Loading...
Note: File does not exist in v5.4.
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27#include <linux/dmi.h>
28#include <linux/module.h>
29#include <linux/input.h>
30#include <linux/i2c.h>
31#include <linux/kernel.h>
32#include <linux/slab.h>
33#include <linux/vgaarb.h>
34#include <drm/drm_edid.h>
35#include <drm/drmP.h>
36#include "intel_drv.h"
37#include "intel_frontbuffer.h"
38#include <drm/i915_drm.h>
39#include "i915_drv.h"
40#include "intel_dsi.h"
41#include "i915_trace.h"
42#include <drm/drm_atomic.h>
43#include <drm/drm_atomic_helper.h>
44#include <drm/drm_dp_helper.h>
45#include <drm/drm_crtc_helper.h>
46#include <drm/drm_plane_helper.h>
47#include <drm/drm_rect.h>
48#include <linux/dma_remapping.h>
49#include <linux/reservation.h>
50
51static bool is_mmio_work(struct intel_flip_work *work)
52{
53 return work->mmio_work.func;
54}
55
56/* Primary plane formats for gen <= 3 */
57static const uint32_t i8xx_primary_formats[] = {
58 DRM_FORMAT_C8,
59 DRM_FORMAT_RGB565,
60 DRM_FORMAT_XRGB1555,
61 DRM_FORMAT_XRGB8888,
62};
63
64/* Primary plane formats for gen >= 4 */
65static const uint32_t i965_primary_formats[] = {
66 DRM_FORMAT_C8,
67 DRM_FORMAT_RGB565,
68 DRM_FORMAT_XRGB8888,
69 DRM_FORMAT_XBGR8888,
70 DRM_FORMAT_XRGB2101010,
71 DRM_FORMAT_XBGR2101010,
72};
73
74static const uint32_t skl_primary_formats[] = {
75 DRM_FORMAT_C8,
76 DRM_FORMAT_RGB565,
77 DRM_FORMAT_XRGB8888,
78 DRM_FORMAT_XBGR8888,
79 DRM_FORMAT_ARGB8888,
80 DRM_FORMAT_ABGR8888,
81 DRM_FORMAT_XRGB2101010,
82 DRM_FORMAT_XBGR2101010,
83 DRM_FORMAT_YUYV,
84 DRM_FORMAT_YVYU,
85 DRM_FORMAT_UYVY,
86 DRM_FORMAT_VYUY,
87};
88
89/* Cursor formats */
90static const uint32_t intel_cursor_formats[] = {
91 DRM_FORMAT_ARGB8888,
92};
93
94static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
95 struct intel_crtc_state *pipe_config);
96static void ironlake_pch_clock_get(struct intel_crtc *crtc,
97 struct intel_crtc_state *pipe_config);
98
99static int intel_framebuffer_init(struct drm_device *dev,
100 struct intel_framebuffer *ifb,
101 struct drm_mode_fb_cmd2 *mode_cmd,
102 struct drm_i915_gem_object *obj);
103static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
104static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
105static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
106static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
107 struct intel_link_m_n *m_n,
108 struct intel_link_m_n *m2_n2);
109static void ironlake_set_pipeconf(struct drm_crtc *crtc);
110static void haswell_set_pipeconf(struct drm_crtc *crtc);
111static void haswell_set_pipemisc(struct drm_crtc *crtc);
112static void vlv_prepare_pll(struct intel_crtc *crtc,
113 const struct intel_crtc_state *pipe_config);
114static void chv_prepare_pll(struct intel_crtc *crtc,
115 const struct intel_crtc_state *pipe_config);
116static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
117static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118static void skl_init_scalers(struct drm_i915_private *dev_priv,
119 struct intel_crtc *crtc,
120 struct intel_crtc_state *crtc_state);
121static void skylake_pfit_enable(struct intel_crtc *crtc);
122static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
123static void ironlake_pfit_enable(struct intel_crtc *crtc);
124static void intel_modeset_setup_hw_state(struct drm_device *dev);
125static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
126static int ilk_max_pixel_rate(struct drm_atomic_state *state);
127static int bxt_calc_cdclk(int max_pixclk);
128
129struct intel_limit {
130 struct {
131 int min, max;
132 } dot, vco, n, m, m1, m2, p, p1;
133
134 struct {
135 int dot_limit;
136 int p2_slow, p2_fast;
137 } p2;
138};
139
140/* returns HPLL frequency in kHz */
141static int valleyview_get_vco(struct drm_i915_private *dev_priv)
142{
143 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
144
145 /* Obtain SKU information */
146 mutex_lock(&dev_priv->sb_lock);
147 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
148 CCK_FUSE_HPLL_FREQ_MASK;
149 mutex_unlock(&dev_priv->sb_lock);
150
151 return vco_freq[hpll_freq] * 1000;
152}
153
154int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
155 const char *name, u32 reg, int ref_freq)
156{
157 u32 val;
158 int divider;
159
160 mutex_lock(&dev_priv->sb_lock);
161 val = vlv_cck_read(dev_priv, reg);
162 mutex_unlock(&dev_priv->sb_lock);
163
164 divider = val & CCK_FREQUENCY_VALUES;
165
166 WARN((val & CCK_FREQUENCY_STATUS) !=
167 (divider << CCK_FREQUENCY_STATUS_SHIFT),
168 "%s change in progress\n", name);
169
170 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
171}
172
173static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
174 const char *name, u32 reg)
175{
176 if (dev_priv->hpll_freq == 0)
177 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
178
179 return vlv_get_cck_clock(dev_priv, name, reg,
180 dev_priv->hpll_freq);
181}
182
183static int
184intel_pch_rawclk(struct drm_i915_private *dev_priv)
185{
186 return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
187}
188
189static int
190intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
191{
192 /* RAWCLK_FREQ_VLV register updated from power well code */
193 return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
194 CCK_DISPLAY_REF_CLOCK_CONTROL);
195}
196
197static int
198intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
199{
200 uint32_t clkcfg;
201
202 /* hrawclock is 1/4 the FSB frequency */
203 clkcfg = I915_READ(CLKCFG);
204 switch (clkcfg & CLKCFG_FSB_MASK) {
205 case CLKCFG_FSB_400:
206 return 100000;
207 case CLKCFG_FSB_533:
208 return 133333;
209 case CLKCFG_FSB_667:
210 return 166667;
211 case CLKCFG_FSB_800:
212 return 200000;
213 case CLKCFG_FSB_1067:
214 return 266667;
215 case CLKCFG_FSB_1333:
216 return 333333;
217 /* these two are just a guess; one of them might be right */
218 case CLKCFG_FSB_1600:
219 case CLKCFG_FSB_1600_ALT:
220 return 400000;
221 default:
222 return 133333;
223 }
224}
225
226void intel_update_rawclk(struct drm_i915_private *dev_priv)
227{
228 if (HAS_PCH_SPLIT(dev_priv))
229 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
230 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
231 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
232 else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
233 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
234 else
235 return; /* no rawclk on other platforms, or no need to know it */
236
237 DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
238}
239
240static void intel_update_czclk(struct drm_i915_private *dev_priv)
241{
242 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
243 return;
244
245 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
246 CCK_CZ_CLOCK_CONTROL);
247
248 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
249}
250
251static inline u32 /* units of 100MHz */
252intel_fdi_link_freq(struct drm_i915_private *dev_priv,
253 const struct intel_crtc_state *pipe_config)
254{
255 if (HAS_DDI(dev_priv))
256 return pipe_config->port_clock; /* SPLL */
257 else if (IS_GEN5(dev_priv))
258 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
259 else
260 return 270000;
261}
262
263static const struct intel_limit intel_limits_i8xx_dac = {
264 .dot = { .min = 25000, .max = 350000 },
265 .vco = { .min = 908000, .max = 1512000 },
266 .n = { .min = 2, .max = 16 },
267 .m = { .min = 96, .max = 140 },
268 .m1 = { .min = 18, .max = 26 },
269 .m2 = { .min = 6, .max = 16 },
270 .p = { .min = 4, .max = 128 },
271 .p1 = { .min = 2, .max = 33 },
272 .p2 = { .dot_limit = 165000,
273 .p2_slow = 4, .p2_fast = 2 },
274};
275
276static const struct intel_limit intel_limits_i8xx_dvo = {
277 .dot = { .min = 25000, .max = 350000 },
278 .vco = { .min = 908000, .max = 1512000 },
279 .n = { .min = 2, .max = 16 },
280 .m = { .min = 96, .max = 140 },
281 .m1 = { .min = 18, .max = 26 },
282 .m2 = { .min = 6, .max = 16 },
283 .p = { .min = 4, .max = 128 },
284 .p1 = { .min = 2, .max = 33 },
285 .p2 = { .dot_limit = 165000,
286 .p2_slow = 4, .p2_fast = 4 },
287};
288
289static const struct intel_limit intel_limits_i8xx_lvds = {
290 .dot = { .min = 25000, .max = 350000 },
291 .vco = { .min = 908000, .max = 1512000 },
292 .n = { .min = 2, .max = 16 },
293 .m = { .min = 96, .max = 140 },
294 .m1 = { .min = 18, .max = 26 },
295 .m2 = { .min = 6, .max = 16 },
296 .p = { .min = 4, .max = 128 },
297 .p1 = { .min = 1, .max = 6 },
298 .p2 = { .dot_limit = 165000,
299 .p2_slow = 14, .p2_fast = 7 },
300};
301
302static const struct intel_limit intel_limits_i9xx_sdvo = {
303 .dot = { .min = 20000, .max = 400000 },
304 .vco = { .min = 1400000, .max = 2800000 },
305 .n = { .min = 1, .max = 6 },
306 .m = { .min = 70, .max = 120 },
307 .m1 = { .min = 8, .max = 18 },
308 .m2 = { .min = 3, .max = 7 },
309 .p = { .min = 5, .max = 80 },
310 .p1 = { .min = 1, .max = 8 },
311 .p2 = { .dot_limit = 200000,
312 .p2_slow = 10, .p2_fast = 5 },
313};
314
315static const struct intel_limit intel_limits_i9xx_lvds = {
316 .dot = { .min = 20000, .max = 400000 },
317 .vco = { .min = 1400000, .max = 2800000 },
318 .n = { .min = 1, .max = 6 },
319 .m = { .min = 70, .max = 120 },
320 .m1 = { .min = 8, .max = 18 },
321 .m2 = { .min = 3, .max = 7 },
322 .p = { .min = 7, .max = 98 },
323 .p1 = { .min = 1, .max = 8 },
324 .p2 = { .dot_limit = 112000,
325 .p2_slow = 14, .p2_fast = 7 },
326};
327
328
329static const struct intel_limit intel_limits_g4x_sdvo = {
330 .dot = { .min = 25000, .max = 270000 },
331 .vco = { .min = 1750000, .max = 3500000},
332 .n = { .min = 1, .max = 4 },
333 .m = { .min = 104, .max = 138 },
334 .m1 = { .min = 17, .max = 23 },
335 .m2 = { .min = 5, .max = 11 },
336 .p = { .min = 10, .max = 30 },
337 .p1 = { .min = 1, .max = 3},
338 .p2 = { .dot_limit = 270000,
339 .p2_slow = 10,
340 .p2_fast = 10
341 },
342};
343
344static const struct intel_limit intel_limits_g4x_hdmi = {
345 .dot = { .min = 22000, .max = 400000 },
346 .vco = { .min = 1750000, .max = 3500000},
347 .n = { .min = 1, .max = 4 },
348 .m = { .min = 104, .max = 138 },
349 .m1 = { .min = 16, .max = 23 },
350 .m2 = { .min = 5, .max = 11 },
351 .p = { .min = 5, .max = 80 },
352 .p1 = { .min = 1, .max = 8},
353 .p2 = { .dot_limit = 165000,
354 .p2_slow = 10, .p2_fast = 5 },
355};
356
357static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
358 .dot = { .min = 20000, .max = 115000 },
359 .vco = { .min = 1750000, .max = 3500000 },
360 .n = { .min = 1, .max = 3 },
361 .m = { .min = 104, .max = 138 },
362 .m1 = { .min = 17, .max = 23 },
363 .m2 = { .min = 5, .max = 11 },
364 .p = { .min = 28, .max = 112 },
365 .p1 = { .min = 2, .max = 8 },
366 .p2 = { .dot_limit = 0,
367 .p2_slow = 14, .p2_fast = 14
368 },
369};
370
371static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
372 .dot = { .min = 80000, .max = 224000 },
373 .vco = { .min = 1750000, .max = 3500000 },
374 .n = { .min = 1, .max = 3 },
375 .m = { .min = 104, .max = 138 },
376 .m1 = { .min = 17, .max = 23 },
377 .m2 = { .min = 5, .max = 11 },
378 .p = { .min = 14, .max = 42 },
379 .p1 = { .min = 2, .max = 6 },
380 .p2 = { .dot_limit = 0,
381 .p2_slow = 7, .p2_fast = 7
382 },
383};
384
385static const struct intel_limit intel_limits_pineview_sdvo = {
386 .dot = { .min = 20000, .max = 400000},
387 .vco = { .min = 1700000, .max = 3500000 },
388 /* Pineview's Ncounter is a ring counter */
389 .n = { .min = 3, .max = 6 },
390 .m = { .min = 2, .max = 256 },
391 /* Pineview only has one combined m divider, which we treat as m2. */
392 .m1 = { .min = 0, .max = 0 },
393 .m2 = { .min = 0, .max = 254 },
394 .p = { .min = 5, .max = 80 },
395 .p1 = { .min = 1, .max = 8 },
396 .p2 = { .dot_limit = 200000,
397 .p2_slow = 10, .p2_fast = 5 },
398};
399
400static const struct intel_limit intel_limits_pineview_lvds = {
401 .dot = { .min = 20000, .max = 400000 },
402 .vco = { .min = 1700000, .max = 3500000 },
403 .n = { .min = 3, .max = 6 },
404 .m = { .min = 2, .max = 256 },
405 .m1 = { .min = 0, .max = 0 },
406 .m2 = { .min = 0, .max = 254 },
407 .p = { .min = 7, .max = 112 },
408 .p1 = { .min = 1, .max = 8 },
409 .p2 = { .dot_limit = 112000,
410 .p2_slow = 14, .p2_fast = 14 },
411};
412
413/* Ironlake / Sandybridge
414 *
415 * We calculate clock using (register_value + 2) for N/M1/M2, so here
416 * the range value for them is (actual_value - 2).
417 */
418static const struct intel_limit intel_limits_ironlake_dac = {
419 .dot = { .min = 25000, .max = 350000 },
420 .vco = { .min = 1760000, .max = 3510000 },
421 .n = { .min = 1, .max = 5 },
422 .m = { .min = 79, .max = 127 },
423 .m1 = { .min = 12, .max = 22 },
424 .m2 = { .min = 5, .max = 9 },
425 .p = { .min = 5, .max = 80 },
426 .p1 = { .min = 1, .max = 8 },
427 .p2 = { .dot_limit = 225000,
428 .p2_slow = 10, .p2_fast = 5 },
429};
430
431static const struct intel_limit intel_limits_ironlake_single_lvds = {
432 .dot = { .min = 25000, .max = 350000 },
433 .vco = { .min = 1760000, .max = 3510000 },
434 .n = { .min = 1, .max = 3 },
435 .m = { .min = 79, .max = 118 },
436 .m1 = { .min = 12, .max = 22 },
437 .m2 = { .min = 5, .max = 9 },
438 .p = { .min = 28, .max = 112 },
439 .p1 = { .min = 2, .max = 8 },
440 .p2 = { .dot_limit = 225000,
441 .p2_slow = 14, .p2_fast = 14 },
442};
443
444static const struct intel_limit intel_limits_ironlake_dual_lvds = {
445 .dot = { .min = 25000, .max = 350000 },
446 .vco = { .min = 1760000, .max = 3510000 },
447 .n = { .min = 1, .max = 3 },
448 .m = { .min = 79, .max = 127 },
449 .m1 = { .min = 12, .max = 22 },
450 .m2 = { .min = 5, .max = 9 },
451 .p = { .min = 14, .max = 56 },
452 .p1 = { .min = 2, .max = 8 },
453 .p2 = { .dot_limit = 225000,
454 .p2_slow = 7, .p2_fast = 7 },
455};
456
457/* LVDS 100mhz refclk limits. */
458static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
459 .dot = { .min = 25000, .max = 350000 },
460 .vco = { .min = 1760000, .max = 3510000 },
461 .n = { .min = 1, .max = 2 },
462 .m = { .min = 79, .max = 126 },
463 .m1 = { .min = 12, .max = 22 },
464 .m2 = { .min = 5, .max = 9 },
465 .p = { .min = 28, .max = 112 },
466 .p1 = { .min = 2, .max = 8 },
467 .p2 = { .dot_limit = 225000,
468 .p2_slow = 14, .p2_fast = 14 },
469};
470
471static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
472 .dot = { .min = 25000, .max = 350000 },
473 .vco = { .min = 1760000, .max = 3510000 },
474 .n = { .min = 1, .max = 3 },
475 .m = { .min = 79, .max = 126 },
476 .m1 = { .min = 12, .max = 22 },
477 .m2 = { .min = 5, .max = 9 },
478 .p = { .min = 14, .max = 42 },
479 .p1 = { .min = 2, .max = 6 },
480 .p2 = { .dot_limit = 225000,
481 .p2_slow = 7, .p2_fast = 7 },
482};
483
484static const struct intel_limit intel_limits_vlv = {
485 /*
486 * These are the data rate limits (measured in fast clocks)
487 * since those are the strictest limits we have. The fast
488 * clock and actual rate limits are more relaxed, so checking
489 * them would make no difference.
490 */
491 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
492 .vco = { .min = 4000000, .max = 6000000 },
493 .n = { .min = 1, .max = 7 },
494 .m1 = { .min = 2, .max = 3 },
495 .m2 = { .min = 11, .max = 156 },
496 .p1 = { .min = 2, .max = 3 },
497 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
498};
499
500static const struct intel_limit intel_limits_chv = {
501 /*
502 * These are the data rate limits (measured in fast clocks)
503 * since those are the strictest limits we have. The fast
504 * clock and actual rate limits are more relaxed, so checking
505 * them would make no difference.
506 */
507 .dot = { .min = 25000 * 5, .max = 540000 * 5},
508 .vco = { .min = 4800000, .max = 6480000 },
509 .n = { .min = 1, .max = 1 },
510 .m1 = { .min = 2, .max = 2 },
511 .m2 = { .min = 24 << 22, .max = 175 << 22 },
512 .p1 = { .min = 2, .max = 4 },
513 .p2 = { .p2_slow = 1, .p2_fast = 14 },
514};
515
516static const struct intel_limit intel_limits_bxt = {
517 /* FIXME: find real dot limits */
518 .dot = { .min = 0, .max = INT_MAX },
519 .vco = { .min = 4800000, .max = 6700000 },
520 .n = { .min = 1, .max = 1 },
521 .m1 = { .min = 2, .max = 2 },
522 /* FIXME: find real m2 limits */
523 .m2 = { .min = 2 << 22, .max = 255 << 22 },
524 .p1 = { .min = 2, .max = 4 },
525 .p2 = { .p2_slow = 1, .p2_fast = 20 },
526};
527
528static bool
529needs_modeset(struct drm_crtc_state *state)
530{
531 return drm_atomic_crtc_needs_modeset(state);
532}
533
534/*
535 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
536 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
537 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
538 * The helpers' return value is the rate of the clock that is fed to the
539 * display engine's pipe which can be the above fast dot clock rate or a
540 * divided-down version of it.
541 */
542/* m1 is reserved as 0 in Pineview, n is a ring counter */
543static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
544{
545 clock->m = clock->m2 + 2;
546 clock->p = clock->p1 * clock->p2;
547 if (WARN_ON(clock->n == 0 || clock->p == 0))
548 return 0;
549 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
550 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
551
552 return clock->dot;
553}
554
555static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
556{
557 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
558}
559
560static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
561{
562 clock->m = i9xx_dpll_compute_m(clock);
563 clock->p = clock->p1 * clock->p2;
564 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
565 return 0;
566 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
567 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
568
569 return clock->dot;
570}
571
572static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
573{
574 clock->m = clock->m1 * clock->m2;
575 clock->p = clock->p1 * clock->p2;
576 if (WARN_ON(clock->n == 0 || clock->p == 0))
577 return 0;
578 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
579 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
580
581 return clock->dot / 5;
582}
583
584int chv_calc_dpll_params(int refclk, struct dpll *clock)
585{
586 clock->m = clock->m1 * clock->m2;
587 clock->p = clock->p1 * clock->p2;
588 if (WARN_ON(clock->n == 0 || clock->p == 0))
589 return 0;
590 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
591 clock->n << 22);
592 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
593
594 return clock->dot / 5;
595}
596
597#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
598/**
599 * Returns whether the given set of divisors are valid for a given refclk with
600 * the given connectors.
601 */
602
603static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv,
604 const struct intel_limit *limit,
605 const struct dpll *clock)
606{
607 if (clock->n < limit->n.min || limit->n.max < clock->n)
608 INTELPllInvalid("n out of range\n");
609 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
610 INTELPllInvalid("p1 out of range\n");
611 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
612 INTELPllInvalid("m2 out of range\n");
613 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
614 INTELPllInvalid("m1 out of range\n");
615
616 if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
617 !IS_CHERRYVIEW(dev_priv) && !IS_BROXTON(dev_priv))
618 if (clock->m1 <= clock->m2)
619 INTELPllInvalid("m1 <= m2\n");
620
621 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
622 !IS_BROXTON(dev_priv)) {
623 if (clock->p < limit->p.min || limit->p.max < clock->p)
624 INTELPllInvalid("p out of range\n");
625 if (clock->m < limit->m.min || limit->m.max < clock->m)
626 INTELPllInvalid("m out of range\n");
627 }
628
629 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
630 INTELPllInvalid("vco out of range\n");
631 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
632 * connector, etc., rather than just a single range.
633 */
634 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
635 INTELPllInvalid("dot out of range\n");
636
637 return true;
638}
639
640static int
641i9xx_select_p2_div(const struct intel_limit *limit,
642 const struct intel_crtc_state *crtc_state,
643 int target)
644{
645 struct drm_device *dev = crtc_state->base.crtc->dev;
646
647 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
648 /*
649 * For LVDS just rely on its current settings for dual-channel.
650 * We haven't figured out how to reliably set up different
651 * single/dual channel state, if we even can.
652 */
653 if (intel_is_dual_link_lvds(dev))
654 return limit->p2.p2_fast;
655 else
656 return limit->p2.p2_slow;
657 } else {
658 if (target < limit->p2.dot_limit)
659 return limit->p2.p2_slow;
660 else
661 return limit->p2.p2_fast;
662 }
663}
664
665/*
666 * Returns a set of divisors for the desired target clock with the given
667 * refclk, or FALSE. The returned values represent the clock equation:
668 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
669 *
670 * Target and reference clocks are specified in kHz.
671 *
672 * If match_clock is provided, then best_clock P divider must match the P
673 * divider from @match_clock used for LVDS downclocking.
674 */
675static bool
676i9xx_find_best_dpll(const struct intel_limit *limit,
677 struct intel_crtc_state *crtc_state,
678 int target, int refclk, struct dpll *match_clock,
679 struct dpll *best_clock)
680{
681 struct drm_device *dev = crtc_state->base.crtc->dev;
682 struct dpll clock;
683 int err = target;
684
685 memset(best_clock, 0, sizeof(*best_clock));
686
687 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
688
689 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
690 clock.m1++) {
691 for (clock.m2 = limit->m2.min;
692 clock.m2 <= limit->m2.max; clock.m2++) {
693 if (clock.m2 >= clock.m1)
694 break;
695 for (clock.n = limit->n.min;
696 clock.n <= limit->n.max; clock.n++) {
697 for (clock.p1 = limit->p1.min;
698 clock.p1 <= limit->p1.max; clock.p1++) {
699 int this_err;
700
701 i9xx_calc_dpll_params(refclk, &clock);
702 if (!intel_PLL_is_valid(to_i915(dev),
703 limit,
704 &clock))
705 continue;
706 if (match_clock &&
707 clock.p != match_clock->p)
708 continue;
709
710 this_err = abs(clock.dot - target);
711 if (this_err < err) {
712 *best_clock = clock;
713 err = this_err;
714 }
715 }
716 }
717 }
718 }
719
720 return (err != target);
721}
722
723/*
724 * Returns a set of divisors for the desired target clock with the given
725 * refclk, or FALSE. The returned values represent the clock equation:
726 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
727 *
728 * Target and reference clocks are specified in kHz.
729 *
730 * If match_clock is provided, then best_clock P divider must match the P
731 * divider from @match_clock used for LVDS downclocking.
732 */
733static bool
734pnv_find_best_dpll(const struct intel_limit *limit,
735 struct intel_crtc_state *crtc_state,
736 int target, int refclk, struct dpll *match_clock,
737 struct dpll *best_clock)
738{
739 struct drm_device *dev = crtc_state->base.crtc->dev;
740 struct dpll clock;
741 int err = target;
742
743 memset(best_clock, 0, sizeof(*best_clock));
744
745 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
746
747 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
748 clock.m1++) {
749 for (clock.m2 = limit->m2.min;
750 clock.m2 <= limit->m2.max; clock.m2++) {
751 for (clock.n = limit->n.min;
752 clock.n <= limit->n.max; clock.n++) {
753 for (clock.p1 = limit->p1.min;
754 clock.p1 <= limit->p1.max; clock.p1++) {
755 int this_err;
756
757 pnv_calc_dpll_params(refclk, &clock);
758 if (!intel_PLL_is_valid(to_i915(dev),
759 limit,
760 &clock))
761 continue;
762 if (match_clock &&
763 clock.p != match_clock->p)
764 continue;
765
766 this_err = abs(clock.dot - target);
767 if (this_err < err) {
768 *best_clock = clock;
769 err = this_err;
770 }
771 }
772 }
773 }
774 }
775
776 return (err != target);
777}
778
779/*
780 * Returns a set of divisors for the desired target clock with the given
781 * refclk, or FALSE. The returned values represent the clock equation:
782 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
783 *
784 * Target and reference clocks are specified in kHz.
785 *
786 * If match_clock is provided, then best_clock P divider must match the P
787 * divider from @match_clock used for LVDS downclocking.
788 */
789static bool
790g4x_find_best_dpll(const struct intel_limit *limit,
791 struct intel_crtc_state *crtc_state,
792 int target, int refclk, struct dpll *match_clock,
793 struct dpll *best_clock)
794{
795 struct drm_device *dev = crtc_state->base.crtc->dev;
796 struct dpll clock;
797 int max_n;
798 bool found = false;
799 /* approximately equals target * 0.00585 */
800 int err_most = (target >> 8) + (target >> 9);
801
802 memset(best_clock, 0, sizeof(*best_clock));
803
804 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
805
806 max_n = limit->n.max;
807 /* based on hardware requirement, prefer smaller n to precision */
808 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
809 /* based on hardware requirement, prefere larger m1,m2 */
810 for (clock.m1 = limit->m1.max;
811 clock.m1 >= limit->m1.min; clock.m1--) {
812 for (clock.m2 = limit->m2.max;
813 clock.m2 >= limit->m2.min; clock.m2--) {
814 for (clock.p1 = limit->p1.max;
815 clock.p1 >= limit->p1.min; clock.p1--) {
816 int this_err;
817
818 i9xx_calc_dpll_params(refclk, &clock);
819 if (!intel_PLL_is_valid(to_i915(dev),
820 limit,
821 &clock))
822 continue;
823
824 this_err = abs(clock.dot - target);
825 if (this_err < err_most) {
826 *best_clock = clock;
827 err_most = this_err;
828 max_n = clock.n;
829 found = true;
830 }
831 }
832 }
833 }
834 }
835 return found;
836}
837
838/*
839 * Check if the calculated PLL configuration is more optimal compared to the
840 * best configuration and error found so far. Return the calculated error.
841 */
842static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
843 const struct dpll *calculated_clock,
844 const struct dpll *best_clock,
845 unsigned int best_error_ppm,
846 unsigned int *error_ppm)
847{
848 /*
849 * For CHV ignore the error and consider only the P value.
850 * Prefer a bigger P value based on HW requirements.
851 */
852 if (IS_CHERRYVIEW(to_i915(dev))) {
853 *error_ppm = 0;
854
855 return calculated_clock->p > best_clock->p;
856 }
857
858 if (WARN_ON_ONCE(!target_freq))
859 return false;
860
861 *error_ppm = div_u64(1000000ULL *
862 abs(target_freq - calculated_clock->dot),
863 target_freq);
864 /*
865 * Prefer a better P value over a better (smaller) error if the error
866 * is small. Ensure this preference for future configurations too by
867 * setting the error to 0.
868 */
869 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
870 *error_ppm = 0;
871
872 return true;
873 }
874
875 return *error_ppm + 10 < best_error_ppm;
876}
877
878/*
879 * Returns a set of divisors for the desired target clock with the given
880 * refclk, or FALSE. The returned values represent the clock equation:
881 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
882 */
883static bool
884vlv_find_best_dpll(const struct intel_limit *limit,
885 struct intel_crtc_state *crtc_state,
886 int target, int refclk, struct dpll *match_clock,
887 struct dpll *best_clock)
888{
889 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
890 struct drm_device *dev = crtc->base.dev;
891 struct dpll clock;
892 unsigned int bestppm = 1000000;
893 /* min update 19.2 MHz */
894 int max_n = min(limit->n.max, refclk / 19200);
895 bool found = false;
896
897 target *= 5; /* fast clock */
898
899 memset(best_clock, 0, sizeof(*best_clock));
900
901 /* based on hardware requirement, prefer smaller n to precision */
902 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
903 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
904 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
905 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
906 clock.p = clock.p1 * clock.p2;
907 /* based on hardware requirement, prefer bigger m1,m2 values */
908 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
909 unsigned int ppm;
910
911 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
912 refclk * clock.m1);
913
914 vlv_calc_dpll_params(refclk, &clock);
915
916 if (!intel_PLL_is_valid(to_i915(dev),
917 limit,
918 &clock))
919 continue;
920
921 if (!vlv_PLL_is_optimal(dev, target,
922 &clock,
923 best_clock,
924 bestppm, &ppm))
925 continue;
926
927 *best_clock = clock;
928 bestppm = ppm;
929 found = true;
930 }
931 }
932 }
933 }
934
935 return found;
936}
937
938/*
939 * Returns a set of divisors for the desired target clock with the given
940 * refclk, or FALSE. The returned values represent the clock equation:
941 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
942 */
943static bool
944chv_find_best_dpll(const struct intel_limit *limit,
945 struct intel_crtc_state *crtc_state,
946 int target, int refclk, struct dpll *match_clock,
947 struct dpll *best_clock)
948{
949 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
950 struct drm_device *dev = crtc->base.dev;
951 unsigned int best_error_ppm;
952 struct dpll clock;
953 uint64_t m2;
954 int found = false;
955
956 memset(best_clock, 0, sizeof(*best_clock));
957 best_error_ppm = 1000000;
958
959 /*
960 * Based on hardware doc, the n always set to 1, and m1 always
961 * set to 2. If requires to support 200Mhz refclk, we need to
962 * revisit this because n may not 1 anymore.
963 */
964 clock.n = 1, clock.m1 = 2;
965 target *= 5; /* fast clock */
966
967 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
968 for (clock.p2 = limit->p2.p2_fast;
969 clock.p2 >= limit->p2.p2_slow;
970 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
971 unsigned int error_ppm;
972
973 clock.p = clock.p1 * clock.p2;
974
975 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
976 clock.n) << 22, refclk * clock.m1);
977
978 if (m2 > INT_MAX/clock.m1)
979 continue;
980
981 clock.m2 = m2;
982
983 chv_calc_dpll_params(refclk, &clock);
984
985 if (!intel_PLL_is_valid(to_i915(dev), limit, &clock))
986 continue;
987
988 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
989 best_error_ppm, &error_ppm))
990 continue;
991
992 *best_clock = clock;
993 best_error_ppm = error_ppm;
994 found = true;
995 }
996 }
997
998 return found;
999}
1000
1001bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1002 struct dpll *best_clock)
1003{
1004 int refclk = 100000;
1005 const struct intel_limit *limit = &intel_limits_bxt;
1006
1007 return chv_find_best_dpll(limit, crtc_state,
1008 target_clock, refclk, NULL, best_clock);
1009}
1010
1011bool intel_crtc_active(struct intel_crtc *crtc)
1012{
1013 /* Be paranoid as we can arrive here with only partial
1014 * state retrieved from the hardware during setup.
1015 *
1016 * We can ditch the adjusted_mode.crtc_clock check as soon
1017 * as Haswell has gained clock readout/fastboot support.
1018 *
1019 * We can ditch the crtc->primary->fb check as soon as we can
1020 * properly reconstruct framebuffers.
1021 *
1022 * FIXME: The intel_crtc->active here should be switched to
1023 * crtc->state->active once we have proper CRTC states wired up
1024 * for atomic.
1025 */
1026 return crtc->active && crtc->base.primary->state->fb &&
1027 crtc->config->base.adjusted_mode.crtc_clock;
1028}
1029
1030enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1031 enum pipe pipe)
1032{
1033 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1034
1035 return crtc->config->cpu_transcoder;
1036}
1037
1038static bool pipe_dsl_stopped(struct drm_i915_private *dev_priv, enum pipe pipe)
1039{
1040 i915_reg_t reg = PIPEDSL(pipe);
1041 u32 line1, line2;
1042 u32 line_mask;
1043
1044 if (IS_GEN2(dev_priv))
1045 line_mask = DSL_LINEMASK_GEN2;
1046 else
1047 line_mask = DSL_LINEMASK_GEN3;
1048
1049 line1 = I915_READ(reg) & line_mask;
1050 msleep(5);
1051 line2 = I915_READ(reg) & line_mask;
1052
1053 return line1 == line2;
1054}
1055
1056/*
1057 * intel_wait_for_pipe_off - wait for pipe to turn off
1058 * @crtc: crtc whose pipe to wait for
1059 *
1060 * After disabling a pipe, we can't wait for vblank in the usual way,
1061 * spinning on the vblank interrupt status bit, since we won't actually
1062 * see an interrupt when the pipe is disabled.
1063 *
1064 * On Gen4 and above:
1065 * wait for the pipe register state bit to turn off
1066 *
1067 * Otherwise:
1068 * wait for the display line value to settle (it usually
1069 * ends up stopping at the start of the next frame).
1070 *
1071 */
1072static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1073{
1074 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1075 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1076 enum pipe pipe = crtc->pipe;
1077
1078 if (INTEL_GEN(dev_priv) >= 4) {
1079 i915_reg_t reg = PIPECONF(cpu_transcoder);
1080
1081 /* Wait for the Pipe State to go off */
1082 if (intel_wait_for_register(dev_priv,
1083 reg, I965_PIPECONF_ACTIVE, 0,
1084 100))
1085 WARN(1, "pipe_off wait timed out\n");
1086 } else {
1087 /* Wait for the display line to settle */
1088 if (wait_for(pipe_dsl_stopped(dev_priv, pipe), 100))
1089 WARN(1, "pipe_off wait timed out\n");
1090 }
1091}
1092
1093/* Only for pre-ILK configs */
1094void assert_pll(struct drm_i915_private *dev_priv,
1095 enum pipe pipe, bool state)
1096{
1097 u32 val;
1098 bool cur_state;
1099
1100 val = I915_READ(DPLL(pipe));
1101 cur_state = !!(val & DPLL_VCO_ENABLE);
1102 I915_STATE_WARN(cur_state != state,
1103 "PLL state assertion failure (expected %s, current %s)\n",
1104 onoff(state), onoff(cur_state));
1105}
1106
1107/* XXX: the dsi pll is shared between MIPI DSI ports */
1108void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1109{
1110 u32 val;
1111 bool cur_state;
1112
1113 mutex_lock(&dev_priv->sb_lock);
1114 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1115 mutex_unlock(&dev_priv->sb_lock);
1116
1117 cur_state = val & DSI_PLL_VCO_EN;
1118 I915_STATE_WARN(cur_state != state,
1119 "DSI PLL state assertion failure (expected %s, current %s)\n",
1120 onoff(state), onoff(cur_state));
1121}
1122
1123static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1124 enum pipe pipe, bool state)
1125{
1126 bool cur_state;
1127 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1128 pipe);
1129
1130 if (HAS_DDI(dev_priv)) {
1131 /* DDI does not have a specific FDI_TX register */
1132 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1133 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1134 } else {
1135 u32 val = I915_READ(FDI_TX_CTL(pipe));
1136 cur_state = !!(val & FDI_TX_ENABLE);
1137 }
1138 I915_STATE_WARN(cur_state != state,
1139 "FDI TX state assertion failure (expected %s, current %s)\n",
1140 onoff(state), onoff(cur_state));
1141}
1142#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1143#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1144
1145static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1146 enum pipe pipe, bool state)
1147{
1148 u32 val;
1149 bool cur_state;
1150
1151 val = I915_READ(FDI_RX_CTL(pipe));
1152 cur_state = !!(val & FDI_RX_ENABLE);
1153 I915_STATE_WARN(cur_state != state,
1154 "FDI RX state assertion failure (expected %s, current %s)\n",
1155 onoff(state), onoff(cur_state));
1156}
1157#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1158#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1159
1160static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1161 enum pipe pipe)
1162{
1163 u32 val;
1164
1165 /* ILK FDI PLL is always enabled */
1166 if (IS_GEN5(dev_priv))
1167 return;
1168
1169 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1170 if (HAS_DDI(dev_priv))
1171 return;
1172
1173 val = I915_READ(FDI_TX_CTL(pipe));
1174 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175}
1176
1177void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1178 enum pipe pipe, bool state)
1179{
1180 u32 val;
1181 bool cur_state;
1182
1183 val = I915_READ(FDI_RX_CTL(pipe));
1184 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1185 I915_STATE_WARN(cur_state != state,
1186 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1187 onoff(state), onoff(cur_state));
1188}
1189
1190void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1191{
1192 i915_reg_t pp_reg;
1193 u32 val;
1194 enum pipe panel_pipe = PIPE_A;
1195 bool locked = true;
1196
1197 if (WARN_ON(HAS_DDI(dev_priv)))
1198 return;
1199
1200 if (HAS_PCH_SPLIT(dev_priv)) {
1201 u32 port_sel;
1202
1203 pp_reg = PP_CONTROL(0);
1204 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1205
1206 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1207 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1208 panel_pipe = PIPE_B;
1209 /* XXX: else fix for eDP */
1210 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1211 /* presumably write lock depends on pipe, not port select */
1212 pp_reg = PP_CONTROL(pipe);
1213 panel_pipe = pipe;
1214 } else {
1215 pp_reg = PP_CONTROL(0);
1216 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1217 panel_pipe = PIPE_B;
1218 }
1219
1220 val = I915_READ(pp_reg);
1221 if (!(val & PANEL_POWER_ON) ||
1222 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1223 locked = false;
1224
1225 I915_STATE_WARN(panel_pipe == pipe && locked,
1226 "panel assertion failure, pipe %c regs locked\n",
1227 pipe_name(pipe));
1228}
1229
1230static void assert_cursor(struct drm_i915_private *dev_priv,
1231 enum pipe pipe, bool state)
1232{
1233 bool cur_state;
1234
1235 if (IS_845G(dev_priv) || IS_I865G(dev_priv))
1236 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1237 else
1238 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1239
1240 I915_STATE_WARN(cur_state != state,
1241 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1242 pipe_name(pipe), onoff(state), onoff(cur_state));
1243}
1244#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1245#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1246
1247void assert_pipe(struct drm_i915_private *dev_priv,
1248 enum pipe pipe, bool state)
1249{
1250 bool cur_state;
1251 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1252 pipe);
1253 enum intel_display_power_domain power_domain;
1254
1255 /* if we need the pipe quirk it must be always on */
1256 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1257 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1258 state = true;
1259
1260 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1261 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1262 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1263 cur_state = !!(val & PIPECONF_ENABLE);
1264
1265 intel_display_power_put(dev_priv, power_domain);
1266 } else {
1267 cur_state = false;
1268 }
1269
1270 I915_STATE_WARN(cur_state != state,
1271 "pipe %c assertion failure (expected %s, current %s)\n",
1272 pipe_name(pipe), onoff(state), onoff(cur_state));
1273}
1274
1275static void assert_plane(struct drm_i915_private *dev_priv,
1276 enum plane plane, bool state)
1277{
1278 u32 val;
1279 bool cur_state;
1280
1281 val = I915_READ(DSPCNTR(plane));
1282 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1283 I915_STATE_WARN(cur_state != state,
1284 "plane %c assertion failure (expected %s, current %s)\n",
1285 plane_name(plane), onoff(state), onoff(cur_state));
1286}
1287
1288#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1289#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1290
1291static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1292 enum pipe pipe)
1293{
1294 int i;
1295
1296 /* Primary planes are fixed to pipes on gen4+ */
1297 if (INTEL_GEN(dev_priv) >= 4) {
1298 u32 val = I915_READ(DSPCNTR(pipe));
1299 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1300 "plane %c assertion failure, should be disabled but not\n",
1301 plane_name(pipe));
1302 return;
1303 }
1304
1305 /* Need to check both planes against the pipe */
1306 for_each_pipe(dev_priv, i) {
1307 u32 val = I915_READ(DSPCNTR(i));
1308 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1309 DISPPLANE_SEL_PIPE_SHIFT;
1310 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1311 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1312 plane_name(i), pipe_name(pipe));
1313 }
1314}
1315
1316static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1317 enum pipe pipe)
1318{
1319 int sprite;
1320
1321 if (INTEL_GEN(dev_priv) >= 9) {
1322 for_each_sprite(dev_priv, pipe, sprite) {
1323 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1324 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1325 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1326 sprite, pipe_name(pipe));
1327 }
1328 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1329 for_each_sprite(dev_priv, pipe, sprite) {
1330 u32 val = I915_READ(SPCNTR(pipe, sprite));
1331 I915_STATE_WARN(val & SP_ENABLE,
1332 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1333 sprite_name(pipe, sprite), pipe_name(pipe));
1334 }
1335 } else if (INTEL_GEN(dev_priv) >= 7) {
1336 u32 val = I915_READ(SPRCTL(pipe));
1337 I915_STATE_WARN(val & SPRITE_ENABLE,
1338 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1339 plane_name(pipe), pipe_name(pipe));
1340 } else if (INTEL_GEN(dev_priv) >= 5) {
1341 u32 val = I915_READ(DVSCNTR(pipe));
1342 I915_STATE_WARN(val & DVS_ENABLE,
1343 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1344 plane_name(pipe), pipe_name(pipe));
1345 }
1346}
1347
1348static void assert_vblank_disabled(struct drm_crtc *crtc)
1349{
1350 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1351 drm_crtc_vblank_put(crtc);
1352}
1353
1354void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1355 enum pipe pipe)
1356{
1357 u32 val;
1358 bool enabled;
1359
1360 val = I915_READ(PCH_TRANSCONF(pipe));
1361 enabled = !!(val & TRANS_ENABLE);
1362 I915_STATE_WARN(enabled,
1363 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1364 pipe_name(pipe));
1365}
1366
1367static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1368 enum pipe pipe, u32 port_sel, u32 val)
1369{
1370 if ((val & DP_PORT_EN) == 0)
1371 return false;
1372
1373 if (HAS_PCH_CPT(dev_priv)) {
1374 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1375 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1376 return false;
1377 } else if (IS_CHERRYVIEW(dev_priv)) {
1378 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1379 return false;
1380 } else {
1381 if ((val & DP_PIPE_MASK) != (pipe << 30))
1382 return false;
1383 }
1384 return true;
1385}
1386
1387static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1388 enum pipe pipe, u32 val)
1389{
1390 if ((val & SDVO_ENABLE) == 0)
1391 return false;
1392
1393 if (HAS_PCH_CPT(dev_priv)) {
1394 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1395 return false;
1396 } else if (IS_CHERRYVIEW(dev_priv)) {
1397 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1398 return false;
1399 } else {
1400 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1401 return false;
1402 }
1403 return true;
1404}
1405
1406static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1407 enum pipe pipe, u32 val)
1408{
1409 if ((val & LVDS_PORT_EN) == 0)
1410 return false;
1411
1412 if (HAS_PCH_CPT(dev_priv)) {
1413 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1414 return false;
1415 } else {
1416 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1417 return false;
1418 }
1419 return true;
1420}
1421
1422static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1423 enum pipe pipe, u32 val)
1424{
1425 if ((val & ADPA_DAC_ENABLE) == 0)
1426 return false;
1427 if (HAS_PCH_CPT(dev_priv)) {
1428 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1429 return false;
1430 } else {
1431 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1432 return false;
1433 }
1434 return true;
1435}
1436
1437static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1438 enum pipe pipe, i915_reg_t reg,
1439 u32 port_sel)
1440{
1441 u32 val = I915_READ(reg);
1442 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1443 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1444 i915_mmio_reg_offset(reg), pipe_name(pipe));
1445
1446 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1447 && (val & DP_PIPEB_SELECT),
1448 "IBX PCH dp port still using transcoder B\n");
1449}
1450
1451static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1452 enum pipe pipe, i915_reg_t reg)
1453{
1454 u32 val = I915_READ(reg);
1455 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1456 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1457 i915_mmio_reg_offset(reg), pipe_name(pipe));
1458
1459 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1460 && (val & SDVO_PIPE_B_SELECT),
1461 "IBX PCH hdmi port still using transcoder B\n");
1462}
1463
1464static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1465 enum pipe pipe)
1466{
1467 u32 val;
1468
1469 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1470 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1471 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1472
1473 val = I915_READ(PCH_ADPA);
1474 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1475 "PCH VGA enabled on transcoder %c, should be disabled\n",
1476 pipe_name(pipe));
1477
1478 val = I915_READ(PCH_LVDS);
1479 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1480 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1481 pipe_name(pipe));
1482
1483 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1484 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1485 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1486}
1487
1488static void _vlv_enable_pll(struct intel_crtc *crtc,
1489 const struct intel_crtc_state *pipe_config)
1490{
1491 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1492 enum pipe pipe = crtc->pipe;
1493
1494 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1495 POSTING_READ(DPLL(pipe));
1496 udelay(150);
1497
1498 if (intel_wait_for_register(dev_priv,
1499 DPLL(pipe),
1500 DPLL_LOCK_VLV,
1501 DPLL_LOCK_VLV,
1502 1))
1503 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1504}
1505
1506static void vlv_enable_pll(struct intel_crtc *crtc,
1507 const struct intel_crtc_state *pipe_config)
1508{
1509 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1510 enum pipe pipe = crtc->pipe;
1511
1512 assert_pipe_disabled(dev_priv, pipe);
1513
1514 /* PLL is protected by panel, make sure we can write it */
1515 assert_panel_unlocked(dev_priv, pipe);
1516
1517 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1518 _vlv_enable_pll(crtc, pipe_config);
1519
1520 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1521 POSTING_READ(DPLL_MD(pipe));
1522}
1523
1524
1525static void _chv_enable_pll(struct intel_crtc *crtc,
1526 const struct intel_crtc_state *pipe_config)
1527{
1528 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1529 enum pipe pipe = crtc->pipe;
1530 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1531 u32 tmp;
1532
1533 mutex_lock(&dev_priv->sb_lock);
1534
1535 /* Enable back the 10bit clock to display controller */
1536 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1537 tmp |= DPIO_DCLKP_EN;
1538 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1539
1540 mutex_unlock(&dev_priv->sb_lock);
1541
1542 /*
1543 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1544 */
1545 udelay(1);
1546
1547 /* Enable PLL */
1548 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1549
1550 /* Check PLL is locked */
1551 if (intel_wait_for_register(dev_priv,
1552 DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1553 1))
1554 DRM_ERROR("PLL %d failed to lock\n", pipe);
1555}
1556
1557static void chv_enable_pll(struct intel_crtc *crtc,
1558 const struct intel_crtc_state *pipe_config)
1559{
1560 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1561 enum pipe pipe = crtc->pipe;
1562
1563 assert_pipe_disabled(dev_priv, pipe);
1564
1565 /* PLL is protected by panel, make sure we can write it */
1566 assert_panel_unlocked(dev_priv, pipe);
1567
1568 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1569 _chv_enable_pll(crtc, pipe_config);
1570
1571 if (pipe != PIPE_A) {
1572 /*
1573 * WaPixelRepeatModeFixForC0:chv
1574 *
1575 * DPLLCMD is AWOL. Use chicken bits to propagate
1576 * the value from DPLLBMD to either pipe B or C.
1577 */
1578 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1579 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1580 I915_WRITE(CBR4_VLV, 0);
1581 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1582
1583 /*
1584 * DPLLB VGA mode also seems to cause problems.
1585 * We should always have it disabled.
1586 */
1587 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1588 } else {
1589 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1590 POSTING_READ(DPLL_MD(pipe));
1591 }
1592}
1593
1594static int intel_num_dvo_pipes(struct drm_i915_private *dev_priv)
1595{
1596 struct intel_crtc *crtc;
1597 int count = 0;
1598
1599 for_each_intel_crtc(&dev_priv->drm, crtc) {
1600 count += crtc->base.state->active &&
1601 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1602 }
1603
1604 return count;
1605}
1606
1607static void i9xx_enable_pll(struct intel_crtc *crtc)
1608{
1609 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1610 i915_reg_t reg = DPLL(crtc->pipe);
1611 u32 dpll = crtc->config->dpll_hw_state.dpll;
1612
1613 assert_pipe_disabled(dev_priv, crtc->pipe);
1614
1615 /* PLL is protected by panel, make sure we can write it */
1616 if (IS_MOBILE(dev_priv) && !IS_I830(dev_priv))
1617 assert_panel_unlocked(dev_priv, crtc->pipe);
1618
1619 /* Enable DVO 2x clock on both PLLs if necessary */
1620 if (IS_I830(dev_priv) && intel_num_dvo_pipes(dev_priv) > 0) {
1621 /*
1622 * It appears to be important that we don't enable this
1623 * for the current pipe before otherwise configuring the
1624 * PLL. No idea how this should be handled if multiple
1625 * DVO outputs are enabled simultaneosly.
1626 */
1627 dpll |= DPLL_DVO_2X_MODE;
1628 I915_WRITE(DPLL(!crtc->pipe),
1629 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1630 }
1631
1632 /*
1633 * Apparently we need to have VGA mode enabled prior to changing
1634 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1635 * dividers, even though the register value does change.
1636 */
1637 I915_WRITE(reg, 0);
1638
1639 I915_WRITE(reg, dpll);
1640
1641 /* Wait for the clocks to stabilize. */
1642 POSTING_READ(reg);
1643 udelay(150);
1644
1645 if (INTEL_GEN(dev_priv) >= 4) {
1646 I915_WRITE(DPLL_MD(crtc->pipe),
1647 crtc->config->dpll_hw_state.dpll_md);
1648 } else {
1649 /* The pixel multiplier can only be updated once the
1650 * DPLL is enabled and the clocks are stable.
1651 *
1652 * So write it again.
1653 */
1654 I915_WRITE(reg, dpll);
1655 }
1656
1657 /* We do this three times for luck */
1658 I915_WRITE(reg, dpll);
1659 POSTING_READ(reg);
1660 udelay(150); /* wait for warmup */
1661 I915_WRITE(reg, dpll);
1662 POSTING_READ(reg);
1663 udelay(150); /* wait for warmup */
1664 I915_WRITE(reg, dpll);
1665 POSTING_READ(reg);
1666 udelay(150); /* wait for warmup */
1667}
1668
1669/**
1670 * i9xx_disable_pll - disable a PLL
1671 * @dev_priv: i915 private structure
1672 * @pipe: pipe PLL to disable
1673 *
1674 * Disable the PLL for @pipe, making sure the pipe is off first.
1675 *
1676 * Note! This is for pre-ILK only.
1677 */
1678static void i9xx_disable_pll(struct intel_crtc *crtc)
1679{
1680 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1681 enum pipe pipe = crtc->pipe;
1682
1683 /* Disable DVO 2x clock on both PLLs if necessary */
1684 if (IS_I830(dev_priv) &&
1685 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1686 !intel_num_dvo_pipes(dev_priv)) {
1687 I915_WRITE(DPLL(PIPE_B),
1688 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1689 I915_WRITE(DPLL(PIPE_A),
1690 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1691 }
1692
1693 /* Don't disable pipe or pipe PLLs if needed */
1694 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1695 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1696 return;
1697
1698 /* Make sure the pipe isn't still relying on us */
1699 assert_pipe_disabled(dev_priv, pipe);
1700
1701 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1702 POSTING_READ(DPLL(pipe));
1703}
1704
1705static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1706{
1707 u32 val;
1708
1709 /* Make sure the pipe isn't still relying on us */
1710 assert_pipe_disabled(dev_priv, pipe);
1711
1712 val = DPLL_INTEGRATED_REF_CLK_VLV |
1713 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1714 if (pipe != PIPE_A)
1715 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1716
1717 I915_WRITE(DPLL(pipe), val);
1718 POSTING_READ(DPLL(pipe));
1719}
1720
1721static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1722{
1723 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1724 u32 val;
1725
1726 /* Make sure the pipe isn't still relying on us */
1727 assert_pipe_disabled(dev_priv, pipe);
1728
1729 val = DPLL_SSC_REF_CLK_CHV |
1730 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1731 if (pipe != PIPE_A)
1732 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1733
1734 I915_WRITE(DPLL(pipe), val);
1735 POSTING_READ(DPLL(pipe));
1736
1737 mutex_lock(&dev_priv->sb_lock);
1738
1739 /* Disable 10bit clock to display controller */
1740 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1741 val &= ~DPIO_DCLKP_EN;
1742 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1743
1744 mutex_unlock(&dev_priv->sb_lock);
1745}
1746
1747void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1748 struct intel_digital_port *dport,
1749 unsigned int expected_mask)
1750{
1751 u32 port_mask;
1752 i915_reg_t dpll_reg;
1753
1754 switch (dport->port) {
1755 case PORT_B:
1756 port_mask = DPLL_PORTB_READY_MASK;
1757 dpll_reg = DPLL(0);
1758 break;
1759 case PORT_C:
1760 port_mask = DPLL_PORTC_READY_MASK;
1761 dpll_reg = DPLL(0);
1762 expected_mask <<= 4;
1763 break;
1764 case PORT_D:
1765 port_mask = DPLL_PORTD_READY_MASK;
1766 dpll_reg = DPIO_PHY_STATUS;
1767 break;
1768 default:
1769 BUG();
1770 }
1771
1772 if (intel_wait_for_register(dev_priv,
1773 dpll_reg, port_mask, expected_mask,
1774 1000))
1775 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1776 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1777}
1778
1779static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1780 enum pipe pipe)
1781{
1782 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
1783 pipe);
1784 i915_reg_t reg;
1785 uint32_t val, pipeconf_val;
1786
1787 /* Make sure PCH DPLL is enabled */
1788 assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1789
1790 /* FDI must be feeding us bits for PCH ports */
1791 assert_fdi_tx_enabled(dev_priv, pipe);
1792 assert_fdi_rx_enabled(dev_priv, pipe);
1793
1794 if (HAS_PCH_CPT(dev_priv)) {
1795 /* Workaround: Set the timing override bit before enabling the
1796 * pch transcoder. */
1797 reg = TRANS_CHICKEN2(pipe);
1798 val = I915_READ(reg);
1799 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1800 I915_WRITE(reg, val);
1801 }
1802
1803 reg = PCH_TRANSCONF(pipe);
1804 val = I915_READ(reg);
1805 pipeconf_val = I915_READ(PIPECONF(pipe));
1806
1807 if (HAS_PCH_IBX(dev_priv)) {
1808 /*
1809 * Make the BPC in transcoder be consistent with
1810 * that in pipeconf reg. For HDMI we must use 8bpc
1811 * here for both 8bpc and 12bpc.
1812 */
1813 val &= ~PIPECONF_BPC_MASK;
1814 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1815 val |= PIPECONF_8BPC;
1816 else
1817 val |= pipeconf_val & PIPECONF_BPC_MASK;
1818 }
1819
1820 val &= ~TRANS_INTERLACE_MASK;
1821 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1822 if (HAS_PCH_IBX(dev_priv) &&
1823 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1824 val |= TRANS_LEGACY_INTERLACED_ILK;
1825 else
1826 val |= TRANS_INTERLACED;
1827 else
1828 val |= TRANS_PROGRESSIVE;
1829
1830 I915_WRITE(reg, val | TRANS_ENABLE);
1831 if (intel_wait_for_register(dev_priv,
1832 reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1833 100))
1834 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1835}
1836
1837static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1838 enum transcoder cpu_transcoder)
1839{
1840 u32 val, pipeconf_val;
1841
1842 /* FDI must be feeding us bits for PCH ports */
1843 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1844 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1845
1846 /* Workaround: set timing override bit. */
1847 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1848 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1849 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1850
1851 val = TRANS_ENABLE;
1852 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1853
1854 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1855 PIPECONF_INTERLACED_ILK)
1856 val |= TRANS_INTERLACED;
1857 else
1858 val |= TRANS_PROGRESSIVE;
1859
1860 I915_WRITE(LPT_TRANSCONF, val);
1861 if (intel_wait_for_register(dev_priv,
1862 LPT_TRANSCONF,
1863 TRANS_STATE_ENABLE,
1864 TRANS_STATE_ENABLE,
1865 100))
1866 DRM_ERROR("Failed to enable PCH transcoder\n");
1867}
1868
1869static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1870 enum pipe pipe)
1871{
1872 i915_reg_t reg;
1873 uint32_t val;
1874
1875 /* FDI relies on the transcoder */
1876 assert_fdi_tx_disabled(dev_priv, pipe);
1877 assert_fdi_rx_disabled(dev_priv, pipe);
1878
1879 /* Ports must be off as well */
1880 assert_pch_ports_disabled(dev_priv, pipe);
1881
1882 reg = PCH_TRANSCONF(pipe);
1883 val = I915_READ(reg);
1884 val &= ~TRANS_ENABLE;
1885 I915_WRITE(reg, val);
1886 /* wait for PCH transcoder off, transcoder state */
1887 if (intel_wait_for_register(dev_priv,
1888 reg, TRANS_STATE_ENABLE, 0,
1889 50))
1890 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1891
1892 if (HAS_PCH_CPT(dev_priv)) {
1893 /* Workaround: Clear the timing override chicken bit again. */
1894 reg = TRANS_CHICKEN2(pipe);
1895 val = I915_READ(reg);
1896 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1897 I915_WRITE(reg, val);
1898 }
1899}
1900
1901void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1902{
1903 u32 val;
1904
1905 val = I915_READ(LPT_TRANSCONF);
1906 val &= ~TRANS_ENABLE;
1907 I915_WRITE(LPT_TRANSCONF, val);
1908 /* wait for PCH transcoder off, transcoder state */
1909 if (intel_wait_for_register(dev_priv,
1910 LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1911 50))
1912 DRM_ERROR("Failed to disable PCH transcoder\n");
1913
1914 /* Workaround: clear timing override bit. */
1915 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1916 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1917 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1918}
1919
1920enum transcoder intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1921{
1922 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1923
1924 WARN_ON(!crtc->config->has_pch_encoder);
1925
1926 if (HAS_PCH_LPT(dev_priv))
1927 return TRANSCODER_A;
1928 else
1929 return (enum transcoder) crtc->pipe;
1930}
1931
1932/**
1933 * intel_enable_pipe - enable a pipe, asserting requirements
1934 * @crtc: crtc responsible for the pipe
1935 *
1936 * Enable @crtc's pipe, making sure that various hardware specific requirements
1937 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1938 */
1939static void intel_enable_pipe(struct intel_crtc *crtc)
1940{
1941 struct drm_device *dev = crtc->base.dev;
1942 struct drm_i915_private *dev_priv = to_i915(dev);
1943 enum pipe pipe = crtc->pipe;
1944 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1945 i915_reg_t reg;
1946 u32 val;
1947
1948 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1949
1950 assert_planes_disabled(dev_priv, pipe);
1951 assert_cursor_disabled(dev_priv, pipe);
1952 assert_sprites_disabled(dev_priv, pipe);
1953
1954 /*
1955 * A pipe without a PLL won't actually be able to drive bits from
1956 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1957 * need the check.
1958 */
1959 if (HAS_GMCH_DISPLAY(dev_priv)) {
1960 if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1961 assert_dsi_pll_enabled(dev_priv);
1962 else
1963 assert_pll_enabled(dev_priv, pipe);
1964 } else {
1965 if (crtc->config->has_pch_encoder) {
1966 /* if driving the PCH, we need FDI enabled */
1967 assert_fdi_rx_pll_enabled(dev_priv,
1968 (enum pipe) intel_crtc_pch_transcoder(crtc));
1969 assert_fdi_tx_pll_enabled(dev_priv,
1970 (enum pipe) cpu_transcoder);
1971 }
1972 /* FIXME: assert CPU port conditions for SNB+ */
1973 }
1974
1975 reg = PIPECONF(cpu_transcoder);
1976 val = I915_READ(reg);
1977 if (val & PIPECONF_ENABLE) {
1978 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1979 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
1980 return;
1981 }
1982
1983 I915_WRITE(reg, val | PIPECONF_ENABLE);
1984 POSTING_READ(reg);
1985
1986 /*
1987 * Until the pipe starts DSL will read as 0, which would cause
1988 * an apparent vblank timestamp jump, which messes up also the
1989 * frame count when it's derived from the timestamps. So let's
1990 * wait for the pipe to start properly before we call
1991 * drm_crtc_vblank_on()
1992 */
1993 if (dev->max_vblank_count == 0 &&
1994 wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
1995 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
1996}
1997
1998/**
1999 * intel_disable_pipe - disable a pipe, asserting requirements
2000 * @crtc: crtc whose pipes is to be disabled
2001 *
2002 * Disable the pipe of @crtc, making sure that various hardware
2003 * specific requirements are met, if applicable, e.g. plane
2004 * disabled, panel fitter off, etc.
2005 *
2006 * Will wait until the pipe has shut down before returning.
2007 */
2008static void intel_disable_pipe(struct intel_crtc *crtc)
2009{
2010 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2011 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2012 enum pipe pipe = crtc->pipe;
2013 i915_reg_t reg;
2014 u32 val;
2015
2016 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2017
2018 /*
2019 * Make sure planes won't keep trying to pump pixels to us,
2020 * or we might hang the display.
2021 */
2022 assert_planes_disabled(dev_priv, pipe);
2023 assert_cursor_disabled(dev_priv, pipe);
2024 assert_sprites_disabled(dev_priv, pipe);
2025
2026 reg = PIPECONF(cpu_transcoder);
2027 val = I915_READ(reg);
2028 if ((val & PIPECONF_ENABLE) == 0)
2029 return;
2030
2031 /*
2032 * Double wide has implications for planes
2033 * so best keep it disabled when not needed.
2034 */
2035 if (crtc->config->double_wide)
2036 val &= ~PIPECONF_DOUBLE_WIDE;
2037
2038 /* Don't disable pipe or pipe PLLs if needed */
2039 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2040 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2041 val &= ~PIPECONF_ENABLE;
2042
2043 I915_WRITE(reg, val);
2044 if ((val & PIPECONF_ENABLE) == 0)
2045 intel_wait_for_pipe_off(crtc);
2046}
2047
2048static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2049{
2050 return IS_GEN2(dev_priv) ? 2048 : 4096;
2051}
2052
2053static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2054 uint64_t fb_modifier, unsigned int cpp)
2055{
2056 switch (fb_modifier) {
2057 case DRM_FORMAT_MOD_NONE:
2058 return cpp;
2059 case I915_FORMAT_MOD_X_TILED:
2060 if (IS_GEN2(dev_priv))
2061 return 128;
2062 else
2063 return 512;
2064 case I915_FORMAT_MOD_Y_TILED:
2065 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2066 return 128;
2067 else
2068 return 512;
2069 case I915_FORMAT_MOD_Yf_TILED:
2070 switch (cpp) {
2071 case 1:
2072 return 64;
2073 case 2:
2074 case 4:
2075 return 128;
2076 case 8:
2077 case 16:
2078 return 256;
2079 default:
2080 MISSING_CASE(cpp);
2081 return cpp;
2082 }
2083 break;
2084 default:
2085 MISSING_CASE(fb_modifier);
2086 return cpp;
2087 }
2088}
2089
2090unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2091 uint64_t fb_modifier, unsigned int cpp)
2092{
2093 if (fb_modifier == DRM_FORMAT_MOD_NONE)
2094 return 1;
2095 else
2096 return intel_tile_size(dev_priv) /
2097 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2098}
2099
2100/* Return the tile dimensions in pixel units */
2101static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2102 unsigned int *tile_width,
2103 unsigned int *tile_height,
2104 uint64_t fb_modifier,
2105 unsigned int cpp)
2106{
2107 unsigned int tile_width_bytes =
2108 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2109
2110 *tile_width = tile_width_bytes / cpp;
2111 *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2112}
2113
2114unsigned int
2115intel_fb_align_height(struct drm_device *dev, unsigned int height,
2116 uint32_t pixel_format, uint64_t fb_modifier)
2117{
2118 unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2119 unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2120
2121 return ALIGN(height, tile_height);
2122}
2123
2124unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2125{
2126 unsigned int size = 0;
2127 int i;
2128
2129 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2130 size += rot_info->plane[i].width * rot_info->plane[i].height;
2131
2132 return size;
2133}
2134
2135static void
2136intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2137 const struct drm_framebuffer *fb,
2138 unsigned int rotation)
2139{
2140 if (drm_rotation_90_or_270(rotation)) {
2141 *view = i915_ggtt_view_rotated;
2142 view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2143 } else {
2144 *view = i915_ggtt_view_normal;
2145 }
2146}
2147
2148static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2149{
2150 if (INTEL_INFO(dev_priv)->gen >= 9)
2151 return 256 * 1024;
2152 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2153 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2154 return 128 * 1024;
2155 else if (INTEL_INFO(dev_priv)->gen >= 4)
2156 return 4 * 1024;
2157 else
2158 return 0;
2159}
2160
2161static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2162 uint64_t fb_modifier)
2163{
2164 switch (fb_modifier) {
2165 case DRM_FORMAT_MOD_NONE:
2166 return intel_linear_alignment(dev_priv);
2167 case I915_FORMAT_MOD_X_TILED:
2168 if (INTEL_INFO(dev_priv)->gen >= 9)
2169 return 256 * 1024;
2170 return 0;
2171 case I915_FORMAT_MOD_Y_TILED:
2172 case I915_FORMAT_MOD_Yf_TILED:
2173 return 1 * 1024 * 1024;
2174 default:
2175 MISSING_CASE(fb_modifier);
2176 return 0;
2177 }
2178}
2179
2180struct i915_vma *
2181intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2182{
2183 struct drm_device *dev = fb->dev;
2184 struct drm_i915_private *dev_priv = to_i915(dev);
2185 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2186 struct i915_ggtt_view view;
2187 struct i915_vma *vma;
2188 u32 alignment;
2189
2190 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2191
2192 alignment = intel_surf_alignment(dev_priv, fb->modifier);
2193
2194 intel_fill_fb_ggtt_view(&view, fb, rotation);
2195
2196 /* Note that the w/a also requires 64 PTE of padding following the
2197 * bo. We currently fill all unused PTE with the shadow page and so
2198 * we should always have valid PTE following the scanout preventing
2199 * the VT-d warning.
2200 */
2201 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2202 alignment = 256 * 1024;
2203
2204 /*
2205 * Global gtt pte registers are special registers which actually forward
2206 * writes to a chunk of system memory. Which means that there is no risk
2207 * that the register values disappear as soon as we call
2208 * intel_runtime_pm_put(), so it is correct to wrap only the
2209 * pin/unpin/fence and not more.
2210 */
2211 intel_runtime_pm_get(dev_priv);
2212
2213 vma = i915_gem_object_pin_to_display_plane(obj, alignment, &view);
2214 if (IS_ERR(vma))
2215 goto err;
2216
2217 if (i915_vma_is_map_and_fenceable(vma)) {
2218 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2219 * fence, whereas 965+ only requires a fence if using
2220 * framebuffer compression. For simplicity, we always, when
2221 * possible, install a fence as the cost is not that onerous.
2222 *
2223 * If we fail to fence the tiled scanout, then either the
2224 * modeset will reject the change (which is highly unlikely as
2225 * the affected systems, all but one, do not have unmappable
2226 * space) or we will not be able to enable full powersaving
2227 * techniques (also likely not to apply due to various limits
2228 * FBC and the like impose on the size of the buffer, which
2229 * presumably we violated anyway with this unmappable buffer).
