Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/******************************************************************************
   3*******************************************************************************
   4**
   5**  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
   6**  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
   7**
   8**
   9*******************************************************************************
  10******************************************************************************/
  11
  12/*
  13 * lowcomms.c
  14 *
  15 * This is the "low-level" comms layer.
  16 *
  17 * It is responsible for sending/receiving messages
  18 * from other nodes in the cluster.
  19 *
  20 * Cluster nodes are referred to by their nodeids. nodeids are
  21 * simply 32 bit numbers to the locking module - if they need to
  22 * be expanded for the cluster infrastructure then that is its
  23 * responsibility. It is this layer's
  24 * responsibility to resolve these into IP address or
  25 * whatever it needs for inter-node communication.
  26 *
  27 * The comms level is two kernel threads that deal mainly with
  28 * the receiving of messages from other nodes and passing them
  29 * up to the mid-level comms layer (which understands the
  30 * message format) for execution by the locking core, and
  31 * a send thread which does all the setting up of connections
  32 * to remote nodes and the sending of data. Threads are not allowed
  33 * to send their own data because it may cause them to wait in times
  34 * of high load. Also, this way, the sending thread can collect together
  35 * messages bound for one node and send them in one block.
  36 *
  37 * lowcomms will choose to use either TCP or SCTP as its transport layer
  38 * depending on the configuration variable 'protocol'. This should be set
  39 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
  40 * cluster-wide mechanism as it must be the same on all nodes of the cluster
  41 * for the DLM to function.
  42 *
  43 */
  44
  45#include <asm/ioctls.h>
  46#include <net/sock.h>
  47#include <net/tcp.h>
  48#include <linux/pagemap.h>
  49#include <linux/file.h>
  50#include <linux/mutex.h>
  51#include <linux/sctp.h>
  52#include <linux/slab.h>
  53#include <net/sctp/sctp.h>
  54#include <net/ipv6.h>
  55
  56#include "dlm_internal.h"
  57#include "lowcomms.h"
  58#include "midcomms.h"
  59#include "config.h"
  60
  61#define NEEDED_RMEM (4*1024*1024)
  62#define CONN_HASH_SIZE 32
  63
  64/* Number of messages to send before rescheduling */
  65#define MAX_SEND_MSG_COUNT 25
 
  66
  67struct cbuf {
  68	unsigned int base;
  69	unsigned int len;
  70	unsigned int mask;
  71};
  72
  73static void cbuf_add(struct cbuf *cb, int n)
  74{
  75	cb->len += n;
  76}
  77
  78static int cbuf_data(struct cbuf *cb)
  79{
  80	return ((cb->base + cb->len) & cb->mask);
  81}
  82
  83static void cbuf_init(struct cbuf *cb, int size)
  84{
  85	cb->base = cb->len = 0;
  86	cb->mask = size-1;
  87}
  88
  89static void cbuf_eat(struct cbuf *cb, int n)
  90{
  91	cb->len  -= n;
  92	cb->base += n;
  93	cb->base &= cb->mask;
  94}
  95
  96static bool cbuf_empty(struct cbuf *cb)
  97{
  98	return cb->len == 0;
  99}
 100
 101struct connection {
 102	struct socket *sock;	/* NULL if not connected */
 103	uint32_t nodeid;	/* So we know who we are in the list */
 104	struct mutex sock_mutex;
 105	unsigned long flags;
 106#define CF_READ_PENDING 1
 107#define CF_WRITE_PENDING 2
 108#define CF_INIT_PENDING 4
 109#define CF_IS_OTHERCON 5
 110#define CF_CLOSE 6
 111#define CF_APP_LIMITED 7
 112#define CF_CLOSING 8
 
 113	struct list_head writequeue;  /* List of outgoing writequeue_entries */
 114	spinlock_t writequeue_lock;
 115	int (*rx_action) (struct connection *);	/* What to do when active */
 116	void (*connect_action) (struct connection *);	/* What to do to connect */
 
 117	struct page *rx_page;
 118	struct cbuf cb;
 119	int retries;
 120#define MAX_CONNECT_RETRIES 3
 121	struct hlist_node list;
 122	struct connection *othercon;
 123	struct work_struct rwork; /* Receive workqueue */
 124	struct work_struct swork; /* Send workqueue */
 
 125};
 126#define sock2con(x) ((struct connection *)(x)->sk_user_data)
 127
 128/* An entry waiting to be sent */
 129struct writequeue_entry {
 130	struct list_head list;
 131	struct page *page;
 132	int offset;
 133	int len;
 134	int end;
 135	int users;
 136	struct connection *con;
 137};
 138
 139struct dlm_node_addr {
 140	struct list_head list;
 141	int nodeid;
 142	int addr_count;
 143	int curr_addr_index;
 144	struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
 145};
 146
 147static struct listen_sock_callbacks {
 148	void (*sk_error_report)(struct sock *);
 149	void (*sk_data_ready)(struct sock *);
 150	void (*sk_state_change)(struct sock *);
 151	void (*sk_write_space)(struct sock *);
 152} listen_sock;
 153
 154static LIST_HEAD(dlm_node_addrs);
 155static DEFINE_SPINLOCK(dlm_node_addrs_spin);
 156
 157static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
 158static int dlm_local_count;
 159static int dlm_allow_conn;
 160
 161/* Work queues */
 162static struct workqueue_struct *recv_workqueue;
 163static struct workqueue_struct *send_workqueue;
 164
 165static struct hlist_head connection_hash[CONN_HASH_SIZE];
 166static DEFINE_MUTEX(connections_lock);
 167static struct kmem_cache *con_cache;
 168
 169static void process_recv_sockets(struct work_struct *work);
 170static void process_send_sockets(struct work_struct *work);
 171
 172
 173/* This is deliberately very simple because most clusters have simple
 174   sequential nodeids, so we should be able to go straight to a connection
 175   struct in the array */
 176static inline int nodeid_hash(int nodeid)
 177{
 178	return nodeid & (CONN_HASH_SIZE-1);
 179}
 180
 181static struct connection *__find_con(int nodeid)
 182{
 183	int r;
 184	struct connection *con;
 185
 186	r = nodeid_hash(nodeid);
 187
 188	hlist_for_each_entry(con, &connection_hash[r], list) {
 189		if (con->nodeid == nodeid)
 190			return con;
 191	}
 192	return NULL;
 193}
 194
 195/*
 196 * If 'allocation' is zero then we don't attempt to create a new
 197 * connection structure for this node.
 198 */
 199static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
 200{
 201	struct connection *con = NULL;
 202	int r;
 203
 204	con = __find_con(nodeid);
 205	if (con || !alloc)
 206		return con;
 207
 208	con = kmem_cache_zalloc(con_cache, alloc);
 209	if (!con)
 210		return NULL;
 211
 212	r = nodeid_hash(nodeid);
 213	hlist_add_head(&con->list, &connection_hash[r]);
 214
 215	con->nodeid = nodeid;
 216	mutex_init(&con->sock_mutex);
 217	INIT_LIST_HEAD(&con->writequeue);
 218	spin_lock_init(&con->writequeue_lock);
 219	INIT_WORK(&con->swork, process_send_sockets);
 220	INIT_WORK(&con->rwork, process_recv_sockets);
 
