAD(&con->writequeue);
218 spin_lock_init(&con->writequeue_lock);
219 INIT_WORK(&con->swork, process_send_sockets);
220 INIT_WORK(&con->rwork, process_recv_sockets);
221
222 /* Setup action pointers for child sockets */
223 if (con->nodeid) {
224 struct connection *zerocon = __find_con(0);
225
226 con->connect_action = zerocon->connect_action;
227 if (!con->rx_action)
228 con->rx_action = zerocon->rx_action;
229 }
230
231 return con;
232}
233
234/* Loop round all connections */
235static void foreach_conn(void (*conn_func)(struct connection *c))
236{
237 int i;
238 struct hlist_node *n;
239 struct connection *con;
240
241 for (i = 0; i < CONN_HASH_SIZE; i++) {
242 hlist_for_each_entry_safe(con, n, &connection_hash[i], list)
243 conn_func(con);
244 }
245}
246
247static struct connection *nodeid2con(int nodeid, gfp_t allocation)
248{
249 struct connection *con;
250
251 mutex_lock(&connections_lock);
252 con = __nodeid2con(nodeid, allocation);
253 mutex_unlock(&connections_lock);
254
255 return con;
256}
257
258static struct dlm_node_addr *find_node_addr(int nodeid)
259{
260 struct dlm_node_addr *na;
261
262 list_for_each_entry(na, &dlm_node_addrs, list) {
263 if (na->nodeid == nodeid)
264 return na;
265 }
266 return NULL;
267}
268
269static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y)
270{
271 switch (x->ss_family) {
272 case AF_INET: {
273 struct sockaddr_in *sinx = (struct sockaddr_in *)x;
274 struct sockaddr_in *siny = (struct sockaddr_in *)y;
275 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
276 return 0;
277 if (sinx->sin_port != siny->sin_port)
278 return 0;
279 break;
280 }
281 case AF_INET6: {
282 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
283 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
284 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
285 return 0;
286 if (sinx->sin6_port != siny->sin6_port)
287 return 0;
288 break;
289 }
290 default:
291 return 0;
292 }
293 return 1;
294}
295
296static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
297 struct sockaddr *sa_out, bool try_new_addr)
298{
299 struct sockaddr_storage sas;
300 struct dlm_node_addr *na;
301
302 if (!dlm_local_count)
303 return -1;
304
305 spin_lock(&dlm_node_addrs_spin);
306 na = find_node_addr(nodeid);
307 if (na && na->addr_count) {
308 memcpy(&sas, na->addr[na->curr_addr_index],
309 sizeof(struct sockaddr_storage));
310
311 if (try_new_addr) {
312 na->curr_addr_index++;
313 if (na->curr_addr_index == na->addr_count)
314 na->curr_addr_index = 0;
315 }
316 }
317 spin_unlock(&dlm_node_addrs_spin);
318
319 if (!na)
320 return -EEXIST;
321
322 if (!na->addr_count)
323 return -ENOENT;
324
325 if (sas_out)
326 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
327
328 if (!sa_out)
329 return 0;
330
331 if (dlm_local_addr[0]->ss_family == AF_INET) {
332 struct sockaddr_in *in4 = (struct sockaddr_in *) &sas;
333 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
334 ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
335 } else {
336 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &sas;
337 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
338 ret6->sin6_addr = in6->sin6_addr;
339 }
340
341 return 0;
342}
343
344static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid)
345{
346 struct dlm_node_addr *na;
347 int rv = -EEXIST;
348 int addr_i;
349
350 spin_lock(&dlm_node_addrs_spin);
351 list_for_each_entry(na, &dlm_node_addrs, list) {
352 if (!na->addr_count)
353 continue;
354
355 for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
356 if (addr_compare(na->addr[addr_i], addr)) {
357 *nodeid = na->nodeid;
358 rv = 0;
359 goto unlock;
360 }
361 }
362 }
363unlock:
364 spin_unlock(&dlm_node_addrs_spin);
365 return rv;
366}
367
368int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
369{
370 struct sockaddr_storage *new_addr;
371 struct dlm_node_addr *new_node, *na;
372
373 new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
374 if (!new_node)
375 return -ENOMEM;
376
377 new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
378 if (!new_addr) {
379 kfree(new_node);
380 return -ENOMEM;
381 }
382
383 memcpy(new_addr, addr, len);
384
385 spin_lock(&dlm_node_addrs_spin);
386 na = find_node_addr(nodeid);
387 if (!na) {
388 new_node->nodeid = nodeid;
389 new_node->addr[0] = new_addr;
390 new_node->addr_count = 1;
391 list_add(&new_node->list, &dlm_node_addrs);
392 spin_unlock(&dlm_node_addrs_spin);
393 return 0;
394 }
395
396 if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
397 spin_unlock(&dlm_node_addrs_spin);
398 kfree(new_addr);
399 kfree(new_node);
400 return -ENOSPC;
401 }
402
403 na->addr[na->addr_count++] = new_addr;
404 spin_unlock(&dlm_node_addrs_spin);
405 kfree(new_node);
406 return 0;
407}
408
409/* Data available on socket or listen socket received a connect */
410static void lowcomms_data_ready(struct sock *sk)
411{
412 struct connection *con;
413
414 read_lock_bh(&sk->sk_callback_lock);
415 con = sock2con(sk);
416 if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
417 queue_work(recv_workqueue, &con->rwork);
418 read_unlock_bh(&sk->sk_callback_lock);
419}
420
421static void lowcomms_write_space(struct sock *sk)
422{
423 struct connection *con;
424
425 read_lock_bh(&sk->sk_callback_lock);
426 con = sock2con(sk);
427 if (!con)
428 goto out;
429
430 clear_bit(SOCK_NOSPACE, &con->sock->flags);
431
432 if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
433 con->sock->sk->sk_write_pending--;
434 clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
435 }
436
437 queue_work(send_workqueue, &con->swork);
438out:
439 read_unlock_bh(&sk->sk_callback_lock);
440}
441
442static inline void lowcomms_connect_sock(struct connection *con)
443{
444 if (test_bit(CF_CLOSE, &con->flags))
445 return;
446 queue_work(send_workqueue, &con->swork);
447 cond_resched();
448}
449
450static void lowcomms_state_change(struct sock *sk)
451{
452 /* SCTP layer is not calling sk_data_ready when the connection
453 * is done, so we catch the signal through here. Also, it
454 * doesn't switch socket state when entering shutdown, so we
455 * skip the write in that case.
456 */
457 if (sk->sk_shutdown) {
458 if (sk->sk_shutdown == RCV_SHUTDOWN)
459 lowcomms_data_ready(sk);
460 } else if (sk->sk_state == TCP_ESTABLISHED) {
461 lowcomms_write_space(sk);
462 }
463}
464
465int dlm_lowcomms_connect_node(int nodeid)
466{
467 struct connection *con;
468
469 if (nodeid == dlm_our_nodeid())
470 return 0;
471
472 con = nodeid2con(nodeid, GFP_NOFS);
473 if (!con)
474 return -ENOMEM;
475 lowcomms_connect_sock(con);
476 return 0;
477}
478
479static void lowcomms_error_report(struct sock *sk)
480{
481 struct connection *con;
482 struct sockaddr_storage saddr;
483 void (*orig_report)(struct sock *) = NULL;
484
485 read_lock_bh(&sk->sk_callback_lock);
486 con = sock2con(sk);
487 if (con == NULL)
488 goto out;
489
490 orig_report = listen_sock.sk_error_report;
491 if (con->sock == NULL ||
492 kernel_getpeername(con->sock, (struct sockaddr *)&saddr) < 0) {
493 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
494 "sending to node %d, port %d, "
495 "sk_err=%d/%d\n", dlm_our_nodeid(),
496 con->nodeid, dlm_config.ci_tcp_port,
497 sk->sk_err, sk->sk_err_soft);
498 } else if (saddr.ss_family == AF_INET) {
499 struct sockaddr_in *sin4 = (struct sockaddr_in *)&saddr;
500
501 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
502 "sending to node %d at %pI4, port %d, "
503 "sk_err=%d/%d\n", dlm_our_nodeid(),
504 con->nodeid, &sin4->sin_addr.s_addr,
505 dlm_config.ci_tcp_port, sk->sk_err,
506 sk->sk_err_soft);
507 } else {
508 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&saddr;
509
510 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
511 "sending to node %d at %u.%u.%u.%u, "
512 "port %d, sk_err=%d/%d\n", dlm_our_nodeid(),
513 con->nodeid, sin6->sin6_addr.s6_addr32[0],
514 sin6->sin6_addr.s6_addr32[1],
515 sin6->sin6_addr.s6_addr32[2],
516 sin6->sin6_addr.s6_addr32[3],
517 dlm_config.ci_tcp_port, sk->sk_err,
518 sk->sk_err_soft);
519 }
520out:
521 read_unlock_bh(&sk->sk_callback_lock);
522 if (orig_report)
523 orig_report(sk);
524}
525
526/* Note: sk_callback_lock must be locked before calling this function. */
527static void save_listen_callbacks(struct socket *sock)
528{
529 struct sock *sk = sock->sk;
530
531 listen_sock.sk_data_ready = sk->sk_data_ready;
532 listen_sock.sk_state_change = sk->sk_state_change;
533 listen_sock.sk_write_space = sk->sk_write_space;
534 listen_sock.sk_error_report = sk->sk_error_report;
535}
536
537static void restore_callbacks(struct socket *sock)
538{
539 struct sock *sk = sock->sk;
540
541 write_lock_bh(&sk->sk_callback_lock);
542 sk->sk_user_data = NULL;
543 sk->sk_data_ready = listen_sock.sk_data_ready;
544 sk->sk_state_change = listen_sock.sk_state_change;
545 sk->sk_write_space = listen_sock.sk_write_space;
546 sk->sk_error_report = listen_sock.sk_error_report;
547 write_unlock_bh(&sk->sk_callback_lock);
548}
549
550/* Make a socket active */
551static void add_sock(struct socket *sock, struct connection *con)
552{
553 struct sock *sk = sock->sk;
554
555 write_lock_bh(&sk->sk_callback_lock);
556 con->sock = sock;
557
558 sk->sk_user_data = con;
559 /* Install a data_ready callback */
560 sk->sk_data_ready = lowcomms_data_ready;
561 sk->sk_write_space = lowcomms_write_space;
562 sk->sk_state_change = lowcomms_state_change;
563 sk->sk_allocation = GFP_NOFS;
564 sk->sk_error_report = lowcomms_error_report;
565 write_unlock_bh(&sk->sk_callback_lock);
566}
567
568/* Add the port number to an IPv6 or 4 sockaddr and return the address
569 length */
570static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
571 int *addr_len)
572{
573 saddr->ss_family = dlm_local_addr[0]->ss_family;
574 if (saddr->ss_family == AF_INET) {
575 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
576 in4_addr->sin_port = cpu_to_be16(port);
577 *addr_len = sizeof(struct sockaddr_in);
578 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
579 } else {
580 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
581 in6_addr->sin6_port = cpu_to_be16(port);
582 *addr_len = sizeof(struct sockaddr_in6);
583 }
584 memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
585}
586
587/* Close a remote connection and tidy up */
588static void close_connection(struct connection *con, bool and_other,
589 bool tx, bool rx)
590{
591 bool closing = test_and_set_bit(CF_CLOSING, &con->flags);
592
593 if (tx && !closing && cancel_work_sync(&con->swork)) {
594 log_print("canceled swork for node %d", con->nodeid);
595 clear_bit(CF_WRITE_PENDING, &con->flags);
596 }
597 if (rx && !closing && cancel_work_sync(&con->rwork)) {
598 log_print("canceled rwork for node %d", con->nodeid);
599 clear_bit(CF_READ_PENDING, &con->flags);
600 }
601
602 mutex_lock(&con->sock_mutex);
603 if (con->sock) {
604 restore_callbacks(con->sock);
605 sock_release(con->sock);
606 con->sock = NULL;
607 }
608 if (con->othercon && and_other) {
609 /* Will only re-enter once. */
610 close_connection(con->othercon, false, true, true);
611 }
612 if (con->rx_page) {
613 __free_page(con->rx_page);
614 con->rx_page = NULL;
615 }
616
617 con->retries = 0;
618 mutex_unlock(&con->sock_mutex);
619 clear_bit(CF_CLOSING, &con->flags);
620}
621
622/* Data received from remote end */
623static int receive_from_sock(struct connection *con)
624{
625 int ret = 0;
626 struct msghdr msg = {};
627 struct kvec iov[2];
628 unsigned len;
629 int r;
630 int call_again_soon = 0;
631 int nvec;
632
633 mutex_lock(&con->sock_mutex);
634
635 if (con->sock == NULL) {
636 ret = -EAGAIN;
637 goto out_close;
638 }
639 if (con->nodeid == 0) {
640 ret = -EINVAL;
641 goto out_close;
642 }
643
644 if (con->rx_page == NULL) {
645 /*
646 * This doesn't need to be atomic, but I think it should
647 * improve performance if it is.