2230 * Anyway, it is presumably better to stumble onwards with
2231 * something and try to run the system in a "less than optimal"
2232 * mode that matches the user configuration.
2233 */
2234 if (i915_vma_get_fence(vma) == 0)
2235 i915_vma_pin_fence(vma);
2236 }
2237
2238 i915_vma_get(vma);
2239err:
2240 intel_runtime_pm_put(dev_priv);
2241 return vma;
2242}
2243
2244void intel_unpin_fb_vma(struct i915_vma *vma)
2245{
2246 lockdep_assert_held(&vma->vm->dev->struct_mutex);
2247
2248 if (WARN_ON_ONCE(!vma))
2249 return;
2250
2251 i915_vma_unpin_fence(vma);
2252 i915_gem_object_unpin_from_display_plane(vma);
2253 i915_vma_put(vma);
2254}
2255
2256static int intel_fb_pitch(const struct drm_framebuffer *fb, int plane,
2257 unsigned int rotation)
2258{
2259 if (drm_rotation_90_or_270(rotation))
2260 return to_intel_framebuffer(fb)->rotated[plane].pitch;
2261 else
2262 return fb->pitches[plane];
2263}
2264
2265/*
2266 * Convert the x/y offsets into a linear offset.
2267 * Only valid with 0/180 degree rotation, which is fine since linear
2268 * offset is only used with linear buffers on pre-hsw and tiled buffers
2269 * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2270 */
2271u32 intel_fb_xy_to_linear(int x, int y,
2272 const struct intel_plane_state *state,
2273 int plane)
2274{
2275 const struct drm_framebuffer *fb = state->base.fb;
2276 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2277 unsigned int pitch = fb->pitches[plane];
2278
2279 return y * pitch + x * cpp;
2280}
2281
2282/*
2283 * Add the x/y offsets derived from fb->offsets[] to the user
2284 * specified plane src x/y offsets. The resulting x/y offsets
2285 * specify the start of scanout from the beginning of the gtt mapping.
2286 */
2287void intel_add_fb_offsets(int *x, int *y,
2288 const struct intel_plane_state *state,
2289 int plane)
2290
2291{
2292 const struct intel_framebuffer *intel_fb = to_intel_framebuffer(state->base.fb);
2293 unsigned int rotation = state->base.rotation;
2294
2295 if (drm_rotation_90_or_270(rotation)) {
2296 *x += intel_fb->rotated[plane].x;
2297 *y += intel_fb->rotated[plane].y;
2298 } else {
2299 *x += intel_fb->normal[plane].x;
2300 *y += intel_fb->normal[plane].y;
2301 }
2302}
2303
2304/*
2305 * Input tile dimensions and pitch must already be
2306 * rotated to match x and y, and in pixel units.
2307 */
2308static u32 _intel_adjust_tile_offset(int *x, int *y,
2309 unsigned int tile_width,
2310 unsigned int tile_height,
2311 unsigned int tile_size,
2312 unsigned int pitch_tiles,
2313 u32 old_offset,
2314 u32 new_offset)
2315{
2316 unsigned int pitch_pixels = pitch_tiles * tile_width;
2317 unsigned int tiles;
2318
2319 WARN_ON(old_offset & (tile_size - 1));
2320 WARN_ON(new_offset & (tile_size - 1));
2321 WARN_ON(new_offset > old_offset);
2322
2323 tiles = (old_offset - new_offset) / tile_size;
2324
2325 *y += tiles / pitch_tiles * tile_height;
2326 *x += tiles % pitch_tiles * tile_width;
2327
2328 /* minimize x in case it got needlessly big */
2329 *y += *x / pitch_pixels * tile_height;
2330 *x %= pitch_pixels;
2331
2332 return new_offset;
2333}
2334
2335/*
2336 * Adjust the tile offset by moving the difference into
2337 * the x/y offsets.
2338 */
2339static u32 intel_adjust_tile_offset(int *x, int *y,
2340 const struct intel_plane_state *state, int plane,
2341 u32 old_offset, u32 new_offset)
2342{
2343 const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2344 const struct drm_framebuffer *fb = state->base.fb;
2345 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2346 unsigned int rotation = state->base.rotation;
2347 unsigned int pitch = intel_fb_pitch(fb, plane, rotation);
2348
2349 WARN_ON(new_offset > old_offset);
2350
2351 if (fb->modifier != DRM_FORMAT_MOD_NONE) {
2352 unsigned int tile_size, tile_width, tile_height;
2353 unsigned int pitch_tiles;
2354
2355 tile_size = intel_tile_size(dev_priv);
2356 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2357 fb->modifier, cpp);
2358
2359 if (drm_rotation_90_or_270(rotation)) {
2360 pitch_tiles = pitch / tile_height;
2361 swap(tile_width, tile_height);
2362 } else {
2363 pitch_tiles = pitch / (tile_width * cpp);
2364 }
2365
2366 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2367 tile_size, pitch_tiles,
2368 old_offset, new_offset);
2369 } else {
2370 old_offset += *y * pitch + *x * cpp;
2371
2372 *y = (old_offset - new_offset) / pitch;
2373 *x = ((old_offset - new_offset) - *y * pitch) / cpp;
2374 }
2375
2376 return new_offset;
2377}
2378
2379/*
2380 * Computes the linear offset to the base tile and adjusts
2381 * x, y. bytes per pixel is assumed to be a power-of-two.
2382 *
2383 * In the 90/270 rotated case, x and y are assumed
2384 * to be already rotated to match the rotated GTT view, and
2385 * pitch is the tile_height aligned framebuffer height.
2386 *
2387 * This function is used when computing the derived information
2388 * under intel_framebuffer, so using any of that information
2389 * here is not allowed. Anything under drm_framebuffer can be
2390 * used. This is why the user has to pass in the pitch since it
2391 * is specified in the rotated orientation.
2392 */
2393static u32 _intel_compute_tile_offset(const struct drm_i915_private *dev_priv,
2394 int *x, int *y,
2395 const struct drm_framebuffer *fb, int plane,
2396 unsigned int pitch,
2397 unsigned int rotation,
2398 u32 alignment)
2399{
2400 uint64_t fb_modifier = fb->modifier;
2401 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2402 u32 offset, offset_aligned;
2403
2404 if (alignment)
2405 alignment--;
2406
2407 if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2408 unsigned int tile_size, tile_width, tile_height;
2409 unsigned int tile_rows, tiles, pitch_tiles;
2410
2411 tile_size = intel_tile_size(dev_priv);
2412 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2413 fb_modifier, cpp);
2414
2415 if (drm_rotation_90_or_270(rotation)) {
2416 pitch_tiles = pitch / tile_height;
2417 swap(tile_width, tile_height);
2418 } else {
2419 pitch_tiles = pitch / (tile_width * cpp);
2420 }
2421
2422 tile_rows = *y / tile_height;
2423 *y %= tile_height;
2424
2425 tiles = *x / tile_width;
2426 *x %= tile_width;
2427
2428 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2429 offset_aligned = offset & ~alignment;
2430
2431 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2432 tile_size, pitch_tiles,
2433 offset, offset_aligned);
2434 } else {
2435 offset = *y * pitch + *x * cpp;
2436 offset_aligned = offset & ~alignment;
2437
2438 *y = (offset & alignment) / pitch;
2439 *x = ((offset & alignment) - *y * pitch) / cpp;
2440 }
2441
2442 return offset_aligned;
2443}
2444
2445u32 intel_compute_tile_offset(int *x, int *y,
2446 const struct intel_plane_state *state,
2447 int plane)
2448{
2449 const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2450 const struct drm_framebuffer *fb = state->base.fb;
2451 unsigned int rotation = state->base.rotation;
2452 int pitch = intel_fb_pitch(fb, plane, rotation);
2453 u32 alignment;
2454
2455 /* AUX_DIST needs only 4K alignment */
2456 if (fb->pixel_format == DRM_FORMAT_NV12 && plane == 1)
2457 alignment = 4096;
2458 else
2459 alignment = intel_surf_alignment(dev_priv, fb->modifier);
2460
2461 return _intel_compute_tile_offset(dev_priv, x, y, fb, plane, pitch,
2462 rotation, alignment);
2463}
2464
2465/* Convert the fb->offset[] linear offset into x/y offsets */
2466static void intel_fb_offset_to_xy(int *x, int *y,
2467 const struct drm_framebuffer *fb, int plane)
2468{
2469 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2470 unsigned int pitch = fb->pitches[plane];
2471 u32 linear_offset = fb->offsets[plane];
2472
2473 *y = linear_offset / pitch;
2474 *x = linear_offset % pitch / cpp;
2475}
2476
2477static unsigned int intel_fb_modifier_to_tiling(uint64_t fb_modifier)
2478{
2479 switch (fb_modifier) {
2480 case I915_FORMAT_MOD_X_TILED:
2481 return I915_TILING_X;
2482 case I915_FORMAT_MOD_Y_TILED:
2483 return I915_TILING_Y;
2484 default:
2485 return I915_TILING_NONE;
2486 }
2487}
2488
2489static int
2490intel_fill_fb_info(struct drm_i915_private *dev_priv,
2491 struct drm_framebuffer *fb)
2492{
2493 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2494 struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2495 u32 gtt_offset_rotated = 0;
2496 unsigned int max_size = 0;
2497 uint32_t format = fb->pixel_format;
2498 int i, num_planes = drm_format_num_planes(format);
2499 unsigned int tile_size = intel_tile_size(dev_priv);
2500
2501 for (i = 0; i < num_planes; i++) {
2502 unsigned int width, height;
2503 unsigned int cpp, size;
2504 u32 offset;
2505 int x, y;
2506
2507 cpp = drm_format_plane_cpp(format, i);
2508 width = drm_format_plane_width(fb->width, format, i);
2509 height = drm_format_plane_height(fb->height, format, i);
2510
2511 intel_fb_offset_to_xy(&x, &y, fb, i);
2512
2513 /*
2514 * The fence (if used) is aligned to the start of the object
2515 * so having the framebuffer wrap around across the edge of the
2516 * fenced region doesn't really work. We have no API to configure
2517 * the fence start offset within the object (nor could we probably
2518 * on gen2/3). So it's just easier if we just require that the
2519 * fb layout agrees with the fence layout. We already check that the
2520 * fb stride matches the fence stride elsewhere.
2521 */
2522 if (i915_gem_object_is_tiled(intel_fb->obj) &&
2523 (x + width) * cpp > fb->pitches[i]) {
2524 DRM_DEBUG("bad fb plane %d offset: 0x%x\n",
2525 i, fb->offsets[i]);
2526 return -EINVAL;
2527 }
2528
2529 /*
2530 * First pixel of the framebuffer from
2531 * the start of the normal gtt mapping.
2532 */
2533 intel_fb->normal[i].x = x;
2534 intel_fb->normal[i].y = y;
2535
2536 offset = _intel_compute_tile_offset(dev_priv, &x, &y,
2537 fb, 0, fb->pitches[i],
2538 DRM_ROTATE_0, tile_size);
2539 offset /= tile_size;
2540
2541 if (fb->modifier != DRM_FORMAT_MOD_NONE) {
2542 unsigned int tile_width, tile_height;
2543 unsigned int pitch_tiles;
2544 struct drm_rect r;
2545
2546 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2547 fb->modifier, cpp);
2548
2549 rot_info->plane[i].offset = offset;
2550 rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2551 rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2552 rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2553
2554 intel_fb->rotated[i].pitch =
2555 rot_info->plane[i].height * tile_height;
2556
2557 /* how many tiles does this plane need */
2558 size = rot_info->plane[i].stride * rot_info->plane[i].height;
2559 /*
2560 * If the plane isn't horizontally tile aligned,
2561 * we need one more tile.
2562 */
2563 if (x != 0)
2564 size++;
2565
2566 /* rotate the x/y offsets to match the GTT view */
2567 r.x1 = x;
2568 r.y1 = y;
2569 r.x2 = x + width;
2570 r.y2 = y + height;
2571 drm_rect_rotate(&r,
2572 rot_info->plane[i].width * tile_width,
2573 rot_info->plane[i].height * tile_height,
2574 DRM_ROTATE_270);
2575 x = r.x1;
2576 y = r.y1;
2577
2578 /* rotate the tile dimensions to match the GTT view */
2579 pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2580 swap(tile_width, tile_height);
2581
2582 /*
2583 * We only keep the x/y offsets, so push all of the
2584 * gtt offset into the x/y offsets.
2585 */
2586 _intel_adjust_tile_offset(&x, &y,
2587 tile_width, tile_height,
2588 tile_size, pitch_tiles,
2589 gtt_offset_rotated * tile_size, 0);
2590
2591 gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2592
2593 /*
2594 * First pixel of the framebuffer from
2595 * the start of the rotated gtt mapping.
2596 */
2597 intel_fb->rotated[i].x = x;
2598 intel_fb->rotated[i].y = y;
2599 } else {
2600 size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2601 x * cpp, tile_size);
2602 }
2603
2604 /* how many tiles in total needed in the bo */
2605 max_size = max(max_size, offset + size);
2606 }
2607
2608 if (max_size * tile_size > to_intel_framebuffer(fb)->obj->base.size) {
2609 DRM_DEBUG("fb too big for bo (need %u bytes, have %zu bytes)\n",
2610 max_size * tile_size, to_intel_framebuffer(fb)->obj->base.size);
2611 return -EINVAL;
2612 }
2613
2614 return 0;
2615}
2616
2617static int i9xx_format_to_fourcc(int format)
2618{
2619 switch (format) {
2620 case DISPPLANE_8BPP:
2621 return DRM_FORMAT_C8;
2622 case DISPPLANE_BGRX555:
2623 return DRM_FORMAT_XRGB1555;
2624 case DISPPLANE_BGRX565:
2625 return DRM_FORMAT_RGB565;
2626 default:
2627 case DISPPLANE_BGRX888:
2628 return DRM_FORMAT_XRGB8888;
2629 case DISPPLANE_RGBX888:
2630 return DRM_FORMAT_XBGR8888;
2631 case DISPPLANE_BGRX101010:
2632 return DRM_FORMAT_XRGB2101010;
2633 case DISPPLANE_RGBX101010:
2634 return DRM_FORMAT_XBGR2101010;
2635 }
2636}
2637
2638static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2639{
2640 switch (format) {
2641 case PLANE_CTL_FORMAT_RGB_565:
2642 return DRM_FORMAT_RGB565;
2643 default:
2644 case PLANE_CTL_FORMAT_XRGB_8888:
2645 if (rgb_order) {
2646 if (alpha)
2647 return DRM_FORMAT_ABGR8888;
2648 else
2649 return DRM_FORMAT_XBGR8888;
2650 } else {
2651 if (alpha)
2652 return DRM_FORMAT_ARGB8888;
2653 else
2654 return DRM_FORMAT_XRGB8888;
2655 }
2656 case PLANE_CTL_FORMAT_XRGB_2101010:
2657 if (rgb_order)
2658 return DRM_FORMAT_XBGR2101010;
2659 else
2660 return DRM_FORMAT_XRGB2101010;
2661 }
2662}
2663
2664static bool
2665intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2666 struct intel_initial_plane_config *plane_config)
2667{
2668 struct drm_device *dev = crtc->base.dev;
2669 struct drm_i915_private *dev_priv = to_i915(dev);
2670 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2671 struct drm_i915_gem_object *obj = NULL;
2672 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2673 struct drm_framebuffer *fb = &plane_config->fb->base;
2674 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2675 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2676 PAGE_SIZE);
2677
2678 size_aligned -= base_aligned;
2679
2680 if (plane_config->size == 0)
2681 return false;
2682
2683 /* If the FB is too big, just don't use it since fbdev is not very
2684 * important and we should probably use that space with FBC or other
2685 * features. */
2686 if (size_aligned * 2 > ggtt->stolen_usable_size)
2687 return false;
2688
2689 mutex_lock(&dev->struct_mutex);
2690
2691 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2692 base_aligned,
2693 base_aligned,
2694 size_aligned);
2695 if (!obj) {
2696 mutex_unlock(&dev->struct_mutex);
2697 return false;
2698 }
2699
2700 if (plane_config->tiling == I915_TILING_X)
2701 obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X;
2702
2703 mode_cmd.pixel_format = fb->pixel_format;
2704 mode_cmd.width = fb->width;
2705 mode_cmd.height = fb->height;
2706 mode_cmd.pitches[0] = fb->pitches[0];
2707 mode_cmd.modifier[0] = fb->modifier;
2708 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2709
2710 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2711 &mode_cmd, obj)) {
2712 DRM_DEBUG_KMS("intel fb init failed\n");
2713 goto out_unref_obj;
2714 }
2715
2716 mutex_unlock(&dev->struct_mutex);
2717
2718 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2719 return true;
2720
2721out_unref_obj:
2722 i915_gem_object_put(obj);
2723 mutex_unlock(&dev->struct_mutex);
2724 return false;
2725}
2726
2727/* Update plane->state->fb to match plane->fb after driver-internal updates */
2728static void
2729update_state_fb(struct drm_plane *plane)
2730{
2731 if (plane->fb == plane->state->fb)
2732 return;
2733
2734 if (plane->state->fb)
2735 drm_framebuffer_unreference(plane->state->fb);
2736 plane->state->fb = plane->fb;
2737 if (plane->state->fb)
2738 drm_framebuffer_reference(plane->state->fb);
2739}
2740
2741static void
2742intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2743 struct intel_initial_plane_config *plane_config)
2744{
2745 struct drm_device *dev = intel_crtc->base.dev;
2746 struct drm_i915_private *dev_priv = to_i915(dev);
2747 struct drm_crtc *c;
2748 struct drm_i915_gem_object *obj;
2749 struct drm_plane *primary = intel_crtc->base.primary;
2750 struct drm_plane_state *plane_state = primary->state;
2751 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2752 struct intel_plane *intel_plane = to_intel_plane(primary);
2753 struct intel_plane_state *intel_state =
2754 to_intel_plane_state(plane_state);
2755 struct drm_framebuffer *fb;
2756
2757 if (!plane_config->fb)
2758 return;
2759
2760 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2761 fb = &plane_config->fb->base;
2762 goto valid_fb;
2763 }
2764
2765 kfree(plane_config->fb);
2766
2767 /*
2768 * Failed to alloc the obj, check to see if we should share
2769 * an fb with another CRTC instead
2770 */
2771 for_each_crtc(dev, c) {
2772 struct intel_plane_state *state;
2773
2774 if (c == &intel_crtc->base)
2775 continue;
2776
2777 if (!to_intel_crtc(c)->active)
2778 continue;
2779
2780 state = to_intel_plane_state(c->primary->state);
2781 if (!state->vma)
2782 continue;
2783
2784 if (intel_plane_ggtt_offset(state) == plane_config->base) {
2785 fb = c->primary->fb;
2786 drm_framebuffer_reference(fb);
2787 goto valid_fb;
2788 }
2789 }
2790
2791 /*
2792 * We've failed to reconstruct the BIOS FB. Current display state
2793 * indicates that the primary plane is visible, but has a NULL FB,
2794 * which will lead to problems later if we don't fix it up. The
2795 * simplest solution is to just disable the primary plane now and
2796 * pretend the BIOS never had it enabled.
2797 */
2798 to_intel_plane_state(plane_state)->base.visible = false;
2799 crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2800 intel_pre_disable_primary_noatomic(&intel_crtc->base);
2801 intel_plane->disable_plane(primary, &intel_crtc->base);
2802
2803 return;
2804
2805valid_fb:
2806 mutex_lock(&dev->struct_mutex);
2807 intel_state->vma =
2808 intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
2809 mutex_unlock(&dev->struct_mutex);
2810 if (IS_ERR(intel_state->vma)) {
2811 DRM_ERROR("failed to pin boot fb on pipe %d: %li\n",
2812 intel_crtc->pipe, PTR_ERR(intel_state->vma));
2813
2814 intel_state->vma = NULL;
2815 drm_framebuffer_unreference(fb);
2816 return;
2817 }
2818
2819 plane_state->src_x = 0;
2820 plane_state->src_y = 0;
2821 plane_state->src_w = fb->width << 16;
2822 plane_state->src_h = fb->height << 16;
2823
2824 plane_state->crtc_x = 0;
2825 plane_state->crtc_y = 0;
2826 plane_state->crtc_w = fb->width;
2827 plane_state->crtc_h = fb->height;
2828
2829 intel_state->base.src = drm_plane_state_src(plane_state);
2830 intel_state->base.dst = drm_plane_state_dest(plane_state);
2831
2832 obj = intel_fb_obj(fb);
2833 if (i915_gem_object_is_tiled(obj))
2834 dev_priv->preserve_bios_swizzle = true;
2835
2836 drm_framebuffer_reference(fb);
2837 primary->fb = primary->state->fb = fb;
2838 primary->crtc = primary->state->crtc = &intel_crtc->base;
2839 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2840 atomic_or(to_intel_plane(primary)->frontbuffer_bit,
2841 &obj->frontbuffer_bits);
2842}
2843
2844static int skl_max_plane_width(const struct drm_framebuffer *fb, int plane,
2845 unsigned int rotation)
2846{
2847 int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2848
2849 switch (fb->modifier) {
2850 case DRM_FORMAT_MOD_NONE:
2851 case I915_FORMAT_MOD_X_TILED:
2852 switch (cpp) {
2853 case 8:
2854 return 4096;
2855 case 4:
2856 case 2:
2857 case 1:
2858 return 8192;
2859 default:
2860 MISSING_CASE(cpp);
2861 break;
2862 }
2863 break;
2864 case I915_FORMAT_MOD_Y_TILED:
2865 case I915_FORMAT_MOD_Yf_TILED:
2866 switch (cpp) {
2867 case 8:
2868 return 2048;
2869 case 4:
2870 return 4096;
2871 case 2:
2872 case 1:
2873 return 8192;
2874 default:
2875 MISSING_CASE(cpp);
2876 break;
2877 }
2878 break;
2879 default:
2880 MISSING_CASE(fb->modifier);
2881 }
2882
2883 return 2048;
2884}
2885
2886static int skl_check_main_surface(struct intel_plane_state *plane_state)
2887{
2888 const struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev);
2889 const struct drm_framebuffer *fb = plane_state->base.fb;
2890 unsigned int rotation = plane_state->base.rotation;
2891 int x = plane_state->base.src.x1 >> 16;
2892 int y = plane_state->base.src.y1 >> 16;
2893 int w = drm_rect_width(&plane_state->base.src) >> 16;
2894 int h = drm_rect_height(&plane_state->base.src) >> 16;
2895 int max_width = skl_max_plane_width(fb, 0, rotation);
2896 int max_height = 4096;
2897 u32 alignment, offset, aux_offset = plane_state->aux.offset;
2898
2899 if (w > max_width || h > max_height) {
2900 DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
2901 w, h, max_width, max_height);
2902 return -EINVAL;
2903 }
2904
2905 intel_add_fb_offsets(&x, &y, plane_state, 0);
2906 offset = intel_compute_tile_offset(&x, &y, plane_state, 0);
2907
2908 alignment = intel_surf_alignment(dev_priv, fb->modifier);
2909
2910 /*
2911 * AUX surface offset is specified as the distance from the
2912 * main surface offset, and it must be non-negative. Make
2913 * sure that is what we will get.
2914 */
2915 if (offset > aux_offset)
2916 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2917 offset, aux_offset & ~(alignment - 1));
2918
2919 /*
2920 * When using an X-tiled surface, the plane blows up
2921 * if the x offset + width exceed the stride.
2922 *
2923 * TODO: linear and Y-tiled seem fine, Yf untested,
2924 */
2925 if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
2926 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2927
2928 while ((x + w) * cpp > fb->pitches[0]) {
2929 if (offset == 0) {
2930 DRM_DEBUG_KMS("Unable to find suitable display surface offset\n");
2931 return -EINVAL;
2932 }
2933
2934 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2935 offset, offset - alignment);
2936 }
2937 }
2938
2939 plane_state->main.offset = offset;
2940 plane_state->main.x = x;
2941 plane_state->main.y = y;
2942
2943 return 0;
2944}
2945
2946static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
2947{
2948 const struct drm_framebuffer *fb = plane_state->base.fb;
2949 unsigned int rotation = plane_state->base.rotation;
2950 int max_width = skl_max_plane_width(fb, 1, rotation);
2951 int max_height = 4096;
2952 int x = plane_state->base.src.x1 >> 17;
2953 int y = plane_state->base.src.y1 >> 17;
2954 int w = drm_rect_width(&plane_state->base.src) >> 17;
2955 int h = drm_rect_height(&plane_state->base.src) >> 17;
2956 u32 offset;
2957
2958 intel_add_fb_offsets(&x, &y, plane_state, 1);
2959 offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
2960
2961 /* FIXME not quite sure how/if these apply to the chroma plane */
2962 if (w > max_width || h > max_height) {
2963 DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
2964 w, h, max_width, max_height);
2965 return -EINVAL;
2966 }
2967
2968 plane_state->aux.offset = offset;
2969 plane_state->aux.x = x;
2970 plane_state->aux.y = y;
2971
2972 return 0;
2973}
2974
2975int skl_check_plane_surface(struct intel_plane_state *plane_state)
2976{
2977 const struct drm_framebuffer *fb = plane_state->base.fb;
2978 unsigned int rotation = plane_state->base.rotation;
2979 int ret;
2980
2981 if (!plane_state->base.visible)
2982 return 0;
2983
2984 /* Rotate src coordinates to match rotated GTT view */
2985 if (drm_rotation_90_or_270(rotation))
2986 drm_rect_rotate(&plane_state->base.src,
2987 fb->width << 16, fb->height << 16,
2988 DRM_ROTATE_270);
2989
2990 /*
2991 * Handle the AUX surface first since
2992 * the main surface setup depends on it.
2993 */
2994 if (fb->pixel_format == DRM_FORMAT_NV12) {
2995 ret = skl_check_nv12_aux_surface(plane_state);
2996 if (ret)
2997 return ret;
2998 } else {
2999 plane_state->aux.offset = ~0xfff;
3000 plane_state->aux.x = 0;
3001 plane_state->aux.y = 0;
3002 }
3003
3004 ret = skl_check_main_surface(plane_state);
3005 if (ret)
3006 return ret;
3007
3008 return 0;
3009}
3010
3011static void i9xx_update_primary_plane(struct drm_plane *primary,
3012 const struct intel_crtc_state *crtc_state,
3013 const struct intel_plane_state *plane_state)
3014{
3015 struct drm_i915_private *dev_priv = to_i915(primary->dev);
3016 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3017 struct drm_framebuffer *fb = plane_state->base.fb;
3018 int plane = intel_crtc->plane;
3019 u32 linear_offset;
3020 u32 dspcntr;
3021 i915_reg_t reg = DSPCNTR(plane);
3022 unsigned int rotation = plane_state->base.rotation;
3023 int x = plane_state->base.src.x1 >> 16;
3024 int y = plane_state->base.src.y1 >> 16;
3025
3026 dspcntr = DISPPLANE_GAMMA_ENABLE;
3027
3028 dspcntr |= DISPLAY_PLANE_ENABLE;
3029
3030 if (INTEL_GEN(dev_priv) < 4) {
3031 if (intel_crtc->pipe == PIPE_B)
3032 dspcntr |= DISPPLANE_SEL_PIPE_B;
3033
3034 /* pipesrc and dspsize control the size that is scaled from,
3035 * which should always be the user's requested size.
3036 */
3037 I915_WRITE(DSPSIZE(plane),
3038 ((crtc_state->pipe_src_h - 1) << 16) |
3039 (crtc_state->pipe_src_w - 1));
3040 I915_WRITE(DSPPOS(plane), 0);
3041 } else if (IS_CHERRYVIEW(dev_priv) && plane == PLANE_B) {
3042 I915_WRITE(PRIMSIZE(plane),
3043 ((crtc_state->pipe_src_h - 1) << 16) |
3044 (crtc_state->pipe_src_w - 1));
3045 I915_WRITE(PRIMPOS(plane), 0);
3046 I915_WRITE(PRIMCNSTALPHA(plane), 0);
3047 }
3048
3049 switch (fb->pixel_format) {
3050 case DRM_FORMAT_C8:
3051 dspcntr |= DISPPLANE_8BPP;
3052 break;
3053 case DRM_FORMAT_XRGB1555:
3054 dspcntr |= DISPPLANE_BGRX555;
3055 break;
3056 case DRM_FORMAT_RGB565:
3057 dspcntr |= DISPPLANE_BGRX565;
3058 break;
3059 case DRM_FORMAT_XRGB8888:
3060 dspcntr |= DISPPLANE_BGRX888;
3061 break;
3062 case DRM_FORMAT_XBGR8888:
3063 dspcntr |= DISPPLANE_RGBX888;
3064 break;
3065 case DRM_FORMAT_XRGB2101010:
3066 dspcntr |= DISPPLANE_BGRX101010;
3067 break;
3068 case DRM_FORMAT_XBGR2101010:
3069 dspcntr |= DISPPLANE_RGBX101010;
3070 break;
3071 default:
3072 BUG();
3073 }
3074
3075 if (INTEL_GEN(dev_priv) >= 4 &&
3076 fb->modifier == I915_FORMAT_MOD_X_TILED)
3077 dspcntr |= DISPPLANE_TILED;
3078
3079 if (rotation & DRM_ROTATE_180)
3080 dspcntr |= DISPPLANE_ROTATE_180;
3081
3082 if (rotation & DRM_REFLECT_X)
3083 dspcntr |= DISPPLANE_MIRROR;
3084
3085 if (IS_G4X(dev_priv))
3086 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3087
3088 intel_add_fb_offsets(&x, &y, plane_state, 0);
3089
3090 if (INTEL_GEN(dev_priv) >= 4)
3091 intel_crtc->dspaddr_offset =
3092 intel_compute_tile_offset(&x, &y, plane_state, 0);
3093
3094 if (rotation & DRM_ROTATE_180) {
3095 x += crtc_state->pipe_src_w - 1;
3096 y += crtc_state->pipe_src_h - 1;
3097 } else if (rotation & DRM_REFLECT_X) {
3098 x += crtc_state->pipe_src_w - 1;
3099 }
3100
3101 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3102
3103 if (INTEL_GEN(dev_priv) < 4)
3104 intel_crtc->dspaddr_offset = linear_offset;
3105
3106 intel_crtc->adjusted_x = x;
3107 intel_crtc->adjusted_y = y;
3108
3109 I915_WRITE(reg, dspcntr);
3110
3111 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3112 if (INTEL_GEN(dev_priv) >= 4) {
3113 I915_WRITE(DSPSURF(plane),
3114 intel_plane_ggtt_offset(plane_state) +
3115 intel_crtc->dspaddr_offset);
3116 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3117 I915_WRITE(DSPLINOFF(plane), linear_offset);
3118 } else {
3119 I915_WRITE(DSPADDR(plane),
3120 intel_plane_ggtt_offset(plane_state) +
3121 intel_crtc->dspaddr_offset);
3122 }
3123 POSTING_READ(reg);
3124}
3125
3126static void i9xx_disable_primary_plane(struct drm_plane *primary,
3127 struct drm_crtc *crtc)
3128{
3129 struct drm_device *dev = crtc->dev;
3130 struct drm_i915_private *dev_priv = to_i915(dev);
3131 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3132 int plane = intel_crtc->plane;
3133
3134 I915_WRITE(DSPCNTR(plane), 0);
3135 if (INTEL_INFO(dev_priv)->gen >= 4)
3136 I915_WRITE(DSPSURF(plane), 0);
3137 else
3138 I915_WRITE(DSPADDR(plane), 0);
3139 POSTING_READ(DSPCNTR(plane));
3140}
3141
3142static void ironlake_update_primary_plane(struct drm_plane *primary,
3143 const struct intel_crtc_state *crtc_state,
3144 const struct intel_plane_state *plane_state)
3145{
3146 struct drm_device *dev = primary->dev;
3147 struct drm_i915_private *dev_priv = to_i915(dev);
3148 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3149 struct drm_framebuffer *fb = plane_state->base.fb;
3150 int plane = intel_crtc->plane;
3151 u32 linear_offset;
3152 u32 dspcntr;
3153 i915_reg_t reg = DSPCNTR(plane);
3154 unsigned int rotation = plane_state->base.rotation;
3155 int x = plane_state->base.src.x1 >> 16;
3156 int y = plane_state->base.src.y1 >> 16;
3157
3158 dspcntr = DISPPLANE_GAMMA_ENABLE;
3159 dspcntr |= DISPLAY_PLANE_ENABLE;
3160
3161 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3162 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
3163
3164 switch (fb->pixel_format) {
3165 case DRM_FORMAT_C8:
3166 dspcntr |= DISPPLANE_8BPP;
3167 break;
3168 case DRM_FORMAT_RGB565:
3169 dspcntr |= DISPPLANE_BGRX565;
3170 break;
3171 case DRM_FORMAT_XRGB8888:
3172 dspcntr |= DISPPLANE_BGRX888;
3173 break;
3174 case DRM_FORMAT_XBGR8888:
3175 dspcntr |= DISPPLANE_RGBX888;
3176 break;
3177 case DRM_FORMAT_XRGB2101010:
3178 dspcntr |= DISPPLANE_BGRX101010;
3179 break;
3180 case DRM_FORMAT_XBGR2101010:
3181 dspcntr |= DISPPLANE_RGBX101010;
3182 break;
3183 default:
3184 BUG();
3185 }
3186
3187 if (fb->modifier == I915_FORMAT_MOD_X_TILED)
3188 dspcntr |= DISPPLANE_TILED;
3189
3190 if (rotation & DRM_ROTATE_180)
3191 dspcntr |= DISPPLANE_ROTATE_180;
3192
3193 if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv))
3194 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3195
3196 intel_add_fb_offsets(&x, &y, plane_state, 0);
3197
3198 intel_crtc->dspaddr_offset =
3199 intel_compute_tile_offset(&x, &y, plane_state, 0);
3200
3201 /* HSW+ does this automagically in hardware */
3202 if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv) &&
3203 rotation & DRM_ROTATE_180) {
3204 x += crtc_state->pipe_src_w - 1;
3205 y += crtc_state->pipe_src_h - 1;
3206 }
3207
3208 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3209
3210 intel_crtc->adjusted_x = x;
3211 intel_crtc->adjusted_y = y;
3212
3213 I915_WRITE(reg, dspcntr);
3214
3215 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3216 I915_WRITE(DSPSURF(plane),
3217 intel_plane_ggtt_offset(plane_state) +
3218 intel_crtc->dspaddr_offset);
3219 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3220 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
3221 } else {
3222 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3223 I915_WRITE(DSPLINOFF(plane), linear_offset);
3224 }
3225 POSTING_READ(reg);
3226}
3227
3228u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
3229 uint64_t fb_modifier, uint32_t pixel_format)
3230{
3231 if (fb_modifier == DRM_FORMAT_MOD_NONE) {
3232 return 64;
3233 } else {
3234 int cpp = drm_format_plane_cpp(pixel_format, 0);
3235
3236 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
3237 }
3238}
3239
3240static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
3241{
3242 struct drm_device *dev = intel_crtc->base.dev;
3243 struct drm_i915_private *dev_priv = to_i915(dev);
3244
3245 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
3246 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
3247 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
3248}
3249
3250/*
3251 * This function detaches (aka. unbinds) unused scalers in hardware
3252 */
3253static void skl_detach_scalers(struct intel_crtc *intel_crtc)
3254{
3255 struct intel_crtc_scaler_state *scaler_state;
3256 int i;
3257
3258 scaler_state = &intel_crtc->config->scaler_state;
3259
3260 /* loop through and disable scalers that aren't in use */
3261 for (i = 0; i < intel_crtc->num_scalers; i++) {
3262 if (!scaler_state->scalers[i].in_use)
3263 skl_detach_scaler(intel_crtc, i);
3264 }
3265}
3266
3267u32 skl_plane_stride(const struct drm_framebuffer *fb, int plane,
3268 unsigned int rotation)
3269{
3270 const struct drm_i915_private *dev_priv = to_i915(fb->dev);
3271 u32 stride = intel_fb_pitch(fb, plane, rotation);
3272
3273 /*
3274 * The stride is either expressed as a multiple of 64 bytes chunks for
3275 * linear buffers or in number of tiles for tiled buffers.
3276 */
3277 if (drm_rotation_90_or_270(rotation)) {
3278 int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
3279
3280 stride /= intel_tile_height(dev_priv, fb->modifier, cpp);
3281 } else {
3282 stride /= intel_fb_stride_alignment(dev_priv, fb->modifier,
3283 fb->pixel_format);
3284 }
3285
3286 return stride;
3287}
3288
3289u32 skl_plane_ctl_format(uint32_t pixel_format)
3290{
3291 switch (pixel_format) {
3292 case DRM_FORMAT_C8:
3293 return PLANE_CTL_FORMAT_INDEXED;
3294 case DRM_FORMAT_RGB565:
3295 return PLANE_CTL_FORMAT_RGB_565;
3296 case DRM_FORMAT_XBGR8888:
3297 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3298 case DRM_FORMAT_XRGB8888:
3299 return PLANE_CTL_FORMAT_XRGB_8888;
3300 /*
3301 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3302 * to be already pre-multiplied. We need to add a knob (or a different
3303 * DRM_FORMAT) for user-space to configure that.
3304 */
3305 case DRM_FORMAT_ABGR8888:
3306 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3307 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3308 case DRM_FORMAT_ARGB8888:
3309 return PLANE_CTL_FORMAT_XRGB_8888 |
3310 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3311 case DRM_FORMAT_XRGB2101010:
3312 return PLANE_CTL_FORMAT_XRGB_2101010;
3313 case DRM_FORMAT_XBGR2101010:
3314 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3315 case DRM_FORMAT_YUYV:
3316 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3317 case DRM_FORMAT_YVYU:
3318 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3319 case DRM_FORMAT_UYVY:
3320 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3321 case DRM_FORMAT_VYUY:
3322 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3323 default:
3324 MISSING_CASE(pixel_format);
3325 }
3326
3327 return 0;
3328}
3329
3330u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3331{
3332 switch (fb_modifier) {
3333 case DRM_FORMAT_MOD_NONE:
3334 break;
3335 case I915_FORMAT_MOD_X_TILED:
3336 return PLANE_CTL_TILED_X;
3337 case I915_FORMAT_MOD_Y_TILED:
3338 return PLANE_CTL_TILED_Y;
3339 case I915_FORMAT_MOD_Yf_TILED:
3340 return PLANE_CTL_TILED_YF;
3341 default:
3342 MISSING_CASE(fb_modifier);
3343 }
3344
3345 return 0;
3346}
3347
3348u32 skl_plane_ctl_rotation(unsigned int rotation)
3349{
3350 switch (rotation) {
3351 case DRM_ROTATE_0:
3352 break;
3353 /*
3354 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3355 * while i915 HW rotation is clockwise, thats why this swapping.
3356 */
3357 case DRM_ROTATE_90:
3358 return PLANE_CTL_ROTATE_270;
3359 case DRM_ROTATE_180:
3360 return PLANE_CTL_ROTATE_180;
3361 case DRM_ROTATE_270:
3362 return PLANE_CTL_ROTATE_90;
3363 default:
3364 MISSING_CASE(rotation);
3365 }
3366
3367 return 0;
3368}
3369
3370static void skylake_update_primary_plane(struct drm_plane *plane,
3371 const struct intel_crtc_state *crtc_state,
3372 const struct intel_plane_state *plane_state)
3373{
3374 struct drm_device *dev = plane->dev;
3375 struct drm_i915_private *dev_priv = to_i915(dev);
3376 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3377 struct drm_framebuffer *fb = plane_state->base.fb;
3378 int pipe = intel_crtc->pipe;
3379 u32 plane_ctl;
3380 unsigned int rotation = plane_state->base.rotation;
3381 u32 stride = skl_plane_stride(fb, 0, rotation);
3382 u32 surf_addr = plane_state->main.offset;
3383 int scaler_id = plane_state->scaler_id;
3384 int src_x = plane_state->main.x;
3385 int src_y = plane_state->main.y;
3386 int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3387 int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3388 int dst_x = plane_state->base.dst.x1;
3389 int dst_y = plane_state->base.dst.y1;
3390 int dst_w = drm_rect_width(&plane_state->base.dst);
3391 int dst_h = drm_rect_height(&plane_state->base.dst);
3392
3393 plane_ctl = PLANE_CTL_ENABLE |
3394 PLANE_CTL_PIPE_GAMMA_ENABLE |
3395 PLANE_CTL_PIPE_CSC_ENABLE;
3396
3397 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3398 plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
3399 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3400 plane_ctl |= skl_plane_ctl_rotation(rotation);
3401
3402 /* Sizes are 0 based */
3403 src_w--;
3404 src_h--;
3405 dst_w--;
3406 dst_h--;
3407
3408 intel_crtc->dspaddr_offset = surf_addr;
3409
3410 intel_crtc->adjusted_x = src_x;
3411 intel_crtc->adjusted_y = src_y;
3412
3413 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3414 I915_WRITE(PLANE_OFFSET(pipe, 0), (src_y << 16) | src_x);
3415 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3416 I915_WRITE(PLANE_SIZE(pipe, 0), (src_h << 16) | src_w);
3417
3418 if (scaler_id >= 0) {
3419 uint32_t ps_ctrl = 0;
3420
3421 WARN_ON(!dst_w || !dst_h);
3422 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3423 crtc_state->scaler_state.scalers[scaler_id].mode;
3424 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3425 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3426 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3427 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3428 I915_WRITE(PLANE_POS(pipe, 0), 0);
3429 } else {
3430 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3431 }
3432
3433 I915_WRITE(PLANE_SURF(pipe, 0),
3434 intel_plane_ggtt_offset(plane_state) + surf_addr);
3435
3436 POSTING_READ(PLANE_SURF(pipe, 0));
3437}
3438
3439static void skylake_disable_primary_plane(struct drm_plane *primary,
3440 struct drm_crtc *crtc)
3441{
3442 struct drm_device *dev = crtc->dev;
3443 struct drm_i915_private *dev_priv = to_i915(dev);
3444 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3445 int pipe = intel_crtc->pipe;
3446
3447 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3448 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3449 POSTING_READ(PLANE_SURF(pipe, 0));
3450}
3451
3452/* Assume fb object is pinned & idle & fenced and just update base pointers */
3453static int
3454intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3455 int x, int y, enum mode_set_atomic state)
3456{
3457 /* Support for kgdboc is disabled, this needs a major rework. */
3458 DRM_ERROR("legacy panic handler not supported any more.\n");
3459
3460 return -ENODEV;
3461}
3462
3463static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3464{
3465 struct intel_crtc *crtc;
3466
3467 for_each_intel_crtc(&dev_priv->drm, crtc)
3468 intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3469}
3470
3471static void intel_update_primary_planes(struct drm_device *dev)
3472{
3473 struct drm_crtc *crtc;
3474
3475 for_each_crtc(dev, crtc) {
3476 struct intel_plane *plane = to_intel_plane(crtc->primary);
3477 struct intel_plane_state *plane_state =
3478 to_intel_plane_state(plane->base.state);
3479
3480 if (plane_state->base.visible)
3481 plane->update_plane(&plane->base,
3482 to_intel_crtc_state(crtc->state),
3483 plane_state);
3484 }
3485}
3486
3487static int
3488__intel_display_resume(struct drm_device *dev,
3489 struct drm_atomic_state *state)
3490{
3491 struct drm_crtc_state *crtc_state;
3492 struct drm_crtc *crtc;
3493 int i, ret;
3494
3495 intel_modeset_setup_hw_state(dev);
3496 i915_redisable_vga(to_i915(dev));
3497
3498 if (!state)
3499 return 0;
3500
3501 for_each_crtc_in_state(state, crtc, crtc_state, i) {
3502 /*
3503 * Force recalculation even if we restore
3504 * current state. With fast modeset this may not result
3505 * in a modeset when the state is compatible.
3506 */
3507 crtc_state->mode_changed = true;
3508 }
3509
3510 /* ignore any reset values/BIOS leftovers in the WM registers */
3511 to_intel_atomic_state(state)->skip_intermediate_wm = true;
3512
3513 ret = drm_atomic_commit(state);
3514
3515 WARN_ON(ret == -EDEADLK);
3516 return ret;
3517}
3518
3519static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
3520{
3521 return intel_has_gpu_reset(dev_priv) &&
3522 INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv);
3523}
3524
3525void intel_prepare_reset(struct drm_i915_private *dev_priv)
3526{
3527 struct drm_device *dev = &dev_priv->drm;
3528 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3529 struct drm_atomic_state *state;
3530 int ret;
3531
3532 /*
3533 * Need mode_config.mutex so that we don't
3534 * trample ongoing ->detect() and whatnot.
3535 */
3536 mutex_lock(&dev->mode_config.mutex);
3537 drm_modeset_acquire_init(ctx, 0);
3538 while (1) {
3539 ret = drm_modeset_lock_all_ctx(dev, ctx);
3540 if (ret != -EDEADLK)
3541 break;
3542
3543 drm_modeset_backoff(ctx);
3544 }
3545
3546 /* reset doesn't touch the display, but flips might get nuked anyway, */
3547 if (!i915.force_reset_modeset_test &&
3548 !gpu_reset_clobbers_display(dev_priv))
3549 return;
3550
3551 /*
3552 * Disabling the crtcs gracefully seems nicer. Also the
3553 * g33 docs say we should at least disable all the planes.
3554 */
3555 state = drm_atomic_helper_duplicate_state(dev, ctx);
3556 if (IS_ERR(state)) {
3557 ret = PTR_ERR(state);
3558 state = NULL;
3559 DRM_ERROR("Duplicating state failed with %i\n", ret);
3560 goto err;
3561 }
3562
3563 ret = drm_atomic_helper_disable_all(dev, ctx);
3564 if (ret) {
3565 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
3566 goto err;
3567 }
3568
3569 dev_priv->modeset_restore_state = state;
3570 state->acquire_ctx = ctx;
3571 return;
3572
3573err:
3574 drm_atomic_state_put(state);
3575}
3576
3577void intel_finish_reset(struct drm_i915_private *dev_priv)
3578{
3579 struct drm_device *dev = &dev_priv->drm;
3580 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3581 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
3582 int ret;
3583
3584 /*
3585 * Flips in the rings will be nuked by the reset,
3586 * so complete all pending flips so that user space
3587 * will get its events and not get stuck.
3588 */
3589 intel_complete_page_flips(dev_priv);
3590
3591 dev_priv->modeset_restore_state = NULL;
3592
3593 /* reset doesn't touch the display */
3594 if (!gpu_reset_clobbers_display(dev_priv)) {
3595 if (!state) {
3596 /*
3597 * Flips in the rings have been nuked by the reset,
3598 * so update the base address of all primary
3599 * planes to the the last fb to make sure we're
3600 * showing the correct fb after a reset.
3601 *
3602 * FIXME: Atomic will make this obsolete since we won't schedule
3603 * CS-based flips (which might get lost in gpu resets) any more.
3604 */
3605 intel_update_primary_planes(dev);
3606 } else {
3607 ret = __intel_display_resume(dev, state);
3608 if (ret)
3609 DRM_ERROR("Restoring old state failed with %i\n", ret);
3610 }
3611 } else {
3612 /*
3613 * The display has been reset as well,
3614 * so need a full re-initialization.
3615 */
3616 intel_runtime_pm_disable_interrupts(dev_priv);
3617 intel_runtime_pm_enable_interrupts(dev_priv);
3618
3619 intel_pps_unlock_regs_wa(dev_priv);
3620 intel_modeset_init_hw(dev);
3621
3622 spin_lock_irq(&dev_priv->irq_lock);
3623 if (dev_priv->display.hpd_irq_setup)
3624 dev_priv->display.hpd_irq_setup(dev_priv);
3625 spin_unlock_irq(&dev_priv->irq_lock);
3626
3627 ret = __intel_display_resume(dev, state);
3628 if (ret)
3629 DRM_ERROR("Restoring old state failed with %i\n", ret);
3630
3631 intel_hpd_init(dev_priv);
3632 }
3633
3634 if (state)
3635 drm_atomic_state_put(state);
3636 drm_modeset_drop_locks(ctx);
3637 drm_modeset_acquire_fini(ctx);
3638 mutex_unlock(&dev->mode_config.mutex);
3639}
3640
3641static bool abort_flip_on_reset(struct intel_crtc *crtc)
3642{
3643 struct i915_gpu_error *error = &to_i915(crtc->base.dev)->gpu_error;
3644
3645 if (i915_reset_in_progress(error))
3646 return true;
3647
3648 if (crtc->reset_count != i915_reset_count(error))
3649 return true;
3650
3651 return false;
3652}
3653
3654static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3655{
3656 struct drm_device *dev = crtc->dev;
3657 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3658 bool pending;
3659
3660 if (abort_flip_on_reset(intel_crtc))
3661 return false;
3662
3663 spin_lock_irq(&dev->event_lock);
3664 pending = to_intel_crtc(crtc)->flip_work != NULL;
3665 spin_unlock_irq(&dev->event_lock);
3666
3667 return pending;
3668}
3669
3670static void intel_update_pipe_config(struct intel_crtc *crtc,
3671 struct intel_crtc_state *old_crtc_state)
3672{
3673 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3674 struct intel_crtc_state *pipe_config =
3675 to_intel_crtc_state(crtc->base.state);
3676
3677 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3678 crtc->base.mode = crtc->base.state->mode;
3679
3680 /*
3681 * Update pipe size and adjust fitter if needed: the reason for this is
3682 * that in compute_mode_changes we check the native mode (not the pfit
3683 * mode) to see if we can flip rather than do a full mode set. In the
3684 * fastboot case, we'll flip, but if we don't update the pipesrc and
3685 * pfit state, we'll end up with a big fb scanned out into the wrong
3686 * sized surface.
3687 */
3688
3689 I915_WRITE(PIPESRC(crtc->pipe),
3690 ((pipe_config->pipe_src_w - 1) << 16) |
3691 (pipe_config->pipe_src_h - 1));
3692
3693 /* on skylake this is done by detaching scalers */
3694 if (INTEL_GEN(dev_priv) >= 9) {
3695 skl_detach_scalers(crtc);
3696
3697 if (pipe_config->pch_pfit.enabled)
3698 skylake_pfit_enable(crtc);
3699 } else if (HAS_PCH_SPLIT(dev_priv)) {
3700 if (pipe_config->pch_pfit.enabled)
3701 ironlake_pfit_enable(crtc);
3702 else if (old_crtc_state->pch_pfit.enabled)
3703 ironlake_pfit_disable(crtc, true);
3704 }
3705}
3706
3707static void intel_fdi_normal_train(struct drm_crtc *crtc)
3708{
3709 struct drm_device *dev = crtc->dev;
3710 struct drm_i915_private *dev_priv = to_i915(dev);
3711 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3712 int pipe = intel_crtc->pipe;
3713 i915_reg_t reg;
3714 u32 temp;
3715
3716 /* enable normal train */
3717 reg = FDI_TX_CTL(pipe);
3718 temp = I915_READ(reg);
3719 if (IS_IVYBRIDGE(dev_priv)) {
3720 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3721 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3722 } else {
3723 temp &= ~FDI_LINK_TRAIN_NONE;
3724 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3725 }
3726 I915_WRITE(reg, temp);
3727
3728 reg = FDI_RX_CTL(pipe);
3729 temp = I915_READ(reg);
3730 if (HAS_PCH_CPT(dev_priv)) {
3731 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3732 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3733 } else {
3734 temp &= ~FDI_LINK_TRAIN_NONE;
3735 temp |= FDI_LINK_TRAIN_NONE;
3736 }
3737 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3738
3739 /* wait one idle pattern time */
3740 POSTING_READ(reg);
3741 udelay(1000);
3742
3743 /* IVB wants error correction enabled */
3744 if (IS_IVYBRIDGE(dev_priv))
3745 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3746 FDI_FE_ERRC_ENABLE);
3747}
3748
3749/* The FDI link training functions for ILK/Ibexpeak. */
3750static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3751{
3752 struct drm_device *dev = crtc->dev;
3753 struct drm_i915_private *dev_priv = to_i915(dev);
3754 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3755 int pipe = intel_crtc->pipe;
3756 i915_reg_t reg;
3757 u32 temp, tries;
3758
3759 /* FDI needs bits from pipe first */
3760 assert_pipe_enabled(dev_priv, pipe);
3761
3762 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3763 for train result */
3764 reg = FDI_RX_IMR(pipe);
3765 temp = I915_READ(reg);
3766 temp &= ~FDI_RX_SYMBOL_LOCK;
3767 temp &= ~FDI_RX_BIT_LOCK;
3768 I915_WRITE(reg, temp);
3769 I915_READ(reg);
3770 udelay(150);
3771
3772 /* enable CPU FDI TX and PCH FDI RX */
3773 reg = FDI_TX_CTL(pipe);
3774 temp = I915_READ(reg);
3775 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3776 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3777 temp &= ~FDI_LINK_TRAIN_NONE;
3778 temp |= FDI_LINK_TRAIN_PATTERN_1;
3779 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3780
3781 reg = FDI_RX_CTL(pipe);
3782 temp = I915_READ(reg);
3783 temp &= ~FDI_LINK_TRAIN_NONE;
3784 temp |= FDI_LINK_TRAIN_PATTERN_1;
3785 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3786
3787 POSTING_READ(reg);
3788 udelay(150);
3789
3790 /* Ironlake workaround, enable clock pointer after FDI enable*/
3791 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3792 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3793 FDI_RX_PHASE_SYNC_POINTER_EN);
3794
3795 reg = FDI_RX_IIR(pipe);
3796 for (tries = 0; tries < 5; tries++) {
3797 temp = I915_READ(reg);
3798 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3799
3800 if ((temp & FDI_RX_BIT_LOCK)) {
3801 DRM_DEBUG_KMS("FDI train 1 done.\n");
3802 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3803 break;
3804 }
3805 }
3806 if (tries == 5)
3807 DRM_ERROR("FDI train 1 fail!\n");
3808
3809 /* Train 2 */
3810 reg = FDI_TX_CTL(pipe);
3811 temp = I915_READ(reg);
3812 temp &= ~FDI_LINK_TRAIN_NONE;
3813 temp |= FDI_LINK_TRAIN_PATTERN_2;
3814 I915_WRITE(reg, temp);
3815
3816 reg = FDI_RX_CTL(pipe);
3817 temp = I915_READ(reg);
3818 temp &= ~FDI_LINK_TRAIN_NONE;
3819 temp |= FDI_LINK_TRAIN_PATTERN_2;
3820 I915_WRITE(reg, temp);
3821
3822 POSTING_READ(reg);
3823 udelay(150);
3824
3825 reg = FDI_RX_IIR(pipe);
3826 for (tries = 0; tries < 5; tries++) {
3827 temp = I915_READ(reg);
3828 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3829
3830 if (temp & FDI_RX_SYMBOL_LOCK) {
3831 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3832 DRM_DEBUG_KMS("FDI train 2 done.\n");
3833 break;
3834 }
3835 }
3836 if (tries == 5)
3837 DRM_ERROR("FDI train 2 fail!\n");
3838
3839 DRM_DEBUG_KMS("FDI train done\n");
3840
3841}
3842
3843static const int snb_b_fdi_train_param[] = {
3844 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3845 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3846 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3847 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3848};
3849
3850/* The FDI link training functions for SNB/Cougarpoint. */
3851static void gen6_fdi_link_train(struct drm_crtc *crtc)
3852{
3853 struct drm_device *dev = crtc->dev;
3854 struct drm_i915_private *dev_priv = to_i915(dev);
3855 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3856 int pipe = intel_crtc->pipe;
3857 i915_reg_t reg;
3858 u32 temp, i, retry;
3859
3860 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3861 for train result */
3862 reg = FDI_RX_IMR(pipe);
3863 temp = I915_READ(reg);
3864 temp &= ~FDI_RX_SYMBOL_LOCK;
3865 temp &= ~FDI_RX_BIT_LOCK;
3866 I915_WRITE(reg, temp);
3867
3868 POSTING_READ(reg);
3869 udelay(150);
3870
3871 /* enable CPU FDI TX and PCH FDI RX */
3872 reg = FDI_TX_CTL(pipe);
3873 temp = I915_READ(reg);
3874 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3875 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3876 temp &= ~FDI_LINK_TRAIN_NONE;
3877 temp |= FDI_LINK_TRAIN_PATTERN_1;
3878 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3879 /* SNB-B */
3880 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3881 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3882
3883 I915_WRITE(FDI_RX_MISC(pipe),
3884 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3885
3886 reg = FDI_RX_CTL(pipe);
3887 temp = I915_READ(reg);
3888 if (HAS_PCH_CPT(dev_priv)) {
3889 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3890 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3891 } else {
3892 temp &= ~FDI_LINK_TRAIN_NONE;
3893 temp |= FDI_LINK_TRAIN_PATTERN_1;
3894 }
3895 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3896
3897 POSTING_READ(reg);
3898 udelay(150);
3899
3900 for (i = 0; i < 4; i++) {
3901 reg = FDI_TX_CTL(pipe);
3902 temp = I915_READ(reg);
3903 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3904 temp |= snb_b_fdi_train_param[i];
3905 I915_WRITE(reg, temp);
3906
3907 POSTING_READ(reg);
3908 udelay(500);
3909
3910 for (retry = 0; retry < 5; retry++) {
3911 reg = FDI_RX_IIR(pipe);
3912 temp = I915_READ(reg);
3913 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3914 if (temp & FDI_RX_BIT_LOCK) {
3915 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3916 DRM_DEBUG_KMS("FDI train 1 done.\n");
3917 break;
3918 }
3919 udelay(50);
3920 }
3921 if (retry < 5)
3922 break;
3923 }
3924 if (i == 4)
3925 DRM_ERROR("FDI train 1 fail!\n");
3926
3927 /* Train 2 */
3928 reg = FDI_TX_CTL(pipe);
3929 temp = I915_READ(reg);
3930 temp &= ~FDI_LINK_TRAIN_NONE;
3931 temp |= FDI_LINK_TRAIN_PATTERN_2;
3932 if (IS_GEN6(dev_priv)) {
3933 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3934 /* SNB-B */
3935 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3936 }
3937 I915_WRITE(reg, temp);
3938
3939 reg = FDI_RX_CTL(pipe);
3940 temp = I915_READ(reg);
3941 if (HAS_PCH_CPT(dev_priv)) {
3942 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3943 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3944 } else {
3945 temp &= ~FDI_LINK_TRAIN_NONE;
3946 temp |= FDI_LINK_TRAIN_PATTERN_2;
3947 }
3948 I915_WRITE(reg, temp);
3949
3950 POSTING_READ(reg);
3951 udelay(150);
3952
3953 for (i = 0; i < 4; i++) {
3954 reg = FDI_TX_CTL(pipe);
3955 temp = I915_READ(reg);
3956 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3957 temp |= snb_b_fdi_train_param[i];
3958 I915_WRITE(reg, temp);
3959
3960 POSTING_READ(reg);
3961 udelay(500);
3962
3963 for (retry = 0; retry < 5; retry++) {
3964 reg = FDI_RX_IIR(pipe);
3965 temp = I915_READ(reg);
3966 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3967 if (temp & FDI_RX_SYMBOL_LOCK) {
3968 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3969 DRM_DEBUG_KMS("FDI train 2 done.\n");
3970 break;
3971 }
3972 udelay(50);
3973 }
3974 if (retry < 5)
3975 break;
3976 }
3977 if (i == 4)
3978 DRM_ERROR("FDI train 2 fail!\n");
3979
3980 DRM_DEBUG_KMS("FDI train done.\n");
3981}
3982
3983/* Manual link training for Ivy Bridge A0 parts */
3984static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3985{
3986 struct drm_device *dev = crtc->dev;
3987 struct drm_i915_private *dev_priv = to_i915(dev);
3988 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3989 int pipe = intel_crtc->pipe;
3990 i915_reg_t reg;
3991 u32 temp, i, j;
3992
3993 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3994 for train result */
3995 reg = FDI_RX_IMR(pipe);
3996 temp = I915_READ(reg);
3997 temp &= ~FDI_RX_SYMBOL_LOCK;
3998 temp &= ~FDI_RX_BIT_LOCK;
3999 I915_WRITE(reg, temp);
4000
4001 POSTING_READ(reg);
4002 udelay(150);
4003
4004 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
4005 I915_READ(FDI_RX_IIR(pipe)));
4006
4007 /* Try each vswing and preemphasis setting twice before moving on */
4008 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
4009 /* disable first in case we need to retry */
4010 reg = FDI_TX_CTL(pipe);
4011 temp = I915_READ(reg);
4012 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
4013 temp &= ~FDI_TX_ENABLE;
4014 I915_WRITE(reg, temp);
4015
4016 reg = FDI_RX_CTL(pipe);
4017 temp = I915_READ(reg);
4018 temp &= ~FDI_LINK_TRAIN_AUTO;
4019 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4020 temp &= ~FDI_RX_ENABLE;
4021 I915_WRITE(reg, temp);
4022
4023 /* enable CPU FDI TX and PCH FDI RX */
4024 reg = FDI_TX_CTL(pipe);
4025 temp = I915_READ(reg);
4026 temp &= ~FDI_DP_PORT_WIDTH_MASK;
4027 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4028 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
4029 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4030 temp |= snb_b_fdi_train_param[j/2];
4031 temp |= FDI_COMPOSITE_SYNC;
4032 I915_WRITE(reg, temp | FDI_TX_ENABLE);
4033
4034 I915_WRITE(FDI_RX_MISC(pipe),
4035 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
4036
4037 reg = FDI_RX_CTL(pipe);
4038 temp = I915_READ(reg);
4039 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4040 temp |= FDI_COMPOSITE_SYNC;
4041 I915_WRITE(reg, temp | FDI_RX_ENABLE);
4042
4043 POSTING_READ(reg);
4044 udelay(1); /* should be 0.5us */
4045
4046 for (i = 0; i < 4; i++) {
4047 reg = FDI_RX_IIR(pipe);
4048 temp = I915_READ(reg);
4049 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4050
4051 if (temp & FDI_RX_BIT_LOCK ||
4052 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4053 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4054 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4055 i);
4056 break;
4057 }
4058 udelay(1); /* should be 0.5us */
4059 }
4060 if (i == 4) {
4061 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4062 continue;
4063 }
4064
4065 /* Train 2 */
4066 reg = FDI_TX_CTL(pipe);
4067 temp = I915_READ(reg);
4068 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4069 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4070 I915_WRITE(reg, temp);
4071
4072 reg = FDI_RX_CTL(pipe);
4073 temp = I915_READ(reg);
4074 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4075 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4076 I915_WRITE(reg, temp);
4077
4078 POSTING_READ(reg);
4079 udelay(2); /* should be 1.5us */
4080
4081 for (i = 0; i < 4; i++) {
4082 reg = FDI_RX_IIR(pipe);
4083 temp = I915_READ(reg);
4084 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4085
4086 if (temp & FDI_RX_SYMBOL_LOCK ||
4087 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4088 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4089 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4090 i);
4091 goto train_done;
4092 }
4093 udelay(2); /* should be 1.5us */
4094 }
4095 if (i == 4)
4096 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
4097 }
4098
4099train_done:
4100 DRM_DEBUG_KMS("FDI train done.\n");
4101}
4102
4103static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
4104{
4105 struct drm_device *dev = intel_crtc->base.dev;
4106 struct drm_i915_private *dev_priv = to_i915(dev);
4107 int pipe = intel_crtc->pipe;
4108 i915_reg_t reg;
4109 u32 temp;
4110
4111 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
4112 reg = FDI_RX_CTL(pipe);
4113 temp = I915_READ(reg);
4114 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
4115 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4116 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4117 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4118
4119 POSTING_READ(reg);
4120 udelay(200);
4121
4122 /* Switch from Rawclk to PCDclk */
4123 temp = I915_READ(reg);
4124 I915_WRITE(reg, temp | FDI_PCDCLK);
4125
4126 POSTING_READ(reg);
4127 udelay(200);
4128
4129 /* Enable CPU FDI TX PLL, always on for Ironlake */
4130 reg = FDI_TX_CTL(pipe);
4131 temp = I915_READ(reg);
4132 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4133 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4134
4135 POSTING_READ(reg);
4136 udelay(100);
4137 }
4138}
4139
4140static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4141{
4142 struct drm_device *dev = intel_crtc->base.dev;
4143 struct drm_i915_private *dev_priv = to_i915(dev);
4144 int pipe = intel_crtc->pipe;
4145 i915_reg_t reg;
4146 u32 temp;
4147
4148 /* Switch from PCDclk to Rawclk */
4149 reg = FDI_RX_CTL(pipe);
4150 temp = I915_READ(reg);
4151 I915_WRITE(reg, temp & ~FDI_PCDCLK);
4152
4153 /* Disable CPU FDI TX PLL */
4154 reg = FDI_TX_CTL(pipe);
4155 temp = I915_READ(reg);
4156 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4157
4158 POSTING_READ(reg);
4159 udelay(100);
4160
4161 reg = FDI_RX_CTL(pipe);
4162 temp = I915_READ(reg);
4163 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4164
4165 /* Wait for the clocks to turn off. */
4166 POSTING_READ(reg);
4167 udelay(100);
4168}
4169
4170static void ironlake_fdi_disable(struct drm_crtc *crtc)
4171{
4172 struct drm_device *dev = crtc->dev;
4173 struct drm_i915_private *dev_priv = to_i915(dev);
4174 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4175 int pipe = intel_crtc->pipe;
4176 i915_reg_t reg;
4177 u32 temp;
4178
4179 /* disable CPU FDI tx and PCH FDI rx */
4180 reg = FDI_TX_CTL(pipe);
4181 temp = I915_READ(reg);
4182 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
4183 POSTING_READ(reg);
4184
4185 reg = FDI_RX_CTL(pipe);
4186 temp = I915_READ(reg);
4187 temp &= ~(0x7 << 16);
4188 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4189 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
4190
4191 POSTING_READ(reg);
4192 udelay(100);
4193
4194 /* Ironlake workaround, disable clock pointer after downing FDI */
4195 if (HAS_PCH_IBX(dev_priv))
4196 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4197
4198 /* still set train pattern 1 */
4199 reg = FDI_TX_CTL(pipe);
4200 temp = I915_READ(reg);
4201 temp &= ~FDI_LINK_TRAIN_NONE;
4202 temp |= FDI_LINK_TRAIN_PATTERN_1;
4203 I915_WRITE(reg, temp);
4204
4205 reg = FDI_RX_CTL(pipe);
4206 temp = I915_READ(reg);
4207 if (HAS_PCH_CPT(dev_priv)) {
4208 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4209 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4210 } else {
4211 temp &= ~FDI_LINK_TRAIN_NONE;
4212 temp |= FDI_LINK_TRAIN_PATTERN_1;
4213 }
4214 /* BPC in FDI rx is consistent with that in PIPECONF */
4215 temp &= ~(0x07 << 16);
4216 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4217 I915_WRITE(reg, temp);
4218
4219 POSTING_READ(reg);
4220 udelay(100);
4221}
4222
4223bool intel_has_pending_fb_unpin(struct drm_device *dev)
4224{
4225 struct drm_i915_private *dev_priv = to_i915(dev);
4226 struct intel_crtc *crtc;
4227
4228 /* Note that we don't need to be called with mode_config.lock here
4229 * as our list of CRTC objects is static for the lifetime of the
4230 * device and so cannot disappear as we iterate. Similarly, we can
4231 * happily treat the predicates as racy, atomic checks as userspace
4232 * cannot claim and pin a new fb without at least acquring the
4233 * struct_mutex and so serialising with us.