 221
 222	/* Setup action pointers for child sockets */
 223	if (con->nodeid) {
 224		struct connection *zerocon = __find_con(0);
 225
 226		con->connect_action = zerocon->connect_action;
 227		if (!con->rx_action)
 228			con->rx_action = zerocon->rx_action;
 229	}
 230
 231	return con;
 232}
 233
 234/* Loop round all connections */
 235static void foreach_conn(void (*conn_func)(struct connection *c))
 236{
 237	int i;
 238	struct hlist_node *n;
 239	struct connection *con;
 240
 241	for (i = 0; i < CONN_HASH_SIZE; i++) {
 242		hlist_for_each_entry_safe(con, n, &connection_hash[i], list)
 243			conn_func(con);
 244	}
 245}
 246
 247static struct connection *nodeid2con(int nodeid, gfp_t allocation)
 248{
 249	struct connection *con;
 250
 251	mutex_lock(&connections_lock);
 252	con = __nodeid2con(nodeid, allocation);
 253	mutex_unlock(&connections_lock);
 254
 255	return con;
 256}
 257
 258static struct dlm_node_addr *find_node_addr(int nodeid)
 259{
 260	struct dlm_node_addr *na;
 261
 262	list_for_each_entry(na, &dlm_node_addrs, list) {
 263		if (na->nodeid == nodeid)
 264			return na;
 265	}
 266	return NULL;
 267}
 268
 269static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y)
 270{
 271	switch (x->ss_family) {
 272	case AF_INET: {
 273		struct sockaddr_in *sinx = (struct sockaddr_in *)x;
 274		struct sockaddr_in *siny = (struct sockaddr_in *)y;
 275		if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
 276			return 0;
 277		if (sinx->sin_port != siny->sin_port)
 278			return 0;
 279		break;
 280	}
 281	case AF_INET6: {
 282		struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
 283		struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
 284		if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
 285			return 0;
 286		if (sinx->sin6_port != siny->sin6_port)
 287			return 0;
 288		break;
 289	}
 290	default:
 291		return 0;
 292	}
 293	return 1;
 294}
 295
 296static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
 297			  struct sockaddr *sa_out, bool try_new_addr)
 298{
 299	struct sockaddr_storage sas;
 300	struct dlm_node_addr *na;
 301
 302	if (!dlm_local_count)
 303		return -1;
 304
 305	spin_lock(&dlm_node_addrs_spin);
 306	na = find_node_addr(nodeid);
 307	if (na && na->addr_count) {
 308		memcpy(&sas, na->addr[na->curr_addr_index],
 309		       sizeof(struct sockaddr_storage));
 310
 311		if (try_new_addr) {
 312			na->curr_addr_index++;
 313			if (na->curr_addr_index == na->addr_count)
 314				na->curr_addr_index = 0;
 315		}
 316	}
 317	spin_unlock(&dlm_node_addrs_spin);
 318
 319	if (!na)
 320		return -EEXIST;
 321
 322	if (!na->addr_count)
 323		return -ENOENT;
 324
 325	if (sas_out)
 326		memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
 327
 328	if (!sa_out)
 329		return 0;
 330
 331	if (dlm_local_addr[0]->ss_family == AF_INET) {
 332		struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
 333		struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
 334		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
 335	} else {
 336		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
 337		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
 338		ret6->sin6_addr = in6->sin6_addr;
 339	}
 340
 341	return 0;
 342}
 343
 344static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid)
 345{
 346	struct dlm_node_addr *na;
 347	int rv = -EEXIST;
 348	int addr_i;
 349
 350	spin_lock(&dlm_node_addrs_spin);
 351	list_for_each_entry(na, &dlm_node_addrs, list) {
 352		if (!na->addr_count)
 353			continue;
 354
 355		for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
 356			if (addr_compare(na->addr[addr_i], addr)) {
 357				*nodeid = na->nodeid;
 358				rv = 0;
 359				goto unlock;
 360			}
 361		}
 362	}
 363unlock:
 364	spin_unlock(&dlm_node_addrs_spin);
 365	return rv;
 366}
 367
 368int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
 369{
 370	struct sockaddr_storage *new_addr;
 371	struct dlm_node_addr *new_node, *na;
 372
 373	new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
 374	if (!new_node)
 375		return -ENOMEM;
 376
 377	new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
 378	if (!new_addr) {
 379		kfree(new_node);
 380		return -ENOMEM;
 381	}
 382
 383	memcpy(new_addr, addr, len);
 384
 385	spin_lock(&dlm_node_addrs_spin);
 386	na = find_node_addr(nodeid);
 387	if (!na) {
 388		new_node->nodeid = nodeid;
 389		new_node->addr[0] = new_addr;
 390		new_node->addr_count = 1;
 391		list_add(&new_node->list, &dlm_node_addrs);
 392		spin_unlock(&dlm_node_addrs_spin);
 393		return 0;
 394	}
 395
 396	if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
 397		spin_unlock(&dlm_node_addrs_spin);
 398		kfree(new_addr);
 399		kfree(new_node);
 400		return -ENOSPC;
 401	}
 402
 403	na->addr[na->addr_count++] = new_addr;
 404	spin_unlock(&dlm_node_addrs_spin);
 405	kfree(new_node);
 406	return 0;
 407}
 408
 409/* Data available on socket or listen socket received a connect */
 410static void lowcomms_data_ready(struct sock *sk)
 411{
 412	struct connection *con;
 413
 414	read_lock_bh(&sk->sk_callback_lock);
 415	con = sock2con(sk);
 416	if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
 417		queue_work(recv_workqueue, &con->rwork);
 418	read_unlock_bh(&sk->sk_callback_lock);
 419}
 420
 421static void lowcomms_write_space(struct sock *sk)
 422{
 423	struct connection *con;
 424
 425	read_lock_bh(&sk->sk_callback_lock);
 426	con = sock2con(sk);
 427	if (!con)
 428		goto out;
 429
 430	clear_bit(SOCK_NOSPACE, &con->sock->flags);
 431
 432	if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
 433		con->sock->sk->sk_write_pending--;
 434		clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
 435	}
 436
 437	queue_work(send_workqueue, &con->swork);
 438out:
 439	read_unlock_bh(&sk->sk_callback_lock);
 440}
 441
 442static inline void lowcomms_connect_sock(struct connection *con)
 443{
 444	if (test_bit(CF_CLOSE, &con->flags))
 445		return;
 446	queue_work(send_workqueue, &con->swork);
 447	cond_resched();
 448}
 449
 450static void lowcomms_state_change(struct sock *sk)
 451{
 452	/* SCTP layer is not calling sk_data_ready when the connection
 453	 * is done, so we catch the signal through here. Also, it
 454	 * doesn't switch socket state when entering shutdown, so we
 455	 * skip the write in that case.
 456	 */
 457	if (sk->sk_shutdown) {
 458		if (sk->sk_shutdown == RCV_SHUTDOWN)
 459			lowcomms_data_ready(sk);
 460	} else if (sk->sk_state == TCP_ESTABLISHED) {
 461		lowcomms_write_space(sk);
 462	}
 463}
 464
 465int dlm_lowcomms_connect_node(int nodeid)
 466{
 467	struct connection *con;
 468
 469	if (nodeid == dlm_our_nodeid())
 470		return 0;
 471
 472	con = nodeid2con(nodeid, GFP_NOFS);
 473	if (!con)
 474		return -ENOMEM;
 475	lowcomms_connect_sock(con);
 476	return 0;
 477}
 478
 479static void lowcomms_error_report(struct sock *sk)
 480{
 481	struct connection *con;
 482	struct sockaddr_storage saddr;
 483	void (*orig_report)(struct sock *) = NULL;
 484
 485	read_lock_bh(&sk->sk_callback_lock);
 486	con = sock2con(sk);
 487	if (con == NULL)
 488		goto out;
 489
 490	orig_report = listen_sock.sk_error_report;
 491	if (con->sock == NULL ||
 492	    kernel_getpeername(con->sock, (struct sockaddr *)&saddr) < 0) {
 493		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
 494				   "sending to node %d, port %d, "
 495				   "sk_err=%d/%d\n", dlm_our_nodeid(),
 496				   con->nodeid, dlm_config.ci_tcp_port,
 497				   sk->sk_err, sk->sk_err_soft);
 498	} else if (saddr.ss_family == AF_INET) {
 499		struct sockaddr_in *sin4 = (struct sockaddr_in *)&saddr;
 500
 501		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
 502				   "sending to node %d at %pI4, port %d, "
 503				   "sk_err=%d/%d\n", dlm_our_nodeid(),
 504				   con->nodeid, &sin4->sin_addr.s_addr,
 505				   dlm_config.ci_tcp_port, sk->sk_err,
 506				   sk->sk_err_soft);
 507	} else {
 508		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&saddr;
 509
 510		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
 511				   "sending to node %d at %u.%u.%u.%u, "
 512				   "port %d, sk_err=%d/%d\n", dlm_our_nodeid(),
 513				   con->nodeid, sin6->sin6_addr.s6_addr32[0],
 514				   sin6->sin6_addr.s6_addr32[1],
 515				   sin6->sin6_addr.s6_addr32[2],
 516				   sin6->sin6_addr.s6_addr32[3],
 517				   dlm_config.ci_tcp_port, sk->sk_err,
 518				   sk->sk_err_soft);
 519	}
 520out:
 521	read_unlock_bh(&sk->sk_callback_lock);
 522	if (orig_report)
 523		orig_report(sk);
 524}
 525
 526/* Note: sk_callback_lock must be locked before calling this function. */
 527static void save_listen_callbacks(struct socket *sock)
 528{
 529	struct sock *sk = sock->sk;
 530
 531	listen_sock.sk_data_ready = sk->sk_data_ready;
 532	listen_sock.sk_state_change = sk->sk_state_change;
 533	listen_sock.sk_write_space = sk->sk_write_space;
 534	listen_sock.sk_error_report = sk->sk_error_report;
 535}
 536
 537static void restore_callbacks(struct socket *sock)
 538{
 539	struct sock *sk = sock->sk;
 540
 541	write_lock_bh(&sk->sk_callback_lock);
 542	sk->sk_user_data = NULL;
 543	sk->sk_data_ready = listen_sock.sk_data_ready;
 544	sk->sk_state_change = listen_sock.sk_state_change;
 545	sk->sk_write_space = listen_sock.sk_write_space;
 546	sk->sk_error_report = listen_sock.sk_error_report;
 547	write_unlock_bh(&sk->sk_callback_lock);
 548}
 549
 550/* Make a socket active */
 551static void add_sock(struct socket *sock, struct connection *con)
 552{
 553	struct sock *sk = sock->sk;
 554
 555	write_lock_bh(&sk->sk_callback_lock);
 556	con->sock = sock;
 557
 558	sk->sk_user_data = con;
 559	/* Install a data_ready callback */
 560	sk->sk_data_ready = lowcomms_data_ready;
 561	sk->sk_write_space = lowcomms_write_space;
 562	sk->sk_state_change = lowcomms_state_change;
 563	sk->sk_allocation = GFP_NOFS;
 564	sk->sk_error_report = lowcomms_error_report;
 565	write_unlock_bh(&sk->sk_callback_lock);
 566}
 567
 568/* Add the port number to an IPv6 or 4 sockaddr and return the address
 569   length */
 570static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
 571			  int *addr_len)
 572{
 573	saddr->ss_family =  dlm_local_addr[0]->ss_family;
 574	if (saddr->ss_family == AF_INET) {
 575		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
 576		in4_addr->sin_port = cpu_to_be16(port);
 577		*addr_len = sizeof(struct sockaddr_in);
 578		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
 579	} else {
 580		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
 581		in6_addr->sin6_port = cpu_to_be16(port);
 582		*addr_len = sizeof(struct sockaddr_in6);
 583	}
 584	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
 585}
 586
 587/* Close a remote connection and tidy up */
 588static void close_connection(struct connection *con, bool and_other,
 589			     bool tx, bool rx)
 590{
 591	bool closing = test_and_set_bit(CF_CLOSING, &con->flags);
 592
 593	if (tx && !closing && cancel_work_sync(&con->swork)) {
 594		log_print("canceled swork for node %d", con->nodeid);
 595		clear_bit(CF_WRITE_PENDING, &con->flags);
 596	}
 597	if (rx && !closing && cancel_work_sync(&con->rwork)) {
 598		log_print("canceled rwork for node %d", con->nodeid);
 599		clear_bit(CF_READ_PENDING, &con->flags);
 600	}
 601
 602	mutex_lock(&con->sock_mutex);
 603	if (con->sock) {
 604		restore_callbacks(con->sock);
 605		sock_release(con->sock);
 606		con->sock = NULL;
 607	}
 608	if (con->othercon && and_other) {
 609		/* Will only re-enter once. */
 610		close_connection(con->othercon, false, true, true);
 611	}
 612	if (con->rx_page) {
 613		__free_page(con->rx_page);
 614		con->rx_page = NULL;
 615	}
 616
 617	con->retries = 0;
 618	mutex_unlock(&con->sock_mutex);
 619	clear_bit(CF_CLOSING, &con->flags);
 620}
 621
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 622/* Data received from remote end */
 623static int receive_from_sock(struct connection *con)
 624{
 625	int ret = 0;
 626	struct msghdr msg = {};
 627	struct kvec iov[2];
 628	unsigned len;
 629	int r;
 630	int call_again_soon = 0;
 631	int nvec;
 632
 633	mutex_lock(&con->sock_mutex);
 634
 635	if (con->sock == NULL) {
 636		ret = -EAGAIN;
 637		goto out_close;
 638	}
 639	if (con->nodeid == 0) {
 640		ret = -EINVAL;
 641		goto out_close;
 642	}
 643
 644	if (con->rx_page == NULL) {
 645		/*
 646		 * This doesn't need to be atomic, but I think it should
 647		 * improve performance if it is.
 648		 */
 649		con->rx_page = alloc_page(GFP_ATOMIC);
 650		if (con->rx_page == NULL)
 651			goto out_resched;
 652		cbuf_init(&con->cb, PAGE_SIZE);
 653	}
 654
 655	/*
 656	 * iov[0] is the bit of the circular buffer between the current end
 657	 * point (cb.base + cb.len) and the end of the buffer.
 658	 */
 659	iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
 660	iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
 661	iov[1].iov_len = 0;
 662	nvec = 1;
 663
 664	/*
 665	 * iov[1] is the bit of the circular buffer between the start of the
 666	 * buffer and the start of the currently used section (cb.base)
 667	 */
 668	if (cbuf_data(&con->cb) >= con->cb.base) {
 669		iov[0].iov_len = PAGE_SIZE - cbuf_data(&con->cb);
 670		iov[1].iov_len = con->cb.base;
 671		iov[1].iov_base = page_address(con->rx_page);
 672		nvec = 2;
 673	}
 674	len = iov[0].iov_len + iov[1].iov_len;
 675	iov_iter_kvec(&msg.msg_iter, READ, iov, nvec, len);
 676
 677	r = ret = sock_recvmsg(con->sock, &msg, MSG_DONTWAIT | MSG_NOSIGNAL);
 678	if (ret <= 0)
 679		goto out_close;
 680	else if (ret == len)
 681		call_again_soon = 1;
 682
 683	cbuf_add(&con->cb, ret);
 684	ret = dlm_process_incoming_buffer(con->nodeid,
 685					  page_address(con->rx_page),
 686					  con->cb.base, con->cb.len,
 687					  PAGE_SIZE);
 688	if (ret == -EBADMSG) {
 689		log_print("lowcomms: addr=%p, base=%u, len=%u, read=%d",
 690			  page_address(con->rx_page), con->cb.base,
 691			  con->cb.len, r);
 
 
 
 692	}
 693	if (ret < 0)
 694		goto out_close;
 695	cbuf_eat(&con->cb, ret);
 696
 697	if (cbuf_empty(&con->cb) && !call_again_soon) {
 698		__free_page(con->rx_page);
 699		con->rx_page = NULL;
 700	}
 701
 702	if (call_again_soon)
 703		goto out_resched;
 704	mutex_unlock(&con->sock_mutex);
 705	return 0;
 706
 707out_resched:
 708	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
 709		queue_work(recv_workqueue, &con->rwork);
 710	mutex_unlock(&con->sock_mutex);
 711	return -EAGAIN;
 712
 713out_close:
 714	mutex_unlock(&con->sock_mutex);
 715	if (ret != -EAGAIN) {
 716		close_connection(con, true, true, false);
 717		/* Reconnect when there is something to send */
 
 
 
 
 
 
 
 
 
 
 718	}
 719	/* Don't return success if we really got EOF */
 720	if (ret == 0)
 721		ret = -EAGAIN;
 722
 723	return ret;
 724}
 725
 726/* Listening socket is busy, accept a connection */
 727static int tcp_accept_from_sock(struct connection *con)
 728{
 729	int result;
 730	struct sockaddr_storage peeraddr;
 731	struct socket *newsock;
 732	int len;
 733	int nodeid;
 734	struct connection *newcon;
 735	struct connection *addcon;
 736
 737	mutex_lock(&connections_lock);
 738	if (!dlm_allow_conn) {
 739		mutex_unlock(&connections_lock);
 740		return -1;
 741	}
 742	mutex_unlock(&connections_lock);
 743
 744	mutex_lock_nested(&con->sock_mutex, 0);
 745
 746	if (!con->sock) {
 747		mutex_unlock(&con->sock_mutex);
 748		return -ENOTCONN;
 749	}
 750
 751	result = kernel_accept(con->sock, &newsock, O_NONBLOCK);
 752	if (result < 0)
 753		goto accept_err;
 754
 755	/* Get the connected socket's peer */
 756	memset(&peeraddr, 0, sizeof(peeraddr));
 757	len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
 758	if (len < 0) {
 759		result = -ECONNABORTED;
 760		goto accept_err;
 761	}
 762
 763	/* Get the new node's NODEID */
 764	make_sockaddr(&peeraddr, 0, &len);
 765	if (addr_to_nodeid(&peeraddr, &nodeid)) {
 766		unsigned char *b=(unsigned char *)&peeraddr;
 767		log_print("connect from non cluster node");
 768		print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE, 
 769				     b, sizeof(struct sockaddr_storage));
 770		sock_release(newsock);
 771		mutex_unlock(&con->sock_mutex);
 772		return -1;
 773	}
 774
 775	log_print("got connection from %d", nodeid);
 776
 777	/*  Check to see if we already have a connection to this node. This
 778	 *  could happen if the two nodes initiate a connection at roughly
 779	 *  the same time and the connections cross on the wire.
 780	 *  In this case we store the incoming one in "othercon"
 781	 */
 782	newcon = nodeid2con(nodeid, GFP_NOFS);
 783	if (!newcon) {
 784		result = -ENOMEM;
 785		goto accept_err;
 786	}
 787	mutex_lock_nested(&newcon->sock_mutex, 1);
 788	if (newcon->sock) {
 789		struct connection *othercon = newcon->othercon;
 790
 791		if (!othercon) {
 792			othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
 793			if (!othercon) {
 794				log_print("failed to allocate incoming socket");
 795				mutex_unlock(&newcon->sock_mutex);
 796				result = -ENOMEM;
 797				goto accept_err;
 798			}
 799			othercon->nodeid = nodeid;
 800			othercon->rx_action = receive_from_sock;
 801			mutex_init(&othercon->sock_mutex);
 802			INIT_LIST_HEAD(&othercon->writequeue);
 803			spin_lock_init(&othercon->writequeue_lock);
 804			INIT_WORK(&othercon->swork, process_send_sockets);
 805			INIT_WORK(&othercon->rwork, process_recv_sockets);
 
 806			set_bit(CF_IS_OTHERCON, &othercon->flags);
 
 
 