648 */
649 con->rx_page = alloc_page(GFP_ATOMIC);
650 if (con->rx_page == NULL)
651 goto out_resched;
652 cbuf_init(&con->cb, PAGE_SIZE);
653 }
654
655 /*
656 * iov[0] is the bit of the circular buffer between the current end
657 * point (cb.base + cb.len) and the end of the buffer.
658 */
659 iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
660 iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
661 iov[1].iov_len = 0;
662 nvec = 1;
663
664 /*
665 * iov[1] is the bit of the circular buffer between the start of the
666 * buffer and the start of the currently used section (cb.base)
667 */
668 if (cbuf_data(&con->cb) >= con->cb.base) {
669 iov[0].iov_len = PAGE_SIZE - cbuf_data(&con->cb);
670 iov[1].iov_len = con->cb.base;
671 iov[1].iov_base = page_address(con->rx_page);
672 nvec = 2;
673 }
674 len = iov[0].iov_len + iov[1].iov_len;
675 iov_iter_kvec(&msg.msg_iter, READ, iov, nvec, len);
676
677 r = ret = sock_recvmsg(con->sock, &msg, MSG_DONTWAIT | MSG_NOSIGNAL);
678 if (ret <= 0)
679 goto out_close;
680 else if (ret == len)
681 call_again_soon = 1;
682
683 cbuf_add(&con->cb, ret);
684 ret = dlm_process_incoming_buffer(con->nodeid,
685 page_address(con->rx_page),
686 con->cb.base, con->cb.len,
687 PAGE_SIZE);
688 if (ret == -EBADMSG) {
689 log_print("lowcomms: addr=%p, base=%u, len=%u, read=%d",
690 page_address(con->rx_page), con->cb.base,
691 con->cb.len, r);
692 }
693 if (ret < 0)
694 goto out_close;
695 cbuf_eat(&con->cb, ret);
696
697 if (cbuf_empty(&con->cb) && !call_again_soon) {
698 __free_page(con->rx_page);
699 con->rx_page = NULL;
700 }
701
702 if (call_again_soon)
703 goto out_resched;
704 mutex_unlock(&con->sock_mutex);
705 return 0;
706
707out_resched:
708 if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
709 queue_work(recv_workqueue, &con->rwork);
710 mutex_unlock(&con->sock_mutex);
711 return -EAGAIN;
712
713out_close:
714 mutex_unlock(&con->sock_mutex);
715 if (ret != -EAGAIN) {
716 close_connection(con, true, true, false);
717 /* Reconnect when there is something to send */
718 }
719 /* Don't return success if we really got EOF */
720 if (ret == 0)
721 ret = -EAGAIN;
722
723 return ret;
724}
725
726/* Listening socket is busy, accept a connection */
727static int tcp_accept_from_sock(struct connection *con)
728{
729 int result;
730 struct sockaddr_storage peeraddr;
731 struct socket *newsock;
732 int len;
733 int nodeid;
734 struct connection *newcon;
735 struct connection *addcon;
736
737 mutex_lock(&connections_lock);
738 if (!dlm_allow_conn) {
739 mutex_unlock(&connections_lock);
740 return -1;
741 }
742 mutex_unlock(&connections_lock);
743
744 mutex_lock_nested(&con->sock_mutex, 0);
745
746 if (!con->sock) {
747 mutex_unlock(&con->sock_mutex);
748 return -ENOTCONN;
749 }
750
751 result = kernel_accept(con->sock, &newsock, O_NONBLOCK);
752 if (result < 0)
753 goto accept_err;
754
755 /* Get the connected socket's peer */
756 memset(&peeraddr, 0, sizeof(peeraddr));
757 len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
758 if (len < 0) {
759 result = -ECONNABORTED;
760 goto accept_err;
761 }
762
763 /* Get the new node's NODEID */
764 make_sockaddr(&peeraddr, 0, &len);
765 if (addr_to_nodeid(&peeraddr, &nodeid)) {
766 unsigned char *b=(unsigned char *)&peeraddr;
767 log_print("connect from non cluster node");
768 print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
769 b, sizeof(struct sockaddr_storage));
770 sock_release(newsock);
771 mutex_unlock(&con->sock_mutex);
772 return -1;
773 }
774
775 log_print("got connection from %d", nodeid);
776
777 /* Check to see if we already have a connection to this node. This
778 * could happen if the two nodes initiate a connection at roughly
779 * the same time and the connections cross on the wire.
780 * In this case we store the incoming one in "othercon"
781 */
782 newcon = nodeid2con(nodeid, GFP_NOFS);
783 if (!newcon) {
784 result = -ENOMEM;
785 goto accept_err;
786 }
787 mutex_lock_nested(&newcon->sock_mutex, 1);
788 if (newcon->sock) {
789 struct connection *othercon = newcon->othercon;
790
791 if (!othercon) {
792 othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
793 if (!othercon) {
794 log_print("failed to allocate incoming socket");
795 mutex_unlock(&newcon->sock_mutex);
796 result = -ENOMEM;
797 goto accept_err;
798 }
799 othercon->nodeid = nodeid;
800 othercon->rx_action = receive_from_sock;
801 mutex_init(&othercon->sock_mutex);
802 INIT_LIST_HEAD(&othercon->writequeue);
803 spin_lock_init(&othercon->writequeue_lock);
804 INIT_WORK(&othercon->swork, process_send_sockets);
805 INIT_WORK(&othercon->rwork, process_recv_sockets);
806 set_bit(CF_IS_OTHERCON, &othercon->flags);
807 }
808 mutex_lock_nested(&othercon->sock_mutex, 2);
809 if (!othercon->sock) {
810 newcon->othercon = othercon;
811 add_sock(newsock, othercon);
812 addcon = othercon;
813 mutex_unlock(&othercon->sock_mutex);
814 }
815 else {
816 printk("Extra connection from node %d attempted\n", nodeid);
817 result = -EAGAIN;
818 mutex_unlock(&othercon->sock_mutex);
819 mutex_unlock(&newcon->sock_mutex);
820 goto accept_err;
821 }
822 }
823 else {
824 newcon->rx_action = receive_from_sock;
825 /* accept copies the sk after we've saved the callbacks, so we
826 don't want to save them a second time or comm errors will
827 result in calling sk_error_report recursively. */
828 add_sock(newsock, newcon);
829 addcon = newcon;
830 }
831
832 mutex_unlock(&newcon->sock_mutex);
833
834 /*
835 * Add it to the active queue in case we got data
836 * between processing the accept adding the socket
837 * to the read_sockets list
838 */
839 if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
840 queue_work(recv_workqueue, &addcon->rwork);
841 mutex_unlock(&con->sock_mutex);
842
843 return 0;
844
845accept_err:
846 mutex_unlock(&con->sock_mutex);
847 if (newsock)
848 sock_release(newsock);
849
850 if (result != -EAGAIN)
851 log_print("error accepting connection from node: %d", result);
852 return result;
853}
854
855static int sctp_accept_from_sock(struct connection *con)
856{
857 /* Check that the new node is in the lockspace */
858 struct sctp_prim prim;
859 int nodeid;
860 int prim_len, ret;
861 int addr_len;
862 struct connection *newcon;
863 struct connection *addcon;
864 struct socket *newsock;
865
866 mutex_lock(&connections_lock);
867 if (!dlm_allow_conn) {
868 mutex_unlock(&connections_lock);
869 return -1;
870 }
871 mutex_unlock(&connections_lock);
872
873 mutex_lock_nested(&con->sock_mutex, 0);
874
875 ret = kernel_accept(con->sock, &newsock, O_NONBLOCK);
876 if (ret < 0)
877 goto accept_err;
878
879 memset(&prim, 0, sizeof(struct sctp_prim));
880 prim_len = sizeof(struct sctp_prim);
881
882 ret = kernel_getsockopt(newsock, IPPROTO_SCTP, SCTP_PRIMARY_ADDR,
883 (char *)&prim, &prim_len);
884 if (ret < 0) {
885 log_print("getsockopt/sctp_primary_addr failed: %d", ret);
886 goto accept_err;
887 }
888
889 make_sockaddr(&prim.ssp_addr, 0, &addr_len);
890 ret = addr_to_nodeid(&prim.ssp_addr, &nodeid);
891 if (ret) {
892 unsigned char *b = (unsigned char *)&prim.ssp_addr;
893
894 log_print("reject connect from unknown addr");
895 print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
896 b, sizeof(struct sockaddr_storage));
897 goto accept_err;
898 }
899
900 newcon = nodeid2con(nodeid, GFP_NOFS);
901 if (!newcon) {
902 ret = -ENOMEM;
903 goto accept_err;
904 }
905
906 mutex_lock_nested(&newcon->sock_mutex, 1);
907
908 if (newcon->sock) {
909 struct connection *othercon = newcon->othercon;
910
911 if (!othercon) {
912 othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
913 if (!othercon) {
914 log_print("failed to allocate incoming socket");
915 mutex_unlock(&newcon->sock_mutex);
916 ret = -ENOMEM;
917 goto accept_err;
918 }
919 othercon->nodeid = nodeid;
920 othercon->rx_action = receive_from_sock;
921 mutex_init(&othercon->sock_mutex);
922 INIT_LIST_HEAD(&othercon->writequeue);
923 spin_lock_init(&othercon->writequeue_lock);
924 INIT_WORK(&othercon->swork, process_send_sockets);
925 INIT_WORK(&othercon->rwork, process_recv_sockets);
926 set_bit(CF_IS_OTHERCON, &othercon->flags);
927 }
928 mutex_lock_nested(&othercon->sock_mutex, 2);
929 if (!othercon->sock) {
930 newcon->othercon = othercon;
931 add_sock(newsock, othercon);
932 addcon = othercon;
933 mutex_unlock(&othercon->sock_mutex);
934 } else {
935 printk("Extra connection from node %d attempted\n", nodeid);
936 ret = -EAGAIN;
937 mutex_unlock(&othercon->sock_mutex);
938 mutex_unlock(&newcon->sock_mutex);
939 goto accept_err;
940 }
941 } else {
942 newcon->rx_action = receive_from_sock;
943 add_sock(newsock, newcon);
944 addcon = newcon;
945 }
946
947 log_print("connected to %d", nodeid);
948
949 mutex_unlock(&newcon->sock_mutex);
950
951 /*
952 * Add it to the active queue in case we got data
953 * between processing the accept adding the socket
954 * to the read_sockets list
955 */
956 if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
957 queue_work(recv_workqueue, &addcon->rwork);
958 mutex_unlock(&con->sock_mutex);
959
960 return 0;
961
962accept_err:
963 mutex_unlock(&con->sock_mutex);
964 if (newsock)
965 sock_release(newsock);
966 if (ret != -EAGAIN)
967 log_print("error accepting connection from node: %d", ret);
968
969 return ret;
970}
971
972static void free_entry(struct writequeue_entry *e)
973{
974 __free_page(e->page);
975 kfree(e);
976}
977
978/*
979 * writequeue_entry_complete - try to delete and free write queue entry
980 * @e: write queue entry to try to delete
981 * @completed: bytes completed
982 *
983 * writequeue_lock must be held.
984 */
985static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
986{
987 e->offset += completed;
988 e->len -= completed;
989
990 if (e->len == 0 && e->users == 0) {
991 list_del(&e->list);
992 free_entry(e);
993 }
994}
995
996/*
997 * sctp_bind_addrs - bind a SCTP socket to all our addresses
998 */
999static int sctp_bind_addrs(struct connection *con, uint16_t port)
1000{
1001 struct sockaddr_storage localaddr;
1002 int i, addr_len, result = 0;
1003
1004 for (i = 0; i < dlm_local_count; i++) {
1005 memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1006 make_sockaddr(&localaddr, port, &addr_len);
1007
1008 if (!i)
1009 result = kernel_bind(con->sock,
1010 (struct sockaddr *)&localaddr,
1011 addr_len);
1012 else
1013 result = kernel_setsockopt(con->sock, SOL_SCTP,
1014 SCTP_SOCKOPT_BINDX_ADD,
1015 (char *)&localaddr, addr_len);
1016
1017 if (result < 0) {
1018 log_print("Can't bind to %d addr number %d, %d.\n",
1019 port, i + 1, result);
1020 break;
1021 }
1022 }
1023 return result;
1024}
1025
1026/* Initiate an SCTP association.
1027 This is a special case of send_to_sock() in that we don't yet have a
1028 peeled-off socket for this association, so we use the listening socket
1029 and add the primary IP address of the remote node.