4234 */
4235 for_each_intel_crtc(dev, crtc) {
4236 if (atomic_read(&crtc->unpin_work_count) == 0)
4237 continue;
4238
4239 if (crtc->flip_work)
4240 intel_wait_for_vblank(dev_priv, crtc->pipe);
4241
4242 return true;
4243 }
4244
4245 return false;
4246}
4247
4248static void page_flip_completed(struct intel_crtc *intel_crtc)
4249{
4250 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4251 struct intel_flip_work *work = intel_crtc->flip_work;
4252
4253 intel_crtc->flip_work = NULL;
4254
4255 if (work->event)
4256 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
4257
4258 drm_crtc_vblank_put(&intel_crtc->base);
4259
4260 wake_up_all(&dev_priv->pending_flip_queue);
4261 trace_i915_flip_complete(intel_crtc->plane,
4262 work->pending_flip_obj);
4263
4264 queue_work(dev_priv->wq, &work->unpin_work);
4265}
4266
4267static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
4268{
4269 struct drm_device *dev = crtc->dev;
4270 struct drm_i915_private *dev_priv = to_i915(dev);
4271 long ret;
4272
4273 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
4274
4275 ret = wait_event_interruptible_timeout(
4276 dev_priv->pending_flip_queue,
4277 !intel_crtc_has_pending_flip(crtc),
4278 60*HZ);
4279
4280 if (ret < 0)
4281 return ret;
4282
4283 if (ret == 0) {
4284 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4285 struct intel_flip_work *work;
4286
4287 spin_lock_irq(&dev->event_lock);
4288 work = intel_crtc->flip_work;
4289 if (work && !is_mmio_work(work)) {
4290 WARN_ONCE(1, "Removing stuck page flip\n");
4291 page_flip_completed(intel_crtc);
4292 }
4293 spin_unlock_irq(&dev->event_lock);
4294 }
4295
4296 return 0;
4297}
4298
4299void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
4300{
4301 u32 temp;
4302
4303 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
4304
4305 mutex_lock(&dev_priv->sb_lock);
4306
4307 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4308 temp |= SBI_SSCCTL_DISABLE;
4309 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4310
4311 mutex_unlock(&dev_priv->sb_lock);
4312}
4313
4314/* Program iCLKIP clock to the desired frequency */
4315static void lpt_program_iclkip(struct drm_crtc *crtc)
4316{
4317 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4318 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
4319 u32 divsel, phaseinc, auxdiv, phasedir = 0;
4320 u32 temp;
4321
4322 lpt_disable_iclkip(dev_priv);
4323
4324 /* The iCLK virtual clock root frequency is in MHz,
4325 * but the adjusted_mode->crtc_clock in in KHz. To get the
4326 * divisors, it is necessary to divide one by another, so we
4327 * convert the virtual clock precision to KHz here for higher
4328 * precision.
4329 */
4330 for (auxdiv = 0; auxdiv < 2; auxdiv++) {
4331 u32 iclk_virtual_root_freq = 172800 * 1000;
4332 u32 iclk_pi_range = 64;
4333 u32 desired_divisor;
4334
4335 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4336 clock << auxdiv);
4337 divsel = (desired_divisor / iclk_pi_range) - 2;
4338 phaseinc = desired_divisor % iclk_pi_range;
4339
4340 /*
4341 * Near 20MHz is a corner case which is
4342 * out of range for the 7-bit divisor
4343 */
4344 if (divsel <= 0x7f)
4345 break;
4346 }
4347
4348 /* This should not happen with any sane values */
4349 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4350 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4351 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4352 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4353
4354 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4355 clock,
4356 auxdiv,
4357 divsel,
4358 phasedir,
4359 phaseinc);
4360
4361 mutex_lock(&dev_priv->sb_lock);
4362
4363 /* Program SSCDIVINTPHASE6 */
4364 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4365 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4366 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4367 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4368 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4369 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4370 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4371 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4372
4373 /* Program SSCAUXDIV */
4374 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4375 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4376 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4377 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4378
4379 /* Enable modulator and associated divider */
4380 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4381 temp &= ~SBI_SSCCTL_DISABLE;
4382 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4383
4384 mutex_unlock(&dev_priv->sb_lock);
4385
4386 /* Wait for initialization time */
4387 udelay(24);
4388
4389 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4390}
4391
4392int lpt_get_iclkip(struct drm_i915_private *dev_priv)
4393{
4394 u32 divsel, phaseinc, auxdiv;
4395 u32 iclk_virtual_root_freq = 172800 * 1000;
4396 u32 iclk_pi_range = 64;
4397 u32 desired_divisor;
4398 u32 temp;
4399
4400 if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
4401 return 0;
4402
4403 mutex_lock(&dev_priv->sb_lock);
4404
4405 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4406 if (temp & SBI_SSCCTL_DISABLE) {
4407 mutex_unlock(&dev_priv->sb_lock);
4408 return 0;
4409 }
4410
4411 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4412 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4413 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4414 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4415 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4416
4417 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4418 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4419 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4420
4421 mutex_unlock(&dev_priv->sb_lock);
4422
4423 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4424
4425 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4426 desired_divisor << auxdiv);
4427}
4428
4429static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4430 enum pipe pch_transcoder)
4431{
4432 struct drm_device *dev = crtc->base.dev;
4433 struct drm_i915_private *dev_priv = to_i915(dev);
4434 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4435
4436 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4437 I915_READ(HTOTAL(cpu_transcoder)));
4438 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4439 I915_READ(HBLANK(cpu_transcoder)));
4440 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4441 I915_READ(HSYNC(cpu_transcoder)));
4442
4443 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4444 I915_READ(VTOTAL(cpu_transcoder)));
4445 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4446 I915_READ(VBLANK(cpu_transcoder)));
4447 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4448 I915_READ(VSYNC(cpu_transcoder)));
4449 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4450 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4451}
4452
4453static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4454{
4455 struct drm_i915_private *dev_priv = to_i915(dev);
4456 uint32_t temp;
4457
4458 temp = I915_READ(SOUTH_CHICKEN1);
4459 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4460 return;
4461
4462 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4463 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4464
4465 temp &= ~FDI_BC_BIFURCATION_SELECT;
4466 if (enable)
4467 temp |= FDI_BC_BIFURCATION_SELECT;
4468
4469 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4470 I915_WRITE(SOUTH_CHICKEN1, temp);
4471 POSTING_READ(SOUTH_CHICKEN1);
4472}
4473
4474static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4475{
4476 struct drm_device *dev = intel_crtc->base.dev;
4477
4478 switch (intel_crtc->pipe) {
4479 case PIPE_A:
4480 break;
4481 case PIPE_B:
4482 if (intel_crtc->config->fdi_lanes > 2)
4483 cpt_set_fdi_bc_bifurcation(dev, false);
4484 else
4485 cpt_set_fdi_bc_bifurcation(dev, true);
4486
4487 break;
4488 case PIPE_C:
4489 cpt_set_fdi_bc_bifurcation(dev, true);
4490
4491 break;
4492 default:
4493 BUG();
4494 }
4495}
4496
4497/* Return which DP Port should be selected for Transcoder DP control */
4498static enum port
4499intel_trans_dp_port_sel(struct drm_crtc *crtc)
4500{
4501 struct drm_device *dev = crtc->dev;
4502 struct intel_encoder *encoder;
4503
4504 for_each_encoder_on_crtc(dev, crtc, encoder) {
4505 if (encoder->type == INTEL_OUTPUT_DP ||
4506 encoder->type == INTEL_OUTPUT_EDP)
4507 return enc_to_dig_port(&encoder->base)->port;
4508 }
4509
4510 return -1;
4511}
4512
4513/*
4514 * Enable PCH resources required for PCH ports:
4515 * - PCH PLLs
4516 * - FDI training & RX/TX
4517 * - update transcoder timings
4518 * - DP transcoding bits
4519 * - transcoder
4520 */
4521static void ironlake_pch_enable(struct drm_crtc *crtc)
4522{
4523 struct drm_device *dev = crtc->dev;
4524 struct drm_i915_private *dev_priv = to_i915(dev);
4525 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4526 int pipe = intel_crtc->pipe;
4527 u32 temp;
4528
4529 assert_pch_transcoder_disabled(dev_priv, pipe);
4530
4531 if (IS_IVYBRIDGE(dev_priv))
4532 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4533
4534 /* Write the TU size bits before fdi link training, so that error
4535 * detection works. */
4536 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4537 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4538
4539 /* For PCH output, training FDI link */
4540 dev_priv->display.fdi_link_train(crtc);
4541
4542 /* We need to program the right clock selection before writing the pixel
4543 * mutliplier into the DPLL. */
4544 if (HAS_PCH_CPT(dev_priv)) {
4545 u32 sel;
4546
4547 temp = I915_READ(PCH_DPLL_SEL);
4548 temp |= TRANS_DPLL_ENABLE(pipe);
4549 sel = TRANS_DPLLB_SEL(pipe);
4550 if (intel_crtc->config->shared_dpll ==
4551 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4552 temp |= sel;
4553 else
4554 temp &= ~sel;
4555 I915_WRITE(PCH_DPLL_SEL, temp);
4556 }
4557
4558 /* XXX: pch pll's can be enabled any time before we enable the PCH
4559 * transcoder, and we actually should do this to not upset any PCH
4560 * transcoder that already use the clock when we share it.
4561 *
4562 * Note that enable_shared_dpll tries to do the right thing, but
4563 * get_shared_dpll unconditionally resets the pll - we need that to have
4564 * the right LVDS enable sequence. */
4565 intel_enable_shared_dpll(intel_crtc);
4566
4567 /* set transcoder timing, panel must allow it */
4568 assert_panel_unlocked(dev_priv, pipe);
4569 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4570
4571 intel_fdi_normal_train(crtc);
4572
4573 /* For PCH DP, enable TRANS_DP_CTL */
4574 if (HAS_PCH_CPT(dev_priv) &&
4575 intel_crtc_has_dp_encoder(intel_crtc->config)) {
4576 const struct drm_display_mode *adjusted_mode =
4577 &intel_crtc->config->base.adjusted_mode;
4578 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4579 i915_reg_t reg = TRANS_DP_CTL(pipe);
4580 temp = I915_READ(reg);
4581 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4582 TRANS_DP_SYNC_MASK |
4583 TRANS_DP_BPC_MASK);
4584 temp |= TRANS_DP_OUTPUT_ENABLE;
4585 temp |= bpc << 9; /* same format but at 11:9 */
4586
4587 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4588 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4589 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4590 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4591
4592 switch (intel_trans_dp_port_sel(crtc)) {
4593 case PORT_B:
4594 temp |= TRANS_DP_PORT_SEL_B;
4595 break;
4596 case PORT_C:
4597 temp |= TRANS_DP_PORT_SEL_C;
4598 break;
4599 case PORT_D:
4600 temp |= TRANS_DP_PORT_SEL_D;
4601 break;
4602 default:
4603 BUG();
4604 }
4605
4606 I915_WRITE(reg, temp);
4607 }
4608
4609 ironlake_enable_pch_transcoder(dev_priv, pipe);
4610}
4611
4612static void lpt_pch_enable(struct drm_crtc *crtc)
4613{
4614 struct drm_device *dev = crtc->dev;
4615 struct drm_i915_private *dev_priv = to_i915(dev);
4616 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4617 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4618
4619 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4620
4621 lpt_program_iclkip(crtc);
4622
4623 /* Set transcoder timing. */
4624 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4625
4626 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4627}
4628
4629static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4630{
4631 struct drm_i915_private *dev_priv = to_i915(dev);
4632 i915_reg_t dslreg = PIPEDSL(pipe);
4633 u32 temp;
4634
4635 temp = I915_READ(dslreg);
4636 udelay(500);
4637 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4638 if (wait_for(I915_READ(dslreg) != temp, 5))
4639 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4640 }
4641}
4642
4643static int
4644skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4645 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4646 int src_w, int src_h, int dst_w, int dst_h)
4647{
4648 struct intel_crtc_scaler_state *scaler_state =
4649 &crtc_state->scaler_state;
4650 struct intel_crtc *intel_crtc =
4651 to_intel_crtc(crtc_state->base.crtc);
4652 int need_scaling;
4653
4654 need_scaling = drm_rotation_90_or_270(rotation) ?
4655 (src_h != dst_w || src_w != dst_h):
4656 (src_w != dst_w || src_h != dst_h);
4657
4658 /*
4659 * if plane is being disabled or scaler is no more required or force detach
4660 * - free scaler binded to this plane/crtc
4661 * - in order to do this, update crtc->scaler_usage
4662 *
4663 * Here scaler state in crtc_state is set free so that
4664 * scaler can be assigned to other user. Actual register
4665 * update to free the scaler is done in plane/panel-fit programming.
4666 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4667 */
4668 if (force_detach || !need_scaling) {
4669 if (*scaler_id >= 0) {
4670 scaler_state->scaler_users &= ~(1 << scaler_user);
4671 scaler_state->scalers[*scaler_id].in_use = 0;
4672
4673 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4674 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4675 intel_crtc->pipe, scaler_user, *scaler_id,
4676 scaler_state->scaler_users);
4677 *scaler_id = -1;
4678 }
4679 return 0;
4680 }
4681
4682 /* range checks */
4683 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4684 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4685
4686 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4687 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4688 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4689 "size is out of scaler range\n",
4690 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4691 return -EINVAL;
4692 }
4693
4694 /* mark this plane as a scaler user in crtc_state */
4695 scaler_state->scaler_users |= (1 << scaler_user);
4696 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4697 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4698 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4699 scaler_state->scaler_users);
4700
4701 return 0;
4702}
4703
4704/**
4705 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4706 *
4707 * @state: crtc's scaler state
4708 *
4709 * Return
4710 * 0 - scaler_usage updated successfully
4711 * error - requested scaling cannot be supported or other error condition
4712 */
4713int skl_update_scaler_crtc(struct intel_crtc_state *state)
4714{
4715 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4716
4717 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4718 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4719 state->pipe_src_w, state->pipe_src_h,
4720 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4721}
4722
4723/**
4724 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4725 *
4726 * @state: crtc's scaler state
4727 * @plane_state: atomic plane state to update
4728 *
4729 * Return
4730 * 0 - scaler_usage updated successfully
4731 * error - requested scaling cannot be supported or other error condition
4732 */
4733static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4734 struct intel_plane_state *plane_state)
4735{
4736
4737 struct intel_plane *intel_plane =
4738 to_intel_plane(plane_state->base.plane);
4739 struct drm_framebuffer *fb = plane_state->base.fb;
4740 int ret;
4741
4742 bool force_detach = !fb || !plane_state->base.visible;
4743
4744 ret = skl_update_scaler(crtc_state, force_detach,
4745 drm_plane_index(&intel_plane->base),
4746 &plane_state->scaler_id,
4747 plane_state->base.rotation,
4748 drm_rect_width(&plane_state->base.src) >> 16,
4749 drm_rect_height(&plane_state->base.src) >> 16,
4750 drm_rect_width(&plane_state->base.dst),
4751 drm_rect_height(&plane_state->base.dst));
4752
4753 if (ret || plane_state->scaler_id < 0)
4754 return ret;
4755
4756 /* check colorkey */
4757 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4758 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4759 intel_plane->base.base.id,
4760 intel_plane->base.name);
4761 return -EINVAL;
4762 }
4763
4764 /* Check src format */
4765 switch (fb->pixel_format) {
4766 case DRM_FORMAT_RGB565:
4767 case DRM_FORMAT_XBGR8888:
4768 case DRM_FORMAT_XRGB8888:
4769 case DRM_FORMAT_ABGR8888:
4770 case DRM_FORMAT_ARGB8888:
4771 case DRM_FORMAT_XRGB2101010:
4772 case DRM_FORMAT_XBGR2101010:
4773 case DRM_FORMAT_YUYV:
4774 case DRM_FORMAT_YVYU:
4775 case DRM_FORMAT_UYVY:
4776 case DRM_FORMAT_VYUY:
4777 break;
4778 default:
4779 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4780 intel_plane->base.base.id, intel_plane->base.name,
4781 fb->base.id, fb->pixel_format);
4782 return -EINVAL;
4783 }
4784
4785 return 0;
4786}
4787
4788static void skylake_scaler_disable(struct intel_crtc *crtc)
4789{
4790 int i;
4791
4792 for (i = 0; i < crtc->num_scalers; i++)
4793 skl_detach_scaler(crtc, i);
4794}
4795
4796static void skylake_pfit_enable(struct intel_crtc *crtc)
4797{
4798 struct drm_device *dev = crtc->base.dev;
4799 struct drm_i915_private *dev_priv = to_i915(dev);
4800 int pipe = crtc->pipe;
4801 struct intel_crtc_scaler_state *scaler_state =
4802 &crtc->config->scaler_state;
4803
4804 if (crtc->config->pch_pfit.enabled) {
4805 int id;
4806
4807 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0))
4808 return;
4809
4810 id = scaler_state->scaler_id;
4811 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4812 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4813 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4814 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4815 }
4816}
4817
4818static void ironlake_pfit_enable(struct intel_crtc *crtc)
4819{
4820 struct drm_device *dev = crtc->base.dev;
4821 struct drm_i915_private *dev_priv = to_i915(dev);
4822 int pipe = crtc->pipe;
4823
4824 if (crtc->config->pch_pfit.enabled) {
4825 /* Force use of hard-coded filter coefficients
4826 * as some pre-programmed values are broken,
4827 * e.g. x201.
4828 */
4829 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
4830 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4831 PF_PIPE_SEL_IVB(pipe));
4832 else
4833 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4834 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4835 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4836 }
4837}
4838
4839void hsw_enable_ips(struct intel_crtc *crtc)
4840{
4841 struct drm_device *dev = crtc->base.dev;
4842 struct drm_i915_private *dev_priv = to_i915(dev);
4843
4844 if (!crtc->config->ips_enabled)
4845 return;
4846
4847 /*
4848 * We can only enable IPS after we enable a plane and wait for a vblank
4849 * This function is called from post_plane_update, which is run after
4850 * a vblank wait.
4851 */
4852
4853 assert_plane_enabled(dev_priv, crtc->plane);
4854 if (IS_BROADWELL(dev_priv)) {
4855 mutex_lock(&dev_priv->rps.hw_lock);
4856 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4857 mutex_unlock(&dev_priv->rps.hw_lock);
4858 /* Quoting Art Runyan: "its not safe to expect any particular
4859 * value in IPS_CTL bit 31 after enabling IPS through the
4860 * mailbox." Moreover, the mailbox may return a bogus state,
4861 * so we need to just enable it and continue on.
4862 */
4863 } else {
4864 I915_WRITE(IPS_CTL, IPS_ENABLE);
4865 /* The bit only becomes 1 in the next vblank, so this wait here
4866 * is essentially intel_wait_for_vblank. If we don't have this
4867 * and don't wait for vblanks until the end of crtc_enable, then
4868 * the HW state readout code will complain that the expected
4869 * IPS_CTL value is not the one we read. */
4870 if (intel_wait_for_register(dev_priv,
4871 IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4872 50))
4873 DRM_ERROR("Timed out waiting for IPS enable\n");
4874 }
4875}
4876
4877void hsw_disable_ips(struct intel_crtc *crtc)
4878{
4879 struct drm_device *dev = crtc->base.dev;
4880 struct drm_i915_private *dev_priv = to_i915(dev);
4881
4882 if (!crtc->config->ips_enabled)
4883 return;
4884
4885 assert_plane_enabled(dev_priv, crtc->plane);
4886 if (IS_BROADWELL(dev_priv)) {
4887 mutex_lock(&dev_priv->rps.hw_lock);
4888 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4889 mutex_unlock(&dev_priv->rps.hw_lock);
4890 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4891 if (intel_wait_for_register(dev_priv,
4892 IPS_CTL, IPS_ENABLE, 0,
4893 42))
4894 DRM_ERROR("Timed out waiting for IPS disable\n");
4895 } else {
4896 I915_WRITE(IPS_CTL, 0);
4897 POSTING_READ(IPS_CTL);
4898 }
4899
4900 /* We need to wait for a vblank before we can disable the plane. */
4901 intel_wait_for_vblank(dev_priv, crtc->pipe);
4902}
4903
4904static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4905{
4906 if (intel_crtc->overlay) {
4907 struct drm_device *dev = intel_crtc->base.dev;
4908 struct drm_i915_private *dev_priv = to_i915(dev);
4909
4910 mutex_lock(&dev->struct_mutex);
4911 dev_priv->mm.interruptible = false;
4912 (void) intel_overlay_switch_off(intel_crtc->overlay);
4913 dev_priv->mm.interruptible = true;
4914 mutex_unlock(&dev->struct_mutex);
4915 }
4916
4917 /* Let userspace switch the overlay on again. In most cases userspace
4918 * has to recompute where to put it anyway.
4919 */
4920}
4921
4922/**
4923 * intel_post_enable_primary - Perform operations after enabling primary plane
4924 * @crtc: the CRTC whose primary plane was just enabled
4925 *
4926 * Performs potentially sleeping operations that must be done after the primary
4927 * plane is enabled, such as updating FBC and IPS. Note that this may be
4928 * called due to an explicit primary plane update, or due to an implicit
4929 * re-enable that is caused when a sprite plane is updated to no longer
4930 * completely hide the primary plane.
4931 */
4932static void
4933intel_post_enable_primary(struct drm_crtc *crtc)
4934{
4935 struct drm_device *dev = crtc->dev;
4936 struct drm_i915_private *dev_priv = to_i915(dev);
4937 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4938 int pipe = intel_crtc->pipe;
4939
4940 /*
4941 * FIXME IPS should be fine as long as one plane is
4942 * enabled, but in practice it seems to have problems
4943 * when going from primary only to sprite only and vice
4944 * versa.
4945 */
4946 hsw_enable_ips(intel_crtc);
4947
4948 /*
4949 * Gen2 reports pipe underruns whenever all planes are disabled.
4950 * So don't enable underrun reporting before at least some planes
4951 * are enabled.
4952 * FIXME: Need to fix the logic to work when we turn off all planes
4953 * but leave the pipe running.
4954 */
4955 if (IS_GEN2(dev_priv))
4956 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4957
4958 /* Underruns don't always raise interrupts, so check manually. */
4959 intel_check_cpu_fifo_underruns(dev_priv);
4960 intel_check_pch_fifo_underruns(dev_priv);
4961}
4962
4963/* FIXME move all this to pre_plane_update() with proper state tracking */
4964static void
4965intel_pre_disable_primary(struct drm_crtc *crtc)
4966{
4967 struct drm_device *dev = crtc->dev;
4968 struct drm_i915_private *dev_priv = to_i915(dev);
4969 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4970 int pipe = intel_crtc->pipe;
4971
4972 /*
4973 * Gen2 reports pipe underruns whenever all planes are disabled.
4974 * So diasble underrun reporting before all the planes get disabled.
4975 * FIXME: Need to fix the logic to work when we turn off all planes
4976 * but leave the pipe running.
4977 */
4978 if (IS_GEN2(dev_priv))
4979 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4980
4981 /*
4982 * FIXME IPS should be fine as long as one plane is
4983 * enabled, but in practice it seems to have problems
4984 * when going from primary only to sprite only and vice
4985 * versa.
4986 */
4987 hsw_disable_ips(intel_crtc);
4988}
4989
4990/* FIXME get rid of this and use pre_plane_update */
4991static void
4992intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4993{
4994 struct drm_device *dev = crtc->dev;
4995 struct drm_i915_private *dev_priv = to_i915(dev);
4996 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4997 int pipe = intel_crtc->pipe;
4998
4999 intel_pre_disable_primary(crtc);
5000
5001 /*
5002 * Vblank time updates from the shadow to live plane control register
5003 * are blocked if the memory self-refresh mode is active at that
5004 * moment. So to make sure the plane gets truly disabled, disable
5005 * first the self-refresh mode. The self-refresh enable bit in turn
5006 * will be checked/applied by the HW only at the next frame start
5007 * event which is after the vblank start event, so we need to have a
5008 * wait-for-vblank between disabling the plane and the pipe.
5009 */
5010 if (HAS_GMCH_DISPLAY(dev_priv)) {
5011 intel_set_memory_cxsr(dev_priv, false);
5012 dev_priv->wm.vlv.cxsr = false;
5013 intel_wait_for_vblank(dev_priv, pipe);
5014 }
5015}
5016
5017static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
5018{
5019 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5020 struct drm_atomic_state *old_state = old_crtc_state->base.state;
5021 struct intel_crtc_state *pipe_config =
5022 to_intel_crtc_state(crtc->base.state);
5023 struct drm_plane *primary = crtc->base.primary;
5024 struct drm_plane_state *old_pri_state =
5025 drm_atomic_get_existing_plane_state(old_state, primary);
5026
5027 intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
5028
5029 crtc->wm.cxsr_allowed = true;
5030
5031 if (pipe_config->update_wm_post && pipe_config->base.active)
5032 intel_update_watermarks(crtc);
5033
5034 if (old_pri_state) {
5035 struct intel_plane_state *primary_state =
5036 to_intel_plane_state(primary->state);
5037 struct intel_plane_state *old_primary_state =
5038 to_intel_plane_state(old_pri_state);
5039
5040 intel_fbc_post_update(crtc);
5041
5042 if (primary_state->base.visible &&
5043 (needs_modeset(&pipe_config->base) ||
5044 !old_primary_state->base.visible))
5045 intel_post_enable_primary(&crtc->base);
5046 }
5047}
5048
5049static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
5050{
5051 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5052 struct drm_device *dev = crtc->base.dev;
5053 struct drm_i915_private *dev_priv = to_i915(dev);
5054 struct intel_crtc_state *pipe_config =
5055 to_intel_crtc_state(crtc->base.state);
5056 struct drm_atomic_state *old_state = old_crtc_state->base.state;
5057 struct drm_plane *primary = crtc->base.primary;
5058 struct drm_plane_state *old_pri_state =
5059 drm_atomic_get_existing_plane_state(old_state, primary);
5060 bool modeset = needs_modeset(&pipe_config->base);
5061 struct intel_atomic_state *old_intel_state =
5062 to_intel_atomic_state(old_state);
5063
5064 if (old_pri_state) {
5065 struct intel_plane_state *primary_state =
5066 to_intel_plane_state(primary->state);
5067 struct intel_plane_state *old_primary_state =
5068 to_intel_plane_state(old_pri_state);
5069
5070 intel_fbc_pre_update(crtc, pipe_config, primary_state);
5071
5072 if (old_primary_state->base.visible &&
5073 (modeset || !primary_state->base.visible))
5074 intel_pre_disable_primary(&crtc->base);
5075 }
5076
5077 if (pipe_config->disable_cxsr && HAS_GMCH_DISPLAY(dev_priv)) {
5078 crtc->wm.cxsr_allowed = false;
5079
5080 /*
5081 * Vblank time updates from the shadow to live plane control register
5082 * are blocked if the memory self-refresh mode is active at that
5083 * moment. So to make sure the plane gets truly disabled, disable
5084 * first the self-refresh mode. The self-refresh enable bit in turn
5085 * will be checked/applied by the HW only at the next frame start
5086 * event which is after the vblank start event, so we need to have a
5087 * wait-for-vblank between disabling the plane and the pipe.
5088 */
5089 if (old_crtc_state->base.active) {
5090 intel_set_memory_cxsr(dev_priv, false);
5091 dev_priv->wm.vlv.cxsr = false;
5092 intel_wait_for_vblank(dev_priv, crtc->pipe);
5093 }
5094 }
5095
5096 /*
5097 * IVB workaround: must disable low power watermarks for at least
5098 * one frame before enabling scaling. LP watermarks can be re-enabled
5099 * when scaling is disabled.
5100 *
5101 * WaCxSRDisabledForSpriteScaling:ivb
5102 */
5103 if (pipe_config->disable_lp_wm) {
5104 ilk_disable_lp_wm(dev);
5105 intel_wait_for_vblank(dev_priv, crtc->pipe);
5106 }
5107
5108 /*
5109 * If we're doing a modeset, we're done. No need to do any pre-vblank
5110 * watermark programming here.
5111 */
5112 if (needs_modeset(&pipe_config->base))
5113 return;
5114
5115 /*
5116 * For platforms that support atomic watermarks, program the
5117 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these
5118 * will be the intermediate values that are safe for both pre- and
5119 * post- vblank; when vblank happens, the 'active' values will be set
5120 * to the final 'target' values and we'll do this again to get the
5121 * optimal watermarks. For gen9+ platforms, the values we program here
5122 * will be the final target values which will get automatically latched
5123 * at vblank time; no further programming will be necessary.
5124 *
5125 * If a platform hasn't been transitioned to atomic watermarks yet,
5126 * we'll continue to update watermarks the old way, if flags tell
5127 * us to.
5128 */
5129 if (dev_priv->display.initial_watermarks != NULL)
5130 dev_priv->display.initial_watermarks(old_intel_state,
5131 pipe_config);
5132 else if (pipe_config->update_wm_pre)
5133 intel_update_watermarks(crtc);
5134}
5135
5136static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
5137{
5138 struct drm_device *dev = crtc->dev;
5139 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5140 struct drm_plane *p;
5141 int pipe = intel_crtc->pipe;
5142
5143 intel_crtc_dpms_overlay_disable(intel_crtc);
5144
5145 drm_for_each_plane_mask(p, dev, plane_mask)
5146 to_intel_plane(p)->disable_plane(p, crtc);
5147
5148 /*
5149 * FIXME: Once we grow proper nuclear flip support out of this we need
5150 * to compute the mask of flip planes precisely. For the time being
5151 * consider this a flip to a NULL plane.
5152 */
5153 intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe));
5154}
5155
5156static void intel_encoders_pre_pll_enable(struct drm_crtc *crtc,
5157 struct intel_crtc_state *crtc_state,
5158 struct drm_atomic_state *old_state)
5159{
5160 struct drm_connector_state *old_conn_state;
5161 struct drm_connector *conn;
5162 int i;
5163
5164 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5165 struct drm_connector_state *conn_state = conn->state;
5166 struct intel_encoder *encoder =
5167 to_intel_encoder(conn_state->best_encoder);
5168
5169 if (conn_state->crtc != crtc)
5170 continue;
5171
5172 if (encoder->pre_pll_enable)
5173 encoder->pre_pll_enable(encoder, crtc_state, conn_state);
5174 }
5175}
5176
5177static void intel_encoders_pre_enable(struct drm_crtc *crtc,
5178 struct intel_crtc_state *crtc_state,
5179 struct drm_atomic_state *old_state)
5180{
5181 struct drm_connector_state *old_conn_state;
5182 struct drm_connector *conn;
5183 int i;
5184
5185 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5186 struct drm_connector_state *conn_state = conn->state;
5187 struct intel_encoder *encoder =
5188 to_intel_encoder(conn_state->best_encoder);
5189
5190 if (conn_state->crtc != crtc)
5191 continue;
5192
5193 if (encoder->pre_enable)
5194 encoder->pre_enable(encoder, crtc_state, conn_state);
5195 }
5196}
5197
5198static void intel_encoders_enable(struct drm_crtc *crtc,
5199 struct intel_crtc_state *crtc_state,
5200 struct drm_atomic_state *old_state)
5201{
5202 struct drm_connector_state *old_conn_state;
5203 struct drm_connector *conn;
5204 int i;
5205
5206 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5207 struct drm_connector_state *conn_state = conn->state;
5208 struct intel_encoder *encoder =
5209 to_intel_encoder(conn_state->best_encoder);
5210
5211 if (conn_state->crtc != crtc)
5212 continue;
5213
5214 encoder->enable(encoder, crtc_state, conn_state);
5215 intel_opregion_notify_encoder(encoder, true);
5216 }
5217}
5218
5219static void intel_encoders_disable(struct drm_crtc *crtc,
5220 struct intel_crtc_state *old_crtc_state,
5221 struct drm_atomic_state *old_state)
5222{
5223 struct drm_connector_state *old_conn_state;
5224 struct drm_connector *conn;
5225 int i;
5226
5227 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5228 struct intel_encoder *encoder =
5229 to_intel_encoder(old_conn_state->best_encoder);
5230
5231 if (old_conn_state->crtc != crtc)
5232 continue;
5233
5234 intel_opregion_notify_encoder(encoder, false);
5235 encoder->disable(encoder, old_crtc_state, old_conn_state);
5236 }
5237}
5238
5239static void intel_encoders_post_disable(struct drm_crtc *crtc,
5240 struct intel_crtc_state *old_crtc_state,
5241 struct drm_atomic_state *old_state)
5242{
5243 struct drm_connector_state *old_conn_state;
5244 struct drm_connector *conn;
5245 int i;
5246
5247 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5248 struct intel_encoder *encoder =
5249 to_intel_encoder(old_conn_state->best_encoder);
5250
5251 if (old_conn_state->crtc != crtc)
5252 continue;
5253
5254 if (encoder->post_disable)
5255 encoder->post_disable(encoder, old_crtc_state, old_conn_state);
5256 }
5257}
5258
5259static void intel_encoders_post_pll_disable(struct drm_crtc *crtc,
5260 struct intel_crtc_state *old_crtc_state,
5261 struct drm_atomic_state *old_state)
5262{
5263 struct drm_connector_state *old_conn_state;
5264 struct drm_connector *conn;
5265 int i;
5266
5267 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5268 struct intel_encoder *encoder =
5269 to_intel_encoder(old_conn_state->best_encoder);
5270
5271 if (old_conn_state->crtc != crtc)
5272 continue;
5273
5274 if (encoder->post_pll_disable)
5275 encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
5276 }
5277}
5278
5279static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
5280 struct drm_atomic_state *old_state)
5281{
5282 struct drm_crtc *crtc = pipe_config->base.crtc;
5283 struct drm_device *dev = crtc->dev;
5284 struct drm_i915_private *dev_priv = to_i915(dev);
5285 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5286 int pipe = intel_crtc->pipe;
5287 struct intel_atomic_state *old_intel_state =
5288 to_intel_atomic_state(old_state);
5289
5290 if (WARN_ON(intel_crtc->active))
5291 return;
5292
5293 /*
5294 * Sometimes spurious CPU pipe underruns happen during FDI
5295 * training, at least with VGA+HDMI cloning. Suppress them.
5296 *
5297 * On ILK we get an occasional spurious CPU pipe underruns
5298 * between eDP port A enable and vdd enable. Also PCH port
5299 * enable seems to result in the occasional CPU pipe underrun.
5300 *
5301 * Spurious PCH underruns also occur during PCH enabling.
5302 */
5303 if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
5304 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5305 if (intel_crtc->config->has_pch_encoder)
5306 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5307
5308 if (intel_crtc->config->has_pch_encoder)
5309 intel_prepare_shared_dpll(intel_crtc);
5310
5311 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5312 intel_dp_set_m_n(intel_crtc, M1_N1);
5313
5314 intel_set_pipe_timings(intel_crtc);
5315 intel_set_pipe_src_size(intel_crtc);
5316
5317 if (intel_crtc->config->has_pch_encoder) {
5318 intel_cpu_transcoder_set_m_n(intel_crtc,
5319 &intel_crtc->config->fdi_m_n, NULL);
5320 }
5321
5322 ironlake_set_pipeconf(crtc);
5323
5324 intel_crtc->active = true;
5325
5326 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5327
5328 if (intel_crtc->config->has_pch_encoder) {
5329 /* Note: FDI PLL enabling _must_ be done before we enable the
5330 * cpu pipes, hence this is separate from all the other fdi/pch
5331 * enabling. */
5332 ironlake_fdi_pll_enable(intel_crtc);
5333 } else {
5334 assert_fdi_tx_disabled(dev_priv, pipe);
5335 assert_fdi_rx_disabled(dev_priv, pipe);
5336 }
5337
5338 ironlake_pfit_enable(intel_crtc);
5339
5340 /*
5341 * On ILK+ LUT must be loaded before the pipe is running but with
5342 * clocks enabled
5343 */
5344 intel_color_load_luts(&pipe_config->base);
5345
5346 if (dev_priv->display.initial_watermarks != NULL)
5347 dev_priv->display.initial_watermarks(old_intel_state, intel_crtc->config);
5348 intel_enable_pipe(intel_crtc);
5349
5350 if (intel_crtc->config->has_pch_encoder)
5351 ironlake_pch_enable(crtc);
5352
5353 assert_vblank_disabled(crtc);
5354 drm_crtc_vblank_on(crtc);
5355
5356 intel_encoders_enable(crtc, pipe_config, old_state);
5357
5358 if (HAS_PCH_CPT(dev_priv))
5359 cpt_verify_modeset(dev, intel_crtc->pipe);
5360
5361 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
5362 if (intel_crtc->config->has_pch_encoder)
5363 intel_wait_for_vblank(dev_priv, pipe);
5364 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5365 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5366}
5367
5368/* IPS only exists on ULT machines and is tied to pipe A. */
5369static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
5370{
5371 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
5372}
5373
5374static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
5375 struct drm_atomic_state *old_state)
5376{
5377 struct drm_crtc *crtc = pipe_config->base.crtc;
5378 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5379 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5380 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
5381 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5382 struct intel_atomic_state *old_intel_state =
5383 to_intel_atomic_state(old_state);
5384
5385 if (WARN_ON(intel_crtc->active))
5386 return;
5387
5388 if (intel_crtc->config->has_pch_encoder)
5389 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5390 false);
5391
5392 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5393
5394 if (intel_crtc->config->shared_dpll)
5395 intel_enable_shared_dpll(intel_crtc);
5396
5397 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5398 intel_dp_set_m_n(intel_crtc, M1_N1);
5399
5400 if (!transcoder_is_dsi(cpu_transcoder))
5401 intel_set_pipe_timings(intel_crtc);
5402
5403 intel_set_pipe_src_size(intel_crtc);
5404
5405 if (cpu_transcoder != TRANSCODER_EDP &&
5406 !transcoder_is_dsi(cpu_transcoder)) {
5407 I915_WRITE(PIPE_MULT(cpu_transcoder),
5408 intel_crtc->config->pixel_multiplier - 1);
5409 }
5410
5411 if (intel_crtc->config->has_pch_encoder) {
5412 intel_cpu_transcoder_set_m_n(intel_crtc,
5413 &intel_crtc->config->fdi_m_n, NULL);
5414 }
5415
5416 if (!transcoder_is_dsi(cpu_transcoder))
5417 haswell_set_pipeconf(crtc);
5418
5419 haswell_set_pipemisc(crtc);
5420
5421 intel_color_set_csc(&pipe_config->base);
5422
5423 intel_crtc->active = true;
5424
5425 if (intel_crtc->config->has_pch_encoder)
5426 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5427 else
5428 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5429
5430 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5431
5432 if (intel_crtc->config->has_pch_encoder)
5433 dev_priv->display.fdi_link_train(crtc);
5434
5435 if (!transcoder_is_dsi(cpu_transcoder))
5436 intel_ddi_enable_pipe_clock(intel_crtc);
5437
5438 if (INTEL_GEN(dev_priv) >= 9)
5439 skylake_pfit_enable(intel_crtc);
5440 else
5441 ironlake_pfit_enable(intel_crtc);
5442
5443 /*
5444 * On ILK+ LUT must be loaded before the pipe is running but with
5445 * clocks enabled
5446 */
5447 intel_color_load_luts(&pipe_config->base);
5448
5449 intel_ddi_set_pipe_settings(crtc);
5450 if (!transcoder_is_dsi(cpu_transcoder))
5451 intel_ddi_enable_transcoder_func(crtc);
5452
5453 if (dev_priv->display.initial_watermarks != NULL)
5454 dev_priv->display.initial_watermarks(old_intel_state,
5455 pipe_config);
5456 else
5457 intel_update_watermarks(intel_crtc);
5458
5459 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5460 if (!transcoder_is_dsi(cpu_transcoder))
5461 intel_enable_pipe(intel_crtc);
5462
5463 if (intel_crtc->config->has_pch_encoder)
5464 lpt_pch_enable(crtc);
5465
5466 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5467 intel_ddi_set_vc_payload_alloc(crtc, true);
5468
5469 assert_vblank_disabled(crtc);
5470 drm_crtc_vblank_on(crtc);
5471
5472 intel_encoders_enable(crtc, pipe_config, old_state);
5473
5474 if (intel_crtc->config->has_pch_encoder) {
5475 intel_wait_for_vblank(dev_priv, pipe);
5476 intel_wait_for_vblank(dev_priv, pipe);
5477 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5478 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5479 true);
5480 }
5481
5482 /* If we change the relative order between pipe/planes enabling, we need
5483 * to change the workaround. */
5484 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5485 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
5486 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5487 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5488 }
5489}
5490
5491static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5492{
5493 struct drm_device *dev = crtc->base.dev;
5494 struct drm_i915_private *dev_priv = to_i915(dev);
5495 int pipe = crtc->pipe;
5496
5497 /* To avoid upsetting the power well on haswell only disable the pfit if
5498 * it's in use. The hw state code will make sure we get this right. */
5499 if (force || crtc->config->pch_pfit.enabled) {
5500 I915_WRITE(PF_CTL(pipe), 0);
5501 I915_WRITE(PF_WIN_POS(pipe), 0);
5502 I915_WRITE(PF_WIN_SZ(pipe), 0);
5503 }
5504}
5505
5506static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
5507 struct drm_atomic_state *old_state)
5508{
5509 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5510 struct drm_device *dev = crtc->dev;
5511 struct drm_i915_private *dev_priv = to_i915(dev);
5512 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5513 int pipe = intel_crtc->pipe;
5514
5515 /*
5516 * Sometimes spurious CPU pipe underruns happen when the
5517 * pipe is already disabled, but FDI RX/TX is still enabled.
5518 * Happens at least with VGA+HDMI cloning. Suppress them.
5519 */
5520 if (intel_crtc->config->has_pch_encoder) {
5521 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5522 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5523 }
5524
5525 intel_encoders_disable(crtc, old_crtc_state, old_state);
5526
5527 drm_crtc_vblank_off(crtc);
5528 assert_vblank_disabled(crtc);
5529
5530 intel_disable_pipe(intel_crtc);
5531
5532 ironlake_pfit_disable(intel_crtc, false);
5533
5534 if (intel_crtc->config->has_pch_encoder)
5535 ironlake_fdi_disable(crtc);
5536
5537 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5538
5539 if (intel_crtc->config->has_pch_encoder) {
5540 ironlake_disable_pch_transcoder(dev_priv, pipe);
5541
5542 if (HAS_PCH_CPT(dev_priv)) {
5543 i915_reg_t reg;
5544 u32 temp;
5545
5546 /* disable TRANS_DP_CTL */
5547 reg = TRANS_DP_CTL(pipe);
5548 temp = I915_READ(reg);
5549 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5550 TRANS_DP_PORT_SEL_MASK);
5551 temp |= TRANS_DP_PORT_SEL_NONE;
5552 I915_WRITE(reg, temp);
5553
5554 /* disable DPLL_SEL */
5555 temp = I915_READ(PCH_DPLL_SEL);
5556 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5557 I915_WRITE(PCH_DPLL_SEL, temp);
5558 }
5559
5560 ironlake_fdi_pll_disable(intel_crtc);
5561 }
5562
5563 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5564 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5565}
5566
5567static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
5568 struct drm_atomic_state *old_state)
5569{
5570 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5571 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5572 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5573 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5574
5575 if (intel_crtc->config->has_pch_encoder)
5576 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5577 false);
5578
5579 intel_encoders_disable(crtc, old_crtc_state, old_state);
5580
5581 drm_crtc_vblank_off(crtc);
5582 assert_vblank_disabled(crtc);
5583
5584 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5585 if (!transcoder_is_dsi(cpu_transcoder))
5586 intel_disable_pipe(intel_crtc);
5587
5588 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5589 intel_ddi_set_vc_payload_alloc(crtc, false);
5590
5591 if (!transcoder_is_dsi(cpu_transcoder))
5592 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5593
5594 if (INTEL_GEN(dev_priv) >= 9)
5595 skylake_scaler_disable(intel_crtc);
5596 else
5597 ironlake_pfit_disable(intel_crtc, false);
5598
5599 if (!transcoder_is_dsi(cpu_transcoder))
5600 intel_ddi_disable_pipe_clock(intel_crtc);
5601
5602 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5603
5604 if (old_crtc_state->has_pch_encoder)
5605 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5606 true);
5607}
5608
5609static void i9xx_pfit_enable(struct intel_crtc *crtc)
5610{
5611 struct drm_device *dev = crtc->base.dev;
5612 struct drm_i915_private *dev_priv = to_i915(dev);
5613 struct intel_crtc_state *pipe_config = crtc->config;
5614
5615 if (!pipe_config->gmch_pfit.control)
5616 return;
5617
5618 /*
5619 * The panel fitter should only be adjusted whilst the pipe is disabled,
5620 * according to register description and PRM.
5621 */
5622 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5623 assert_pipe_disabled(dev_priv, crtc->pipe);
5624
5625 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5626 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5627
5628 /* Border color in case we don't scale up to the full screen. Black by
5629 * default, change to something else for debugging. */
5630 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5631}
5632
5633static enum intel_display_power_domain port_to_power_domain(enum port port)
5634{
5635 switch (port) {
5636 case PORT_A:
5637 return POWER_DOMAIN_PORT_DDI_A_LANES;
5638 case PORT_B:
5639 return POWER_DOMAIN_PORT_DDI_B_LANES;
5640 case PORT_C:
5641 return POWER_DOMAIN_PORT_DDI_C_LANES;
5642 case PORT_D:
5643 return POWER_DOMAIN_PORT_DDI_D_LANES;
5644 case PORT_E:
5645 return POWER_DOMAIN_PORT_DDI_E_LANES;
5646 default:
5647 MISSING_CASE(port);
5648 return POWER_DOMAIN_PORT_OTHER;
5649 }
5650}
5651
5652static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5653{
5654 switch (port) {
5655 case PORT_A:
5656 return POWER_DOMAIN_AUX_A;
5657 case PORT_B:
5658 return POWER_DOMAIN_AUX_B;
5659 case PORT_C:
5660 return POWER_DOMAIN_AUX_C;
5661 case PORT_D:
5662 return POWER_DOMAIN_AUX_D;
5663 case PORT_E:
5664 /* FIXME: Check VBT for actual wiring of PORT E */
5665 return POWER_DOMAIN_AUX_D;
5666 default:
5667 MISSING_CASE(port);
5668 return POWER_DOMAIN_AUX_A;
5669 }
5670}
5671
5672enum intel_display_power_domain
5673intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5674{
5675 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5676 struct intel_digital_port *intel_dig_port;
5677
5678 switch (intel_encoder->type) {
5679 case INTEL_OUTPUT_UNKNOWN:
5680 /* Only DDI platforms should ever use this output type */
5681 WARN_ON_ONCE(!HAS_DDI(dev_priv));
5682 case INTEL_OUTPUT_DP:
5683 case INTEL_OUTPUT_HDMI:
5684 case INTEL_OUTPUT_EDP:
5685 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5686 return port_to_power_domain(intel_dig_port->port);
5687 case INTEL_OUTPUT_DP_MST:
5688 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5689 return port_to_power_domain(intel_dig_port->port);
5690 case INTEL_OUTPUT_ANALOG:
5691 return POWER_DOMAIN_PORT_CRT;
5692 case INTEL_OUTPUT_DSI:
5693 return POWER_DOMAIN_PORT_DSI;
5694 default:
5695 return POWER_DOMAIN_PORT_OTHER;
5696 }
5697}
5698
5699enum intel_display_power_domain
5700intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5701{
5702 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5703 struct intel_digital_port *intel_dig_port;
5704
5705 switch (intel_encoder->type) {
5706 case INTEL_OUTPUT_UNKNOWN:
5707 case INTEL_OUTPUT_HDMI:
5708 /*
5709 * Only DDI platforms should ever use these output types.
5710 * We can get here after the HDMI detect code has already set
5711 * the type of the shared encoder. Since we can't be sure
5712 * what's the status of the given connectors, play safe and
5713 * run the DP detection too.
5714 */
5715 WARN_ON_ONCE(!HAS_DDI(dev_priv));
5716 case INTEL_OUTPUT_DP:
5717 case INTEL_OUTPUT_EDP:
5718 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5719 return port_to_aux_power_domain(intel_dig_port->port);
5720 case INTEL_OUTPUT_DP_MST:
5721 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5722 return port_to_aux_power_domain(intel_dig_port->port);
5723 default:
5724 MISSING_CASE(intel_encoder->type);
5725 return POWER_DOMAIN_AUX_A;
5726 }
5727}
5728
5729static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5730 struct intel_crtc_state *crtc_state)
5731{
5732 struct drm_device *dev = crtc->dev;
5733 struct drm_encoder *encoder;
5734 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5735 enum pipe pipe = intel_crtc->pipe;
5736 unsigned long mask;
5737 enum transcoder transcoder = crtc_state->cpu_transcoder;
5738
5739 if (!crtc_state->base.active)
5740 return 0;
5741
5742 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5743 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5744 if (crtc_state->pch_pfit.enabled ||
5745 crtc_state->pch_pfit.force_thru)
5746 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5747
5748 drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5749 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5750
5751 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5752 }
5753
5754 if (crtc_state->shared_dpll)
5755 mask |= BIT(POWER_DOMAIN_PLLS);
5756
5757 return mask;
5758}
5759
5760static unsigned long
5761modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5762 struct intel_crtc_state *crtc_state)
5763{
5764 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5765 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5766 enum intel_display_power_domain domain;
5767 unsigned long domains, new_domains, old_domains;
5768
5769 old_domains = intel_crtc->enabled_power_domains;
5770 intel_crtc->enabled_power_domains = new_domains =
5771 get_crtc_power_domains(crtc, crtc_state);
5772
5773 domains = new_domains & ~old_domains;
5774
5775 for_each_power_domain(domain, domains)
5776 intel_display_power_get(dev_priv, domain);
5777
5778 return old_domains & ~new_domains;
5779}
5780
5781static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5782 unsigned long domains)
5783{
5784 enum intel_display_power_domain domain;
5785
5786 for_each_power_domain(domain, domains)
5787 intel_display_power_put(dev_priv, domain);
5788}
5789
5790static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5791{
5792 int max_cdclk_freq = dev_priv->max_cdclk_freq;
5793
5794 if (INTEL_INFO(dev_priv)->gen >= 9 ||
5795 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5796 return max_cdclk_freq;
5797 else if (IS_CHERRYVIEW(dev_priv))
5798 return max_cdclk_freq*95/100;
5799 else if (INTEL_INFO(dev_priv)->gen < 4)
5800 return 2*max_cdclk_freq*90/100;
5801 else
5802 return max_cdclk_freq*90/100;
5803}
5804
5805static int skl_calc_cdclk(int max_pixclk, int vco);
5806
5807static void intel_update_max_cdclk(struct drm_i915_private *dev_priv)
5808{
5809 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5810 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5811 int max_cdclk, vco;
5812
5813 vco = dev_priv->skl_preferred_vco_freq;
5814 WARN_ON(vco != 8100000 && vco != 8640000);
5815
5816 /*
5817 * Use the lower (vco 8640) cdclk values as a
5818 * first guess. skl_calc_cdclk() will correct it
5819 * if the preferred vco is 8100 instead.
5820 */
5821 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5822 max_cdclk = 617143;
5823 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5824 max_cdclk = 540000;
5825 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5826 max_cdclk = 432000;
5827 else
5828 max_cdclk = 308571;
5829
5830 dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
5831 } else if (IS_BROXTON(dev_priv)) {
5832 dev_priv->max_cdclk_freq = 624000;
5833 } else if (IS_BROADWELL(dev_priv)) {
5834 /*
5835 * FIXME with extra cooling we can allow
5836 * 540 MHz for ULX and 675 Mhz for ULT.
5837 * How can we know if extra cooling is
5838 * available? PCI ID, VTB, something else?
5839 */
5840 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5841 dev_priv->max_cdclk_freq = 450000;
5842 else if (IS_BDW_ULX(dev_priv))
5843 dev_priv->max_cdclk_freq = 450000;
5844 else if (IS_BDW_ULT(dev_priv))
5845 dev_priv->max_cdclk_freq = 540000;
5846 else
5847 dev_priv->max_cdclk_freq = 675000;
5848 } else if (IS_CHERRYVIEW(dev_priv)) {
5849 dev_priv->max_cdclk_freq = 320000;
5850 } else if (IS_VALLEYVIEW(dev_priv)) {
5851 dev_priv->max_cdclk_freq = 400000;
5852 } else {
5853 /* otherwise assume cdclk is fixed */
5854 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5855 }
5856
5857 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5858
5859 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5860 dev_priv->max_cdclk_freq);
5861
5862 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5863 dev_priv->max_dotclk_freq);
5864}
5865
5866static void intel_update_cdclk(struct drm_i915_private *dev_priv)
5867{
5868 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev_priv);
5869
5870 if (INTEL_GEN(dev_priv) >= 9)
5871 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz, VCO: %d kHz, ref: %d kHz\n",
5872 dev_priv->cdclk_freq, dev_priv->cdclk_pll.vco,
5873 dev_priv->cdclk_pll.ref);
5874 else
5875 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5876 dev_priv->cdclk_freq);
5877
5878 /*
5879 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
5880 * Programmng [sic] note: bit[9:2] should be programmed to the number
5881 * of cdclk that generates 4MHz reference clock freq which is used to
5882 * generate GMBus clock. This will vary with the cdclk freq.
5883 */
5884 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5885 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5886}
5887
5888/* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5889static int skl_cdclk_decimal(int cdclk)
5890{
5891 return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
5892}
5893
5894static int bxt_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
5895{
5896 int ratio;
5897
5898 if (cdclk == dev_priv->cdclk_pll.ref)
5899 return 0;
5900
5901 switch (cdclk) {
5902 default:
5903 MISSING_CASE(cdclk);
5904 case 144000:
5905 case 288000:
5906 case 384000:
5907 case 576000:
5908 ratio = 60;
5909 break;
5910 case 624000:
5911 ratio = 65;
5912 break;
5913 }
5914
5915 return dev_priv->cdclk_pll.ref * ratio;
5916}
5917
5918static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
5919{
5920 I915_WRITE(BXT_DE_PLL_ENABLE, 0);
5921
5922 /* Timeout 200us */
5923 if (intel_wait_for_register(dev_priv,
5924 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 0,
5925 1))
5926 DRM_ERROR("timeout waiting for DE PLL unlock\n");
5927
5928 dev_priv->cdclk_pll.vco = 0;
5929}
5930
5931static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
5932{
5933 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk_pll.ref);
5934 u32 val;
5935
5936 val = I915_READ(BXT_DE_PLL_CTL);
5937 val &= ~BXT_DE_PLL_RATIO_MASK;
5938 val |= BXT_DE_PLL_RATIO(ratio);
5939 I915_WRITE(BXT_DE_PLL_CTL, val);
5940
5941 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5942
5943 /* Timeout 200us */
5944 if (intel_wait_for_register(dev_priv,
5945 BXT_DE_PLL_ENABLE,
5946 BXT_DE_PLL_LOCK,
5947 BXT_DE_PLL_LOCK,
5948 1))
5949 DRM_ERROR("timeout waiting for DE PLL lock\n");
5950
5951 dev_priv->cdclk_pll.vco = vco;
5952}
5953
5954static void bxt_set_cdclk(struct drm_i915_private *dev_priv, int cdclk)
5955{
5956 u32 val, divider;
5957 int vco, ret;
5958
5959 vco = bxt_de_pll_vco(dev_priv, cdclk);
5960
5961 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5962
5963 /* cdclk = vco / 2 / div{1,1.5,2,4} */
5964 switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
5965 case 8:
5966 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5967 break;
5968 case 4:
5969 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5970 break;
5971 case 3:
5972 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5973 break;
5974 case 2:
5975 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5976 break;
5977 default:
5978 WARN_ON(cdclk != dev_priv->cdclk_pll.ref);
5979 WARN_ON(vco != 0);
5980
5981 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5982 break;
5983 }
5984
5985 /* Inform power controller of upcoming frequency change */
5986 mutex_lock(&dev_priv->rps.hw_lock);
5987 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5988 0x80000000);
5989 mutex_unlock(&dev_priv->rps.hw_lock);
5990
5991 if (ret) {
5992 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5993 ret, cdclk);
5994 return;
5995 }
5996
5997 if (dev_priv->cdclk_pll.vco != 0 &&
5998 dev_priv->cdclk_pll.vco != vco)
5999 bxt_de_pll_disable(dev_priv);
6000
6001 if (dev_priv->cdclk_pll.vco != vco)
6002 bxt_de_pll_enable(dev_priv, vco);
6003
6004 val = divider | skl_cdclk_decimal(cdclk);
6005 /*
6006 * FIXME if only the cd2x divider needs changing, it could be done
6007 * without shutting off the pipe (if only one pipe is active).
6008 */
6009 val |= BXT_CDCLK_CD2X_PIPE_NONE;
6010 /*
6011 * Disable SSA Precharge when CD clock frequency < 500 MHz,
6012 * enable otherwise.
6013 */
6014 if (cdclk >= 500000)
6015 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
6016 I915_WRITE(CDCLK_CTL, val);
6017
6018 mutex_lock(&dev_priv->rps.hw_lock);
6019 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
6020 DIV_ROUND_UP(cdclk, 25000));
6021 mutex_unlock(&dev_priv->rps.hw_lock);
6022
6023 if (ret) {
6024 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
6025 ret, cdclk);
6026 return;
6027 }
6028
6029 intel_update_cdclk(dev_priv);
6030}
6031
6032static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
6033{
6034 u32 cdctl, expected;
6035
6036 intel_update_cdclk(dev_priv);
6037
6038 if (dev_priv->cdclk_pll.vco == 0 ||
6039 dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
6040 goto sanitize;
6041
6042 /* DPLL okay; verify the cdclock
6043 *
6044 * Some BIOS versions leave an incorrect decimal frequency value and
6045 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
6046 * so sanitize this register.
6047 */
6048 cdctl = I915_READ(CDCLK_CTL);
6049 /*
6050 * Let's ignore the pipe field, since BIOS could have configured the
6051 * dividers both synching to an active pipe, or asynchronously
6052 * (PIPE_NONE).
6053 */
6054 cdctl &= ~BXT_CDCLK_CD2X_PIPE_NONE;
6055
6056 expected = (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) |
6057 skl_cdclk_decimal(dev_priv->cdclk_freq);
6058 /*
6059 * Disable SSA Precharge when CD clock frequency < 500 MHz,
6060 * enable otherwise.
6061 */
6062 if (dev_priv->cdclk_freq >= 500000)
6063 expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
6064
6065 if (cdctl == expected)
6066 /* All well; nothing to sanitize */
6067 return;
6068
6069sanitize:
6070 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
6071
6072 /* force cdclk programming */
6073 dev_priv->cdclk_freq = 0;
6074
6075 /* force full PLL disable + enable */
6076 dev_priv->cdclk_pll.vco = -1;
6077}
6078
6079void bxt_init_cdclk(struct drm_i915_private *dev_priv)
6080{
6081 bxt_sanitize_cdclk(dev_priv);
6082
6083 if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0)
6084 return;
6085
6086 /*
6087 * FIXME:
6088 * - The initial CDCLK needs to be read from VBT.
6089 * Need to make this change after VBT has changes for BXT.
6090 */
6091 bxt_set_cdclk(dev_priv, bxt_calc_cdclk(0));
6092}
6093
6094void bxt_uninit_cdclk(struct drm_i915_private *dev_priv)
6095{
6096 bxt_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref);
6097}
6098
6099static int skl_calc_cdclk(int max_pixclk, int vco)
6100{
6101 if (vco == 8640000) {
6102 if (max_pixclk > 540000)
6103 return 617143;
6104 else if (max_pixclk > 432000)
6105 return 540000;
6106 else if (max_pixclk > 308571)
6107 return 432000;
6108 else
6109 return 308571;
6110 } else {
6111 if (max_pixclk > 540000)
6112 return 675000;
6113 else if (max_pixclk > 450000)
6114 return 540000;
6115 else if (max_pixclk > 337500)
6116 return 450000;
6117 else
6118 return 337500;
6119 }
6120}
6121
6122static void
6123skl_dpll0_update(struct drm_i915_private *dev_priv)
6124{
6125 u32 val;
6126
6127 dev_priv->cdclk_pll.ref = 24000;
6128 dev_priv->cdclk_pll.vco = 0;
6129
6130 val = I915_READ(LCPLL1_CTL);
6131 if ((val & LCPLL_PLL_ENABLE) == 0)
6132 return;
6133
6134 if (WARN_ON((val & LCPLL_PLL_LOCK) == 0))
6135 return;
6136
6137 val = I915_READ(DPLL_CTRL1);
6138
6139 if (WARN_ON((val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
6140 DPLL_CTRL1_SSC(SKL_DPLL0) |
6141 DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
6142 DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
6143 return;
6144
6145 switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
6146 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
6147 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
6148 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
6149 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
6150 dev_priv->cdclk_pll.vco = 8100000;
6151 break;
6152 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
6153 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
6154 dev_priv->cdclk_pll.vco = 8640000;
6155 break;
6156 default:
6157 MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
6158 break;
6159 }
6160}
6161
6162void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, int vco)
6163{
6164 bool changed = dev_priv->skl_preferred_vco_freq != vco;
6165
6166 dev_priv->skl_preferred_vco_freq = vco;
6167
6168 if (changed)
6169 intel_update_max_cdclk(dev_priv);
6170}
6171
6172static void
6173skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
6174{
6175 int min_cdclk = skl_calc_cdclk(0, vco);
6176 u32 val;
6177
6178 WARN_ON(vco != 8100000 && vco != 8640000);
6179
6180 /* select the minimum CDCLK before enabling DPLL 0 */
6181 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_cdclk);
6182 I915_WRITE(CDCLK_CTL, val);
6183 POSTING_READ(CDCLK_CTL);
6184
6185 /*
6186 * We always enable DPLL0 with the lowest link rate possible, but still
6187 * taking into account the VCO required to operate the eDP panel at the
6188 * desired frequency. The usual DP link rates operate with a VCO of
6189 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
6190 * The modeset code is responsible for the selection of the exact link
6191 * rate later on, with the constraint of choosing a frequency that
6192 * works with vco.
6193 */
6194 val = I915_READ(DPLL_CTRL1);
6195
6196 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
6197 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
6198 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
6199 if (vco == 8640000)
6200 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
6201 SKL_DPLL0);
6202 else
6203 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
6204 SKL_DPLL0);
6205
6206 I915_WRITE(DPLL_CTRL1, val);
6207 POSTING_READ(DPLL_CTRL1);
6208
6209 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
6210
6211 if (intel_wait_for_register(dev_priv,
6212 LCPLL1_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
6213 5))
6214 DRM_ERROR("DPLL0 not locked\n");
6215
6216 dev_priv->cdclk_pll.vco = vco;
6217
6218 /* We'll want to keep using the current vco from now on. */
6219 skl_set_preferred_cdclk_vco(dev_priv, vco);
6220}
6221
6222static void
6223skl_dpll0_disable(struct drm_i915_private *dev_priv)
6224{
6225 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
6226 if (intel_wait_for_register(dev_priv,
6227 LCPLL1_CTL, LCPLL_PLL_LOCK, 0,
6228 1))
6229 DRM_ERROR("Couldn't disable DPLL0\n");
6230
6231 dev_priv->cdclk_pll.vco = 0;
6232}
6233
6234static void skl_set_cdclk(struct drm_i915_private *dev_priv, int cdclk, int vco)
6235{
6236 u32 freq_select, pcu_ack;
6237 int ret;
6238
6239 WARN_ON((cdclk == 24000) != (vco == 0));
6240
6241 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
6242
6243 mutex_lock(&dev_priv->rps.hw_lock);
6244 ret = skl_pcode_request(dev_priv, SKL_PCODE_CDCLK_CONTROL,
6245 SKL_CDCLK_PREPARE_FOR_CHANGE,
6246 SKL_CDCLK_READY_FOR_CHANGE,
6247 SKL_CDCLK_READY_FOR_CHANGE, 3);
6248 mutex_unlock(&dev_priv->rps.hw_lock);
6249 if (ret) {
6250 DRM_ERROR("Failed to inform PCU about cdclk change (%d)\n",
6251 ret);
6252 return;
6253 }
6254
6255 /* set CDCLK_CTL */
6256 switch (cdclk) {
6257 case 450000:
6258 case 432000:
6259 freq_select = CDCLK_FREQ_450_432;
6260 pcu_ack = 1;
6261 break;
6262 case 540000:
6263 freq_select = CDCLK_FREQ_540;
6264 pcu_ack = 2;
6265 break;
6266 case 308571:
6267 case 337500:
6268 default:
6269 freq_select = CDCLK_FREQ_337_308;
6270 pcu_ack = 0;
6271 break;
6272 case 617143:
6273 case 675000:
6274 freq_select = CDCLK_FREQ_675_617;
6275 pcu_ack = 3;
6276 break;
6277 }
6278
6279 if (dev_priv->cdclk_pll.vco != 0 &&
6280 dev_priv->cdclk_pll.vco != vco)
6281 skl_dpll0_disable(dev_priv);
6282
6283 if (dev_priv->cdclk_pll.vco != vco)
6284 skl_dpll0_enable(dev_priv, vco);
6285
6286 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(cdclk));
6287 POSTING_READ(CDCLK_CTL);
6288
6289 /* inform PCU of the change */
6290 mutex_lock(&dev_priv->rps.hw_lock);
6291 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
6292 mutex_unlock(&dev_priv->rps.hw_lock);
6293
6294 intel_update_cdclk(dev_priv);
6295}
6296
6297static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv);
6298
6299void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
6300{
6301 skl_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref, 0);
6302}
6303
6304void skl_init_cdclk(struct drm_i915_private *dev_priv)
6305{
6306 int cdclk, vco;
6307
6308 skl_sanitize_cdclk(dev_priv);
6309
6310 if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0) {
6311 /*
6312 * Use the current vco as our initial
6313 * guess as to what the preferred vco is.
6314 */
6315 if (dev_priv->skl_preferred_vco_freq == 0)
6316 skl_set_preferred_cdclk_vco(dev_priv,
6317 dev_priv->cdclk_pll.vco);
6318 return;
6319 }
6320
6321 vco = dev_priv->skl_preferred_vco_freq;
6322 if (vco == 0)
6323 vco = 8100000;
6324 cdclk = skl_calc_cdclk(0, vco);
6325
6326 skl_set_cdclk(dev_priv, cdclk, vco);
6327}
6328
6329static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
6330{
6331 uint32_t cdctl, expected;
6332
6333 /*
6334 * check if the pre-os intialized the display
6335 * There is SWF18 scratchpad register defined which is set by the
6336 * pre-os which can be used by the OS drivers to check the status
6337 */
6338 if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
6339 goto sanitize;
6340
6341 intel_update_cdclk(dev_priv);
6342 /* Is PLL enabled and locked ? */
6343 if (dev_priv->cdclk_pll.vco == 0 ||
6344 dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
6345 goto sanitize;
6346
6347 /* DPLL okay; verify the cdclock
6348 *
6349 * Noticed in some instances that the freq selection is correct but
6350 * decimal part is programmed wrong from BIOS where pre-os does not
6351 * enable display. Verify the same as well.
6352 */
6353 cdctl = I915_READ(CDCLK_CTL);
6354 expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
6355 skl_cdclk_decimal(dev_priv->cdclk_freq);
6356 if (cdctl == expected)
6357 /* All well; nothing to sanitize */
6358 return;
6359
6360sanitize:
6361 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
6362
6363 /* force cdclk programming */
6364 dev_priv->cdclk_freq = 0;
6365 /* force full PLL disable + enable */
6366 dev_priv->cdclk_pll.vco = -1;
6367}
6368
6369/* Adjust CDclk dividers to allow high res or save power if possible */
6370static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
6371{
6372 struct drm_i915_private *dev_priv = to_i915(dev);
6373 u32 val, cmd;
6374
6375 WARN_ON(dev_priv->display.get_display_clock_speed(dev_priv)
6376 != dev_priv->cdclk_freq);
6377
6378 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
6379 cmd = 2;
6380 else if (cdclk == 266667)
6381 cmd = 1;
6382 else
6383 cmd = 0;
6384
6385 mutex_lock(&dev_priv->rps.hw_lock);
6386 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6387 val &= ~DSPFREQGUAR_MASK;
6388 val |= (cmd << DSPFREQGUAR_SHIFT);
6389 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6390 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6391 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
6392 50)) {
6393 DRM_ERROR("timed out waiting for CDclk change\n");
6394 }
6395 mutex_unlock(&dev_priv->rps.hw_lock);
6396
6397 mutex_lock(&dev_priv->sb_lock);
6398
6399 if (cdclk == 400000) {
6400 u32 divider;
6401
6402 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
6403
6404 /* adjust cdclk divider */
6405 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6406 val &= ~CCK_FREQUENCY_VALUES;
6407 val |= divider;
6408 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
6409
6410 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
6411 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
6412 50))
6413 DRM_ERROR("timed out waiting for CDclk change\n");
6414 }
6415
6416 /* adjust self-refresh exit latency value */
6417 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
6418 val &= ~0x7f;
6419
6420 /*
6421 * For high bandwidth configs, we set a higher latency in the bunit
6422 * so that the core display fetch happens in time to avoid underruns.
