Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
   1/*
   2 * Copyright © 2006-2007 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21 * DEALINGS IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *	Eric Anholt <eric@anholt.net>
  25 */
  26
  27#include <linux/dmi.h>
  28#include <linux/module.h>
  29#include <linux/input.h>
  30#include <linux/i2c.h>
  31#include <linux/kernel.h>
  32#include <linux/slab.h>
  33#include <linux/vgaarb.h>
  34#include <drm/drm_edid.h>
  35#include "drmP.h"
  36#include "intel_drv.h"
  37#include "i915_drm.h"
  38#include "i915_drv.h"
  39#include "i915_trace.h"
  40#include "drm_dp_helper.h"
  41#include "drm_crtc_helper.h"
  42#include <linux/dma_remapping.h>
  43
  44#define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  45
  46bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  47static void intel_increase_pllclock(struct drm_crtc *crtc);
  48static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  49
  50typedef struct {
  51	/* given values */
  52	int n;
  53	int m1, m2;
  54	int p1, p2;
  55	/* derived values */
  56	int	dot;
  57	int	vco;
  58	int	m;
  59	int	p;
  60} intel_clock_t;
  61
  62typedef struct {
  63	int	min, max;
  64} intel_range_t;
  65
  66typedef struct {
  67	int	dot_limit;
  68	int	p2_slow, p2_fast;
  69} intel_p2_t;
  70
  71#define INTEL_P2_NUM		      2
  72typedef struct intel_limit intel_limit_t;
  73struct intel_limit {
  74	intel_range_t   dot, vco, n, m, m1, m2, p, p1;
  75	intel_p2_t	    p2;
  76	bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  77			int, int, intel_clock_t *, intel_clock_t *);
  78};
  79
  80/* FDI */
  81#define IRONLAKE_FDI_FREQ		2700000 /* in kHz for mode->clock */
  82
  83static bool
  84intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  85		    int target, int refclk, intel_clock_t *match_clock,
  86		    intel_clock_t *best_clock);
  87static bool
  88intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  89			int target, int refclk, intel_clock_t *match_clock,
  90			intel_clock_t *best_clock);
  91
  92static bool
  93intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  94		      int target, int refclk, intel_clock_t *match_clock,
  95		      intel_clock_t *best_clock);
  96static bool
  97intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  98			   int target, int refclk, intel_clock_t *match_clock,
  99			   intel_clock_t *best_clock);
 100
 101static inline u32 /* units of 100MHz */
 102intel_fdi_link_freq(struct drm_device *dev)
 103{
 104	if (IS_GEN5(dev)) {
 105		struct drm_i915_private *dev_priv = dev->dev_private;
 106		return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
 107	} else
 108		return 27;
 109}
 110
 111static const intel_limit_t intel_limits_i8xx_dvo = {
 112	.dot = { .min = 25000, .max = 350000 },
 113	.vco = { .min = 930000, .max = 1400000 },
 114	.n = { .min = 3, .max = 16 },
 115	.m = { .min = 96, .max = 140 },
 116	.m1 = { .min = 18, .max = 26 },
 117	.m2 = { .min = 6, .max = 16 },
 118	.p = { .min = 4, .max = 128 },
 119	.p1 = { .min = 2, .max = 33 },
 120	.p2 = { .dot_limit = 165000,
 121		.p2_slow = 4, .p2_fast = 2 },
 122	.find_pll = intel_find_best_PLL,
 123};
 124
 125static const intel_limit_t intel_limits_i8xx_lvds = {
 126	.dot = { .min = 25000, .max = 350000 },
 127	.vco = { .min = 930000, .max = 1400000 },
 128	.n = { .min = 3, .max = 16 },