1030 */
1031static void sctp_connect_to_sock(struct connection *con)
1032{
1033 struct sockaddr_storage daddr;
1034 int one = 1;
1035 int result;
1036 int addr_len;
1037 struct socket *sock;
1038 struct timeval tv = { .tv_sec = 5, .tv_usec = 0 };
1039
1040 if (con->nodeid == 0) {
1041 log_print("attempt to connect sock 0 foiled");
1042 return;
1043 }
1044
1045 mutex_lock(&con->sock_mutex);
1046
1047 /* Some odd races can cause double-connects, ignore them */
1048 if (con->retries++ > MAX_CONNECT_RETRIES)
1049 goto out;
1050
1051 if (con->sock) {
1052 log_print("node %d already connected.", con->nodeid);
1053 goto out;
1054 }
1055
1056 memset(&daddr, 0, sizeof(daddr));
1057 result = nodeid_to_addr(con->nodeid, &daddr, NULL, true);
1058 if (result < 0) {
1059 log_print("no address for nodeid %d", con->nodeid);
1060 goto out;
1061 }
1062
1063 /* Create a socket to communicate with */
1064 result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1065 SOCK_STREAM, IPPROTO_SCTP, &sock);
1066 if (result < 0)
1067 goto socket_err;
1068
1069 con->rx_action = receive_from_sock;
1070 con->connect_action = sctp_connect_to_sock;
1071 add_sock(sock, con);
1072
1073 /* Bind to all addresses. */
1074 if (sctp_bind_addrs(con, 0))
1075 goto bind_err;
1076
1077 make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len);
1078
1079 log_print("connecting to %d", con->nodeid);
1080
1081 /* Turn off Nagle's algorithm */
1082 kernel_setsockopt(sock, SOL_SCTP, SCTP_NODELAY, (char *)&one,
1083 sizeof(one));
1084
1085 /*
1086 * Make sock->ops->connect() function return in specified time,
1087 * since O_NONBLOCK argument in connect() function does not work here,
1088 * then, we should restore the default value of this attribute.
1089 */
1090 kernel_setsockopt(sock, SOL_SOCKET, SO_SNDTIMEO_OLD, (char *)&tv,
1091 sizeof(tv));
1092 result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len,
1093 0);
1094 memset(&tv, 0, sizeof(tv));
1095 kernel_setsockopt(sock, SOL_SOCKET, SO_SNDTIMEO_OLD, (char *)&tv,
1096 sizeof(tv));
1097
1098 if (result == -EINPROGRESS)
1099 result = 0;
1100 if (result == 0)
1101 goto out;
1102
1103bind_err:
1104 con->sock = NULL;
1105 sock_release(sock);
1106
1107socket_err:
1108 /*
1109 * Some errors are fatal and this list might need adjusting. For other
1110 * errors we try again until the max number of retries is reached.
1111 */
1112 if (result != -EHOSTUNREACH &&
1113 result != -ENETUNREACH &&
1114 result != -ENETDOWN &&
1115 result != -EINVAL &&
1116 result != -EPROTONOSUPPORT) {
1117 log_print("connect %d try %d error %d", con->nodeid,
1118 con->retries, result);
1119 mutex_unlock(&con->sock_mutex);
1120 msleep(1000);
1121 lowcomms_connect_sock(con);
1122 return;
1123 }
1124
1125out:
1126 mutex_unlock(&con->sock_mutex);
1127}
1128
1129/* Connect a new socket to its peer */
1130static void tcp_connect_to_sock(struct connection *con)
1131{
1132 struct sockaddr_storage saddr, src_addr;
1133 int addr_len;
1134 struct socket *sock = NULL;
1135 int one = 1;
1136 int result;
1137
1138 if (con->nodeid == 0) {
1139 log_print("attempt to connect sock 0 foiled");
1140 return;
1141 }
1142
1143 mutex_lock(&con->sock_mutex);
1144 if (con->retries++ > MAX_CONNECT_RETRIES)
1145 goto out;
1146
1147 /* Some odd races can cause double-connects, ignore them */
1148 if (con->sock)
1149 goto out;
1150
1151 /* Create a socket to communicate with */
1152 result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1153 SOCK_STREAM, IPPROTO_TCP, &sock);
1154 if (result < 0)
1155 goto out_err;
1156
1157 memset(&saddr, 0, sizeof(saddr));
1158 result = nodeid_to_addr(con->nodeid, &saddr, NULL, false);
1159 if (result < 0) {
1160 log_print("no address for nodeid %d", con->nodeid);
1161 goto out_err;
1162 }
1163
1164 con->rx_action = receive_from_sock;
1165 con->connect_action = tcp_connect_to_sock;
1166 add_sock(sock, con);
1167
1168 /* Bind to our cluster-known address connecting to avoid
1169 routing problems */
1170 memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1171 make_sockaddr(&src_addr, 0, &addr_len);
1172 result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1173 addr_len);
1174 if (result < 0) {
1175 log_print("could not bind for connect: %d", result);
1176 /* This *may* not indicate a critical error */
1177 }
1178
1179 make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1180
1181 log_print("connecting to %d", con->nodeid);
1182
1183 /* Turn off Nagle's algorithm */
1184 kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1185 sizeof(one));
1186
1187 result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1188 O_NONBLOCK);
1189 if (result == -EINPROGRESS)
1190 result = 0;
1191 if (result == 0)
1192 goto out;
1193
1194out_err:
1195 if (con->sock) {
1196 sock_release(con->sock);
1197 con->sock = NULL;
1198 } else if (sock) {
1199 sock_release(sock);
1200 }
1201 /*
1202 * Some errors are fatal and this list might need adjusting. For other
1203 * errors we try again until the max number of retries is reached.
1204 */
1205 if (result != -EHOSTUNREACH &&
1206 result != -ENETUNREACH &&
1207 result != -ENETDOWN &&
1208 result != -EINVAL &&
1209 result != -EPROTONOSUPPORT) {
1210 log_print("connect %d try %d error %d", con->nodeid,
1211 con->retries, result);
1212 mutex_unlock(&con->sock_mutex);
1213 msleep(1000);
1214 lowcomms_connect_sock(con);
1215 return;
1216 }
1217out:
1218 mutex_unlock(&con->sock_mutex);
1219 return;
1220}
1221
1222static struct socket *tcp_create_listen_sock(struct connection *con,
1223 struct sockaddr_storage *saddr)
1224{
1225 struct socket *sock = NULL;
1226 int result = 0;
1227 int one = 1;
1228 int addr_len;
1229
1230 if (dlm_local_addr[0]->ss_family == AF_INET)
1231 addr_len = sizeof(struct sockaddr_in);
1232 else
1233 addr_len = sizeof(struct sockaddr_in6);
1234
1235 /* Create a socket to communicate with */
1236 result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1237 SOCK_STREAM, IPPROTO_TCP, &sock);
1238 if (result < 0) {
1239 log_print("Can't create listening comms socket");
1240 goto create_out;
1241 }
1242
1243 /* Turn off Nagle's algorithm */
1244 kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1245 sizeof(one));
1246
1247 result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
1248 (char *)&one, sizeof(one));
1249
1250 if (result < 0) {
1251 log_print("Failed to set SO_REUSEADDR on socket: %d", result);
1252 }
1253 write_lock_bh(&sock->sk->sk_callback_lock);
1254 sock->sk->sk_user_data = con;
1255 save_listen_callbacks(sock);
1256 con->rx_action = tcp_accept_from_sock;
1257 con->connect_action = tcp_connect_to_sock;
1258 write_unlock_bh(&sock->sk->sk_callback_lock);
1259
1260 /* Bind to our port */
1261 make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1262 result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1263 if (result < 0) {
1264 log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1265 sock_release(sock);
1266 sock = NULL;
1267 con->sock = NULL;
1268 goto create_out;
1269 }
1270 result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1271 (char *)&one, sizeof(one));
1272 if (result < 0) {
1273 log_print("Set keepalive failed: %d", result);
1274 }
1275
1276 result = sock->ops->listen(sock, 5);
1277 if (result < 0) {
1278 log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1279 sock_release(sock);
1280 sock = NULL;
1281 goto create_out;
1282 }
1283
1284create_out:
1285 return sock;
1286}
1287
1288/* Get local addresses */
1289static void init_local(void)
1290{
1291 struct sockaddr_storage sas, *addr;
1292 int i;
1293
1294 dlm_local_count = 0;
1295 for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1296 if (dlm_our_addr(&sas, i))
1297 break;
1298
1299 addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS);
1300 if (!addr)
1301 break;
1302 dlm_local_addr[dlm_local_count++] = addr;
1303 }
1304}
1305
1306/* Initialise SCTP socket and bind to all interfaces */
1307static int sctp_listen_for_all(void)
1308{
1309 struct socket *sock = NULL;
1310 int result = -EINVAL;
1311 struct connection *con = nodeid2con(0, GFP_NOFS);
1312 int bufsize = NEEDED_RMEM;
1313 int one = 1;
1314
1315 if (!con)
1316 return -ENOMEM;
1317
1318 log_print("Using SCTP for communications");
1319
1320 result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1321 SOCK_STREAM, IPPROTO_SCTP, &sock);
1322 if (result < 0) {
1323 log_print("Can't create comms socket, check SCTP is loaded");
1324 goto out;
1325 }
1326
1327 result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1328 (char *)&bufsize, sizeof(bufsize));
1329 if (result)
1330 log_print("Error increasing buffer space on socket %d", result);
1331
1332 result = kernel_setsockopt(sock, SOL_SCTP, SCTP_NODELAY, (char *)&one,
1333 sizeof(one));
1334 if (result < 0)
1335 log_print("Could not set SCTP NODELAY error %d\n", result);
1336
1337 write_lock_bh(&sock->sk->sk_callback_lock);
1338 /* Init con struct */
1339 sock->sk->sk_user_data = con;
1340 save_listen_callbacks(sock);
1341 con->sock = sock;
1342 con->sock->sk->sk_data_ready = lowcomms_data_ready;
1343 con->rx_action = sctp_accept_from_sock;
1344 con->connect_action = sctp_connect_to_sock;
1345
1346 write_unlock_bh(&sock->sk->sk_callback_lock);
1347
1348 /* Bind to all addresses. */
1349 if (sctp_bind_addrs(con, dlm_config.ci_tcp_port))
1350 goto create_delsock;
1351
1352 result = sock->ops->listen(sock, 5);
1353 if (result < 0) {
1354 log_print("Can't set socket listening");
1355 goto create_delsock;
1356 }
1357
1358 return 0;
1359
1360create_delsock:
1361 sock_release(sock);
1362 con->sock = NULL;
1363out:
1364 return result;
1365}
1366
1367static int tcp_listen_for_all(void)
1368{
1369 struct socket *sock = NULL;
1370 struct connection *con = nodeid2con(0, GFP_NOFS);
1371 int result = -EINVAL;
1372
1373 if (!con)
1374 return -ENOMEM;
1375
1376 /* We don't support multi-homed hosts */
1377 if (dlm_local_addr[1] != NULL) {
1378 log_print("TCP protocol can't handle multi-homed hosts, "
1379 "try SCTP");
1380 return -EINVAL;
1381 }
1382
1383 log_print("Using TCP for communications");
1384
1385 sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1386 if (sock) {
1387 add_sock(sock, con);
1388 result = 0;
1389 }
1390 else {
1391 result = -EADDRINUSE;
1392 }
1393
1394 return result;
1395}
1396
1397
1398
1399static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1400 gfp_t allocation)
1401{
1402 struct writequeue_entry *entry;
1403
1404 entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1405 if (!entry)
1406 return NULL;
1407
1408 entry->page = alloc_page(allocation);
1409 if (!entry->page) {
1410 kfree(entry);
1411 return NULL;
1412 }
1413
1414 entry->offset = 0;
1415 entry->len = 0;
1416 entry->end = 0;
1417 entry->users = 0;
1418 entry->con = con;
1419
1420 return entry;
1421}
1422
1423void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1424{
1425 struct connection *con;
1426 struct writequeue_entry *e;
1427 int offset = 0;
1428
1429 con = nodeid2con(nodeid, allocation);
1430 if (!con)
1431 return NULL;
1432
1433 spin_lock(&con->writequeue_lock);
1434 e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1435 if ((&e->list == &con->writequeue) ||
1436 (PAGE_SIZE - e->end < len)) {
1437 e = NULL;
1438 } else {
1439 offset = e->end;
1440 e->end += len;
1441 e->users++;
1442 }
1443 spin_unlock(&con->writequeue_lock);
1444
1445 if (e) {
1446 got_one:
1447 *ppc = page_address(e->page) + offset;
1448 return e;
1449 }
1450
1451 e = new_writequeue_entry(con, allocation);
1452 if (e) {
1453 spin_lock(&con->writequeue_lock);
1454 offset = e->end;
1455 e->end += len;
1456 e->users++;
1457 list_add_tail(&e->list, &con->writequeue);
1458 spin_unlock(&con->writequeue_lock);
1459 goto got_one;
1460 }
1461 return NULL;
1462}
1463
1464void dlm_lowcomms_commit_buffer(void *mh)
1465{
1466 struct writequeue_entry *e = (struct writequeue_entry *)mh;
1467 struct connection *con = e->con;
1468 int users;
1469
1470 spin_lock(&con->writequeue_lock);
1471 users = --e->users;
1472 if (users)
1473 goto out;
1474 e->len = e->end - e->offset;
1475 spin_unlock(&con->writequeue_lock);
1476
1477 queue_work(send_workqueue, &con->swork);
1478 return;
1479
1480out:
1481 spin_unlock(&con->writequeue_lock);
1482 return;
1483}
1484
1485/* Send a message */
1486static void send_to_sock(struct connection *con)
1487{
1488 int ret = 0;
1489 const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1490 struct writequeue_entry *e;
1491 int len, offset;
1492 int count = 0;
1493
1494 mutex_lock(&con->sock_mutex);
1495 if (con->sock == NULL)
1496 goto out_connect;
1497
1498 spin_lock(&con->writequeue_lock);
1499 for (;;) {
1500 e = list_entry(con->writequeue.next, struct writequeue_entry,
1501 list);
1502 if ((struct list_head *) e == &con->writequeue)
1503 break;
1504
1505 len = e->len;
1506 offset = e->offset;
1507 BUG_ON(len == 0 && e->users == 0);
1508 spin_unlock(&con->writequeue_lock);
1509
1510 ret = 0;
1511 if (len) {
1512 ret = kernel_sendpage(con->sock, e->page, offset, len,
1513 msg_flags);
1514 if (ret == -EAGAIN || ret == 0) {
1515 if (ret == -EAGAIN &&
1516 test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1517 !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1518 /* Notify TCP that we're limited by the
1519 * application window size.