6423 */
6424 if (cdclk == 400000)
6425 val |= 4500 / 250; /* 4.5 usec */
6426 else
6427 val |= 3000 / 250; /* 3.0 usec */
6428 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
6429
6430 mutex_unlock(&dev_priv->sb_lock);
6431
6432 intel_update_cdclk(dev_priv);
6433}
6434
6435static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
6436{
6437 struct drm_i915_private *dev_priv = to_i915(dev);
6438 u32 val, cmd;
6439
6440 WARN_ON(dev_priv->display.get_display_clock_speed(dev_priv)
6441 != dev_priv->cdclk_freq);
6442
6443 switch (cdclk) {
6444 case 333333:
6445 case 320000:
6446 case 266667:
6447 case 200000:
6448 break;
6449 default:
6450 MISSING_CASE(cdclk);
6451 return;
6452 }
6453
6454 /*
6455 * Specs are full of misinformation, but testing on actual
6456 * hardware has shown that we just need to write the desired
6457 * CCK divider into the Punit register.
6458 */
6459 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
6460
6461 mutex_lock(&dev_priv->rps.hw_lock);
6462 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6463 val &= ~DSPFREQGUAR_MASK_CHV;
6464 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
6465 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6466 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6467 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
6468 50)) {
6469 DRM_ERROR("timed out waiting for CDclk change\n");
6470 }
6471 mutex_unlock(&dev_priv->rps.hw_lock);
6472
6473 intel_update_cdclk(dev_priv);
6474}
6475
6476static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
6477 int max_pixclk)
6478{
6479 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
6480 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
6481
6482 /*
6483 * Really only a few cases to deal with, as only 4 CDclks are supported:
6484 * 200MHz
6485 * 267MHz
6486 * 320/333MHz (depends on HPLL freq)
6487 * 400MHz (VLV only)
6488 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
6489 * of the lower bin and adjust if needed.
6490 *
6491 * We seem to get an unstable or solid color picture at 200MHz.
6492 * Not sure what's wrong. For now use 200MHz only when all pipes
6493 * are off.
6494 */
6495 if (!IS_CHERRYVIEW(dev_priv) &&
6496 max_pixclk > freq_320*limit/100)
6497 return 400000;
6498 else if (max_pixclk > 266667*limit/100)
6499 return freq_320;
6500 else if (max_pixclk > 0)
6501 return 266667;
6502 else
6503 return 200000;
6504}
6505
6506static int bxt_calc_cdclk(int max_pixclk)
6507{
6508 if (max_pixclk > 576000)
6509 return 624000;
6510 else if (max_pixclk > 384000)
6511 return 576000;
6512 else if (max_pixclk > 288000)
6513 return 384000;
6514 else if (max_pixclk > 144000)
6515 return 288000;
6516 else
6517 return 144000;
6518}
6519
6520/* Compute the max pixel clock for new configuration. */
6521static int intel_mode_max_pixclk(struct drm_device *dev,
6522 struct drm_atomic_state *state)
6523{
6524 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
6525 struct drm_i915_private *dev_priv = to_i915(dev);
6526 struct drm_crtc *crtc;
6527 struct drm_crtc_state *crtc_state;
6528 unsigned max_pixclk = 0, i;
6529 enum pipe pipe;
6530
6531 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
6532 sizeof(intel_state->min_pixclk));
6533
6534 for_each_crtc_in_state(state, crtc, crtc_state, i) {
6535 int pixclk = 0;
6536
6537 if (crtc_state->enable)
6538 pixclk = crtc_state->adjusted_mode.crtc_clock;
6539
6540 intel_state->min_pixclk[i] = pixclk;
6541 }
6542
6543 for_each_pipe(dev_priv, pipe)
6544 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
6545
6546 return max_pixclk;
6547}
6548
6549static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6550{
6551 struct drm_device *dev = state->dev;
6552 struct drm_i915_private *dev_priv = to_i915(dev);
6553 int max_pixclk = intel_mode_max_pixclk(dev, state);
6554 struct intel_atomic_state *intel_state =
6555 to_intel_atomic_state(state);
6556
6557 intel_state->cdclk = intel_state->dev_cdclk =
6558 valleyview_calc_cdclk(dev_priv, max_pixclk);
6559
6560 if (!intel_state->active_crtcs)
6561 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6562
6563 return 0;
6564}
6565
6566static int bxt_modeset_calc_cdclk(struct drm_atomic_state *state)
6567{
6568 int max_pixclk = ilk_max_pixel_rate(state);
6569 struct intel_atomic_state *intel_state =
6570 to_intel_atomic_state(state);
6571
6572 intel_state->cdclk = intel_state->dev_cdclk =
6573 bxt_calc_cdclk(max_pixclk);
6574
6575 if (!intel_state->active_crtcs)
6576 intel_state->dev_cdclk = bxt_calc_cdclk(0);
6577
6578 return 0;
6579}
6580
6581static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6582{
6583 unsigned int credits, default_credits;
6584
6585 if (IS_CHERRYVIEW(dev_priv))
6586 default_credits = PFI_CREDIT(12);
6587 else
6588 default_credits = PFI_CREDIT(8);
6589
6590 if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6591 /* CHV suggested value is 31 or 63 */
6592 if (IS_CHERRYVIEW(dev_priv))
6593 credits = PFI_CREDIT_63;
6594 else
6595 credits = PFI_CREDIT(15);
6596 } else {
6597 credits = default_credits;
6598 }
6599
6600 /*
6601 * WA - write default credits before re-programming
6602 * FIXME: should we also set the resend bit here?
6603 */
6604 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6605 default_credits);
6606
6607 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6608 credits | PFI_CREDIT_RESEND);
6609
6610 /*
6611 * FIXME is this guaranteed to clear
6612 * immediately or should we poll for it?
6613 */
6614 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6615}
6616
6617static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6618{
6619 struct drm_device *dev = old_state->dev;
6620 struct drm_i915_private *dev_priv = to_i915(dev);
6621 struct intel_atomic_state *old_intel_state =
6622 to_intel_atomic_state(old_state);
6623 unsigned req_cdclk = old_intel_state->dev_cdclk;
6624
6625 /*
6626 * FIXME: We can end up here with all power domains off, yet
6627 * with a CDCLK frequency other than the minimum. To account
6628 * for this take the PIPE-A power domain, which covers the HW
6629 * blocks needed for the following programming. This can be
6630 * removed once it's guaranteed that we get here either with
6631 * the minimum CDCLK set, or the required power domains
6632 * enabled.
6633 */
6634 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6635
6636 if (IS_CHERRYVIEW(dev_priv))
6637 cherryview_set_cdclk(dev, req_cdclk);
6638 else
6639 valleyview_set_cdclk(dev, req_cdclk);
6640
6641 vlv_program_pfi_credits(dev_priv);
6642
6643 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6644}
6645
6646static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
6647 struct drm_atomic_state *old_state)
6648{
6649 struct drm_crtc *crtc = pipe_config->base.crtc;
6650 struct drm_device *dev = crtc->dev;
6651 struct drm_i915_private *dev_priv = to_i915(dev);
6652 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6653 int pipe = intel_crtc->pipe;
6654
6655 if (WARN_ON(intel_crtc->active))
6656 return;
6657
6658 if (intel_crtc_has_dp_encoder(intel_crtc->config))
6659 intel_dp_set_m_n(intel_crtc, M1_N1);
6660
6661 intel_set_pipe_timings(intel_crtc);
6662 intel_set_pipe_src_size(intel_crtc);
6663
6664 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
6665 struct drm_i915_private *dev_priv = to_i915(dev);
6666
6667 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6668 I915_WRITE(CHV_CANVAS(pipe), 0);
6669 }
6670
6671 i9xx_set_pipeconf(intel_crtc);
6672
6673 intel_crtc->active = true;
6674
6675 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6676
6677 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
6678
6679 if (IS_CHERRYVIEW(dev_priv)) {
6680 chv_prepare_pll(intel_crtc, intel_crtc->config);
6681 chv_enable_pll(intel_crtc, intel_crtc->config);
6682 } else {
6683 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6684 vlv_enable_pll(intel_crtc, intel_crtc->config);
6685 }
6686
6687 intel_encoders_pre_enable(crtc, pipe_config, old_state);
6688
6689 i9xx_pfit_enable(intel_crtc);
6690
6691 intel_color_load_luts(&pipe_config->base);
6692
6693 intel_update_watermarks(intel_crtc);
6694 intel_enable_pipe(intel_crtc);
6695
6696 assert_vblank_disabled(crtc);
6697 drm_crtc_vblank_on(crtc);
6698
6699 intel_encoders_enable(crtc, pipe_config, old_state);
6700}
6701
6702static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6703{
6704 struct drm_device *dev = crtc->base.dev;
6705 struct drm_i915_private *dev_priv = to_i915(dev);
6706
6707 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6708 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6709}
6710
6711static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
6712 struct drm_atomic_state *old_state)
6713{
6714 struct drm_crtc *crtc = pipe_config->base.crtc;
6715 struct drm_device *dev = crtc->dev;
6716 struct drm_i915_private *dev_priv = to_i915(dev);
6717 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6718 enum pipe pipe = intel_crtc->pipe;
6719
6720 if (WARN_ON(intel_crtc->active))
6721 return;
6722
6723 i9xx_set_pll_dividers(intel_crtc);
6724
6725 if (intel_crtc_has_dp_encoder(intel_crtc->config))
6726 intel_dp_set_m_n(intel_crtc, M1_N1);
6727
6728 intel_set_pipe_timings(intel_crtc);
6729 intel_set_pipe_src_size(intel_crtc);
6730
6731 i9xx_set_pipeconf(intel_crtc);
6732
6733 intel_crtc->active = true;
6734
6735 if (!IS_GEN2(dev_priv))
6736 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6737
6738 intel_encoders_pre_enable(crtc, pipe_config, old_state);
6739
6740 i9xx_enable_pll(intel_crtc);
6741
6742 i9xx_pfit_enable(intel_crtc);
6743
6744 intel_color_load_luts(&pipe_config->base);
6745
6746 intel_update_watermarks(intel_crtc);
6747 intel_enable_pipe(intel_crtc);
6748
6749 assert_vblank_disabled(crtc);
6750 drm_crtc_vblank_on(crtc);
6751
6752 intel_encoders_enable(crtc, pipe_config, old_state);
6753}
6754
6755static void i9xx_pfit_disable(struct intel_crtc *crtc)
6756{
6757 struct drm_device *dev = crtc->base.dev;
6758 struct drm_i915_private *dev_priv = to_i915(dev);
6759
6760 if (!crtc->config->gmch_pfit.control)
6761 return;
6762
6763 assert_pipe_disabled(dev_priv, crtc->pipe);
6764
6765 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6766 I915_READ(PFIT_CONTROL));
6767 I915_WRITE(PFIT_CONTROL, 0);
6768}
6769
6770static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
6771 struct drm_atomic_state *old_state)
6772{
6773 struct drm_crtc *crtc = old_crtc_state->base.crtc;
6774 struct drm_device *dev = crtc->dev;
6775 struct drm_i915_private *dev_priv = to_i915(dev);
6776 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6777 int pipe = intel_crtc->pipe;
6778
6779 /*
6780 * On gen2 planes are double buffered but the pipe isn't, so we must
6781 * wait for planes to fully turn off before disabling the pipe.
6782 */
6783 if (IS_GEN2(dev_priv))
6784 intel_wait_for_vblank(dev_priv, pipe);
6785
6786 intel_encoders_disable(crtc, old_crtc_state, old_state);
6787
6788 drm_crtc_vblank_off(crtc);
6789 assert_vblank_disabled(crtc);
6790
6791 intel_disable_pipe(intel_crtc);
6792
6793 i9xx_pfit_disable(intel_crtc);
6794
6795 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
6796
6797 if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
6798 if (IS_CHERRYVIEW(dev_priv))
6799 chv_disable_pll(dev_priv, pipe);
6800 else if (IS_VALLEYVIEW(dev_priv))
6801 vlv_disable_pll(dev_priv, pipe);
6802 else
6803 i9xx_disable_pll(intel_crtc);
6804 }
6805
6806 intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
6807
6808 if (!IS_GEN2(dev_priv))
6809 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6810}
6811
6812static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6813{
6814 struct intel_encoder *encoder;
6815 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6816 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6817 enum intel_display_power_domain domain;
6818 unsigned long domains;
6819 struct drm_atomic_state *state;
6820 struct intel_crtc_state *crtc_state;
6821 int ret;
6822
6823 if (!intel_crtc->active)
6824 return;
6825
6826 if (to_intel_plane_state(crtc->primary->state)->base.visible) {
6827 WARN_ON(intel_crtc->flip_work);
6828
6829 intel_pre_disable_primary_noatomic(crtc);
6830
6831 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6832 to_intel_plane_state(crtc->primary->state)->base.visible = false;
6833 }
6834
6835 state = drm_atomic_state_alloc(crtc->dev);
6836 if (!state) {
6837 DRM_DEBUG_KMS("failed to disable [CRTC:%d:%s], out of memory",
6838 crtc->base.id, crtc->name);
6839 return;
6840 }
6841
6842 state->acquire_ctx = crtc->dev->mode_config.acquire_ctx;
6843
6844 /* Everything's already locked, -EDEADLK can't happen. */
6845 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
6846 ret = drm_atomic_add_affected_connectors(state, crtc);
6847
6848 WARN_ON(IS_ERR(crtc_state) || ret);
6849
6850 dev_priv->display.crtc_disable(crtc_state, state);
6851
6852 drm_atomic_state_put(state);
6853
6854 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
6855 crtc->base.id, crtc->name);
6856
6857 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6858 crtc->state->active = false;
6859 intel_crtc->active = false;
6860 crtc->enabled = false;
6861 crtc->state->connector_mask = 0;
6862 crtc->state->encoder_mask = 0;
6863
6864 for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6865 encoder->base.crtc = NULL;
6866
6867 intel_fbc_disable(intel_crtc);
6868 intel_update_watermarks(intel_crtc);
6869 intel_disable_shared_dpll(intel_crtc);
6870
6871 domains = intel_crtc->enabled_power_domains;
6872 for_each_power_domain(domain, domains)
6873 intel_display_power_put(dev_priv, domain);
6874 intel_crtc->enabled_power_domains = 0;
6875
6876 dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6877 dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6878}
6879
6880/*
6881 * turn all crtc's off, but do not adjust state
6882 * This has to be paired with a call to intel_modeset_setup_hw_state.
6883 */
6884int intel_display_suspend(struct drm_device *dev)
6885{
6886 struct drm_i915_private *dev_priv = to_i915(dev);
6887 struct drm_atomic_state *state;
6888 int ret;
6889
6890 state = drm_atomic_helper_suspend(dev);
6891 ret = PTR_ERR_OR_ZERO(state);
6892 if (ret)
6893 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6894 else
6895 dev_priv->modeset_restore_state = state;
6896 return ret;
6897}
6898
6899void intel_encoder_destroy(struct drm_encoder *encoder)
6900{
6901 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6902
6903 drm_encoder_cleanup(encoder);
6904 kfree(intel_encoder);
6905}
6906
6907/* Cross check the actual hw state with our own modeset state tracking (and it's
6908 * internal consistency). */
6909static void intel_connector_verify_state(struct intel_connector *connector)
6910{
6911 struct drm_crtc *crtc = connector->base.state->crtc;
6912
6913 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6914 connector->base.base.id,
6915 connector->base.name);
6916
6917 if (connector->get_hw_state(connector)) {
6918 struct intel_encoder *encoder = connector->encoder;
6919 struct drm_connector_state *conn_state = connector->base.state;
6920
6921 I915_STATE_WARN(!crtc,
6922 "connector enabled without attached crtc\n");
6923
6924 if (!crtc)
6925 return;
6926
6927 I915_STATE_WARN(!crtc->state->active,
6928 "connector is active, but attached crtc isn't\n");
6929
6930 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6931 return;
6932
6933 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6934 "atomic encoder doesn't match attached encoder\n");
6935
6936 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6937 "attached encoder crtc differs from connector crtc\n");
6938 } else {
6939 I915_STATE_WARN(crtc && crtc->state->active,
6940 "attached crtc is active, but connector isn't\n");
6941 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6942 "best encoder set without crtc!\n");
6943 }
6944}
6945
6946int intel_connector_init(struct intel_connector *connector)
6947{
6948 drm_atomic_helper_connector_reset(&connector->base);
6949
6950 if (!connector->base.state)
6951 return -ENOMEM;
6952
6953 return 0;
6954}
6955
6956struct intel_connector *intel_connector_alloc(void)
6957{
6958 struct intel_connector *connector;
6959
6960 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6961 if (!connector)
6962 return NULL;
6963
6964 if (intel_connector_init(connector) < 0) {
6965 kfree(connector);
6966 return NULL;
6967 }
6968
6969 return connector;
6970}
6971
6972/* Simple connector->get_hw_state implementation for encoders that support only
6973 * one connector and no cloning and hence the encoder state determines the state
6974 * of the connector. */
6975bool intel_connector_get_hw_state(struct intel_connector *connector)
6976{
6977 enum pipe pipe = 0;
6978 struct intel_encoder *encoder = connector->encoder;
6979
6980 return encoder->get_hw_state(encoder, &pipe);
6981}
6982
6983static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6984{
6985 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6986 return crtc_state->fdi_lanes;
6987
6988 return 0;
6989}
6990
6991static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6992 struct intel_crtc_state *pipe_config)
6993{
6994 struct drm_i915_private *dev_priv = to_i915(dev);
6995 struct drm_atomic_state *state = pipe_config->base.state;
6996 struct intel_crtc *other_crtc;
6997 struct intel_crtc_state *other_crtc_state;
6998
6999 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
7000 pipe_name(pipe), pipe_config->fdi_lanes);
7001 if (pipe_config->fdi_lanes > 4) {
7002 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
7003 pipe_name(pipe), pipe_config->fdi_lanes);
7004 return -EINVAL;
7005 }
7006
7007 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
7008 if (pipe_config->fdi_lanes > 2) {
7009 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
7010 pipe_config->fdi_lanes);
7011 return -EINVAL;
7012 } else {
7013 return 0;
7014 }
7015 }
7016
7017 if (INTEL_INFO(dev_priv)->num_pipes == 2)
7018 return 0;
7019
7020 /* Ivybridge 3 pipe is really complicated */
7021 switch (pipe) {
7022 case PIPE_A:
7023 return 0;
7024 case PIPE_B:
7025 if (pipe_config->fdi_lanes <= 2)
7026 return 0;
7027
7028 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
7029 other_crtc_state =
7030 intel_atomic_get_crtc_state(state, other_crtc);
7031 if (IS_ERR(other_crtc_state))
7032 return PTR_ERR(other_crtc_state);
7033
7034 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
7035 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
7036 pipe_name(pipe), pipe_config->fdi_lanes);
7037 return -EINVAL;
7038 }
7039 return 0;
7040 case PIPE_C:
7041 if (pipe_config->fdi_lanes > 2) {
7042 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
7043 pipe_name(pipe), pipe_config->fdi_lanes);
7044 return -EINVAL;
7045 }
7046
7047 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
7048 other_crtc_state =
7049 intel_atomic_get_crtc_state(state, other_crtc);
7050 if (IS_ERR(other_crtc_state))
7051 return PTR_ERR(other_crtc_state);
7052
7053 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
7054 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
7055 return -EINVAL;
7056 }
7057 return 0;
7058 default:
7059 BUG();
7060 }
7061}
7062
7063#define RETRY 1
7064static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
7065 struct intel_crtc_state *pipe_config)
7066{
7067 struct drm_device *dev = intel_crtc->base.dev;
7068 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7069 int lane, link_bw, fdi_dotclock, ret;
7070 bool needs_recompute = false;
7071
7072retry:
7073 /* FDI is a binary signal running at ~2.7GHz, encoding
7074 * each output octet as 10 bits. The actual frequency
7075 * is stored as a divider into a 100MHz clock, and the
7076 * mode pixel clock is stored in units of 1KHz.
7077 * Hence the bw of each lane in terms of the mode signal
7078 * is:
7079 */
7080 link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
7081
7082 fdi_dotclock = adjusted_mode->crtc_clock;
7083
7084 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
7085 pipe_config->pipe_bpp);
7086
7087 pipe_config->fdi_lanes = lane;
7088
7089 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
7090 link_bw, &pipe_config->fdi_m_n);
7091
7092 ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
7093 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
7094 pipe_config->pipe_bpp -= 2*3;
7095 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
7096 pipe_config->pipe_bpp);
7097 needs_recompute = true;
7098 pipe_config->bw_constrained = true;
7099
7100 goto retry;
7101 }
7102
7103 if (needs_recompute)
7104 return RETRY;
7105
7106 return ret;
7107}
7108
7109static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
7110 struct intel_crtc_state *pipe_config)
7111{
7112 if (pipe_config->pipe_bpp > 24)
7113 return false;
7114
7115 /* HSW can handle pixel rate up to cdclk? */
7116 if (IS_HASWELL(dev_priv))
7117 return true;
7118
7119 /*
7120 * We compare against max which means we must take
7121 * the increased cdclk requirement into account when
7122 * calculating the new cdclk.
7123 *
7124 * Should measure whether using a lower cdclk w/o IPS
7125 */
7126 return ilk_pipe_pixel_rate(pipe_config) <=
7127 dev_priv->max_cdclk_freq * 95 / 100;
7128}
7129
7130static void hsw_compute_ips_config(struct intel_crtc *crtc,
7131 struct intel_crtc_state *pipe_config)
7132{
7133 struct drm_device *dev = crtc->base.dev;
7134 struct drm_i915_private *dev_priv = to_i915(dev);
7135
7136 pipe_config->ips_enabled = i915.enable_ips &&
7137 hsw_crtc_supports_ips(crtc) &&
7138 pipe_config_supports_ips(dev_priv, pipe_config);
7139}
7140
7141static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
7142{
7143 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7144
7145 /* GDG double wide on either pipe, otherwise pipe A only */
7146 return INTEL_INFO(dev_priv)->gen < 4 &&
7147 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
7148}
7149
7150static int intel_crtc_compute_config(struct intel_crtc *crtc,
7151 struct intel_crtc_state *pipe_config)
7152{
7153 struct drm_device *dev = crtc->base.dev;
7154 struct drm_i915_private *dev_priv = to_i915(dev);
7155 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7156 int clock_limit = dev_priv->max_dotclk_freq;
7157
7158 if (INTEL_GEN(dev_priv) < 4) {
7159 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
7160
7161 /*
7162 * Enable double wide mode when the dot clock
7163 * is > 90% of the (display) core speed.
7164 */
7165 if (intel_crtc_supports_double_wide(crtc) &&
7166 adjusted_mode->crtc_clock > clock_limit) {
7167 clock_limit = dev_priv->max_dotclk_freq;
7168 pipe_config->double_wide = true;
7169 }
7170 }
7171
7172 if (adjusted_mode->crtc_clock > clock_limit) {
7173 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
7174 adjusted_mode->crtc_clock, clock_limit,
7175 yesno(pipe_config->double_wide));
7176 return -EINVAL;
7177 }
7178
7179 /*
7180 * Pipe horizontal size must be even in:
7181 * - DVO ganged mode
7182 * - LVDS dual channel mode
7183 * - Double wide pipe
7184 */
7185 if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
7186 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
7187 pipe_config->pipe_src_w &= ~1;
7188
7189 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
7190 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
7191 */
7192 if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
7193 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
7194 return -EINVAL;
7195
7196 if (HAS_IPS(dev_priv))
7197 hsw_compute_ips_config(crtc, pipe_config);
7198
7199 if (pipe_config->has_pch_encoder)
7200 return ironlake_fdi_compute_config(crtc, pipe_config);
7201
7202 return 0;
7203}
7204
7205static int skylake_get_display_clock_speed(struct drm_i915_private *dev_priv)
7206{
7207 u32 cdctl;
7208
7209 skl_dpll0_update(dev_priv);
7210
7211 if (dev_priv->cdclk_pll.vco == 0)
7212 return dev_priv->cdclk_pll.ref;
7213
7214 cdctl = I915_READ(CDCLK_CTL);
7215
7216 if (dev_priv->cdclk_pll.vco == 8640000) {
7217 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7218 case CDCLK_FREQ_450_432:
7219 return 432000;
7220 case CDCLK_FREQ_337_308:
7221 return 308571;
7222 case CDCLK_FREQ_540:
7223 return 540000;
7224 case CDCLK_FREQ_675_617:
7225 return 617143;
7226 default:
7227 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
7228 }
7229 } else {
7230 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7231 case CDCLK_FREQ_450_432:
7232 return 450000;
7233 case CDCLK_FREQ_337_308:
7234 return 337500;
7235 case CDCLK_FREQ_540:
7236 return 540000;
7237 case CDCLK_FREQ_675_617:
7238 return 675000;
7239 default:
7240 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
7241 }
7242 }
7243
7244 return dev_priv->cdclk_pll.ref;
7245}
7246
7247static void bxt_de_pll_update(struct drm_i915_private *dev_priv)
7248{
7249 u32 val;
7250
7251 dev_priv->cdclk_pll.ref = 19200;
7252 dev_priv->cdclk_pll.vco = 0;
7253
7254 val = I915_READ(BXT_DE_PLL_ENABLE);
7255 if ((val & BXT_DE_PLL_PLL_ENABLE) == 0)
7256 return;
7257
7258 if (WARN_ON((val & BXT_DE_PLL_LOCK) == 0))
7259 return;
7260
7261 val = I915_READ(BXT_DE_PLL_CTL);
7262 dev_priv->cdclk_pll.vco = (val & BXT_DE_PLL_RATIO_MASK) *
7263 dev_priv->cdclk_pll.ref;
7264}
7265
7266static int broxton_get_display_clock_speed(struct drm_i915_private *dev_priv)
7267{
7268 u32 divider;
7269 int div, vco;
7270
7271 bxt_de_pll_update(dev_priv);
7272
7273 vco = dev_priv->cdclk_pll.vco;
7274 if (vco == 0)
7275 return dev_priv->cdclk_pll.ref;
7276
7277 divider = I915_READ(CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
7278
7279 switch (divider) {
7280 case BXT_CDCLK_CD2X_DIV_SEL_1:
7281 div = 2;
7282 break;
7283 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
7284 div = 3;
7285 break;
7286 case BXT_CDCLK_CD2X_DIV_SEL_2:
7287 div = 4;
7288 break;
7289 case BXT_CDCLK_CD2X_DIV_SEL_4:
7290 div = 8;
7291 break;
7292 default:
7293 MISSING_CASE(divider);
7294 return dev_priv->cdclk_pll.ref;
7295 }
7296
7297 return DIV_ROUND_CLOSEST(vco, div);
7298}
7299
7300static int broadwell_get_display_clock_speed(struct drm_i915_private *dev_priv)
7301{
7302 uint32_t lcpll = I915_READ(LCPLL_CTL);
7303 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7304
7305 if (lcpll & LCPLL_CD_SOURCE_FCLK)
7306 return 800000;
7307 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7308 return 450000;
7309 else if (freq == LCPLL_CLK_FREQ_450)
7310 return 450000;
7311 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
7312 return 540000;
7313 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
7314 return 337500;
7315 else
7316 return 675000;
7317}
7318
7319static int haswell_get_display_clock_speed(struct drm_i915_private *dev_priv)
7320{
7321 uint32_t lcpll = I915_READ(LCPLL_CTL);
7322 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7323
7324 if (lcpll & LCPLL_CD_SOURCE_FCLK)
7325 return 800000;
7326 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7327 return 450000;
7328 else if (freq == LCPLL_CLK_FREQ_450)
7329 return 450000;
7330 else if (IS_HSW_ULT(dev_priv))
7331 return 337500;
7332 else
7333 return 540000;
7334}
7335
7336static int valleyview_get_display_clock_speed(struct drm_i915_private *dev_priv)
7337{
7338 return vlv_get_cck_clock_hpll(dev_priv, "cdclk",
7339 CCK_DISPLAY_CLOCK_CONTROL);
7340}
7341
7342static int ilk_get_display_clock_speed(struct drm_i915_private *dev_priv)
7343{
7344 return 450000;
7345}
7346
7347static int i945_get_display_clock_speed(struct drm_i915_private *dev_priv)
7348{
7349 return 400000;
7350}
7351
7352static int i915_get_display_clock_speed(struct drm_i915_private *dev_priv)
7353{
7354 return 333333;
7355}
7356
7357static int i9xx_misc_get_display_clock_speed(struct drm_i915_private *dev_priv)
7358{
7359 return 200000;
7360}
7361
7362static int pnv_get_display_clock_speed(struct drm_i915_private *dev_priv)
7363{
7364 struct pci_dev *pdev = dev_priv->drm.pdev;
7365 u16 gcfgc = 0;
7366
7367 pci_read_config_word(pdev, GCFGC, &gcfgc);
7368
7369 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7370 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
7371 return 266667;
7372 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
7373 return 333333;
7374 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
7375 return 444444;
7376 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
7377 return 200000;
7378 default:
7379 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
7380 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
7381 return 133333;
7382 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
7383 return 166667;
7384 }
7385}
7386
7387static int i915gm_get_display_clock_speed(struct drm_i915_private *dev_priv)
7388{
7389 struct pci_dev *pdev = dev_priv->drm.pdev;
7390 u16 gcfgc = 0;
7391
7392 pci_read_config_word(pdev, GCFGC, &gcfgc);
7393
7394 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
7395 return 133333;
7396 else {
7397 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7398 case GC_DISPLAY_CLOCK_333_MHZ:
7399 return 333333;
7400 default:
7401 case GC_DISPLAY_CLOCK_190_200_MHZ:
7402 return 190000;
7403 }
7404 }
7405}
7406
7407static int i865_get_display_clock_speed(struct drm_i915_private *dev_priv)
7408{
7409 return 266667;
7410}
7411
7412static int i85x_get_display_clock_speed(struct drm_i915_private *dev_priv)
7413{
7414 struct pci_dev *pdev = dev_priv->drm.pdev;
7415 u16 hpllcc = 0;
7416
7417 /*
7418 * 852GM/852GMV only supports 133 MHz and the HPLLCC
7419 * encoding is different :(
7420 * FIXME is this the right way to detect 852GM/852GMV?
7421 */
7422 if (pdev->revision == 0x1)
7423 return 133333;
7424
7425 pci_bus_read_config_word(pdev->bus,
7426 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
7427
7428 /* Assume that the hardware is in the high speed state. This
7429 * should be the default.
7430 */
7431 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
7432 case GC_CLOCK_133_200:
7433 case GC_CLOCK_133_200_2:
7434 case GC_CLOCK_100_200:
7435 return 200000;
7436 case GC_CLOCK_166_250:
7437 return 250000;
7438 case GC_CLOCK_100_133:
7439 return 133333;
7440 case GC_CLOCK_133_266:
7441 case GC_CLOCK_133_266_2:
7442 case GC_CLOCK_166_266:
7443 return 266667;
7444 }
7445
7446 /* Shouldn't happen */
7447 return 0;
7448}
7449
7450static int i830_get_display_clock_speed(struct drm_i915_private *dev_priv)
7451{
7452 return 133333;
7453}
7454
7455static unsigned int intel_hpll_vco(struct drm_i915_private *dev_priv)
7456{
7457 static const unsigned int blb_vco[8] = {
7458 [0] = 3200000,
7459 [1] = 4000000,
7460 [2] = 5333333,
7461 [3] = 4800000,
7462 [4] = 6400000,
7463 };
7464 static const unsigned int pnv_vco[8] = {
7465 [0] = 3200000,
7466 [1] = 4000000,
7467 [2] = 5333333,
7468 [3] = 4800000,
7469 [4] = 2666667,
7470 };
7471 static const unsigned int cl_vco[8] = {
7472 [0] = 3200000,
7473 [1] = 4000000,
7474 [2] = 5333333,
7475 [3] = 6400000,
7476 [4] = 3333333,
7477 [5] = 3566667,
7478 [6] = 4266667,
7479 };
7480 static const unsigned int elk_vco[8] = {
7481 [0] = 3200000,
7482 [1] = 4000000,
7483 [2] = 5333333,
7484 [3] = 4800000,
7485 };
7486 static const unsigned int ctg_vco[8] = {
7487 [0] = 3200000,
7488 [1] = 4000000,
7489 [2] = 5333333,
7490 [3] = 6400000,
7491 [4] = 2666667,
7492 [5] = 4266667,
7493 };
7494 const unsigned int *vco_table;
7495 unsigned int vco;
7496 uint8_t tmp = 0;
7497
7498 /* FIXME other chipsets? */
7499 if (IS_GM45(dev_priv))
7500 vco_table = ctg_vco;
7501 else if (IS_G4X(dev_priv))
7502 vco_table = elk_vco;
7503 else if (IS_CRESTLINE(dev_priv))
7504 vco_table = cl_vco;
7505 else if (IS_PINEVIEW(dev_priv))
7506 vco_table = pnv_vco;
7507 else if (IS_G33(dev_priv))
7508 vco_table = blb_vco;
7509 else
7510 return 0;
7511
7512 tmp = I915_READ(IS_MOBILE(dev_priv) ? HPLLVCO_MOBILE : HPLLVCO);
7513
7514 vco = vco_table[tmp & 0x7];
7515 if (vco == 0)
7516 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
7517 else
7518 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
7519
7520 return vco;
7521}
7522
7523static int gm45_get_display_clock_speed(struct drm_i915_private *dev_priv)
7524{
7525 struct pci_dev *pdev = dev_priv->drm.pdev;
7526 unsigned int cdclk_sel, vco = intel_hpll_vco(dev_priv);
7527 uint16_t tmp = 0;
7528
7529 pci_read_config_word(pdev, GCFGC, &tmp);
7530
7531 cdclk_sel = (tmp >> 12) & 0x1;
7532
7533 switch (vco) {
7534 case 2666667:
7535 case 4000000:
7536 case 5333333:
7537 return cdclk_sel ? 333333 : 222222;
7538 case 3200000:
7539 return cdclk_sel ? 320000 : 228571;
7540 default:
7541 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7542 return 222222;
7543 }
7544}
7545
7546static int i965gm_get_display_clock_speed(struct drm_i915_private *dev_priv)
7547{
7548 struct pci_dev *pdev = dev_priv->drm.pdev;
7549 static const uint8_t div_3200[] = { 16, 10, 8 };
7550 static const uint8_t div_4000[] = { 20, 12, 10 };
7551 static const uint8_t div_5333[] = { 24, 16, 14 };
7552 const uint8_t *div_table;
7553 unsigned int cdclk_sel, vco = intel_hpll_vco(dev_priv);
7554 uint16_t tmp = 0;
7555
7556 pci_read_config_word(pdev, GCFGC, &tmp);
7557
7558 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7559
7560 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7561 goto fail;
7562
7563 switch (vco) {
7564 case 3200000:
7565 div_table = div_3200;
7566 break;
7567 case 4000000:
7568 div_table = div_4000;
7569 break;
7570 case 5333333:
7571 div_table = div_5333;
7572 break;
7573 default:
7574 goto fail;
7575 }
7576
7577 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7578
7579fail:
7580 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7581 return 200000;
7582}
7583
7584static int g33_get_display_clock_speed(struct drm_i915_private *dev_priv)
7585{
7586 struct pci_dev *pdev = dev_priv->drm.pdev;
7587 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
7588 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
7589 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7590 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7591 const uint8_t *div_table;
7592 unsigned int cdclk_sel, vco = intel_hpll_vco(dev_priv);
7593 uint16_t tmp = 0;
7594
7595 pci_read_config_word(pdev, GCFGC, &tmp);
7596
7597 cdclk_sel = (tmp >> 4) & 0x7;
7598
7599 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7600 goto fail;
7601
7602 switch (vco) {
7603 case 3200000:
7604 div_table = div_3200;
7605 break;
7606 case 4000000:
7607 div_table = div_4000;
7608 break;
7609 case 4800000:
7610 div_table = div_4800;
7611 break;
7612 case 5333333:
7613 div_table = div_5333;
7614 break;
7615 default:
7616 goto fail;
7617 }
7618
7619 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7620
7621fail:
7622 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7623 return 190476;
7624}
7625
7626static void
7627intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7628{
7629 while (*num > DATA_LINK_M_N_MASK ||
7630 *den > DATA_LINK_M_N_MASK) {
7631 *num >>= 1;
7632 *den >>= 1;
7633 }
7634}
7635
7636static void compute_m_n(unsigned int m, unsigned int n,
7637 uint32_t *ret_m, uint32_t *ret_n)
7638{
7639 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7640 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7641 intel_reduce_m_n_ratio(ret_m, ret_n);
7642}
7643
7644void
7645intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7646 int pixel_clock, int link_clock,
7647 struct intel_link_m_n *m_n)
7648{
7649 m_n->tu = 64;
7650
7651 compute_m_n(bits_per_pixel * pixel_clock,
7652 link_clock * nlanes * 8,
7653 &m_n->gmch_m, &m_n->gmch_n);
7654
7655 compute_m_n(pixel_clock, link_clock,
7656 &m_n->link_m, &m_n->link_n);
7657}
7658
7659static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7660{
7661 if (i915.panel_use_ssc >= 0)
7662 return i915.panel_use_ssc != 0;
7663 return dev_priv->vbt.lvds_use_ssc
7664 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7665}
7666
7667static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7668{
7669 return (1 << dpll->n) << 16 | dpll->m2;
7670}
7671
7672static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7673{
7674 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7675}
7676
7677static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7678 struct intel_crtc_state *crtc_state,
7679 struct dpll *reduced_clock)
7680{
7681 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7682 u32 fp, fp2 = 0;
7683
7684 if (IS_PINEVIEW(dev_priv)) {
7685 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7686 if (reduced_clock)
7687 fp2 = pnv_dpll_compute_fp(reduced_clock);
7688 } else {
7689 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7690 if (reduced_clock)
7691 fp2 = i9xx_dpll_compute_fp(reduced_clock);
7692 }
7693
7694 crtc_state->dpll_hw_state.fp0 = fp;
7695
7696 crtc->lowfreq_avail = false;
7697 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7698 reduced_clock) {
7699 crtc_state->dpll_hw_state.fp1 = fp2;
7700 crtc->lowfreq_avail = true;
7701 } else {
7702 crtc_state->dpll_hw_state.fp1 = fp;
7703 }
7704}
7705
7706static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7707 pipe)
7708{
7709 u32 reg_val;
7710
7711 /*
7712 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7713 * and set it to a reasonable value instead.
7714 */
7715 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7716 reg_val &= 0xffffff00;
7717 reg_val |= 0x00000030;
7718 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7719
7720 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7721 reg_val &= 0x8cffffff;
7722 reg_val = 0x8c000000;
7723 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7724
7725 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7726 reg_val &= 0xffffff00;
7727 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7728
7729 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7730 reg_val &= 0x00ffffff;
7731 reg_val |= 0xb0000000;
7732 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7733}
7734
7735static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7736 struct intel_link_m_n *m_n)
7737{
7738 struct drm_device *dev = crtc->base.dev;
7739 struct drm_i915_private *dev_priv = to_i915(dev);
7740 int pipe = crtc->pipe;
7741
7742 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7743 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7744 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7745 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7746}
7747
7748static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7749 struct intel_link_m_n *m_n,
7750 struct intel_link_m_n *m2_n2)
7751{
7752 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7753 int pipe = crtc->pipe;
7754 enum transcoder transcoder = crtc->config->cpu_transcoder;
7755
7756 if (INTEL_GEN(dev_priv) >= 5) {
7757 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7758 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7759 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7760 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7761 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7762 * for gen < 8) and if DRRS is supported (to make sure the
7763 * registers are not unnecessarily accessed).
7764 */
7765 if (m2_n2 && (IS_CHERRYVIEW(dev_priv) ||
7766 INTEL_GEN(dev_priv) < 8) && crtc->config->has_drrs) {
7767 I915_WRITE(PIPE_DATA_M2(transcoder),
7768 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7769 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7770 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7771 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7772 }
7773 } else {
7774 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7775 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7776 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7777 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7778 }
7779}
7780
7781void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7782{
7783 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7784
7785 if (m_n == M1_N1) {
7786 dp_m_n = &crtc->config->dp_m_n;
7787 dp_m2_n2 = &crtc->config->dp_m2_n2;
7788 } else if (m_n == M2_N2) {
7789
7790 /*
7791 * M2_N2 registers are not supported. Hence m2_n2 divider value
7792 * needs to be programmed into M1_N1.
7793 */
7794 dp_m_n = &crtc->config->dp_m2_n2;
7795 } else {
7796 DRM_ERROR("Unsupported divider value\n");
7797 return;
7798 }
7799
7800 if (crtc->config->has_pch_encoder)
7801 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7802 else
7803 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7804}
7805
7806static void vlv_compute_dpll(struct intel_crtc *crtc,
7807 struct intel_crtc_state *pipe_config)
7808{
7809 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7810 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7811 if (crtc->pipe != PIPE_A)
7812 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7813
7814 /* DPLL not used with DSI, but still need the rest set up */
7815 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7816 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7817 DPLL_EXT_BUFFER_ENABLE_VLV;
7818
7819 pipe_config->dpll_hw_state.dpll_md =
7820 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7821}
7822
7823static void chv_compute_dpll(struct intel_crtc *crtc,
7824 struct intel_crtc_state *pipe_config)
7825{
7826 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7827 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7828 if (crtc->pipe != PIPE_A)
7829 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7830
7831 /* DPLL not used with DSI, but still need the rest set up */
7832 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7833 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7834
7835 pipe_config->dpll_hw_state.dpll_md =
7836 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7837}
7838
7839static void vlv_prepare_pll(struct intel_crtc *crtc,
7840 const struct intel_crtc_state *pipe_config)
7841{
7842 struct drm_device *dev = crtc->base.dev;
7843 struct drm_i915_private *dev_priv = to_i915(dev);
7844 enum pipe pipe = crtc->pipe;
7845 u32 mdiv;
7846 u32 bestn, bestm1, bestm2, bestp1, bestp2;
7847 u32 coreclk, reg_val;
7848
7849 /* Enable Refclk */
7850 I915_WRITE(DPLL(pipe),
7851 pipe_config->dpll_hw_state.dpll &
7852 ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7853
7854 /* No need to actually set up the DPLL with DSI */
7855 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7856 return;
7857
7858 mutex_lock(&dev_priv->sb_lock);
7859
7860 bestn = pipe_config->dpll.n;
7861 bestm1 = pipe_config->dpll.m1;
7862 bestm2 = pipe_config->dpll.m2;
7863 bestp1 = pipe_config->dpll.p1;
7864 bestp2 = pipe_config->dpll.p2;
7865
7866 /* See eDP HDMI DPIO driver vbios notes doc */
7867
7868 /* PLL B needs special handling */
7869 if (pipe == PIPE_B)
7870 vlv_pllb_recal_opamp(dev_priv, pipe);
7871
7872 /* Set up Tx target for periodic Rcomp update */
7873 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7874
7875 /* Disable target IRef on PLL */
7876 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7877 reg_val &= 0x00ffffff;
7878 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7879
7880 /* Disable fast lock */
7881 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7882
7883 /* Set idtafcrecal before PLL is enabled */
7884 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7885 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7886 mdiv |= ((bestn << DPIO_N_SHIFT));
7887 mdiv |= (1 << DPIO_K_SHIFT);
7888
7889 /*
7890 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7891 * but we don't support that).
7892 * Note: don't use the DAC post divider as it seems unstable.
7893 */
7894 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7895 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7896
7897 mdiv |= DPIO_ENABLE_CALIBRATION;
7898 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7899
7900 /* Set HBR and RBR LPF coefficients */
7901 if (pipe_config->port_clock == 162000 ||
7902 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
7903 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
7904 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7905 0x009f0003);
7906 else
7907 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7908 0x00d0000f);
7909
7910 if (intel_crtc_has_dp_encoder(pipe_config)) {
7911 /* Use SSC source */
7912 if (pipe == PIPE_A)
7913 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7914 0x0df40000);
7915 else
7916 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7917 0x0df70000);
7918 } else { /* HDMI or VGA */
7919 /* Use bend source */
7920 if (pipe == PIPE_A)
7921 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7922 0x0df70000);
7923 else
7924 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7925 0x0df40000);
7926 }
7927
7928 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7929 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7930 if (intel_crtc_has_dp_encoder(crtc->config))
7931 coreclk |= 0x01000000;
7932 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7933
7934 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7935 mutex_unlock(&dev_priv->sb_lock);
7936}
7937
7938static void chv_prepare_pll(struct intel_crtc *crtc,
7939 const struct intel_crtc_state *pipe_config)
7940{
7941 struct drm_device *dev = crtc->base.dev;
7942 struct drm_i915_private *dev_priv = to_i915(dev);
7943 enum pipe pipe = crtc->pipe;
7944 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7945 u32 loopfilter, tribuf_calcntr;
7946 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7947 u32 dpio_val;
7948 int vco;
7949
7950 /* Enable Refclk and SSC */
7951 I915_WRITE(DPLL(pipe),
7952 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7953
7954 /* No need to actually set up the DPLL with DSI */
7955 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7956 return;
7957
7958 bestn = pipe_config->dpll.n;
7959 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7960 bestm1 = pipe_config->dpll.m1;
7961 bestm2 = pipe_config->dpll.m2 >> 22;
7962 bestp1 = pipe_config->dpll.p1;
7963 bestp2 = pipe_config->dpll.p2;
7964 vco = pipe_config->dpll.vco;
7965 dpio_val = 0;
7966 loopfilter = 0;
7967
7968 mutex_lock(&dev_priv->sb_lock);
7969
7970 /* p1 and p2 divider */
7971 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7972 5 << DPIO_CHV_S1_DIV_SHIFT |
7973 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7974 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7975 1 << DPIO_CHV_K_DIV_SHIFT);
7976
7977 /* Feedback post-divider - m2 */
7978 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7979
7980 /* Feedback refclk divider - n and m1 */
7981 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7982 DPIO_CHV_M1_DIV_BY_2 |
7983 1 << DPIO_CHV_N_DIV_SHIFT);
7984
7985 /* M2 fraction division */
7986 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7987
7988 /* M2 fraction division enable */
7989 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7990 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7991 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7992 if (bestm2_frac)
7993 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7994 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7995
7996 /* Program digital lock detect threshold */
7997 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7998 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7999 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
8000 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
8001 if (!bestm2_frac)
8002 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
8003 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
8004
8005 /* Loop filter */
8006 if (vco == 5400000) {
8007 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
8008 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
8009 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
8010 tribuf_calcntr = 0x9;
8011 } else if (vco <= 6200000) {
8012 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
8013 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
8014 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8015 tribuf_calcntr = 0x9;
8016 } else if (vco <= 6480000) {
8017 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8018 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8019 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8020 tribuf_calcntr = 0x8;
8021 } else {
8022 /* Not supported. Apply the same limits as in the max case */
8023 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8024 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8025 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8026 tribuf_calcntr = 0;
8027 }
8028 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
8029
8030 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
8031 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
8032 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
8033 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
8034
8035 /* AFC Recal */
8036 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
8037 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
8038 DPIO_AFC_RECAL);
8039
8040 mutex_unlock(&dev_priv->sb_lock);
8041}
8042
8043/**
8044 * vlv_force_pll_on - forcibly enable just the PLL
8045 * @dev_priv: i915 private structure
8046 * @pipe: pipe PLL to enable
8047 * @dpll: PLL configuration
8048 *
8049 * Enable the PLL for @pipe using the supplied @dpll config. To be used
8050 * in cases where we need the PLL enabled even when @pipe is not going to
8051 * be enabled.
8052 */
8053int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
8054 const struct dpll *dpll)
8055{
8056 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
8057 struct intel_crtc_state *pipe_config;
8058
8059 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8060 if (!pipe_config)
8061 return -ENOMEM;
8062
8063 pipe_config->base.crtc = &crtc->base;
8064 pipe_config->pixel_multiplier = 1;
8065 pipe_config->dpll = *dpll;
8066
8067 if (IS_CHERRYVIEW(dev_priv)) {
8068 chv_compute_dpll(crtc, pipe_config);
8069 chv_prepare_pll(crtc, pipe_config);
8070 chv_enable_pll(crtc, pipe_config);
8071 } else {
8072 vlv_compute_dpll(crtc, pipe_config);
8073 vlv_prepare_pll(crtc, pipe_config);
8074 vlv_enable_pll(crtc, pipe_config);
8075 }
8076
8077 kfree(pipe_config);
8078
8079 return 0;
8080}
8081
8082/**
8083 * vlv_force_pll_off - forcibly disable just the PLL
8084 * @dev_priv: i915 private structure
8085 * @pipe: pipe PLL to disable
8086 *
8087 * Disable the PLL for @pipe. To be used in cases where we need
8088 * the PLL enabled even when @pipe is not going to be enabled.
8089 */
8090void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
8091{
8092 if (IS_CHERRYVIEW(dev_priv))
8093 chv_disable_pll(dev_priv, pipe);
8094 else
8095 vlv_disable_pll(dev_priv, pipe);
8096}
8097
8098static void i9xx_compute_dpll(struct intel_crtc *crtc,
8099 struct intel_crtc_state *crtc_state,
8100 struct dpll *reduced_clock)
8101{
8102 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8103 u32 dpll;
8104 struct dpll *clock = &crtc_state->dpll;
8105
8106 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8107
8108 dpll = DPLL_VGA_MODE_DIS;
8109
8110 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8111 dpll |= DPLLB_MODE_LVDS;
8112 else
8113 dpll |= DPLLB_MODE_DAC_SERIAL;
8114
8115 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || IS_G33(dev_priv)) {
8116 dpll |= (crtc_state->pixel_multiplier - 1)
8117 << SDVO_MULTIPLIER_SHIFT_HIRES;
8118 }
8119
8120 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8121 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8122 dpll |= DPLL_SDVO_HIGH_SPEED;
8123
8124 if (intel_crtc_has_dp_encoder(crtc_state))
8125 dpll |= DPLL_SDVO_HIGH_SPEED;
8126
8127 /* compute bitmask from p1 value */
8128 if (IS_PINEVIEW(dev_priv))
8129 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
8130 else {
8131 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8132 if (IS_G4X(dev_priv) && reduced_clock)
8133 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8134 }
8135 switch (clock->p2) {
8136 case 5:
8137 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8138 break;
8139 case 7:
8140 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8141 break;
8142 case 10:
8143 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8144 break;
8145 case 14:
8146 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8147 break;
8148 }
8149 if (INTEL_GEN(dev_priv) >= 4)
8150 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
8151
8152 if (crtc_state->sdvo_tv_clock)
8153 dpll |= PLL_REF_INPUT_TVCLKINBC;
8154 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8155 intel_panel_use_ssc(dev_priv))
8156 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8157 else
8158 dpll |= PLL_REF_INPUT_DREFCLK;
8159
8160 dpll |= DPLL_VCO_ENABLE;
8161 crtc_state->dpll_hw_state.dpll = dpll;
8162
8163 if (INTEL_GEN(dev_priv) >= 4) {
8164 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
8165 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8166 crtc_state->dpll_hw_state.dpll_md = dpll_md;
8167 }
8168}
8169
8170static void i8xx_compute_dpll(struct intel_crtc *crtc,
8171 struct intel_crtc_state *crtc_state,
8172 struct dpll *reduced_clock)
8173{
8174 struct drm_device *dev = crtc->base.dev;
8175 struct drm_i915_private *dev_priv = to_i915(dev);
8176 u32 dpll;
8177 struct dpll *clock = &crtc_state->dpll;
8178
8179 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8180
8181 dpll = DPLL_VGA_MODE_DIS;
8182
8183 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8184 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8185 } else {
8186 if (clock->p1 == 2)
8187 dpll |= PLL_P1_DIVIDE_BY_TWO;
8188 else
8189 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8190 if (clock->p2 == 4)
8191 dpll |= PLL_P2_DIVIDE_BY_4;
8192 }
8193
8194 if (!IS_I830(dev_priv) &&
8195 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
8196 dpll |= DPLL_DVO_2X_MODE;
8197
8198 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8199 intel_panel_use_ssc(dev_priv))
8200 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8201 else
8202 dpll |= PLL_REF_INPUT_DREFCLK;
8203
8204 dpll |= DPLL_VCO_ENABLE;
8205 crtc_state->dpll_hw_state.dpll = dpll;
8206}
8207
8208static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
8209{
8210 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
8211 enum pipe pipe = intel_crtc->pipe;
8212 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8213 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
8214 uint32_t crtc_vtotal, crtc_vblank_end;
8215 int vsyncshift = 0;
8216
8217 /* We need to be careful not to changed the adjusted mode, for otherwise
8218 * the hw state checker will get angry at the mismatch. */
8219 crtc_vtotal = adjusted_mode->crtc_vtotal;
8220 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
8221
8222 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
8223 /* the chip adds 2 halflines automatically */
8224 crtc_vtotal -= 1;
8225 crtc_vblank_end -= 1;
8226
8227 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
8228 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
8229 else
8230 vsyncshift = adjusted_mode->crtc_hsync_start -
8231 adjusted_mode->crtc_htotal / 2;
8232 if (vsyncshift < 0)
8233 vsyncshift += adjusted_mode->crtc_htotal;
8234 }
8235
8236 if (INTEL_GEN(dev_priv) > 3)
8237 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
8238
8239 I915_WRITE(HTOTAL(cpu_transcoder),
8240 (adjusted_mode->crtc_hdisplay - 1) |
8241 ((adjusted_mode->crtc_htotal - 1) << 16));
8242 I915_WRITE(HBLANK(cpu_transcoder),
8243 (adjusted_mode->crtc_hblank_start - 1) |
8244 ((adjusted_mode->crtc_hblank_end - 1) << 16));
8245 I915_WRITE(HSYNC(cpu_transcoder),
8246 (adjusted_mode->crtc_hsync_start - 1) |
8247 ((adjusted_mode->crtc_hsync_end - 1) << 16));
8248
8249 I915_WRITE(VTOTAL(cpu_transcoder),
8250 (adjusted_mode->crtc_vdisplay - 1) |
8251 ((crtc_vtotal - 1) << 16));
8252 I915_WRITE(VBLANK(cpu_transcoder),
8253 (adjusted_mode->crtc_vblank_start - 1) |
8254 ((crtc_vblank_end - 1) << 16));
8255 I915_WRITE(VSYNC(cpu_transcoder),
8256 (adjusted_mode->crtc_vsync_start - 1) |
8257 ((adjusted_mode->crtc_vsync_end - 1) << 16));
8258
8259 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
8260 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
8261 * documented on the DDI_FUNC_CTL register description, EDP Input Select
8262 * bits. */
8263 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
8264 (pipe == PIPE_B || pipe == PIPE_C))
8265 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
8266
8267}
8268
8269static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
8270{
8271 struct drm_device *dev = intel_crtc->base.dev;
8272 struct drm_i915_private *dev_priv = to_i915(dev);
8273 enum pipe pipe = intel_crtc->pipe;
8274
8275 /* pipesrc controls the size that is scaled from, which should
8276 * always be the user's requested size.
8277 */
8278 I915_WRITE(PIPESRC(pipe),
8279 ((intel_crtc->config->pipe_src_w - 1) << 16) |
8280 (intel_crtc->config->pipe_src_h - 1));
8281}
8282
8283static void intel_get_pipe_timings(struct intel_crtc *crtc,
8284 struct intel_crtc_state *pipe_config)
8285{
8286 struct drm_device *dev = crtc->base.dev;
8287 struct drm_i915_private *dev_priv = to_i915(dev);
8288 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
8289 uint32_t tmp;
8290
8291 tmp = I915_READ(HTOTAL(cpu_transcoder));
8292 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
8293 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
8294 tmp = I915_READ(HBLANK(cpu_transcoder));
8295 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
8296 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
8297 tmp = I915_READ(HSYNC(cpu_transcoder));
8298 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
8299 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
8300
8301 tmp = I915_READ(VTOTAL(cpu_transcoder));
8302 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
8303 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
8304 tmp = I915_READ(VBLANK(cpu_transcoder));
8305 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
8306 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
8307 tmp = I915_READ(VSYNC(cpu_transcoder));
8308 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
8309 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
8310
8311 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
8312 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
8313 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
8314 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
8315 }
8316}
8317
8318static void intel_get_pipe_src_size(struct intel_crtc *crtc,
8319 struct intel_crtc_state *pipe_config)
8320{
8321 struct drm_device *dev = crtc->base.dev;
8322 struct drm_i915_private *dev_priv = to_i915(dev);
8323 u32 tmp;
8324
8325 tmp = I915_READ(PIPESRC(crtc->pipe));
8326 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
8327 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
8328
8329 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
8330 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
8331}
8332
8333void intel_mode_from_pipe_config(struct drm_display_mode *mode,
8334 struct intel_crtc_state *pipe_config)
8335{
8336 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
8337 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
8338 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
8339 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
8340
8341 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
8342 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
8343 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
8344 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
8345
8346 mode->flags = pipe_config->base.adjusted_mode.flags;
8347 mode->type = DRM_MODE_TYPE_DRIVER;
8348
8349 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
8350 mode->flags |= pipe_config->base.adjusted_mode.flags;
8351
8352 mode->hsync = drm_mode_hsync(mode);
8353 mode->vrefresh = drm_mode_vrefresh(mode);
8354 drm_mode_set_name(mode);
8355}
8356
8357static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
8358{
8359 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
8360 uint32_t pipeconf;
8361
8362 pipeconf = 0;
8363
8364 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
8365 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8366 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
8367
8368 if (intel_crtc->config->double_wide)
8369 pipeconf |= PIPECONF_DOUBLE_WIDE;
8370
8371 /* only g4x and later have fancy bpc/dither controls */
8372 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8373 IS_CHERRYVIEW(dev_priv)) {
8374 /* Bspec claims that we can't use dithering for 30bpp pipes. */
8375 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
8376 pipeconf |= PIPECONF_DITHER_EN |
8377 PIPECONF_DITHER_TYPE_SP;
8378
8379 switch (intel_crtc->config->pipe_bpp) {
8380 case 18:
8381 pipeconf |= PIPECONF_6BPC;
8382 break;
8383 case 24:
8384 pipeconf |= PIPECONF_8BPC;
8385 break;
8386 case 30:
8387 pipeconf |= PIPECONF_10BPC;
8388 break;
8389 default:
8390 /* Case prevented by intel_choose_pipe_bpp_dither. */
8391 BUG();
8392 }
8393 }
8394
8395 if (HAS_PIPE_CXSR(dev_priv)) {
8396 if (intel_crtc->lowfreq_avail) {
8397 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
8398 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
8399 } else {
8400 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
8401 }
8402 }
8403
8404 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
8405 if (INTEL_GEN(dev_priv) < 4 ||
8406 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
8407 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
8408 else
8409 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
8410 } else
8411 pipeconf |= PIPECONF_PROGRESSIVE;
8412
8413 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
8414 intel_crtc->config->limited_color_range)
8415 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
8416
8417 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
8418 POSTING_READ(PIPECONF(intel_crtc->pipe));
8419}
8420
8421static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
8422 struct intel_crtc_state *crtc_state)
8423{
8424 struct drm_device *dev = crtc->base.dev;
8425 struct drm_i915_private *dev_priv = to_i915(dev);
8426 const struct intel_limit *limit;
8427 int refclk = 48000;
8428
8429 memset(&crtc_state->dpll_hw_state, 0,
8430 sizeof(crtc_state->dpll_hw_state));
8431
8432 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8433 if (intel_panel_use_ssc(dev_priv)) {
8434 refclk = dev_priv->vbt.lvds_ssc_freq;
8435 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8436 }
8437
8438 limit = &intel_limits_i8xx_lvds;
8439 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
8440 limit = &intel_limits_i8xx_dvo;
8441 } else {
8442 limit = &intel_limits_i8xx_dac;
8443 }
8444
8445 if (!crtc_state->clock_set &&
8446 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8447 refclk, NULL, &crtc_state->dpll)) {
8448 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8449 return -EINVAL;
8450 }
8451
8452 i8xx_compute_dpll(crtc, crtc_state, NULL);
8453
8454 return 0;
8455}
8456
8457static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
8458 struct intel_crtc_state *crtc_state)
8459{
8460 struct drm_device *dev = crtc->base.dev;
8461 struct drm_i915_private *dev_priv = to_i915(dev);
8462 const struct intel_limit *limit;
8463 int refclk = 96000;
8464
8465 memset(&crtc_state->dpll_hw_state, 0,
8466 sizeof(crtc_state->dpll_hw_state));
8467
8468 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8469 if (intel_panel_use_ssc(dev_priv)) {
8470 refclk = dev_priv->vbt.lvds_ssc_freq;
8471 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8472 }
8473
8474 if (intel_is_dual_link_lvds(dev))
8475 limit = &intel_limits_g4x_dual_channel_lvds;
8476 else
8477 limit = &intel_limits_g4x_single_channel_lvds;
8478 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
8479 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
8480 limit = &intel_limits_g4x_hdmi;
8481 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
8482 limit = &intel_limits_g4x_sdvo;
8483 } else {
8484 /* The option is for other outputs */
8485 limit = &intel_limits_i9xx_sdvo;
8486 }
8487
8488 if (!crtc_state->clock_set &&
8489 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8490 refclk, NULL, &crtc_state->dpll)) {
8491 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8492 return -EINVAL;
8493 }
8494
8495 i9xx_compute_dpll(crtc, crtc_state, NULL);
8496
8497 return 0;
8498}
8499
8500static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
8501 struct intel_crtc_state *crtc_state)
8502{
8503 struct drm_device *dev = crtc->base.dev;
8504 struct drm_i915_private *dev_priv = to_i915(dev);
8505 const struct intel_limit *limit;
8506 int refclk = 96000;
8507
8508 memset(&crtc_state->dpll_hw_state, 0,
8509 sizeof(crtc_state->dpll_hw_state));
8510
8511 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8512 if (intel_panel_use_ssc(dev_priv)) {
8513 refclk = dev_priv->vbt.lvds_ssc_freq;
8514 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8515 }
8516
8517 limit = &intel_limits_pineview_lvds;
8518 } else {
8519 limit = &intel_limits_pineview_sdvo;
8520 }
8521
8522 if (!crtc_state->clock_set &&
8523 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8524 refclk, NULL, &crtc_state->dpll)) {
8525 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8526 return -EINVAL;
8527 }
8528
8529 i9xx_compute_dpll(crtc, crtc_state, NULL);
8530
8531 return 0;
8532}
8533
8534static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
8535 struct intel_crtc_state *crtc_state)
8536{
8537 struct drm_device *dev = crtc->base.dev;
8538 struct drm_i915_private *dev_priv = to_i915(dev);
8539 const struct intel_limit *limit;
8540 int refclk = 96000;
8541
8542 memset(&crtc_state->dpll_hw_state, 0,
8543 sizeof(crtc_state->dpll_hw_state));
8544
8545 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8546 if (intel_panel_use_ssc(dev_priv)) {
8547 refclk = dev_priv->vbt.lvds_ssc_freq;
8548 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8549 }
8550
8551 limit = &intel_limits_i9xx_lvds;
8552 } else {
8553 limit = &intel_limits_i9xx_sdvo;
8554 }
8555
8556 if (!crtc_state->clock_set &&
8557 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8558 refclk, NULL, &crtc_state->dpll)) {
8559 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8560 return -EINVAL;
8561 }
8562
8563 i9xx_compute_dpll(crtc, crtc_state, NULL);
8564
8565 return 0;
8566}
8567
8568static int chv_crtc_compute_clock(struct intel_crtc *crtc,
8569 struct intel_crtc_state *crtc_state)
8570{
8571 int refclk = 100000;
8572 const struct intel_limit *limit = &intel_limits_chv;
8573
8574 memset(&crtc_state->dpll_hw_state, 0,
8575 sizeof(crtc_state->dpll_hw_state));
8576
8577 if (!crtc_state->clock_set &&
8578 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8579 refclk, NULL, &crtc_state->dpll)) {
8580 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8581 return -EINVAL;
8582 }
8583
8584 chv_compute_dpll(crtc, crtc_state);
8585
8586 return 0;
8587}
8588
8589static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
8590 struct intel_crtc_state *crtc_state)
8591{
8592 int refclk = 100000;
8593 const struct intel_limit *limit = &intel_limits_vlv;
8594
8595 memset(&crtc_state->dpll_hw_state, 0,
8596 sizeof(crtc_state->dpll_hw_state));
8597
8598 if (!crtc_state->clock_set &&
8599 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8600 refclk, NULL, &crtc_state->dpll)) {
8601 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8602 return -EINVAL;
8603 }
8604
8605 vlv_compute_dpll(crtc, crtc_state);
8606
8607 return 0;
8608}
8609
8610static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8611 struct intel_crtc_state *pipe_config)
8612{
8613 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8614 uint32_t tmp;
8615
8616 if (INTEL_GEN(dev_priv) <= 3 &&
8617 (IS_I830(dev_priv) || !IS_MOBILE(dev_priv)))
8618 return;
8619
8620 tmp = I915_READ(PFIT_CONTROL);
8621 if (!(tmp & PFIT_ENABLE))
8622 return;
8623
8624 /* Check whether the pfit is attached to our pipe. */
8625 if (INTEL_GEN(dev_priv) < 4) {
8626 if (crtc->pipe != PIPE_B)
8627 return;
8628 } else {
8629 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8630 return;
8631 }
8632
8633 pipe_config->gmch_pfit.control = tmp;
8634 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8635}
8636
8637static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8638 struct intel_crtc_state *pipe_config)
8639{
8640 struct drm_device *dev = crtc->base.dev;
8641 struct drm_i915_private *dev_priv = to_i915(dev);
8642 int pipe = pipe_config->cpu_transcoder;
8643 struct dpll clock;
8644 u32 mdiv;
8645 int refclk = 100000;
8646
8647 /* In case of DSI, DPLL will not be used */
8648 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8649 return;
8650
8651 mutex_lock(&dev_priv->sb_lock);
8652 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8653 mutex_unlock(&dev_priv->sb_lock);
8654
8655 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8656 clock.m2 = mdiv & DPIO_M2DIV_MASK;
8657 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8658 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8659 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8660
8661 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8662}
8663
8664static void
8665i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8666 struct intel_initial_plane_config *plane_config)
8667{
8668 struct drm_device *dev = crtc->base.dev;
8669 struct drm_i915_private *dev_priv = to_i915(dev);
8670 u32 val, base, offset;
8671 int pipe = crtc->pipe, plane = crtc->plane;
8672 int fourcc, pixel_format;
8673 unsigned int aligned_height;
8674 struct drm_framebuffer *fb;
8675 struct intel_framebuffer *intel_fb;
8676
8677 val = I915_READ(DSPCNTR(plane));
8678 if (!(val & DISPLAY_PLANE_ENABLE))
8679 return;
8680
8681 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8682 if (!intel_fb) {
8683 DRM_DEBUG_KMS("failed to alloc fb\n");
8684 return;
8685 }
8686
8687 fb = &intel_fb->base;
8688
8689 if (INTEL_GEN(dev_priv) >= 4) {
8690 if (val & DISPPLANE_TILED) {
8691 plane_config->tiling = I915_TILING_X;
8692 fb->modifier = I915_FORMAT_MOD_X_TILED;
8693 }
8694 }
8695
8696 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8697 fourcc = i9xx_format_to_fourcc(pixel_format);
8698 fb->pixel_format = fourcc;
8699 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8700
8701 if (INTEL_GEN(dev_priv) >= 4) {
8702 if (plane_config->tiling)
8703 offset = I915_READ(DSPTILEOFF(plane));
8704 else
8705 offset = I915_READ(DSPLINOFF(plane));
8706 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8707 } else {
8708 base = I915_READ(DSPADDR(plane));
8709 }
8710 plane_config->base = base;
8711
8712 val = I915_READ(PIPESRC(pipe));
8713 fb->width = ((val >> 16) & 0xfff) + 1;
8714 fb->height = ((val >> 0) & 0xfff) + 1;
8715
8716 val = I915_READ(DSPSTRIDE(pipe));
8717 fb->pitches[0] = val & 0xffffffc0;
8718
8719 aligned_height = intel_fb_align_height(dev, fb->height,
8720 fb->pixel_format,
8721 fb->modifier);
8722
8723 plane_config->size = fb->pitches[0] * aligned_height;
8724
8725 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8726 pipe_name(pipe), plane, fb->width, fb->height,
8727 fb->bits_per_pixel, base, fb->pitches[0],
8728 plane_config->size);
8729
8730 plane_config->fb = intel_fb;
8731}
8732
8733static void chv_crtc_clock_get(struct intel_crtc *crtc,
8734 struct intel_crtc_state *pipe_config)
8735{
8736 struct drm_device *dev = crtc->base.dev;
8737 struct drm_i915_private *dev_priv = to_i915(dev);
8738 int pipe = pipe_config->cpu_transcoder;
8739 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8740 struct dpll clock;
8741 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8742 int refclk = 100000;
8743
8744 /* In case of DSI, DPLL will not be used */
8745 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8746 return;
8747
8748 mutex_lock(&dev_priv->sb_lock);
8749 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8750 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8751 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8752 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8753 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8754 mutex_unlock(&dev_priv->sb_lock);
8755
8756 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8757 clock.m2 = (pll_dw0 & 0xff) << 22;
8758 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8759 clock.m2 |= pll_dw2 & 0x3fffff;
8760 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8761 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8762 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8763
8764 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8765}
8766
8767static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8768 struct intel_crtc_state *pipe_config)
8769{
8770 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8771 enum intel_display_power_domain power_domain;
8772 uint32_t tmp;
8773 bool ret;
8774
8775 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8776 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8777 return false;
8778
8779 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8780 pipe_config->shared_dpll = NULL;
8781
8782 ret = false;
8783
8784 tmp = I915_READ(PIPECONF(crtc->pipe));
8785 if (!(tmp & PIPECONF_ENABLE))
8786 goto out;
8787
8788 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8789 IS_CHERRYVIEW(dev_priv)) {
8790 switch (tmp & PIPECONF_BPC_MASK) {
8791 case PIPECONF_6BPC:
8792 pipe_config->pipe_bpp = 18;
8793 break;
8794 case PIPECONF_8BPC:
8795 pipe_config->pipe_bpp = 24;
8796 break;
8797 case PIPECONF_10BPC:
8798 pipe_config->pipe_bpp = 30;
8799 break;
8800 default:
8801 break;
8802 }
8803 }
8804
8805 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
8806 (tmp & PIPECONF_COLOR_RANGE_SELECT))
8807 pipe_config->limited_color_range = true;
8808
8809 if (INTEL_GEN(dev_priv) < 4)
8810 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8811
8812 intel_get_pipe_timings(crtc, pipe_config);
8813 intel_get_pipe_src_size(crtc, pipe_config);
8814
8815 i9xx_get_pfit_config(crtc, pipe_config);
8816
8817 if (INTEL_GEN(dev_priv) >= 4) {
8818 /* No way to read it out on pipes B and C */
8819 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
8820 tmp = dev_priv->chv_dpll_md[crtc->pipe];
8821 else
8822 tmp = I915_READ(DPLL_MD(crtc->pipe));
8823 pipe_config->pixel_multiplier =
8824 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8825 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8826 pipe_config->dpll_hw_state.dpll_md = tmp;
8827 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
8828 IS_G33(dev_priv)) {
8829 tmp = I915_READ(DPLL(crtc->pipe));
8830 pipe_config->pixel_multiplier =
8831 ((tmp & SDVO_MULTIPLIER_MASK)
8832 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8833 } else {
8834 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8835 * port and will be fixed up in the encoder->get_config
8836 * function. */
8837 pipe_config->pixel_multiplier = 1;
8838 }
8839 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8840 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
8841 /*
8842 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8843 * on 830. Filter it out here so that we don't
8844 * report errors due to that.