 129	.m = { .min = 96, .max = 140 },
 130	.m1 = { .min = 18, .max = 26 },
 131	.m2 = { .min = 6, .max = 16 },
 132	.p = { .min = 4, .max = 128 },
 133	.p1 = { .min = 1, .max = 6 },
 134	.p2 = { .dot_limit = 165000,
 135		.p2_slow = 14, .p2_fast = 7 },
 136	.find_pll = intel_find_best_PLL,
 137};
 138
 139static const intel_limit_t intel_limits_i9xx_sdvo = {
 140	.dot = { .min = 20000, .max = 400000 },
 141	.vco = { .min = 1400000, .max = 2800000 },
 142	.n = { .min = 1, .max = 6 },
 143	.m = { .min = 70, .max = 120 },
 144	.m1 = { .min = 10, .max = 22 },
 145	.m2 = { .min = 5, .max = 9 },
 146	.p = { .min = 5, .max = 80 },
 147	.p1 = { .min = 1, .max = 8 },
 148	.p2 = { .dot_limit = 200000,
 149		.p2_slow = 10, .p2_fast = 5 },
 150	.find_pll = intel_find_best_PLL,
 151};
 152
 153static const intel_limit_t intel_limits_i9xx_lvds = {
 154	.dot = { .min = 20000, .max = 400000 },
 155	.vco = { .min = 1400000, .max = 2800000 },
 156	.n = { .min = 1, .max = 6 },
 157	.m = { .min = 70, .max = 120 },
 158	.m1 = { .min = 10, .max = 22 },
 159	.m2 = { .min = 5, .max = 9 },
 160	.p = { .min = 7, .max = 98 },
 161	.p1 = { .min = 1, .max = 8 },
 162	.p2 = { .dot_limit = 112000,
 163		.p2_slow = 14, .p2_fast = 7 },
 164	.find_pll = intel_find_best_PLL,
 165};
 166
 167
 168static const intel_limit_t intel_limits_g4x_sdvo = {
 169	.dot = { .min = 25000, .max = 270000 },
 170	.vco = { .min = 1750000, .max = 3500000},
 171	.n = { .min = 1, .max = 4 },
 172	.m = { .min = 104, .max = 138 },
 173	.m1 = { .min = 17, .max = 23 },
 174	.m2 = { .min = 5, .max = 11 },
 175	.p = { .min = 10, .max = 30 },
 176	.p1 = { .min = 1, .max = 3},
 177	.p2 = { .dot_limit = 270000,
 178		.p2_slow = 10,
 179		.p2_fast = 10
 180	},
 181	.find_pll = intel_g4x_find_best_PLL,
 182};
 183
 184static const intel_limit_t intel_limits_g4x_hdmi = {
 185	.dot = { .min = 22000, .max = 400000 },
 186	.vco = { .min = 1750000, .max = 3500000},
 187	.n = { .min = 1, .max = 4 },
 188	.m = { .min = 104, .max = 138 },
 189	.m1 = { .min = 16, .max = 23 },
 190	.m2 = { .min = 5, .max = 11 },
 191	.p = { .min = 5, .max = 80 },
 192	.p1 = { .min = 1, .max = 8},
 193	.p2 = { .dot_limit = 165000,
 194		.p2_slow = 10, .p2_fast = 5 },
 195	.find_pll = intel_g4x_find_best_PLL,
 196};
 197
 198static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
 199	.dot = { .min = 20000, .max = 115000 },
 200	.vco = { .min = 1750000, .max = 3500000 },
 201	.n = { .min = 1, .max = 3 },
 202	.m = { .min = 104, .max = 138 },
 203	.m1 = { .min = 17, .max = 23 },
 204	.m2 = { .min = 5, .max = 11 },
 205	.p = { .min = 28, .max = 112 },
 206	.p1 = { .min = 2, .max = 8 },
 207	.p2 = { .dot_limit = 0,
 208		.p2_slow = 14, .p2_fast = 14
 209	},
 210	.find_pll = intel_g4x_find_best_PLL,
 211};
 212
 213static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
 214	.dot = { .min = 80000, .max = 224000 },
 215	.vco = { .min = 1750000, .max = 3500000 },
 216	.n = { .min = 1, .max = 3 },
 217	.m = { .min = 104, .max = 138 },
 218	.m1 = { .min = 17, .max = 23 },
 219	.m2 = { .min = 5, .max = 11 },
 220	.p = { .min = 14, .max = 42 },
 221	.p1 = { .min = 2, .max = 6 },
 222	.p2 = { .dot_limit = 0,
 223		.p2_slow = 7, .p2_fast = 7
 224	},
 225	.find_pll = intel_g4x_find_best_PLL,
 226};
 227
 228static const intel_limit_t intel_limits_g4x_display_port = {
 229	.dot = { .min = 161670, .max = 227000 },
 230	.vco = { .min = 1750000, .max = 3500000},