1520 */
1521 set_bit(SOCK_NOSPACE, &con->sock->flags);
1522 con->sock->sk->sk_write_pending++;
1523 }
1524 cond_resched();
1525 goto out;
1526 } else if (ret < 0)
1527 goto send_error;
1528 }
1529
1530 /* Don't starve people filling buffers */
1531 if (++count >= MAX_SEND_MSG_COUNT) {
1532 cond_resched();
1533 count = 0;
1534 }
1535
1536 spin_lock(&con->writequeue_lock);
1537 writequeue_entry_complete(e, ret);
1538 }
1539 spin_unlock(&con->writequeue_lock);
1540out:
1541 mutex_unlock(&con->sock_mutex);
1542 return;
1543
1544send_error:
1545 mutex_unlock(&con->sock_mutex);
1546 close_connection(con, true, false, true);
1547 /* Requeue the send work. When the work daemon runs again, it will try
1548 a new connection, then call this function again. */
1549 queue_work(send_workqueue, &con->swork);
1550 return;
1551
1552out_connect:
1553 mutex_unlock(&con->sock_mutex);
1554 queue_work(send_workqueue, &con->swork);
1555 cond_resched();
1556}
1557
1558static void clean_one_writequeue(struct connection *con)
1559{
1560 struct writequeue_entry *e, *safe;
1561
1562 spin_lock(&con->writequeue_lock);
1563 list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1564 list_del(&e->list);
1565 free_entry(e);
1566 }
1567 spin_unlock(&con->writequeue_lock);
1568}
1569
1570/* Called from recovery when it knows that a node has
1571 left the cluster */
1572int dlm_lowcomms_close(int nodeid)
1573{
1574 struct connection *con;
1575 struct dlm_node_addr *na;
1576
1577 log_print("closing connection to node %d", nodeid);
1578 con = nodeid2con(nodeid, 0);
1579 if (con) {
1580 set_bit(CF_CLOSE, &con->flags);
1581 close_connection(con, true, true, true);
1582 clean_one_writequeue(con);
1583 }
1584
1585 spin_lock(&dlm_node_addrs_spin);
1586 na = find_node_addr(nodeid);
1587 if (na) {
1588 list_del(&na->list);
1589 while (na->addr_count--)
1590 kfree(na->addr[na->addr_count]);
1591 kfree(na);
1592 }
1593 spin_unlock(&dlm_node_addrs_spin);
1594
1595 return 0;
1596}
1597
1598/* Receive workqueue function */
1599static void process_recv_sockets(struct work_struct *work)
1600{
1601 struct connection *con = container_of(work, struct connection, rwork);
1602 int err;
1603
1604 clear_bit(CF_READ_PENDING, &con->flags);
1605 do {
1606 err = con->rx_action(con);
1607 } while (!err);
1608}
1609
1610/* Send workqueue function */
1611static void process_send_sockets(struct work_struct *work)
1612{
1613 struct connection *con = container_of(work, struct connection, swork);
1614
1615 clear_bit(CF_WRITE_PENDING, &con->flags);
1616 if (con->sock == NULL) /* not mutex protected so check it inside too */
1617 con->connect_action(con);
1618 if (!list_empty(&con->writequeue))
1619 send_to_sock(con);
1620}
1621
1622
1623/* Discard all entries on the write queues */
1624static void clean_writequeues(void)
1625{
1626 foreach_conn(clean_one_writequeue);
1627}
1628
1629static void work_stop(void)
1630{
1631 if (recv_workqueue)
1632 destroy_workqueue(recv_workqueue);
1633 if (send_workqueue)
1634 destroy_workqueue(send_workqueue);
1635}
1636
1637static int work_start(void)
1638{
1639 recv_workqueue = alloc_workqueue("dlm_recv",
1640 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1641 if (!recv_workqueue) {
1642 log_print("can't start dlm_recv");
1643 return -ENOMEM;
1644 }
1645
1646 send_workqueue = alloc_workqueue("dlm_send",
1647 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1648 if (!send_workqueue) {
1649 log_print("can't start dlm_send");
1650 destroy_workqueue(recv_workqueue);
1651 return -ENOMEM;
1652 }
1653
1654 return 0;
1655}
1656
1657static void _stop_conn(struct connection *con, bool and_other)
1658{
1659 mutex_lock(&con->sock_mutex);
1660 set_bit(CF_CLOSE, &con->flags);
1661 set_bit(CF_READ_PENDING, &con->flags);
1662 set_bit(CF_WRITE_PENDING, &con->flags);
1663 if (con->sock && con->sock->sk) {
1664 write_lock_bh(&con->sock->sk->sk_callback_lock);
1665 con->sock->sk->sk_user_data = NULL;
1666 write_unlock_bh(&con->sock->sk->sk_callback_lock);
1667 }
1668 if (con->othercon && and_other)
1669 _stop_conn(con->othercon, false);
1670 mutex_unlock(&con->sock_mutex);
1671}
1672
1673static void stop_conn(struct connection *con)
1674{
1675 _stop_conn(con, true);
1676}
1677
1678static void free_conn(struct connection *con)
1679{
1680 close_connection(con, true, true, true);
1681 if (con->othercon)
1682 kmem_cache_free(con_cache, con->othercon);
1683 hlist_del(&con->list);
1684 kmem_cache_free(con_cache, con);
1685}
1686
1687static void work_flush(void)
1688{
1689 int ok;
1690 int i;
1691 struct hlist_node *n;
1692 struct connection *con;
1693
1694 if (recv_workqueue)
1695 flush_workqueue(recv_workqueue);
1696 if (send_workqueue)
1697 flush_workqueue(send_workqueue);
1698 do {
1699 ok = 1;
1700 foreach_conn(stop_conn);
1701 if (recv_workqueue)
1702 flush_workqueue(recv_workqueue);
1703 if (send_workqueue)
1704 flush_workqueue(send_workqueue);
1705 for (i = 0; i < CONN_HASH_SIZE && ok; i++) {
1706 hlist_for_each_entry_safe(con, n,
1707 &connection_hash[i], list) {
1708 ok &= test_bit(CF_READ_PENDING, &con->flags);
1709 ok &= test_bit(CF_WRITE_PENDING, &con->flags);
1710 if (con->othercon) {
1711 ok &= test_bit(CF_READ_PENDING,
1712 &con->othercon->flags);
1713 ok &= test_bit(CF_WRITE_PENDING,
1714 &con->othercon->flags);
1715 }
1716 }
1717 }
1718 } while (!ok);
1719}
1720
1721void dlm_lowcomms_stop(void)
1722{
1723 /* Set all the flags to prevent any
1724 socket activity.
1725 */
1726 mutex_lock(&connections_lock);
1727 dlm_allow_conn = 0;
1728 mutex_unlock(&connections_lock);
1729 work_flush();
1730 clean_writequeues();
1731 foreach_conn(free_conn);
1732 work_stop();
1733
1734 kmem_cache_destroy(con_cache);
1735}
1736
1737int dlm_lowcomms_start(void)
1738{
1739 int error = -EINVAL;
1740 struct connection *con;
1741 int i;
1742
1743 for (i = 0; i < CONN_HASH_SIZE; i++)
1744 INIT_HLIST_HEAD(&connection_hash[i]);
1745
1746 init_local();
1747 if (!dlm_local_count) {
1748 error = -ENOTCONN;
1749 log_print("no local IP address has been set");
1750 goto fail;
1751 }
1752
1753 error = -ENOMEM;
1754 con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1755 __alignof__(struct connection), 0,
1756 NULL);
1757 if (!con_cache)
1758 goto fail;
1759
1760 error = work_start();
1761 if (error)
1762 goto fail_destroy;
1763
1764 dlm_allow_conn = 1;
1765
1766 /* Start listening */
1767 if (dlm_config.ci_protocol == 0)
1768 error = tcp_listen_for_all();
1769 else
1770 error = sctp_listen_for_all();
1771 if (error)
1772 goto fail_unlisten;
1773
1774 return 0;
1775
1776fail_unlisten:
1777 dlm_allow_conn = 0;
1778 con = nodeid2con(0,0);
1779 if (con) {
1780 close_connection(con, false, true, true);
1781 kmem_cache_free(con_cache, con);
1782 }
1783fail_destroy:
1784 kmem_cache_destroy(con_cache);
1785fail:
1786 return error;
1787}
1788
1789void dlm_lowcomms_exit(void)
1790{
1791 struct dlm_node_addr *na, *safe;
1792
1793 spin_lock(&dlm_node_addrs_spin);
1794 list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
1795 list_del(&na->list);
1796 while (na->addr_count--)
1797 kfree(na->addr[na->addr_count]);
1798 kfree(na);
1799 }
1800 spin_unlock(&dlm_node_addrs_spin);
1801}
1// SPDX-License-Identifier: GPL-2.0-only
2/******************************************************************************
3*******************************************************************************
4**
5** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
6** Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved.
7**
8**
9*******************************************************************************
10******************************************************************************/
11
12/*
13 * lowcomms.c
14 *
15 * This is the "low-level" comms layer.
16 *
17 * It is responsible for sending/receiving messages
18 * from other nodes in the cluster.
19 *
20 * Cluster nodes are referred to by their nodeids. nodeids are
21 * simply 32 bit numbers to the locking module - if they need to
22 * be expanded for the cluster infrastructure then that is its
23 * responsibility. It is this layer's
24 * responsibility to resolve these into IP address or
25 * whatever it needs for inter-node communication.
26 *
27 * The comms level is two kernel threads that deal mainly with
28 * the receiving of messages from other nodes and passing them
29 * up to the mid-level comms layer (which understands the
30 * message format) for execution by the locking core, and
31 * a send thread which does all the setting up of connections
32 * to remote nodes and the sending of data. Threads are not allowed
33 * to send their own data because it may cause them to wait in times
34 * of high load. Also, this way, the sending thread can collect together
35 * messages bound for one node and send them in one block.
36 *
37 * lowcomms will choose to use either TCP or SCTP as its transport layer
38 * depending on the configuration variable 'protocol'. This should be set
39 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40 * cluster-wide mechanism as it must be the same on all nodes of the cluster
41 * for the DLM to function.