8845 */
8846 if (IS_I830(dev_priv))
8847 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8848
8849 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8850 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8851 } else {
8852 /* Mask out read-only status bits. */
8853 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8854 DPLL_PORTC_READY_MASK |
8855 DPLL_PORTB_READY_MASK);
8856 }
8857
8858 if (IS_CHERRYVIEW(dev_priv))
8859 chv_crtc_clock_get(crtc, pipe_config);
8860 else if (IS_VALLEYVIEW(dev_priv))
8861 vlv_crtc_clock_get(crtc, pipe_config);
8862 else
8863 i9xx_crtc_clock_get(crtc, pipe_config);
8864
8865 /*
8866 * Normally the dotclock is filled in by the encoder .get_config()
8867 * but in case the pipe is enabled w/o any ports we need a sane
8868 * default.
8869 */
8870 pipe_config->base.adjusted_mode.crtc_clock =
8871 pipe_config->port_clock / pipe_config->pixel_multiplier;
8872
8873 ret = true;
8874
8875out:
8876 intel_display_power_put(dev_priv, power_domain);
8877
8878 return ret;
8879}
8880
8881static void ironlake_init_pch_refclk(struct drm_device *dev)
8882{
8883 struct drm_i915_private *dev_priv = to_i915(dev);
8884 struct intel_encoder *encoder;
8885 int i;
8886 u32 val, final;
8887 bool has_lvds = false;
8888 bool has_cpu_edp = false;
8889 bool has_panel = false;
8890 bool has_ck505 = false;
8891 bool can_ssc = false;
8892 bool using_ssc_source = false;
8893
8894 /* We need to take the global config into account */
8895 for_each_intel_encoder(dev, encoder) {
8896 switch (encoder->type) {
8897 case INTEL_OUTPUT_LVDS:
8898 has_panel = true;
8899 has_lvds = true;
8900 break;
8901 case INTEL_OUTPUT_EDP:
8902 has_panel = true;
8903 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8904 has_cpu_edp = true;
8905 break;
8906 default:
8907 break;
8908 }
8909 }
8910
8911 if (HAS_PCH_IBX(dev_priv)) {
8912 has_ck505 = dev_priv->vbt.display_clock_mode;
8913 can_ssc = has_ck505;
8914 } else {
8915 has_ck505 = false;
8916 can_ssc = true;
8917 }
8918
8919 /* Check if any DPLLs are using the SSC source */
8920 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8921 u32 temp = I915_READ(PCH_DPLL(i));
8922
8923 if (!(temp & DPLL_VCO_ENABLE))
8924 continue;
8925
8926 if ((temp & PLL_REF_INPUT_MASK) ==
8927 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
8928 using_ssc_source = true;
8929 break;
8930 }
8931 }
8932
8933 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8934 has_panel, has_lvds, has_ck505, using_ssc_source);
8935
8936 /* Ironlake: try to setup display ref clock before DPLL
8937 * enabling. This is only under driver's control after
8938 * PCH B stepping, previous chipset stepping should be
8939 * ignoring this setting.
8940 */
8941 val = I915_READ(PCH_DREF_CONTROL);
8942
8943 /* As we must carefully and slowly disable/enable each source in turn,
8944 * compute the final state we want first and check if we need to
8945 * make any changes at all.
8946 */
8947 final = val;
8948 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8949 if (has_ck505)
8950 final |= DREF_NONSPREAD_CK505_ENABLE;
8951 else
8952 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8953
8954 final &= ~DREF_SSC_SOURCE_MASK;
8955 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8956 final &= ~DREF_SSC1_ENABLE;
8957
8958 if (has_panel) {
8959 final |= DREF_SSC_SOURCE_ENABLE;
8960
8961 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8962 final |= DREF_SSC1_ENABLE;
8963
8964 if (has_cpu_edp) {
8965 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8966 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8967 else
8968 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8969 } else
8970 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8971 } else if (using_ssc_source) {
8972 final |= DREF_SSC_SOURCE_ENABLE;
8973 final |= DREF_SSC1_ENABLE;
8974 }
8975
8976 if (final == val)
8977 return;
8978
8979 /* Always enable nonspread source */
8980 val &= ~DREF_NONSPREAD_SOURCE_MASK;
8981
8982 if (has_ck505)
8983 val |= DREF_NONSPREAD_CK505_ENABLE;
8984 else
8985 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8986
8987 if (has_panel) {
8988 val &= ~DREF_SSC_SOURCE_MASK;
8989 val |= DREF_SSC_SOURCE_ENABLE;
8990
8991 /* SSC must be turned on before enabling the CPU output */
8992 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8993 DRM_DEBUG_KMS("Using SSC on panel\n");
8994 val |= DREF_SSC1_ENABLE;
8995 } else
8996 val &= ~DREF_SSC1_ENABLE;
8997
8998 /* Get SSC going before enabling the outputs */
8999 I915_WRITE(PCH_DREF_CONTROL, val);
9000 POSTING_READ(PCH_DREF_CONTROL);
9001 udelay(200);
9002
9003 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9004
9005 /* Enable CPU source on CPU attached eDP */
9006 if (has_cpu_edp) {
9007 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9008 DRM_DEBUG_KMS("Using SSC on eDP\n");
9009 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9010 } else
9011 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9012 } else
9013 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9014
9015 I915_WRITE(PCH_DREF_CONTROL, val);
9016 POSTING_READ(PCH_DREF_CONTROL);
9017 udelay(200);
9018 } else {
9019 DRM_DEBUG_KMS("Disabling CPU source output\n");
9020
9021 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9022
9023 /* Turn off CPU output */
9024 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9025
9026 I915_WRITE(PCH_DREF_CONTROL, val);
9027 POSTING_READ(PCH_DREF_CONTROL);
9028 udelay(200);
9029
9030 if (!using_ssc_source) {
9031 DRM_DEBUG_KMS("Disabling SSC source\n");
9032
9033 /* Turn off the SSC source */
9034 val &= ~DREF_SSC_SOURCE_MASK;
9035 val |= DREF_SSC_SOURCE_DISABLE;
9036
9037 /* Turn off SSC1 */
9038 val &= ~DREF_SSC1_ENABLE;
9039
9040 I915_WRITE(PCH_DREF_CONTROL, val);
9041 POSTING_READ(PCH_DREF_CONTROL);
9042 udelay(200);
9043 }
9044 }
9045
9046 BUG_ON(val != final);
9047}
9048
9049static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
9050{
9051 uint32_t tmp;
9052
9053 tmp = I915_READ(SOUTH_CHICKEN2);
9054 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
9055 I915_WRITE(SOUTH_CHICKEN2, tmp);
9056
9057 if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
9058 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
9059 DRM_ERROR("FDI mPHY reset assert timeout\n");
9060
9061 tmp = I915_READ(SOUTH_CHICKEN2);
9062 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
9063 I915_WRITE(SOUTH_CHICKEN2, tmp);
9064
9065 if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
9066 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
9067 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
9068}
9069
9070/* WaMPhyProgramming:hsw */
9071static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
9072{
9073 uint32_t tmp;
9074
9075 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
9076 tmp &= ~(0xFF << 24);
9077 tmp |= (0x12 << 24);
9078 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
9079
9080 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
9081 tmp |= (1 << 11);
9082 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
9083
9084 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
9085 tmp |= (1 << 11);
9086 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
9087
9088 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
9089 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9090 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
9091
9092 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
9093 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9094 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
9095
9096 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
9097 tmp &= ~(7 << 13);
9098 tmp |= (5 << 13);
9099 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
9100
9101 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
9102 tmp &= ~(7 << 13);
9103 tmp |= (5 << 13);
9104 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
9105
9106 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
9107 tmp &= ~0xFF;
9108 tmp |= 0x1C;
9109 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
9110
9111 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
9112 tmp &= ~0xFF;
9113 tmp |= 0x1C;
9114 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
9115
9116 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
9117 tmp &= ~(0xFF << 16);
9118 tmp |= (0x1C << 16);
9119 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
9120
9121 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
9122 tmp &= ~(0xFF << 16);
9123 tmp |= (0x1C << 16);
9124 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
9125
9126 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
9127 tmp |= (1 << 27);
9128 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
9129
9130 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
9131 tmp |= (1 << 27);
9132 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
9133
9134 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
9135 tmp &= ~(0xF << 28);
9136 tmp |= (4 << 28);
9137 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
9138
9139 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
9140 tmp &= ~(0xF << 28);
9141 tmp |= (4 << 28);
9142 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
9143}
9144
9145/* Implements 3 different sequences from BSpec chapter "Display iCLK
9146 * Programming" based on the parameters passed:
9147 * - Sequence to enable CLKOUT_DP
9148 * - Sequence to enable CLKOUT_DP without spread
9149 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
9150 */
9151static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
9152 bool with_fdi)
9153{
9154 struct drm_i915_private *dev_priv = to_i915(dev);
9155 uint32_t reg, tmp;
9156
9157 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
9158 with_spread = true;
9159 if (WARN(HAS_PCH_LPT_LP(dev_priv) &&
9160 with_fdi, "LP PCH doesn't have FDI\n"))
9161 with_fdi = false;
9162
9163 mutex_lock(&dev_priv->sb_lock);
9164
9165 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9166 tmp &= ~SBI_SSCCTL_DISABLE;
9167 tmp |= SBI_SSCCTL_PATHALT;
9168 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9169
9170 udelay(24);
9171
9172 if (with_spread) {
9173 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9174 tmp &= ~SBI_SSCCTL_PATHALT;
9175 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9176
9177 if (with_fdi) {
9178 lpt_reset_fdi_mphy(dev_priv);
9179 lpt_program_fdi_mphy(dev_priv);
9180 }
9181 }
9182
9183 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9184 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9185 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9186 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9187
9188 mutex_unlock(&dev_priv->sb_lock);
9189}
9190
9191/* Sequence to disable CLKOUT_DP */
9192static void lpt_disable_clkout_dp(struct drm_device *dev)
9193{
9194 struct drm_i915_private *dev_priv = to_i915(dev);
9195 uint32_t reg, tmp;
9196
9197 mutex_lock(&dev_priv->sb_lock);
9198
9199 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9200 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9201 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9202 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9203
9204 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9205 if (!(tmp & SBI_SSCCTL_DISABLE)) {
9206 if (!(tmp & SBI_SSCCTL_PATHALT)) {
9207 tmp |= SBI_SSCCTL_PATHALT;
9208 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9209 udelay(32);
9210 }
9211 tmp |= SBI_SSCCTL_DISABLE;
9212 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9213 }
9214
9215 mutex_unlock(&dev_priv->sb_lock);
9216}
9217
9218#define BEND_IDX(steps) ((50 + (steps)) / 5)
9219
9220static const uint16_t sscdivintphase[] = {
9221 [BEND_IDX( 50)] = 0x3B23,
9222 [BEND_IDX( 45)] = 0x3B23,
9223 [BEND_IDX( 40)] = 0x3C23,
9224 [BEND_IDX( 35)] = 0x3C23,
9225 [BEND_IDX( 30)] = 0x3D23,
9226 [BEND_IDX( 25)] = 0x3D23,
9227 [BEND_IDX( 20)] = 0x3E23,
9228 [BEND_IDX( 15)] = 0x3E23,
9229 [BEND_IDX( 10)] = 0x3F23,
9230 [BEND_IDX( 5)] = 0x3F23,
9231 [BEND_IDX( 0)] = 0x0025,
9232 [BEND_IDX( -5)] = 0x0025,
9233 [BEND_IDX(-10)] = 0x0125,
9234 [BEND_IDX(-15)] = 0x0125,
9235 [BEND_IDX(-20)] = 0x0225,
9236 [BEND_IDX(-25)] = 0x0225,
9237 [BEND_IDX(-30)] = 0x0325,
9238 [BEND_IDX(-35)] = 0x0325,
9239 [BEND_IDX(-40)] = 0x0425,
9240 [BEND_IDX(-45)] = 0x0425,
9241 [BEND_IDX(-50)] = 0x0525,
9242};
9243
9244/*
9245 * Bend CLKOUT_DP
9246 * steps -50 to 50 inclusive, in steps of 5
9247 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
9248 * change in clock period = -(steps / 10) * 5.787 ps
9249 */
9250static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
9251{
9252 uint32_t tmp;
9253 int idx = BEND_IDX(steps);
9254
9255 if (WARN_ON(steps % 5 != 0))
9256 return;
9257
9258 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
9259 return;
9260
9261 mutex_lock(&dev_priv->sb_lock);
9262
9263 if (steps % 10 != 0)
9264 tmp = 0xAAAAAAAB;
9265 else
9266 tmp = 0x00000000;
9267 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
9268
9269 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
9270 tmp &= 0xffff0000;
9271 tmp |= sscdivintphase[idx];
9272 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
9273
9274 mutex_unlock(&dev_priv->sb_lock);
9275}
9276
9277#undef BEND_IDX
9278
9279static void lpt_init_pch_refclk(struct drm_device *dev)
9280{
9281 struct intel_encoder *encoder;
9282 bool has_vga = false;
9283
9284 for_each_intel_encoder(dev, encoder) {
9285 switch (encoder->type) {
9286 case INTEL_OUTPUT_ANALOG:
9287 has_vga = true;
9288 break;
9289 default:
9290 break;
9291 }
9292 }
9293
9294 if (has_vga) {
9295 lpt_bend_clkout_dp(to_i915(dev), 0);
9296 lpt_enable_clkout_dp(dev, true, true);
9297 } else {
9298 lpt_disable_clkout_dp(dev);
9299 }
9300}
9301
9302/*
9303 * Initialize reference clocks when the driver loads
9304 */
9305void intel_init_pch_refclk(struct drm_device *dev)
9306{
9307 struct drm_i915_private *dev_priv = to_i915(dev);
9308
9309 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
9310 ironlake_init_pch_refclk(dev);
9311 else if (HAS_PCH_LPT(dev_priv))
9312 lpt_init_pch_refclk(dev);
9313}
9314
9315static void ironlake_set_pipeconf(struct drm_crtc *crtc)
9316{
9317 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9318 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9319 int pipe = intel_crtc->pipe;
9320 uint32_t val;
9321
9322 val = 0;
9323
9324 switch (intel_crtc->config->pipe_bpp) {
9325 case 18:
9326 val |= PIPECONF_6BPC;
9327 break;
9328 case 24:
9329 val |= PIPECONF_8BPC;
9330 break;
9331 case 30:
9332 val |= PIPECONF_10BPC;
9333 break;
9334 case 36:
9335 val |= PIPECONF_12BPC;
9336 break;
9337 default:
9338 /* Case prevented by intel_choose_pipe_bpp_dither. */
9339 BUG();
9340 }
9341
9342 if (intel_crtc->config->dither)
9343 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9344
9345 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9346 val |= PIPECONF_INTERLACED_ILK;
9347 else
9348 val |= PIPECONF_PROGRESSIVE;
9349
9350 if (intel_crtc->config->limited_color_range)
9351 val |= PIPECONF_COLOR_RANGE_SELECT;
9352
9353 I915_WRITE(PIPECONF(pipe), val);
9354 POSTING_READ(PIPECONF(pipe));
9355}
9356
9357static void haswell_set_pipeconf(struct drm_crtc *crtc)
9358{
9359 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9360 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9361 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
9362 u32 val = 0;
9363
9364 if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
9365 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9366
9367 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9368 val |= PIPECONF_INTERLACED_ILK;
9369 else
9370 val |= PIPECONF_PROGRESSIVE;
9371
9372 I915_WRITE(PIPECONF(cpu_transcoder), val);
9373 POSTING_READ(PIPECONF(cpu_transcoder));
9374}
9375
9376static void haswell_set_pipemisc(struct drm_crtc *crtc)
9377{
9378 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9379 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9380
9381 if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
9382 u32 val = 0;
9383
9384 switch (intel_crtc->config->pipe_bpp) {
9385 case 18:
9386 val |= PIPEMISC_DITHER_6_BPC;
9387 break;
9388 case 24:
9389 val |= PIPEMISC_DITHER_8_BPC;
9390 break;
9391 case 30:
9392 val |= PIPEMISC_DITHER_10_BPC;
9393 break;
9394 case 36:
9395 val |= PIPEMISC_DITHER_12_BPC;
9396 break;
9397 default:
9398 /* Case prevented by pipe_config_set_bpp. */
9399 BUG();
9400 }
9401
9402 if (intel_crtc->config->dither)
9403 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
9404
9405 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
9406 }
9407}
9408
9409int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
9410{
9411 /*
9412 * Account for spread spectrum to avoid
9413 * oversubscribing the link. Max center spread
9414 * is 2.5%; use 5% for safety's sake.
9415 */
9416 u32 bps = target_clock * bpp * 21 / 20;
9417 return DIV_ROUND_UP(bps, link_bw * 8);
9418}
9419
9420static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
9421{
9422 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
9423}
9424
9425static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
9426 struct intel_crtc_state *crtc_state,
9427 struct dpll *reduced_clock)
9428{
9429 struct drm_crtc *crtc = &intel_crtc->base;
9430 struct drm_device *dev = crtc->dev;
9431 struct drm_i915_private *dev_priv = to_i915(dev);
9432 u32 dpll, fp, fp2;
9433 int factor;
9434
9435 /* Enable autotuning of the PLL clock (if permissible) */
9436 factor = 21;
9437 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9438 if ((intel_panel_use_ssc(dev_priv) &&
9439 dev_priv->vbt.lvds_ssc_freq == 100000) ||
9440 (HAS_PCH_IBX(dev_priv) && intel_is_dual_link_lvds(dev)))
9441 factor = 25;
9442 } else if (crtc_state->sdvo_tv_clock)
9443 factor = 20;
9444
9445 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
9446
9447 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
9448 fp |= FP_CB_TUNE;
9449
9450 if (reduced_clock) {
9451 fp2 = i9xx_dpll_compute_fp(reduced_clock);
9452
9453 if (reduced_clock->m < factor * reduced_clock->n)
9454 fp2 |= FP_CB_TUNE;
9455 } else {
9456 fp2 = fp;
9457 }
9458
9459 dpll = 0;
9460
9461 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
9462 dpll |= DPLLB_MODE_LVDS;
9463 else
9464 dpll |= DPLLB_MODE_DAC_SERIAL;
9465
9466 dpll |= (crtc_state->pixel_multiplier - 1)
9467 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
9468
9469 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
9470 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
9471 dpll |= DPLL_SDVO_HIGH_SPEED;
9472
9473 if (intel_crtc_has_dp_encoder(crtc_state))
9474 dpll |= DPLL_SDVO_HIGH_SPEED;
9475
9476 /*
9477 * The high speed IO clock is only really required for
9478 * SDVO/HDMI/DP, but we also enable it for CRT to make it
9479 * possible to share the DPLL between CRT and HDMI. Enabling
9480 * the clock needlessly does no real harm, except use up a
9481 * bit of power potentially.
9482 *
9483 * We'll limit this to IVB with 3 pipes, since it has only two
9484 * DPLLs and so DPLL sharing is the only way to get three pipes
9485 * driving PCH ports at the same time. On SNB we could do this,
9486 * and potentially avoid enabling the second DPLL, but it's not
9487 * clear if it''s a win or loss power wise. No point in doing
9488 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
9489 */
9490 if (INTEL_INFO(dev_priv)->num_pipes == 3 &&
9491 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
9492 dpll |= DPLL_SDVO_HIGH_SPEED;
9493
9494 /* compute bitmask from p1 value */
9495 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
9496 /* also FPA1 */
9497 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
9498
9499 switch (crtc_state->dpll.p2) {
9500 case 5:
9501 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
9502 break;
9503 case 7:
9504 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
9505 break;
9506 case 10:
9507 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
9508 break;
9509 case 14:
9510 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
9511 break;
9512 }
9513
9514 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9515 intel_panel_use_ssc(dev_priv))
9516 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
9517 else
9518 dpll |= PLL_REF_INPUT_DREFCLK;
9519
9520 dpll |= DPLL_VCO_ENABLE;
9521
9522 crtc_state->dpll_hw_state.dpll = dpll;
9523 crtc_state->dpll_hw_state.fp0 = fp;
9524 crtc_state->dpll_hw_state.fp1 = fp2;
9525}
9526
9527static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
9528 struct intel_crtc_state *crtc_state)
9529{
9530 struct drm_device *dev = crtc->base.dev;
9531 struct drm_i915_private *dev_priv = to_i915(dev);
9532 struct dpll reduced_clock;
9533 bool has_reduced_clock = false;
9534 struct intel_shared_dpll *pll;
9535 const struct intel_limit *limit;
9536 int refclk = 120000;
9537
9538 memset(&crtc_state->dpll_hw_state, 0,
9539 sizeof(crtc_state->dpll_hw_state));
9540
9541 crtc->lowfreq_avail = false;
9542
9543 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9544 if (!crtc_state->has_pch_encoder)
9545 return 0;
9546
9547 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9548 if (intel_panel_use_ssc(dev_priv)) {
9549 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
9550 dev_priv->vbt.lvds_ssc_freq);
9551 refclk = dev_priv->vbt.lvds_ssc_freq;
9552 }
9553
9554 if (intel_is_dual_link_lvds(dev)) {
9555 if (refclk == 100000)
9556 limit = &intel_limits_ironlake_dual_lvds_100m;
9557 else
9558 limit = &intel_limits_ironlake_dual_lvds;
9559 } else {
9560 if (refclk == 100000)
9561 limit = &intel_limits_ironlake_single_lvds_100m;
9562 else
9563 limit = &intel_limits_ironlake_single_lvds;
9564 }
9565 } else {
9566 limit = &intel_limits_ironlake_dac;
9567 }
9568
9569 if (!crtc_state->clock_set &&
9570 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9571 refclk, NULL, &crtc_state->dpll)) {
9572 DRM_ERROR("Couldn't find PLL settings for mode!\n");
9573 return -EINVAL;
9574 }
9575
9576 ironlake_compute_dpll(crtc, crtc_state,
9577 has_reduced_clock ? &reduced_clock : NULL);
9578
9579 pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
9580 if (pll == NULL) {
9581 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9582 pipe_name(crtc->pipe));
9583 return -EINVAL;
9584 }
9585
9586 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9587 has_reduced_clock)
9588 crtc->lowfreq_avail = true;
9589
9590 return 0;
9591}
9592
9593static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9594 struct intel_link_m_n *m_n)
9595{
9596 struct drm_device *dev = crtc->base.dev;
9597 struct drm_i915_private *dev_priv = to_i915(dev);
9598 enum pipe pipe = crtc->pipe;
9599
9600 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9601 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9602 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9603 & ~TU_SIZE_MASK;
9604 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9605 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9606 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9607}
9608
9609static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9610 enum transcoder transcoder,
9611 struct intel_link_m_n *m_n,
9612 struct intel_link_m_n *m2_n2)
9613{
9614 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9615 enum pipe pipe = crtc->pipe;
9616
9617 if (INTEL_GEN(dev_priv) >= 5) {
9618 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9619 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9620 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9621 & ~TU_SIZE_MASK;
9622 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9623 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9624 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9625 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9626 * gen < 8) and if DRRS is supported (to make sure the
9627 * registers are not unnecessarily read).
9628 */
9629 if (m2_n2 && INTEL_GEN(dev_priv) < 8 &&
9630 crtc->config->has_drrs) {
9631 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9632 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9633 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9634 & ~TU_SIZE_MASK;
9635 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9636 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9637 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9638 }
9639 } else {
9640 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9641 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9642 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9643 & ~TU_SIZE_MASK;
9644 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9645 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9646 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9647 }
9648}
9649
9650void intel_dp_get_m_n(struct intel_crtc *crtc,
9651 struct intel_crtc_state *pipe_config)
9652{
9653 if (pipe_config->has_pch_encoder)
9654 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9655 else
9656 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9657 &pipe_config->dp_m_n,
9658 &pipe_config->dp_m2_n2);
9659}
9660
9661static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9662 struct intel_crtc_state *pipe_config)
9663{
9664 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9665 &pipe_config->fdi_m_n, NULL);
9666}
9667
9668static void skylake_get_pfit_config(struct intel_crtc *crtc,
9669 struct intel_crtc_state *pipe_config)
9670{
9671 struct drm_device *dev = crtc->base.dev;
9672 struct drm_i915_private *dev_priv = to_i915(dev);
9673 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9674 uint32_t ps_ctrl = 0;
9675 int id = -1;
9676 int i;
9677
9678 /* find scaler attached to this pipe */
9679 for (i = 0; i < crtc->num_scalers; i++) {
9680 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9681 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9682 id = i;
9683 pipe_config->pch_pfit.enabled = true;
9684 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9685 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9686 break;
9687 }
9688 }
9689
9690 scaler_state->scaler_id = id;
9691 if (id >= 0) {
9692 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9693 } else {
9694 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9695 }
9696}
9697
9698static void
9699skylake_get_initial_plane_config(struct intel_crtc *crtc,
9700 struct intel_initial_plane_config *plane_config)
9701{
9702 struct drm_device *dev = crtc->base.dev;
9703 struct drm_i915_private *dev_priv = to_i915(dev);
9704 u32 val, base, offset, stride_mult, tiling;
9705 int pipe = crtc->pipe;
9706 int fourcc, pixel_format;
9707 unsigned int aligned_height;
9708 struct drm_framebuffer *fb;
9709 struct intel_framebuffer *intel_fb;
9710
9711 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9712 if (!intel_fb) {
9713 DRM_DEBUG_KMS("failed to alloc fb\n");
9714 return;
9715 }
9716
9717 fb = &intel_fb->base;
9718
9719 val = I915_READ(PLANE_CTL(pipe, 0));
9720 if (!(val & PLANE_CTL_ENABLE))
9721 goto error;
9722
9723 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9724 fourcc = skl_format_to_fourcc(pixel_format,
9725 val & PLANE_CTL_ORDER_RGBX,
9726 val & PLANE_CTL_ALPHA_MASK);
9727 fb->pixel_format = fourcc;
9728 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9729
9730 tiling = val & PLANE_CTL_TILED_MASK;
9731 switch (tiling) {
9732 case PLANE_CTL_TILED_LINEAR:
9733 fb->modifier = DRM_FORMAT_MOD_NONE;
9734 break;
9735 case PLANE_CTL_TILED_X:
9736 plane_config->tiling = I915_TILING_X;
9737 fb->modifier = I915_FORMAT_MOD_X_TILED;
9738 break;
9739 case PLANE_CTL_TILED_Y:
9740 fb->modifier = I915_FORMAT_MOD_Y_TILED;
9741 break;
9742 case PLANE_CTL_TILED_YF:
9743 fb->modifier = I915_FORMAT_MOD_Yf_TILED;
9744 break;
9745 default:
9746 MISSING_CASE(tiling);
9747 goto error;
9748 }
9749
9750 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9751 plane_config->base = base;
9752
9753 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9754
9755 val = I915_READ(PLANE_SIZE(pipe, 0));
9756 fb->height = ((val >> 16) & 0xfff) + 1;
9757 fb->width = ((val >> 0) & 0x1fff) + 1;
9758
9759 val = I915_READ(PLANE_STRIDE(pipe, 0));
9760 stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier,
9761 fb->pixel_format);
9762 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9763
9764 aligned_height = intel_fb_align_height(dev, fb->height,
9765 fb->pixel_format,
9766 fb->modifier);
9767
9768 plane_config->size = fb->pitches[0] * aligned_height;
9769
9770 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9771 pipe_name(pipe), fb->width, fb->height,
9772 fb->bits_per_pixel, base, fb->pitches[0],
9773 plane_config->size);
9774
9775 plane_config->fb = intel_fb;
9776 return;
9777
9778error:
9779 kfree(intel_fb);
9780}
9781
9782static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9783 struct intel_crtc_state *pipe_config)
9784{
9785 struct drm_device *dev = crtc->base.dev;
9786 struct drm_i915_private *dev_priv = to_i915(dev);
9787 uint32_t tmp;
9788
9789 tmp = I915_READ(PF_CTL(crtc->pipe));
9790
9791 if (tmp & PF_ENABLE) {
9792 pipe_config->pch_pfit.enabled = true;
9793 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9794 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9795
9796 /* We currently do not free assignements of panel fitters on
9797 * ivb/hsw (since we don't use the higher upscaling modes which
9798 * differentiates them) so just WARN about this case for now. */
9799 if (IS_GEN7(dev_priv)) {
9800 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9801 PF_PIPE_SEL_IVB(crtc->pipe));
9802 }
9803 }
9804}
9805
9806static void
9807ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9808 struct intel_initial_plane_config *plane_config)
9809{
9810 struct drm_device *dev = crtc->base.dev;
9811 struct drm_i915_private *dev_priv = to_i915(dev);
9812 u32 val, base, offset;
9813 int pipe = crtc->pipe;
9814 int fourcc, pixel_format;
9815 unsigned int aligned_height;
9816 struct drm_framebuffer *fb;
9817 struct intel_framebuffer *intel_fb;
9818
9819 val = I915_READ(DSPCNTR(pipe));
9820 if (!(val & DISPLAY_PLANE_ENABLE))
9821 return;
9822
9823 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9824 if (!intel_fb) {
9825 DRM_DEBUG_KMS("failed to alloc fb\n");
9826 return;
9827 }
9828
9829 fb = &intel_fb->base;
9830
9831 if (INTEL_GEN(dev_priv) >= 4) {
9832 if (val & DISPPLANE_TILED) {
9833 plane_config->tiling = I915_TILING_X;
9834 fb->modifier = I915_FORMAT_MOD_X_TILED;
9835 }
9836 }
9837
9838 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9839 fourcc = i9xx_format_to_fourcc(pixel_format);
9840 fb->pixel_format = fourcc;
9841 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9842
9843 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9844 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
9845 offset = I915_READ(DSPOFFSET(pipe));
9846 } else {
9847 if (plane_config->tiling)
9848 offset = I915_READ(DSPTILEOFF(pipe));
9849 else
9850 offset = I915_READ(DSPLINOFF(pipe));
9851 }
9852 plane_config->base = base;
9853
9854 val = I915_READ(PIPESRC(pipe));
9855 fb->width = ((val >> 16) & 0xfff) + 1;
9856 fb->height = ((val >> 0) & 0xfff) + 1;
9857
9858 val = I915_READ(DSPSTRIDE(pipe));
9859 fb->pitches[0] = val & 0xffffffc0;
9860
9861 aligned_height = intel_fb_align_height(dev, fb->height,
9862 fb->pixel_format,
9863 fb->modifier);
9864
9865 plane_config->size = fb->pitches[0] * aligned_height;
9866
9867 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9868 pipe_name(pipe), fb->width, fb->height,
9869 fb->bits_per_pixel, base, fb->pitches[0],
9870 plane_config->size);
9871
9872 plane_config->fb = intel_fb;
9873}
9874
9875static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9876 struct intel_crtc_state *pipe_config)
9877{
9878 struct drm_device *dev = crtc->base.dev;
9879 struct drm_i915_private *dev_priv = to_i915(dev);
9880 enum intel_display_power_domain power_domain;
9881 uint32_t tmp;
9882 bool ret;
9883
9884 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9885 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9886 return false;
9887
9888 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9889 pipe_config->shared_dpll = NULL;
9890
9891 ret = false;
9892 tmp = I915_READ(PIPECONF(crtc->pipe));
9893 if (!(tmp & PIPECONF_ENABLE))
9894 goto out;
9895
9896 switch (tmp & PIPECONF_BPC_MASK) {
9897 case PIPECONF_6BPC:
9898 pipe_config->pipe_bpp = 18;
9899 break;
9900 case PIPECONF_8BPC:
9901 pipe_config->pipe_bpp = 24;
9902 break;
9903 case PIPECONF_10BPC:
9904 pipe_config->pipe_bpp = 30;
9905 break;
9906 case PIPECONF_12BPC:
9907 pipe_config->pipe_bpp = 36;
9908 break;
9909 default:
9910 break;
9911 }
9912
9913 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9914 pipe_config->limited_color_range = true;
9915
9916 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9917 struct intel_shared_dpll *pll;
9918 enum intel_dpll_id pll_id;
9919
9920 pipe_config->has_pch_encoder = true;
9921
9922 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9923 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9924 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9925
9926 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9927
9928 if (HAS_PCH_IBX(dev_priv)) {
9929 /*
9930 * The pipe->pch transcoder and pch transcoder->pll
9931 * mapping is fixed.
9932 */
9933 pll_id = (enum intel_dpll_id) crtc->pipe;
9934 } else {
9935 tmp = I915_READ(PCH_DPLL_SEL);
9936 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9937 pll_id = DPLL_ID_PCH_PLL_B;
9938 else
9939 pll_id= DPLL_ID_PCH_PLL_A;
9940 }
9941
9942 pipe_config->shared_dpll =
9943 intel_get_shared_dpll_by_id(dev_priv, pll_id);
9944 pll = pipe_config->shared_dpll;
9945
9946 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9947 &pipe_config->dpll_hw_state));
9948
9949 tmp = pipe_config->dpll_hw_state.dpll;
9950 pipe_config->pixel_multiplier =
9951 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9952 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9953
9954 ironlake_pch_clock_get(crtc, pipe_config);
9955 } else {
9956 pipe_config->pixel_multiplier = 1;
9957 }
9958
9959 intel_get_pipe_timings(crtc, pipe_config);
9960 intel_get_pipe_src_size(crtc, pipe_config);
9961
9962 ironlake_get_pfit_config(crtc, pipe_config);
9963
9964 ret = true;
9965
9966out:
9967 intel_display_power_put(dev_priv, power_domain);
9968
9969 return ret;
9970}
9971
9972static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9973{
9974 struct drm_device *dev = &dev_priv->drm;
9975 struct intel_crtc *crtc;
9976
9977 for_each_intel_crtc(dev, crtc)
9978 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9979 pipe_name(crtc->pipe));
9980
9981 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9982 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9983 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9984 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9985 I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n");
9986 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9987 "CPU PWM1 enabled\n");
9988 if (IS_HASWELL(dev_priv))
9989 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9990 "CPU PWM2 enabled\n");
9991 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9992 "PCH PWM1 enabled\n");
9993 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9994 "Utility pin enabled\n");
9995 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9996
9997 /*
9998 * In theory we can still leave IRQs enabled, as long as only the HPD
9999 * interrupts remain enabled. We used to check for that, but since it's
10000 * gen-specific and since we only disable LCPLL after we fully disable
10001 * the interrupts, the check below should be enough.
10002 */
10003 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
10004}
10005
10006static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
10007{
10008 if (IS_HASWELL(dev_priv))
10009 return I915_READ(D_COMP_HSW);
10010 else
10011 return I915_READ(D_COMP_BDW);
10012}
10013
10014static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
10015{
10016 if (IS_HASWELL(dev_priv)) {
10017 mutex_lock(&dev_priv->rps.hw_lock);
10018 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
10019 val))
10020 DRM_DEBUG_KMS("Failed to write to D_COMP\n");
10021 mutex_unlock(&dev_priv->rps.hw_lock);
10022 } else {
10023 I915_WRITE(D_COMP_BDW, val);
10024 POSTING_READ(D_COMP_BDW);
10025 }
10026}
10027
10028/*
10029 * This function implements pieces of two sequences from BSpec:
10030 * - Sequence for display software to disable LCPLL
10031 * - Sequence for display software to allow package C8+
10032 * The steps implemented here are just the steps that actually touch the LCPLL
10033 * register. Callers should take care of disabling all the display engine
10034 * functions, doing the mode unset, fixing interrupts, etc.
10035 */
10036static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
10037 bool switch_to_fclk, bool allow_power_down)
10038{
10039 uint32_t val;
10040
10041 assert_can_disable_lcpll(dev_priv);
10042
10043 val = I915_READ(LCPLL_CTL);
10044
10045 if (switch_to_fclk) {
10046 val |= LCPLL_CD_SOURCE_FCLK;
10047 I915_WRITE(LCPLL_CTL, val);
10048
10049 if (wait_for_us(I915_READ(LCPLL_CTL) &
10050 LCPLL_CD_SOURCE_FCLK_DONE, 1))
10051 DRM_ERROR("Switching to FCLK failed\n");
10052
10053 val = I915_READ(LCPLL_CTL);
10054 }
10055
10056 val |= LCPLL_PLL_DISABLE;
10057 I915_WRITE(LCPLL_CTL, val);
10058 POSTING_READ(LCPLL_CTL);
10059
10060 if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
10061 DRM_ERROR("LCPLL still locked\n");
10062
10063 val = hsw_read_dcomp(dev_priv);
10064 val |= D_COMP_COMP_DISABLE;
10065 hsw_write_dcomp(dev_priv, val);
10066 ndelay(100);
10067
10068 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
10069 1))
10070 DRM_ERROR("D_COMP RCOMP still in progress\n");
10071
10072 if (allow_power_down) {
10073 val = I915_READ(LCPLL_CTL);
10074 val |= LCPLL_POWER_DOWN_ALLOW;
10075 I915_WRITE(LCPLL_CTL, val);
10076 POSTING_READ(LCPLL_CTL);
10077 }
10078}
10079
10080/*
10081 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
10082 * source.
10083 */
10084static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
10085{
10086 uint32_t val;
10087
10088 val = I915_READ(LCPLL_CTL);
10089
10090 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
10091 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
10092 return;
10093
10094 /*
10095 * Make sure we're not on PC8 state before disabling PC8, otherwise
10096 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
10097 */
10098 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
10099
10100 if (val & LCPLL_POWER_DOWN_ALLOW) {
10101 val &= ~LCPLL_POWER_DOWN_ALLOW;
10102 I915_WRITE(LCPLL_CTL, val);
10103 POSTING_READ(LCPLL_CTL);
10104 }
10105
10106 val = hsw_read_dcomp(dev_priv);
10107 val |= D_COMP_COMP_FORCE;
10108 val &= ~D_COMP_COMP_DISABLE;
10109 hsw_write_dcomp(dev_priv, val);
10110
10111 val = I915_READ(LCPLL_CTL);
10112 val &= ~LCPLL_PLL_DISABLE;
10113 I915_WRITE(LCPLL_CTL, val);
10114
10115 if (intel_wait_for_register(dev_priv,
10116 LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
10117 5))
10118 DRM_ERROR("LCPLL not locked yet\n");
10119
10120 if (val & LCPLL_CD_SOURCE_FCLK) {
10121 val = I915_READ(LCPLL_CTL);
10122 val &= ~LCPLL_CD_SOURCE_FCLK;
10123 I915_WRITE(LCPLL_CTL, val);
10124
10125 if (wait_for_us((I915_READ(LCPLL_CTL) &
10126 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
10127 DRM_ERROR("Switching back to LCPLL failed\n");
10128 }
10129
10130 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
10131 intel_update_cdclk(dev_priv);
10132}
10133
10134/*
10135 * Package states C8 and deeper are really deep PC states that can only be
10136 * reached when all the devices on the system allow it, so even if the graphics
10137 * device allows PC8+, it doesn't mean the system will actually get to these
10138 * states. Our driver only allows PC8+ when going into runtime PM.
10139 *
10140 * The requirements for PC8+ are that all the outputs are disabled, the power
10141 * well is disabled and most interrupts are disabled, and these are also
10142 * requirements for runtime PM. When these conditions are met, we manually do
10143 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
10144 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
10145 * hang the machine.
10146 *
10147 * When we really reach PC8 or deeper states (not just when we allow it) we lose
10148 * the state of some registers, so when we come back from PC8+ we need to
10149 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
10150 * need to take care of the registers kept by RC6. Notice that this happens even
10151 * if we don't put the device in PCI D3 state (which is what currently happens
10152 * because of the runtime PM support).
10153 *
10154 * For more, read "Display Sequences for Package C8" on the hardware
10155 * documentation.
10156 */
10157void hsw_enable_pc8(struct drm_i915_private *dev_priv)
10158{
10159 struct drm_device *dev = &dev_priv->drm;
10160 uint32_t val;
10161
10162 DRM_DEBUG_KMS("Enabling package C8+\n");
10163
10164 if (HAS_PCH_LPT_LP(dev_priv)) {
10165 val = I915_READ(SOUTH_DSPCLK_GATE_D);
10166 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
10167 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10168 }
10169
10170 lpt_disable_clkout_dp(dev);
10171 hsw_disable_lcpll(dev_priv, true, true);
10172}
10173
10174void hsw_disable_pc8(struct drm_i915_private *dev_priv)
10175{
10176 struct drm_device *dev = &dev_priv->drm;
10177 uint32_t val;
10178
10179 DRM_DEBUG_KMS("Disabling package C8+\n");
10180
10181 hsw_restore_lcpll(dev_priv);
10182 lpt_init_pch_refclk(dev);
10183
10184 if (HAS_PCH_LPT_LP(dev_priv)) {
10185 val = I915_READ(SOUTH_DSPCLK_GATE_D);
10186 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
10187 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10188 }
10189}
10190
10191static void bxt_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10192{
10193 struct drm_device *dev = old_state->dev;
10194 struct intel_atomic_state *old_intel_state =
10195 to_intel_atomic_state(old_state);
10196 unsigned int req_cdclk = old_intel_state->dev_cdclk;
10197
10198 bxt_set_cdclk(to_i915(dev), req_cdclk);
10199}
10200
10201static int bdw_adjust_min_pipe_pixel_rate(struct intel_crtc_state *crtc_state,
10202 int pixel_rate)
10203{
10204 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
10205
10206 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
10207 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
10208 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
10209
10210 /* BSpec says "Do not use DisplayPort with CDCLK less than
10211 * 432 MHz, audio enabled, port width x4, and link rate
10212 * HBR2 (5.4 GHz), or else there may be audio corruption or
10213 * screen corruption."
10214 */
10215 if (intel_crtc_has_dp_encoder(crtc_state) &&
10216 crtc_state->has_audio &&
10217 crtc_state->port_clock >= 540000 &&
10218 crtc_state->lane_count == 4)
10219 pixel_rate = max(432000, pixel_rate);
10220
10221 return pixel_rate;
10222}
10223
10224/* compute the max rate for new configuration */
10225static int ilk_max_pixel_rate(struct drm_atomic_state *state)
10226{
10227 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10228 struct drm_i915_private *dev_priv = to_i915(state->dev);
10229 struct drm_crtc *crtc;
10230 struct drm_crtc_state *cstate;
10231 struct intel_crtc_state *crtc_state;
10232 unsigned max_pixel_rate = 0, i;
10233 enum pipe pipe;
10234
10235 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
10236 sizeof(intel_state->min_pixclk));
10237
10238 for_each_crtc_in_state(state, crtc, cstate, i) {
10239 int pixel_rate;
10240
10241 crtc_state = to_intel_crtc_state(cstate);
10242 if (!crtc_state->base.enable) {
10243 intel_state->min_pixclk[i] = 0;
10244 continue;
10245 }
10246
10247 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
10248
10249 if (IS_BROADWELL(dev_priv) || IS_GEN9(dev_priv))
10250 pixel_rate = bdw_adjust_min_pipe_pixel_rate(crtc_state,
10251 pixel_rate);
10252
10253 intel_state->min_pixclk[i] = pixel_rate;
10254 }
10255
10256 for_each_pipe(dev_priv, pipe)
10257 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
10258
10259 return max_pixel_rate;
10260}
10261
10262static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
10263{
10264 struct drm_i915_private *dev_priv = to_i915(dev);
10265 uint32_t val, data;
10266 int ret;
10267
10268 if (WARN((I915_READ(LCPLL_CTL) &
10269 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
10270 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
10271 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
10272 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
10273 "trying to change cdclk frequency with cdclk not enabled\n"))
10274 return;
10275
10276 mutex_lock(&dev_priv->rps.hw_lock);
10277 ret = sandybridge_pcode_write(dev_priv,
10278 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
10279 mutex_unlock(&dev_priv->rps.hw_lock);
10280 if (ret) {
10281 DRM_ERROR("failed to inform pcode about cdclk change\n");
10282 return;
10283 }
10284
10285 val = I915_READ(LCPLL_CTL);
10286 val |= LCPLL_CD_SOURCE_FCLK;
10287 I915_WRITE(LCPLL_CTL, val);
10288
10289 if (wait_for_us(I915_READ(LCPLL_CTL) &
10290 LCPLL_CD_SOURCE_FCLK_DONE, 1))
10291 DRM_ERROR("Switching to FCLK failed\n");
10292
10293 val = I915_READ(LCPLL_CTL);
10294 val &= ~LCPLL_CLK_FREQ_MASK;
10295
10296 switch (cdclk) {
10297 case 450000:
10298 val |= LCPLL_CLK_FREQ_450;
10299 data = 0;
10300 break;
10301 case 540000:
10302 val |= LCPLL_CLK_FREQ_54O_BDW;
10303 data = 1;
10304 break;
10305 case 337500:
10306 val |= LCPLL_CLK_FREQ_337_5_BDW;
10307 data = 2;
10308 break;
10309 case 675000:
10310 val |= LCPLL_CLK_FREQ_675_BDW;
10311 data = 3;
10312 break;
10313 default:
10314 WARN(1, "invalid cdclk frequency\n");
10315 return;
10316 }
10317
10318 I915_WRITE(LCPLL_CTL, val);
10319
10320 val = I915_READ(LCPLL_CTL);
10321 val &= ~LCPLL_CD_SOURCE_FCLK;
10322 I915_WRITE(LCPLL_CTL, val);
10323
10324 if (wait_for_us((I915_READ(LCPLL_CTL) &
10325 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
10326 DRM_ERROR("Switching back to LCPLL failed\n");
10327
10328 mutex_lock(&dev_priv->rps.hw_lock);
10329 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
10330 mutex_unlock(&dev_priv->rps.hw_lock);
10331
10332 I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
10333
10334 intel_update_cdclk(dev_priv);
10335
10336 WARN(cdclk != dev_priv->cdclk_freq,
10337 "cdclk requested %d kHz but got %d kHz\n",
10338 cdclk, dev_priv->cdclk_freq);
10339}
10340
10341static int broadwell_calc_cdclk(int max_pixclk)
10342{
10343 if (max_pixclk > 540000)
10344 return 675000;
10345 else if (max_pixclk > 450000)
10346 return 540000;
10347 else if (max_pixclk > 337500)
10348 return 450000;
10349 else
10350 return 337500;
10351}
10352
10353static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
10354{
10355 struct drm_i915_private *dev_priv = to_i915(state->dev);
10356 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10357 int max_pixclk = ilk_max_pixel_rate(state);
10358 int cdclk;
10359
10360 /*
10361 * FIXME should also account for plane ratio
10362 * once 64bpp pixel formats are supported.
10363 */
10364 cdclk = broadwell_calc_cdclk(max_pixclk);
10365
10366 if (cdclk > dev_priv->max_cdclk_freq) {
10367 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10368 cdclk, dev_priv->max_cdclk_freq);
10369 return -EINVAL;
10370 }
10371
10372 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10373 if (!intel_state->active_crtcs)
10374 intel_state->dev_cdclk = broadwell_calc_cdclk(0);
10375
10376 return 0;
10377}
10378
10379static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10380{
10381 struct drm_device *dev = old_state->dev;
10382 struct intel_atomic_state *old_intel_state =
10383 to_intel_atomic_state(old_state);
10384 unsigned req_cdclk = old_intel_state->dev_cdclk;
10385
10386 broadwell_set_cdclk(dev, req_cdclk);
10387}
10388
10389static int skl_modeset_calc_cdclk(struct drm_atomic_state *state)
10390{
10391 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10392 struct drm_i915_private *dev_priv = to_i915(state->dev);
10393 const int max_pixclk = ilk_max_pixel_rate(state);
10394 int vco = intel_state->cdclk_pll_vco;
10395 int cdclk;
10396
10397 /*
10398 * FIXME should also account for plane ratio
10399 * once 64bpp pixel formats are supported.
10400 */
10401 cdclk = skl_calc_cdclk(max_pixclk, vco);
10402
10403 /*
10404 * FIXME move the cdclk caclulation to
10405 * compute_config() so we can fail gracegully.
10406 */
10407 if (cdclk > dev_priv->max_cdclk_freq) {
10408 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10409 cdclk, dev_priv->max_cdclk_freq);
10410 cdclk = dev_priv->max_cdclk_freq;
10411 }
10412
10413 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10414 if (!intel_state->active_crtcs)
10415 intel_state->dev_cdclk = skl_calc_cdclk(0, vco);
10416
10417 return 0;
10418}
10419
10420static void skl_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10421{
10422 struct drm_i915_private *dev_priv = to_i915(old_state->dev);
10423 struct intel_atomic_state *intel_state = to_intel_atomic_state(old_state);
10424 unsigned int req_cdclk = intel_state->dev_cdclk;
10425 unsigned int req_vco = intel_state->cdclk_pll_vco;
10426
10427 skl_set_cdclk(dev_priv, req_cdclk, req_vco);
10428}
10429
10430static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
10431 struct intel_crtc_state *crtc_state)
10432{
10433 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
10434 if (!intel_ddi_pll_select(crtc, crtc_state))
10435 return -EINVAL;
10436 }
10437
10438 crtc->lowfreq_avail = false;
10439
10440 return 0;
10441}
10442
10443static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
10444 enum port port,
10445 struct intel_crtc_state *pipe_config)
10446{
10447 enum intel_dpll_id id;
10448
10449 switch (port) {
10450 case PORT_A:
10451 id = DPLL_ID_SKL_DPLL0;
10452 break;
10453 case PORT_B:
10454 id = DPLL_ID_SKL_DPLL1;
10455 break;
10456 case PORT_C:
10457 id = DPLL_ID_SKL_DPLL2;
10458 break;
10459 default:
10460 DRM_ERROR("Incorrect port type\n");
10461 return;
10462 }
10463
10464 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10465}
10466
10467static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
10468 enum port port,
10469 struct intel_crtc_state *pipe_config)
10470{
10471 enum intel_dpll_id id;
10472 u32 temp;
10473
10474 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
10475 id = temp >> (port * 3 + 1);
10476
10477 if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
10478 return;
10479
10480 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10481}
10482
10483static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
10484 enum port port,
10485 struct intel_crtc_state *pipe_config)
10486{
10487 enum intel_dpll_id id;
10488 uint32_t ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
10489
10490 switch (ddi_pll_sel) {
10491 case PORT_CLK_SEL_WRPLL1:
10492 id = DPLL_ID_WRPLL1;
10493 break;
10494 case PORT_CLK_SEL_WRPLL2:
10495 id = DPLL_ID_WRPLL2;
10496 break;
10497 case PORT_CLK_SEL_SPLL:
10498 id = DPLL_ID_SPLL;
10499 break;
10500 case PORT_CLK_SEL_LCPLL_810:
10501 id = DPLL_ID_LCPLL_810;
10502 break;
10503 case PORT_CLK_SEL_LCPLL_1350:
10504 id = DPLL_ID_LCPLL_1350;
10505 break;
10506 case PORT_CLK_SEL_LCPLL_2700:
10507 id = DPLL_ID_LCPLL_2700;
10508 break;
10509 default:
10510 MISSING_CASE(ddi_pll_sel);
10511 /* fall through */
10512 case PORT_CLK_SEL_NONE:
10513 return;
10514 }
10515
10516 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10517}
10518
10519static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10520 struct intel_crtc_state *pipe_config,
10521 unsigned long *power_domain_mask)
10522{
10523 struct drm_device *dev = crtc->base.dev;
10524 struct drm_i915_private *dev_priv = to_i915(dev);
10525 enum intel_display_power_domain power_domain;
10526 u32 tmp;
10527
10528 /*
10529 * The pipe->transcoder mapping is fixed with the exception of the eDP
10530 * transcoder handled below.
10531 */
10532 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10533
10534 /*
10535 * XXX: Do intel_display_power_get_if_enabled before reading this (for
10536 * consistency and less surprising code; it's in always on power).
10537 */
10538 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
10539 if (tmp & TRANS_DDI_FUNC_ENABLE) {
10540 enum pipe trans_edp_pipe;
10541 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
10542 default:
10543 WARN(1, "unknown pipe linked to edp transcoder\n");
10544 case TRANS_DDI_EDP_INPUT_A_ONOFF:
10545 case TRANS_DDI_EDP_INPUT_A_ON:
10546 trans_edp_pipe = PIPE_A;
10547 break;
10548 case TRANS_DDI_EDP_INPUT_B_ONOFF:
10549 trans_edp_pipe = PIPE_B;
10550 break;
10551 case TRANS_DDI_EDP_INPUT_C_ONOFF:
10552 trans_edp_pipe = PIPE_C;
10553 break;
10554 }
10555
10556 if (trans_edp_pipe == crtc->pipe)
10557 pipe_config->cpu_transcoder = TRANSCODER_EDP;
10558 }
10559
10560 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
10561 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10562 return false;
10563 *power_domain_mask |= BIT(power_domain);
10564
10565 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10566
10567 return tmp & PIPECONF_ENABLE;
10568}
10569
10570static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10571 struct intel_crtc_state *pipe_config,
10572 unsigned long *power_domain_mask)
10573{
10574 struct drm_device *dev = crtc->base.dev;
10575 struct drm_i915_private *dev_priv = to_i915(dev);
10576 enum intel_display_power_domain power_domain;
10577 enum port port;
10578 enum transcoder cpu_transcoder;
10579 u32 tmp;
10580
10581 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10582 if (port == PORT_A)
10583 cpu_transcoder = TRANSCODER_DSI_A;
10584 else
10585 cpu_transcoder = TRANSCODER_DSI_C;
10586
10587 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10588 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10589 continue;
10590 *power_domain_mask |= BIT(power_domain);
10591
10592 /*
10593 * The PLL needs to be enabled with a valid divider
10594 * configuration, otherwise accessing DSI registers will hang
10595 * the machine. See BSpec North Display Engine
10596 * registers/MIPI[BXT]. We can break out here early, since we
10597 * need the same DSI PLL to be enabled for both DSI ports.
10598 */
10599 if (!intel_dsi_pll_is_enabled(dev_priv))
10600 break;
10601
10602 /* XXX: this works for video mode only */
10603 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10604 if (!(tmp & DPI_ENABLE))
10605 continue;
10606
10607 tmp = I915_READ(MIPI_CTRL(port));
10608 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10609 continue;
10610
10611 pipe_config->cpu_transcoder = cpu_transcoder;
10612 break;
10613 }
10614
10615 return transcoder_is_dsi(pipe_config->cpu_transcoder);
10616}
10617
10618static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
10619 struct intel_crtc_state *pipe_config)
10620{
10621 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10622 struct intel_shared_dpll *pll;
10623 enum port port;
10624 uint32_t tmp;
10625
10626 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
10627
10628 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
10629
10630 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
10631 skylake_get_ddi_pll(dev_priv, port, pipe_config);
10632 else if (IS_BROXTON(dev_priv))
10633 bxt_get_ddi_pll(dev_priv, port, pipe_config);
10634 else
10635 haswell_get_ddi_pll(dev_priv, port, pipe_config);
10636
10637 pll = pipe_config->shared_dpll;
10638 if (pll) {
10639 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
10640 &pipe_config->dpll_hw_state));
10641 }
10642
10643 /*
10644 * Haswell has only FDI/PCH transcoder A. It is which is connected to
10645 * DDI E. So just check whether this pipe is wired to DDI E and whether
10646 * the PCH transcoder is on.
10647 */
10648 if (INTEL_GEN(dev_priv) < 9 &&
10649 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
10650 pipe_config->has_pch_encoder = true;
10651
10652 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10653 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10654 FDI_DP_PORT_WIDTH_SHIFT) + 1;
10655
10656 ironlake_get_fdi_m_n_config(crtc, pipe_config);
10657 }
10658}
10659
10660static bool haswell_get_pipe_config(struct intel_crtc *crtc,
10661 struct intel_crtc_state *pipe_config)
10662{
10663 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10664 enum intel_display_power_domain power_domain;
10665 unsigned long power_domain_mask;
10666 bool active;
10667
10668 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10669 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10670 return false;
10671 power_domain_mask = BIT(power_domain);
10672
10673 pipe_config->shared_dpll = NULL;
10674
10675 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
10676
10677 if (IS_BROXTON(dev_priv) &&
10678 bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
10679 WARN_ON(active);
10680 active = true;
10681 }
10682
10683 if (!active)
10684 goto out;
10685
10686 if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10687 haswell_get_ddi_port_state(crtc, pipe_config);
10688 intel_get_pipe_timings(crtc, pipe_config);
10689 }
10690
10691 intel_get_pipe_src_size(crtc, pipe_config);
10692
10693 pipe_config->gamma_mode =
10694 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10695
10696 if (INTEL_GEN(dev_priv) >= 9) {
10697 skl_init_scalers(dev_priv, crtc, pipe_config);
10698
10699 pipe_config->scaler_state.scaler_id = -1;
10700 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10701 }
10702
10703 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10704 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10705 power_domain_mask |= BIT(power_domain);
10706 if (INTEL_GEN(dev_priv) >= 9)
10707 skylake_get_pfit_config(crtc, pipe_config);
10708 else
10709 ironlake_get_pfit_config(crtc, pipe_config);
10710 }
10711
10712 if (IS_HASWELL(dev_priv))
10713 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10714 (I915_READ(IPS_CTL) & IPS_ENABLE);
10715
10716 if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10717 !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10718 pipe_config->pixel_multiplier =
10719 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10720 } else {
10721 pipe_config->pixel_multiplier = 1;
10722 }
10723
10724out:
10725 for_each_power_domain(power_domain, power_domain_mask)
10726 intel_display_power_put(dev_priv, power_domain);
10727
10728 return active;
10729}
10730
10731static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10732 const struct intel_plane_state *plane_state)
10733{
10734 struct drm_device *dev = crtc->dev;
10735 struct drm_i915_private *dev_priv = to_i915(dev);
10736 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10737 uint32_t cntl = 0, size = 0;
10738
10739 if (plane_state && plane_state->base.visible) {
10740 unsigned int width = plane_state->base.crtc_w;
10741 unsigned int height = plane_state->base.crtc_h;
10742 unsigned int stride = roundup_pow_of_two(width) * 4;
10743
10744 switch (stride) {
10745 default:
10746 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10747 width, stride);
10748 stride = 256;
10749 /* fallthrough */
10750 case 256:
10751 case 512:
10752 case 1024:
10753 case 2048:
10754 break;
10755 }
10756
10757 cntl |= CURSOR_ENABLE |
10758 CURSOR_GAMMA_ENABLE |
10759 CURSOR_FORMAT_ARGB |
10760 CURSOR_STRIDE(stride);
10761
10762 size = (height << 12) | width;
10763 }
10764
10765 if (intel_crtc->cursor_cntl != 0 &&
10766 (intel_crtc->cursor_base != base ||
10767 intel_crtc->cursor_size != size ||
10768 intel_crtc->cursor_cntl != cntl)) {
10769 /* On these chipsets we can only modify the base/size/stride
10770 * whilst the cursor is disabled.
10771 */
10772 I915_WRITE(CURCNTR(PIPE_A), 0);
10773 POSTING_READ(CURCNTR(PIPE_A));
10774 intel_crtc->cursor_cntl = 0;
10775 }
10776
10777 if (intel_crtc->cursor_base != base) {
10778 I915_WRITE(CURBASE(PIPE_A), base);
10779 intel_crtc->cursor_base = base;
10780 }
10781
10782 if (intel_crtc->cursor_size != size) {
10783 I915_WRITE(CURSIZE, size);
10784 intel_crtc->cursor_size = size;
10785 }
10786
10787 if (intel_crtc->cursor_cntl != cntl) {
10788 I915_WRITE(CURCNTR(PIPE_A), cntl);
10789 POSTING_READ(CURCNTR(PIPE_A));
10790 intel_crtc->cursor_cntl = cntl;
10791 }
10792}
10793
10794static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10795 const struct intel_plane_state *plane_state)
10796{
10797 struct drm_device *dev = crtc->dev;
10798 struct drm_i915_private *dev_priv = to_i915(dev);
10799 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10800 int pipe = intel_crtc->pipe;
10801 uint32_t cntl = 0;
10802
10803 if (plane_state && plane_state->base.visible) {
10804 cntl = MCURSOR_GAMMA_ENABLE;
10805 switch (plane_state->base.crtc_w) {
10806 case 64:
10807 cntl |= CURSOR_MODE_64_ARGB_AX;
10808 break;
10809 case 128:
10810 cntl |= CURSOR_MODE_128_ARGB_AX;
10811 break;
10812 case 256:
10813 cntl |= CURSOR_MODE_256_ARGB_AX;
10814 break;
10815 default:
10816 MISSING_CASE(plane_state->base.crtc_w);
10817 return;
10818 }
10819 cntl |= pipe << 28; /* Connect to correct pipe */
10820
10821 if (HAS_DDI(dev_priv))
10822 cntl |= CURSOR_PIPE_CSC_ENABLE;
10823
10824 if (plane_state->base.rotation & DRM_ROTATE_180)
10825 cntl |= CURSOR_ROTATE_180;
10826 }
10827
10828 if (intel_crtc->cursor_cntl != cntl) {
10829 I915_WRITE(CURCNTR(pipe), cntl);
10830 POSTING_READ(CURCNTR(pipe));
10831 intel_crtc->cursor_cntl = cntl;
10832 }
10833
10834 /* and commit changes on next vblank */
10835 I915_WRITE(CURBASE(pipe), base);
10836 POSTING_READ(CURBASE(pipe));
10837
10838 intel_crtc->cursor_base = base;
10839}
10840
10841/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10842static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10843 const struct intel_plane_state *plane_state)
10844{
10845 struct drm_device *dev = crtc->dev;
10846 struct drm_i915_private *dev_priv = to_i915(dev);
10847 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10848 int pipe = intel_crtc->pipe;
10849 u32 base = intel_crtc->cursor_addr;
10850 u32 pos = 0;
10851
10852 if (plane_state) {
10853 int x = plane_state->base.crtc_x;
10854 int y = plane_state->base.crtc_y;
10855
10856 if (x < 0) {
10857 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10858 x = -x;
10859 }
10860 pos |= x << CURSOR_X_SHIFT;
10861
10862 if (y < 0) {
10863 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10864 y = -y;
10865 }
10866 pos |= y << CURSOR_Y_SHIFT;
10867
10868 /* ILK+ do this automagically */
10869 if (HAS_GMCH_DISPLAY(dev_priv) &&
10870 plane_state->base.rotation & DRM_ROTATE_180) {
10871 base += (plane_state->base.crtc_h *
10872 plane_state->base.crtc_w - 1) * 4;
10873 }
10874 }
10875
10876 I915_WRITE(CURPOS(pipe), pos);
10877
10878 if (IS_845G(dev_priv) || IS_I865G(dev_priv))
10879 i845_update_cursor(crtc, base, plane_state);
10880 else
10881 i9xx_update_cursor(crtc, base, plane_state);
10882}
10883
10884static bool cursor_size_ok(struct drm_i915_private *dev_priv,
10885 uint32_t width, uint32_t height)
10886{
10887 if (width == 0 || height == 0)
10888 return false;
10889
10890 /*
10891 * 845g/865g are special in that they are only limited by
10892 * the width of their cursors, the height is arbitrary up to
10893 * the precision of the register. Everything else requires
10894 * square cursors, limited to a few power-of-two sizes.