 807		}
 
 808		mutex_lock_nested(&othercon->sock_mutex, 2);
 809		if (!othercon->sock) {
 810			newcon->othercon = othercon;
 811			add_sock(newsock, othercon);
 812			addcon = othercon;
 813			mutex_unlock(&othercon->sock_mutex);
 814		}
 815		else {
 816			printk("Extra connection from node %d attempted\n", nodeid);
 817			result = -EAGAIN;
 818			mutex_unlock(&othercon->sock_mutex);
 819			mutex_unlock(&newcon->sock_mutex);
 820			goto accept_err;
 821		}
 822	}
 823	else {
 824		newcon->rx_action = receive_from_sock;
 825		/* accept copies the sk after we've saved the callbacks, so we
 826		   don't want to save them a second time or comm errors will
 827		   result in calling sk_error_report recursively. */
 828		add_sock(newsock, newcon);
 829		addcon = newcon;
 830	}
 831
 832	mutex_unlock(&newcon->sock_mutex);
 833
 834	/*
 835	 * Add it to the active queue in case we got data
 836	 * between processing the accept adding the socket
 837	 * to the read_sockets list
 838	 */
 839	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
 840		queue_work(recv_workqueue, &addcon->rwork);
 841	mutex_unlock(&con->sock_mutex);
 842
 843	return 0;
 844
 845accept_err:
 846	mutex_unlock(&con->sock_mutex);
 847	if (newsock)
 848		sock_release(newsock);
 849
 850	if (result != -EAGAIN)
 851		log_print("error accepting connection from node: %d", result);
 852	return result;
 853}
 854
 855static int sctp_accept_from_sock(struct connection *con)
 856{
 857	/* Check that the new node is in the lockspace */
 858	struct sctp_prim prim;
 859	int nodeid;
 860	int prim_len, ret;
 861	int addr_len;
 862	struct connection *newcon;
 863	struct connection *addcon;
 864	struct socket *newsock;
 865
 866	mutex_lock(&connections_lock);
 867	if (!dlm_allow_conn) {
 868		mutex_unlock(&connections_lock);
 869		return -1;
 870	}
 871	mutex_unlock(&connections_lock);
 872
 873	mutex_lock_nested(&con->sock_mutex, 0);
 874
 875	ret = kernel_accept(con->sock, &newsock, O_NONBLOCK);
 876	if (ret < 0)
 877		goto accept_err;
 878
 879	memset(&prim, 0, sizeof(struct sctp_prim));
 880	prim_len = sizeof(struct sctp_prim);
 881
 882	ret = kernel_getsockopt(newsock, IPPROTO_SCTP, SCTP_PRIMARY_ADDR,
 883				(char *)&prim, &prim_len);
 884	if (ret < 0) {
 885		log_print("getsockopt/sctp_primary_addr failed: %d", ret);
 886		goto accept_err;
 887	}
 888
 889	make_sockaddr(&prim.ssp_addr, 0, &addr_len);
 890	ret = addr_to_nodeid(&prim.ssp_addr, &nodeid);
 891	if (ret) {
 892		unsigned char *b = (unsigned char *)&prim.ssp_addr;
 893
 894		log_print("reject connect from unknown addr");
 895		print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
 896				     b, sizeof(struct sockaddr_storage));
 897		goto accept_err;
 898	}
 899
 900	newcon = nodeid2con(nodeid, GFP_NOFS);
 901	if (!newcon) {
 902		ret = -ENOMEM;
 903		goto accept_err;
 904	}
 905
 906	mutex_lock_nested(&newcon->sock_mutex, 1);
 907
 908	if (newcon->sock) {
 909		struct connection *othercon = newcon->othercon;
 910
 911		if (!othercon) {
 912			othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
 913			if (!othercon) {
 914				log_print("failed to allocate incoming socket");
 915				mutex_unlock(&newcon->sock_mutex);
 916				ret = -ENOMEM;
 917				goto accept_err;
 918			}
 919			othercon->nodeid = nodeid;
 920			othercon->rx_action = receive_from_sock;
 921			mutex_init(&othercon->sock_mutex);
 922			INIT_LIST_HEAD(&othercon->writequeue);
 923			spin_lock_init(&othercon->writequeue_lock);
 924			INIT_WORK(&othercon->swork, process_send_sockets);
 925			INIT_WORK(&othercon->rwork, process_recv_sockets);
 926			set_bit(CF_IS_OTHERCON, &othercon->flags);
 927		}
 928		mutex_lock_nested(&othercon->sock_mutex, 2);
 929		if (!othercon->sock) {
 930			newcon->othercon = othercon;
 931			add_sock(newsock, othercon);
 932			addcon = othercon;
 933			mutex_unlock(&othercon->sock_mutex);
 934		} else {
 935			printk("Extra connection from node %d attempted\n", nodeid);
 936			ret = -EAGAIN;
 937			mutex_unlock(&othercon->sock_mutex);
 938			mutex_unlock(&newcon->sock_mutex);
 939			goto accept_err;
 940		}
 941	} else {
 942		newcon->rx_action = receive_from_sock;
 943		add_sock(newsock, newcon);
 944		addcon = newcon;
 945	}
 946
 947	log_print("connected to %d", nodeid);
 948
 949	mutex_unlock(&newcon->sock_mutex);
 950
 951	/*
 952	 * Add it to the active queue in case we got data
 953	 * between processing the accept adding the socket
 954	 * to the read_sockets list
 955	 */
 956	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
 957		queue_work(recv_workqueue, &addcon->rwork);
 958	mutex_unlock(&con->sock_mutex);
 959
 960	return 0;
 961
 962accept_err:
 963	mutex_unlock(&con->sock_mutex);
 964	if (newsock)
 965		sock_release(newsock);
 966	if (ret != -EAGAIN)
 967		log_print("error accepting connection from node: %d", ret);
 968
 969	return ret;
 970}
 971
 972static void free_entry(struct writequeue_entry *e)
 973{
 974	__free_page(e->page);
 975	kfree(e);
 976}
 977
 978/*
 979 * writequeue_entry_complete - try to delete and free write queue entry
 980 * @e: write queue entry to try to delete
 981 * @completed: bytes completed
 982 *
 983 * writequeue_lock must be held.
 984 */
 985static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
 986{
 987	e->offset += completed;
 988	e->len -= completed;
 989
 990	if (e->len == 0 && e->users == 0) {
 991		list_del(&e->list);
 992		free_entry(e);
 993	}
 994}
 995
 996/*
 997 * sctp_bind_addrs - bind a SCTP socket to all our addresses
 998 */
 999static int sctp_bind_addrs(struct connection *con, uint16_t port)
1000{
1001	struct sockaddr_storage localaddr;
 
1002	int i, addr_len, result = 0;
1003
1004	for (i = 0; i < dlm_local_count; i++) {
1005		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1006		make_sockaddr(&localaddr, port, &addr_len);
1007
1008		if (!i)
1009			result = kernel_bind(con->sock,
1010					     (struct sockaddr *)&localaddr,
1011					     addr_len);
1012		else
1013			result = kernel_setsockopt(con->sock, SOL_SCTP,
1014						   SCTP_SOCKOPT_BINDX_ADD,
1015						   (char *)&localaddr, addr_len);
1016
1017		if (result < 0) {
1018			log_print("Can't bind to %d addr number %d, %d.\n",
1019				  port, i + 1, result);
1020			break;
1021		}
1022	}
1023	return result;
1024}
1025
1026/* Initiate an SCTP association.
1027   This is a special case of send_to_sock() in that we don't yet have a
1028   peeled-off socket for this association, so we use the listening socket
1029   and add the primary IP address of the remote node.
1030 */
1031static void sctp_connect_to_sock(struct connection *con)
1032{
1033	struct sockaddr_storage daddr;
1034	int one = 1;
1035	int result;
1036	int addr_len;
1037	struct socket *sock;
1038	struct timeval tv = { .tv_sec = 5, .tv_usec = 0 };
1039
1040	if (con->nodeid == 0) {
1041		log_print("attempt to connect sock 0 foiled");
1042		return;
1043	}
1044
1045	mutex_lock(&con->sock_mutex);
1046
1047	/* Some odd races can cause double-connects, ignore them */
1048	if (con->retries++ > MAX_CONNECT_RETRIES)
1049		goto out;
1050
1051	if (con->sock) {
1052		log_print("node %d already connected.", con->nodeid);
1053		goto out;
1054	}
1055
1056	memset(&daddr, 0, sizeof(daddr));
1057	result = nodeid_to_addr(con->nodeid, &daddr, NULL, true);
1058	if (result < 0) {
1059		log_print("no address for nodeid %d", con->nodeid);
1060		goto out;
1061	}
1062
1063	/* Create a socket to communicate with */
1064	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1065				  SOCK_STREAM, IPPROTO_SCTP, &sock);
1066	if (result < 0)
1067		goto socket_err;
1068
 
 
 
 
 
 
 
1069	con->rx_action = receive_from_sock;
1070	con->connect_action = sctp_connect_to_sock;
1071	add_sock(sock, con);
1072
1073	/* Bind to all addresses. */
1074	if (sctp_bind_addrs(con, 0))
1075		goto bind_err;
1076
1077	make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len);
1078
1079	log_print("connecting to %d", con->nodeid);
1080
1081	/* Turn off Nagle's algorithm */
1082	kernel_setsockopt(sock, SOL_SCTP, SCTP_NODELAY, (char *)&one,
1083			  sizeof(one));
1084
1085	/*
1086	 * Make sock->ops->connect() function return in specified time,
1087	 * since O_NONBLOCK argument in connect() function does not work here,
1088	 * then, we should restore the default value of this attribute.
1089	 */
1090	kernel_setsockopt(sock, SOL_SOCKET, SO_SNDTIMEO_OLD, (char *)&tv,
1091			  sizeof(tv));
1092	result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len,
1093				   0);
1094	memset(&tv, 0, sizeof(tv));
1095	kernel_setsockopt(sock, SOL_SOCKET, SO_SNDTIMEO_OLD, (char *)&tv,
1096			  sizeof(tv));
1097
1098	if (result == -EINPROGRESS)
1099		result = 0;
1100	if (result == 0)
1101		goto out;
1102
1103bind_err:
1104	con->sock = NULL;
1105	sock_release(sock);
1106
1107socket_err:
1108	/*
1109	 * Some errors are fatal and this list might need adjusting. For other
1110	 * errors we try again until the max number of retries is reached.
1111	 */
1112	if (result != -EHOSTUNREACH &&
1113	    result != -ENETUNREACH &&
1114	    result != -ENETDOWN &&
1115	    result != -EINVAL &&
1116	    result != -EPROTONOSUPPORT) {
1117		log_print("connect %d try %d error %d", con->nodeid,
1118			  con->retries, result);
1119		mutex_unlock(&con->sock_mutex);
1120		msleep(1000);
1121		lowcomms_connect_sock(con);
1122		return;
1123	}
1124
1125out:
1126	mutex_unlock(&con->sock_mutex);
1127}
1128
1129/* Connect a new socket to its peer */
1130static void tcp_connect_to_sock(struct connection *con)
1131{
1132	struct sockaddr_storage saddr, src_addr;
1133	int addr_len;
1134	struct socket *sock = NULL;
1135	int one = 1;
1136	int result;
1137
1138	if (con->nodeid == 0) {
1139		log_print("attempt to connect sock 0 foiled");
1140		return;
1141	}
1142
1143	mutex_lock(&con->sock_mutex);
1144	if (con->retries++ > MAX_CONNECT_RETRIES)
1145		goto out;
1146
1147	/* Some odd races can cause double-connects, ignore them */
1148	if (con->sock)
1149		goto out;
1150
1151	/* Create a socket to communicate with */
1152	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1153				  SOCK_STREAM, IPPROTO_TCP, &sock);
1154	if (result < 0)
1155		goto out_err;
1156
 
 
 
 
 
 
 
1157	memset(&saddr, 0, sizeof(saddr));
1158	result = nodeid_to_addr(con->nodeid, &saddr, NULL, false);
1159	if (result < 0) {
1160		log_print("no address for nodeid %d", con->nodeid);
1161		goto out_err;
1162	}
1163
1164	con->rx_action = receive_from_sock;
1165	con->connect_action = tcp_connect_to_sock;
 
1166	add_sock(sock, con);
1167
1168	/* Bind to our cluster-known address connecting to avoid
1169	   routing problems */
1170	memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1171	make_sockaddr(&src_addr, 0, &addr_len);
1172	result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1173				 addr_len);
1174	if (result < 0) {
1175		log_print("could not bind for connect: %d", result);
1176		/* This *may* not indicate a critical error */
1177	}
1178
1179	make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1180
1181	log_print("connecting to %d", con->nodeid);
1182
1183	/* Turn off Nagle's algorithm */
1184	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1185			  sizeof(one));
1186
1187	result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1188				   O_NONBLOCK);
1189	if (result == -EINPROGRESS)
1190		result = 0;
1191	if (result == 0)
1192		goto out;
1193
1194out_err:
1195	if (con->sock) {
1196		sock_release(con->sock);
1197		con->sock = NULL;
1198	} else if (sock) {
1199		sock_release(sock);
1200	}
1201	/*
1202	 * Some errors are fatal and this list might need adjusting. For other
1203	 * errors we try again until the max number of retries is reached.
1204	 */
1205	if (result != -EHOSTUNREACH &&
1206	    result != -ENETUNREACH &&
1207	    result != -ENETDOWN && 
1208	    result != -EINVAL &&
1209	    result != -EPROTONOSUPPORT) {
1210		log_print("connect %d try %d error %d", con->nodeid,
1211			  con->retries, result);
1212		mutex_unlock(&con->sock_mutex);
1213		msleep(1000);
1214		lowcomms_connect_sock(con);
1215		return;
1216	}
1217out:
1218	mutex_unlock(&con->sock_mutex);
1219	return;
1220}
1221
1222static struct socket *tcp_create_listen_sock(struct connection *con,
1223					     struct sockaddr_storage *saddr)
1224{
1225	struct socket *sock = NULL;
1226	int result = 0;
1227	int one = 1;
1228	int addr_len;
1229
1230	if (dlm_local_addr[0]->ss_family == AF_INET)
1231		addr_len = sizeof(struct sockaddr_in);
1232	else
1233		addr_len = sizeof(struct sockaddr_in6);
1234
1235	/* Create a socket to communicate with */
1236	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1237				  SOCK_STREAM, IPPROTO_TCP, &sock);
1238	if (result < 0) {
1239		log_print("Can't create listening comms socket");
1240		goto create_out;
1241	}
1242
 