42 *
43 */
44
45#include <asm/ioctls.h>
46#include <net/sock.h>
47#include <net/tcp.h>
48#include <linux/pagemap.h>
49#include <linux/file.h>
50#include <linux/mutex.h>
51#include <linux/sctp.h>
52#include <linux/slab.h>
53#include <net/sctp/sctp.h>
54#include <net/ipv6.h>
55
56#include "dlm_internal.h"
57#include "lowcomms.h"
58#include "midcomms.h"
59#include "config.h"
60
61#define NEEDED_RMEM (4*1024*1024)
62#define CONN_HASH_SIZE 32
63
64/* Number of messages to send before rescheduling */
65#define MAX_SEND_MSG_COUNT 25
66#define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(10000)
67
68struct cbuf {
69 unsigned int base;
70 unsigned int len;
71 unsigned int mask;
72};
73
74static void cbuf_add(struct cbuf *cb, int n)
75{
76 cb->len += n;
77}
78
79static int cbuf_data(struct cbuf *cb)
80{
81 return ((cb->base + cb->len) & cb->mask);
82}
83
84static void cbuf_init(struct cbuf *cb, int size)
85{
86 cb->base = cb->len = 0;
87 cb->mask = size-1;
88}
89
90static void cbuf_eat(struct cbuf *cb, int n)
91{
92 cb->len -= n;
93 cb->base += n;
94 cb->base &= cb->mask;
95}
96
97static bool cbuf_empty(struct cbuf *cb)
98{
99 return cb->len == 0;
100}
101
102struct connection {
103 struct socket *sock; /* NULL if not connected */
104 uint32_t nodeid; /* So we know who we are in the list */
105 struct mutex sock_mutex;
106 unsigned long flags;
107#define CF_READ_PENDING 1
108#define CF_WRITE_PENDING 2
109#define CF_INIT_PENDING 4
110#define CF_IS_OTHERCON 5
111#define CF_CLOSE 6
112#define CF_APP_LIMITED 7
113#define CF_CLOSING 8
114#define CF_SHUTDOWN 9
115 struct list_head writequeue; /* List of outgoing writequeue_entries */
116 spinlock_t writequeue_lock;
117 int (*rx_action) (struct connection *); /* What to do when active */
118 void (*connect_action) (struct connection *); /* What to do to connect */
119 void (*shutdown_action)(struct connection *con); /* What to do to shutdown */
120 struct page *rx_page;
121 struct cbuf cb;
122 int retries;
123#define MAX_CONNECT_RETRIES 3
124 struct hlist_node list;
125 struct connection *othercon;
126 struct work_struct rwork; /* Receive workqueue */
127 struct work_struct swork; /* Send workqueue */
128 wait_queue_head_t shutdown_wait; /* wait for graceful shutdown */
129};
130#define sock2con(x) ((struct connection *)(x)->sk_user_data)
131
132/* An entry waiting to be sent */
133struct writequeue_entry {
134 struct list_head list;
135 struct page *page;
136 int offset;
137 int len;
138 int end;
139 int users;
140 struct connection *con;
141};
142
143struct dlm_node_addr {
144 struct list_head list;
145 int nodeid;
146 int addr_count;
147 int curr_addr_index;
148 struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
149};
150
151static struct listen_sock_callbacks {
152 void (*sk_error_report)(struct sock *);
153 void (*sk_data_ready)(struct sock *);
154 void (*sk_state_change)(struct sock *);
155 void (*sk_write_space)(struct sock *);
156} listen_sock;
157
158static LIST_HEAD(dlm_node_addrs);
159static DEFINE_SPINLOCK(dlm_node_addrs_spin);
160
161static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
162static int dlm_local_count;
163static int dlm_allow_conn;
164
165/* Work queues */
166static struct workqueue_struct *recv_workqueue;
167static struct workqueue_struct *send_workqueue;
168
169static struct hlist_head connection_hash[CONN_HASH_SIZE];
170static DEFINE_MUTEX(connections_lock);
171static struct kmem_cache *con_cache;
172
173static void process_recv_sockets(struct work_struct *work);
174static void process_send_sockets(struct work_struct *work);
175
176
177/* This is deliberately very simple because most clusters have simple
178 sequential nodeids, so we should be able to go straight to a connection
179 struct in the array */
180static inline int nodeid_hash(int nodeid)
181{
182 return nodeid & (CONN_HASH_SIZE-1);
183}
184
185static struct connection *__find_con(int nodeid)
186{
187 int r;
188 struct connection *con;
189
190 r = nodeid_hash(nodeid);
191
192 hlist_for_each_entry(con, &connection_hash[r], list) {
193 if (con->nodeid == nodeid)
194 return con;
195 }
196 return NULL;
197}
198
199/*
200 * If 'allocation' is zero then we don't attempt to create a new
201 * connection structure for this node.
202 */
203static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
204{
205 struct connection *con = NULL;
206 int r;
207
208 con = __find_con(nodeid);
209 if (con || !alloc)
210 return con;
211
212 con = kmem_cache_zalloc(con_cache, alloc);
213 if (!con)
214 return NULL;
215
216 r = nodeid_hash(nodeid);
217 hlist_add_head(&con->list, &connection_hash[r]);
218
219 con->nodeid = nodeid;
220 mutex_init(&con->sock_mutex);
221 INIT_LIST_HEAD(&con->writequeue);
222 spin_lock_init(&con->writequeue_lock);
223 INIT_WORK(&con->swork, process_send_sockets);
224 INIT_WORK(&con->rwork, process_recv_sockets);
225 init_waitqueue_head(&con->shutdown_wait);
226
227 /* Setup action pointers for child sockets */
228 if (con->nodeid) {
229 struct connection *zerocon = __find_con(0);
230
231 con->connect_action = zerocon->connect_action;
232 if (!con->rx_action)
233 con->rx_action = zerocon->rx_action;
234 }
235
236 return con;
237}
238
239/* Loop round all connections */
240static void foreach_conn(void (*conn_func)(struct connection *c))
241{
242 int i;
243 struct hlist_node *n;
244 struct connection *con;
245
246 for (i = 0; i < CONN_HASH_SIZE; i++) {
247 hlist_for_each_entry_safe(con, n, &connection_hash[i], list)
248 conn_func(con);
249 }
250}
251
252static struct connection *nodeid2con(int nodeid, gfp_t allocation)
253{
254 struct connection *con;
255
256 mutex_lock(&connections_lock);
257 con = __nodeid2con(nodeid, allocation);
258 mutex_unlock(&connections_lock);
259
260 return con;
261}
262
263static struct dlm_node_addr *find_node_addr(int nodeid)
264{
265 struct dlm_node_addr *na;
266
267 list_for_each_entry(na, &dlm_node_addrs, list) {
268 if (na->nodeid == nodeid)
269 return na;
270 }
271 return NULL;
272}
273
274static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y)
275{
276 switch (x->ss_family) {
277 case AF_INET: {
278 struct sockaddr_in *sinx = (struct sockaddr_in *)x;
279 struct sockaddr_in *siny = (struct sockaddr_in *)y;
280 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
281 return 0;
282 if (sinx->sin_port != siny->sin_port)
283 return 0;
284 break;
285 }
286 case AF_INET6: {
287 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
288 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
289 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
290 return 0;
291 if (sinx->sin6_port != siny->sin6_port)
292 return 0;
293 break;
294 }
295 default:
296 return 0;
297 }
298 return 1;
299}
300
301static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
302 struct sockaddr *sa_out, bool try_new_addr)
303{
304 struct sockaddr_storage sas;
305 struct dlm_node_addr *na;
306
307 if (!dlm_local_count)
308 return -1;
309
310 spin_lock(&dlm_node_addrs_spin);
311 na = find_node_addr(nodeid);
312 if (na && na->addr_count) {
313 memcpy(&sas, na->addr[na->curr_addr_index],
314 sizeof(struct sockaddr_storage));
315
316 if (try_new_addr) {
317 na->curr_addr_index++;
318 if (na->curr_addr_index == na->addr_count)
319 na->curr_addr_index = 0;
320 }
321 }
322 spin_unlock(&dlm_node_addrs_spin);
323
324 if (!na)
325 return -EEXIST;
326
327 if (!na->addr_count)
328 return -ENOENT;
329
330 if (sas_out)
331 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
332
333 if (!sa_out)
334 return 0;
335
336 if (dlm_local_addr[0]->ss_family == AF_INET) {
337 struct sockaddr_in *in4 = (struct sockaddr_in *) &sas;
338 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
339 ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
340 } else {
341 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &sas;
342 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
343 ret6->sin6_addr = in6->sin6_addr;
344 }
345
346 return 0;
347}
348
349static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid)
350{
351 struct dlm_node_addr *na;
352 int rv = -EEXIST;
353 int addr_i;
354
355 spin_lock(&dlm_node_addrs_spin);
356 list_for_each_entry(na, &dlm_node_addrs, list) {
357 if (!na->addr_count)
358 continue;
359
360 for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
361 if (addr_compare(na->addr[addr_i], addr)) {
362 *nodeid = na->nodeid;
363 rv = 0;
364 goto unlock;
365 }
366 }
367 }
368unlock:
369 spin_unlock(&dlm_node_addrs_spin);
370 return rv;
371}
372
373int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
374{
375 struct sockaddr_storage *new_addr;
376 struct dlm_node_addr *new_node, *na;
377
378 new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
379 if (!new_node)
380 return -ENOMEM;
381
382 new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
383 if (!new_addr) {
384 kfree(new_node);
385 return -ENOMEM;
386 }
387
388 memcpy(new_addr, addr, len);
389
390 spin_lock(&dlm_node_addrs_spin);
391 na = find_node_addr(nodeid);
392 if (!na) {
393 new_node->nodeid = nodeid;
394 new_node->addr[0] = new_addr;
395 new_node->addr_count = 1;
396 list_add(&new_node->list, &dlm_node_addrs);
397 spin_unlock(&dlm_node_addrs_spin);
398 return 0;
399 }
400
401 if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
402 spin_unlock(&dlm_node_addrs_spin);
403 kfree(new_addr);
404 kfree(new_node);
405 return -ENOSPC;
406 }
407
408 na->addr[na->addr_count++] = new_addr;
409 spin_unlock(&dlm_node_addrs_spin);
410 kfree(new_node);
411 return 0;
412}
413
414/* Data available on socket or listen socket received a connect */
415static void lowcomms_data_ready(struct sock *sk)
416{
417 struct connection *con;
418
419 read_lock_bh(&sk->sk_callback_lock);
420 con = sock2con(sk);
421 if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
422 queue_work(recv_workqueue, &con->rwork);
423 read_unlock_bh(&sk->sk_callback_lock);
424}
425
426static void lowcomms_write_space(struct sock *sk)
427{
428 struct connection *con;
429
430 read_lock_bh(&sk->sk_callback_lock);
431 con = sock2con(sk);
432 if (!con)
433 goto out;
434
435 clear_bit(SOCK_NOSPACE, &con->sock->flags);
436
437 if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
438 con->sock->sk->sk_write_pending--;
439 clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
440 }
441
442 queue_work(send_workqueue, &con->swork);
443out:
444 read_unlock_bh(&sk->sk_callback_lock);
445}
446
447static inline void lowcomms_connect_sock(struct connection *con)
448{
449 if (test_bit(CF_CLOSE, &con->flags))
450 return;
451 queue_work(send_workqueue, &con->swork);
452 cond_resched();
453}
454
455static void lowcomms_state_change(struct sock *sk)
456{
457 /* SCTP layer is not calling sk_data_ready when the connection
458 * is done, so we catch the signal through here. Also, it
459 * doesn't switch socket state when entering shutdown, so we
460 * skip the write in that case.