10895 */
10896 if (IS_845G(dev_priv) || IS_I865G(dev_priv)) {
10897 if ((width & 63) != 0)
10898 return false;
10899
10900 if (width > (IS_845G(dev_priv) ? 64 : 512))
10901 return false;
10902
10903 if (height > 1023)
10904 return false;
10905 } else {
10906 switch (width | height) {
10907 case 256:
10908 case 128:
10909 if (IS_GEN2(dev_priv))
10910 return false;
10911 case 64:
10912 break;
10913 default:
10914 return false;
10915 }
10916 }
10917
10918 return true;
10919}
10920
10921/* VESA 640x480x72Hz mode to set on the pipe */
10922static struct drm_display_mode load_detect_mode = {
10923 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10924 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10925};
10926
10927struct drm_framebuffer *
10928__intel_framebuffer_create(struct drm_device *dev,
10929 struct drm_mode_fb_cmd2 *mode_cmd,
10930 struct drm_i915_gem_object *obj)
10931{
10932 struct intel_framebuffer *intel_fb;
10933 int ret;
10934
10935 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10936 if (!intel_fb)
10937 return ERR_PTR(-ENOMEM);
10938
10939 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10940 if (ret)
10941 goto err;
10942
10943 return &intel_fb->base;
10944
10945err:
10946 kfree(intel_fb);
10947 return ERR_PTR(ret);
10948}
10949
10950static struct drm_framebuffer *
10951intel_framebuffer_create(struct drm_device *dev,
10952 struct drm_mode_fb_cmd2 *mode_cmd,
10953 struct drm_i915_gem_object *obj)
10954{
10955 struct drm_framebuffer *fb;
10956 int ret;
10957
10958 ret = i915_mutex_lock_interruptible(dev);
10959 if (ret)
10960 return ERR_PTR(ret);
10961 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10962 mutex_unlock(&dev->struct_mutex);
10963
10964 return fb;
10965}
10966
10967static u32
10968intel_framebuffer_pitch_for_width(int width, int bpp)
10969{
10970 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10971 return ALIGN(pitch, 64);
10972}
10973
10974static u32
10975intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10976{
10977 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10978 return PAGE_ALIGN(pitch * mode->vdisplay);
10979}
10980
10981static struct drm_framebuffer *
10982intel_framebuffer_create_for_mode(struct drm_device *dev,
10983 struct drm_display_mode *mode,
10984 int depth, int bpp)
10985{
10986 struct drm_framebuffer *fb;
10987 struct drm_i915_gem_object *obj;
10988 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10989
10990 obj = i915_gem_object_create(dev,
10991 intel_framebuffer_size_for_mode(mode, bpp));
10992 if (IS_ERR(obj))
10993 return ERR_CAST(obj);
10994
10995 mode_cmd.width = mode->hdisplay;
10996 mode_cmd.height = mode->vdisplay;
10997 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10998 bpp);
10999 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
11000
11001 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
11002 if (IS_ERR(fb))
11003 i915_gem_object_put(obj);
11004
11005 return fb;
11006}
11007
11008static struct drm_framebuffer *
11009mode_fits_in_fbdev(struct drm_device *dev,
11010 struct drm_display_mode *mode)
11011{
11012#ifdef CONFIG_DRM_FBDEV_EMULATION
11013 struct drm_i915_private *dev_priv = to_i915(dev);
11014 struct drm_i915_gem_object *obj;
11015 struct drm_framebuffer *fb;
11016
11017 if (!dev_priv->fbdev)
11018 return NULL;
11019
11020 if (!dev_priv->fbdev->fb)
11021 return NULL;
11022
11023 obj = dev_priv->fbdev->fb->obj;
11024 BUG_ON(!obj);
11025
11026 fb = &dev_priv->fbdev->fb->base;
11027 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
11028 fb->bits_per_pixel))
11029 return NULL;
11030
11031 if (obj->base.size < mode->vdisplay * fb->pitches[0])
11032 return NULL;
11033
11034 drm_framebuffer_reference(fb);
11035 return fb;
11036#else
11037 return NULL;
11038#endif
11039}
11040
11041static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
11042 struct drm_crtc *crtc,
11043 struct drm_display_mode *mode,
11044 struct drm_framebuffer *fb,
11045 int x, int y)
11046{
11047 struct drm_plane_state *plane_state;
11048 int hdisplay, vdisplay;
11049 int ret;
11050
11051 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
11052 if (IS_ERR(plane_state))
11053 return PTR_ERR(plane_state);
11054
11055 if (mode)
11056 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11057 else
11058 hdisplay = vdisplay = 0;
11059
11060 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
11061 if (ret)
11062 return ret;
11063 drm_atomic_set_fb_for_plane(plane_state, fb);
11064 plane_state->crtc_x = 0;
11065 plane_state->crtc_y = 0;
11066 plane_state->crtc_w = hdisplay;
11067 plane_state->crtc_h = vdisplay;
11068 plane_state->src_x = x << 16;
11069 plane_state->src_y = y << 16;
11070 plane_state->src_w = hdisplay << 16;
11071 plane_state->src_h = vdisplay << 16;
11072
11073 return 0;
11074}
11075
11076bool intel_get_load_detect_pipe(struct drm_connector *connector,
11077 struct drm_display_mode *mode,
11078 struct intel_load_detect_pipe *old,
11079 struct drm_modeset_acquire_ctx *ctx)
11080{
11081 struct intel_crtc *intel_crtc;
11082 struct intel_encoder *intel_encoder =
11083 intel_attached_encoder(connector);
11084 struct drm_crtc *possible_crtc;
11085 struct drm_encoder *encoder = &intel_encoder->base;
11086 struct drm_crtc *crtc = NULL;
11087 struct drm_device *dev = encoder->dev;
11088 struct drm_i915_private *dev_priv = to_i915(dev);
11089 struct drm_framebuffer *fb;
11090 struct drm_mode_config *config = &dev->mode_config;
11091 struct drm_atomic_state *state = NULL, *restore_state = NULL;
11092 struct drm_connector_state *connector_state;
11093 struct intel_crtc_state *crtc_state;
11094 int ret, i = -1;
11095
11096 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11097 connector->base.id, connector->name,
11098 encoder->base.id, encoder->name);
11099
11100 old->restore_state = NULL;
11101
11102retry:
11103 ret = drm_modeset_lock(&config->connection_mutex, ctx);
11104 if (ret)
11105 goto fail;
11106
11107 /*
11108 * Algorithm gets a little messy:
11109 *
11110 * - if the connector already has an assigned crtc, use it (but make
11111 * sure it's on first)
11112 *
11113 * - try to find the first unused crtc that can drive this connector,
11114 * and use that if we find one
11115 */
11116
11117 /* See if we already have a CRTC for this connector */
11118 if (connector->state->crtc) {
11119 crtc = connector->state->crtc;
11120
11121 ret = drm_modeset_lock(&crtc->mutex, ctx);
11122 if (ret)
11123 goto fail;
11124
11125 /* Make sure the crtc and connector are running */
11126 goto found;
11127 }
11128
11129 /* Find an unused one (if possible) */
11130 for_each_crtc(dev, possible_crtc) {
11131 i++;
11132 if (!(encoder->possible_crtcs & (1 << i)))
11133 continue;
11134
11135 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
11136 if (ret)
11137 goto fail;
11138
11139 if (possible_crtc->state->enable) {
11140 drm_modeset_unlock(&possible_crtc->mutex);
11141 continue;
11142 }
11143
11144 crtc = possible_crtc;
11145 break;
11146 }
11147
11148 /*
11149 * If we didn't find an unused CRTC, don't use any.
11150 */
11151 if (!crtc) {
11152 DRM_DEBUG_KMS("no pipe available for load-detect\n");
11153 goto fail;
11154 }
11155
11156found:
11157 intel_crtc = to_intel_crtc(crtc);
11158
11159 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
11160 if (ret)
11161 goto fail;
11162
11163 state = drm_atomic_state_alloc(dev);
11164 restore_state = drm_atomic_state_alloc(dev);
11165 if (!state || !restore_state) {
11166 ret = -ENOMEM;
11167 goto fail;
11168 }
11169
11170 state->acquire_ctx = ctx;
11171 restore_state->acquire_ctx = ctx;
11172
11173 connector_state = drm_atomic_get_connector_state(state, connector);
11174 if (IS_ERR(connector_state)) {
11175 ret = PTR_ERR(connector_state);
11176 goto fail;
11177 }
11178
11179 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
11180 if (ret)
11181 goto fail;
11182
11183 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
11184 if (IS_ERR(crtc_state)) {
11185 ret = PTR_ERR(crtc_state);
11186 goto fail;
11187 }
11188
11189 crtc_state->base.active = crtc_state->base.enable = true;
11190
11191 if (!mode)
11192 mode = &load_detect_mode;
11193
11194 /* We need a framebuffer large enough to accommodate all accesses
11195 * that the plane may generate whilst we perform load detection.
11196 * We can not rely on the fbcon either being present (we get called
11197 * during its initialisation to detect all boot displays, or it may
11198 * not even exist) or that it is large enough to satisfy the
11199 * requested mode.
11200 */
11201 fb = mode_fits_in_fbdev(dev, mode);
11202 if (fb == NULL) {
11203 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
11204 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
11205 } else
11206 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
11207 if (IS_ERR(fb)) {
11208 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
11209 goto fail;
11210 }
11211
11212 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
11213 if (ret)
11214 goto fail;
11215
11216 drm_framebuffer_unreference(fb);
11217
11218 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
11219 if (ret)
11220 goto fail;
11221
11222 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
11223 if (!ret)
11224 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
11225 if (!ret)
11226 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
11227 if (ret) {
11228 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
11229 goto fail;
11230 }
11231
11232 ret = drm_atomic_commit(state);
11233 if (ret) {
11234 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
11235 goto fail;
11236 }
11237
11238 old->restore_state = restore_state;
11239 drm_atomic_state_put(state);
11240
11241 /* let the connector get through one full cycle before testing */
11242 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
11243 return true;
11244
11245fail:
11246 if (state) {
11247 drm_atomic_state_put(state);
11248 state = NULL;
11249 }
11250 if (restore_state) {
11251 drm_atomic_state_put(restore_state);
11252 restore_state = NULL;
11253 }
11254
11255 if (ret == -EDEADLK) {
11256 drm_modeset_backoff(ctx);
11257 goto retry;
11258 }
11259
11260 return false;
11261}
11262
11263void intel_release_load_detect_pipe(struct drm_connector *connector,
11264 struct intel_load_detect_pipe *old,
11265 struct drm_modeset_acquire_ctx *ctx)
11266{
11267 struct intel_encoder *intel_encoder =
11268 intel_attached_encoder(connector);
11269 struct drm_encoder *encoder = &intel_encoder->base;
11270 struct drm_atomic_state *state = old->restore_state;
11271 int ret;
11272
11273 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11274 connector->base.id, connector->name,
11275 encoder->base.id, encoder->name);
11276
11277 if (!state)
11278 return;
11279
11280 ret = drm_atomic_commit(state);
11281 if (ret)
11282 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
11283 drm_atomic_state_put(state);
11284}
11285
11286static int i9xx_pll_refclk(struct drm_device *dev,
11287 const struct intel_crtc_state *pipe_config)
11288{
11289 struct drm_i915_private *dev_priv = to_i915(dev);
11290 u32 dpll = pipe_config->dpll_hw_state.dpll;
11291
11292 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
11293 return dev_priv->vbt.lvds_ssc_freq;
11294 else if (HAS_PCH_SPLIT(dev_priv))
11295 return 120000;
11296 else if (!IS_GEN2(dev_priv))
11297 return 96000;
11298 else
11299 return 48000;
11300}
11301
11302/* Returns the clock of the currently programmed mode of the given pipe. */
11303static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
11304 struct intel_crtc_state *pipe_config)
11305{
11306 struct drm_device *dev = crtc->base.dev;
11307 struct drm_i915_private *dev_priv = to_i915(dev);
11308 int pipe = pipe_config->cpu_transcoder;
11309 u32 dpll = pipe_config->dpll_hw_state.dpll;
11310 u32 fp;
11311 struct dpll clock;
11312 int port_clock;
11313 int refclk = i9xx_pll_refclk(dev, pipe_config);
11314
11315 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
11316 fp = pipe_config->dpll_hw_state.fp0;
11317 else
11318 fp = pipe_config->dpll_hw_state.fp1;
11319
11320 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
11321 if (IS_PINEVIEW(dev_priv)) {
11322 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
11323 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
11324 } else {
11325 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
11326 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
11327 }
11328
11329 if (!IS_GEN2(dev_priv)) {
11330 if (IS_PINEVIEW(dev_priv))
11331 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
11332 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
11333 else
11334 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
11335 DPLL_FPA01_P1_POST_DIV_SHIFT);
11336
11337 switch (dpll & DPLL_MODE_MASK) {
11338 case DPLLB_MODE_DAC_SERIAL:
11339 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
11340 5 : 10;
11341 break;
11342 case DPLLB_MODE_LVDS:
11343 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
11344 7 : 14;
11345 break;
11346 default:
11347 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
11348 "mode\n", (int)(dpll & DPLL_MODE_MASK));
11349 return;
11350 }
11351
11352 if (IS_PINEVIEW(dev_priv))
11353 port_clock = pnv_calc_dpll_params(refclk, &clock);
11354 else
11355 port_clock = i9xx_calc_dpll_params(refclk, &clock);
11356 } else {
11357 u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS);
11358 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
11359
11360 if (is_lvds) {
11361 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
11362 DPLL_FPA01_P1_POST_DIV_SHIFT);
11363
11364 if (lvds & LVDS_CLKB_POWER_UP)
11365 clock.p2 = 7;
11366 else
11367 clock.p2 = 14;
11368 } else {
11369 if (dpll & PLL_P1_DIVIDE_BY_TWO)
11370 clock.p1 = 2;
11371 else {
11372 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
11373 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
11374 }
11375 if (dpll & PLL_P2_DIVIDE_BY_4)
11376 clock.p2 = 4;
11377 else
11378 clock.p2 = 2;
11379 }
11380
11381 port_clock = i9xx_calc_dpll_params(refclk, &clock);
11382 }
11383
11384 /*
11385 * This value includes pixel_multiplier. We will use
11386 * port_clock to compute adjusted_mode.crtc_clock in the
11387 * encoder's get_config() function.
11388 */
11389 pipe_config->port_clock = port_clock;
11390}
11391
11392int intel_dotclock_calculate(int link_freq,
11393 const struct intel_link_m_n *m_n)
11394{
11395 /*
11396 * The calculation for the data clock is:
11397 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
11398 * But we want to avoid losing precison if possible, so:
11399 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
11400 *
11401 * and the link clock is simpler:
11402 * link_clock = (m * link_clock) / n
11403 */
11404
11405 if (!m_n->link_n)
11406 return 0;
11407
11408 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
11409}
11410
11411static void ironlake_pch_clock_get(struct intel_crtc *crtc,
11412 struct intel_crtc_state *pipe_config)
11413{
11414 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11415
11416 /* read out port_clock from the DPLL */
11417 i9xx_crtc_clock_get(crtc, pipe_config);
11418
11419 /*
11420 * In case there is an active pipe without active ports,
11421 * we may need some idea for the dotclock anyway.
11422 * Calculate one based on the FDI configuration.
11423 */
11424 pipe_config->base.adjusted_mode.crtc_clock =
11425 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
11426 &pipe_config->fdi_m_n);
11427}
11428
11429/** Returns the currently programmed mode of the given pipe. */
11430struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
11431 struct drm_crtc *crtc)
11432{
11433 struct drm_i915_private *dev_priv = to_i915(dev);
11434 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11435 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
11436 struct drm_display_mode *mode;
11437 struct intel_crtc_state *pipe_config;
11438 int htot = I915_READ(HTOTAL(cpu_transcoder));
11439 int hsync = I915_READ(HSYNC(cpu_transcoder));
11440 int vtot = I915_READ(VTOTAL(cpu_transcoder));
11441 int vsync = I915_READ(VSYNC(cpu_transcoder));
11442 enum pipe pipe = intel_crtc->pipe;
11443
11444 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
11445 if (!mode)
11446 return NULL;
11447
11448 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
11449 if (!pipe_config) {
11450 kfree(mode);
11451 return NULL;
11452 }
11453
11454 /*
11455 * Construct a pipe_config sufficient for getting the clock info
11456 * back out of crtc_clock_get.
11457 *
11458 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
11459 * to use a real value here instead.
11460 */
11461 pipe_config->cpu_transcoder = (enum transcoder) pipe;
11462 pipe_config->pixel_multiplier = 1;
11463 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
11464 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
11465 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
11466 i9xx_crtc_clock_get(intel_crtc, pipe_config);
11467
11468 mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
11469 mode->hdisplay = (htot & 0xffff) + 1;
11470 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
11471 mode->hsync_start = (hsync & 0xffff) + 1;
11472 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
11473 mode->vdisplay = (vtot & 0xffff) + 1;
11474 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
11475 mode->vsync_start = (vsync & 0xffff) + 1;
11476 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
11477
11478 drm_mode_set_name(mode);
11479
11480 kfree(pipe_config);
11481
11482 return mode;
11483}
11484
11485static void intel_crtc_destroy(struct drm_crtc *crtc)
11486{
11487 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11488 struct drm_device *dev = crtc->dev;
11489 struct intel_flip_work *work;
11490
11491 spin_lock_irq(&dev->event_lock);
11492 work = intel_crtc->flip_work;
11493 intel_crtc->flip_work = NULL;
11494 spin_unlock_irq(&dev->event_lock);
11495
11496 if (work) {
11497 cancel_work_sync(&work->mmio_work);
11498 cancel_work_sync(&work->unpin_work);
11499 kfree(work);
11500 }
11501
11502 drm_crtc_cleanup(crtc);
11503
11504 kfree(intel_crtc);
11505}
11506
11507static void intel_unpin_work_fn(struct work_struct *__work)
11508{
11509 struct intel_flip_work *work =
11510 container_of(__work, struct intel_flip_work, unpin_work);
11511 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11512 struct drm_device *dev = crtc->base.dev;
11513 struct drm_plane *primary = crtc->base.primary;
11514
11515 if (is_mmio_work(work))
11516 flush_work(&work->mmio_work);
11517
11518 mutex_lock(&dev->struct_mutex);
11519 intel_unpin_fb_vma(work->old_vma);
11520 i915_gem_object_put(work->pending_flip_obj);
11521 mutex_unlock(&dev->struct_mutex);
11522
11523 i915_gem_request_put(work->flip_queued_req);
11524
11525 intel_frontbuffer_flip_complete(to_i915(dev),
11526 to_intel_plane(primary)->frontbuffer_bit);
11527 intel_fbc_post_update(crtc);
11528 drm_framebuffer_unreference(work->old_fb);
11529
11530 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
11531 atomic_dec(&crtc->unpin_work_count);
11532
11533 kfree(work);
11534}
11535
11536/* Is 'a' after or equal to 'b'? */
11537static bool g4x_flip_count_after_eq(u32 a, u32 b)
11538{
11539 return !((a - b) & 0x80000000);
11540}
11541
11542static bool __pageflip_finished_cs(struct intel_crtc *crtc,
11543 struct intel_flip_work *work)
11544{
11545 struct drm_device *dev = crtc->base.dev;
11546 struct drm_i915_private *dev_priv = to_i915(dev);
11547
11548 if (abort_flip_on_reset(crtc))
11549 return true;
11550
11551 /*
11552 * The relevant registers doen't exist on pre-ctg.
11553 * As the flip done interrupt doesn't trigger for mmio
11554 * flips on gmch platforms, a flip count check isn't
11555 * really needed there. But since ctg has the registers,
11556 * include it in the check anyway.
11557 */
11558 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11559 return true;
11560
11561 /*
11562 * BDW signals flip done immediately if the plane
11563 * is disabled, even if the plane enable is already
11564 * armed to occur at the next vblank :(
11565 */
11566
11567 /*
11568 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
11569 * used the same base address. In that case the mmio flip might
11570 * have completed, but the CS hasn't even executed the flip yet.
11571 *
11572 * A flip count check isn't enough as the CS might have updated
11573 * the base address just after start of vblank, but before we
11574 * managed to process the interrupt. This means we'd complete the
11575 * CS flip too soon.
11576 *
11577 * Combining both checks should get us a good enough result. It may
11578 * still happen that the CS flip has been executed, but has not
11579 * yet actually completed. But in case the base address is the same
11580 * anyway, we don't really care.
11581 */
11582 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11583 crtc->flip_work->gtt_offset &&
11584 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
11585 crtc->flip_work->flip_count);
11586}
11587
11588static bool
11589__pageflip_finished_mmio(struct intel_crtc *crtc,
11590 struct intel_flip_work *work)
11591{
11592 /*
11593 * MMIO work completes when vblank is different from
11594 * flip_queued_vblank.
11595 *
11596 * Reset counter value doesn't matter, this is handled by
11597 * i915_wait_request finishing early, so no need to handle
11598 * reset here.
11599 */
11600 return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
11601}
11602
11603
11604static bool pageflip_finished(struct intel_crtc *crtc,
11605 struct intel_flip_work *work)
11606{
11607 if (!atomic_read(&work->pending))
11608 return false;
11609
11610 smp_rmb();
11611
11612 if (is_mmio_work(work))
11613 return __pageflip_finished_mmio(crtc, work);
11614 else
11615 return __pageflip_finished_cs(crtc, work);
11616}
11617
11618void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
11619{
11620 struct drm_device *dev = &dev_priv->drm;
11621 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
11622 struct intel_flip_work *work;
11623 unsigned long flags;
11624
11625 /* Ignore early vblank irqs */
11626 if (!crtc)
11627 return;
11628
11629 /*
11630 * This is called both by irq handlers and the reset code (to complete
11631 * lost pageflips) so needs the full irqsave spinlocks.
11632 */
11633 spin_lock_irqsave(&dev->event_lock, flags);
11634 work = crtc->flip_work;
11635
11636 if (work != NULL &&
11637 !is_mmio_work(work) &&
11638 pageflip_finished(crtc, work))
11639 page_flip_completed(crtc);
11640
11641 spin_unlock_irqrestore(&dev->event_lock, flags);
11642}
11643
11644void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
11645{
11646 struct drm_device *dev = &dev_priv->drm;
11647 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
11648 struct intel_flip_work *work;
11649 unsigned long flags;
11650
11651 /* Ignore early vblank irqs */
11652 if (!crtc)
11653 return;
11654
11655 /*
11656 * This is called both by irq handlers and the reset code (to complete
11657 * lost pageflips) so needs the full irqsave spinlocks.
11658 */
11659 spin_lock_irqsave(&dev->event_lock, flags);
11660 work = crtc->flip_work;
11661
11662 if (work != NULL &&
11663 is_mmio_work(work) &&
11664 pageflip_finished(crtc, work))
11665 page_flip_completed(crtc);
11666
11667 spin_unlock_irqrestore(&dev->event_lock, flags);
11668}
11669
11670static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
11671 struct intel_flip_work *work)
11672{
11673 work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
11674
11675 /* Ensure that the work item is consistent when activating it ... */
11676 smp_mb__before_atomic();
11677 atomic_set(&work->pending, 1);
11678}
11679
11680static int intel_gen2_queue_flip(struct drm_device *dev,
11681 struct drm_crtc *crtc,
11682 struct drm_framebuffer *fb,
11683 struct drm_i915_gem_object *obj,
11684 struct drm_i915_gem_request *req,
11685 uint32_t flags)
11686{
11687 struct intel_ring *ring = req->ring;
11688 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11689 u32 flip_mask;
11690 int ret;
11691
11692 ret = intel_ring_begin(req, 6);
11693 if (ret)
11694 return ret;
11695
11696 /* Can't queue multiple flips, so wait for the previous
11697 * one to finish before executing the next.
11698 */
11699 if (intel_crtc->plane)
11700 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11701 else
11702 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11703 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11704 intel_ring_emit(ring, MI_NOOP);
11705 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11706 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11707 intel_ring_emit(ring, fb->pitches[0]);
11708 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11709 intel_ring_emit(ring, 0); /* aux display base address, unused */
11710
11711 return 0;
11712}
11713
11714static int intel_gen3_queue_flip(struct drm_device *dev,
11715 struct drm_crtc *crtc,
11716 struct drm_framebuffer *fb,
11717 struct drm_i915_gem_object *obj,
11718 struct drm_i915_gem_request *req,
11719 uint32_t flags)
11720{
11721 struct intel_ring *ring = req->ring;
11722 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11723 u32 flip_mask;
11724 int ret;
11725
11726 ret = intel_ring_begin(req, 6);
11727 if (ret)
11728 return ret;
11729
11730 if (intel_crtc->plane)
11731 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11732 else
11733 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11734 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11735 intel_ring_emit(ring, MI_NOOP);
11736 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11737 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11738 intel_ring_emit(ring, fb->pitches[0]);
11739 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11740 intel_ring_emit(ring, MI_NOOP);
11741
11742 return 0;
11743}
11744
11745static int intel_gen4_queue_flip(struct drm_device *dev,
11746 struct drm_crtc *crtc,
11747 struct drm_framebuffer *fb,
11748 struct drm_i915_gem_object *obj,
11749 struct drm_i915_gem_request *req,
11750 uint32_t flags)
11751{
11752 struct intel_ring *ring = req->ring;
11753 struct drm_i915_private *dev_priv = to_i915(dev);
11754 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11755 uint32_t pf, pipesrc;
11756 int ret;
11757
11758 ret = intel_ring_begin(req, 4);
11759 if (ret)
11760 return ret;
11761
11762 /* i965+ uses the linear or tiled offsets from the
11763 * Display Registers (which do not change across a page-flip)
11764 * so we need only reprogram the base address.
11765 */
11766 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11767 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11768 intel_ring_emit(ring, fb->pitches[0]);
11769 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset |
11770 intel_fb_modifier_to_tiling(fb->modifier));
11771
11772 /* XXX Enabling the panel-fitter across page-flip is so far
11773 * untested on non-native modes, so ignore it for now.
11774 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11775 */
11776 pf = 0;
11777 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11778 intel_ring_emit(ring, pf | pipesrc);
11779
11780 return 0;
11781}
11782
11783static int intel_gen6_queue_flip(struct drm_device *dev,
11784 struct drm_crtc *crtc,
11785 struct drm_framebuffer *fb,
11786 struct drm_i915_gem_object *obj,
11787 struct drm_i915_gem_request *req,
11788 uint32_t flags)
11789{
11790 struct intel_ring *ring = req->ring;
11791 struct drm_i915_private *dev_priv = to_i915(dev);
11792 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11793 uint32_t pf, pipesrc;
11794 int ret;
11795
11796 ret = intel_ring_begin(req, 4);
11797 if (ret)
11798 return ret;
11799
11800 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11801 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11802 intel_ring_emit(ring, fb->pitches[0] |
11803 intel_fb_modifier_to_tiling(fb->modifier));
11804 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11805
11806 /* Contrary to the suggestions in the documentation,
11807 * "Enable Panel Fitter" does not seem to be required when page
11808 * flipping with a non-native mode, and worse causes a normal
11809 * modeset to fail.
11810 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11811 */
11812 pf = 0;
11813 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11814 intel_ring_emit(ring, pf | pipesrc);
11815
11816 return 0;
11817}
11818
11819static int intel_gen7_queue_flip(struct drm_device *dev,
11820 struct drm_crtc *crtc,
11821 struct drm_framebuffer *fb,
11822 struct drm_i915_gem_object *obj,
11823 struct drm_i915_gem_request *req,
11824 uint32_t flags)
11825{
11826 struct drm_i915_private *dev_priv = to_i915(dev);
11827 struct intel_ring *ring = req->ring;
11828 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11829 uint32_t plane_bit = 0;
11830 int len, ret;
11831
11832 switch (intel_crtc->plane) {
11833 case PLANE_A:
11834 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11835 break;
11836 case PLANE_B:
11837 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11838 break;
11839 case PLANE_C:
11840 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11841 break;
11842 default:
11843 WARN_ONCE(1, "unknown plane in flip command\n");
11844 return -ENODEV;
11845 }
11846
11847 len = 4;
11848 if (req->engine->id == RCS) {
11849 len += 6;
11850 /*
11851 * On Gen 8, SRM is now taking an extra dword to accommodate
11852 * 48bits addresses, and we need a NOOP for the batch size to
11853 * stay even.
11854 */
11855 if (IS_GEN8(dev_priv))
11856 len += 2;
11857 }
11858
11859 /*
11860 * BSpec MI_DISPLAY_FLIP for IVB:
11861 * "The full packet must be contained within the same cache line."
11862 *
11863 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11864 * cacheline, if we ever start emitting more commands before
11865 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11866 * then do the cacheline alignment, and finally emit the
11867 * MI_DISPLAY_FLIP.
11868 */
11869 ret = intel_ring_cacheline_align(req);
11870 if (ret)
11871 return ret;
11872
11873 ret = intel_ring_begin(req, len);
11874 if (ret)
11875 return ret;
11876
11877 /* Unmask the flip-done completion message. Note that the bspec says that
11878 * we should do this for both the BCS and RCS, and that we must not unmask
11879 * more than one flip event at any time (or ensure that one flip message
11880 * can be sent by waiting for flip-done prior to queueing new flips).
11881 * Experimentation says that BCS works despite DERRMR masking all
11882 * flip-done completion events and that unmasking all planes at once
11883 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11884 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11885 */
11886 if (req->engine->id == RCS) {
11887 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11888 intel_ring_emit_reg(ring, DERRMR);
11889 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11890 DERRMR_PIPEB_PRI_FLIP_DONE |
11891 DERRMR_PIPEC_PRI_FLIP_DONE));
11892 if (IS_GEN8(dev_priv))
11893 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11894 MI_SRM_LRM_GLOBAL_GTT);
11895 else
11896 intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11897 MI_SRM_LRM_GLOBAL_GTT);
11898 intel_ring_emit_reg(ring, DERRMR);
11899 intel_ring_emit(ring,
11900 i915_ggtt_offset(req->engine->scratch) + 256);
11901 if (IS_GEN8(dev_priv)) {
11902 intel_ring_emit(ring, 0);
11903 intel_ring_emit(ring, MI_NOOP);
11904 }
11905 }
11906
11907 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11908 intel_ring_emit(ring, fb->pitches[0] |
11909 intel_fb_modifier_to_tiling(fb->modifier));
11910 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11911 intel_ring_emit(ring, (MI_NOOP));
11912
11913 return 0;
11914}
11915
11916static bool use_mmio_flip(struct intel_engine_cs *engine,
11917 struct drm_i915_gem_object *obj)
11918{
11919 /*
11920 * This is not being used for older platforms, because
11921 * non-availability of flip done interrupt forces us to use
11922 * CS flips. Older platforms derive flip done using some clever
11923 * tricks involving the flip_pending status bits and vblank irqs.
11924 * So using MMIO flips there would disrupt this mechanism.
11925 */
11926
11927 if (engine == NULL)
11928 return true;
11929
11930 if (INTEL_GEN(engine->i915) < 5)
11931 return false;
11932
11933 if (i915.use_mmio_flip < 0)
11934 return false;
11935 else if (i915.use_mmio_flip > 0)
11936 return true;
11937 else if (i915.enable_execlists)
11938 return true;
11939
11940 return engine != i915_gem_object_last_write_engine(obj);
11941}
11942
11943static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11944 unsigned int rotation,
11945 struct intel_flip_work *work)
11946{
11947 struct drm_device *dev = intel_crtc->base.dev;
11948 struct drm_i915_private *dev_priv = to_i915(dev);
11949 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11950 const enum pipe pipe = intel_crtc->pipe;
11951 u32 ctl, stride = skl_plane_stride(fb, 0, rotation);
11952
11953 ctl = I915_READ(PLANE_CTL(pipe, 0));
11954 ctl &= ~PLANE_CTL_TILED_MASK;
11955 switch (fb->modifier) {
11956 case DRM_FORMAT_MOD_NONE:
11957 break;
11958 case I915_FORMAT_MOD_X_TILED:
11959 ctl |= PLANE_CTL_TILED_X;
11960 break;
11961 case I915_FORMAT_MOD_Y_TILED:
11962 ctl |= PLANE_CTL_TILED_Y;
11963 break;
11964 case I915_FORMAT_MOD_Yf_TILED:
11965 ctl |= PLANE_CTL_TILED_YF;
11966 break;
11967 default:
11968 MISSING_CASE(fb->modifier);
11969 }
11970
11971 /*
11972 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11973 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11974 */
11975 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11976 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11977
11978 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11979 POSTING_READ(PLANE_SURF(pipe, 0));
11980}
11981
11982static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11983 struct intel_flip_work *work)
11984{
11985 struct drm_device *dev = intel_crtc->base.dev;
11986 struct drm_i915_private *dev_priv = to_i915(dev);
11987 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11988 i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11989 u32 dspcntr;
11990
11991 dspcntr = I915_READ(reg);
11992
11993 if (fb->modifier == I915_FORMAT_MOD_X_TILED)
11994 dspcntr |= DISPPLANE_TILED;
11995 else
11996 dspcntr &= ~DISPPLANE_TILED;
11997
11998 I915_WRITE(reg, dspcntr);
11999
12000 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
12001 POSTING_READ(DSPSURF(intel_crtc->plane));
12002}
12003
12004static void intel_mmio_flip_work_func(struct work_struct *w)
12005{
12006 struct intel_flip_work *work =
12007 container_of(w, struct intel_flip_work, mmio_work);
12008 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
12009 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12010 struct intel_framebuffer *intel_fb =
12011 to_intel_framebuffer(crtc->base.primary->fb);
12012 struct drm_i915_gem_object *obj = intel_fb->obj;
12013
12014 WARN_ON(i915_gem_object_wait(obj, 0, MAX_SCHEDULE_TIMEOUT, NULL) < 0);
12015
12016 intel_pipe_update_start(crtc);
12017
12018 if (INTEL_GEN(dev_priv) >= 9)
12019 skl_do_mmio_flip(crtc, work->rotation, work);
12020 else
12021 /* use_mmio_flip() retricts MMIO flips to ilk+ */
12022 ilk_do_mmio_flip(crtc, work);
12023
12024 intel_pipe_update_end(crtc, work);
12025}
12026
12027static int intel_default_queue_flip(struct drm_device *dev,
12028 struct drm_crtc *crtc,
12029 struct drm_framebuffer *fb,
12030 struct drm_i915_gem_object *obj,
12031 struct drm_i915_gem_request *req,
12032 uint32_t flags)
12033{
12034 return -ENODEV;
12035}
12036
12037static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
12038 struct intel_crtc *intel_crtc,
12039 struct intel_flip_work *work)
12040{
12041 u32 addr, vblank;
12042
12043 if (!atomic_read(&work->pending))
12044 return false;
12045
12046 smp_rmb();
12047
12048 vblank = intel_crtc_get_vblank_counter(intel_crtc);
12049 if (work->flip_ready_vblank == 0) {
12050 if (work->flip_queued_req &&
12051 !i915_gem_request_completed(work->flip_queued_req))
12052 return false;
12053
12054 work->flip_ready_vblank = vblank;
12055 }
12056
12057 if (vblank - work->flip_ready_vblank < 3)
12058 return false;
12059
12060 /* Potential stall - if we see that the flip has happened,
12061 * assume a missed interrupt. */
12062 if (INTEL_GEN(dev_priv) >= 4)
12063 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
12064 else
12065 addr = I915_READ(DSPADDR(intel_crtc->plane));
12066
12067 /* There is a potential issue here with a false positive after a flip
12068 * to the same address. We could address this by checking for a
12069 * non-incrementing frame counter.
12070 */
12071 return addr == work->gtt_offset;
12072}
12073
12074void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
12075{
12076 struct drm_device *dev = &dev_priv->drm;
12077 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
12078 struct intel_flip_work *work;
12079
12080 WARN_ON(!in_interrupt());
12081
12082 if (crtc == NULL)
12083 return;
12084
12085 spin_lock(&dev->event_lock);
12086 work = crtc->flip_work;
12087
12088 if (work != NULL && !is_mmio_work(work) &&
12089 __pageflip_stall_check_cs(dev_priv, crtc, work)) {
12090 WARN_ONCE(1,
12091 "Kicking stuck page flip: queued at %d, now %d\n",
12092 work->flip_queued_vblank, intel_crtc_get_vblank_counter(crtc));
12093 page_flip_completed(crtc);
12094 work = NULL;
12095 }
12096
12097 if (work != NULL && !is_mmio_work(work) &&
12098 intel_crtc_get_vblank_counter(crtc) - work->flip_queued_vblank > 1)
12099 intel_queue_rps_boost_for_request(work->flip_queued_req);
12100 spin_unlock(&dev->event_lock);
12101}
12102
12103static int intel_crtc_page_flip(struct drm_crtc *crtc,
12104 struct drm_framebuffer *fb,
12105 struct drm_pending_vblank_event *event,
12106 uint32_t page_flip_flags)
12107{
12108 struct drm_device *dev = crtc->dev;
12109 struct drm_i915_private *dev_priv = to_i915(dev);
12110 struct drm_framebuffer *old_fb = crtc->primary->fb;
12111 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12112 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12113 struct drm_plane *primary = crtc->primary;
12114 enum pipe pipe = intel_crtc->pipe;
12115 struct intel_flip_work *work;
12116 struct intel_engine_cs *engine;
12117 bool mmio_flip;
12118 struct drm_i915_gem_request *request;
12119 struct i915_vma *vma;
12120 int ret;
12121
12122 /*
12123 * drm_mode_page_flip_ioctl() should already catch this, but double
12124 * check to be safe. In the future we may enable pageflipping from
12125 * a disabled primary plane.
12126 */
12127 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
12128 return -EBUSY;
12129
12130 /* Can't change pixel format via MI display flips. */
12131 if (fb->pixel_format != crtc->primary->fb->pixel_format)
12132 return -EINVAL;
12133
12134 /*
12135 * TILEOFF/LINOFF registers can't be changed via MI display flips.
12136 * Note that pitch changes could also affect these register.
12137 */
12138 if (INTEL_GEN(dev_priv) > 3 &&
12139 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
12140 fb->pitches[0] != crtc->primary->fb->pitches[0]))
12141 return -EINVAL;
12142
12143 if (i915_terminally_wedged(&dev_priv->gpu_error))
12144 goto out_hang;
12145
12146 work = kzalloc(sizeof(*work), GFP_KERNEL);
12147 if (work == NULL)
12148 return -ENOMEM;
12149
12150 work->event = event;
12151 work->crtc = crtc;
12152 work->old_fb = old_fb;
12153 INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
12154
12155 ret = drm_crtc_vblank_get(crtc);
12156 if (ret)
12157 goto free_work;
12158
12159 /* We borrow the event spin lock for protecting flip_work */
12160 spin_lock_irq(&dev->event_lock);
12161 if (intel_crtc->flip_work) {
12162 /* Before declaring the flip queue wedged, check if
12163 * the hardware completed the operation behind our backs.
12164 */
12165 if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
12166 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
12167 page_flip_completed(intel_crtc);
12168 } else {
12169 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
12170 spin_unlock_irq(&dev->event_lock);
12171
12172 drm_crtc_vblank_put(crtc);
12173 kfree(work);
12174 return -EBUSY;
12175 }
12176 }
12177 intel_crtc->flip_work = work;
12178 spin_unlock_irq(&dev->event_lock);
12179
12180 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
12181 flush_workqueue(dev_priv->wq);
12182
12183 /* Reference the objects for the scheduled work. */
12184 drm_framebuffer_reference(work->old_fb);
12185
12186 crtc->primary->fb = fb;
12187 update_state_fb(crtc->primary);
12188
12189 work->pending_flip_obj = i915_gem_object_get(obj);
12190
12191 ret = i915_mutex_lock_interruptible(dev);
12192 if (ret)
12193 goto cleanup;
12194
12195 intel_crtc->reset_count = i915_reset_count(&dev_priv->gpu_error);
12196 if (i915_reset_in_progress_or_wedged(&dev_priv->gpu_error)) {
12197 ret = -EIO;
12198 goto unlock;
12199 }
12200
12201 atomic_inc(&intel_crtc->unpin_work_count);
12202
12203 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
12204 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
12205
12206 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
12207 engine = dev_priv->engine[BCS];
12208 if (fb->modifier != old_fb->modifier)
12209 /* vlv: DISPLAY_FLIP fails to change tiling */
12210 engine = NULL;
12211 } else if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
12212 engine = dev_priv->engine[BCS];
12213 } else if (INTEL_GEN(dev_priv) >= 7) {
12214 engine = i915_gem_object_last_write_engine(obj);
12215 if (engine == NULL || engine->id != RCS)
12216 engine = dev_priv->engine[BCS];
12217 } else {
12218 engine = dev_priv->engine[RCS];
12219 }
12220
12221 mmio_flip = use_mmio_flip(engine, obj);
12222
12223 vma = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
12224 if (IS_ERR(vma)) {
12225 ret = PTR_ERR(vma);
12226 goto cleanup_pending;
12227 }
12228
12229 work->old_vma = to_intel_plane_state(primary->state)->vma;
12230 to_intel_plane_state(primary->state)->vma = vma;
12231
12232 work->gtt_offset = i915_ggtt_offset(vma) + intel_crtc->dspaddr_offset;
12233 work->rotation = crtc->primary->state->rotation;
12234
12235 /*
12236 * There's the potential that the next frame will not be compatible with
12237 * FBC, so we want to call pre_update() before the actual page flip.
12238 * The problem is that pre_update() caches some information about the fb
12239 * object, so we want to do this only after the object is pinned. Let's
12240 * be on the safe side and do this immediately before scheduling the
12241 * flip.
12242 */
12243 intel_fbc_pre_update(intel_crtc, intel_crtc->config,
12244 to_intel_plane_state(primary->state));
12245
12246 if (mmio_flip) {
12247 INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
12248 queue_work(system_unbound_wq, &work->mmio_work);
12249 } else {
12250 request = i915_gem_request_alloc(engine, engine->last_context);
12251 if (IS_ERR(request)) {
12252 ret = PTR_ERR(request);
12253 goto cleanup_unpin;
12254 }
12255
12256 ret = i915_gem_request_await_object(request, obj, false);
12257 if (ret)
12258 goto cleanup_request;
12259
12260 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
12261 page_flip_flags);
12262 if (ret)
12263 goto cleanup_request;
12264
12265 intel_mark_page_flip_active(intel_crtc, work);
12266
12267 work->flip_queued_req = i915_gem_request_get(request);
12268 i915_add_request_no_flush(request);
12269 }
12270
12271 i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
12272 i915_gem_track_fb(intel_fb_obj(old_fb), obj,
12273 to_intel_plane(primary)->frontbuffer_bit);
12274 mutex_unlock(&dev->struct_mutex);
12275
12276 intel_frontbuffer_flip_prepare(to_i915(dev),
12277 to_intel_plane(primary)->frontbuffer_bit);
12278
12279 trace_i915_flip_request(intel_crtc->plane, obj);
12280
12281 return 0;
12282
12283cleanup_request:
12284 i915_add_request_no_flush(request);
12285cleanup_unpin:
12286 to_intel_plane_state(primary->state)->vma = work->old_vma;
12287 intel_unpin_fb_vma(vma);
12288cleanup_pending:
12289 atomic_dec(&intel_crtc->unpin_work_count);
12290unlock:
12291 mutex_unlock(&dev->struct_mutex);
12292cleanup:
12293 crtc->primary->fb = old_fb;
12294 update_state_fb(crtc->primary);
12295
12296 i915_gem_object_put(obj);
12297 drm_framebuffer_unreference(work->old_fb);
12298
12299 spin_lock_irq(&dev->event_lock);
12300 intel_crtc->flip_work = NULL;
12301 spin_unlock_irq(&dev->event_lock);
12302
12303 drm_crtc_vblank_put(crtc);
12304free_work:
12305 kfree(work);
12306
12307 if (ret == -EIO) {
12308 struct drm_atomic_state *state;
12309 struct drm_plane_state *plane_state;
12310
12311out_hang:
12312 state = drm_atomic_state_alloc(dev);
12313 if (!state)
12314 return -ENOMEM;
12315 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
12316
12317retry:
12318 plane_state = drm_atomic_get_plane_state(state, primary);
12319 ret = PTR_ERR_OR_ZERO(plane_state);
12320 if (!ret) {
12321 drm_atomic_set_fb_for_plane(plane_state, fb);
12322
12323 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
12324 if (!ret)
12325 ret = drm_atomic_commit(state);
12326 }
12327
12328 if (ret == -EDEADLK) {
12329 drm_modeset_backoff(state->acquire_ctx);
12330 drm_atomic_state_clear(state);
12331 goto retry;
12332 }
12333
12334 drm_atomic_state_put(state);
12335
12336 if (ret == 0 && event) {
12337 spin_lock_irq(&dev->event_lock);
12338 drm_crtc_send_vblank_event(crtc, event);
12339 spin_unlock_irq(&dev->event_lock);
12340 }
12341 }
12342 return ret;
12343}
12344
12345
12346/**
12347 * intel_wm_need_update - Check whether watermarks need updating
12348 * @plane: drm plane
12349 * @state: new plane state
12350 *
12351 * Check current plane state versus the new one to determine whether
12352 * watermarks need to be recalculated.
12353 *
12354 * Returns true or false.
12355 */
12356static bool intel_wm_need_update(struct drm_plane *plane,
12357 struct drm_plane_state *state)
12358{
12359 struct intel_plane_state *new = to_intel_plane_state(state);
12360 struct intel_plane_state *cur = to_intel_plane_state(plane->state);
12361
12362 /* Update watermarks on tiling or size changes. */
12363 if (new->base.visible != cur->base.visible)
12364 return true;
12365
12366 if (!cur->base.fb || !new->base.fb)
12367 return false;
12368
12369 if (cur->base.fb->modifier != new->base.fb->modifier ||
12370 cur->base.rotation != new->base.rotation ||
12371 drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
12372 drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
12373 drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
12374 drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
12375 return true;
12376
12377 return false;
12378}
12379
12380static bool needs_scaling(struct intel_plane_state *state)
12381{
12382 int src_w = drm_rect_width(&state->base.src) >> 16;
12383 int src_h = drm_rect_height(&state->base.src) >> 16;
12384 int dst_w = drm_rect_width(&state->base.dst);
12385 int dst_h = drm_rect_height(&state->base.dst);
12386
12387 return (src_w != dst_w || src_h != dst_h);
12388}
12389
12390int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
12391 struct drm_plane_state *plane_state)
12392{
12393 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
12394 struct drm_crtc *crtc = crtc_state->crtc;
12395 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12396 struct drm_plane *plane = plane_state->plane;
12397 struct drm_device *dev = crtc->dev;
12398 struct drm_i915_private *dev_priv = to_i915(dev);
12399 struct intel_plane_state *old_plane_state =
12400 to_intel_plane_state(plane->state);
12401 bool mode_changed = needs_modeset(crtc_state);
12402 bool was_crtc_enabled = crtc->state->active;
12403 bool is_crtc_enabled = crtc_state->active;
12404 bool turn_off, turn_on, visible, was_visible;
12405 struct drm_framebuffer *fb = plane_state->fb;
12406 int ret;
12407
12408 if (INTEL_GEN(dev_priv) >= 9 && plane->type != DRM_PLANE_TYPE_CURSOR) {
12409 ret = skl_update_scaler_plane(
12410 to_intel_crtc_state(crtc_state),
12411 to_intel_plane_state(plane_state));
12412 if (ret)
12413 return ret;
12414 }
12415
12416 was_visible = old_plane_state->base.visible;
12417 visible = to_intel_plane_state(plane_state)->base.visible;
12418
12419 if (!was_crtc_enabled && WARN_ON(was_visible))
12420 was_visible = false;
12421
12422 /*
12423 * Visibility is calculated as if the crtc was on, but
12424 * after scaler setup everything depends on it being off
12425 * when the crtc isn't active.
12426 *
12427 * FIXME this is wrong for watermarks. Watermarks should also
12428 * be computed as if the pipe would be active. Perhaps move
12429 * per-plane wm computation to the .check_plane() hook, and
12430 * only combine the results from all planes in the current place?
12431 */
12432 if (!is_crtc_enabled)
12433 to_intel_plane_state(plane_state)->base.visible = visible = false;
12434
12435 if (!was_visible && !visible)
12436 return 0;
12437
12438 if (fb != old_plane_state->base.fb)
12439 pipe_config->fb_changed = true;
12440
12441 turn_off = was_visible && (!visible || mode_changed);
12442 turn_on = visible && (!was_visible || mode_changed);
12443
12444 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
12445 intel_crtc->base.base.id,
12446 intel_crtc->base.name,
12447 plane->base.id, plane->name,
12448 fb ? fb->base.id : -1);
12449
12450 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
12451 plane->base.id, plane->name,
12452 was_visible, visible,
12453 turn_off, turn_on, mode_changed);
12454
12455 if (turn_on) {
12456 pipe_config->update_wm_pre = true;
12457
12458 /* must disable cxsr around plane enable/disable */
12459 if (plane->type != DRM_PLANE_TYPE_CURSOR)
12460 pipe_config->disable_cxsr = true;
12461 } else if (turn_off) {
12462 pipe_config->update_wm_post = true;
12463
12464 /* must disable cxsr around plane enable/disable */
12465 if (plane->type != DRM_PLANE_TYPE_CURSOR)
12466 pipe_config->disable_cxsr = true;
12467 } else if (intel_wm_need_update(plane, plane_state)) {
12468 /* FIXME bollocks */
12469 pipe_config->update_wm_pre = true;
12470 pipe_config->update_wm_post = true;
12471 }
12472
12473 /* Pre-gen9 platforms need two-step watermark updates */
12474 if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
12475 INTEL_GEN(dev_priv) < 9 && dev_priv->display.optimize_watermarks)
12476 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
12477
12478 if (visible || was_visible)
12479 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
12480
12481 /*
12482 * WaCxSRDisabledForSpriteScaling:ivb
12483 *
12484 * cstate->update_wm was already set above, so this flag will
12485 * take effect when we commit and program watermarks.
12486 */
12487 if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev_priv) &&
12488 needs_scaling(to_intel_plane_state(plane_state)) &&
12489 !needs_scaling(old_plane_state))
12490 pipe_config->disable_lp_wm = true;
12491
12492 return 0;
12493}
12494
12495static bool encoders_cloneable(const struct intel_encoder *a,
12496 const struct intel_encoder *b)
12497{
12498 /* masks could be asymmetric, so check both ways */
12499 return a == b || (a->cloneable & (1 << b->type) &&
12500 b->cloneable & (1 << a->type));
12501}
12502
12503static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12504 struct intel_crtc *crtc,
12505 struct intel_encoder *encoder)
12506{
12507 struct intel_encoder *source_encoder;
12508 struct drm_connector *connector;
12509 struct drm_connector_state *connector_state;
12510 int i;
12511
12512 for_each_connector_in_state(state, connector, connector_state, i) {
12513 if (connector_state->crtc != &crtc->base)
12514 continue;
12515
12516 source_encoder =
12517 to_intel_encoder(connector_state->best_encoder);
12518 if (!encoders_cloneable(encoder, source_encoder))
12519 return false;
12520 }
12521
12522 return true;
12523}
12524
12525static int intel_crtc_atomic_check(struct drm_crtc *crtc,
12526 struct drm_crtc_state *crtc_state)
12527{
12528 struct drm_device *dev = crtc->dev;
12529 struct drm_i915_private *dev_priv = to_i915(dev);
12530 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12531 struct intel_crtc_state *pipe_config =
12532 to_intel_crtc_state(crtc_state);
12533 struct drm_atomic_state *state = crtc_state->state;
12534 int ret;
12535 bool mode_changed = needs_modeset(crtc_state);
12536
12537 if (mode_changed && !crtc_state->active)
12538 pipe_config->update_wm_post = true;
12539
12540 if (mode_changed && crtc_state->enable &&
12541 dev_priv->display.crtc_compute_clock &&
12542 !WARN_ON(pipe_config->shared_dpll)) {
12543 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12544 pipe_config);
12545 if (ret)
12546 return ret;
12547 }
12548
12549 if (crtc_state->color_mgmt_changed) {
12550 ret = intel_color_check(crtc, crtc_state);
12551 if (ret)
12552 return ret;
12553
12554 /*
12555 * Changing color management on Intel hardware is
12556 * handled as part of planes update.
12557 */
12558 crtc_state->planes_changed = true;
12559 }
12560
12561 ret = 0;
12562 if (dev_priv->display.compute_pipe_wm) {
12563 ret = dev_priv->display.compute_pipe_wm(pipe_config);
12564 if (ret) {
12565 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12566 return ret;
12567 }
12568 }
12569
12570 if (dev_priv->display.compute_intermediate_wm &&
12571 !to_intel_atomic_state(state)->skip_intermediate_wm) {
12572 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12573 return 0;
12574
12575 /*
12576 * Calculate 'intermediate' watermarks that satisfy both the
12577 * old state and the new state. We can program these
12578 * immediately.
12579 */
12580 ret = dev_priv->display.compute_intermediate_wm(dev,
12581 intel_crtc,
12582 pipe_config);
12583 if (ret) {
12584 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12585 return ret;
12586 }
12587 } else if (dev_priv->display.compute_intermediate_wm) {
12588 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
12589 pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
12590 }
12591
12592 if (INTEL_GEN(dev_priv) >= 9) {
12593 if (mode_changed)
12594 ret = skl_update_scaler_crtc(pipe_config);
12595
12596 if (!ret)
12597 ret = intel_atomic_setup_scalers(dev, intel_crtc,
12598 pipe_config);
12599 }
12600
12601 return ret;
12602}
12603
12604static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12605 .mode_set_base_atomic = intel_pipe_set_base_atomic,
12606 .atomic_begin = intel_begin_crtc_commit,
12607 .atomic_flush = intel_finish_crtc_commit,
12608 .atomic_check = intel_crtc_atomic_check,
12609};
12610
12611static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12612{
12613 struct intel_connector *connector;
12614
12615 for_each_intel_connector(dev, connector) {
12616 if (connector->base.state->crtc)
12617 drm_connector_unreference(&connector->base);
12618
12619 if (connector->base.encoder) {
12620 connector->base.state->best_encoder =
12621 connector->base.encoder;
12622 connector->base.state->crtc =
12623 connector->base.encoder->crtc;
12624
12625 drm_connector_reference(&connector->base);
12626 } else {
12627 connector->base.state->best_encoder = NULL;
12628 connector->base.state->crtc = NULL;
12629 }
12630 }
12631}
12632
12633static void
12634connected_sink_compute_bpp(struct intel_connector *connector,
12635 struct intel_crtc_state *pipe_config)
12636{
12637 const struct drm_display_info *info = &connector->base.display_info;
12638 int bpp = pipe_config->pipe_bpp;
12639
12640 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12641 connector->base.base.id,
12642 connector->base.name);
12643
12644 /* Don't use an invalid EDID bpc value */
12645 if (info->bpc != 0 && info->bpc * 3 < bpp) {
12646 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12647 bpp, info->bpc * 3);
12648 pipe_config->pipe_bpp = info->bpc * 3;
12649 }
12650
12651 /* Clamp bpp to 8 on screens without EDID 1.4 */
12652 if (info->bpc == 0 && bpp > 24) {
12653 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
12654 bpp);
12655 pipe_config->pipe_bpp = 24;
12656 }
12657}
12658
12659static int
12660compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12661 struct intel_crtc_state *pipe_config)
12662{
12663 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12664 struct drm_atomic_state *state;
12665 struct drm_connector *connector;
12666 struct drm_connector_state *connector_state;
12667 int bpp, i;
12668
12669 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
12670 IS_CHERRYVIEW(dev_priv)))
12671 bpp = 10*3;
12672 else if (INTEL_GEN(dev_priv) >= 5)
12673 bpp = 12*3;
12674 else
12675 bpp = 8*3;
12676
12677
12678 pipe_config->pipe_bpp = bpp;
12679
12680 state = pipe_config->base.state;
12681
12682 /* Clamp display bpp to EDID value */
12683 for_each_connector_in_state(state, connector, connector_state, i) {
12684 if (connector_state->crtc != &crtc->base)
12685 continue;
12686
12687 connected_sink_compute_bpp(to_intel_connector(connector),
12688 pipe_config);
12689 }
12690
12691 return bpp;
12692}
12693
12694static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12695{
12696 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12697 "type: 0x%x flags: 0x%x\n",
12698 mode->crtc_clock,
12699 mode->crtc_hdisplay, mode->crtc_hsync_start,
12700 mode->crtc_hsync_end, mode->crtc_htotal,
12701 mode->crtc_vdisplay, mode->crtc_vsync_start,
12702 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12703}
12704
12705static inline void
12706intel_dump_m_n_config(struct intel_crtc_state *pipe_config, char *id,
12707 unsigned int lane_count, struct intel_link_m_n *m_n)
12708{
12709 DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12710 id, lane_count,
12711 m_n->gmch_m, m_n->gmch_n,
12712 m_n->link_m, m_n->link_n, m_n->tu);
12713}
12714
12715static void intel_dump_pipe_config(struct intel_crtc *crtc,
12716 struct intel_crtc_state *pipe_config,
12717 const char *context)
12718{
12719 struct drm_device *dev = crtc->base.dev;
12720 struct drm_i915_private *dev_priv = to_i915(dev);
12721 struct drm_plane *plane;
12722 struct intel_plane *intel_plane;
12723 struct intel_plane_state *state;
12724 struct drm_framebuffer *fb;
12725
12726 DRM_DEBUG_KMS("[CRTC:%d:%s]%s\n",
12727 crtc->base.base.id, crtc->base.name, context);
12728
12729 DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
12730 transcoder_name(pipe_config->cpu_transcoder),
12731 pipe_config->pipe_bpp, pipe_config->dither);
12732
12733 if (pipe_config->has_pch_encoder)
12734 intel_dump_m_n_config(pipe_config, "fdi",
12735 pipe_config->fdi_lanes,
12736 &pipe_config->fdi_m_n);
12737
12738 if (intel_crtc_has_dp_encoder(pipe_config)) {
12739 intel_dump_m_n_config(pipe_config, "dp m_n",
12740 pipe_config->lane_count, &pipe_config->dp_m_n);
12741 if (pipe_config->has_drrs)
12742 intel_dump_m_n_config(pipe_config, "dp m2_n2",
12743 pipe_config->lane_count,
12744 &pipe_config->dp_m2_n2);
12745 }
12746
12747 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12748 pipe_config->has_audio, pipe_config->has_infoframe);
12749
12750 DRM_DEBUG_KMS("requested mode:\n");
12751 drm_mode_debug_printmodeline(&pipe_config->base.mode);
12752 DRM_DEBUG_KMS("adjusted mode:\n");
12753 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12754 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12755 DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d\n",
12756 pipe_config->port_clock,
12757 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12758
12759 if (INTEL_GEN(dev_priv) >= 9)
12760 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12761 crtc->num_scalers,
12762 pipe_config->scaler_state.scaler_users,
12763 pipe_config->scaler_state.scaler_id);
12764
12765 if (HAS_GMCH_DISPLAY(dev_priv))
12766 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12767 pipe_config->gmch_pfit.control,
12768 pipe_config->gmch_pfit.pgm_ratios,
12769 pipe_config->gmch_pfit.lvds_border_bits);
12770 else
12771 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12772 pipe_config->pch_pfit.pos,
12773 pipe_config->pch_pfit.size,
12774 enableddisabled(pipe_config->pch_pfit.enabled));
12775
12776 DRM_DEBUG_KMS("ips: %i, double wide: %i\n",
12777 pipe_config->ips_enabled, pipe_config->double_wide);
12778
12779 if (IS_BROXTON(dev_priv)) {
12780 DRM_DEBUG_KMS("dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12781 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12782 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12783 pipe_config->dpll_hw_state.ebb0,
12784 pipe_config->dpll_hw_state.ebb4,
12785 pipe_config->dpll_hw_state.pll0,
12786 pipe_config->dpll_hw_state.pll1,
12787 pipe_config->dpll_hw_state.pll2,
12788 pipe_config->dpll_hw_state.pll3,
12789 pipe_config->dpll_hw_state.pll6,
12790 pipe_config->dpll_hw_state.pll8,
12791 pipe_config->dpll_hw_state.pll9,
12792 pipe_config->dpll_hw_state.pll10,
12793 pipe_config->dpll_hw_state.pcsdw12);
12794 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
12795 DRM_DEBUG_KMS("dpll_hw_state: "
12796 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12797 pipe_config->dpll_hw_state.ctrl1,
12798 pipe_config->dpll_hw_state.cfgcr1,
12799 pipe_config->dpll_hw_state.cfgcr2);
12800 } else if (HAS_DDI(dev_priv)) {
12801 DRM_DEBUG_KMS("dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12802 pipe_config->dpll_hw_state.wrpll,
12803 pipe_config->dpll_hw_state.spll);
12804 } else {
12805 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12806 "fp0: 0x%x, fp1: 0x%x\n",
12807 pipe_config->dpll_hw_state.dpll,
12808 pipe_config->dpll_hw_state.dpll_md,
12809 pipe_config->dpll_hw_state.fp0,
12810 pipe_config->dpll_hw_state.fp1);
12811 }
12812
12813 DRM_DEBUG_KMS("planes on this crtc\n");
12814 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12815 struct drm_format_name_buf format_name;
12816 intel_plane = to_intel_plane(plane);
12817 if (intel_plane->pipe != crtc->pipe)
12818 continue;
12819
12820 state = to_intel_plane_state(plane->state);
12821 fb = state->base.fb;
12822 if (!fb) {
12823 DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
12824 plane->base.id, plane->name, state->scaler_id);
12825 continue;
12826 }
12827
12828 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d, fb = %ux%u format = %s\n",
12829 plane->base.id, plane->name,
12830 fb->base.id, fb->width, fb->height,
12831 drm_get_format_name(fb->pixel_format, &format_name));
12832 if (INTEL_GEN(dev_priv) >= 9)
12833 DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
12834 state->scaler_id,
12835 state->base.src.x1 >> 16,
12836 state->base.src.y1 >> 16,
12837 drm_rect_width(&state->base.src) >> 16,
12838 drm_rect_height(&state->base.src) >> 16,
12839 state->base.dst.x1, state->base.dst.y1,
12840 drm_rect_width(&state->base.dst),
12841 drm_rect_height(&state->base.dst));
12842 }
12843}
12844
12845static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12846{
12847 struct drm_device *dev = state->dev;
12848 struct drm_connector *connector;
12849 unsigned int used_ports = 0;
12850 unsigned int used_mst_ports = 0;
12851
12852 /*
12853 * Walk the connector list instead of the encoder
12854 * list to detect the problem on ddi platforms
12855 * where there's just one encoder per digital port.
12856 */
12857 drm_for_each_connector(connector, dev) {
12858 struct drm_connector_state *connector_state;
12859 struct intel_encoder *encoder;
12860
12861 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12862 if (!connector_state)
12863 connector_state = connector->state;
12864
12865 if (!connector_state->best_encoder)
12866 continue;
12867
12868 encoder = to_intel_encoder(connector_state->best_encoder);
12869
12870 WARN_ON(!connector_state->crtc);
12871
12872 switch (encoder->type) {
12873 unsigned int port_mask;
12874 case INTEL_OUTPUT_UNKNOWN:
12875 if (WARN_ON(!HAS_DDI(to_i915(dev))))
12876 break;
12877 case INTEL_OUTPUT_DP:
12878 case INTEL_OUTPUT_HDMI:
12879 case INTEL_OUTPUT_EDP:
12880 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12881
12882 /* the same port mustn't appear more than once */
12883 if (used_ports & port_mask)
12884 return false;
12885
12886 used_ports |= port_mask;
12887 break;
12888 case INTEL_OUTPUT_DP_MST:
12889 used_mst_ports |=
12890 1 << enc_to_mst(&encoder->base)->primary->port;
12891 break;
12892 default:
12893 break;
12894 }
12895 }
12896
12897 /* can't mix MST and SST/HDMI on the same port */
12898 if (used_ports & used_mst_ports)
12899 return false;
12900
12901 return true;
12902}
12903
12904static void
12905clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12906{
12907 struct drm_crtc_state tmp_state;
12908 struct intel_crtc_scaler_state scaler_state;
12909 struct intel_dpll_hw_state dpll_hw_state;
12910 struct intel_shared_dpll *shared_dpll;
12911 bool force_thru;
12912
12913 /* FIXME: before the switch to atomic started, a new pipe_config was
12914 * kzalloc'd. Code that depends on any field being zero should be
12915 * fixed, so that the crtc_state can be safely duplicated. For now,
12916 * only fields that are know to not cause problems are preserved. */
12917
12918 tmp_state = crtc_state->base;
12919 scaler_state = crtc_state->scaler_state;
12920 shared_dpll = crtc_state->shared_dpll;
12921 dpll_hw_state = crtc_state->dpll_hw_state;
12922 force_thru = crtc_state->pch_pfit.force_thru;
12923
12924 memset(crtc_state, 0, sizeof *crtc_state);
12925
12926 crtc_state->base = tmp_state;
12927 crtc_state->scaler_state = scaler_state;
12928 crtc_state->shared_dpll = shared_dpll;
12929 crtc_state->dpll_hw_state = dpll_hw_state;
12930 crtc_state->pch_pfit.force_thru = force_thru;
12931}
12932
12933static int
12934intel_modeset_pipe_config(struct drm_crtc *crtc,
12935 struct intel_crtc_state *pipe_config)
12936{
12937 struct drm_atomic_state *state = pipe_config->base.state;
12938 struct intel_encoder *encoder;
12939 struct drm_connector *connector;
12940 struct drm_connector_state *connector_state;
12941 int base_bpp, ret = -EINVAL;
12942 int i;
12943 bool retry = true;
12944
12945 clear_intel_crtc_state(pipe_config);
12946
12947 pipe_config->cpu_transcoder =
12948 (enum transcoder) to_intel_crtc(crtc)->pipe;
12949
12950 /*
12951 * Sanitize sync polarity flags based on requested ones. If neither
12952 * positive or negative polarity is requested, treat this as meaning
12953 * negative polarity.
12954 */
12955 if (!(pipe_config->base.adjusted_mode.flags &
12956 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12957 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12958
12959 if (!(pipe_config->base.adjusted_mode.flags &
12960 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12961 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12962
12963 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12964 pipe_config);
12965 if (base_bpp < 0)
12966 goto fail;
12967
12968 /*
12969 * Determine the real pipe dimensions. Note that stereo modes can
12970 * increase the actual pipe size due to the frame doubling and
12971 * insertion of additional space for blanks between the frame. This
12972 * is stored in the crtc timings. We use the requested mode to do this
12973 * computation to clearly distinguish it from the adjusted mode, which
12974 * can be changed by the connectors in the below retry loop.
12975 */
12976 drm_crtc_get_hv_timing(&pipe_config->base.mode,
12977 &pipe_config->pipe_src_w,
12978 &pipe_config->pipe_src_h);
12979
12980 for_each_connector_in_state(state, connector, connector_state, i) {
12981 if (connector_state->crtc != crtc)
12982 continue;
12983
12984 encoder = to_intel_encoder(connector_state->best_encoder);
12985
12986 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
12987 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
12988 goto fail;
12989 }
12990
12991 /*
12992 * Determine output_types before calling the .compute_config()
12993 * hooks so that the hooks can use this information safely.
12994 */
12995 pipe_config->output_types |= 1 << encoder->type;
12996 }
12997
12998encoder_retry:
12999 /* Ensure the port clock defaults are reset when retrying. */
13000 pipe_config->port_clock = 0;
13001 pipe_config->pixel_multiplier = 1;
13002
13003 /* Fill in default crtc timings, allow encoders to overwrite them. */
13004 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
13005 CRTC_STEREO_DOUBLE);
13006
13007 /* Pass our mode to the connectors and the CRTC to give them a chance to
13008 * adjust it according to limitations or connector properties, and also
13009 * a chance to reject the mode entirely.
13010 */
13011 for_each_connector_in_state(state, connector, connector_state, i) {
13012 if (connector_state->crtc != crtc)
13013 continue;
13014
13015 encoder = to_intel_encoder(connector_state->best_encoder);
13016
13017 if (!(encoder->compute_config(encoder, pipe_config, connector_state))) {
13018 DRM_DEBUG_KMS("Encoder config failure\n");
13019 goto fail;
13020 }
13021 }
13022
13023 /* Set default port clock if not overwritten by the encoder. Needs to be
13024 * done afterwards in case the encoder adjusts the mode. */
13025 if (!pipe_config->port_clock)
13026 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
13027 * pipe_config->pixel_multiplier;
13028
13029 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
13030 if (ret < 0) {
13031 DRM_DEBUG_KMS("CRTC fixup failed\n");
13032 goto fail;
13033 }
13034
13035 if (ret == RETRY) {
13036 if (WARN(!retry, "loop in pipe configuration computation\n")) {
13037 ret = -EINVAL;
13038 goto fail;
13039 }
13040
13041 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
13042 retry = false;
13043 goto encoder_retry;
13044 }
13045
13046 /* Dithering seems to not pass-through bits correctly when it should, so
13047 * only enable it on 6bpc panels. */
13048 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
13049 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
13050 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
13051
13052fail:
13053 return ret;
13054}
13055
13056static void
13057intel_modeset_update_crtc_state(struct drm_atomic_state *state)
13058{
13059 struct drm_crtc *crtc;
13060 struct drm_crtc_state *crtc_state;
13061 int i;
13062
13063 /* Double check state. */
13064 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13065 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
13066
13067 /* Update hwmode for vblank functions */
13068 if (crtc->state->active)
13069 crtc->hwmode = crtc->state->adjusted_mode;
13070 else
13071 crtc->hwmode.crtc_clock = 0;
13072
13073 /*
13074 * Update legacy state to satisfy fbc code. This can
13075 * be removed when fbc uses the atomic state.