 
1243	/* Turn off Nagle's algorithm */
1244	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1245			  sizeof(one));
1246
1247	result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
1248				   (char *)&one, sizeof(one));
1249
1250	if (result < 0) {
1251		log_print("Failed to set SO_REUSEADDR on socket: %d", result);
1252	}
1253	write_lock_bh(&sock->sk->sk_callback_lock);
1254	sock->sk->sk_user_data = con;
1255	save_listen_callbacks(sock);
1256	con->rx_action = tcp_accept_from_sock;
1257	con->connect_action = tcp_connect_to_sock;
1258	write_unlock_bh(&sock->sk->sk_callback_lock);
1259
1260	/* Bind to our port */
1261	make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1262	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1263	if (result < 0) {
1264		log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1265		sock_release(sock);
1266		sock = NULL;
1267		con->sock = NULL;
1268		goto create_out;
1269	}
1270	result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1271				 (char *)&one, sizeof(one));
1272	if (result < 0) {
1273		log_print("Set keepalive failed: %d", result);
1274	}
1275
1276	result = sock->ops->listen(sock, 5);
1277	if (result < 0) {
1278		log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1279		sock_release(sock);
1280		sock = NULL;
1281		goto create_out;
1282	}
1283
1284create_out:
1285	return sock;
1286}
1287
1288/* Get local addresses */
1289static void init_local(void)
1290{
1291	struct sockaddr_storage sas, *addr;
1292	int i;
1293
1294	dlm_local_count = 0;
1295	for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1296		if (dlm_our_addr(&sas, i))
1297			break;
1298
1299		addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS);
1300		if (!addr)
1301			break;
1302		dlm_local_addr[dlm_local_count++] = addr;
1303	}
1304}
1305
1306/* Initialise SCTP socket and bind to all interfaces */
1307static int sctp_listen_for_all(void)
1308{
1309	struct socket *sock = NULL;
1310	int result = -EINVAL;
1311	struct connection *con = nodeid2con(0, GFP_NOFS);
1312	int bufsize = NEEDED_RMEM;
1313	int one = 1;
1314
1315	if (!con)
1316		return -ENOMEM;
1317
1318	log_print("Using SCTP for communications");
1319
1320	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1321				  SOCK_STREAM, IPPROTO_SCTP, &sock);
1322	if (result < 0) {
1323		log_print("Can't create comms socket, check SCTP is loaded");
1324		goto out;
1325	}
1326
1327	result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1328				 (char *)&bufsize, sizeof(bufsize));
1329	if (result)
1330		log_print("Error increasing buffer space on socket %d", result);
1331
1332	result = kernel_setsockopt(sock, SOL_SCTP, SCTP_NODELAY, (char *)&one,
1333				   sizeof(one));
1334	if (result < 0)
1335		log_print("Could not set SCTP NODELAY error %d\n", result);
1336
1337	write_lock_bh(&sock->sk->sk_callback_lock);
1338	/* Init con struct */
1339	sock->sk->sk_user_data = con;
1340	save_listen_callbacks(sock);
1341	con->sock = sock;
1342	con->sock->sk->sk_data_ready = lowcomms_data_ready;
1343	con->rx_action = sctp_accept_from_sock;
1344	con->connect_action = sctp_connect_to_sock;
1345
1346	write_unlock_bh(&sock->sk->sk_callback_lock);
1347
1348	/* Bind to all addresses. */
1349	if (sctp_bind_addrs(con, dlm_config.ci_tcp_port))
1350		goto create_delsock;
1351
1352	result = sock->ops->listen(sock, 5);
1353	if (result < 0) {
1354		log_print("Can't set socket listening");
1355		goto create_delsock;
1356	}
1357
1358	return 0;
1359
1360create_delsock:
1361	sock_release(sock);
1362	con->sock = NULL;
1363out:
1364	return result;
1365}
1366
1367static int tcp_listen_for_all(void)
1368{
1369	struct socket *sock = NULL;
1370	struct connection *con = nodeid2con(0, GFP_NOFS);
1371	int result = -EINVAL;
1372
1373	if (!con)
1374		return -ENOMEM;
1375
1376	/* We don't support multi-homed hosts */
1377	if (dlm_local_addr[1] != NULL) {
1378		log_print("TCP protocol can't handle multi-homed hosts, "
1379			  "try SCTP");
1380		return -EINVAL;
1381	}
1382
1383	log_print("Using TCP for communications");
1384
1385	sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1386	if (sock) {
1387		add_sock(sock, con);
1388		result = 0;
1389	}
1390	else {
1391		result = -EADDRINUSE;
1392	}
1393
1394	return result;
1395}
1396
1397
1398
1399static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1400						     gfp_t allocation)
1401{
1402	struct writequeue_entry *entry;
1403
1404	entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1405	if (!entry)
1406		return NULL;
1407
1408	entry->page = alloc_page(allocation);
1409	if (!entry->page) {
1410		kfree(entry);
1411		return NULL;
1412	}
1413
1414	entry->offset = 0;
1415	entry->len = 0;
1416	entry->end = 0;
1417	entry->users = 0;
1418	entry->con = con;
1419
1420	return entry;
1421}
1422
1423void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1424{
1425	struct connection *con;
1426	struct writequeue_entry *e;
1427	int offset = 0;
1428
1429	con = nodeid2con(nodeid, allocation);
1430	if (!con)
1431		return NULL;
1432
1433	spin_lock(&con->writequeue_lock);
1434	e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1435	if ((&e->list == &con->writequeue) ||
1436	    (PAGE_SIZE - e->end < len)) {
1437		e = NULL;
1438	} else {
1439		offset = e->end;
1440		e->end += len;
1441		e->users++;
1442	}
1443	spin_unlock(&con->writequeue_lock);
1444
1445	if (e) {
1446	got_one:
1447		*ppc = page_address(e->page) + offset;
1448		return e;
1449	}
1450
1451	e = new_writequeue_entry(con, allocation);
1452	if (e) {
1453		spin_lock(&con->writequeue_lock);
1454		offset = e->end;
1455		e->end += len;
1456		e->users++;
1457		list_add_tail(&e->list, &con->writequeue);
1458		spin_unlock(&con->writequeue_lock);
1459		goto got_one;
1460	}
1461	return NULL;
1462}
1463
1464void dlm_lowcomms_commit_buffer(void *mh)
1465{
1466	struct writequeue_entry *e = (struct writequeue_entry *)mh;
1467	struct connection *con = e->con;
1468	int users;
1469
1470	spin_lock(&con->writequeue_lock);
1471	users = --e->users;
1472	if (users)
1473		goto out;
1474	e->len = e->end - e->offset;
1475	spin_unlock(&con->writequeue_lock);
1476
1477	queue_work(send_workqueue, &con->swork);
1478	return;
1479
1480out:
1481	spin_unlock(&con->writequeue_lock);
1482	return;
1483}
1484
1485/* Send a message */
1486static void send_to_sock(struct connection *con)
1487{
1488	int ret = 0;
1489	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1490	struct writequeue_entry *e;
1491	int len, offset;
1492	int count = 0;
1493
1494	mutex_lock(&con->sock_mutex);
1495	if (con->sock == NULL)
1496		goto out_connect;
1497
1498	spin_lock(&con->writequeue_lock);
1499	for (;;) {
1500		e = list_entry(con->writequeue.next, struct writequeue_entry,
1501			       list);
1502		if ((struct list_head *) e == &con->writequeue)
1503			break;
1504
1505		len = e->len;
1506		offset = e->offset;
1507		BUG_ON(len == 0 && e->users == 0);
1508		spin_unlock(&con->writequeue_lock);
1509
1510		ret = 0;
1511		if (len) {
1512			ret = kernel_sendpage(con->sock, e->page, offset, len,
1513					      msg_flags);
1514			if (ret == -EAGAIN || ret == 0) {
1515				if (ret == -EAGAIN &&
1516				    test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1517				    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1518					/* Notify TCP that we're limited by the
1519					 * application window size.
1520					 */
1521					set_bit(SOCK_NOSPACE, &con->sock->flags);
1522					con->sock->sk->sk_write_pending++;
1523				}
1524				cond_resched();
1525				goto out;
1526			} else if (ret < 0)
1527				goto send_error;
1528		}
1529
1530		/* Don't starve people filling buffers */
1531		if (++count >= MAX_SEND_MSG_COUNT) {
1532			cond_resched();
1533			count = 0;
1534		}
1535
1536		spin_lock(&con->writequeue_lock);
1537		writequeue_entry_complete(e, ret);
1538	}
1539	spin_unlock(&con->writequeue_lock);
1540out:
1541	mutex_unlock(&con->sock_mutex);
1542	return;
1543
1544send_error:
1545	mutex_unlock(&con->sock_mutex);
1546	close_connection(con, true, false, true);
1547	/* Requeue the send work. When the work daemon runs again, it will try
1548	   a new connection, then call this function again. */
1549	queue_work(send_workqueue, &con->swork);
1550	return;
1551
1552out_connect:
1553	mutex_unlock(&con->sock_mutex);
1554	queue_work(send_workqueue, &con->swork);
1555	cond_resched();
1556}
1557
1558static void clean_one_writequeue(struct connection *con)
1559{
1560	struct writequeue_entry *e, *safe;
1561
1562	spin_lock(&con->writequeue_lock);
1563	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1564		list_del(&e->list);
1565		free_entry(e);
1566	}
1567	spin_unlock(&con->writequeue_lock);
1568}
1569
1570/* Called from recovery when it knows that a node has
1571   left the cluster */
1572int dlm_lowcomms_close(int nodeid)
1573{
1574	struct connection *con;
1575	struct dlm_node_addr *na;
1576
1577	log_print("closing connection to node %d", nodeid);
1578	con = nodeid2con(nodeid, 0);
1579	if (con) {
1580		set_bit(CF_CLOSE, &con->flags);
1581		close_connection(con, true, true, true);
1582		clean_one_writequeue(con);
1583	}
1584
1585	spin_lock(&dlm_node_addrs_spin);
1586	na = find_node_addr(nodeid);
1587	if (na) {
1588		list_del(&na->list);
1589		while (na->addr_count--)
1590			kfree(na->addr[na->addr_count]);
1591		kfree(na);
1592	}
1593	spin_unlock(&dlm_node_addrs_spin);
1594
1595	return 0;
1596}
1597
1598/* Receive workqueue function */
1599static void process_recv_sockets(struct work_struct *work)
1600{
1601	struct connection *con = container_of(work, struct connection, rwork);
1602	int err;
1603
1604	clear_bit(CF_READ_PENDING, &con->flags);
1605	do {
1606		err = con->rx_action(con);
1607	} while (!err);
1608}
1609
1610/* Send workqueue function */
1611static void process_send_sockets(struct work_struct *work)
1612{
1613	struct connection *con = container_of(work, struct connection, swork);
1614
1615	clear_bit(CF_WRITE_PENDING, &con->flags);
1616	if (con->sock == NULL) /* not mutex protected so check it inside too */
1617		con->connect_action(con);
1618	if (!list_empty(&con->writequeue))
1619		send_to_sock(con);
1620}
1621
1622
1623/* Discard all entries on the write queues */
1624static void clean_writequeues(void)
1625{
1626	foreach_conn(clean_one_writequeue);
1627}
1628
1629static void work_stop(void)
1630{
1631	if (recv_workqueue)
1632		destroy_workqueue(recv_workqueue);
1633	if (send_workqueue)
1634		destroy_workqueue(send_workqueue);
1635}
1636
1637static int work_start(void)
1638{
1639	recv_workqueue = alloc_workqueue("dlm_recv",
1640					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1641	if (!recv_workqueue) {
1642		log_print("can't start dlm_recv");
1643		return -ENOMEM;
1644	}
1645
1646	send_workqueue = alloc_workqueue("dlm_send",
1647					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1648	if (!send_workqueue) {
1649		log_print("can't start dlm_send");
1650		destroy_workqueue(recv_workqueue);
1651		return -ENOMEM;
1652	}
1653
1654	return 0;
1655}
1656
1657static void _stop_conn(struct connection *con, bool and_other)
1658{
1659	mutex_lock(&con->sock_mutex);
1660	set_bit(CF_CLOSE, &con->flags);
1661	set_bit(CF_READ_PENDING, &con->flags);
1662	set_bit(CF_WRITE_PENDING, &con->flags);
1663	if (con->sock && con->sock->sk) {
1664		write_lock_bh(&con->sock->sk->sk_callback_lock);
1665		con->sock->sk->sk_user_data = NULL;
1666		write_unlock_bh(&con->sock->sk->sk_callback_lock);
1667	}
1668	if (con->othercon && and_other)
1669		_stop_conn(con->othercon, false);
1670	mutex_unlock(&con->sock_mutex);
1671}
1672
1673static void stop_conn(struct connection *con)
1674{
1675	_stop_conn(con, true);
1676}
1677
 
 
 
 
 
 
1678static void free_conn(struct connection *con)
1679{
1680	close_connection(con, true, true, true);
1681	if (con->othercon)
1682		kmem_cache_free(con_cache, con->othercon);
1683	hlist_del(&con->list);
1684	kmem_cache_free(con_cache, con);
1685}
1686
1687static void work_flush(void)
1688{
1689	int ok;
1690	int i;
1691	struct hlist_node *n;
1692	struct connection *con;
1693
1694	if (recv_workqueue)
1695		flush_workqueue(recv_workqueue);
1696	if (send_workqueue)
1697		flush_workqueue(send_workqueue);
1698	do {
1699		ok = 1;
1700		foreach_conn(stop_conn);
1701		if (recv_workqueue)
1702			flush_workqueue(recv_workqueue);
1703		if (send_workqueue)
1704			flush_workqueue(send_workqueue);
1705		for (i = 0; i < CONN_HASH_SIZE && ok; i++) {
1706			hlist_for_each_entry_safe(con, n,
1707						  &connection_hash[i], list) {
1708				ok &= test_bit(CF_READ_PENDING, &con->flags);
1709				ok &= test_bit(CF_WRITE_PENDING, &con->flags);
1710				if (con->othercon) {
1711					ok &= test_bit(CF_READ_PENDING,
1712						       &con->othercon->flags);
1713					ok &= test_bit(CF_WRITE_PENDING,
1714						       &con->othercon->flags);
1715				}
1716			}
1717		}
1718	} while (!ok);
1719}
1720
1721void dlm_lowcomms_stop(void)
1722{
1723	/* Set all the flags to prevent any
1724	   socket activity.
1725	*/
1726	mutex_lock(&connections_lock);
1727	dlm_allow_conn = 0;
1728	mutex_unlock(&connections_lock);
 