461 */
462 if (sk->sk_shutdown) {
463 if (sk->sk_shutdown == RCV_SHUTDOWN)
464 lowcomms_data_ready(sk);
465 } else if (sk->sk_state == TCP_ESTABLISHED) {
466 lowcomms_write_space(sk);
467 }
468}
469
470int dlm_lowcomms_connect_node(int nodeid)
471{
472 struct connection *con;
473
474 if (nodeid == dlm_our_nodeid())
475 return 0;
476
477 con = nodeid2con(nodeid, GFP_NOFS);
478 if (!con)
479 return -ENOMEM;
480 lowcomms_connect_sock(con);
481 return 0;
482}
483
484static void lowcomms_error_report(struct sock *sk)
485{
486 struct connection *con;
487 struct sockaddr_storage saddr;
488 void (*orig_report)(struct sock *) = NULL;
489
490 read_lock_bh(&sk->sk_callback_lock);
491 con = sock2con(sk);
492 if (con == NULL)
493 goto out;
494
495 orig_report = listen_sock.sk_error_report;
496 if (con->sock == NULL ||
497 kernel_getpeername(con->sock, (struct sockaddr *)&saddr) < 0) {
498 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
499 "sending to node %d, port %d, "
500 "sk_err=%d/%d\n", dlm_our_nodeid(),
501 con->nodeid, dlm_config.ci_tcp_port,
502 sk->sk_err, sk->sk_err_soft);
503 } else if (saddr.ss_family == AF_INET) {
504 struct sockaddr_in *sin4 = (struct sockaddr_in *)&saddr;
505
506 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
507 "sending to node %d at %pI4, port %d, "
508 "sk_err=%d/%d\n", dlm_our_nodeid(),
509 con->nodeid, &sin4->sin_addr.s_addr,
510 dlm_config.ci_tcp_port, sk->sk_err,
511 sk->sk_err_soft);
512 } else {
513 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&saddr;
514
515 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
516 "sending to node %d at %u.%u.%u.%u, "
517 "port %d, sk_err=%d/%d\n", dlm_our_nodeid(),
518 con->nodeid, sin6->sin6_addr.s6_addr32[0],
519 sin6->sin6_addr.s6_addr32[1],
520 sin6->sin6_addr.s6_addr32[2],
521 sin6->sin6_addr.s6_addr32[3],
522 dlm_config.ci_tcp_port, sk->sk_err,
523 sk->sk_err_soft);
524 }
525out:
526 read_unlock_bh(&sk->sk_callback_lock);
527 if (orig_report)
528 orig_report(sk);
529}
530
531/* Note: sk_callback_lock must be locked before calling this function. */
532static void save_listen_callbacks(struct socket *sock)
533{
534 struct sock *sk = sock->sk;
535
536 listen_sock.sk_data_ready = sk->sk_data_ready;
537 listen_sock.sk_state_change = sk->sk_state_change;
538 listen_sock.sk_write_space = sk->sk_write_space;
539 listen_sock.sk_error_report = sk->sk_error_report;
540}
541
542static void restore_callbacks(struct socket *sock)
543{
544 struct sock *sk = sock->sk;
545
546 write_lock_bh(&sk->sk_callback_lock);
547 sk->sk_user_data = NULL;
548 sk->sk_data_ready = listen_sock.sk_data_ready;
549 sk->sk_state_change = listen_sock.sk_state_change;
550 sk->sk_write_space = listen_sock.sk_write_space;
551 sk->sk_error_report = listen_sock.sk_error_report;
552 write_unlock_bh(&sk->sk_callback_lock);
553}
554
555/* Make a socket active */
556static void add_sock(struct socket *sock, struct connection *con)
557{
558 struct sock *sk = sock->sk;
559
560 write_lock_bh(&sk->sk_callback_lock);
561 con->sock = sock;
562
563 sk->sk_user_data = con;
564 /* Install a data_ready callback */
565 sk->sk_data_ready = lowcomms_data_ready;
566 sk->sk_write_space = lowcomms_write_space;
567 sk->sk_state_change = lowcomms_state_change;
568 sk->sk_allocation = GFP_NOFS;
569 sk->sk_error_report = lowcomms_error_report;
570 write_unlock_bh(&sk->sk_callback_lock);
571}
572
573/* Add the port number to an IPv6 or 4 sockaddr and return the address
574 length */
575static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
576 int *addr_len)
577{
578 saddr->ss_family = dlm_local_addr[0]->ss_family;
579 if (saddr->ss_family == AF_INET) {
580 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
581 in4_addr->sin_port = cpu_to_be16(port);
582 *addr_len = sizeof(struct sockaddr_in);
583 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
584 } else {
585 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
586 in6_addr->sin6_port = cpu_to_be16(port);
587 *addr_len = sizeof(struct sockaddr_in6);
588 }
589 memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
590}
591
592/* Close a remote connection and tidy up */
593static void close_connection(struct connection *con, bool and_other,
594 bool tx, bool rx)
595{
596 bool closing = test_and_set_bit(CF_CLOSING, &con->flags);
597
598 if (tx && !closing && cancel_work_sync(&con->swork)) {
599 log_print("canceled swork for node %d", con->nodeid);
600 clear_bit(CF_WRITE_PENDING, &con->flags);
601 }
602 if (rx && !closing && cancel_work_sync(&con->rwork)) {
603 log_print("canceled rwork for node %d", con->nodeid);
604 clear_bit(CF_READ_PENDING, &con->flags);
605 }
606
607 mutex_lock(&con->sock_mutex);
608 if (con->sock) {
609 restore_callbacks(con->sock);
610 sock_release(con->sock);
611 con->sock = NULL;
612 }
613 if (con->othercon && and_other) {
614 /* Will only re-enter once. */
615 close_connection(con->othercon, false, true, true);
616 }
617 if (con->rx_page) {
618 __free_page(con->rx_page);
619 con->rx_page = NULL;
620 }
621
622 con->retries = 0;
623 mutex_unlock(&con->sock_mutex);
624 clear_bit(CF_CLOSING, &con->flags);
625}
626
627static void shutdown_connection(struct connection *con)
628{
629 int ret;
630
631 if (cancel_work_sync(&con->swork)) {
632 log_print("canceled swork for node %d", con->nodeid);
633 clear_bit(CF_WRITE_PENDING, &con->flags);
634 }
635
636 mutex_lock(&con->sock_mutex);
637 /* nothing to shutdown */
638 if (!con->sock) {
639 mutex_unlock(&con->sock_mutex);
640 return;
641 }
642
643 set_bit(CF_SHUTDOWN, &con->flags);
644 ret = kernel_sock_shutdown(con->sock, SHUT_WR);
645 mutex_unlock(&con->sock_mutex);
646 if (ret) {
647 log_print("Connection %p failed to shutdown: %d will force close",
648 con, ret);
649 goto force_close;
650 } else {
651 ret = wait_event_timeout(con->shutdown_wait,
652 !test_bit(CF_SHUTDOWN, &con->flags),
653 DLM_SHUTDOWN_WAIT_TIMEOUT);
654 if (ret == 0) {
655 log_print("Connection %p shutdown timed out, will force close",
656 con);
657 goto force_close;
658 }
659 }
660
661 return;
662
663force_close:
664 clear_bit(CF_SHUTDOWN, &con->flags);
665 close_connection(con, false, true, true);
666}
667
668static void dlm_tcp_shutdown(struct connection *con)
669{
670 if (con->othercon)
671 shutdown_connection(con->othercon);
672 shutdown_connection(con);
673}
674
675/* Data received from remote end */
676static int receive_from_sock(struct connection *con)
677{
678 int ret = 0;
679 struct msghdr msg = {};
680 struct kvec iov[2];
681 unsigned len;
682 int r;
683 int call_again_soon = 0;
684 int nvec;
685
686 mutex_lock(&con->sock_mutex);
687
688 if (con->sock == NULL) {
689 ret = -EAGAIN;
690 goto out_close;
691 }
692 if (con->nodeid == 0) {
693 ret = -EINVAL;
694 goto out_close;
695 }
696
697 if (con->rx_page == NULL) {
698 /*
699 * This doesn't need to be atomic, but I think it should
700 * improve performance if it is.
701 */
702 con->rx_page = alloc_page(GFP_ATOMIC);
703 if (con->rx_page == NULL)
704 goto out_resched;
705 cbuf_init(&con->cb, PAGE_SIZE);
706 }
707
708 /*
709 * iov[0] is the bit of the circular buffer between the current end
710 * point (cb.base + cb.len) and the end of the buffer.
711 */
712 iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
713 iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
714 iov[1].iov_len = 0;
715 nvec = 1;
716
717 /*
718 * iov[1] is the bit of the circular buffer between the start of the
719 * buffer and the start of the currently used section (cb.base)
720 */
721 if (cbuf_data(&con->cb) >= con->cb.base) {
722 iov[0].iov_len = PAGE_SIZE - cbuf_data(&con->cb);
723 iov[1].iov_len = con->cb.base;
724 iov[1].iov_base = page_address(con->rx_page);
725 nvec = 2;
726 }
727 len = iov[0].iov_len + iov[1].iov_len;
728 iov_iter_kvec(&msg.msg_iter, READ, iov, nvec, len);
729
730 r = ret = sock_recvmsg(con->sock, &msg, MSG_DONTWAIT | MSG_NOSIGNAL);
731 if (ret <= 0)
732 goto out_close;
733 else if (ret == len)
734 call_again_soon = 1;
735
736 cbuf_add(&con->cb, ret);
737 ret = dlm_process_incoming_buffer(con->nodeid,
738 page_address(con->rx_page),
739 con->cb.base, con->cb.len,
740 PAGE_SIZE);
741 if (ret < 0) {
742 log_print("lowcomms err %d: addr=%p, base=%u, len=%u, read=%d",
743 ret, page_address(con->rx_page), con->cb.base,
744 con->cb.len, r);
745 cbuf_eat(&con->cb, r);
746 } else {
747 cbuf_eat(&con->cb, ret);
748 }
749
750 if (cbuf_empty(&con->cb) && !call_again_soon) {
751 __free_page(con->rx_page);
752 con->rx_page = NULL;
753 }
754
755 if (call_again_soon)
756 goto out_resched;
757 mutex_unlock(&con->sock_mutex);
758 return 0;
759
760out_resched:
761 if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
762 queue_work(recv_workqueue, &con->rwork);
763 mutex_unlock(&con->sock_mutex);
764 return -EAGAIN;
765
766out_close:
767 mutex_unlock(&con->sock_mutex);
768 if (ret != -EAGAIN) {
769 /* Reconnect when there is something to send */
770 close_connection(con, false, true, false);
771 if (ret == 0) {
772 log_print("connection %p got EOF from %d",
773 con, con->nodeid);
774 /* handling for tcp shutdown */
775 clear_bit(CF_SHUTDOWN, &con->flags);
776 wake_up(&con->shutdown_wait);
777 /* signal to breaking receive worker */
778 ret = -1;
779 }
780 }
781 return ret;
782}
783
784/* Listening socket is busy, accept a connection */
785static int accept_from_sock(struct connection *con)
786{
787 int result;
788 struct sockaddr_storage peeraddr;
789 struct socket *newsock;
790 int len;
791 int nodeid;
792 struct connection *newcon;
793 struct connection *addcon;
794
795 mutex_lock(&connections_lock);
796 if (!dlm_allow_conn) {
797 mutex_unlock(&connections_lock);
798 return -1;
799 }
800 mutex_unlock(&connections_lock);
801
802 mutex_lock_nested(&con->sock_mutex, 0);
803
804 if (!con->sock) {
805 mutex_unlock(&con->sock_mutex);
806 return -ENOTCONN;
807 }
808
809 result = kernel_accept(con->sock, &newsock, O_NONBLOCK);
810 if (result < 0)
811 goto accept_err;
812
813 /* Get the connected socket's peer */
814 memset(&peeraddr, 0, sizeof(peeraddr));
815 len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
816 if (len < 0) {
817 result = -ECONNABORTED;
818 goto accept_err;
819 }
820
821 /* Get the new node's NODEID */
822 make_sockaddr(&peeraddr, 0, &len);
823 if (addr_to_nodeid(&peeraddr, &nodeid)) {
824 unsigned char *b=(unsigned char *)&peeraddr;
825 log_print("connect from non cluster node");
826 print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
827 b, sizeof(struct sockaddr_storage));
828 sock_release(newsock);
829 mutex_unlock(&con->sock_mutex);
830 return -1;
831 }
832
833 log_print("got connection from %d", nodeid);
834
835 /* Check to see if we already have a connection to this node. This
836 * could happen if the two nodes initiate a connection at roughly
837 * the same time and the connections cross on the wire.
838 * In this case we store the incoming one in "othercon"
839 */
840 newcon = nodeid2con(nodeid, GFP_NOFS);
841 if (!newcon) {
842 result = -ENOMEM;
843 goto accept_err;
844 }
845 mutex_lock_nested(&newcon->sock_mutex, 1);
846 if (newcon->sock) {
847 struct connection *othercon = newcon->othercon;
848
849 if (!othercon) {
850 othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
851 if (!othercon) {
852 log_print("failed to allocate incoming socket");
853 mutex_unlock(&newcon->sock_mutex);
854 result = -ENOMEM;
855 goto accept_err;
856 }
857 othercon->nodeid = nodeid;
858 othercon->rx_action = receive_from_sock;
859 mutex_init(&othercon->sock_mutex);
860 INIT_LIST_HEAD(&othercon->writequeue);
861 spin_lock_init(&othercon->writequeue_lock);
862 INIT_WORK(&othercon->swork, process_send_sockets);
863 INIT_WORK(&othercon->rwork, process_recv_sockets);
864 init_waitqueue_head(&othercon->shutdown_wait);
865 set_bit(CF_IS_OTHERCON, &othercon->flags);
866 } else {
867 /* close other sock con if we have something new */
868 close_connection(othercon, false, true, false);
869 }
870
871 mutex_lock_nested(&othercon->sock_mutex, 2);
872 newcon->othercon = othercon;
873 add_sock(newsock, othercon);
874 addcon = othercon;
875 mutex_unlock(&othercon->sock_mutex);
876 }
877 else {
878 newcon->rx_action = receive_from_sock;
879 /* accept copies the sk after we've saved the callbacks, so we
880 don't want to save them a second time or comm errors will
881 result in calling sk_error_report recursively. */
882 add_sock(newsock, newcon);
883 addcon = newcon;
884 }
885
886 mutex_unlock(&newcon->sock_mutex);
887
888 /*
889 * Add it to the active queue in case we got data
890 * between processing the accept adding the socket
891 * to the read_sockets list
892 */
893 if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
894 queue_work(recv_workqueue, &addcon->rwork);
895 mutex_unlock(&con->sock_mutex);
896
897 return 0;
898
899accept_err:
900 mutex_unlock(&con->sock_mutex);
901 if (newsock)
902 sock_release(newsock);
903
904 if (result != -EAGAIN)
905 log_print("error accepting connection from node: %d", result);
906 return result;
907}
908
909static void free_entry(struct writequeue_entry *e)
910{
911 __free_page(e->page);
912 kfree(e);
913}
914
915/*
916 * writequeue_entry_complete - try to delete and free write queue entry
917 * @e: write queue entry to try to delete
918 * @completed: bytes completed
919 *
920 * writequeue_lock must be held.