 231	.n = { .min = 1, .max = 2 },
 232	.m = { .min = 97, .max = 108 },
 233	.m1 = { .min = 0x10, .max = 0x12 },
 234	.m2 = { .min = 0x05, .max = 0x06 },
 235	.p = { .min = 10, .max = 20 },
 236	.p1 = { .min = 1, .max = 2},
 237	.p2 = { .dot_limit = 0,
 238		.p2_slow = 10, .p2_fast = 10 },
 239	.find_pll = intel_find_pll_g4x_dp,
 240};
 241
 242static const intel_limit_t intel_limits_pineview_sdvo = {
 243	.dot = { .min = 20000, .max = 400000},
 244	.vco = { .min = 1700000, .max = 3500000 },
 245	/* Pineview's Ncounter is a ring counter */
 246	.n = { .min = 3, .max = 6 },
 247	.m = { .min = 2, .max = 256 },
 248	/* Pineview only has one combined m divider, which we treat as m2. */
 249	.m1 = { .min = 0, .max = 0 },
 250	.m2 = { .min = 0, .max = 254 },
 251	.p = { .min = 5, .max = 80 },
 252	.p1 = { .min = 1, .max = 8 },
 253	.p2 = { .dot_limit = 200000,
 254		.p2_slow = 10, .p2_fast = 5 },
 255	.find_pll = intel_find_best_PLL,
 256};
 257
 258static const intel_limit_t intel_limits_pineview_lvds = {
 259	.dot = { .min = 20000, .max = 400000 },
 260	.vco = { .min = 1700000, .max = 3500000 },
 261	.n = { .min = 3, .max = 6 },
 262	.m = { .min = 2, .max = 256 },
 263	.m1 = { .min = 0, .max = 0 },
 264	.m2 = { .min = 0, .max = 254 },
 265	.p = { .min = 7, .max = 112 },
 266	.p1 = { .min = 1, .max = 8 },
 267	.p2 = { .dot_limit = 112000,
 268		.p2_slow = 14, .p2_fast = 14 },
 269	.find_pll = intel_find_best_PLL,
 270};
 271
 272/* Ironlake / Sandybridge
 273 *
 274 * We calculate clock using (register_value + 2) for N/M1/M2, so here
 275 * the range value for them is (actual_value - 2).
 276 */
 277static const intel_limit_t intel_limits_ironlake_dac = {
 278	.dot = { .min = 25000, .max = 350000 },
 279	.vco = { .min = 1760000, .max = 3510000 },
 280	.n = { .min = 1, .max = 5 },
 281	.m = { .min = 79, .max = 127 },
 282	.m1 = { .min = 12, .max = 22 },
 283	.m2 = { .min = 5, .max = 9 },
 284	.p = { .min = 5, .max = 80 },
 285	.p1 = { .min = 1, .max = 8 },
 286	.p2 = { .dot_limit = 225000,
 287		.p2_slow = 10, .p2_fast = 5 },
 288	.find_pll = intel_g4x_find_best_PLL,
 289};
 290
 291static const intel_limit_t intel_limits_ironlake_single_lvds = {
 292	.dot = { .min = 25000, .max = 350000 },
 293	.vco = { .min = 1760000, .max = 3510000 },
 294	.n = { .min = 1, .max = 3 },
 295	.m = { .min = 79, .max = 118 },
 296	.m1 = { .min = 12, .max = 22 },
 297	.m2 = { .min = 5, .max = 9 },
 298	.p = { .min = 28, .max = 112 },
 299	.p1 = { .min = 2, .max = 8 },
 300	.p2 = { .dot_limit = 225000,
 301		.p2_slow = 14, .p2_fast = 14 },
 302	.find_pll = intel_g4x_find_best_PLL,
 303};
 304
 305static const intel_limit_t intel_limits_ironlake_dual_lvds = {
 306	.dot = { .min = 25000, .max = 350000 },
 307	.vco = { .min = 1760000, .max = 3510000 },
 308	.n = { .min = 1, .max = 3 },
 309	.m = { .min = 79, .max = 127 },
 310	.m1 = { .min = 12, .max = 22 },
 311	.m2 = { .min = 5, .max = 9 },
 312	.p = { .min = 14, .max = 56 },
 313	.p1 = { .min = 2, .max = 8 },
 314	.p2 = { .dot_limit = 225000,
 315		.p2_slow = 7, .p2_fast = 7 },
 316	.find_pll = intel_g4x_find_best_PLL,
 317};
 318
 319/* LVDS 100mhz refclk limits. */
 320static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
 321	.dot = { .min = 25000, .max = 350000 },
 322	.vco = { .min = 1760000, .max = 3510000 },
 323	.n = { .min = 1, .max = 2 },
 324	.m = { .min = 79, .max = 126 },
 325	.m1 = { .min = 12, .max = 22 },