1729	work_flush();
1730	clean_writequeues();
1731	foreach_conn(free_conn);
1732	work_stop();
1733
1734	kmem_cache_destroy(con_cache);
1735}
1736
1737int dlm_lowcomms_start(void)
1738{
1739	int error = -EINVAL;
1740	struct connection *con;
1741	int i;
1742
1743	for (i = 0; i < CONN_HASH_SIZE; i++)
1744		INIT_HLIST_HEAD(&connection_hash[i]);
1745
1746	init_local();
1747	if (!dlm_local_count) {
1748		error = -ENOTCONN;
1749		log_print("no local IP address has been set");
1750		goto fail;
1751	}
1752
1753	error = -ENOMEM;
1754	con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1755				      __alignof__(struct connection), 0,
1756				      NULL);
1757	if (!con_cache)
1758		goto fail;
1759
1760	error = work_start();
1761	if (error)
1762		goto fail_destroy;
1763
1764	dlm_allow_conn = 1;
1765
1766	/* Start listening */
1767	if (dlm_config.ci_protocol == 0)
1768		error = tcp_listen_for_all();
1769	else
1770		error = sctp_listen_for_all();
1771	if (error)
1772		goto fail_unlisten;
1773
1774	return 0;
1775
1776fail_unlisten:
1777	dlm_allow_conn = 0;
1778	con = nodeid2con(0,0);
1779	if (con) {
1780		close_connection(con, false, true, true);
1781		kmem_cache_free(con_cache, con);
1782	}
1783fail_destroy:
1784	kmem_cache_destroy(con_cache);
1785fail:
1786	return error;
1787}
1788
1789void dlm_lowcomms_exit(void)
1790{
1791	struct dlm_node_addr *na, *safe;
1792
1793	spin_lock(&dlm_node_addrs_spin);
1794	list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
1795		list_del(&na->list);
1796		while (na->addr_count--)
1797			kfree(na->addr[na->addr_count]);
1798		kfree(na);
1799	}
1800	spin_unlock(&dlm_node_addrs_spin);
1801}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/******************************************************************************
   3*******************************************************************************
   4**
   5**  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
   6**  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
   7**
   8**
   9*******************************************************************************
  10******************************************************************************/
  11
  12/*
  13 * lowcomms.c
  14 *
  15 * This is the "low-level" comms layer.
  16 *
  17 * It is responsible for sending/receiving messages
  18 * from other nodes in the cluster.
  19 *
  20 * Cluster nodes are referred to by their nodeids. nodeids are
  21 * simply 32 bit numbers to the locking module - if they need to
  22 * be expanded for the cluster infrastructure then that is its
  23 * responsibility. It is this layer's
  24 * responsibility to resolve these into IP address or
  25 * whatever it needs for inter-node communication.
  26 *
  27 * The comms level is two kernel threads that deal mainly with
  28 * the receiving of messages from other nodes and passing them
  29 * up to the mid-level comms layer (which understands the
  30 * message format) for execution by the locking core, and
  31 * a send thread which does all the setting up of connections
  32 * to remote nodes and the sending of data. Threads are not allowed
  33 * to send their own data because it may cause them to wait in times
  34 * of high load. Also, this way, the sending thread can collect together
  35 * messages bound for one node and send them in one block.
  36 *
  37 * lowcomms will choose to use either TCP or SCTP as its transport layer
  38 * depending on the configuration variable 'protocol'. This should be set
  39 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
  40 * cluster-wide mechanism as it must be the same on all nodes of the cluster
  41 * for the DLM to function.
  42 *
  43 */
  44
  45#include <asm/ioctls.h>
  46#include <net/sock.h>
  47#include <net/tcp.h>
  48#include <linux/pagemap.h>
  49#include <linux/file.h>
  50#include <linux/mutex.h>
  51#include <linux/sctp.h>
  52#include <linux/slab.h>
  53#include <net/sctp/sctp.h>
  54#include <net/ipv6.h>
  55
  56#include "dlm_internal.h"
  57#include "lowcomms.h"
  58#include "midcomms.h"
  59#include "config.h"
  60
  61#define NEEDED_RMEM (4*1024*1024)
  62#define CONN_HASH_SIZE 32
  63
  64/* Number of messages to send before rescheduling */
  65#define MAX_SEND_MSG_COUNT 25
  66#define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(10000)
  67
  68struct cbuf {
  69	unsigned int base;
  70	unsigned int len;
  71	unsigned int mask;
  72};
  73
  74static void cbuf_add(struct cbuf *cb, int n)
  75{
  76	cb->len += n;
  77}
  78
  79static int cbuf_data(struct cbuf *cb)
  80{
  81	return ((cb->base + cb->len) & cb->mask);
  82}
  83
  84static void cbuf_init(struct cbuf *cb, int size)
  85{
  86	cb->base = cb->len = 0;
  87	cb->mask = size-1;
  88}
  89
  90static void cbuf_eat(struct cbuf *cb, int n)
  91{
  92	cb->len  -= n;
  93	cb->base += n;
  94	cb->base &= cb->mask;
  95}
  96
  97static bool cbuf_empty(struct cbuf *cb)
  98{
  99	return cb->len == 0;
 100}
 101
 102struct connection {
 103	struct socket *sock;	/* NULL if not connected */
 104	uint32_t nodeid;	/* So we know who we are in the list */
 105	struct mutex sock_mutex;
 106	unsigned long flags;
 107#define CF_READ_PENDING 1
 108#define CF_WRITE_PENDING 2
 109#define CF_INIT_PENDING 4
 110#define CF_IS_OTHERCON 5
 111#define CF_CLOSE 6
 112#define CF_APP_LIMITED 7
 113#define CF_CLOSING 8
 114#define CF_SHUTDOWN 9
 115	struct list_head writequeue;  /* List of outgoing writequeue_entries */
 116	spinlock_t writequeue_lock;
 117	int (*rx_action) (struct connection *);	/* What to do when active */
 118	void (*connect_action) (struct connection *);	/* What to do to connect */
 119	void (*shutdown_action)(struct connection *con); /* What to do to shutdown */
 120	struct page *rx_page;
 121	struct cbuf cb;
 122	int retries;
 123#define MAX_CONNECT_RETRIES 3
 124	struct hlist_node list;
 125	struct connection *othercon;
 126	struct work_struct rwork; /* Receive workqueue */
 127	struct work_struct swork; /* Send workqueue */
 128	wait_queue_head_t shutdown_wait; /* wait for graceful shutdown */
 129};
 130#define sock2con(x) ((struct connection *)(x)->sk_user_data)
 131
 132/* An entry waiting to be sent */
 133struct writequeue_entry {
 134	struct list_head list;
 135	struct page *page;
 136	int offset;
 137	int len;
 138	int end;
 139	int users;
 140	struct connection *con;
 141};
 142
 143struct dlm_node_addr {
 144	struct list_head list;
 145	int nodeid;
 146	int addr_count;
 147	int curr_addr_index;
 148	struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
 149};
 150
 151static struct listen_sock_callbacks {
 152	void (*sk_error_report)(struct sock *);
 153	void (*sk_data_ready)(struct sock *);
 154	void (*sk_state_change)(struct sock *);
 155	void (*sk_write_space)(struct sock *);
 156} listen_sock;
 157
 158static LIST_HEAD(dlm_node_addrs);
 159static DEFINE_SPINLOCK(dlm_node_addrs_spin);
 160
 161static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
 162static int dlm_local_count;
 163static int dlm_allow_conn;
 164
 165/* Work queues */
 166static struct workqueue_struct *recv_workqueue;
 167static struct workqueue_struct *send_workqueue;
 168
 169static struct hlist_head connection_hash[CONN_HASH_SIZE];
 170static DEFINE_MUTEX(connections_lock);
 171static struct kmem_cache *con_cache;
 172
 173static void process_recv_sockets(struct work_struct *work);
 174static void process_send_sockets(struct work_struct *work);
 175
 176
 177/* This is deliberately very simple because most clusters have simple
 178   sequential nodeids, so we should be able to go straight to a connection
 179   struct in the array */
 180static inline int nodeid_hash(int nodeid)
 181{
 182	return nodeid & (CONN_HASH_SIZE-1);
 183}
 184
 185static struct connection *__find_con(int nodeid)
 186{
 187	int r;
 188	struct connection *con;
 189
 190	r = nodeid_hash(nodeid);
 191
 192	hlist_for_each_entry(con, &connection_hash[r], list) {
 193		if (con->nodeid == nodeid)
 194			return con;
 195	}
 196	return NULL;
 197}
 198
 199/*
 200 * If 'allocation' is zero then we don't attempt to create a new
 201 * connection structure for this node.
 202 */
 203static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
 204{
 205	struct connection *con = NULL;
 206	int r;
 207
 208	con = __find_con(nodeid);
 209	if (con || !alloc)
 210		return con;
 211
 212	con = kmem_cache_zalloc(con_cache, alloc);
 213	if (!con)
 214		return NULL;
 215
 216	r = nodeid_hash(nodeid);
 217	hlist_add_head(&con->list, &connection_hash[r]);
 218
 219	con->nodeid = nodeid;
 220	mutex_init(&con->sock_mutex);
 221	INIT_LIST_HEAD(&con->writequeue);
 222	spin_lock_init(&con->writequeue_lock);
 223	INIT_WORK(&con->swork, process_send_sockets);
 224	INIT_WORK(&con->rwork, process_recv_sockets);
 225	init_waitqueue_head(&con->shutdown_wait);
 226
 227	/* Setup action pointers for child sockets */
 228	if (con->nodeid) {
 229		struct connection *zerocon = __find_con(0);
 230
 231		con->connect_action = zerocon->connect_action;
 232		if (!con->rx_action)
 233			con->rx_action = zerocon->rx_action;
 234	}
 235
 236	return con;
 237}
 238
 239/* Loop round all connections */
 240static void foreach_conn(void (*conn_func)(struct connection *c))
 241{
 242	int i;
 243	struct hlist_node *n;
 244	struct connection *con;
 245
 246	for (i = 0; i < CONN_HASH_SIZE; i++) {
 247		hlist_for_each_entry_safe(con, n, &connection_hash[i], list)
 248			conn_func(con);
 249	}
 250}
 251
 252static struct connection *nodeid2con(int nodeid, gfp_t allocation)
 253{
 254	struct connection *con;
 255
 256	mutex_lock(&connections_lock);
 257	con = __nodeid2con(nodeid, allocation);
 258	mutex_unlock(&connections_lock);
 259
 260	return con;
 261}
 262
 263static struct dlm_node_addr *find_node_addr(int nodeid)
 264{
 265	struct dlm_node_addr *na;
 266
 267	list_for_each_entry(na, &dlm_node_addrs, list) {
 268		if (na->nodeid == nodeid)
 269			return na;
 270	}
 271	return NULL;
 272}
 273
 274static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y)
 275{
 276	switch (x->ss_family) {
 277	case AF_INET: {
 278		struct sockaddr_in *sinx = (struct sockaddr_in *)x;
 279		struct sockaddr_in *siny = (struct sockaddr_in *)y;
 280		if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
 281			return 0;
 282		if (sinx->sin_port != siny->sin_port)
 283			return 0;
 284		break;
 285	}
 286	case AF_INET6: {
 287		struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
 288		struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
 289		if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
 290			return 0;
 291		if (sinx->sin6_port != siny->sin6_port)
 292			return 0;
 293		break;
 294	}
 295	default:
 296		return 0;
 297	}
 298	return 1;
 299}
 300
 301static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
 302			  struct sockaddr *sa_out, bool try_new_addr)
 303{
 304	struct sockaddr_storage sas;
 305	struct dlm_node_addr *na;
 306
 307	if (!dlm_local_count)
 308		return -1;
 309
 310	spin_lock(&dlm_node_addrs_spin);
 311	na = find_node_addr(nodeid);
 312	if (na && na->addr_count) {
 313		memcpy(&sas, na->addr[na->curr_addr_index],
 314		       sizeof(struct sockaddr_storage));
 315
 316		if (try_new_addr) {
 317			na->curr_addr_index++;
 318			if (na->curr_addr_index == na->addr_count)
 319				na->curr_addr_index = 0;
 320		}
 321	}
 322	spin_unlock(&dlm_node_addrs_spin);
 323
 324	if (!na)
 325		return -EEXIST;
 326
 327	if (!na->addr_count)
 328		return -ENOENT;
 329
 330	if (sas_out)
 331		memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
 332
 333	if (!sa_out)
 334		return 0;
 335
 336	if (dlm_local_addr[0]->ss_family == AF_INET) {
 337		struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
 338		struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
 339		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
 340	} else {
 341		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
 342		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
 343		ret6->sin6_addr = in6->sin6_addr;