921 */
922static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
923{
924 e->offset += completed;
925 e->len -= completed;
926
927 if (e->len == 0 && e->users == 0) {
928 list_del(&e->list);
929 free_entry(e);
930 }
931}
932
933/*
934 * sctp_bind_addrs - bind a SCTP socket to all our addresses
935 */
936static int sctp_bind_addrs(struct connection *con, uint16_t port)
937{
938 struct sockaddr_storage localaddr;
939 struct sockaddr *addr = (struct sockaddr *)&localaddr;
940 int i, addr_len, result = 0;
941
942 for (i = 0; i < dlm_local_count; i++) {
943 memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
944 make_sockaddr(&localaddr, port, &addr_len);
945
946 if (!i)
947 result = kernel_bind(con->sock, addr, addr_len);
948 else
949 result = sock_bind_add(con->sock->sk, addr, addr_len);
950
951 if (result < 0) {
952 log_print("Can't bind to %d addr number %d, %d.\n",
953 port, i + 1, result);
954 break;
955 }
956 }
957 return result;
958}
959
960/* Initiate an SCTP association.
961 This is a special case of send_to_sock() in that we don't yet have a
962 peeled-off socket for this association, so we use the listening socket
963 and add the primary IP address of the remote node.
964 */
965static void sctp_connect_to_sock(struct connection *con)
966{
967 struct sockaddr_storage daddr;
968 int result;
969 int addr_len;
970 struct socket *sock;
971 unsigned int mark;
972
973 if (con->nodeid == 0) {
974 log_print("attempt to connect sock 0 foiled");
975 return;
976 }
977
978 mutex_lock(&con->sock_mutex);
979
980 /* Some odd races can cause double-connects, ignore them */
981 if (con->retries++ > MAX_CONNECT_RETRIES)
982 goto out;
983
984 if (con->sock) {
985 log_print("node %d already connected.", con->nodeid);
986 goto out;
987 }
988
989 memset(&daddr, 0, sizeof(daddr));
990 result = nodeid_to_addr(con->nodeid, &daddr, NULL, true);
991 if (result < 0) {
992 log_print("no address for nodeid %d", con->nodeid);
993 goto out;
994 }
995
996 /* Create a socket to communicate with */
997 result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
998 SOCK_STREAM, IPPROTO_SCTP, &sock);
999 if (result < 0)
1000 goto socket_err;
1001
1002 /* set skb mark */
1003 result = dlm_comm_mark(con->nodeid, &mark);
1004 if (result < 0)
1005 goto bind_err;
1006
1007 sock_set_mark(sock->sk, mark);
1008
1009 con->rx_action = receive_from_sock;
1010 con->connect_action = sctp_connect_to_sock;
1011 add_sock(sock, con);
1012
1013 /* Bind to all addresses. */
1014 if (sctp_bind_addrs(con, 0))
1015 goto bind_err;
1016
1017 make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len);
1018
1019 log_print("connecting to %d", con->nodeid);
1020
1021 /* Turn off Nagle's algorithm */
1022 sctp_sock_set_nodelay(sock->sk);
1023
1024 /*
1025 * Make sock->ops->connect() function return in specified time,
1026 * since O_NONBLOCK argument in connect() function does not work here,
1027 * then, we should restore the default value of this attribute.
1028 */
1029 sock_set_sndtimeo(sock->sk, 5);
1030 result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len,
1031 0);
1032 sock_set_sndtimeo(sock->sk, 0);
1033
1034 if (result == -EINPROGRESS)
1035 result = 0;
1036 if (result == 0)
1037 goto out;
1038
1039bind_err:
1040 con->sock = NULL;
1041 sock_release(sock);
1042
1043socket_err:
1044 /*
1045 * Some errors are fatal and this list might need adjusting. For other
1046 * errors we try again until the max number of retries is reached.
1047 */
1048 if (result != -EHOSTUNREACH &&
1049 result != -ENETUNREACH &&
1050 result != -ENETDOWN &&
1051 result != -EINVAL &&
1052 result != -EPROTONOSUPPORT) {
1053 log_print("connect %d try %d error %d", con->nodeid,
1054 con->retries, result);
1055 mutex_unlock(&con->sock_mutex);
1056 msleep(1000);
1057 lowcomms_connect_sock(con);
1058 return;
1059 }
1060
1061out:
1062 mutex_unlock(&con->sock_mutex);
1063}
1064
1065/* Connect a new socket to its peer */
1066static void tcp_connect_to_sock(struct connection *con)
1067{
1068 struct sockaddr_storage saddr, src_addr;
1069 int addr_len;
1070 struct socket *sock = NULL;
1071 unsigned int mark;
1072 int result;
1073
1074 if (con->nodeid == 0) {
1075 log_print("attempt to connect sock 0 foiled");
1076 return;
1077 }
1078
1079 mutex_lock(&con->sock_mutex);
1080 if (con->retries++ > MAX_CONNECT_RETRIES)
1081 goto out;
1082
1083 /* Some odd races can cause double-connects, ignore them */
1084 if (con->sock)
1085 goto out;
1086
1087 /* Create a socket to communicate with */
1088 result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1089 SOCK_STREAM, IPPROTO_TCP, &sock);
1090 if (result < 0)
1091 goto out_err;
1092
1093 /* set skb mark */
1094 result = dlm_comm_mark(con->nodeid, &mark);
1095 if (result < 0)
1096 goto out_err;
1097
1098 sock_set_mark(sock->sk, mark);
1099
1100 memset(&saddr, 0, sizeof(saddr));
1101 result = nodeid_to_addr(con->nodeid, &saddr, NULL, false);
1102 if (result < 0) {
1103 log_print("no address for nodeid %d", con->nodeid);
1104 goto out_err;
1105 }
1106
1107 con->rx_action = receive_from_sock;
1108 con->connect_action = tcp_connect_to_sock;
1109 con->shutdown_action = dlm_tcp_shutdown;
1110 add_sock(sock, con);
1111
1112 /* Bind to our cluster-known address connecting to avoid
1113 routing problems */
1114 memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1115 make_sockaddr(&src_addr, 0, &addr_len);
1116 result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1117 addr_len);
1118 if (result < 0) {
1119 log_print("could not bind for connect: %d", result);
1120 /* This *may* not indicate a critical error */
1121 }
1122
1123 make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1124
1125 log_print("connecting to %d", con->nodeid);
1126
1127 /* Turn off Nagle's algorithm */
1128 tcp_sock_set_nodelay(sock->sk);
1129
1130 result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1131 O_NONBLOCK);
1132 if (result == -EINPROGRESS)
1133 result = 0;
1134 if (result == 0)
1135 goto out;
1136
1137out_err:
1138 if (con->sock) {
1139 sock_release(con->sock);
1140 con->sock = NULL;
1141 } else if (sock) {
1142 sock_release(sock);
1143 }
1144 /*
1145 * Some errors are fatal and this list might need adjusting. For other
1146 * errors we try again until the max number of retries is reached.
1147 */
1148 if (result != -EHOSTUNREACH &&
1149 result != -ENETUNREACH &&
1150 result != -ENETDOWN &&
1151 result != -EINVAL &&
1152 result != -EPROTONOSUPPORT) {
1153 log_print("connect %d try %d error %d", con->nodeid,
1154 con->retries, result);
1155 mutex_unlock(&con->sock_mutex);
1156 msleep(1000);
1157 lowcomms_connect_sock(con);
1158 return;
1159 }
1160out:
1161 mutex_unlock(&con->sock_mutex);
1162 return;
1163}
1164
1165static struct socket *tcp_create_listen_sock(struct connection *con,
1166 struct sockaddr_storage *saddr)
1167{
1168 struct socket *sock = NULL;
1169 int result = 0;
1170 int addr_len;
1171
1172 if (dlm_local_addr[0]->ss_family == AF_INET)
1173 addr_len = sizeof(struct sockaddr_in);
1174 else
1175 addr_len = sizeof(struct sockaddr_in6);
1176
1177 /* Create a socket to communicate with */
1178 result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1179 SOCK_STREAM, IPPROTO_TCP, &sock);
1180 if (result < 0) {
1181 log_print("Can't create listening comms socket");
1182 goto create_out;
1183 }
1184
1185 sock_set_mark(sock->sk, dlm_config.ci_mark);
1186
1187 /* Turn off Nagle's algorithm */
1188 tcp_sock_set_nodelay(sock->sk);
1189
1190 sock_set_reuseaddr(sock->sk);
1191
1192 write_lock_bh(&sock->sk->sk_callback_lock);
1193 sock->sk->sk_user_data = con;
1194 save_listen_callbacks(sock);
1195 con->rx_action = accept_from_sock;
1196 con->connect_action = tcp_connect_to_sock;
1197 write_unlock_bh(&sock->sk->sk_callback_lock);
1198
1199 /* Bind to our port */
1200 make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1201 result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1202 if (result < 0) {
1203 log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1204 sock_release(sock);
1205 sock = NULL;
1206 con->sock = NULL;
1207 goto create_out;
1208 }
1209 sock_set_keepalive(sock->sk);
1210
1211 result = sock->ops->listen(sock, 5);
1212 if (result < 0) {
1213 log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1214 sock_release(sock);
1215 sock = NULL;
1216 goto create_out;
1217 }
1218
1219create_out:
1220 return sock;
1221}
1222
1223/* Get local addresses */
1224static void init_local(void)
1225{
1226 struct sockaddr_storage sas, *addr;
1227 int i;
1228
1229 dlm_local_count = 0;
1230 for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1231 if (dlm_our_addr(&sas, i))
1232 break;
1233
1234 addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS);
1235 if (!addr)
1236 break;
1237 dlm_local_addr[dlm_local_count++] = addr;
1238 }
1239}
1240
1241/* Initialise SCTP socket and bind to all interfaces */
1242static int sctp_listen_for_all(void)
1243{
1244 struct socket *sock = NULL;
1245 int result = -EINVAL;
1246 struct connection *con = nodeid2con(0, GFP_NOFS);
1247
1248 if (!con)
1249 return -ENOMEM;
1250
1251 log_print("Using SCTP for communications");
1252
1253 result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1254 SOCK_STREAM, IPPROTO_SCTP, &sock);
1255 if (result < 0) {
1256 log_print("Can't create comms socket, check SCTP is loaded");
1257 goto out;
1258 }
1259
1260 sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1261 sock_set_mark(sock->sk, dlm_config.ci_mark);
1262 sctp_sock_set_nodelay(sock->sk);
1263
1264 write_lock_bh(&sock->sk->sk_callback_lock);
1265 /* Init con struct */
1266 sock->sk->sk_user_data = con;
1267 save_listen_callbacks(sock);
1268 con->sock = sock;
1269 con->sock->sk->sk_data_ready = lowcomms_data_ready;
1270 con->rx_action = accept_from_sock;
1271 con->connect_action = sctp_connect_to_sock;
1272
1273 write_unlock_bh(&sock->sk->sk_callback_lock);
1274
1275 /* Bind to all addresses. */
1276 if (sctp_bind_addrs(con, dlm_config.ci_tcp_port))
1277 goto create_delsock;
1278
1279 result = sock->ops->listen(sock, 5);
1280 if (result < 0) {
1281 log_print("Can't set socket listening");
1282 goto create_delsock;
1283 }
1284
1285 return 0;
1286
1287create_delsock:
1288 sock_release(sock);
1289 con->sock = NULL;
1290out:
1291 return result;
1292}
1293
1294static int tcp_listen_for_all(void)
1295{
1296 struct socket *sock = NULL;
1297 struct connection *con = nodeid2con(0, GFP_NOFS);
1298 int result = -EINVAL;
1299
1300 if (!con)
1301 return -ENOMEM;
1302
1303 /* We don't support multi-homed hosts */
1304 if (dlm_local_addr[1] != NULL) {
1305 log_print("TCP protocol can't handle multi-homed hosts, "