 326	.m2 = { .min = 5, .max = 9 },
 327	.p = { .min = 28, .max = 112 },
 328	.p1 = { .min = 2, .max = 8 },
 329	.p2 = { .dot_limit = 225000,
 330		.p2_slow = 14, .p2_fast = 14 },
 331	.find_pll = intel_g4x_find_best_PLL,
 332};
 333
 334static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
 335	.dot = { .min = 25000, .max = 350000 },
 336	.vco = { .min = 1760000, .max = 3510000 },
 337	.n = { .min = 1, .max = 3 },
 338	.m = { .min = 79, .max = 126 },
 339	.m1 = { .min = 12, .max = 22 },
 340	.m2 = { .min = 5, .max = 9 },
 341	.p = { .min = 14, .max = 42 },
 342	.p1 = { .min = 2, .max = 6 },
 343	.p2 = { .dot_limit = 225000,
 344		.p2_slow = 7, .p2_fast = 7 },
 345	.find_pll = intel_g4x_find_best_PLL,
 346};
 347
 348static const intel_limit_t intel_limits_ironlake_display_port = {
 349	.dot = { .min = 25000, .max = 350000 },
 350	.vco = { .min = 1760000, .max = 3510000},
 351	.n = { .min = 1, .max = 2 },
 352	.m = { .min = 81, .max = 90 },
 353	.m1 = { .min = 12, .max = 22 },
 354	.m2 = { .min = 5, .max = 9 },
 355	.p = { .min = 10, .max = 20 },
 356	.p1 = { .min = 1, .max = 2},
 357	.p2 = { .dot_limit = 0,
 358		.p2_slow = 10, .p2_fast = 10 },
 359	.find_pll = intel_find_pll_ironlake_dp,
 360};
 361
 362u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
 363{
 364	unsigned long flags;
 365	u32 val = 0;
 366
 367	spin_lock_irqsave(&dev_priv->dpio_lock, flags);
 368	if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
 369		DRM_ERROR("DPIO idle wait timed out\n");
 370		goto out_unlock;
 371	}
 372
 373	I915_WRITE(DPIO_REG, reg);
 374	I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
 375		   DPIO_BYTE);
 376	if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
 377		DRM_ERROR("DPIO read wait timed out\n");
 378		goto out_unlock;
 379	}
 380	val = I915_READ(DPIO_DATA);
 381
 382out_unlock:
 383	spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
 384	return val;
 385}
 386
 387static void vlv_init_dpio(struct drm_device *dev)
 388{
 389	struct drm_i915_private *dev_priv = dev->dev_private;
 390
 391	/* Reset the DPIO config */
 392	I915_WRITE(DPIO_CTL, 0);
 393	POSTING_READ(DPIO_CTL);
 394	I915_WRITE(DPIO_CTL, 1);
 395	POSTING_READ(DPIO_CTL);
 396}
 397
 398static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
 399{
 400	DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
 401	return 1;
 402}
 403
 404static const struct dmi_system_id intel_dual_link_lvds[] = {
 405	{
 406		.callback = intel_dual_link_lvds_callback,
 407		.ident = "Apple MacBook Pro (Core i5/i7 Series)",
 408		.matches = {
 409			DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
 410			DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
 411		},
 412	},
 413	{ }	/* terminating entry */
 414};
 415
 416static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
 417			      unsigned int reg)
 418{
 419	unsigned int val;
 420
 421	/* use the module option value if specified */
 422	if (i915_lvds_channel_mode > 0)
 423		return i915_lvds_channel_mode == 2;
 424
 425	if (dmi_check_system(intel_dual_link_lvds))
 426		return true;
 427
 428	if (dev_priv->lvds_val)
 429		val = dev_priv->lvds_val;
 430	else {
 431		/* BIOS should set the proper LVDS register value at boot, but
 432		 * in reality, it doesn't set the value when the lid is closed;
 433		 * we need to check "the value to be set" in VBT when LVDS
 434		 * register is uninitialized.