 344	}
 345
 346	return 0;
 347}
 348
 349static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid)
 350{
 351	struct dlm_node_addr *na;
 352	int rv = -EEXIST;
 353	int addr_i;
 354
 355	spin_lock(&dlm_node_addrs_spin);
 356	list_for_each_entry(na, &dlm_node_addrs, list) {
 357		if (!na->addr_count)
 358			continue;
 359
 360		for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
 361			if (addr_compare(na->addr[addr_i], addr)) {
 362				*nodeid = na->nodeid;
 363				rv = 0;
 364				goto unlock;
 365			}
 366		}
 367	}
 368unlock:
 369	spin_unlock(&dlm_node_addrs_spin);
 370	return rv;
 371}
 372
 373int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
 374{
 375	struct sockaddr_storage *new_addr;
 376	struct dlm_node_addr *new_node, *na;
 377
 378	new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
 379	if (!new_node)
 380		return -ENOMEM;
 381
 382	new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
 383	if (!new_addr) {
 384		kfree(new_node);
 385		return -ENOMEM;
 386	}
 387
 388	memcpy(new_addr, addr, len);
 389
 390	spin_lock(&dlm_node_addrs_spin);
 391	na = find_node_addr(nodeid);
 392	if (!na) {
 393		new_node->nodeid = nodeid;
 394		new_node->addr[0] = new_addr;
 395		new_node->addr_count = 1;
 396		list_add(&new_node->list, &dlm_node_addrs);
 397		spin_unlock(&dlm_node_addrs_spin);
 398		return 0;
 399	}
 400
 401	if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
 402		spin_unlock(&dlm_node_addrs_spin);
 403		kfree(new_addr);
 404		kfree(new_node);
 405		return -ENOSPC;
 406	}
 407
 408	na->addr[na->addr_count++] = new_addr;
 409	spin_unlock(&dlm_node_addrs_spin);
 410	kfree(new_node);
 411	return 0;
 412}
 413
 414/* Data available on socket or listen socket received a connect */
 415static void lowcomms_data_ready(struct sock *sk)
 416{
 417	struct connection *con;
 418
 419	read_lock_bh(&sk->sk_callback_lock);
 420	con = sock2con(sk);
 421	if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
 422		queue_work(recv_workqueue, &con->rwork);
 423	read_unlock_bh(&sk->sk_callback_lock);
 424}
 425
 426static void lowcomms_write_space(struct sock *sk)
 427{
 428	struct connection *con;
 429
 430	read_lock_bh(&sk->sk_callback_lock);
 431	con = sock2con(sk);
 432	if (!con)
 433		goto out;
 434
 435	clear_bit(SOCK_NOSPACE, &con->sock->flags);
 436
 437	if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
 438		con->sock->sk->sk_write_pending--;
 439		clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
 440	}
 441
 442	queue_work(send_workqueue, &con->swork);
 443out:
 444	read_unlock_bh(&sk->sk_callback_lock);
 445}
 446
 447static inline void lowcomms_connect_sock(struct connection *con)
 448{
 449	if (test_bit(CF_CLOSE, &con->flags))
 450		return;
 451	queue_work(send_workqueue, &con->swork);
 452	cond_resched();
 453}
 454
 455static void lowcomms_state_change(struct sock *sk)
 456{
 457	/* SCTP layer is not calling sk_data_ready when the connection
 458	 * is done, so we catch the signal through here. Also, it
 459	 * doesn't switch socket state when entering shutdown, so we
 460	 * skip the write in that case.
 461	 */
 462	if (sk->sk_shutdown) {
 463		if (sk->sk_shutdown == RCV_SHUTDOWN)
 464			lowcomms_data_ready(sk);
 465	} else if (sk->sk_state == TCP_ESTABLISHED) {
 466		lowcomms_write_space(sk);
 467	}
 468}
 469
 470int dlm_lowcomms_connect_node(int nodeid)
 471{
 472	struct connection *con;
 473
 474	if (nodeid == dlm_our_nodeid())
 475		return 0;
 476
 477	con = nodeid2con(nodeid, GFP_NOFS);
 478	if (!con)
 479		return -ENOMEM;
 480	lowcomms_connect_sock(con);
 481	return 0;
 482}
 483
 484static void lowcomms_error_report(struct sock *sk)
 485{
 486	struct connection *con;
 487	struct sockaddr_storage saddr;
 488	void (*orig_report)(struct sock *) = NULL;
 489
 490	read_lock_bh(&sk->sk_callback_lock);
 491	con = sock2con(sk);
 492	if (con == NULL)
 493		goto out;
 494
 495	orig_report = listen_sock.sk_error_report;
 496	if (con->sock == NULL ||
 497	    kernel_getpeername(con->sock, (struct sockaddr *)&saddr) < 0) {
 498		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
 499				   "sending to node %d, port %d, "
 500				   "sk_err=%d/%d\n", dlm_our_nodeid(),
 501				   con->nodeid, dlm_config.ci_tcp_port,
 502				   sk->sk_err, sk->sk_err_soft);
 503	} else if (saddr.ss_family == AF_INET) {
 504		struct sockaddr_in *sin4 = (struct sockaddr_in *)&saddr;
 505
 506		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
 507				   "sending to node %d at %pI4, port %d, "
 508				   "sk_err=%d/%d\n", dlm_our_nodeid(),
 509				   con->nodeid, &sin4->sin_addr.s_addr,
 510				   dlm_config.ci_tcp_port, sk->sk_err,
 511				   sk->sk_err_soft);
 512	} else {
 513		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&saddr;
 514
 515		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
 516				   "sending to node %d at %u.%u.%u.%u, "
 517				   "port %d, sk_err=%d/%d\n", dlm_our_nodeid(),
 518				   con->nodeid, sin6->sin6_addr.s6_addr32[0],
 519				   sin6->sin6_addr.s6_addr32[1],
 520				   sin6->sin6_addr.s6_addr32[2],
 521				   sin6->sin6_addr.s6_addr32[3],
 522				   dlm_config.ci_tcp_port, sk->sk_err,
 523				   sk->sk_err_soft);
 524	}
 525out:
 526	read_unlock_bh(&sk->sk_callback_lock);
 527	if (orig_report)
 528		orig_report(sk);
 529}
 530
 531/* Note: sk_callback_lock must be locked before calling this function. */
 532static void save_listen_callbacks(struct socket *sock)
 533{
 534	struct sock *sk = sock->sk;
 535
 536	listen_sock.sk_data_ready = sk->sk_data_ready;
 537	listen_sock.sk_state_change = sk->sk_state_change;
 538	listen_sock.sk_write_space = sk->sk_write_space;
 539	listen_sock.sk_error_report = sk->sk_error_report;
 540}
 541
 542static void restore_callbacks(struct socket *sock)
 543{
 544	struct sock *sk = sock->sk;
 545
 546	write_lock_bh(&sk->sk_callback_lock);
 547	sk->sk_user_data = NULL;
 548	sk->sk_data_ready = listen_sock.sk_data_ready;
 549	sk->sk_state_change = listen_sock.sk_state_change;
 550	sk->sk_write_space = listen_sock.sk_write_space;
 551	sk->sk_error_report = listen_sock.sk_error_report;
 552	write_unlock_bh(&sk->sk_callback_lock);
 553}
 554
 555/* Make a socket active */
 556static void add_sock(struct socket *sock, struct connection *con)
 557{
 558	struct sock *sk = sock->sk;
 559
 560	write_lock_bh(&sk->sk_callback_lock);
 561	con->sock = sock;
 562
 563	sk->sk_user_data = con;
 564	/* Install a data_ready callback */
 565	sk->sk_data_ready = lowcomms_data_ready;
 566	sk->sk_write_space = lowcomms_write_space;
 567	sk->sk_state_change = lowcomms_state_change;
 568	sk->sk_allocation = GFP_NOFS;
 569	sk->sk_error_report = lowcomms_error_report;
 570	write_unlock_bh(&sk->sk_callback_lock);
 571}
 572
 573/* Add the port number to an IPv6 or 4 sockaddr and return the address
 574   length */
 575static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
 576			  int *addr_len)
 577{
 578	saddr->ss_family =  dlm_local_addr[0]->ss_family;
 579	if (saddr->ss_family == AF_INET) {
 580		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
 581		in4_addr->sin_port = cpu_to_be16(port);
 582		*addr_len = sizeof(struct sockaddr_in);
 583		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
 584	} else {
 585		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
 586		in6_addr->sin6_port = cpu_to_be16(port);
 587		*addr_len = sizeof(struct sockaddr_in6);
 588	}
 589	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
 590}
 591
 592/* Close a remote connection and tidy up */
 593static void close_connection(struct connection *con, bool and_other,
 594			     bool tx, bool rx)
 595{
 596	bool closing = test_and_set_bit(CF_CLOSING, &con->flags);
 597
 598	if (tx && !closing && cancel_work_sync(&con->swork)) {
 599		log_print("canceled swork for node %d", con->nodeid);
 600		clear_bit(CF_WRITE_PENDING, &con->flags);
 601	}
 602	if (rx && !closing && cancel_work_sync(&con->rwork)) {
 603		log_print("canceled rwork for node %d", con->nodeid);
 604		clear_bit(CF_READ_PENDING, &con->flags);
 605	}
 606
 607	mutex_lock(&con->sock_mutex);
 608	if (con->sock) {
 609		restore_callbacks(con->sock);
 610		sock_release(con->sock);
 611		con->sock = NULL;
 612	}
 613	if (con->othercon && and_other) {
 614		/* Will only re-enter once. */
 615		close_connection(con->othercon, false, true, true);
 616	}
 617	if (con->rx_page) {
 618		__free_page(con->rx_page);
 619		con->rx_page = NULL;
 620	}
 621
 622	con->retries = 0;
 623	mutex_unlock(&con->sock_mutex);
 624	clear_bit(CF_CLOSING, &con->flags);
 625}
 626
 627static void shutdown_connection(struct connection *con)
 628{
 629	int ret;
 630
 631	if (cancel_work_sync(&con->swork)) {
 632		log_print("canceled swork for node %d", con->nodeid);
 633		clear_bit(CF_WRITE_PENDING, &con->flags);
 634	}
 635
 636	mutex_lock(&con->sock_mutex);
 637	/* nothing to shutdown */
 638	if (!con->sock) {
 639		mutex_unlock(&con->sock_mutex);
 640		return;
 641	}
 642
 643	set_bit(CF_SHUTDOWN, &con->flags);
 644	ret = kernel_sock_shutdown(con->sock, SHUT_WR);
 645	mutex_unlock(&con->sock_mutex);
 646	if (ret) {
 647		log_print("Connection %p failed to shutdown: %d will force close",
 648			  con, ret);
 649		goto force_close;
 650	} else {
 651		ret = wait_event_timeout(con->shutdown_wait,
 652					 !test_bit(CF_SHUTDOWN, &con->flags),
 653					 DLM_SHUTDOWN_WAIT_TIMEOUT);
 654		if (ret == 0) {
 655			log_print("Connection %p shutdown timed out, will force close",
 656				  con);
 657			goto force_close;
 658		}
 659	}
 660
 661	return;
 662
 663force_close:
 664	clear_bit(CF_SHUTDOWN, &con->flags);
 665	close_connection(con, false, true, true);
 666}
 667
 668static void dlm_tcp_shutdown(struct connection *con)
 669{
 670	if (con->othercon)
 671		shutdown_connection(con->othercon);
 672	shutdown_connection(con);
 673}
 674
 675/* Data received from remote end */
 676static int receive_from_sock(struct connection *con)
 677{
 678	int ret = 0;
 679	struct msghdr msg = {};
 680	struct kvec iov[2];
 681	unsigned len;
 682	int r;
 683	int call_again_soon = 0;
 684	int nvec;
 685
 686	mutex_lock(&con->sock_mutex);
 687
 688	if (con->sock == NULL) {
 689		ret = -EAGAIN;
 690		goto out_close;
 691	}
 692	if (con->nodeid == 0) {
 693		ret = -EINVAL;
 694		goto out_close;
 695	}
 696
 697	if (con->rx_page == NULL) {
 698		/*
 699		 * This doesn't need to be atomic, but I think it should
 700		 * improve performance if it is.
 701		 */
 702		con->rx_page = alloc_page(GFP_ATOMIC);
 703		if (con->rx_page == NULL)
 704			goto out_resched;
 705		cbuf_init(&con->cb, PAGE_SIZE);
 706	}
 707
 708	/*
 709	 * iov[0] is the bit of the circular buffer between the current end
 710	 * point (cb.base + cb.len) and the end of the buffer.
 711	 */
 712	iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
 713	iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
 714	iov[1].iov_len = 0;
 715	nvec = 1;
 716
 717	/*
 718	 * iov[1] is the bit of the circular buffer between the start of the
 719	 * buffer and the start of the currently used section (cb.base)
 720	 */
 721	if (cbuf_data(&con->cb) >= con->cb.base) {
 722		iov[0].iov_len = PAGE_SIZE - cbuf_data(&con->cb);
 723		iov[1].iov_len = con->cb.base;
 724		iov[1].iov_base = page_address(con->rx_page);
 725		nvec = 2;
 726	}
 727	len = iov[0].iov_len + iov[1].iov_len;
 728	iov_iter_kvec(&msg.msg_iter, READ, iov, nvec, len);
 729
 730	r = ret = sock_recvmsg(con->sock, &msg, MSG_DONTWAIT | MSG_NOSIGNAL);
 731	if (ret <= 0)
 732		goto out_close;
 733	else if (ret == len)
 734		call_again_soon = 1;
 735
 736	cbuf_add(&con->cb, ret);
 737	ret = dlm_process_incoming_buffer(con->nodeid,
 738					  page_address(con->rx_page),
 739					  con->cb.base, con->cb.len,
 740					  PAGE_SIZE);
 741	if (ret < 0) {
 742		log_print("lowcomms err %d: addr=%p, base=%u, len=%u, read=%d",
 743			  ret, page_address(con->rx_page), con->cb.base,
 744			  con->cb.len, r);
 745		cbuf_eat(&con->cb, r);
 746	} else {
 747		cbuf_eat(&con->cb, ret);
 748	}
 