13076 */
13077 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
13078 struct drm_plane_state *plane_state = crtc->primary->state;
13079
13080 crtc->primary->fb = plane_state->fb;
13081 crtc->x = plane_state->src_x >> 16;
13082 crtc->y = plane_state->src_y >> 16;
13083 }
13084 }
13085}
13086
13087static bool intel_fuzzy_clock_check(int clock1, int clock2)
13088{
13089 int diff;
13090
13091 if (clock1 == clock2)
13092 return true;
13093
13094 if (!clock1 || !clock2)
13095 return false;
13096
13097 diff = abs(clock1 - clock2);
13098
13099 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
13100 return true;
13101
13102 return false;
13103}
13104
13105static bool
13106intel_compare_m_n(unsigned int m, unsigned int n,
13107 unsigned int m2, unsigned int n2,
13108 bool exact)
13109{
13110 if (m == m2 && n == n2)
13111 return true;
13112
13113 if (exact || !m || !n || !m2 || !n2)
13114 return false;
13115
13116 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
13117
13118 if (n > n2) {
13119 while (n > n2) {
13120 m2 <<= 1;
13121 n2 <<= 1;
13122 }
13123 } else if (n < n2) {
13124 while (n < n2) {
13125 m <<= 1;
13126 n <<= 1;
13127 }
13128 }
13129
13130 if (n != n2)
13131 return false;
13132
13133 return intel_fuzzy_clock_check(m, m2);
13134}
13135
13136static bool
13137intel_compare_link_m_n(const struct intel_link_m_n *m_n,
13138 struct intel_link_m_n *m2_n2,
13139 bool adjust)
13140{
13141 if (m_n->tu == m2_n2->tu &&
13142 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
13143 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
13144 intel_compare_m_n(m_n->link_m, m_n->link_n,
13145 m2_n2->link_m, m2_n2->link_n, !adjust)) {
13146 if (adjust)
13147 *m2_n2 = *m_n;
13148
13149 return true;
13150 }
13151
13152 return false;
13153}
13154
13155static bool
13156intel_pipe_config_compare(struct drm_i915_private *dev_priv,
13157 struct intel_crtc_state *current_config,
13158 struct intel_crtc_state *pipe_config,
13159 bool adjust)
13160{
13161 bool ret = true;
13162
13163#define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
13164 do { \
13165 if (!adjust) \
13166 DRM_ERROR(fmt, ##__VA_ARGS__); \
13167 else \
13168 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
13169 } while (0)
13170
13171#define PIPE_CONF_CHECK_X(name) \
13172 if (current_config->name != pipe_config->name) { \
13173 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13174 "(expected 0x%08x, found 0x%08x)\n", \
13175 current_config->name, \
13176 pipe_config->name); \
13177 ret = false; \
13178 }
13179
13180#define PIPE_CONF_CHECK_I(name) \
13181 if (current_config->name != pipe_config->name) { \
13182 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13183 "(expected %i, found %i)\n", \
13184 current_config->name, \
13185 pipe_config->name); \
13186 ret = false; \
13187 }
13188
13189#define PIPE_CONF_CHECK_P(name) \
13190 if (current_config->name != pipe_config->name) { \
13191 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13192 "(expected %p, found %p)\n", \
13193 current_config->name, \
13194 pipe_config->name); \
13195 ret = false; \
13196 }
13197
13198#define PIPE_CONF_CHECK_M_N(name) \
13199 if (!intel_compare_link_m_n(¤t_config->name, \
13200 &pipe_config->name,\
13201 adjust)) { \
13202 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13203 "(expected tu %i gmch %i/%i link %i/%i, " \
13204 "found tu %i, gmch %i/%i link %i/%i)\n", \
13205 current_config->name.tu, \
13206 current_config->name.gmch_m, \
13207 current_config->name.gmch_n, \
13208 current_config->name.link_m, \
13209 current_config->name.link_n, \
13210 pipe_config->name.tu, \
13211 pipe_config->name.gmch_m, \
13212 pipe_config->name.gmch_n, \
13213 pipe_config->name.link_m, \
13214 pipe_config->name.link_n); \
13215 ret = false; \
13216 }
13217
13218/* This is required for BDW+ where there is only one set of registers for
13219 * switching between high and low RR.
13220 * This macro can be used whenever a comparison has to be made between one
13221 * hw state and multiple sw state variables.
13222 */
13223#define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
13224 if (!intel_compare_link_m_n(¤t_config->name, \
13225 &pipe_config->name, adjust) && \
13226 !intel_compare_link_m_n(¤t_config->alt_name, \
13227 &pipe_config->name, adjust)) { \
13228 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13229 "(expected tu %i gmch %i/%i link %i/%i, " \
13230 "or tu %i gmch %i/%i link %i/%i, " \
13231 "found tu %i, gmch %i/%i link %i/%i)\n", \
13232 current_config->name.tu, \
13233 current_config->name.gmch_m, \
13234 current_config->name.gmch_n, \
13235 current_config->name.link_m, \
13236 current_config->name.link_n, \
13237 current_config->alt_name.tu, \
13238 current_config->alt_name.gmch_m, \
13239 current_config->alt_name.gmch_n, \
13240 current_config->alt_name.link_m, \
13241 current_config->alt_name.link_n, \
13242 pipe_config->name.tu, \
13243 pipe_config->name.gmch_m, \
13244 pipe_config->name.gmch_n, \
13245 pipe_config->name.link_m, \
13246 pipe_config->name.link_n); \
13247 ret = false; \
13248 }
13249
13250#define PIPE_CONF_CHECK_FLAGS(name, mask) \
13251 if ((current_config->name ^ pipe_config->name) & (mask)) { \
13252 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
13253 "(expected %i, found %i)\n", \
13254 current_config->name & (mask), \
13255 pipe_config->name & (mask)); \
13256 ret = false; \
13257 }
13258
13259#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
13260 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
13261 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13262 "(expected %i, found %i)\n", \
13263 current_config->name, \
13264 pipe_config->name); \
13265 ret = false; \
13266 }
13267
13268#define PIPE_CONF_QUIRK(quirk) \
13269 ((current_config->quirks | pipe_config->quirks) & (quirk))
13270
13271 PIPE_CONF_CHECK_I(cpu_transcoder);
13272
13273 PIPE_CONF_CHECK_I(has_pch_encoder);
13274 PIPE_CONF_CHECK_I(fdi_lanes);
13275 PIPE_CONF_CHECK_M_N(fdi_m_n);
13276
13277 PIPE_CONF_CHECK_I(lane_count);
13278 PIPE_CONF_CHECK_X(lane_lat_optim_mask);
13279
13280 if (INTEL_GEN(dev_priv) < 8) {
13281 PIPE_CONF_CHECK_M_N(dp_m_n);
13282
13283 if (current_config->has_drrs)
13284 PIPE_CONF_CHECK_M_N(dp_m2_n2);
13285 } else
13286 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
13287
13288 PIPE_CONF_CHECK_X(output_types);
13289
13290 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
13291 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
13292 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
13293 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
13294 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
13295 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
13296
13297 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
13298 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
13299 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
13300 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
13301 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
13302 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
13303
13304 PIPE_CONF_CHECK_I(pixel_multiplier);
13305 PIPE_CONF_CHECK_I(has_hdmi_sink);
13306 if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
13307 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13308 PIPE_CONF_CHECK_I(limited_color_range);
13309 PIPE_CONF_CHECK_I(has_infoframe);
13310
13311 PIPE_CONF_CHECK_I(has_audio);
13312
13313 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13314 DRM_MODE_FLAG_INTERLACE);
13315
13316 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
13317 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13318 DRM_MODE_FLAG_PHSYNC);
13319 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13320 DRM_MODE_FLAG_NHSYNC);
13321 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13322 DRM_MODE_FLAG_PVSYNC);
13323 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13324 DRM_MODE_FLAG_NVSYNC);
13325 }
13326
13327 PIPE_CONF_CHECK_X(gmch_pfit.control);
13328 /* pfit ratios are autocomputed by the hw on gen4+ */
13329 if (INTEL_GEN(dev_priv) < 4)
13330 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
13331 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
13332
13333 if (!adjust) {
13334 PIPE_CONF_CHECK_I(pipe_src_w);
13335 PIPE_CONF_CHECK_I(pipe_src_h);
13336
13337 PIPE_CONF_CHECK_I(pch_pfit.enabled);
13338 if (current_config->pch_pfit.enabled) {
13339 PIPE_CONF_CHECK_X(pch_pfit.pos);
13340 PIPE_CONF_CHECK_X(pch_pfit.size);
13341 }
13342
13343 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
13344 }
13345
13346 /* BDW+ don't expose a synchronous way to read the state */
13347 if (IS_HASWELL(dev_priv))
13348 PIPE_CONF_CHECK_I(ips_enabled);
13349
13350 PIPE_CONF_CHECK_I(double_wide);
13351
13352 PIPE_CONF_CHECK_P(shared_dpll);
13353 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
13354 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
13355 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
13356 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
13357 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
13358 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
13359 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
13360 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
13361 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
13362
13363 PIPE_CONF_CHECK_X(dsi_pll.ctrl);
13364 PIPE_CONF_CHECK_X(dsi_pll.div);
13365
13366 if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
13367 PIPE_CONF_CHECK_I(pipe_bpp);
13368
13369 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
13370 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
13371
13372#undef PIPE_CONF_CHECK_X
13373#undef PIPE_CONF_CHECK_I
13374#undef PIPE_CONF_CHECK_P
13375#undef PIPE_CONF_CHECK_FLAGS
13376#undef PIPE_CONF_CHECK_CLOCK_FUZZY
13377#undef PIPE_CONF_QUIRK
13378#undef INTEL_ERR_OR_DBG_KMS
13379
13380 return ret;
13381}
13382
13383static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
13384 const struct intel_crtc_state *pipe_config)
13385{
13386 if (pipe_config->has_pch_encoder) {
13387 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
13388 &pipe_config->fdi_m_n);
13389 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
13390
13391 /*
13392 * FDI already provided one idea for the dotclock.
13393 * Yell if the encoder disagrees.
13394 */
13395 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
13396 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
13397 fdi_dotclock, dotclock);
13398 }
13399}
13400
13401static void verify_wm_state(struct drm_crtc *crtc,
13402 struct drm_crtc_state *new_state)
13403{
13404 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
13405 struct skl_ddb_allocation hw_ddb, *sw_ddb;
13406 struct skl_pipe_wm hw_wm, *sw_wm;
13407 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
13408 struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
13409 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13410 const enum pipe pipe = intel_crtc->pipe;
13411 int plane, level, max_level = ilk_wm_max_level(dev_priv);
13412
13413 if (INTEL_GEN(dev_priv) < 9 || !new_state->active)
13414 return;
13415
13416 skl_pipe_wm_get_hw_state(crtc, &hw_wm);
13417 sw_wm = &to_intel_crtc_state(new_state)->wm.skl.optimal;
13418
13419 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
13420 sw_ddb = &dev_priv->wm.skl_hw.ddb;
13421
13422 /* planes */
13423 for_each_universal_plane(dev_priv, pipe, plane) {
13424 hw_plane_wm = &hw_wm.planes[plane];
13425 sw_plane_wm = &sw_wm->planes[plane];
13426
13427 /* Watermarks */
13428 for (level = 0; level <= max_level; level++) {
13429 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
13430 &sw_plane_wm->wm[level]))
13431 continue;
13432
13433 DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13434 pipe_name(pipe), plane + 1, level,
13435 sw_plane_wm->wm[level].plane_en,
13436 sw_plane_wm->wm[level].plane_res_b,
13437 sw_plane_wm->wm[level].plane_res_l,
13438 hw_plane_wm->wm[level].plane_en,
13439 hw_plane_wm->wm[level].plane_res_b,
13440 hw_plane_wm->wm[level].plane_res_l);
13441 }
13442
13443 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
13444 &sw_plane_wm->trans_wm)) {
13445 DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13446 pipe_name(pipe), plane + 1,
13447 sw_plane_wm->trans_wm.plane_en,
13448 sw_plane_wm->trans_wm.plane_res_b,
13449 sw_plane_wm->trans_wm.plane_res_l,
13450 hw_plane_wm->trans_wm.plane_en,
13451 hw_plane_wm->trans_wm.plane_res_b,
13452 hw_plane_wm->trans_wm.plane_res_l);
13453 }
13454
13455 /* DDB */
13456 hw_ddb_entry = &hw_ddb.plane[pipe][plane];
13457 sw_ddb_entry = &sw_ddb->plane[pipe][plane];
13458
13459 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
13460 DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
13461 pipe_name(pipe), plane + 1,
13462 sw_ddb_entry->start, sw_ddb_entry->end,
13463 hw_ddb_entry->start, hw_ddb_entry->end);
13464 }
13465 }
13466
13467 /*
13468 * cursor
13469 * If the cursor plane isn't active, we may not have updated it's ddb
13470 * allocation. In that case since the ddb allocation will be updated
13471 * once the plane becomes visible, we can skip this check
13472 */
13473 if (intel_crtc->cursor_addr) {
13474 hw_plane_wm = &hw_wm.planes[PLANE_CURSOR];
13475 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
13476
13477 /* Watermarks */
13478 for (level = 0; level <= max_level; level++) {
13479 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
13480 &sw_plane_wm->wm[level]))
13481 continue;
13482
13483 DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13484 pipe_name(pipe), level,
13485 sw_plane_wm->wm[level].plane_en,
13486 sw_plane_wm->wm[level].plane_res_b,
13487 sw_plane_wm->wm[level].plane_res_l,
13488 hw_plane_wm->wm[level].plane_en,
13489 hw_plane_wm->wm[level].plane_res_b,
13490 hw_plane_wm->wm[level].plane_res_l);
13491 }
13492
13493 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
13494 &sw_plane_wm->trans_wm)) {
13495 DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13496 pipe_name(pipe),
13497 sw_plane_wm->trans_wm.plane_en,
13498 sw_plane_wm->trans_wm.plane_res_b,
13499 sw_plane_wm->trans_wm.plane_res_l,
13500 hw_plane_wm->trans_wm.plane_en,
13501 hw_plane_wm->trans_wm.plane_res_b,
13502 hw_plane_wm->trans_wm.plane_res_l);
13503 }
13504
13505 /* DDB */
13506 hw_ddb_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
13507 sw_ddb_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
13508
13509 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
13510 DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
13511 pipe_name(pipe),
13512 sw_ddb_entry->start, sw_ddb_entry->end,
13513 hw_ddb_entry->start, hw_ddb_entry->end);
13514 }
13515 }
13516}
13517
13518static void
13519verify_connector_state(struct drm_device *dev,
13520 struct drm_atomic_state *state,
13521 struct drm_crtc *crtc)
13522{
13523 struct drm_connector *connector;
13524 struct drm_connector_state *old_conn_state;
13525 int i;
13526
13527 for_each_connector_in_state(state, connector, old_conn_state, i) {
13528 struct drm_encoder *encoder = connector->encoder;
13529 struct drm_connector_state *state = connector->state;
13530
13531 if (state->crtc != crtc)
13532 continue;
13533
13534 intel_connector_verify_state(to_intel_connector(connector));
13535
13536 I915_STATE_WARN(state->best_encoder != encoder,
13537 "connector's atomic encoder doesn't match legacy encoder\n");
13538 }
13539}
13540
13541static void
13542verify_encoder_state(struct drm_device *dev)
13543{
13544 struct intel_encoder *encoder;
13545 struct intel_connector *connector;
13546
13547 for_each_intel_encoder(dev, encoder) {
13548 bool enabled = false;
13549 enum pipe pipe;
13550
13551 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
13552 encoder->base.base.id,
13553 encoder->base.name);
13554
13555 for_each_intel_connector(dev, connector) {
13556 if (connector->base.state->best_encoder != &encoder->base)
13557 continue;
13558 enabled = true;
13559
13560 I915_STATE_WARN(connector->base.state->crtc !=
13561 encoder->base.crtc,
13562 "connector's crtc doesn't match encoder crtc\n");
13563 }
13564
13565 I915_STATE_WARN(!!encoder->base.crtc != enabled,
13566 "encoder's enabled state mismatch "
13567 "(expected %i, found %i)\n",
13568 !!encoder->base.crtc, enabled);
13569
13570 if (!encoder->base.crtc) {
13571 bool active;
13572
13573 active = encoder->get_hw_state(encoder, &pipe);
13574 I915_STATE_WARN(active,
13575 "encoder detached but still enabled on pipe %c.\n",
13576 pipe_name(pipe));
13577 }
13578 }
13579}
13580
13581static void
13582verify_crtc_state(struct drm_crtc *crtc,
13583 struct drm_crtc_state *old_crtc_state,
13584 struct drm_crtc_state *new_crtc_state)
13585{
13586 struct drm_device *dev = crtc->dev;
13587 struct drm_i915_private *dev_priv = to_i915(dev);
13588 struct intel_encoder *encoder;
13589 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13590 struct intel_crtc_state *pipe_config, *sw_config;
13591 struct drm_atomic_state *old_state;
13592 bool active;
13593
13594 old_state = old_crtc_state->state;
13595 __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
13596 pipe_config = to_intel_crtc_state(old_crtc_state);
13597 memset(pipe_config, 0, sizeof(*pipe_config));
13598 pipe_config->base.crtc = crtc;
13599 pipe_config->base.state = old_state;
13600
13601 DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
13602
13603 active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
13604
13605 /* hw state is inconsistent with the pipe quirk */
13606 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
13607 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
13608 active = new_crtc_state->active;
13609
13610 I915_STATE_WARN(new_crtc_state->active != active,
13611 "crtc active state doesn't match with hw state "
13612 "(expected %i, found %i)\n", new_crtc_state->active, active);
13613
13614 I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
13615 "transitional active state does not match atomic hw state "
13616 "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
13617
13618 for_each_encoder_on_crtc(dev, crtc, encoder) {
13619 enum pipe pipe;
13620
13621 active = encoder->get_hw_state(encoder, &pipe);
13622 I915_STATE_WARN(active != new_crtc_state->active,
13623 "[ENCODER:%i] active %i with crtc active %i\n",
13624 encoder->base.base.id, active, new_crtc_state->active);
13625
13626 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
13627 "Encoder connected to wrong pipe %c\n",
13628 pipe_name(pipe));
13629
13630 if (active) {
13631 pipe_config->output_types |= 1 << encoder->type;
13632 encoder->get_config(encoder, pipe_config);
13633 }
13634 }
13635
13636 if (!new_crtc_state->active)
13637 return;
13638
13639 intel_pipe_config_sanity_check(dev_priv, pipe_config);
13640
13641 sw_config = to_intel_crtc_state(crtc->state);
13642 if (!intel_pipe_config_compare(dev_priv, sw_config,
13643 pipe_config, false)) {
13644 I915_STATE_WARN(1, "pipe state doesn't match!\n");
13645 intel_dump_pipe_config(intel_crtc, pipe_config,
13646 "[hw state]");
13647 intel_dump_pipe_config(intel_crtc, sw_config,
13648 "[sw state]");
13649 }
13650}
13651
13652static void
13653verify_single_dpll_state(struct drm_i915_private *dev_priv,
13654 struct intel_shared_dpll *pll,
13655 struct drm_crtc *crtc,
13656 struct drm_crtc_state *new_state)
13657{
13658 struct intel_dpll_hw_state dpll_hw_state;
13659 unsigned crtc_mask;
13660 bool active;
13661
13662 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
13663
13664 DRM_DEBUG_KMS("%s\n", pll->name);
13665
13666 active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
13667
13668 if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
13669 I915_STATE_WARN(!pll->on && pll->active_mask,
13670 "pll in active use but not on in sw tracking\n");
13671 I915_STATE_WARN(pll->on && !pll->active_mask,
13672 "pll is on but not used by any active crtc\n");
13673 I915_STATE_WARN(pll->on != active,
13674 "pll on state mismatch (expected %i, found %i)\n",
13675 pll->on, active);
13676 }
13677
13678 if (!crtc) {
13679 I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
13680 "more active pll users than references: %x vs %x\n",
13681 pll->active_mask, pll->config.crtc_mask);
13682
13683 return;
13684 }
13685
13686 crtc_mask = 1 << drm_crtc_index(crtc);
13687
13688 if (new_state->active)
13689 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13690 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13691 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13692 else
13693 I915_STATE_WARN(pll->active_mask & crtc_mask,
13694 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13695 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13696
13697 I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
13698 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13699 crtc_mask, pll->config.crtc_mask);
13700
13701 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
13702 &dpll_hw_state,
13703 sizeof(dpll_hw_state)),
13704 "pll hw state mismatch\n");
13705}
13706
13707static void
13708verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13709 struct drm_crtc_state *old_crtc_state,
13710 struct drm_crtc_state *new_crtc_state)
13711{
13712 struct drm_i915_private *dev_priv = to_i915(dev);
13713 struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13714 struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13715
13716 if (new_state->shared_dpll)
13717 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
13718
13719 if (old_state->shared_dpll &&
13720 old_state->shared_dpll != new_state->shared_dpll) {
13721 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13722 struct intel_shared_dpll *pll = old_state->shared_dpll;
13723
13724 I915_STATE_WARN(pll->active_mask & crtc_mask,
13725 "pll active mismatch (didn't expect pipe %c in active mask)\n",
13726 pipe_name(drm_crtc_index(crtc)));
13727 I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13728 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13729 pipe_name(drm_crtc_index(crtc)));
13730 }
13731}
13732
13733static void
13734intel_modeset_verify_crtc(struct drm_crtc *crtc,
13735 struct drm_atomic_state *state,
13736 struct drm_crtc_state *old_state,
13737 struct drm_crtc_state *new_state)
13738{
13739 if (!needs_modeset(new_state) &&
13740 !to_intel_crtc_state(new_state)->update_pipe)
13741 return;
13742
13743 verify_wm_state(crtc, new_state);
13744 verify_connector_state(crtc->dev, state, crtc);
13745 verify_crtc_state(crtc, old_state, new_state);
13746 verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
13747}
13748
13749static void
13750verify_disabled_dpll_state(struct drm_device *dev)
13751{
13752 struct drm_i915_private *dev_priv = to_i915(dev);
13753 int i;
13754
13755 for (i = 0; i < dev_priv->num_shared_dpll; i++)
13756 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13757}
13758
13759static void
13760intel_modeset_verify_disabled(struct drm_device *dev,
13761 struct drm_atomic_state *state)
13762{
13763 verify_encoder_state(dev);
13764 verify_connector_state(dev, state, NULL);
13765 verify_disabled_dpll_state(dev);
13766}
13767
13768static void update_scanline_offset(struct intel_crtc *crtc)
13769{
13770 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13771
13772 /*
13773 * The scanline counter increments at the leading edge of hsync.
13774 *
13775 * On most platforms it starts counting from vtotal-1 on the
13776 * first active line. That means the scanline counter value is
13777 * always one less than what we would expect. Ie. just after
13778 * start of vblank, which also occurs at start of hsync (on the
13779 * last active line), the scanline counter will read vblank_start-1.
13780 *
13781 * On gen2 the scanline counter starts counting from 1 instead
13782 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13783 * to keep the value positive), instead of adding one.
13784 *
13785 * On HSW+ the behaviour of the scanline counter depends on the output
13786 * type. For DP ports it behaves like most other platforms, but on HDMI
13787 * there's an extra 1 line difference. So we need to add two instead of
13788 * one to the value.
13789 */
13790 if (IS_GEN2(dev_priv)) {
13791 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13792 int vtotal;
13793
13794 vtotal = adjusted_mode->crtc_vtotal;
13795 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13796 vtotal /= 2;
13797
13798 crtc->scanline_offset = vtotal - 1;
13799 } else if (HAS_DDI(dev_priv) &&
13800 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
13801 crtc->scanline_offset = 2;
13802 } else
13803 crtc->scanline_offset = 1;
13804}
13805
13806static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13807{
13808 struct drm_device *dev = state->dev;
13809 struct drm_i915_private *dev_priv = to_i915(dev);
13810 struct intel_shared_dpll_config *shared_dpll = NULL;
13811 struct drm_crtc *crtc;
13812 struct drm_crtc_state *crtc_state;
13813 int i;
13814
13815 if (!dev_priv->display.crtc_compute_clock)
13816 return;
13817
13818 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13819 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13820 struct intel_shared_dpll *old_dpll =
13821 to_intel_crtc_state(crtc->state)->shared_dpll;
13822
13823 if (!needs_modeset(crtc_state))
13824 continue;
13825
13826 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13827
13828 if (!old_dpll)
13829 continue;
13830
13831 if (!shared_dpll)
13832 shared_dpll = intel_atomic_get_shared_dpll_state(state);
13833
13834 intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
13835 }
13836}
13837
13838/*
13839 * This implements the workaround described in the "notes" section of the mode
13840 * set sequence documentation. When going from no pipes or single pipe to
13841 * multiple pipes, and planes are enabled after the pipe, we need to wait at
13842 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13843 */
13844static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13845{
13846 struct drm_crtc_state *crtc_state;
13847 struct intel_crtc *intel_crtc;
13848 struct drm_crtc *crtc;
13849 struct intel_crtc_state *first_crtc_state = NULL;
13850 struct intel_crtc_state *other_crtc_state = NULL;
13851 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13852 int i;
13853
13854 /* look at all crtc's that are going to be enabled in during modeset */
13855 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13856 intel_crtc = to_intel_crtc(crtc);
13857
13858 if (!crtc_state->active || !needs_modeset(crtc_state))
13859 continue;
13860
13861 if (first_crtc_state) {
13862 other_crtc_state = to_intel_crtc_state(crtc_state);
13863 break;
13864 } else {
13865 first_crtc_state = to_intel_crtc_state(crtc_state);
13866 first_pipe = intel_crtc->pipe;
13867 }
13868 }
13869
13870 /* No workaround needed? */
13871 if (!first_crtc_state)
13872 return 0;
13873
13874 /* w/a possibly needed, check how many crtc's are already enabled. */
13875 for_each_intel_crtc(state->dev, intel_crtc) {
13876 struct intel_crtc_state *pipe_config;
13877
13878 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13879 if (IS_ERR(pipe_config))
13880 return PTR_ERR(pipe_config);
13881
13882 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13883
13884 if (!pipe_config->base.active ||
13885 needs_modeset(&pipe_config->base))
13886 continue;
13887
13888 /* 2 or more enabled crtcs means no need for w/a */
13889 if (enabled_pipe != INVALID_PIPE)
13890 return 0;
13891
13892 enabled_pipe = intel_crtc->pipe;
13893 }
13894
13895 if (enabled_pipe != INVALID_PIPE)
13896 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13897 else if (other_crtc_state)
13898 other_crtc_state->hsw_workaround_pipe = first_pipe;
13899
13900 return 0;
13901}
13902
13903static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13904{
13905 struct drm_crtc *crtc;
13906 struct drm_crtc_state *crtc_state;
13907 int ret = 0;
13908
13909 /* add all active pipes to the state */
13910 for_each_crtc(state->dev, crtc) {
13911 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13912 if (IS_ERR(crtc_state))
13913 return PTR_ERR(crtc_state);
13914
13915 if (!crtc_state->active || needs_modeset(crtc_state))
13916 continue;
13917
13918 crtc_state->mode_changed = true;
13919
13920 ret = drm_atomic_add_affected_connectors(state, crtc);
13921 if (ret)
13922 break;
13923
13924 ret = drm_atomic_add_affected_planes(state, crtc);
13925 if (ret)
13926 break;
13927 }
13928
13929 return ret;
13930}
13931
13932static int intel_modeset_checks(struct drm_atomic_state *state)
13933{
13934 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13935 struct drm_i915_private *dev_priv = to_i915(state->dev);
13936 struct drm_crtc *crtc;
13937 struct drm_crtc_state *crtc_state;
13938 int ret = 0, i;
13939
13940 if (!check_digital_port_conflicts(state)) {
13941 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13942 return -EINVAL;
13943 }
13944
13945 intel_state->modeset = true;
13946 intel_state->active_crtcs = dev_priv->active_crtcs;
13947
13948 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13949 if (crtc_state->active)
13950 intel_state->active_crtcs |= 1 << i;
13951 else
13952 intel_state->active_crtcs &= ~(1 << i);
13953
13954 if (crtc_state->active != crtc->state->active)
13955 intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
13956 }
13957
13958 /*
13959 * See if the config requires any additional preparation, e.g.
13960 * to adjust global state with pipes off. We need to do this
13961 * here so we can get the modeset_pipe updated config for the new
13962 * mode set on this crtc. For other crtcs we need to use the
13963 * adjusted_mode bits in the crtc directly.
13964 */
13965 if (dev_priv->display.modeset_calc_cdclk) {
13966 if (!intel_state->cdclk_pll_vco)
13967 intel_state->cdclk_pll_vco = dev_priv->cdclk_pll.vco;
13968 if (!intel_state->cdclk_pll_vco)
13969 intel_state->cdclk_pll_vco = dev_priv->skl_preferred_vco_freq;
13970
13971 ret = dev_priv->display.modeset_calc_cdclk(state);
13972 if (ret < 0)
13973 return ret;
13974
13975 if (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
13976 intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco)
13977 ret = intel_modeset_all_pipes(state);
13978
13979 if (ret < 0)
13980 return ret;
13981
13982 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13983 intel_state->cdclk, intel_state->dev_cdclk);
13984 } else {
13985 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
13986 }
13987
13988 intel_modeset_clear_plls(state);
13989
13990 if (IS_HASWELL(dev_priv))
13991 return haswell_mode_set_planes_workaround(state);
13992
13993 return 0;
13994}
13995
13996/*
13997 * Handle calculation of various watermark data at the end of the atomic check
13998 * phase. The code here should be run after the per-crtc and per-plane 'check'
13999 * handlers to ensure that all derived state has been updated.
14000 */
14001static int calc_watermark_data(struct drm_atomic_state *state)
14002{
14003 struct drm_device *dev = state->dev;
14004 struct drm_i915_private *dev_priv = to_i915(dev);
14005
14006 /* Is there platform-specific watermark information to calculate? */
14007 if (dev_priv->display.compute_global_watermarks)
14008 return dev_priv->display.compute_global_watermarks(state);
14009
14010 return 0;
14011}
14012
14013/**
14014 * intel_atomic_check - validate state object
14015 * @dev: drm device
14016 * @state: state to validate
14017 */
14018static int intel_atomic_check(struct drm_device *dev,
14019 struct drm_atomic_state *state)
14020{
14021 struct drm_i915_private *dev_priv = to_i915(dev);
14022 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14023 struct drm_crtc *crtc;
14024 struct drm_crtc_state *crtc_state;
14025 int ret, i;
14026 bool any_ms = false;
14027
14028 ret = drm_atomic_helper_check_modeset(dev, state);
14029 if (ret)
14030 return ret;
14031
14032 for_each_crtc_in_state(state, crtc, crtc_state, i) {
14033 struct intel_crtc_state *pipe_config =
14034 to_intel_crtc_state(crtc_state);
14035
14036 /* Catch I915_MODE_FLAG_INHERITED */
14037 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
14038 crtc_state->mode_changed = true;
14039
14040 if (!needs_modeset(crtc_state))
14041 continue;
14042
14043 if (!crtc_state->enable) {
14044 any_ms = true;
14045 continue;
14046 }
14047
14048 /* FIXME: For only active_changed we shouldn't need to do any
14049 * state recomputation at all. */
14050
14051 ret = drm_atomic_add_affected_connectors(state, crtc);
14052 if (ret)
14053 return ret;
14054
14055 ret = intel_modeset_pipe_config(crtc, pipe_config);
14056 if (ret) {
14057 intel_dump_pipe_config(to_intel_crtc(crtc),
14058 pipe_config, "[failed]");
14059 return ret;
14060 }
14061
14062 if (i915.fastboot &&
14063 intel_pipe_config_compare(dev_priv,
14064 to_intel_crtc_state(crtc->state),
14065 pipe_config, true)) {
14066 crtc_state->mode_changed = false;
14067 to_intel_crtc_state(crtc_state)->update_pipe = true;
14068 }
14069
14070 if (needs_modeset(crtc_state))
14071 any_ms = true;
14072
14073 ret = drm_atomic_add_affected_planes(state, crtc);
14074 if (ret)
14075 return ret;
14076
14077 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
14078 needs_modeset(crtc_state) ?
14079 "[modeset]" : "[fastset]");
14080 }
14081
14082 if (any_ms) {
14083 ret = intel_modeset_checks(state);
14084
14085 if (ret)
14086 return ret;
14087 } else {
14088 intel_state->cdclk = dev_priv->atomic_cdclk_freq;
14089 }
14090
14091 ret = drm_atomic_helper_check_planes(dev, state);
14092 if (ret)
14093 return ret;
14094
14095 intel_fbc_choose_crtc(dev_priv, state);
14096 return calc_watermark_data(state);
14097}
14098
14099static int intel_atomic_prepare_commit(struct drm_device *dev,
14100 struct drm_atomic_state *state)
14101{
14102 struct drm_i915_private *dev_priv = to_i915(dev);
14103 struct drm_crtc_state *crtc_state;
14104 struct drm_crtc *crtc;
14105 int i, ret;
14106
14107 for_each_crtc_in_state(state, crtc, crtc_state, i) {
14108 if (state->legacy_cursor_update)
14109 continue;
14110
14111 ret = intel_crtc_wait_for_pending_flips(crtc);
14112 if (ret)
14113 return ret;
14114
14115 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
14116 flush_workqueue(dev_priv->wq);
14117 }
14118
14119 ret = mutex_lock_interruptible(&dev->struct_mutex);
14120 if (ret)
14121 return ret;
14122
14123 ret = drm_atomic_helper_prepare_planes(dev, state);
14124 mutex_unlock(&dev->struct_mutex);
14125
14126 return ret;
14127}
14128
14129u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
14130{
14131 struct drm_device *dev = crtc->base.dev;
14132
14133 if (!dev->max_vblank_count)
14134 return drm_accurate_vblank_count(&crtc->base);
14135
14136 return dev->driver->get_vblank_counter(dev, crtc->pipe);
14137}
14138
14139static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
14140 struct drm_i915_private *dev_priv,
14141 unsigned crtc_mask)
14142{
14143 unsigned last_vblank_count[I915_MAX_PIPES];
14144 enum pipe pipe;
14145 int ret;
14146
14147 if (!crtc_mask)
14148 return;
14149
14150 for_each_pipe(dev_priv, pipe) {
14151 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
14152 pipe);
14153
14154 if (!((1 << pipe) & crtc_mask))
14155 continue;
14156
14157 ret = drm_crtc_vblank_get(&crtc->base);
14158 if (WARN_ON(ret != 0)) {
14159 crtc_mask &= ~(1 << pipe);
14160 continue;
14161 }
14162
14163 last_vblank_count[pipe] = drm_crtc_vblank_count(&crtc->base);
14164 }
14165
14166 for_each_pipe(dev_priv, pipe) {
14167 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
14168 pipe);
14169 long lret;
14170
14171 if (!((1 << pipe) & crtc_mask))
14172 continue;
14173
14174 lret = wait_event_timeout(dev->vblank[pipe].queue,
14175 last_vblank_count[pipe] !=
14176 drm_crtc_vblank_count(&crtc->base),
14177 msecs_to_jiffies(50));
14178
14179 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
14180
14181 drm_crtc_vblank_put(&crtc->base);
14182 }
14183}
14184
14185static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
14186{
14187 /* fb updated, need to unpin old fb */
14188 if (crtc_state->fb_changed)
14189 return true;
14190
14191 /* wm changes, need vblank before final wm's */
14192 if (crtc_state->update_wm_post)
14193 return true;
14194
14195 /*
14196 * cxsr is re-enabled after vblank.
14197 * This is already handled by crtc_state->update_wm_post,
14198 * but added for clarity.
14199 */
14200 if (crtc_state->disable_cxsr)
14201 return true;
14202
14203 return false;
14204}
14205
14206static void intel_update_crtc(struct drm_crtc *crtc,
14207 struct drm_atomic_state *state,
14208 struct drm_crtc_state *old_crtc_state,
14209 unsigned int *crtc_vblank_mask)
14210{
14211 struct drm_device *dev = crtc->dev;
14212 struct drm_i915_private *dev_priv = to_i915(dev);
14213 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14214 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc->state);
14215 bool modeset = needs_modeset(crtc->state);
14216
14217 if (modeset) {
14218 update_scanline_offset(intel_crtc);
14219 dev_priv->display.crtc_enable(pipe_config, state);
14220 } else {
14221 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14222 }
14223
14224 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
14225 intel_fbc_enable(
14226 intel_crtc, pipe_config,
14227 to_intel_plane_state(crtc->primary->state));
14228 }
14229
14230 drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
14231
14232 if (needs_vblank_wait(pipe_config))
14233 *crtc_vblank_mask |= drm_crtc_mask(crtc);
14234}
14235
14236static void intel_update_crtcs(struct drm_atomic_state *state,
14237 unsigned int *crtc_vblank_mask)
14238{
14239 struct drm_crtc *crtc;
14240 struct drm_crtc_state *old_crtc_state;
14241 int i;
14242
14243 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14244 if (!crtc->state->active)
14245 continue;
14246
14247 intel_update_crtc(crtc, state, old_crtc_state,
14248 crtc_vblank_mask);
14249 }
14250}
14251
14252static void skl_update_crtcs(struct drm_atomic_state *state,
14253 unsigned int *crtc_vblank_mask)
14254{
14255 struct drm_i915_private *dev_priv = to_i915(state->dev);
14256 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14257 struct drm_crtc *crtc;
14258 struct intel_crtc *intel_crtc;
14259 struct drm_crtc_state *old_crtc_state;
14260 struct intel_crtc_state *cstate;
14261 unsigned int updated = 0;
14262 bool progress;
14263 enum pipe pipe;
14264 int i;
14265
14266 const struct skl_ddb_entry *entries[I915_MAX_PIPES] = {};
14267
14268 for_each_crtc_in_state(state, crtc, old_crtc_state, i)
14269 /* ignore allocations for crtc's that have been turned off. */
14270 if (crtc->state->active)
14271 entries[i] = &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb;
14272
14273 /*
14274 * Whenever the number of active pipes changes, we need to make sure we
14275 * update the pipes in the right order so that their ddb allocations
14276 * never overlap with eachother inbetween CRTC updates. Otherwise we'll
14277 * cause pipe underruns and other bad stuff.
14278 */
14279 do {
14280 progress = false;
14281
14282 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14283 bool vbl_wait = false;
14284 unsigned int cmask = drm_crtc_mask(crtc);
14285
14286 intel_crtc = to_intel_crtc(crtc);
14287 cstate = to_intel_crtc_state(crtc->state);
14288 pipe = intel_crtc->pipe;
14289
14290 if (updated & cmask || !cstate->base.active)
14291 continue;
14292
14293 if (skl_ddb_allocation_overlaps(entries, &cstate->wm.skl.ddb, i))
14294 continue;
14295
14296 updated |= cmask;
14297 entries[i] = &cstate->wm.skl.ddb;
14298
14299 /*
14300 * If this is an already active pipe, it's DDB changed,
14301 * and this isn't the last pipe that needs updating
14302 * then we need to wait for a vblank to pass for the
14303 * new ddb allocation to take effect.
14304 */
14305 if (!skl_ddb_entry_equal(&cstate->wm.skl.ddb,
14306 &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb) &&
14307 !crtc->state->active_changed &&
14308 intel_state->wm_results.dirty_pipes != updated)
14309 vbl_wait = true;
14310
14311 intel_update_crtc(crtc, state, old_crtc_state,
14312 crtc_vblank_mask);
14313
14314 if (vbl_wait)
14315 intel_wait_for_vblank(dev_priv, pipe);
14316
14317 progress = true;
14318 }
14319 } while (progress);
14320}
14321
14322static void intel_atomic_commit_tail(struct drm_atomic_state *state)
14323{
14324 struct drm_device *dev = state->dev;
14325 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14326 struct drm_i915_private *dev_priv = to_i915(dev);
14327 struct drm_crtc_state *old_crtc_state;
14328 struct drm_crtc *crtc;
14329 struct intel_crtc_state *intel_cstate;
14330 bool hw_check = intel_state->modeset;
14331 unsigned long put_domains[I915_MAX_PIPES] = {};
14332 unsigned crtc_vblank_mask = 0;
14333 int i;
14334
14335 drm_atomic_helper_wait_for_dependencies(state);
14336
14337 if (intel_state->modeset)
14338 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
14339
14340 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14341 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14342
14343 if (needs_modeset(crtc->state) ||
14344 to_intel_crtc_state(crtc->state)->update_pipe) {
14345 hw_check = true;
14346
14347 put_domains[to_intel_crtc(crtc)->pipe] =
14348 modeset_get_crtc_power_domains(crtc,
14349 to_intel_crtc_state(crtc->state));
14350 }
14351
14352 if (!needs_modeset(crtc->state))
14353 continue;
14354
14355 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14356
14357 if (old_crtc_state->active) {
14358 intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
14359 dev_priv->display.crtc_disable(to_intel_crtc_state(old_crtc_state), state);
14360 intel_crtc->active = false;
14361 intel_fbc_disable(intel_crtc);
14362 intel_disable_shared_dpll(intel_crtc);
14363
14364 /*
14365 * Underruns don't always raise
14366 * interrupts, so check manually.
14367 */
14368 intel_check_cpu_fifo_underruns(dev_priv);
14369 intel_check_pch_fifo_underruns(dev_priv);
14370
14371 if (!crtc->state->active) {
14372 /*
14373 * Make sure we don't call initial_watermarks
14374 * for ILK-style watermark updates.
14375 */
14376 if (dev_priv->display.atomic_update_watermarks)
14377 dev_priv->display.initial_watermarks(intel_state,
14378 to_intel_crtc_state(crtc->state));
14379 else
14380 intel_update_watermarks(intel_crtc);
14381 }
14382 }
14383 }
14384
14385 /* Only after disabling all output pipelines that will be changed can we
14386 * update the the output configuration. */
14387 intel_modeset_update_crtc_state(state);
14388
14389 if (intel_state->modeset) {
14390 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
14391
14392 if (dev_priv->display.modeset_commit_cdclk &&
14393 (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
14394 intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco))
14395 dev_priv->display.modeset_commit_cdclk(state);
14396
14397 /*
14398 * SKL workaround: bspec recommends we disable the SAGV when we
14399 * have more then one pipe enabled
14400 */
14401 if (!intel_can_enable_sagv(state))
14402 intel_disable_sagv(dev_priv);
14403
14404 intel_modeset_verify_disabled(dev, state);
14405 }
14406
14407 /* Complete the events for pipes that have now been disabled */
14408 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14409 bool modeset = needs_modeset(crtc->state);
14410
14411 /* Complete events for now disable pipes here. */
14412 if (modeset && !crtc->state->active && crtc->state->event) {
14413 spin_lock_irq(&dev->event_lock);
14414 drm_crtc_send_vblank_event(crtc, crtc->state->event);
14415 spin_unlock_irq(&dev->event_lock);
14416
14417 crtc->state->event = NULL;
14418 }
14419 }
14420
14421 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
14422 dev_priv->display.update_crtcs(state, &crtc_vblank_mask);
14423
14424 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
14425 * already, but still need the state for the delayed optimization. To
14426 * fix this:
14427 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
14428 * - schedule that vblank worker _before_ calling hw_done
14429 * - at the start of commit_tail, cancel it _synchrously
14430 * - switch over to the vblank wait helper in the core after that since
14431 * we don't need out special handling any more.
14432 */
14433 if (!state->legacy_cursor_update)
14434 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
14435
14436 /*
14437 * Now that the vblank has passed, we can go ahead and program the
14438 * optimal watermarks on platforms that need two-step watermark
14439 * programming.
14440 *
14441 * TODO: Move this (and other cleanup) to an async worker eventually.
14442 */
14443 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14444 intel_cstate = to_intel_crtc_state(crtc->state);
14445
14446 if (dev_priv->display.optimize_watermarks)
14447 dev_priv->display.optimize_watermarks(intel_state,
14448 intel_cstate);
14449 }
14450
14451 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14452 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
14453
14454 if (put_domains[i])
14455 modeset_put_power_domains(dev_priv, put_domains[i]);
14456
14457 intel_modeset_verify_crtc(crtc, state, old_crtc_state, crtc->state);
14458 }
14459
14460 if (intel_state->modeset && intel_can_enable_sagv(state))
14461 intel_enable_sagv(dev_priv);
14462
14463 drm_atomic_helper_commit_hw_done(state);
14464
14465 if (intel_state->modeset)
14466 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
14467
14468 mutex_lock(&dev->struct_mutex);
14469 drm_atomic_helper_cleanup_planes(dev, state);
14470 mutex_unlock(&dev->struct_mutex);
14471
14472 drm_atomic_helper_commit_cleanup_done(state);
14473
14474 drm_atomic_state_put(state);
14475
14476 /* As one of the primary mmio accessors, KMS has a high likelihood
14477 * of triggering bugs in unclaimed access. After we finish
14478 * modesetting, see if an error has been flagged, and if so
14479 * enable debugging for the next modeset - and hope we catch
14480 * the culprit.
14481 *
14482 * XXX note that we assume display power is on at this point.
14483 * This might hold true now but we need to add pm helper to check
14484 * unclaimed only when the hardware is on, as atomic commits
14485 * can happen also when the device is completely off.
14486 */
14487 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
14488}
14489
14490static void intel_atomic_commit_work(struct work_struct *work)
14491{
14492 struct drm_atomic_state *state =
14493 container_of(work, struct drm_atomic_state, commit_work);
14494
14495 intel_atomic_commit_tail(state);
14496}
14497
14498static int __i915_sw_fence_call
14499intel_atomic_commit_ready(struct i915_sw_fence *fence,
14500 enum i915_sw_fence_notify notify)
14501{
14502 struct intel_atomic_state *state =
14503 container_of(fence, struct intel_atomic_state, commit_ready);
14504
14505 switch (notify) {
14506 case FENCE_COMPLETE:
14507 if (state->base.commit_work.func)
14508 queue_work(system_unbound_wq, &state->base.commit_work);
14509 break;
14510
14511 case FENCE_FREE:
14512 {
14513 struct intel_atomic_helper *helper =
14514 &to_i915(state->base.dev)->atomic_helper;
14515
14516 if (llist_add(&state->freed, &helper->free_list))
14517 schedule_work(&helper->free_work);
14518 break;
14519 }
14520 }
14521
14522 return NOTIFY_DONE;
14523}
14524
14525static void intel_atomic_track_fbs(struct drm_atomic_state *state)
14526{
14527 struct drm_plane_state *old_plane_state;
14528 struct drm_plane *plane;
14529 int i;
14530
14531 for_each_plane_in_state(state, plane, old_plane_state, i)
14532 i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
14533 intel_fb_obj(plane->state->fb),
14534 to_intel_plane(plane)->frontbuffer_bit);
14535}
14536
14537/**
14538 * intel_atomic_commit - commit validated state object
14539 * @dev: DRM device
14540 * @state: the top-level driver state object
14541 * @nonblock: nonblocking commit
14542 *
14543 * This function commits a top-level state object that has been validated
14544 * with drm_atomic_helper_check().
14545 *
14546 * RETURNS
14547 * Zero for success or -errno.
14548 */
14549static int intel_atomic_commit(struct drm_device *dev,
14550 struct drm_atomic_state *state,
14551 bool nonblock)
14552{
14553 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14554 struct drm_i915_private *dev_priv = to_i915(dev);
14555 int ret = 0;
14556
14557 ret = drm_atomic_helper_setup_commit(state, nonblock);
14558 if (ret)
14559 return ret;
14560
14561 drm_atomic_state_get(state);
14562 i915_sw_fence_init(&intel_state->commit_ready,
14563 intel_atomic_commit_ready);
14564
14565 ret = intel_atomic_prepare_commit(dev, state);
14566 if (ret) {
14567 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
14568 i915_sw_fence_commit(&intel_state->commit_ready);
14569 return ret;
14570 }
14571
14572 drm_atomic_helper_swap_state(state, true);
14573 dev_priv->wm.distrust_bios_wm = false;
14574 intel_shared_dpll_commit(state);
14575 intel_atomic_track_fbs(state);
14576
14577 if (intel_state->modeset) {
14578 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
14579 sizeof(intel_state->min_pixclk));
14580 dev_priv->active_crtcs = intel_state->active_crtcs;
14581 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
14582 }
14583
14584 drm_atomic_state_get(state);
14585 INIT_WORK(&state->commit_work,
14586 nonblock ? intel_atomic_commit_work : NULL);
14587
14588 i915_sw_fence_commit(&intel_state->commit_ready);
14589 if (!nonblock) {
14590 i915_sw_fence_wait(&intel_state->commit_ready);
14591 intel_atomic_commit_tail(state);
14592 }
14593
14594 return 0;
14595}
14596
14597void intel_crtc_restore_mode(struct drm_crtc *crtc)
14598{
14599 struct drm_device *dev = crtc->dev;
14600 struct drm_atomic_state *state;
14601 struct drm_crtc_state *crtc_state;
14602 int ret;
14603
14604 state = drm_atomic_state_alloc(dev);
14605 if (!state) {
14606 DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
14607 crtc->base.id, crtc->name);
14608 return;
14609 }
14610
14611 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
14612
14613retry:
14614 crtc_state = drm_atomic_get_crtc_state(state, crtc);
14615 ret = PTR_ERR_OR_ZERO(crtc_state);
14616 if (!ret) {
14617 if (!crtc_state->active)
14618 goto out;
14619
14620 crtc_state->mode_changed = true;
14621 ret = drm_atomic_commit(state);
14622 }
14623
14624 if (ret == -EDEADLK) {
14625 drm_atomic_state_clear(state);
14626 drm_modeset_backoff(state->acquire_ctx);
14627 goto retry;
14628 }
14629
14630out:
14631 drm_atomic_state_put(state);
14632}
14633
14634/*
14635 * FIXME: Remove this once i915 is fully DRIVER_ATOMIC by calling
14636 * drm_atomic_helper_legacy_gamma_set() directly.
14637 */
14638static int intel_atomic_legacy_gamma_set(struct drm_crtc *crtc,
14639 u16 *red, u16 *green, u16 *blue,
14640 uint32_t size)
14641{
14642 struct drm_device *dev = crtc->dev;
14643 struct drm_mode_config *config = &dev->mode_config;
14644 struct drm_crtc_state *state;
14645 int ret;
14646
14647 ret = drm_atomic_helper_legacy_gamma_set(crtc, red, green, blue, size);
14648 if (ret)
14649 return ret;
14650
14651 /*
14652 * Make sure we update the legacy properties so this works when
14653 * atomic is not enabled.
14654 */
14655
14656 state = crtc->state;
14657
14658 drm_object_property_set_value(&crtc->base,
14659 config->degamma_lut_property,
14660 (state->degamma_lut) ?
14661 state->degamma_lut->base.id : 0);
14662
14663 drm_object_property_set_value(&crtc->base,
14664 config->ctm_property,
14665 (state->ctm) ?
14666 state->ctm->base.id : 0);
14667
14668 drm_object_property_set_value(&crtc->base,
14669 config->gamma_lut_property,
14670 (state->gamma_lut) ?
14671 state->gamma_lut->base.id : 0);
14672
14673 return 0;
14674}
14675
14676static const struct drm_crtc_funcs intel_crtc_funcs = {
14677 .gamma_set = intel_atomic_legacy_gamma_set,
14678 .set_config = drm_atomic_helper_set_config,
14679 .set_property = drm_atomic_helper_crtc_set_property,
14680 .destroy = intel_crtc_destroy,
14681 .page_flip = intel_crtc_page_flip,
14682 .atomic_duplicate_state = intel_crtc_duplicate_state,
14683 .atomic_destroy_state = intel_crtc_destroy_state,
14684};
14685
14686/**
14687 * intel_prepare_plane_fb - Prepare fb for usage on plane
14688 * @plane: drm plane to prepare for
14689 * @fb: framebuffer to prepare for presentation
14690 *
14691 * Prepares a framebuffer for usage on a display plane. Generally this
14692 * involves pinning the underlying object and updating the frontbuffer tracking
14693 * bits. Some older platforms need special physical address handling for
14694 * cursor planes.
14695 *
14696 * Must be called with struct_mutex held.
14697 *
14698 * Returns 0 on success, negative error code on failure.
14699 */
14700int
14701intel_prepare_plane_fb(struct drm_plane *plane,
14702 struct drm_plane_state *new_state)
14703{
14704 struct intel_atomic_state *intel_state =
14705 to_intel_atomic_state(new_state->state);
14706 struct drm_i915_private *dev_priv = to_i915(plane->dev);
14707 struct drm_framebuffer *fb = new_state->fb;
14708 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14709 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
14710 int ret;
14711
14712 if (!obj && !old_obj)
14713 return 0;
14714
14715 if (old_obj) {
14716 struct drm_crtc_state *crtc_state =
14717 drm_atomic_get_existing_crtc_state(new_state->state,
14718 plane->state->crtc);
14719
14720 /* Big Hammer, we also need to ensure that any pending
14721 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
14722 * current scanout is retired before unpinning the old
14723 * framebuffer. Note that we rely on userspace rendering
14724 * into the buffer attached to the pipe they are waiting
14725 * on. If not, userspace generates a GPU hang with IPEHR
14726 * point to the MI_WAIT_FOR_EVENT.
14727 *
14728 * This should only fail upon a hung GPU, in which case we
14729 * can safely continue.
14730 */
14731 if (needs_modeset(crtc_state)) {
14732 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
14733 old_obj->resv, NULL,
14734 false, 0,
14735 GFP_KERNEL);
14736 if (ret < 0)
14737 return ret;
14738 }
14739 }
14740
14741 if (new_state->fence) { /* explicit fencing */
14742 ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready,
14743 new_state->fence,
14744 I915_FENCE_TIMEOUT,
14745 GFP_KERNEL);
14746 if (ret < 0)
14747 return ret;
14748 }
14749
14750 if (!obj)
14751 return 0;
14752
14753 if (!new_state->fence) { /* implicit fencing */
14754 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
14755 obj->resv, NULL,
14756 false, I915_FENCE_TIMEOUT,
14757 GFP_KERNEL);
14758 if (ret < 0)
14759 return ret;
14760
14761 i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
14762 }
14763
14764 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
14765 INTEL_INFO(dev_priv)->cursor_needs_physical) {
14766 int align = IS_I830(dev_priv) ? 16 * 1024 : 256;
14767 ret = i915_gem_object_attach_phys(obj, align);
14768 if (ret) {
14769 DRM_DEBUG_KMS("failed to attach phys object\n");
14770 return ret;
14771 }
14772 } else {
14773 struct i915_vma *vma;
14774
14775 vma = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
14776 if (IS_ERR(vma)) {
14777 DRM_DEBUG_KMS("failed to pin object\n");
14778 return PTR_ERR(vma);
14779 }
14780
14781 to_intel_plane_state(new_state)->vma = vma;
14782 }
14783
14784 return 0;
14785}
14786
14787/**
14788 * intel_cleanup_plane_fb - Cleans up an fb after plane use
14789 * @plane: drm plane to clean up for
14790 * @fb: old framebuffer that was on plane
14791 *
14792 * Cleans up a framebuffer that has just been removed from a plane.
14793 *
14794 * Must be called with struct_mutex held.
14795 */
14796void
14797intel_cleanup_plane_fb(struct drm_plane *plane,
14798 struct drm_plane_state *old_state)
14799{
14800 struct i915_vma *vma;
14801
14802 /* Should only be called after a successful intel_prepare_plane_fb()! */
14803 vma = fetch_and_zero(&to_intel_plane_state(old_state)->vma);
14804 if (vma)
14805 intel_unpin_fb_vma(vma);
14806}
14807
14808int
14809skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
14810{
14811 int max_scale;
14812 int crtc_clock, cdclk;
14813
14814 if (!intel_crtc || !crtc_state->base.enable)
14815 return DRM_PLANE_HELPER_NO_SCALING;
14816
14817 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
14818 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
14819
14820 if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
14821 return DRM_PLANE_HELPER_NO_SCALING;
14822
14823 /*
14824 * skl max scale is lower of:
14825 * close to 3 but not 3, -1 is for that purpose
14826 * or
14827 * cdclk/crtc_clock
14828 */
14829 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
14830
14831 return max_scale;
14832}
14833
14834static int
14835intel_check_primary_plane(struct drm_plane *plane,
14836 struct intel_crtc_state *crtc_state,
14837 struct intel_plane_state *state)
14838{
14839 struct drm_i915_private *dev_priv = to_i915(plane->dev);
14840 struct drm_crtc *crtc = state->base.crtc;
14841 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
14842 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
14843 bool can_position = false;
14844 int ret;
14845
14846 if (INTEL_GEN(dev_priv) >= 9) {
14847 /* use scaler when colorkey is not required */
14848 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
14849 min_scale = 1;
14850 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
14851 }
14852 can_position = true;
14853 }
14854
14855 ret = drm_plane_helper_check_state(&state->base,
14856 &state->clip,
14857 min_scale, max_scale,
14858 can_position, true);
14859 if (ret)
14860 return ret;
14861
14862 if (!state->base.fb)
14863 return 0;
14864
14865 if (INTEL_GEN(dev_priv) >= 9) {
14866 ret = skl_check_plane_surface(state);
14867 if (ret)
14868 return ret;
14869 }
14870
14871 return 0;
14872}
14873
14874static void intel_begin_crtc_commit(struct drm_crtc *crtc,
14875 struct drm_crtc_state *old_crtc_state)
14876{
14877 struct drm_device *dev = crtc->dev;
14878 struct drm_i915_private *dev_priv = to_i915(dev);
14879 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14880 struct intel_crtc_state *intel_cstate =
14881 to_intel_crtc_state(crtc->state);
14882 struct intel_crtc_state *old_intel_cstate =
14883 to_intel_crtc_state(old_crtc_state);
14884 struct intel_atomic_state *old_intel_state =
14885 to_intel_atomic_state(old_crtc_state->state);
14886 bool modeset = needs_modeset(crtc->state);
14887
14888 if (!modeset &&
14889 (intel_cstate->base.color_mgmt_changed ||
14890 intel_cstate->update_pipe)) {
14891 intel_color_set_csc(crtc->state);
14892 intel_color_load_luts(crtc->state);
14893 }
14894
14895 /* Perform vblank evasion around commit operation */
14896 intel_pipe_update_start(intel_crtc);
14897
14898 if (modeset)
14899 goto out;
14900
14901 if (intel_cstate->update_pipe)
14902 intel_update_pipe_config(intel_crtc, old_intel_cstate);
14903 else if (INTEL_GEN(dev_priv) >= 9)
14904 skl_detach_scalers(intel_crtc);
14905
14906out:
14907 if (dev_priv->display.atomic_update_watermarks)
14908 dev_priv->display.atomic_update_watermarks(old_intel_state,
14909 intel_cstate);
14910}
14911
14912static void intel_finish_crtc_commit(struct drm_crtc *crtc,
14913 struct drm_crtc_state *old_crtc_state)
14914{
14915 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14916
14917 intel_pipe_update_end(intel_crtc, NULL);
14918}
14919
14920/**
14921 * intel_plane_destroy - destroy a plane
14922 * @plane: plane to destroy
14923 *
14924 * Common destruction function for all types of planes (primary, cursor,
14925 * sprite).
14926 */
14927void intel_plane_destroy(struct drm_plane *plane)
14928{
14929 drm_plane_cleanup(plane);
14930 kfree(to_intel_plane(plane));
14931}
14932
14933const struct drm_plane_funcs intel_plane_funcs = {
14934 .update_plane = drm_atomic_helper_update_plane,
14935 .disable_plane = drm_atomic_helper_disable_plane,
14936 .destroy = intel_plane_destroy,
14937 .set_property = drm_atomic_helper_plane_set_property,
14938 .atomic_get_property = intel_plane_atomic_get_property,
14939 .atomic_set_property = intel_plane_atomic_set_property,
14940 .atomic_duplicate_state = intel_plane_duplicate_state,
14941 .atomic_destroy_state = intel_plane_destroy_state,
14942};
14943
14944static struct intel_plane *
14945intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
14946{
14947 struct intel_plane *primary = NULL;
14948 struct intel_plane_state *state = NULL;
14949 const uint32_t *intel_primary_formats;
14950 unsigned int supported_rotations;
14951 unsigned int num_formats;
14952 int ret;
14953
14954 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14955 if (!primary) {
14956 ret = -ENOMEM;
14957 goto fail;
14958 }
14959
14960 state = intel_create_plane_state(&primary->base);
14961 if (!state) {
14962 ret = -ENOMEM;
14963 goto fail;
14964 }
14965
14966 primary->base.state = &state->base;
14967
14968 primary->can_scale = false;
14969 primary->max_downscale = 1;
14970 if (INTEL_GEN(dev_priv) >= 9) {
14971 primary->can_scale = true;
14972 state->scaler_id = -1;
14973 }
14974 primary->pipe = pipe;
14975 /*
14976 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
14977 * port is hooked to pipe B. Hence we want plane A feeding pipe B.
14978 */
14979 if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4)
14980 primary->plane = (enum plane) !pipe;
14981 else
14982 primary->plane = (enum plane) pipe;
14983 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
14984 primary->check_plane = intel_check_primary_plane;
14985
14986 if (INTEL_GEN(dev_priv) >= 9) {
14987 intel_primary_formats = skl_primary_formats;
14988 num_formats = ARRAY_SIZE(skl_primary_formats);
14989
14990 primary->update_plane = skylake_update_primary_plane;
14991 primary->disable_plane = skylake_disable_primary_plane;
14992 } else if (HAS_PCH_SPLIT(dev_priv)) {
14993 intel_primary_formats = i965_primary_formats;
14994 num_formats = ARRAY_SIZE(i965_primary_formats);
14995
14996 primary->update_plane = ironlake_update_primary_plane;
14997 primary->disable_plane = i9xx_disable_primary_plane;
14998 } else if (INTEL_GEN(dev_priv) >= 4) {
14999 intel_primary_formats = i965_primary_formats;
15000 num_formats = ARRAY_SIZE(i965_primary_formats);
15001
15002 primary->update_plane = i9xx_update_primary_plane;
15003 primary->disable_plane = i9xx_disable_primary_plane;
15004 } else {
15005 intel_primary_formats = i8xx_primary_formats;
15006 num_formats = ARRAY_SIZE(i8xx_primary_formats);
15007
15008 primary->update_plane = i9xx_update_primary_plane;
15009 primary->disable_plane = i9xx_disable_primary_plane;
15010 }
15011
15012 if (INTEL_GEN(dev_priv) >= 9)
15013 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
15014 0, &intel_plane_funcs,
15015 intel_primary_formats, num_formats,
15016 DRM_PLANE_TYPE_PRIMARY,
15017 "plane 1%c", pipe_name(pipe));
15018 else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
15019 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
15020 0, &intel_plane_funcs,
15021 intel_primary_formats, num_formats,
15022 DRM_PLANE_TYPE_PRIMARY,
15023 "primary %c", pipe_name(pipe));
15024 else
15025 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
15026 0, &intel_plane_funcs,
15027 intel_primary_formats, num_formats,
15028 DRM_PLANE_TYPE_PRIMARY,
15029 "plane %c", plane_name(primary->plane));
15030 if (ret)
15031 goto fail;
15032
15033 if (INTEL_GEN(dev_priv) >= 9) {
15034 supported_rotations =
15035 DRM_ROTATE_0 | DRM_ROTATE_90 |
15036 DRM_ROTATE_180 | DRM_ROTATE_270;
15037 } else if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
15038 supported_rotations =
15039 DRM_ROTATE_0 | DRM_ROTATE_180 |
15040 DRM_REFLECT_X;
15041 } else if (INTEL_GEN(dev_priv) >= 4) {
15042 supported_rotations =
15043 DRM_ROTATE_0 | DRM_ROTATE_180;
15044 } else {
15045 supported_rotations = DRM_ROTATE_0;
15046 }
15047
15048 if (INTEL_GEN(dev_priv) >= 4)
15049 drm_plane_create_rotation_property(&primary->base,
15050 DRM_ROTATE_0,
15051 supported_rotations);
15052
15053 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
15054
15055 return primary;
15056
15057fail:
15058 kfree(state);
15059 kfree(primary);
15060
15061 return ERR_PTR(ret);
15062}
15063
15064static int
15065intel_check_cursor_plane(struct drm_plane *plane,
15066 struct intel_crtc_state *crtc_state,
15067 struct intel_plane_state *state)
15068{
15069 struct drm_framebuffer *fb = state->base.fb;
15070 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15071 enum pipe pipe = to_intel_plane(plane)->pipe;
15072 unsigned stride;
15073 int ret;
15074
15075 ret = drm_plane_helper_check_state(&state->base,
15076 &state->clip,
15077 DRM_PLANE_HELPER_NO_SCALING,
15078 DRM_PLANE_HELPER_NO_SCALING,
15079 true, true);
15080 if (ret)
15081 return ret;
15082
15083 /* if we want to turn off the cursor ignore width and height */
15084 if (!obj)
15085 return 0;
15086
15087 /* Check for which cursor types we support */
15088 if (!cursor_size_ok(to_i915(plane->dev), state->base.crtc_w,
15089 state->base.crtc_h)) {
15090 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
15091 state->base.crtc_w, state->base.crtc_h);
15092 return -EINVAL;
15093 }
15094
15095 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
15096 if (obj->base.size < stride * state->base.crtc_h) {
15097 DRM_DEBUG_KMS("buffer is too small\n");
15098 return -ENOMEM;
15099 }
15100
15101 if (fb->modifier != DRM_FORMAT_MOD_NONE) {
15102 DRM_DEBUG_KMS("cursor cannot be tiled\n");
15103 return -EINVAL;
15104 }
15105
15106 /*
15107 * There's something wrong with the cursor on CHV pipe C.
15108 * If it straddles the left edge of the screen then
15109 * moving it away from the edge or disabling it often
15110 * results in a pipe underrun, and often that can lead to
15111 * dead pipe (constant underrun reported, and it scans
15112 * out just a solid color). To recover from that, the
15113 * display power well must be turned off and on again.
15114 * Refuse the put the cursor into that compromised position.