 435		 */
 436		val = I915_READ(reg);
 437		if (!(val & ~LVDS_DETECTED))
 438			val = dev_priv->bios_lvds_val;
 439		dev_priv->lvds_val = val;
 440	}
 441	return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
 442}
 443
 444static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
 445						int refclk)
 446{
 447	struct drm_device *dev = crtc->dev;
 448	struct drm_i915_private *dev_priv = dev->dev_private;
 449	const intel_limit_t *limit;
 450
 451	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
 452		if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
 453			/* LVDS dual channel */
 454			if (refclk == 100000)
 455				limit = &intel_limits_ironlake_dual_lvds_100m;
 456			else
 457				limit = &intel_limits_ironlake_dual_lvds;
 458		} else {
 459			if (refclk == 100000)
 460				limit = &intel_limits_ironlake_single_lvds_100m;
 461			else
 462				limit = &intel_limits_ironlake_single_lvds;
 463		}
 464	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
 465			HAS_eDP)
 466		limit = &intel_limits_ironlake_display_port;
 467	else
 468		limit = &intel_limits_ironlake_dac;
 469
 470	return limit;
 471}
 472
 473static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
 474{
 475	struct drm_device *dev = crtc->dev;
 476	struct drm_i915_private *dev_priv = dev->dev_private;
 477	const intel_limit_t *limit;
 478
 479	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
 480		if (is_dual_link_lvds(dev_priv, LVDS))
 481			/* LVDS with dual channel */
 482			limit = &intel_limits_g4x_dual_channel_lvds;
 483		else
 484			/* LVDS with dual channel */
 485			limit = &intel_limits_g4x_single_channel_lvds;
 486	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
 487		   intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
 488		limit = &intel_limits_g4x_hdmi;
 489	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
 490		limit = &intel_limits_g4x_sdvo;
 491	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
 492		limit = &intel_limits_g4x_display_port;
 493	} else /* The option is for other outputs */
 494		limit = &intel_limits_i9xx_sdvo;
 495
 496	return limit;
 497}
 498
 499static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
 500{
 501	struct drm_device *dev = crtc->dev;
 502	const intel_limit_t *limit;
 503
 504	if (HAS_PCH_SPLIT(dev))
 505		limit = intel_ironlake_limit(crtc, refclk);
 506	else if (IS_G4X(dev)) {
 507		limit = intel_g4x_limit(crtc);
 508	} else if (IS_PINEVIEW(dev)) {
 509		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
 510			limit = &intel_limits_pineview_lvds;
 511		else
 512			limit = &intel_limits_pineview_sdvo;
 513	} else if (!IS_GEN2(dev)) {
 514		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
 515			limit = &intel_limits_i9xx_lvds;
 516		else
 517			limit = &intel_limits_i9xx_sdvo;
 518	} else {
 519		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
 520			limit = &intel_limits_i8xx_lvds;
 521		else
 522			limit = &intel_limits_i8xx_dvo;
 523	}
 524	return limit;
 525}
 526
 527/* m1 is reserved as 0 in Pineview, n is a ring counter */
 528static void pineview_clock(int refclk, intel_clock_t *clock)
 529{
 530	clock->m = clock->m2 + 2;
 531	clock->p = clock->p1 * clock->p2;
 532	clock->vco = refclk * clock->m / clock->n;
 533	clock->dot = clock->vco / clock->p;
 534}
 535
 536static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
 537{
 538	if (IS_PINEVIEW(dev)) {
 539		pineview_clock(refclk, clock);
 540		return;
 541	}
 542	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
 543	clock->p = clock->p1 * clock->p2;
 544	clock->vco = refclk * clock->m / (clock->n + 2);
 545	clock->dot = clock->vco / clock->p;
 546}
 547
 548/**
 549 * Returns whether any output on the specified pipe is of the specified type
 550 */
 551bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
 552{
 553	struct drm_device *dev = crtc->dev;
 554	struct drm_mode_config *mode_config = &dev->mode_config;
 555	struct intel_encoder *encoder;
 556
 557	list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
 558		if (encoder->base.crtc == crtc && encoder->type == type)
 559			return true;
 560
 561	return false;
 562}
 563
 564#define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
 565/**
 566 * Returns whether the given set of divisors are valid for a given refclk with
 567 * the given connectors.
 568 */
 569
 570static bool intel_PLL_is_valid(struct drm_device *dev,
 571			       const intel_limit_t *limit,
 572			       const intel_clock_t *clock)
 573{
 574	if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
 575		INTELPllInvalid("p1 out of range\n");
 576	if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
 577		INTELPllInvalid("p out of range\n");
 578	if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
 579		INTELPllInvalid("m2 out of range\n");
 580	if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
 581		INTELPllInvalid("m1 out of range\n");
 582	if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
 583		INTELPllInvalid("m1 <= m2\n");
 584	if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
 585		INTELPllInvalid("m out of range\n");
 586	if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
 587		INTELPllInvalid("n out of range\n");
 588	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
 589		INTELPllInvalid("vco out of range\n");
 590	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
 591	 * connector, etc., rather than just a single range.