1306 "try SCTP");
1307 return -EINVAL;
1308 }
1309
1310 log_print("Using TCP for communications");
1311
1312 sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1313 if (sock) {
1314 add_sock(sock, con);
1315 result = 0;
1316 }
1317 else {
1318 result = -EADDRINUSE;
1319 }
1320
1321 return result;
1322}
1323
1324
1325
1326static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1327 gfp_t allocation)
1328{
1329 struct writequeue_entry *entry;
1330
1331 entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1332 if (!entry)
1333 return NULL;
1334
1335 entry->page = alloc_page(allocation);
1336 if (!entry->page) {
1337 kfree(entry);
1338 return NULL;
1339 }
1340
1341 entry->offset = 0;
1342 entry->len = 0;
1343 entry->end = 0;
1344 entry->users = 0;
1345 entry->con = con;
1346
1347 return entry;
1348}
1349
1350void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1351{
1352 struct connection *con;
1353 struct writequeue_entry *e;
1354 int offset = 0;
1355
1356 con = nodeid2con(nodeid, allocation);
1357 if (!con)
1358 return NULL;
1359
1360 spin_lock(&con->writequeue_lock);
1361 e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1362 if ((&e->list == &con->writequeue) ||
1363 (PAGE_SIZE - e->end < len)) {
1364 e = NULL;
1365 } else {
1366 offset = e->end;
1367 e->end += len;
1368 e->users++;
1369 }
1370 spin_unlock(&con->writequeue_lock);
1371
1372 if (e) {
1373 got_one:
1374 *ppc = page_address(e->page) + offset;
1375 return e;
1376 }
1377
1378 e = new_writequeue_entry(con, allocation);
1379 if (e) {
1380 spin_lock(&con->writequeue_lock);
1381 offset = e->end;
1382 e->end += len;
1383 e->users++;
1384 list_add_tail(&e->list, &con->writequeue);
1385 spin_unlock(&con->writequeue_lock);
1386 goto got_one;
1387 }
1388 return NULL;
1389}
1390
1391void dlm_lowcomms_commit_buffer(void *mh)
1392{
1393 struct writequeue_entry *e = (struct writequeue_entry *)mh;
1394 struct connection *con = e->con;
1395 int users;
1396
1397 spin_lock(&con->writequeue_lock);
1398 users = --e->users;
1399 if (users)
1400 goto out;
1401 e->len = e->end - e->offset;
1402 spin_unlock(&con->writequeue_lock);
1403
1404 queue_work(send_workqueue, &con->swork);
1405 return;
1406
1407out:
1408 spin_unlock(&con->writequeue_lock);
1409 return;
1410}
1411
1412/* Send a message */
1413static void send_to_sock(struct connection *con)
1414{
1415 int ret = 0;
1416 const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1417 struct writequeue_entry *e;
1418 int len, offset;
1419 int count = 0;
1420
1421 mutex_lock(&con->sock_mutex);
1422 if (con->sock == NULL)
1423 goto out_connect;
1424
1425 spin_lock(&con->writequeue_lock);
1426 for (;;) {
1427 e = list_entry(con->writequeue.next, struct writequeue_entry,
1428 list);
1429 if ((struct list_head *) e == &con->writequeue)
1430 break;
1431
1432 len = e->len;
1433 offset = e->offset;
1434 BUG_ON(len == 0 && e->users == 0);
1435 spin_unlock(&con->writequeue_lock);
1436
1437 ret = 0;
1438 if (len) {
1439 ret = kernel_sendpage(con->sock, e->page, offset, len,
1440 msg_flags);
1441 if (ret == -EAGAIN || ret == 0) {
1442 if (ret == -EAGAIN &&
1443 test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1444 !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1445 /* Notify TCP that we're limited by the
1446 * application window size.
1447 */
1448 set_bit(SOCK_NOSPACE, &con->sock->flags);
1449 con->sock->sk->sk_write_pending++;
1450 }
1451 cond_resched();
1452 goto out;
1453 } else if (ret < 0)
1454 goto send_error;
1455 }
1456
1457 /* Don't starve people filling buffers */
1458 if (++count >= MAX_SEND_MSG_COUNT) {
1459 cond_resched();
1460 count = 0;
1461 }
1462
1463 spin_lock(&con->writequeue_lock);
1464 writequeue_entry_complete(e, ret);
1465 }
1466 spin_unlock(&con->writequeue_lock);
1467out:
1468 mutex_unlock(&con->sock_mutex);
1469 return;
1470
1471send_error:
1472 mutex_unlock(&con->sock_mutex);
1473 close_connection(con, false, false, true);
1474 /* Requeue the send work. When the work daemon runs again, it will try
1475 a new connection, then call this function again. */
1476 queue_work(send_workqueue, &con->swork);
1477 return;
1478
1479out_connect:
1480 mutex_unlock(&con->sock_mutex);
1481 queue_work(send_workqueue, &con->swork);
1482 cond_resched();
1483}
1484
1485static void clean_one_writequeue(struct connection *con)
1486{
1487 struct writequeue_entry *e, *safe;
1488
1489 spin_lock(&con->writequeue_lock);
1490 list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1491 list_del(&e->list);
1492 free_entry(e);
1493 }
1494 spin_unlock(&con->writequeue_lock);
1495}
1496
1497/* Called from recovery when it knows that a node has
1498 left the cluster */
1499int dlm_lowcomms_close(int nodeid)
1500{
1501 struct connection *con;
1502 struct dlm_node_addr *na;
1503
1504 log_print("closing connection to node %d", nodeid);
1505 con = nodeid2con(nodeid, 0);
1506 if (con) {
1507 set_bit(CF_CLOSE, &con->flags);
1508 close_connection(con, true, true, true);
1509 clean_one_writequeue(con);
1510 }
1511
1512 spin_lock(&dlm_node_addrs_spin);
1513 na = find_node_addr(nodeid);
1514 if (na) {
1515 list_del(&na->list);
1516 while (na->addr_count--)
1517 kfree(na->addr[na->addr_count]);
1518 kfree(na);
1519 }
1520 spin_unlock(&dlm_node_addrs_spin);
1521
1522 return 0;
1523}
1524
1525/* Receive workqueue function */
1526static void process_recv_sockets(struct work_struct *work)
1527{
1528 struct connection *con = container_of(work, struct connection, rwork);
1529 int err;
1530
1531 clear_bit(CF_READ_PENDING, &con->flags);
1532 do {
1533 err = con->rx_action(con);
1534 } while (!err);
1535}
1536
1537/* Send workqueue function */
1538static void process_send_sockets(struct work_struct *work)
1539{
1540 struct connection *con = container_of(work, struct connection, swork);
1541
1542 clear_bit(CF_WRITE_PENDING, &con->flags);
1543 if (con->sock == NULL) /* not mutex protected so check it inside too */
1544 con->connect_action(con);
1545 if (!list_empty(&con->writequeue))
1546 send_to_sock(con);
1547}
1548
1549
1550/* Discard all entries on the write queues */
1551static void clean_writequeues(void)
1552{
1553 foreach_conn(clean_one_writequeue);
1554}
1555
1556static void work_stop(void)
1557{
1558 if (recv_workqueue)
1559 destroy_workqueue(recv_workqueue);
1560 if (send_workqueue)
1561 destroy_workqueue(send_workqueue);
1562}
1563
1564static int work_start(void)
1565{
1566 recv_workqueue = alloc_workqueue("dlm_recv",
1567 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1568 if (!recv_workqueue) {
1569 log_print("can't start dlm_recv");
1570 return -ENOMEM;
1571 }
1572
1573 send_workqueue = alloc_workqueue("dlm_send",
1574 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1575 if (!send_workqueue) {
1576 log_print("can't start dlm_send");
1577 destroy_workqueue(recv_workqueue);
1578 return -ENOMEM;
1579 }
1580
1581 return 0;
1582}
1583
1584static void _stop_conn(struct connection *con, bool and_other)
1585{
1586 mutex_lock(&con->sock_mutex);
1587 set_bit(CF_CLOSE, &con->flags);
1588 set_bit(CF_READ_PENDING, &con->flags);
1589 set_bit(CF_WRITE_PENDING, &con->flags);
1590 if (con->sock && con->sock->sk) {
1591 write_lock_bh(&con->sock->sk->sk_callback_lock);
1592 con->sock->sk->sk_user_data = NULL;
1593 write_unlock_bh(&con->sock->sk->sk_callback_lock);
1594 }
1595 if (con->othercon && and_other)
1596 _stop_conn(con->othercon, false);
1597 mutex_unlock(&con->sock_mutex);
1598}
1599
1600static void stop_conn(struct connection *con)
1601{
1602 _stop_conn(con, true);
1603}
1604
1605static void shutdown_conn(struct connection *con)
1606{
1607 if (con->shutdown_action)
1608 con->shutdown_action(con);
1609}
1610
1611static void free_conn(struct connection *con)
1612{
1613 close_connection(con, true, true, true);
1614 if (con->othercon)
1615 kmem_cache_free(con_cache, con->othercon);
1616 hlist_del(&con->list);
1617 kmem_cache_free(con_cache, con);
1618}
1619
1620static void work_flush(void)
1621{
1622 int ok;
1623 int i;
1624 struct hlist_node *n;
1625 struct connection *con;
1626
1627 if (recv_workqueue)
1628 flush_workqueue(recv_workqueue);
1629 if (send_workqueue)
1630 flush_workqueue(send_workqueue);
1631 do {
1632 ok = 1;
1633 foreach_conn(stop_conn);
1634 if (recv_workqueue)
1635 flush_workqueue(recv_workqueue);
1636 if (send_workqueue)
1637 flush_workqueue(send_workqueue);
1638 for (i = 0; i < CONN_HASH_SIZE && ok; i++) {
1639 hlist_for_each_entry_safe(con, n,
1640 &connection_hash[i], list) {
1641 ok &= test_bit(CF_READ_PENDING, &con->flags);
1642 ok &= test_bit(CF_WRITE_PENDING, &con->flags);
1643 if (con->othercon) {
1644 ok &= test_bit(CF_READ_PENDING,
1645 &con->othercon->flags);
1646 ok &= test_bit(CF_WRITE_PENDING,
1647 &con->othercon->flags);
1648 }
1649 }
1650 }
1651 } while (!ok);
1652}
1653
1654void dlm_lowcomms_stop(void)
1655{
1656 /* Set all the flags to prevent any
1657 socket activity.
1658 */
1659 mutex_lock(&connections_lock);
1660 dlm_allow_conn = 0;
1661 mutex_unlock(&connections_lock);
1662 foreach_conn(shutdown_conn);
1663 work_flush();
1664 clean_writequeues();
1665 foreach_conn(free_conn);
1666 work_stop();
1667
1668 kmem_cache_destroy(con_cache);
1669}
1670
1671int dlm_lowcomms_start(void)
1672{
1673 int error = -EINVAL;
1674 struct connection *con;
1675 int i;
1676
1677 for (i = 0; i < CONN_HASH_SIZE; i++)
1678 INIT_HLIST_HEAD(&connection_hash[i]);
1679
1680 init_local();
1681 if (!dlm_local_count) {
1682 error = -ENOTCONN;
1683 log_print("no local IP address has been set");
1684 goto fail;
1685 }
1686
1687 error = -ENOMEM;
1688 con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1689 __alignof__(struct connection), 0,
1690 NULL);
1691 if (!con_cache)
1692 goto fail;
1693
1694 error = work_start();
1695 if (error)
1696 goto fail_destroy;
1697
1698 dlm_allow_conn = 1;
1699
1700 /* Start listening */
1701 if (dlm_config.ci_protocol == 0)
1702 error = tcp_listen_for_all();
1703 else
1704 error = sctp_listen_for_all();
1705 if (error)
1706 goto fail_unlisten;
1707
1708 return 0;
1709
1710fail_unlisten:
1711 dlm_allow_conn = 0;
1712 con = nodeid2con(0,0);
1713 if (con) {
1714 close_connection(con, false, true, true);
1715 kmem_cache_free(con_cache, con);
1716 }
1717fail_destroy:
1718 kmem_cache_destroy(con_cache);
1719fail:
1720 return error;
1721}
1722
1723void dlm_lowcomms_exit(void)
1724{
1725 struct dlm_node_addr *na, *safe;
1726
1727 spin_lock(&dlm_node_addrs_spin);
1728 list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
1729 list_del(&na->list);
1730 while (na->addr_count--)
1731 kfree(na->addr[na->addr_count]);
1732 kfree(na);
1733 }
1734 spin_unlock(&dlm_node_addrs_spin);
1735}