15115 */
15116 if (IS_CHERRYVIEW(to_i915(plane->dev)) && pipe == PIPE_C &&
15117 state->base.visible && state->base.crtc_x < 0) {
15118 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
15119 return -EINVAL;
15120 }
15121
15122 return 0;
15123}
15124
15125static void
15126intel_disable_cursor_plane(struct drm_plane *plane,
15127 struct drm_crtc *crtc)
15128{
15129 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
15130
15131 intel_crtc->cursor_addr = 0;
15132 intel_crtc_update_cursor(crtc, NULL);
15133}
15134
15135static void
15136intel_update_cursor_plane(struct drm_plane *plane,
15137 const struct intel_crtc_state *crtc_state,
15138 const struct intel_plane_state *state)
15139{
15140 struct drm_crtc *crtc = crtc_state->base.crtc;
15141 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
15142 struct drm_i915_private *dev_priv = to_i915(plane->dev);
15143 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
15144 uint32_t addr;
15145
15146 if (!obj)
15147 addr = 0;
15148 else if (!INTEL_INFO(dev_priv)->cursor_needs_physical)
15149 addr = intel_plane_ggtt_offset(state);
15150 else
15151 addr = obj->phys_handle->busaddr;
15152
15153 intel_crtc->cursor_addr = addr;
15154 intel_crtc_update_cursor(crtc, state);
15155}
15156
15157static struct intel_plane *
15158intel_cursor_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
15159{
15160 struct intel_plane *cursor = NULL;
15161 struct intel_plane_state *state = NULL;
15162 int ret;
15163
15164 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
15165 if (!cursor) {
15166 ret = -ENOMEM;
15167 goto fail;
15168 }
15169
15170 state = intel_create_plane_state(&cursor->base);
15171 if (!state) {
15172 ret = -ENOMEM;
15173 goto fail;
15174 }
15175
15176 cursor->base.state = &state->base;
15177
15178 cursor->can_scale = false;
15179 cursor->max_downscale = 1;
15180 cursor->pipe = pipe;
15181 cursor->plane = pipe;
15182 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
15183 cursor->check_plane = intel_check_cursor_plane;
15184 cursor->update_plane = intel_update_cursor_plane;
15185 cursor->disable_plane = intel_disable_cursor_plane;
15186
15187 ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
15188 0, &intel_plane_funcs,
15189 intel_cursor_formats,
15190 ARRAY_SIZE(intel_cursor_formats),
15191 DRM_PLANE_TYPE_CURSOR,
15192 "cursor %c", pipe_name(pipe));
15193 if (ret)
15194 goto fail;
15195
15196 if (INTEL_GEN(dev_priv) >= 4)
15197 drm_plane_create_rotation_property(&cursor->base,
15198 DRM_ROTATE_0,
15199 DRM_ROTATE_0 |
15200 DRM_ROTATE_180);
15201
15202 if (INTEL_GEN(dev_priv) >= 9)
15203 state->scaler_id = -1;
15204
15205 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
15206
15207 return cursor;
15208
15209fail:
15210 kfree(state);
15211 kfree(cursor);
15212
15213 return ERR_PTR(ret);
15214}
15215
15216static void skl_init_scalers(struct drm_i915_private *dev_priv,
15217 struct intel_crtc *crtc,
15218 struct intel_crtc_state *crtc_state)
15219{
15220 struct intel_crtc_scaler_state *scaler_state =
15221 &crtc_state->scaler_state;
15222 int i;
15223
15224 for (i = 0; i < crtc->num_scalers; i++) {
15225 struct intel_scaler *scaler = &scaler_state->scalers[i];
15226
15227 scaler->in_use = 0;
15228 scaler->mode = PS_SCALER_MODE_DYN;
15229 }
15230
15231 scaler_state->scaler_id = -1;
15232}
15233
15234static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
15235{
15236 struct intel_crtc *intel_crtc;
15237 struct intel_crtc_state *crtc_state = NULL;
15238 struct intel_plane *primary = NULL;
15239 struct intel_plane *cursor = NULL;
15240 int sprite, ret;
15241
15242 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
15243 if (!intel_crtc)
15244 return -ENOMEM;
15245
15246 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
15247 if (!crtc_state) {
15248 ret = -ENOMEM;
15249 goto fail;
15250 }
15251 intel_crtc->config = crtc_state;
15252 intel_crtc->base.state = &crtc_state->base;
15253 crtc_state->base.crtc = &intel_crtc->base;
15254
15255 /* initialize shared scalers */
15256 if (INTEL_GEN(dev_priv) >= 9) {
15257 if (pipe == PIPE_C)
15258 intel_crtc->num_scalers = 1;
15259 else
15260 intel_crtc->num_scalers = SKL_NUM_SCALERS;
15261
15262 skl_init_scalers(dev_priv, intel_crtc, crtc_state);
15263 }
15264
15265 primary = intel_primary_plane_create(dev_priv, pipe);
15266 if (IS_ERR(primary)) {
15267 ret = PTR_ERR(primary);
15268 goto fail;
15269 }
15270
15271 for_each_sprite(dev_priv, pipe, sprite) {
15272 struct intel_plane *plane;
15273
15274 plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
15275 if (IS_ERR(plane)) {
15276 ret = PTR_ERR(plane);
15277 goto fail;
15278 }
15279 }
15280
15281 cursor = intel_cursor_plane_create(dev_priv, pipe);
15282 if (IS_ERR(cursor)) {
15283 ret = PTR_ERR(cursor);
15284 goto fail;
15285 }
15286
15287 ret = drm_crtc_init_with_planes(&dev_priv->drm, &intel_crtc->base,
15288 &primary->base, &cursor->base,
15289 &intel_crtc_funcs,
15290 "pipe %c", pipe_name(pipe));
15291 if (ret)
15292 goto fail;
15293
15294 intel_crtc->pipe = pipe;
15295 intel_crtc->plane = primary->plane;
15296
15297 intel_crtc->cursor_base = ~0;
15298 intel_crtc->cursor_cntl = ~0;
15299 intel_crtc->cursor_size = ~0;
15300
15301 intel_crtc->wm.cxsr_allowed = true;
15302
15303 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
15304 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
15305 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = intel_crtc;
15306 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = intel_crtc;
15307
15308 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
15309
15310 intel_color_init(&intel_crtc->base);
15311
15312 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
15313
15314 return 0;
15315
15316fail:
15317 /*
15318 * drm_mode_config_cleanup() will free up any
15319 * crtcs/planes already initialized.
15320 */
15321 kfree(crtc_state);
15322 kfree(intel_crtc);
15323
15324 return ret;
15325}
15326
15327enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
15328{
15329 struct drm_encoder *encoder = connector->base.encoder;
15330 struct drm_device *dev = connector->base.dev;
15331
15332 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
15333
15334 if (!encoder || WARN_ON(!encoder->crtc))
15335 return INVALID_PIPE;
15336
15337 return to_intel_crtc(encoder->crtc)->pipe;
15338}
15339
15340int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
15341 struct drm_file *file)
15342{
15343 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
15344 struct drm_crtc *drmmode_crtc;
15345 struct intel_crtc *crtc;
15346
15347 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
15348 if (!drmmode_crtc)
15349 return -ENOENT;
15350
15351 crtc = to_intel_crtc(drmmode_crtc);
15352 pipe_from_crtc_id->pipe = crtc->pipe;
15353
15354 return 0;
15355}
15356
15357static int intel_encoder_clones(struct intel_encoder *encoder)
15358{
15359 struct drm_device *dev = encoder->base.dev;
15360 struct intel_encoder *source_encoder;
15361 int index_mask = 0;
15362 int entry = 0;
15363
15364 for_each_intel_encoder(dev, source_encoder) {
15365 if (encoders_cloneable(encoder, source_encoder))
15366 index_mask |= (1 << entry);
15367
15368 entry++;
15369 }
15370
15371 return index_mask;
15372}
15373
15374static bool has_edp_a(struct drm_i915_private *dev_priv)
15375{
15376 if (!IS_MOBILE(dev_priv))
15377 return false;
15378
15379 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
15380 return false;
15381
15382 if (IS_GEN5(dev_priv) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
15383 return false;
15384
15385 return true;
15386}
15387
15388static bool intel_crt_present(struct drm_i915_private *dev_priv)
15389{
15390 if (INTEL_GEN(dev_priv) >= 9)
15391 return false;
15392
15393 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
15394 return false;
15395
15396 if (IS_CHERRYVIEW(dev_priv))
15397 return false;
15398
15399 if (HAS_PCH_LPT_H(dev_priv) &&
15400 I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
15401 return false;
15402
15403 /* DDI E can't be used if DDI A requires 4 lanes */
15404 if (HAS_DDI(dev_priv) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
15405 return false;
15406
15407 if (!dev_priv->vbt.int_crt_support)
15408 return false;
15409
15410 return true;
15411}
15412
15413void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
15414{
15415 int pps_num;
15416 int pps_idx;
15417
15418 if (HAS_DDI(dev_priv))
15419 return;
15420 /*
15421 * This w/a is needed at least on CPT/PPT, but to be sure apply it
15422 * everywhere where registers can be write protected.
15423 */
15424 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15425 pps_num = 2;
15426 else
15427 pps_num = 1;
15428
15429 for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
15430 u32 val = I915_READ(PP_CONTROL(pps_idx));
15431
15432 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
15433 I915_WRITE(PP_CONTROL(pps_idx), val);
15434 }
15435}
15436
15437static void intel_pps_init(struct drm_i915_private *dev_priv)
15438{
15439 if (HAS_PCH_SPLIT(dev_priv) || IS_BROXTON(dev_priv))
15440 dev_priv->pps_mmio_base = PCH_PPS_BASE;
15441 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15442 dev_priv->pps_mmio_base = VLV_PPS_BASE;
15443 else
15444 dev_priv->pps_mmio_base = PPS_BASE;
15445
15446 intel_pps_unlock_regs_wa(dev_priv);
15447}
15448
15449static void intel_setup_outputs(struct drm_device *dev)
15450{
15451 struct drm_i915_private *dev_priv = to_i915(dev);
15452 struct intel_encoder *encoder;
15453 bool dpd_is_edp = false;
15454
15455 intel_pps_init(dev_priv);
15456
15457 /*
15458 * intel_edp_init_connector() depends on this completing first, to
15459 * prevent the registeration of both eDP and LVDS and the incorrect
15460 * sharing of the PPS.
15461 */
15462 intel_lvds_init(dev);
15463
15464 if (intel_crt_present(dev_priv))
15465 intel_crt_init(dev);
15466
15467 if (IS_BROXTON(dev_priv)) {
15468 /*
15469 * FIXME: Broxton doesn't support port detection via the
15470 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
15471 * detect the ports.
15472 */
15473 intel_ddi_init(dev, PORT_A);
15474 intel_ddi_init(dev, PORT_B);
15475 intel_ddi_init(dev, PORT_C);
15476
15477 intel_dsi_init(dev);
15478 } else if (HAS_DDI(dev_priv)) {
15479 int found;
15480
15481 /*
15482 * Haswell uses DDI functions to detect digital outputs.
15483 * On SKL pre-D0 the strap isn't connected, so we assume
15484 * it's there.
15485 */
15486 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
15487 /* WaIgnoreDDIAStrap: skl */
15488 if (found || IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
15489 intel_ddi_init(dev, PORT_A);
15490
15491 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
15492 * register */
15493 found = I915_READ(SFUSE_STRAP);
15494
15495 if (found & SFUSE_STRAP_DDIB_DETECTED)
15496 intel_ddi_init(dev, PORT_B);
15497 if (found & SFUSE_STRAP_DDIC_DETECTED)
15498 intel_ddi_init(dev, PORT_C);
15499 if (found & SFUSE_STRAP_DDID_DETECTED)
15500 intel_ddi_init(dev, PORT_D);
15501 /*
15502 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
15503 */
15504 if ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
15505 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
15506 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
15507 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
15508 intel_ddi_init(dev, PORT_E);
15509
15510 } else if (HAS_PCH_SPLIT(dev_priv)) {
15511 int found;
15512 dpd_is_edp = intel_dp_is_edp(dev_priv, PORT_D);
15513
15514 if (has_edp_a(dev_priv))
15515 intel_dp_init(dev, DP_A, PORT_A);
15516
15517 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
15518 /* PCH SDVOB multiplex with HDMIB */
15519 found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
15520 if (!found)
15521 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
15522 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
15523 intel_dp_init(dev, PCH_DP_B, PORT_B);
15524 }
15525
15526 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
15527 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
15528
15529 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
15530 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
15531
15532 if (I915_READ(PCH_DP_C) & DP_DETECTED)
15533 intel_dp_init(dev, PCH_DP_C, PORT_C);
15534
15535 if (I915_READ(PCH_DP_D) & DP_DETECTED)
15536 intel_dp_init(dev, PCH_DP_D, PORT_D);
15537 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15538 bool has_edp, has_port;
15539
15540 /*
15541 * The DP_DETECTED bit is the latched state of the DDC
15542 * SDA pin at boot. However since eDP doesn't require DDC
15543 * (no way to plug in a DP->HDMI dongle) the DDC pins for
15544 * eDP ports may have been muxed to an alternate function.
15545 * Thus we can't rely on the DP_DETECTED bit alone to detect
15546 * eDP ports. Consult the VBT as well as DP_DETECTED to
15547 * detect eDP ports.
15548 *
15549 * Sadly the straps seem to be missing sometimes even for HDMI
15550 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
15551 * and VBT for the presence of the port. Additionally we can't
15552 * trust the port type the VBT declares as we've seen at least
15553 * HDMI ports that the VBT claim are DP or eDP.
15554 */
15555 has_edp = intel_dp_is_edp(dev_priv, PORT_B);
15556 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
15557 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
15558 has_edp &= intel_dp_init(dev, VLV_DP_B, PORT_B);
15559 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
15560 intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
15561
15562 has_edp = intel_dp_is_edp(dev_priv, PORT_C);
15563 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
15564 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
15565 has_edp &= intel_dp_init(dev, VLV_DP_C, PORT_C);
15566 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
15567 intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
15568
15569 if (IS_CHERRYVIEW(dev_priv)) {
15570 /*
15571 * eDP not supported on port D,
15572 * so no need to worry about it
15573 */
15574 has_port = intel_bios_is_port_present(dev_priv, PORT_D);
15575 if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
15576 intel_dp_init(dev, CHV_DP_D, PORT_D);
15577 if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
15578 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
15579 }
15580
15581 intel_dsi_init(dev);
15582 } else if (!IS_GEN2(dev_priv) && !IS_PINEVIEW(dev_priv)) {
15583 bool found = false;
15584
15585 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15586 DRM_DEBUG_KMS("probing SDVOB\n");
15587 found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
15588 if (!found && IS_G4X(dev_priv)) {
15589 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
15590 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
15591 }
15592
15593 if (!found && IS_G4X(dev_priv))
15594 intel_dp_init(dev, DP_B, PORT_B);
15595 }
15596
15597 /* Before G4X SDVOC doesn't have its own detect register */
15598
15599 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15600 DRM_DEBUG_KMS("probing SDVOC\n");
15601 found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
15602 }
15603
15604 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
15605
15606 if (IS_G4X(dev_priv)) {
15607 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
15608 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
15609 }
15610 if (IS_G4X(dev_priv))
15611 intel_dp_init(dev, DP_C, PORT_C);
15612 }
15613
15614 if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED))
15615 intel_dp_init(dev, DP_D, PORT_D);
15616 } else if (IS_GEN2(dev_priv))
15617 intel_dvo_init(dev);
15618
15619 if (SUPPORTS_TV(dev_priv))
15620 intel_tv_init(dev);
15621
15622 intel_psr_init(dev);
15623
15624 for_each_intel_encoder(dev, encoder) {
15625 encoder->base.possible_crtcs = encoder->crtc_mask;
15626 encoder->base.possible_clones =
15627 intel_encoder_clones(encoder);
15628 }
15629
15630 intel_init_pch_refclk(dev);
15631
15632 drm_helper_move_panel_connectors_to_head(dev);
15633}
15634
15635static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
15636{
15637 struct drm_device *dev = fb->dev;
15638 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15639
15640 drm_framebuffer_cleanup(fb);
15641 mutex_lock(&dev->struct_mutex);
15642 WARN_ON(!intel_fb->obj->framebuffer_references--);
15643 i915_gem_object_put(intel_fb->obj);
15644 mutex_unlock(&dev->struct_mutex);
15645 kfree(intel_fb);
15646}
15647
15648static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
15649 struct drm_file *file,
15650 unsigned int *handle)
15651{
15652 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15653 struct drm_i915_gem_object *obj = intel_fb->obj;
15654
15655 if (obj->userptr.mm) {
15656 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
15657 return -EINVAL;
15658 }
15659
15660 return drm_gem_handle_create(file, &obj->base, handle);
15661}
15662
15663static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
15664 struct drm_file *file,
15665 unsigned flags, unsigned color,
15666 struct drm_clip_rect *clips,
15667 unsigned num_clips)
15668{
15669 struct drm_device *dev = fb->dev;
15670 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15671 struct drm_i915_gem_object *obj = intel_fb->obj;
15672
15673 mutex_lock(&dev->struct_mutex);
15674 if (obj->pin_display && obj->cache_dirty)
15675 i915_gem_clflush_object(obj, true);
15676 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
15677 mutex_unlock(&dev->struct_mutex);
15678
15679 return 0;
15680}
15681
15682static const struct drm_framebuffer_funcs intel_fb_funcs = {
15683 .destroy = intel_user_framebuffer_destroy,
15684 .create_handle = intel_user_framebuffer_create_handle,
15685 .dirty = intel_user_framebuffer_dirty,
15686};
15687
15688static
15689u32 intel_fb_pitch_limit(struct drm_i915_private *dev_priv,
15690 uint64_t fb_modifier, uint32_t pixel_format)
15691{
15692 u32 gen = INTEL_INFO(dev_priv)->gen;
15693
15694 if (gen >= 9) {
15695 int cpp = drm_format_plane_cpp(pixel_format, 0);
15696
15697 /* "The stride in bytes must not exceed the of the size of 8K
15698 * pixels and 32K bytes."
15699 */
15700 return min(8192 * cpp, 32768);
15701 } else if (gen >= 5 && !IS_VALLEYVIEW(dev_priv) &&
15702 !IS_CHERRYVIEW(dev_priv)) {
15703 return 32*1024;
15704 } else if (gen >= 4) {
15705 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15706 return 16*1024;
15707 else
15708 return 32*1024;
15709 } else if (gen >= 3) {
15710 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15711 return 8*1024;
15712 else
15713 return 16*1024;
15714 } else {
15715 /* XXX DSPC is limited to 4k tiled */
15716 return 8*1024;
15717 }
15718}
15719
15720static int intel_framebuffer_init(struct drm_device *dev,
15721 struct intel_framebuffer *intel_fb,
15722 struct drm_mode_fb_cmd2 *mode_cmd,
15723 struct drm_i915_gem_object *obj)
15724{
15725 struct drm_i915_private *dev_priv = to_i915(dev);
15726 unsigned int tiling = i915_gem_object_get_tiling(obj);
15727 int ret;
15728 u32 pitch_limit, stride_alignment;
15729 struct drm_format_name_buf format_name;
15730
15731 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
15732
15733 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
15734 /*
15735 * If there's a fence, enforce that
15736 * the fb modifier and tiling mode match.
15737 */
15738 if (tiling != I915_TILING_NONE &&
15739 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15740 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
15741 return -EINVAL;
15742 }
15743 } else {
15744 if (tiling == I915_TILING_X) {
15745 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
15746 } else if (tiling == I915_TILING_Y) {
15747 DRM_DEBUG("No Y tiling for legacy addfb\n");
15748 return -EINVAL;
15749 }
15750 }
15751
15752 /* Passed in modifier sanity checking. */
15753 switch (mode_cmd->modifier[0]) {
15754 case I915_FORMAT_MOD_Y_TILED:
15755 case I915_FORMAT_MOD_Yf_TILED:
15756 if (INTEL_GEN(dev_priv) < 9) {
15757 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
15758 mode_cmd->modifier[0]);
15759 return -EINVAL;
15760 }
15761 case DRM_FORMAT_MOD_NONE:
15762 case I915_FORMAT_MOD_X_TILED:
15763 break;
15764 default:
15765 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
15766 mode_cmd->modifier[0]);
15767 return -EINVAL;
15768 }
15769
15770 /*
15771 * gen2/3 display engine uses the fence if present,
15772 * so the tiling mode must match the fb modifier exactly.
15773 */
15774 if (INTEL_INFO(dev_priv)->gen < 4 &&
15775 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15776 DRM_DEBUG("tiling_mode must match fb modifier exactly on gen2/3\n");
15777 return -EINVAL;
15778 }
15779
15780 stride_alignment = intel_fb_stride_alignment(dev_priv,
15781 mode_cmd->modifier[0],
15782 mode_cmd->pixel_format);
15783 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
15784 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
15785 mode_cmd->pitches[0], stride_alignment);
15786 return -EINVAL;
15787 }
15788
15789 pitch_limit = intel_fb_pitch_limit(dev_priv, mode_cmd->modifier[0],
15790 mode_cmd->pixel_format);
15791 if (mode_cmd->pitches[0] > pitch_limit) {
15792 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
15793 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
15794 "tiled" : "linear",
15795 mode_cmd->pitches[0], pitch_limit);
15796 return -EINVAL;
15797 }
15798
15799 /*
15800 * If there's a fence, enforce that
15801 * the fb pitch and fence stride match.
15802 */
15803 if (tiling != I915_TILING_NONE &&
15804 mode_cmd->pitches[0] != i915_gem_object_get_stride(obj)) {
15805 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
15806 mode_cmd->pitches[0],
15807 i915_gem_object_get_stride(obj));
15808 return -EINVAL;
15809 }
15810
15811 /* Reject formats not supported by any plane early. */
15812 switch (mode_cmd->pixel_format) {
15813 case DRM_FORMAT_C8:
15814 case DRM_FORMAT_RGB565:
15815 case DRM_FORMAT_XRGB8888:
15816 case DRM_FORMAT_ARGB8888:
15817 break;
15818 case DRM_FORMAT_XRGB1555:
15819 if (INTEL_GEN(dev_priv) > 3) {
15820 DRM_DEBUG("unsupported pixel format: %s\n",
15821 drm_get_format_name(mode_cmd->pixel_format, &format_name));
15822 return -EINVAL;
15823 }
15824 break;
15825 case DRM_FORMAT_ABGR8888:
15826 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
15827 INTEL_GEN(dev_priv) < 9) {
15828 DRM_DEBUG("unsupported pixel format: %s\n",
15829 drm_get_format_name(mode_cmd->pixel_format, &format_name));
15830 return -EINVAL;
15831 }
15832 break;
15833 case DRM_FORMAT_XBGR8888:
15834 case DRM_FORMAT_XRGB2101010:
15835 case DRM_FORMAT_XBGR2101010:
15836 if (INTEL_GEN(dev_priv) < 4) {
15837 DRM_DEBUG("unsupported pixel format: %s\n",
15838 drm_get_format_name(mode_cmd->pixel_format, &format_name));
15839 return -EINVAL;
15840 }
15841 break;
15842 case DRM_FORMAT_ABGR2101010:
15843 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
15844 DRM_DEBUG("unsupported pixel format: %s\n",
15845 drm_get_format_name(mode_cmd->pixel_format, &format_name));
15846 return -EINVAL;
15847 }
15848 break;
15849 case DRM_FORMAT_YUYV:
15850 case DRM_FORMAT_UYVY:
15851 case DRM_FORMAT_YVYU:
15852 case DRM_FORMAT_VYUY:
15853 if (INTEL_GEN(dev_priv) < 5) {
15854 DRM_DEBUG("unsupported pixel format: %s\n",
15855 drm_get_format_name(mode_cmd->pixel_format, &format_name));
15856 return -EINVAL;
15857 }
15858 break;
15859 default:
15860 DRM_DEBUG("unsupported pixel format: %s\n",
15861 drm_get_format_name(mode_cmd->pixel_format, &format_name));
15862 return -EINVAL;
15863 }
15864
15865 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
15866 if (mode_cmd->offsets[0] != 0)
15867 return -EINVAL;
15868
15869 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
15870 intel_fb->obj = obj;
15871
15872 ret = intel_fill_fb_info(dev_priv, &intel_fb->base);
15873 if (ret)
15874 return ret;
15875
15876 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
15877 if (ret) {
15878 DRM_ERROR("framebuffer init failed %d\n", ret);
15879 return ret;
15880 }
15881
15882 intel_fb->obj->framebuffer_references++;
15883
15884 return 0;
15885}
15886
15887static struct drm_framebuffer *
15888intel_user_framebuffer_create(struct drm_device *dev,
15889 struct drm_file *filp,
15890 const struct drm_mode_fb_cmd2 *user_mode_cmd)
15891{
15892 struct drm_framebuffer *fb;
15893 struct drm_i915_gem_object *obj;
15894 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
15895
15896 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
15897 if (!obj)
15898 return ERR_PTR(-ENOENT);
15899
15900 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
15901 if (IS_ERR(fb))
15902 i915_gem_object_put(obj);
15903
15904 return fb;
15905}
15906
15907static const struct drm_mode_config_funcs intel_mode_funcs = {
15908 .fb_create = intel_user_framebuffer_create,
15909 .output_poll_changed = intel_fbdev_output_poll_changed,
15910 .atomic_check = intel_atomic_check,
15911 .atomic_commit = intel_atomic_commit,
15912 .atomic_state_alloc = intel_atomic_state_alloc,
15913 .atomic_state_clear = intel_atomic_state_clear,
15914};
15915
15916/**
15917 * intel_init_display_hooks - initialize the display modesetting hooks
15918 * @dev_priv: device private
15919 */
15920void intel_init_display_hooks(struct drm_i915_private *dev_priv)
15921{
15922 if (INTEL_INFO(dev_priv)->gen >= 9) {
15923 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15924 dev_priv->display.get_initial_plane_config =
15925 skylake_get_initial_plane_config;
15926 dev_priv->display.crtc_compute_clock =
15927 haswell_crtc_compute_clock;
15928 dev_priv->display.crtc_enable = haswell_crtc_enable;
15929 dev_priv->display.crtc_disable = haswell_crtc_disable;
15930 } else if (HAS_DDI(dev_priv)) {
15931 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15932 dev_priv->display.get_initial_plane_config =
15933 ironlake_get_initial_plane_config;
15934 dev_priv->display.crtc_compute_clock =
15935 haswell_crtc_compute_clock;
15936 dev_priv->display.crtc_enable = haswell_crtc_enable;
15937 dev_priv->display.crtc_disable = haswell_crtc_disable;
15938 } else if (HAS_PCH_SPLIT(dev_priv)) {
15939 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
15940 dev_priv->display.get_initial_plane_config =
15941 ironlake_get_initial_plane_config;
15942 dev_priv->display.crtc_compute_clock =
15943 ironlake_crtc_compute_clock;
15944 dev_priv->display.crtc_enable = ironlake_crtc_enable;
15945 dev_priv->display.crtc_disable = ironlake_crtc_disable;
15946 } else if (IS_CHERRYVIEW(dev_priv)) {
15947 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15948 dev_priv->display.get_initial_plane_config =
15949 i9xx_get_initial_plane_config;
15950 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
15951 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15952 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15953 } else if (IS_VALLEYVIEW(dev_priv)) {
15954 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15955 dev_priv->display.get_initial_plane_config =
15956 i9xx_get_initial_plane_config;
15957 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
15958 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15959 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15960 } else if (IS_G4X(dev_priv)) {
15961 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15962 dev_priv->display.get_initial_plane_config =
15963 i9xx_get_initial_plane_config;
15964 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
15965 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15966 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15967 } else if (IS_PINEVIEW(dev_priv)) {
15968 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15969 dev_priv->display.get_initial_plane_config =
15970 i9xx_get_initial_plane_config;
15971 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
15972 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15973 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15974 } else if (!IS_GEN2(dev_priv)) {
15975 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15976 dev_priv->display.get_initial_plane_config =
15977 i9xx_get_initial_plane_config;
15978 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
15979 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15980 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15981 } else {
15982 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15983 dev_priv->display.get_initial_plane_config =
15984 i9xx_get_initial_plane_config;
15985 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
15986 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15987 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15988 }
15989
15990 /* Returns the core display clock speed */
15991 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
15992 dev_priv->display.get_display_clock_speed =
15993 skylake_get_display_clock_speed;
15994 else if (IS_BROXTON(dev_priv))
15995 dev_priv->display.get_display_clock_speed =
15996 broxton_get_display_clock_speed;
15997 else if (IS_BROADWELL(dev_priv))
15998 dev_priv->display.get_display_clock_speed =
15999 broadwell_get_display_clock_speed;
16000 else if (IS_HASWELL(dev_priv))
16001 dev_priv->display.get_display_clock_speed =
16002 haswell_get_display_clock_speed;
16003 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16004 dev_priv->display.get_display_clock_speed =
16005 valleyview_get_display_clock_speed;
16006 else if (IS_GEN5(dev_priv))
16007 dev_priv->display.get_display_clock_speed =
16008 ilk_get_display_clock_speed;
16009 else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
16010 IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
16011 dev_priv->display.get_display_clock_speed =
16012 i945_get_display_clock_speed;
16013 else if (IS_GM45(dev_priv))
16014 dev_priv->display.get_display_clock_speed =
16015 gm45_get_display_clock_speed;
16016 else if (IS_CRESTLINE(dev_priv))
16017 dev_priv->display.get_display_clock_speed =
16018 i965gm_get_display_clock_speed;
16019 else if (IS_PINEVIEW(dev_priv))
16020 dev_priv->display.get_display_clock_speed =
16021 pnv_get_display_clock_speed;
16022 else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
16023 dev_priv->display.get_display_clock_speed =
16024 g33_get_display_clock_speed;
16025 else if (IS_I915G(dev_priv))
16026 dev_priv->display.get_display_clock_speed =
16027 i915_get_display_clock_speed;
16028 else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
16029 dev_priv->display.get_display_clock_speed =
16030 i9xx_misc_get_display_clock_speed;
16031 else if (IS_I915GM(dev_priv))
16032 dev_priv->display.get_display_clock_speed =
16033 i915gm_get_display_clock_speed;
16034 else if (IS_I865G(dev_priv))
16035 dev_priv->display.get_display_clock_speed =
16036 i865_get_display_clock_speed;
16037 else if (IS_I85X(dev_priv))
16038 dev_priv->display.get_display_clock_speed =
16039 i85x_get_display_clock_speed;
16040 else { /* 830 */
16041 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
16042 dev_priv->display.get_display_clock_speed =
16043 i830_get_display_clock_speed;
16044 }
16045
16046 if (IS_GEN5(dev_priv)) {
16047 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
16048 } else if (IS_GEN6(dev_priv)) {
16049 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
16050 } else if (IS_IVYBRIDGE(dev_priv)) {
16051 /* FIXME: detect B0+ stepping and use auto training */
16052 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
16053 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
16054 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
16055 }
16056
16057 if (IS_BROADWELL(dev_priv)) {
16058 dev_priv->display.modeset_commit_cdclk =
16059 broadwell_modeset_commit_cdclk;
16060 dev_priv->display.modeset_calc_cdclk =
16061 broadwell_modeset_calc_cdclk;
16062 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
16063 dev_priv->display.modeset_commit_cdclk =
16064 valleyview_modeset_commit_cdclk;
16065 dev_priv->display.modeset_calc_cdclk =
16066 valleyview_modeset_calc_cdclk;
16067 } else if (IS_BROXTON(dev_priv)) {
16068 dev_priv->display.modeset_commit_cdclk =
16069 bxt_modeset_commit_cdclk;
16070 dev_priv->display.modeset_calc_cdclk =
16071 bxt_modeset_calc_cdclk;
16072 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
16073 dev_priv->display.modeset_commit_cdclk =
16074 skl_modeset_commit_cdclk;
16075 dev_priv->display.modeset_calc_cdclk =
16076 skl_modeset_calc_cdclk;
16077 }
16078
16079 if (dev_priv->info.gen >= 9)
16080 dev_priv->display.update_crtcs = skl_update_crtcs;
16081 else
16082 dev_priv->display.update_crtcs = intel_update_crtcs;
16083
16084 switch (INTEL_INFO(dev_priv)->gen) {
16085 case 2:
16086 dev_priv->display.queue_flip = intel_gen2_queue_flip;
16087 break;
16088
16089 case 3:
16090 dev_priv->display.queue_flip = intel_gen3_queue_flip;
16091 break;
16092
16093 case 4:
16094 case 5:
16095 dev_priv->display.queue_flip = intel_gen4_queue_flip;
16096 break;
16097
16098 case 6:
16099 dev_priv->display.queue_flip = intel_gen6_queue_flip;
16100 break;
16101 case 7:
16102 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
16103 dev_priv->display.queue_flip = intel_gen7_queue_flip;
16104 break;
16105 case 9:
16106 /* Drop through - unsupported since execlist only. */
16107 default:
16108 /* Default just returns -ENODEV to indicate unsupported */
16109 dev_priv->display.queue_flip = intel_default_queue_flip;
16110 }
16111}
16112
16113/*
16114 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
16115 * resume, or other times. This quirk makes sure that's the case for
16116 * affected systems.
16117 */
16118static void quirk_pipea_force(struct drm_device *dev)
16119{
16120 struct drm_i915_private *dev_priv = to_i915(dev);
16121
16122 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
16123 DRM_INFO("applying pipe a force quirk\n");
16124}
16125
16126static void quirk_pipeb_force(struct drm_device *dev)
16127{
16128 struct drm_i915_private *dev_priv = to_i915(dev);
16129
16130 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
16131 DRM_INFO("applying pipe b force quirk\n");
16132}
16133
16134/*
16135 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
16136 */
16137static void quirk_ssc_force_disable(struct drm_device *dev)
16138{
16139 struct drm_i915_private *dev_priv = to_i915(dev);
16140 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
16141 DRM_INFO("applying lvds SSC disable quirk\n");
16142}
16143
16144/*
16145 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
16146 * brightness value
16147 */
16148static void quirk_invert_brightness(struct drm_device *dev)
16149{
16150 struct drm_i915_private *dev_priv = to_i915(dev);
16151 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
16152 DRM_INFO("applying inverted panel brightness quirk\n");
16153}
16154
16155/* Some VBT's incorrectly indicate no backlight is present */
16156static void quirk_backlight_present(struct drm_device *dev)
16157{
16158 struct drm_i915_private *dev_priv = to_i915(dev);
16159 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
16160 DRM_INFO("applying backlight present quirk\n");
16161}
16162
16163struct intel_quirk {
16164 int device;
16165 int subsystem_vendor;
16166 int subsystem_device;
16167 void (*hook)(struct drm_device *dev);
16168};
16169
16170/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
16171struct intel_dmi_quirk {
16172 void (*hook)(struct drm_device *dev);
16173 const struct dmi_system_id (*dmi_id_list)[];
16174};
16175
16176static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
16177{
16178 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
16179 return 1;
16180}
16181
16182static const struct intel_dmi_quirk intel_dmi_quirks[] = {
16183 {
16184 .dmi_id_list = &(const struct dmi_system_id[]) {
16185 {
16186 .callback = intel_dmi_reverse_brightness,
16187 .ident = "NCR Corporation",
16188 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
16189 DMI_MATCH(DMI_PRODUCT_NAME, ""),
16190 },
16191 },
16192 { } /* terminating entry */
16193 },
16194 .hook = quirk_invert_brightness,
16195 },
16196};
16197
16198static struct intel_quirk intel_quirks[] = {
16199 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
16200 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
16201
16202 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
16203 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
16204
16205 /* 830 needs to leave pipe A & dpll A up */
16206 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
16207
16208 /* 830 needs to leave pipe B & dpll B up */
16209 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
16210
16211 /* Lenovo U160 cannot use SSC on LVDS */
16212 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
16213
16214 /* Sony Vaio Y cannot use SSC on LVDS */
16215 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
16216
16217 /* Acer Aspire 5734Z must invert backlight brightness */
16218 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
16219
16220 /* Acer/eMachines G725 */
16221 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
16222
16223 /* Acer/eMachines e725 */
16224 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
16225
16226 /* Acer/Packard Bell NCL20 */
16227 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
16228
16229 /* Acer Aspire 4736Z */
16230 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
16231
16232 /* Acer Aspire 5336 */
16233 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
16234
16235 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
16236 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
16237
16238 /* Acer C720 Chromebook (Core i3 4005U) */
16239 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
16240
16241 /* Apple Macbook 2,1 (Core 2 T7400) */
16242 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
16243
16244 /* Apple Macbook 4,1 */
16245 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
16246
16247 /* Toshiba CB35 Chromebook (Celeron 2955U) */
16248 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
16249
16250 /* HP Chromebook 14 (Celeron 2955U) */
16251 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
16252
16253 /* Dell Chromebook 11 */
16254 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
16255
16256 /* Dell Chromebook 11 (2015 version) */
16257 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
16258};
16259
16260static void intel_init_quirks(struct drm_device *dev)
16261{
16262 struct pci_dev *d = dev->pdev;
16263 int i;
16264
16265 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
16266 struct intel_quirk *q = &intel_quirks[i];
16267
16268 if (d->device == q->device &&
16269 (d->subsystem_vendor == q->subsystem_vendor ||
16270 q->subsystem_vendor == PCI_ANY_ID) &&
16271 (d->subsystem_device == q->subsystem_device ||
16272 q->subsystem_device == PCI_ANY_ID))
16273 q->hook(dev);
16274 }
16275 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
16276 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
16277 intel_dmi_quirks[i].hook(dev);
16278 }
16279}
16280
16281/* Disable the VGA plane that we never use */
16282static void i915_disable_vga(struct drm_i915_private *dev_priv)
16283{
16284 struct pci_dev *pdev = dev_priv->drm.pdev;
16285 u8 sr1;
16286 i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
16287
16288 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
16289 vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
16290 outb(SR01, VGA_SR_INDEX);
16291 sr1 = inb(VGA_SR_DATA);
16292 outb(sr1 | 1<<5, VGA_SR_DATA);
16293 vga_put(pdev, VGA_RSRC_LEGACY_IO);
16294 udelay(300);
16295
16296 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
16297 POSTING_READ(vga_reg);
16298}
16299
16300void intel_modeset_init_hw(struct drm_device *dev)
16301{
16302 struct drm_i915_private *dev_priv = to_i915(dev);
16303
16304 intel_update_cdclk(dev_priv);
16305
16306 dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
16307
16308 intel_init_clock_gating(dev_priv);
16309}
16310
16311/*
16312 * Calculate what we think the watermarks should be for the state we've read
16313 * out of the hardware and then immediately program those watermarks so that
16314 * we ensure the hardware settings match our internal state.
16315 *
16316 * We can calculate what we think WM's should be by creating a duplicate of the
16317 * current state (which was constructed during hardware readout) and running it
16318 * through the atomic check code to calculate new watermark values in the
16319 * state object.
16320 */
16321static void sanitize_watermarks(struct drm_device *dev)
16322{
16323 struct drm_i915_private *dev_priv = to_i915(dev);
16324 struct drm_atomic_state *state;
16325 struct intel_atomic_state *intel_state;
16326 struct drm_crtc *crtc;
16327 struct drm_crtc_state *cstate;
16328 struct drm_modeset_acquire_ctx ctx;
16329 int ret;
16330 int i;
16331
16332 /* Only supported on platforms that use atomic watermark design */
16333 if (!dev_priv->display.optimize_watermarks)
16334 return;
16335
16336 /*
16337 * We need to hold connection_mutex before calling duplicate_state so
16338 * that the connector loop is protected.
16339 */
16340 drm_modeset_acquire_init(&ctx, 0);
16341retry:
16342 ret = drm_modeset_lock_all_ctx(dev, &ctx);
16343 if (ret == -EDEADLK) {
16344 drm_modeset_backoff(&ctx);
16345 goto retry;
16346 } else if (WARN_ON(ret)) {
16347 goto fail;
16348 }
16349
16350 state = drm_atomic_helper_duplicate_state(dev, &ctx);
16351 if (WARN_ON(IS_ERR(state)))
16352 goto fail;
16353
16354 intel_state = to_intel_atomic_state(state);
16355
16356 /*
16357 * Hardware readout is the only time we don't want to calculate
16358 * intermediate watermarks (since we don't trust the current
16359 * watermarks).
16360 */
16361 intel_state->skip_intermediate_wm = true;
16362
16363 ret = intel_atomic_check(dev, state);
16364 if (ret) {
16365 /*
16366 * If we fail here, it means that the hardware appears to be
16367 * programmed in a way that shouldn't be possible, given our
16368 * understanding of watermark requirements. This might mean a
16369 * mistake in the hardware readout code or a mistake in the
16370 * watermark calculations for a given platform. Raise a WARN
16371 * so that this is noticeable.
16372 *
16373 * If this actually happens, we'll have to just leave the
16374 * BIOS-programmed watermarks untouched and hope for the best.
16375 */
16376 WARN(true, "Could not determine valid watermarks for inherited state\n");
16377 goto put_state;
16378 }
16379
16380 /* Write calculated watermark values back */
16381 for_each_crtc_in_state(state, crtc, cstate, i) {
16382 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
16383
16384 cs->wm.need_postvbl_update = true;
16385 dev_priv->display.optimize_watermarks(intel_state, cs);
16386 }
16387
16388put_state:
16389 drm_atomic_state_put(state);
16390fail:
16391 drm_modeset_drop_locks(&ctx);
16392 drm_modeset_acquire_fini(&ctx);
16393}
16394
16395static void intel_atomic_helper_free_state(struct work_struct *work)
16396{
16397 struct drm_i915_private *dev_priv =
16398 container_of(work, typeof(*dev_priv), atomic_helper.free_work);
16399 struct intel_atomic_state *state, *next;
16400 struct llist_node *freed;
16401
16402 freed = llist_del_all(&dev_priv->atomic_helper.free_list);
16403 llist_for_each_entry_safe(state, next, freed, freed)
16404 drm_atomic_state_put(&state->base);
16405}
16406
16407int intel_modeset_init(struct drm_device *dev)
16408{
16409 struct drm_i915_private *dev_priv = to_i915(dev);
16410 struct i915_ggtt *ggtt = &dev_priv->ggtt;
16411 enum pipe pipe;
16412 struct intel_crtc *crtc;
16413
16414 drm_mode_config_init(dev);
16415
16416 dev->mode_config.min_width = 0;
16417 dev->mode_config.min_height = 0;
16418
16419 dev->mode_config.preferred_depth = 24;
16420 dev->mode_config.prefer_shadow = 1;
16421
16422 dev->mode_config.allow_fb_modifiers = true;
16423
16424 dev->mode_config.funcs = &intel_mode_funcs;
16425
16426 INIT_WORK(&dev_priv->atomic_helper.free_work,
16427 intel_atomic_helper_free_state);
16428
16429 intel_init_quirks(dev);
16430
16431 intel_init_pm(dev_priv);
16432
16433 if (INTEL_INFO(dev_priv)->num_pipes == 0)
16434 return 0;
16435
16436 /*
16437 * There may be no VBT; and if the BIOS enabled SSC we can
16438 * just keep using it to avoid unnecessary flicker. Whereas if the
16439 * BIOS isn't using it, don't assume it will work even if the VBT
16440 * indicates as much.
16441 */
16442 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
16443 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
16444 DREF_SSC1_ENABLE);
16445
16446 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
16447 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
16448 bios_lvds_use_ssc ? "en" : "dis",
16449 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
16450 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
16451 }
16452 }
16453
16454 if (IS_GEN2(dev_priv)) {
16455 dev->mode_config.max_width = 2048;
16456 dev->mode_config.max_height = 2048;
16457 } else if (IS_GEN3(dev_priv)) {
16458 dev->mode_config.max_width = 4096;
16459 dev->mode_config.max_height = 4096;
16460 } else {
16461 dev->mode_config.max_width = 8192;
16462 dev->mode_config.max_height = 8192;
16463 }
16464
16465 if (IS_845G(dev_priv) || IS_I865G(dev_priv)) {
16466 dev->mode_config.cursor_width = IS_845G(dev_priv) ? 64 : 512;
16467 dev->mode_config.cursor_height = 1023;
16468 } else if (IS_GEN2(dev_priv)) {
16469 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
16470 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
16471 } else {
16472 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
16473 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
16474 }
16475
16476 dev->mode_config.fb_base = ggtt->mappable_base;
16477
16478 DRM_DEBUG_KMS("%d display pipe%s available.\n",
16479 INTEL_INFO(dev_priv)->num_pipes,
16480 INTEL_INFO(dev_priv)->num_pipes > 1 ? "s" : "");
16481
16482 for_each_pipe(dev_priv, pipe) {
16483 int ret;
16484
16485 ret = intel_crtc_init(dev_priv, pipe);
16486 if (ret) {
16487 drm_mode_config_cleanup(dev);
16488 return ret;
16489 }
16490 }
16491
16492 intel_shared_dpll_init(dev);
16493
16494 intel_update_czclk(dev_priv);
16495 intel_modeset_init_hw(dev);
16496
16497 if (dev_priv->max_cdclk_freq == 0)
16498 intel_update_max_cdclk(dev_priv);
16499
16500 /* Just disable it once at startup */
16501 i915_disable_vga(dev_priv);
16502 intel_setup_outputs(dev);
16503
16504 drm_modeset_lock_all(dev);
16505 intel_modeset_setup_hw_state(dev);
16506 drm_modeset_unlock_all(dev);
16507
16508 for_each_intel_crtc(dev, crtc) {
16509 struct intel_initial_plane_config plane_config = {};
16510
16511 if (!crtc->active)
16512 continue;
16513
16514 /*
16515 * Note that reserving the BIOS fb up front prevents us
16516 * from stuffing other stolen allocations like the ring
16517 * on top. This prevents some ugliness at boot time, and
16518 * can even allow for smooth boot transitions if the BIOS
16519 * fb is large enough for the active pipe configuration.
16520 */
16521 dev_priv->display.get_initial_plane_config(crtc,
16522 &plane_config);
16523
16524 /*
16525 * If the fb is shared between multiple heads, we'll
16526 * just get the first one.
16527 */
16528 intel_find_initial_plane_obj(crtc, &plane_config);
16529 }
16530
16531 /*
16532 * Make sure hardware watermarks really match the state we read out.
16533 * Note that we need to do this after reconstructing the BIOS fb's
16534 * since the watermark calculation done here will use pstate->fb.
16535 */
16536 sanitize_watermarks(dev);
16537
16538 return 0;
16539}
16540
16541static void intel_enable_pipe_a(struct drm_device *dev)
16542{
16543 struct intel_connector *connector;
16544 struct drm_connector *crt = NULL;
16545 struct intel_load_detect_pipe load_detect_temp;
16546 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
16547
16548 /* We can't just switch on the pipe A, we need to set things up with a
16549 * proper mode and output configuration. As a gross hack, enable pipe A
16550 * by enabling the load detect pipe once. */
16551 for_each_intel_connector(dev, connector) {
16552 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
16553 crt = &connector->base;
16554 break;
16555 }
16556 }
16557
16558 if (!crt)
16559 return;
16560
16561 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
16562 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
16563}
16564
16565static bool
16566intel_check_plane_mapping(struct intel_crtc *crtc)
16567{
16568 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
16569 u32 val;
16570
16571 if (INTEL_INFO(dev_priv)->num_pipes == 1)
16572 return true;
16573
16574 val = I915_READ(DSPCNTR(!crtc->plane));
16575
16576 if ((val & DISPLAY_PLANE_ENABLE) &&
16577 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
16578 return false;
16579
16580 return true;
16581}
16582
16583static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
16584{
16585 struct drm_device *dev = crtc->base.dev;
16586 struct intel_encoder *encoder;
16587
16588 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
16589 return true;
16590
16591 return false;
16592}
16593
16594static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
16595{
16596 struct drm_device *dev = encoder->base.dev;
16597 struct intel_connector *connector;
16598
16599 for_each_connector_on_encoder(dev, &encoder->base, connector)
16600 return connector;
16601
16602 return NULL;
16603}
16604
16605static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
16606 enum transcoder pch_transcoder)
16607{
16608 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
16609 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == TRANSCODER_A);
16610}
16611
16612static void intel_sanitize_crtc(struct intel_crtc *crtc)
16613{
16614 struct drm_device *dev = crtc->base.dev;
16615 struct drm_i915_private *dev_priv = to_i915(dev);
16616 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
16617
16618 /* Clear any frame start delays used for debugging left by the BIOS */
16619 if (!transcoder_is_dsi(cpu_transcoder)) {
16620 i915_reg_t reg = PIPECONF(cpu_transcoder);
16621
16622 I915_WRITE(reg,
16623 I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
16624 }
16625
16626 /* restore vblank interrupts to correct state */
16627 drm_crtc_vblank_reset(&crtc->base);
16628 if (crtc->active) {
16629 struct intel_plane *plane;
16630
16631 drm_crtc_vblank_on(&crtc->base);
16632
16633 /* Disable everything but the primary plane */
16634 for_each_intel_plane_on_crtc(dev, crtc, plane) {
16635 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
16636 continue;
16637
16638 plane->disable_plane(&plane->base, &crtc->base);
16639 }
16640 }
16641
16642 /* We need to sanitize the plane -> pipe mapping first because this will
16643 * disable the crtc (and hence change the state) if it is wrong. Note
16644 * that gen4+ has a fixed plane -> pipe mapping. */
16645 if (INTEL_GEN(dev_priv) < 4 && !intel_check_plane_mapping(crtc)) {
16646 bool plane;
16647
16648 DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
16649 crtc->base.base.id, crtc->base.name);
16650
16651 /* Pipe has the wrong plane attached and the plane is active.
16652 * Temporarily change the plane mapping and disable everything
16653 * ... */
16654 plane = crtc->plane;
16655 to_intel_plane_state(crtc->base.primary->state)->base.visible = true;
16656 crtc->plane = !plane;
16657 intel_crtc_disable_noatomic(&crtc->base);
16658 crtc->plane = plane;
16659 }
16660
16661 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
16662 crtc->pipe == PIPE_A && !crtc->active) {
16663 /* BIOS forgot to enable pipe A, this mostly happens after
16664 * resume. Force-enable the pipe to fix this, the update_dpms
16665 * call below we restore the pipe to the right state, but leave
16666 * the required bits on. */
16667 intel_enable_pipe_a(dev);
16668 }
16669
16670 /* Adjust the state of the output pipe according to whether we
16671 * have active connectors/encoders. */
16672 if (crtc->active && !intel_crtc_has_encoders(crtc))
16673 intel_crtc_disable_noatomic(&crtc->base);
16674
16675 if (crtc->active || HAS_GMCH_DISPLAY(dev_priv)) {
16676 /*
16677 * We start out with underrun reporting disabled to avoid races.
16678 * For correct bookkeeping mark this on active crtcs.
16679 *
16680 * Also on gmch platforms we dont have any hardware bits to
16681 * disable the underrun reporting. Which means we need to start
16682 * out with underrun reporting disabled also on inactive pipes,
16683 * since otherwise we'll complain about the garbage we read when
16684 * e.g. coming up after runtime pm.
16685 *
16686 * No protection against concurrent access is required - at
16687 * worst a fifo underrun happens which also sets this to false.
16688 */
16689 crtc->cpu_fifo_underrun_disabled = true;
16690 /*
16691 * We track the PCH trancoder underrun reporting state
16692 * within the crtc. With crtc for pipe A housing the underrun
16693 * reporting state for PCH transcoder A, crtc for pipe B housing
16694 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
16695 * and marking underrun reporting as disabled for the non-existing
16696 * PCH transcoders B and C would prevent enabling the south
16697 * error interrupt (see cpt_can_enable_serr_int()).
16698 */
16699 if (has_pch_trancoder(dev_priv, (enum transcoder)crtc->pipe))
16700 crtc->pch_fifo_underrun_disabled = true;
16701 }
16702}
16703
16704static void intel_sanitize_encoder(struct intel_encoder *encoder)
16705{
16706 struct intel_connector *connector;
16707
16708 /* We need to check both for a crtc link (meaning that the
16709 * encoder is active and trying to read from a pipe) and the
16710 * pipe itself being active. */
16711 bool has_active_crtc = encoder->base.crtc &&
16712 to_intel_crtc(encoder->base.crtc)->active;
16713
16714 connector = intel_encoder_find_connector(encoder);
16715 if (connector && !has_active_crtc) {
16716 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
16717 encoder->base.base.id,
16718 encoder->base.name);
16719
16720 /* Connector is active, but has no active pipe. This is
16721 * fallout from our resume register restoring. Disable
16722 * the encoder manually again. */
16723 if (encoder->base.crtc) {
16724 struct drm_crtc_state *crtc_state = encoder->base.crtc->state;
16725
16726 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
16727 encoder->base.base.id,
16728 encoder->base.name);
16729 encoder->disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
16730 if (encoder->post_disable)
16731 encoder->post_disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
16732 }
16733 encoder->base.crtc = NULL;
16734
16735 /* Inconsistent output/port/pipe state happens presumably due to
16736 * a bug in one of the get_hw_state functions. Or someplace else
16737 * in our code, like the register restore mess on resume. Clamp
16738 * things to off as a safer default. */
16739
16740 connector->base.dpms = DRM_MODE_DPMS_OFF;
16741 connector->base.encoder = NULL;
16742 }
16743 /* Enabled encoders without active connectors will be fixed in
16744 * the crtc fixup. */
16745}
16746
16747void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv)
16748{
16749 i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
16750
16751 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
16752 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
16753 i915_disable_vga(dev_priv);
16754 }
16755}
16756
16757void i915_redisable_vga(struct drm_i915_private *dev_priv)
16758{
16759 /* This function can be called both from intel_modeset_setup_hw_state or
16760 * at a very early point in our resume sequence, where the power well
16761 * structures are not yet restored. Since this function is at a very
16762 * paranoid "someone might have enabled VGA while we were not looking"
16763 * level, just check if the power well is enabled instead of trying to
16764 * follow the "don't touch the power well if we don't need it" policy
16765 * the rest of the driver uses. */
16766 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
16767 return;
16768
16769 i915_redisable_vga_power_on(dev_priv);
16770
16771 intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
16772}
16773
16774static bool primary_get_hw_state(struct intel_plane *plane)
16775{
16776 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
16777
16778 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
16779}
16780
16781/* FIXME read out full plane state for all planes */
16782static void readout_plane_state(struct intel_crtc *crtc)
16783{
16784 struct drm_plane *primary = crtc->base.primary;
16785 struct intel_plane_state *plane_state =
16786 to_intel_plane_state(primary->state);
16787
16788 plane_state->base.visible = crtc->active &&
16789 primary_get_hw_state(to_intel_plane(primary));
16790
16791 if (plane_state->base.visible)
16792 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
16793}
16794
16795static void intel_modeset_readout_hw_state(struct drm_device *dev)
16796{
16797 struct drm_i915_private *dev_priv = to_i915(dev);
16798 enum pipe pipe;
16799 struct intel_crtc *crtc;
16800 struct intel_encoder *encoder;
16801 struct intel_connector *connector;
16802 int i;
16803
16804 dev_priv->active_crtcs = 0;
16805
16806 for_each_intel_crtc(dev, crtc) {
16807 struct intel_crtc_state *crtc_state = crtc->config;
16808
16809 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
16810 memset(crtc_state, 0, sizeof(*crtc_state));
16811 crtc_state->base.crtc = &crtc->base;
16812
16813 crtc_state->base.active = crtc_state->base.enable =
16814 dev_priv->display.get_pipe_config(crtc, crtc_state);
16815
16816 crtc->base.enabled = crtc_state->base.enable;
16817 crtc->active = crtc_state->base.active;
16818
16819 if (crtc_state->base.active)
16820 dev_priv->active_crtcs |= 1 << crtc->pipe;
16821
16822 readout_plane_state(crtc);
16823
16824 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
16825 crtc->base.base.id, crtc->base.name,
16826 enableddisabled(crtc->active));
16827 }
16828
16829 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16830 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16831
16832 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
16833 &pll->config.hw_state);
16834 pll->config.crtc_mask = 0;
16835 for_each_intel_crtc(dev, crtc) {
16836 if (crtc->active && crtc->config->shared_dpll == pll)
16837 pll->config.crtc_mask |= 1 << crtc->pipe;
16838 }
16839 pll->active_mask = pll->config.crtc_mask;
16840
16841 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
16842 pll->name, pll->config.crtc_mask, pll->on);
16843 }
16844
16845 for_each_intel_encoder(dev, encoder) {
16846 pipe = 0;
16847
16848 if (encoder->get_hw_state(encoder, &pipe)) {
16849 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
16850
16851 encoder->base.crtc = &crtc->base;
16852 crtc->config->output_types |= 1 << encoder->type;
16853 encoder->get_config(encoder, crtc->config);
16854 } else {
16855 encoder->base.crtc = NULL;
16856 }
16857
16858 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
16859 encoder->base.base.id, encoder->base.name,
16860 enableddisabled(encoder->base.crtc),
16861 pipe_name(pipe));
16862 }
16863
16864 for_each_intel_connector(dev, connector) {
16865 if (connector->get_hw_state(connector)) {
16866 connector->base.dpms = DRM_MODE_DPMS_ON;
16867
16868 encoder = connector->encoder;
16869 connector->base.encoder = &encoder->base;
16870
16871 if (encoder->base.crtc &&
16872 encoder->base.crtc->state->active) {
16873 /*
16874 * This has to be done during hardware readout
16875 * because anything calling .crtc_disable may
16876 * rely on the connector_mask being accurate.
16877 */
16878 encoder->base.crtc->state->connector_mask |=
16879 1 << drm_connector_index(&connector->base);
16880 encoder->base.crtc->state->encoder_mask |=
16881 1 << drm_encoder_index(&encoder->base);
16882 }
16883
16884 } else {
16885 connector->base.dpms = DRM_MODE_DPMS_OFF;
16886 connector->base.encoder = NULL;
16887 }
16888 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
16889 connector->base.base.id, connector->base.name,
16890 enableddisabled(connector->base.encoder));
16891 }
16892
16893 for_each_intel_crtc(dev, crtc) {
16894 int pixclk = 0;
16895
16896 crtc->base.hwmode = crtc->config->base.adjusted_mode;
16897
16898 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
16899 if (crtc->base.state->active) {
16900 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
16901 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
16902 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
16903
16904 /*
16905 * The initial mode needs to be set in order to keep
16906 * the atomic core happy. It wants a valid mode if the
16907 * crtc's enabled, so we do the above call.
16908 *
16909 * At this point some state updated by the connectors
16910 * in their ->detect() callback has not run yet, so
16911 * no recalculation can be done yet.
16912 *
16913 * Even if we could do a recalculation and modeset
16914 * right now it would cause a double modeset if
16915 * fbdev or userspace chooses a different initial mode.
16916 *
16917 * If that happens, someone indicated they wanted a
16918 * mode change, which means it's safe to do a full
16919 * recalculation.
16920 */
16921 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
16922
16923 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
16924 pixclk = ilk_pipe_pixel_rate(crtc->config);
16925 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16926 pixclk = crtc->config->base.adjusted_mode.crtc_clock;
16927 else
16928 WARN_ON(dev_priv->display.modeset_calc_cdclk);
16929
16930 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
16931 if (IS_BROADWELL(dev_priv) && crtc->config->ips_enabled)
16932 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
16933
16934 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
16935 update_scanline_offset(crtc);
16936 }
16937
16938 dev_priv->min_pixclk[crtc->pipe] = pixclk;
16939
16940 intel_pipe_config_sanity_check(dev_priv, crtc->config);
16941 }
16942}
16943
16944/* Scan out the current hw modeset state,
16945 * and sanitizes it to the current state
16946 */
16947static void
16948intel_modeset_setup_hw_state(struct drm_device *dev)
16949{
16950 struct drm_i915_private *dev_priv = to_i915(dev);
16951 enum pipe pipe;
16952 struct intel_crtc *crtc;
16953 struct intel_encoder *encoder;
16954 int i;
16955
16956 intel_modeset_readout_hw_state(dev);
16957
16958 /* HW state is read out, now we need to sanitize this mess. */
16959 for_each_intel_encoder(dev, encoder) {
16960 intel_sanitize_encoder(encoder);
16961 }
16962
16963 for_each_pipe(dev_priv, pipe) {
16964 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
16965
16966 intel_sanitize_crtc(crtc);
16967 intel_dump_pipe_config(crtc, crtc->config,
16968 "[setup_hw_state]");
16969 }
16970
16971 intel_modeset_update_connector_atomic_state(dev);
16972
16973 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16974 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16975
16976 if (!pll->on || pll->active_mask)
16977 continue;
16978
16979 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
16980
16981 pll->funcs.disable(dev_priv, pll);
16982 pll->on = false;
16983 }
16984
16985 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16986 vlv_wm_get_hw_state(dev);
16987 else if (IS_GEN9(dev_priv))
16988 skl_wm_get_hw_state(dev);
16989 else if (HAS_PCH_SPLIT(dev_priv))
16990 ilk_wm_get_hw_state(dev);
16991
16992 for_each_intel_crtc(dev, crtc) {
16993 unsigned long put_domains;
16994
16995 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
16996 if (WARN_ON(put_domains))
16997 modeset_put_power_domains(dev_priv, put_domains);
16998 }
16999 intel_display_set_init_power(dev_priv, false);
17000
17001 intel_fbc_init_pipe_state(dev_priv);
17002}
17003
17004void intel_display_resume(struct drm_device *dev)
17005{
17006 struct drm_i915_private *dev_priv = to_i915(dev);
17007 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
17008 struct drm_modeset_acquire_ctx ctx;
17009 int ret;
17010
17011 dev_priv->modeset_restore_state = NULL;
17012 if (state)
17013 state->acquire_ctx = &ctx;
17014
17015 /*
17016 * This is a cludge because with real atomic modeset mode_config.mutex
17017 * won't be taken. Unfortunately some probed state like
17018 * audio_codec_enable is still protected by mode_config.mutex, so lock
17019 * it here for now.
17020 */
17021 mutex_lock(&dev->mode_config.mutex);
17022 drm_modeset_acquire_init(&ctx, 0);
17023
17024 while (1) {
17025 ret = drm_modeset_lock_all_ctx(dev, &ctx);
17026 if (ret != -EDEADLK)
17027 break;
17028
17029 drm_modeset_backoff(&ctx);
17030 }
17031
17032 if (!ret)
17033 ret = __intel_display_resume(dev, state);
17034
17035 drm_modeset_drop_locks(&ctx);
17036 drm_modeset_acquire_fini(&ctx);
17037 mutex_unlock(&dev->mode_config.mutex);
17038
17039 if (ret)
17040 DRM_ERROR("Restoring old state failed with %i\n", ret);
17041 if (state)
17042 drm_atomic_state_put(state);
17043}
17044
17045void intel_modeset_gem_init(struct drm_device *dev)
17046{
17047 struct drm_i915_private *dev_priv = to_i915(dev);
17048
17049 intel_init_gt_powersave(dev_priv);
17050
17051 intel_setup_overlay(dev_priv);
17052}
17053
17054int intel_connector_register(struct drm_connector *connector)
17055{
17056 struct intel_connector *intel_connector = to_intel_connector(connector);
17057 int ret;
17058
17059 ret = intel_backlight_device_register(intel_connector);
17060 if (ret)
17061 goto err;
17062
17063 return 0;
17064
17065err:
17066 return ret;
17067}
17068
17069void intel_connector_unregister(struct drm_connector *connector)
17070{
17071 struct intel_connector *intel_connector = to_intel_connector(connector);
17072
17073 intel_backlight_device_unregister(intel_connector);
17074 intel_panel_destroy_backlight(connector);
17075}
17076
17077void intel_modeset_cleanup(struct drm_device *dev)
17078{
17079 struct drm_i915_private *dev_priv = to_i915(dev);
17080
17081 flush_work(&dev_priv->atomic_helper.free_work);
17082 WARN_ON(!llist_empty(&dev_priv->atomic_helper.free_list));
17083
17084 intel_disable_gt_powersave(dev_priv);
17085
17086 /*
17087 * Interrupts and polling as the first thing to avoid creating havoc.
17088 * Too much stuff here (turning of connectors, ...) would
17089 * experience fancy races otherwise.
17090 */
17091 intel_irq_uninstall(dev_priv);
17092
17093 /*
17094 * Due to the hpd irq storm handling the hotplug work can re-arm the
17095 * poll handlers. Hence disable polling after hpd handling is shut down.
17096 */
17097 drm_kms_helper_poll_fini(dev);
17098
17099 intel_unregister_dsm_handler();
17100
17101 intel_fbc_global_disable(dev_priv);
17102
17103 /* flush any delayed tasks or pending work */
17104 flush_scheduled_work();
17105
17106 drm_mode_config_cleanup(dev);
17107
17108 intel_cleanup_overlay(dev_priv);
17109
17110 intel_cleanup_gt_powersave(dev_priv);
17111
17112 intel_teardown_gmbus(dev);
17113}
17114
17115void intel_connector_attach_encoder(struct intel_connector *connector,
17116 struct intel_encoder *encoder)
17117{
17118 connector->encoder = encoder;
17119 drm_mode_connector_attach_encoder(&connector->base,
17120 &encoder->base);
17121}
17122
17123/*
17124 * set vga decode state - true == enable VGA decode
17125 */
17126int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, bool state)
17127{
17128 unsigned reg = INTEL_GEN(dev_priv) >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
17129 u16 gmch_ctrl;
17130
17131 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
17132 DRM_ERROR("failed to read control word\n");
17133 return -EIO;
17134 }
17135
17136 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
17137 return 0;
17138
17139 if (state)
17140 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
17141 else
17142 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
17143
17144 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
17145 DRM_ERROR("failed to write control word\n");
17146 return -EIO;
17147 }
17148
17149 return 0;
17150}
17151
17152#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
17153
17154struct intel_display_error_state {
17155
17156 u32 power_well_driver;
17157
17158 int num_transcoders;
17159
17160 struct intel_cursor_error_state {
17161 u32 control;
17162 u32 position;
17163 u32 base;
17164 u32 size;
17165 } cursor[I915_MAX_PIPES];
17166
17167 struct intel_pipe_error_state {
17168 bool power_domain_on;
17169 u32 source;
17170 u32 stat;
17171 } pipe[I915_MAX_PIPES];
17172
17173 struct intel_plane_error_state {
17174 u32 control;
17175 u32 stride;
17176 u32 size;
17177 u32 pos;
17178 u32 addr;
17179 u32 surface;
17180 u32 tile_offset;
17181 } plane[I915_MAX_PIPES];
17182
17183 struct intel_transcoder_error_state {
17184 bool power_domain_on;
17185 enum transcoder cpu_transcoder;
17186
17187 u32 conf;
17188
17189 u32 htotal;
17190 u32 hblank;
17191 u32 hsync;
17192 u32 vtotal;
17193 u32 vblank;
17194 u32 vsync;
17195 } transcoder[4];
17196};
17197
17198struct intel_display_error_state *
17199intel_display_capture_error_state(struct drm_i915_private *dev_priv)
17200{
17201 struct intel_display_error_state *error;
17202 int transcoders[] = {
17203 TRANSCODER_A,
17204 TRANSCODER_B,
17205 TRANSCODER_C,
17206 TRANSCODER_EDP,
17207 };
17208 int i;
17209
17210 if (INTEL_INFO(dev_priv)->num_pipes == 0)
17211 return NULL;
17212
17213 error = kzalloc(sizeof(*error), GFP_ATOMIC);
17214 if (error == NULL)
17215 return NULL;
17216
17217 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
17218 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
17219
17220 for_each_pipe(dev_priv, i) {
17221 error->pipe[i].power_domain_on =
17222 __intel_display_power_is_enabled(dev_priv,
17223 POWER_DOMAIN_PIPE(i));
17224 if (!error->pipe[i].power_domain_on)
17225 continue;
17226
17227 error->cursor[i].control = I915_READ(CURCNTR(i));
17228 error->cursor[i].position = I915_READ(CURPOS(i));
17229 error->cursor[i].base = I915_READ(CURBASE(i));
17230
17231 error->plane[i].control = I915_READ(DSPCNTR(i));
17232 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
17233 if (INTEL_GEN(dev_priv) <= 3) {
17234 error->plane[i].size = I915_READ(DSPSIZE(i));
17235 error->plane[i].pos = I915_READ(DSPPOS(i));
17236 }
17237 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
17238 error->plane[i].addr = I915_READ(DSPADDR(i));
17239 if (INTEL_GEN(dev_priv) >= 4) {
17240 error->plane[i].surface = I915_READ(DSPSURF(i));
17241 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
17242 }
17243
17244 error->pipe[i].source = I915_READ(PIPESRC(i));
17245
17246 if (HAS_GMCH_DISPLAY(dev_priv))
17247 error->pipe[i].stat = I915_READ(PIPESTAT(i));
17248 }
17249
17250 /* Note: this does not include DSI transcoders. */
17251 error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
17252 if (HAS_DDI(dev_priv))
17253 error->num_transcoders++; /* Account for eDP. */
17254
17255 for (i = 0; i < error->num_transcoders; i++) {
17256 enum transcoder cpu_transcoder = transcoders[i];
17257
17258 error->transcoder[i].power_domain_on =
17259 __intel_display_power_is_enabled(dev_priv,
17260 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
17261 if (!error->transcoder[i].power_domain_on)
17262 continue;
17263
17264 error->transcoder[i].cpu_transcoder = cpu_transcoder;
17265
17266 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
17267 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
17268 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
17269 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
17270 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
17271 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
17272 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
17273 }
17274
17275 return error;
17276}
17277
17278#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
17279
17280void
17281intel_display_print_error_state(struct drm_i915_error_state_buf *m,
17282 struct drm_i915_private *dev_priv,
17283 struct intel_display_error_state *error)
17284{
17285 int i;
17286
17287 if (!error)
17288 return;
17289
17290 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev_priv)->num_pipes);
17291 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
17292 err_printf(m, "PWR_WELL_CTL2: %08x\n",
17293 error->power_well_driver);
17294 for_each_pipe(dev_priv, i) {
17295 err_printf(m, "Pipe [%d]:\n", i);
17296 err_printf(m, " Power: %s\n",
17297 onoff(error->pipe[i].power_domain_on));
17298 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
17299 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
17300
17301 err_printf(m, "Plane [%d]:\n", i);
17302 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
17303 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
17304 if (INTEL_GEN(dev_priv) <= 3) {
17305 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
17306 err_printf(m, " POS: %08x\n", error->plane[i].pos);
17307 }
17308 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
17309 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
17310 if (INTEL_GEN(dev_priv) >= 4) {
17311 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
17312 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
17313 }
17314
17315 err_printf(m, "Cursor [%d]:\n", i);
17316 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
17317 err_printf(m, " POS: %08x\n", error->cursor[i].position);
17318 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
17319 }
17320
17321 for (i = 0; i < error->num_transcoders; i++) {
17322 err_printf(m, "CPU transcoder: %s\n",
17323 transcoder_name(error->transcoder[i].cpu_transcoder));
17324 err_printf(m, " Power: %s\n",
17325 onoff(error->transcoder[i].power_domain_on));
17326 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
17327 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
17328 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
17329 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
17330 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
17331 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
17332 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
17333 }
17334}
17335
17336#endif