 592	 */
 593	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
 594		INTELPllInvalid("dot out of range\n");
 595
 596	return true;
 597}
 598
 599static bool
 600intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
 601		    int target, int refclk, intel_clock_t *match_clock,
 602		    intel_clock_t *best_clock)
 603
 604{
 605	struct drm_device *dev = crtc->dev;
 606	struct drm_i915_private *dev_priv = dev->dev_private;
 607	intel_clock_t clock;
 608	int err = target;
 609
 610	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
 611	    (I915_READ(LVDS)) != 0) {
 612		/*
 613		 * For LVDS, if the panel is on, just rely on its current
 614		 * settings for dual-channel.  We haven't figured out how to
 615		 * reliably set up different single/dual channel state, if we
 616		 * even can.
 617		 */
 618		if (is_dual_link_lvds(dev_priv, LVDS))
 619			clock.p2 = limit->p2.p2_fast;
 620		else
 621			clock.p2 = limit->p2.p2_slow;
 622	} else {
 623		if (target < limit->p2.dot_limit)
 624			clock.p2 = limit->p2.p2_slow;
 625		else
 626			clock.p2 = limit->p2.p2_fast;
 627	}
 628
 629	memset(best_clock, 0, sizeof(*best_clock));
 630
 631	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
 632	     clock.m1++) {
 633		for (clock.m2 = limit->m2.min;
 634		     clock.m2 <= limit->m2.max; clock.m2++) {
 635			/* m1 is always 0 in Pineview */
 636			if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
 637				break;
 638			for (clock.n = limit->n.min;
 639			     clock.n <= limit->n.max; clock.n++) {
 640				for (clock.p1 = limit->p1.min;
 641					clock.p1 <= limit->p1.max; clock.p1++) {
 642					int this_err;
 643
 644					intel_clock(dev, refclk, &clock);
 645					if (!intel_PLL_is_valid(dev, limit,
 646								&clock))
 647						continue;
 648					if (match_clock &&
 649					    clock.p != match_clock->p)
 650						continue;
 651
 652					this_err = abs(clock.dot - target);
 653					if (this_err < err) {
 654						*best_clock = clock;
 655						err = this_err;
 656					}
 657				}
 658			}
 659		}
 660	}
 661
 662	return (err != target);
 663}
 664
 665static bool
 666intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
 667			int target, int refclk, intel_clock_t *match_clock,
 668			intel_clock_t *best_clock)
 669{
 670	struct drm_device *dev = crtc->dev;
 671	struct drm_i915_private *dev_priv = dev->dev_private;
 672	intel_clock_t clock;
 673	int max_n;
 674	bool found;
 675	/* approximately equals target * 0.00585 */
 676	int err_most = (target >> 8) + (target >> 9);
 677	found = false;
 678
 679	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
 680		int lvds_reg;
 681
 682		if (HAS_PCH_SPLIT(dev))
 683			lvds_reg = PCH_LVDS;
 684		else
 685			lvds_reg = LVDS;
 686		if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
 687		    LVDS_CLKB_POWER_UP)
 688			clock.p2 = limit->p2.p2_fast;
 689		else
 690			clock.p2 = limit->p2.p2_slow;
 691	} else {
 692		if (target < limit->p2.dot_limit)
 693			clock.p2 = limit->p2.p2_slow;
 694		else
 695			clock.p2 = limit->p2.p2_fast;
 696	}
 697
 698	memset(best_clock, 0, sizeof(*best_clock));
 699	max_n = limit->n.max;
 700	/* based on hardware requirement, prefer smaller n to precision */
 701	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
 702		/* based on hardware requirement, prefere larger m1,m2 */
 703		for (clock.m1 = limit->m1.max;
 704		     clock.m1 >= limit->m1.min; clock.m1--) {
 705			for (clock.m2 = limit->m2.max;
 706			     clock.m2 >= limit->m2.min; clock.m2--) {
 707				for (clock.p1 = limit->p1.max;
 708				     clock.p1 >= limit->p1.min; clock.p1--) {
 709					int this_err;
 710
 711					intel_clock(dev, refclk, &clock);
 712					if (!intel_PLL_is_valid(dev, limit,
 713								&clock))