 
 
 749
 750	if (cbuf_empty(&con->cb) && !call_again_soon) {
 751		__free_page(con->rx_page);
 752		con->rx_page = NULL;
 753	}
 754
 755	if (call_again_soon)
 756		goto out_resched;
 757	mutex_unlock(&con->sock_mutex);
 758	return 0;
 759
 760out_resched:
 761	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
 762		queue_work(recv_workqueue, &con->rwork);
 763	mutex_unlock(&con->sock_mutex);
 764	return -EAGAIN;
 765
 766out_close:
 767	mutex_unlock(&con->sock_mutex);
 768	if (ret != -EAGAIN) {
 
 769		/* Reconnect when there is something to send */
 770		close_connection(con, false, true, false);
 771		if (ret == 0) {
 772			log_print("connection %p got EOF from %d",
 773				  con, con->nodeid);
 774			/* handling for tcp shutdown */
 775			clear_bit(CF_SHUTDOWN, &con->flags);
 776			wake_up(&con->shutdown_wait);
 777			/* signal to breaking receive worker */
 778			ret = -1;
 779		}
 780	}
 
 
 
 
 781	return ret;
 782}
 783
 784/* Listening socket is busy, accept a connection */
 785static int accept_from_sock(struct connection *con)
 786{
 787	int result;
 788	struct sockaddr_storage peeraddr;
 789	struct socket *newsock;
 790	int len;
 791	int nodeid;
 792	struct connection *newcon;
 793	struct connection *addcon;
 794
 795	mutex_lock(&connections_lock);
 796	if (!dlm_allow_conn) {
 797		mutex_unlock(&connections_lock);
 798		return -1;
 799	}
 800	mutex_unlock(&connections_lock);
 801
 802	mutex_lock_nested(&con->sock_mutex, 0);
 803
 804	if (!con->sock) {
 805		mutex_unlock(&con->sock_mutex);
 806		return -ENOTCONN;
 807	}
 808
 809	result = kernel_accept(con->sock, &newsock, O_NONBLOCK);
 810	if (result < 0)
 811		goto accept_err;
 812
 813	/* Get the connected socket's peer */
 814	memset(&peeraddr, 0, sizeof(peeraddr));
 815	len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
 816	if (len < 0) {
 817		result = -ECONNABORTED;
 818		goto accept_err;
 819	}
 820
 821	/* Get the new node's NODEID */
 822	make_sockaddr(&peeraddr, 0, &len);
 823	if (addr_to_nodeid(&peeraddr, &nodeid)) {
 824		unsigned char *b=(unsigned char *)&peeraddr;
 825		log_print("connect from non cluster node");
 826		print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE, 
 827				     b, sizeof(struct sockaddr_storage));
 828		sock_release(newsock);
 829		mutex_unlock(&con->sock_mutex);
 830		return -1;
 831	}
 832
 833	log_print("got connection from %d", nodeid);
 834
 835	/*  Check to see if we already have a connection to this node. This
 836	 *  could happen if the two nodes initiate a connection at roughly
 837	 *  the same time and the connections cross on the wire.
 838	 *  In this case we store the incoming one in "othercon"
 839	 */
 840	newcon = nodeid2con(nodeid, GFP_NOFS);
 841	if (!newcon) {
 842		result = -ENOMEM;
 843		goto accept_err;
 844	}
 845	mutex_lock_nested(&newcon->sock_mutex, 1);
 846	if (newcon->sock) {
 847		struct connection *othercon = newcon->othercon;
 848
 849		if (!othercon) {
 850			othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
 851			if (!othercon) {
 852				log_print("failed to allocate incoming socket");
 853				mutex_unlock(&newcon->sock_mutex);
 854				result = -ENOMEM;
 855				goto accept_err;
 856			}
 857			othercon->nodeid = nodeid;
 858			othercon->rx_action = receive_from_sock;
 859			mutex_init(&othercon->sock_mutex);
 860			INIT_LIST_HEAD(&othercon->writequeue);
 861			spin_lock_init(&othercon->writequeue_lock);
 862			INIT_WORK(&othercon->swork, process_send_sockets);
 863			INIT_WORK(&othercon->rwork, process_recv_sockets);
 864			init_waitqueue_head(&othercon->shutdown_wait);
 865			set_bit(CF_IS_OTHERCON, &othercon->flags);
 866		} else {
 867			/* close other sock con if we have something new */
 868			close_connection(othercon, false, true, false);
 869		}
 870
 871		mutex_lock_nested(&othercon->sock_mutex, 2);
 872		newcon->othercon = othercon;
 873		add_sock(newsock, othercon);
 874		addcon = othercon;
 875		mutex_unlock(&othercon->sock_mutex);
 
 
 
 
 
 
 
 
 
 876	}
 877	else {
 878		newcon->rx_action = receive_from_sock;
 879		/* accept copies the sk after we've saved the callbacks, so we
 880		   don't want to save them a second time or comm errors will
 881		   result in calling sk_error_report recursively. */
 882		add_sock(newsock, newcon);
 883		addcon = newcon;
 884	}
 885
 886	mutex_unlock(&newcon->sock_mutex);
 887
 888	/*
 889	 * Add it to the active queue in case we got data
 890	 * between processing the accept adding the socket
 891	 * to the read_sockets list
 892	 */
 893	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
 894		queue_work(recv_workqueue, &addcon->rwork);
 895	mutex_unlock(&con->sock_mutex);
 896
 897	return 0;
 898
 899accept_err:
 900	mutex_unlock(&con->sock_mutex);
 901	if (newsock)
 902		sock_release(newsock);
 903
 904	if (result != -EAGAIN)
 905		log_print("error accepting connection from node: %d", result);
 906	return result;
 907}
 908
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 909static void free_entry(struct writequeue_entry *e)
 910{
 911	__free_page(e->page);
 912	kfree(e);
 913}
 914
 915/*
 916 * writequeue_entry_complete - try to delete and free write queue entry
 917 * @e: write queue entry to try to delete
 918 * @completed: bytes completed
 919 *
 920 * writequeue_lock must be held.
 921 */
 922static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
 923{
 924	e->offset += completed;
 925	e->len -= completed;
 926
 927	if (e->len == 0 && e->users == 0) {
 928		list_del(&e->list);
 929		free_entry(e);
 930	}
 931}
 932
 933/*
 934 * sctp_bind_addrs - bind a SCTP socket to all our addresses
 935 */
 936static int sctp_bind_addrs(struct connection *con, uint16_t port)
 937{
 938	struct sockaddr_storage localaddr;
 939	struct sockaddr *addr = (struct sockaddr *)&localaddr;
 940	int i, addr_len, result = 0;
 941
 942	for (i = 0; i < dlm_local_count; i++) {
 943		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
 944		make_sockaddr(&localaddr, port, &addr_len);
 945
 946		if (!i)
 947			result = kernel_bind(con->sock, addr, addr_len);
 
 
 948		else
 949			result = sock_bind_add(con->sock->sk, addr, addr_len);
 
 
 950
 951		if (result < 0) {
 952			log_print("Can't bind to %d addr number %d, %d.\n",
 953				  port, i + 1, result);
 954			break;
 955		}
 956	}
 957	return result;
 958}
 959
 960/* Initiate an SCTP association.
 961   This is a special case of send_to_sock() in that we don't yet have a
 962   peeled-off socket for this association, so we use the listening socket
 963   and add the primary IP address of the remote node.
 964 */
 965static void sctp_connect_to_sock(struct connection *con)
 966{
 967	struct sockaddr_storage daddr;
 
 968	int result;
 969	int addr_len;
 970	struct socket *sock;
 971	unsigned int mark;
 972
 973	if (con->nodeid == 0) {
 974		log_print("attempt to connect sock 0 foiled");
 975		return;
 976	}
 977
 978	mutex_lock(&con->sock_mutex);
 979
 980	/* Some odd races can cause double-connects, ignore them */
 981	if (con->retries++ > MAX_CONNECT_RETRIES)
 982		goto out;
 983
 984	if (con->sock) {
 985		log_print("node %d already connected.", con->nodeid);
 986		goto out;
 987	}
 988
 989	memset(&daddr, 0, sizeof(daddr));
 990	result = nodeid_to_addr(con->nodeid, &daddr, NULL, true);
 991	if (result < 0) {
 992		log_print("no address for nodeid %d", con->nodeid);
 993		goto out;
 994	}
 995
 996	/* Create a socket to communicate with */
 997	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
 998				  SOCK_STREAM, IPPROTO_SCTP, &sock);
 999	if (result < 0)
1000		goto socket_err;
1001
1002	/* set skb mark */
1003	result = dlm_comm_mark(con->nodeid, &mark);
1004	if (result < 0)
1005		goto bind_err;
1006
1007	sock_set_mark(sock->sk, mark);
1008
1009	con->rx_action = receive_from_sock;
1010	con->connect_action = sctp_connect_to_sock;
1011	add_sock(sock, con);
1012
1013	/* Bind to all addresses. */
1014	if (sctp_bind_addrs(con, 0))
1015		goto bind_err;
1016
1017	make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len);
1018
1019	log_print("connecting to %d", con->nodeid);
1020
1021	/* Turn off Nagle's algorithm */
1022	sctp_sock_set_nodelay(sock->sk);
 
1023
1024	/*
1025	 * Make sock->ops->connect() function return in specified time,
1026	 * since O_NONBLOCK argument in connect() function does not work here,
1027	 * then, we should restore the default value of this attribute.
1028	 */
1029	sock_set_sndtimeo(sock->sk, 5);
 
1030	result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len,
1031				   0);
1032	sock_set_sndtimeo(sock->sk, 0);
 
 
1033
1034	if (result == -EINPROGRESS)
1035		result = 0;
1036	if (result == 0)
1037		goto out;
1038
1039bind_err:
1040	con->sock = NULL;
1041	sock_release(sock);
1042
1043socket_err:
1044	/*
1045	 * Some errors are fatal and this list might need adjusting. For other
1046	 * errors we try again until the max number of retries is reached.
1047	 */
1048	if (result != -EHOSTUNREACH &&
1049	    result != -ENETUNREACH &&
1050	    result != -ENETDOWN &&
1051	    result != -EINVAL &&
1052	    result != -EPROTONOSUPPORT) {
1053		log_print("connect %d try %d error %d", con->nodeid,
1054			  con->retries, result);
1055		mutex_unlock(&con->sock_mutex);
1056		msleep(1000);
1057		lowcomms_connect_sock(con);
1058		return;
1059	}
1060
1061out:
1062	mutex_unlock(&con->sock_mutex);
1063}
1064
1065/* Connect a new socket to its peer */
1066static void tcp_connect_to_sock(struct connection *con)
1067{
1068	struct sockaddr_storage saddr, src_addr;
1069	int addr_len;
1070	struct socket *sock = NULL;
1071	unsigned int mark;
1072	int result;
1073
1074	if (con->nodeid == 0) {
1075		log_print("attempt to connect sock 0 foiled");
1076		return;
1077	}
1078
1079	mutex_lock(&con->sock_mutex);
1080	if (con->retries++ > MAX_CONNECT_RETRIES)
1081		goto out;
1082
1083	/* Some odd races can cause double-connects, ignore them */
1084	if (con->sock)
1085		goto out;
1086
1087	/* Create a socket to communicate with */
1088	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1089				  SOCK_STREAM, IPPROTO_TCP, &sock);
1090	if (result < 0)
1091		goto out_err;
1092
1093	/* set skb mark */
1094	result = dlm_comm_mark(con->nodeid, &mark);
1095	if (result < 0)
1096		goto out_err;
1097
1098	sock_set_mark(sock->sk, mark);
1099
1100	memset(&saddr, 0, sizeof(saddr));
1101	result = nodeid_to_addr(con->nodeid, &saddr, NULL, false);
1102	if (result < 0) {
1103		log_print("no address for nodeid %d", con->nodeid);
1104		goto out_err;
1105	}
1106
1107	con->rx_action = receive_from_sock;
1108	con->connect_action = tcp_connect_to_sock;
1109	con->shutdown_action = dlm_tcp_shutdown;
1110	add_sock(sock, con);
1111
1112	/* Bind to our cluster-known address connecting to avoid
1113	   routing problems */
1114	memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1115	make_sockaddr(&src_addr, 0, &addr_len);
1116	result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1117				 addr_len);
1118	if (result < 0) {
1119		log_print("could not bind for connect: %d", result);
1120		/* This *may* not indicate a critical error */
1121	}
1122
1123	make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1124
1125	log_print("connecting to %d", con->nodeid);
1126
1127	/* Turn off Nagle's algorithm */
1128	tcp_sock_set_nodelay(sock->sk);
 
1129
1130	result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1131				   O_NONBLOCK);
1132	if (result == -EINPROGRESS)
1133		result = 0;
1134	if (result == 0)
1135		goto out;
1136
1137out_err:
1138	if (con->sock) {
1139		sock_release(con->sock);
1140		con->sock = NULL;
1141	} else if (sock) {
1142		sock_release(sock);
1143	}
1144	/*
1145	 * Some errors are fatal and this list might need adjusting. For other
1146	 * errors we try again until the max number of retries is reached.
1147	 */
1148	if (result != -EHOSTUNREACH &&
1149	    result != -ENETUNREACH &&
1150	    result != -ENETDOWN && 
1151	    result != -EINVAL &&
1152	    result != -EPROTONOSUPPORT) {
1153		log_print("connect %d try %d error %d", con->nodeid,
1154			  con->retries, result);
1155		mutex_unlock(&con->sock_mutex);
1156		msleep(1000);
1157		lowcomms_connect_sock(con);
1158		return;
1159	}
1160out:
1161	mutex_unlock(&con->sock_mutex);
1162	return;
1163}
1164
1165static struct socket *tcp_create_listen_sock(struct connection *con,
1166					     struct sockaddr_storage *saddr)
1167{
1168	struct socket *sock = NULL;
1169	int result = 0;
 
1170	int addr_len;
1171
1172	if (dlm_local_addr[0]->ss_family == AF_INET)
1173		addr_len = sizeof(struct sockaddr_in);
1174	else
1175		addr_len = sizeof(struct sockaddr_in6);
1176
1177	/* Create a socket to communicate with */
1178	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1179				  SOCK_STREAM, IPPROTO_TCP, &sock);
1180	if (result < 0) {
1181		log_print("Can't create listening comms socket");
1182		goto create_out;
1183	}
1184
1185	sock_set_mark(sock->sk, dlm_config.ci_mark);
1186
1187	/* Turn off Nagle's algorithm */
1188	tcp_sock_set_nodelay(sock->sk);
 
1189
1190	sock_set_reuseaddr(sock->sk);
 
1191
 
 
 
1192	write_lock_bh(&sock->sk->sk_callback_lock);
1193	sock->sk->sk_user_data = con;
1194	save_listen_callbacks(sock);
1195	con->rx_action = accept_from_sock;
1196	con->connect_action = tcp_connect_to_sock;
1197	write_unlock_bh(&sock->sk->sk_callback_lock);
1198
1199	/* Bind to our port */
1200	make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1201	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1202	if (result < 0) {
1203		log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1204		sock_release(sock);
1205		sock = NULL;
1206		con->sock = NULL;
1207		goto create_out;
1208	}
1209	sock_set_keepalive(sock->sk);
 
 
 
 
1210
1211	result = sock->ops->listen(sock, 5);
1212	if (result < 0) {
1213		log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1214		sock_release(sock);
1215		sock = NULL;
1216		goto create_out;
1217	}
1218
1219create_out:
1220	return sock;
1221}
1222
1223/* Get local addresses */
1224static void init_local(void)
1225{
1226	struct sockaddr_storage sas, *addr;
1227	int i;
1228
1229	dlm_local_count = 0;
1230	for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1231		if (dlm_our_addr(&sas, i))
1232			break;
1233
1234		addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS);
1235		if (!addr)
1236			break;
1237		dlm_local_addr[dlm_local_count++] = addr;
1238	}
1239}
1240
1241/* Initialise SCTP socket and bind to all interfaces */
1242static int sctp_listen_for_all(void)
1243{
1244	struct socket *sock = NULL;
1245	int result = -EINVAL;
1246	struct connection *con = nodeid2con(0, GFP_NOFS);
 
 
1247
1248	if (!con)
1249		return -ENOMEM;
1250
1251	log_print("Using SCTP for communications");
1252
1253	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1254				  SOCK_STREAM, IPPROTO_SCTP, &sock);
1255	if (result < 0) {
1256		log_print("Can't create comms socket, check SCTP is loaded");
1257		goto out;
1258	}
1259
1260	sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1261	sock_set_mark(sock->sk, dlm_config.ci_mark);
1262	sctp_sock_set_nodelay(sock->sk);
 
 
 
 
 
 
1263
1264	write_lock_bh(&sock->sk->sk_callback_lock);
1265	/* Init con struct */
1266	sock->sk->sk_user_data = con;
1267	save_listen_callbacks(sock);
1268	con->sock = sock;
1269	con->sock->sk->sk_data_ready = lowcomms_data_ready;
1270	con->rx_action = accept_from_sock;
1271	con->connect_action = sctp_connect_to_sock;
1272
1273	write_unlock_bh(&sock->sk->sk_callback_lock);
1274
1275	/* Bind to all addresses. */
1276	if (sctp_bind_addrs(con, dlm_config.ci_tcp_port))
1277		goto create_delsock;
1278
1279	result = sock->ops->listen(sock, 5);
1280	if (result < 0) {
1281		log_print("Can't set socket listening");
1282		goto create_delsock;
1283	}
1284
1285	return 0;
1286
1287create_delsock:
1288	sock_release(sock);
1289	con->sock = NULL;
1290out:
1291	return result;
1292}
1293
1294static int tcp_listen_for_all(void)
1295{
1296	struct socket *sock = NULL;
1297	struct connection *con = nodeid2con(0, GFP_NOFS);
1298	int result = -EINVAL;
1299
1300	if (!con)
1301		return -ENOMEM;
1302
1303	/* We don't support multi-homed hosts */
1304	if (dlm_local_addr[1] != NULL) {
1305		log_print("TCP protocol can't handle multi-homed hosts, "
1306			  "try SCTP");
1307		return -EINVAL;
1308	}
1309
1310	log_print("Using TCP for communications");
1311
1312	sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1313	if (sock) {
1314		add_sock(sock, con);
1315		result = 0;
1316	}
1317	else {
1318		result = -EADDRINUSE;
1319	}
1320
1321	return result;
1322}
1323
1324
1325
1326static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1327						     gfp_t allocation)
1328{
1329	struct writequeue_entry *entry;
1330
1331	entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1332	if (!entry)
1333		return NULL;
1334
1335	entry->page = alloc_page(allocation);
1336	if (!entry->page) {
1337		kfree(entry);
1338		return NULL;
1339	}
1340
1341	entry->offset = 0;
1342	entry->len = 0;
1343	entry->end = 0;
1344	entry->users = 0;
1345	entry->con = con;
1346
1347	return entry;
1348}
1349
1350void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1351{
1352	struct connection *con;
1353	struct writequeue_entry *e;
1354	int offset = 0;
1355
1356	con = nodeid2con(nodeid, allocation);
1357	if (!con)
1358		return NULL;
1359
1360	spin_lock(&con->writequeue_lock);
1361	e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1362	if ((&e->list == &con->writequeue) ||
1363	    (PAGE_SIZE - e->end < len)) {
1364		e = NULL;
1365	} else {
1366		offset = e->end;
1367		e->end += len;
1368		e->users++;
1369	}
1370	spin_unlock(&con->writequeue_lock);
1371
1372	if (e) {
1373	got_one:
1374		*ppc = page_address(e->page) + offset;
1375		return e;
1376	}
1377
1378	e = new_writequeue_entry(con, allocation);
1379	if (e) {
1380		spin_lock(&con->writequeue_lock);
1381		offset = e->end;
1382		e->end += len;
1383		e->users++;
1384		list_add_tail(&e->list, &con->writequeue);
1385		spin_unlock(&con->writequeue_lock);
1386		goto got_one;
1387	}
1388	return NULL;
1389}
1390
1391void dlm_lowcomms_commit_buffer(void *mh)
1392{
1393	struct writequeue_entry *e = (struct writequeue_entry *)mh;
1394	struct connection *con = e->con;
1395	int users;
1396
1397	spin_lock(&con->writequeue_lock);
1398	users = --e->users;
1399	if (users)
1400		goto out;
1401	e->len = e->end - e->offset;
1402	spin_unlock(&con->writequeue_lock);
1403
1404	queue_work(send_workqueue, &con->swork);
1405	return;
1406
1407out:
1408	spin_unlock(&con->writequeue_lock);
1409	return;
1410}
1411
1412/* Send a message */
1413static void send_to_sock(struct connection *con)
1414{
1415	int ret = 0;
1416	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1417	struct writequeue_entry *e;
1418	int len, offset;
1419	int count = 0;
1420
1421	mutex_lock(&con->sock_mutex);
1422	if (con->sock == NULL)
1423		goto out_connect;
1424
1425	spin_lock(&con->writequeue_lock);
1426	for (;;) {
1427		e = list_entry(con->writequeue.next, struct writequeue_entry,
1428			       list);
1429		if ((struct list_head *) e == &con->writequeue)
1430			break;
1431
1432		len = e->len;
1433		offset = e->offset;
1434		BUG_ON(len == 0 && e->users == 0);
1435		spin_unlock(&con->writequeue_lock);
1436
1437		ret = 0;
1438		if (len) {
1439			ret = kernel_sendpage(con->sock, e->page, offset, len,
1440					      msg_flags);
1441			if (ret == -EAGAIN || ret == 0) {
1442				if (ret == -EAGAIN &&
1443				    test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1444				    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1445					/* Notify TCP that we're limited by the
1446					 * application window size.
1447					 */
1448					set_bit(SOCK_NOSPACE, &con->sock->flags);
1449					con->sock->sk->sk_write_pending++;
1450				}
1451				cond_resched();
1452				goto out;
1453			} else if (ret < 0)
1454				goto send_error;
1455		}
1456
1457		/* Don't starve people filling buffers */
1458		if (++count >= MAX_SEND_MSG_COUNT) {
1459			cond_resched();
1460			count = 0;
1461		}
1462
1463		spin_lock(&con->writequeue_lock);
1464		writequeue_entry_complete(e, ret);
1465	}
1466	spin_unlock(&con->writequeue_lock);
1467out:
1468	mutex_unlock(&con->sock_mutex);
1469	return;
1470
1471send_error:
1472	mutex_unlock(&con->sock_mutex);
1473	close_connection(con, false, false, true);
1474	/* Requeue the send work. When the work daemon runs again, it will try
1475	   a new connection, then call this function again. */
1476	queue_work(send_workqueue, &con->swork);
1477	return;
1478
1479out_connect:
1480	mutex_unlock(&con->sock_mutex);
1481	queue_work(send_workqueue, &con->swork);
1482	cond_resched();
1483}
1484
1485static void clean_one_writequeue(struct connection *con)
1486{
1487	struct writequeue_entry *e, *safe;
1488
1489	spin_lock(&con->writequeue_lock);
1490	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1491		list_del(&e->list);
1492		free_entry(e);
1493	}
1494	spin_unlock(&con->writequeue_lock);
1495}
1496
1497/* Called from recovery when it knows that a node has
1498   left the cluster */
1499int dlm_lowcomms_close(int nodeid)
1500{
1501	struct connection *con;
1502	struct dlm_node_addr *na;
1503
1504	log_print("closing connection to node %d", nodeid);
1505	con = nodeid2con(nodeid, 0);
1506	if (con) {
1507		set_bit(CF_CLOSE, &con->flags);
1508		close_connection(con, true, true, true);
1509		clean_one_writequeue(con);
1510	}
1511
1512	spin_lock(&dlm_node_addrs_spin);
1513	na = find_node_addr(nodeid);
1514	if (na) {
1515		list_del(&na->list);
1516		while (na->addr_count--)
1517			kfree(na->addr[na->addr_count]);
1518		kfree(na);
1519	}
1520	spin_unlock(&dlm_node_addrs_spin);
1521
1522	return 0;
1523}
1524
1525/* Receive workqueue function */
1526static void process_recv_sockets(struct work_struct *work)
1527{
1528	struct connection *con = container_of(work, struct connection, rwork);
1529	int err;
1530
1531	clear_bit(CF_READ_PENDING, &con->flags);
1532	do {
1533		err = con->rx_action(con);
1534	} while (!err);
1535}
1536
1537/* Send workqueue function */
1538static void process_send_sockets(struct work_struct *work)
1539{
1540	struct connection *con = container_of(work, struct connection, swork);
1541
1542	clear_bit(CF_WRITE_PENDING, &con->flags);
1543	if (con->sock == NULL) /* not mutex protected so check it inside too */
1544		con->connect_action(con);
1545	if (!list_empty(&con->writequeue))
1546		send_to_sock(con);
1547}
1548
1549
1550/* Discard all entries on the write queues */
1551static void clean_writequeues(void)
1552{
1553	foreach_conn(clean_one_writequeue);
1554}
1555
1556static void work_stop(void)
1557{
1558	if (recv_workqueue)
1559		destroy_workqueue(recv_workqueue);
1560	if (send_workqueue)
1561		destroy_workqueue(send_workqueue);
1562}
1563
1564static int work_start(void)
1565{
1566	recv_workqueue = alloc_workqueue("dlm_recv",
1567					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1568	if (!recv_workqueue) {
1569		log_print("can't start dlm_recv");
1570		return -ENOMEM;
1571	}
1572
1573	send_workqueue = alloc_workqueue("dlm_send",
1574					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1575	if (!send_workqueue) {
1576		log_print("can't start dlm_send");
1577		destroy_workqueue(recv_workqueue);
1578		return -ENOMEM;
1579	}
1580
1581	return 0;
1582}
1583
1584static void _stop_conn(struct connection *con, bool and_other)
1585{
1586	mutex_lock(&con->sock_mutex);
1587	set_bit(CF_CLOSE, &con->flags);
1588	set_bit(CF_READ_PENDING, &con->flags);
1589	set_bit(CF_WRITE_PENDING, &con->flags);
1590	if (con->sock && con->sock->sk) {
1591		write_lock_bh(&con->sock->sk->sk_callback_lock);
1592		con->sock->sk->sk_user_data = NULL;
1593		write_unlock_bh(&con->sock->sk->sk_callback_lock);
1594	}
1595	if (con->othercon && and_other)
1596		_stop_conn(con->othercon, false);
1597	mutex_unlock(&con->sock_mutex);
1598}
1599
1600static void stop_conn(struct connection *con)
1601{
1602	_stop_conn(con, true);
1603}
1604
1605static void shutdown_conn(struct connection *con)
1606{
1607	if (con->shutdown_action)
1608		con->shutdown_action(con);
1609}
1610
1611static void free_conn(struct connection *con)
1612{
1613	close_connection(con, true, true, true);
1614	if (con->othercon)
1615		kmem_cache_free(con_cache, con->othercon);
1616	hlist_del(&con->list);
1617	kmem_cache_free(con_cache, con);
1618}
1619
1620static void work_flush(void)
1621{
1622	int ok;
1623	int i;
1624	struct hlist_node *n;
1625	struct connection *con;
1626
1627	if (recv_workqueue)
1628		flush_workqueue(recv_workqueue);
1629	if (send_workqueue)
1630		flush_workqueue(send_workqueue);
1631	do {
1632		ok = 1;
1633		foreach_conn(stop_conn);
1634		if (recv_workqueue)
1635			flush_workqueue(recv_workqueue);
1636		if (send_workqueue)
1637			flush_workqueue(send_workqueue);
1638		for (i = 0; i < CONN_HASH_SIZE && ok; i++) {
1639			hlist_for_each_entry_safe(con, n,
1640						  &connection_hash[i], list) {
1641				ok &= test_bit(CF_READ_PENDING, &con->flags);
1642				ok &= test_bit(CF_WRITE_PENDING, &con->flags);
1643				if (con->othercon) {
1644					ok &= test_bit(CF_READ_PENDING,
1645						       &con->othercon->flags);
1646					ok &= test_bit(CF_WRITE_PENDING,
1647						       &con->othercon->flags);
1648				}
1649			}
1650		}
1651	} while (!ok);
1652}
1653
1654void dlm_lowcomms_stop(void)
1655{
1656	/* Set all the flags to prevent any
1657	   socket activity.
1658	*/
1659	mutex_lock(&connections_lock);
1660	dlm_allow_conn = 0;
1661	mutex_unlock(&connections_lock);
1662	foreach_conn(shutdown_conn);
1663	work_flush();
1664	clean_writequeues();
1665	foreach_conn(free_conn);
1666	work_stop();
1667
1668	kmem_cache_destroy(con_cache);
1669}
1670
1671int dlm_lowcomms_start(void)
1672{
1673	int error = -EINVAL;
1674	struct connection *con;
1675	int i;
1676
1677	for (i = 0; i < CONN_HASH_SIZE; i++)
1678		INIT_HLIST_HEAD(&connection_hash[i]);
1679
1680	init_local();
1681	if (!dlm_local_count) {
1682		error = -ENOTCONN;
1683		log_print("no local IP address has been set");
1684		goto fail;
1685	}
1686
1687	error = -ENOMEM;
1688	con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1689				      __alignof__(struct connection), 0,
1690				      NULL);
1691	if (!con_cache)
1692		goto fail;
1693
1694	error = work_start();
1695	if (error)
1696		goto fail_destroy;
1697
1698	dlm_allow_conn = 1;
1699
1700	/* Start listening */
1701	if (dlm_config.ci_protocol == 0)
1702		error = tcp_listen_for_all();
1703	else
1704		error = sctp_listen_for_all();
1705	if (error)
1706		goto fail_unlisten;
1707
1708	return 0;
1709
1710fail_unlisten:
1711	dlm_allow_conn = 0;
1712	con = nodeid2con(0,0);
1713	if (con) {
1714		close_connection(con, false, true, true);
1715		kmem_cache_free(con_cache, con);
1716	}
1717fail_destroy:
1718	kmem_cache_destroy(con_cache);
1719fail:
1720	return error;
1721}
1722
1723void dlm_lowcomms_exit(void)
1724{
1725	struct dlm_node_addr *na, *safe;
1726
1727	spin_lock(&dlm_node_addrs_spin);
1728	list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
1729		list_del(&na->list);
1730		while (na->addr_count--)
1731			kfree(na->addr[na->addr_count]);
1732		kfree(na);
1733	}
1734	spin_unlock(&dlm_node_addrs_spin);
1735}