 714						continue;
 715					if (match_clock &&
 716					    clock.p != match_clock->p)
 717						continue;
 718
 719					this_err = abs(clock.dot - target);
 720					if (this_err < err_most) {
 721						*best_clock = clock;
 722						err_most = this_err;
 723						max_n = clock.n;
 724						found = true;
 725					}
 726				}
 727			}
 728		}
 729	}
 730	return found;
 731}
 732
 733static bool
 734intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
 735			   int target, int refclk, intel_clock_t *match_clock,
 736			   intel_clock_t *best_clock)
 737{
 738	struct drm_device *dev = crtc->dev;
 739	intel_clock_t clock;
 740
 741	if (target < 200000) {
 742		clock.n = 1;
 743		clock.p1 = 2;
 744		clock.p2 = 10;
 745		clock.m1 = 12;
 746		clock.m2 = 9;
 747	} else {
 748		clock.n = 2;
 749		clock.p1 = 1;
 750		clock.p2 = 10;
 751		clock.m1 = 14;
 752		clock.m2 = 8;
 753	}
 754	intel_clock(dev, refclk, &clock);
 755	memcpy(best_clock, &clock, sizeof(intel_clock_t));
 756	return true;
 757}
 758
 759/* DisplayPort has only two frequencies, 162MHz and 270MHz */
 760static bool
 761intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
 762		      int target, int refclk, intel_clock_t *match_clock,
 763		      intel_clock_t *best_clock)
 764{
 765	intel_clock_t clock;
 766	if (target < 200000) {
 767		clock.p1 = 2;
 768		clock.p2 = 10;
 769		clock.n = 2;
 770		clock.m1 = 23;
 771		clock.m2 = 8;
 772	} else {
 773		clock.p1 = 1;
 774		clock.p2 = 10;
 775		clock.n = 1;
 776		clock.m1 = 14;
 777		clock.m2 = 2;
 778	}
 779	clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
 780	clock.p = (clock.p1 * clock.p2);
 781	clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
 782	clock.vco = 0;
 783	memcpy(best_clock, &clock, sizeof(intel_clock_t));
 784	return true;
 785}
 786
 787static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
 788{
 789	struct drm_i915_private *dev_priv = dev->dev_private;
 790	u32 frame, frame_reg = PIPEFRAME(pipe);
 791
 792	frame = I915_READ(frame_reg);
 793
 794	if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
 795		DRM_DEBUG_KMS("vblank wait timed out\n");
 796}
 797
 798/**
 799 * intel_wait_for_vblank - wait for vblank on a given pipe
 800 * @dev: drm device
 801 * @pipe: pipe to wait for
 802 *
 803 * Wait for vblank to occur on a given pipe.  Needed for various bits of
 804 * mode setting code.
 805 */
 806void intel_wait_for_vblank(struct drm_device *dev, int pipe)
 807{
 808	struct drm_i915_private *dev_priv = dev->dev_private;
 809	int pipestat_reg = PIPESTAT(pipe);
 810
 811	if (INTEL_INFO(dev)->gen >= 5) {
 812		ironlake_wait_for_vblank(dev, pipe);
 813		return;
 814	}
 815
 816	/* Clear existing vblank status. Note this will clear any other
 817	 * sticky status fields as well.
 818	 *
 819	 * This races with i915_driver_irq_handler() with the result
 820	 * that either function could miss a vblank event.  Here it is not
 821	 * fatal, as we will either wait upon the next vblank interrupt or
 822	 * timeout.  Generally speaking intel_wait_for_vblank() is only
 823	 * called during modeset at which time the GPU should be idle and
 824	 * should *not* be performing page flips and thus not waiting on
 825	 * vblanks...
 826	 * Currently, the result of us stealing a vblank from the irq
 827	 * handler is that a single frame will be skipped during swapbuffers.
 828	 */
 829	I915_WRITE(pipestat_reg,
 830		   I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
 831
 832	/* Wait for vblank interrupt bit to set */
 833	if (wait_for(I915_READ(pipestat_reg) &
 834		     PIPE_VBLANK_INTERRUPT_STATUS,
 835		     50))
 836		DRM_DEBUG_KMS("vblank wait timed out\n");
 837}
 838
 839/*
 840 * intel_wait_for_pipe_off - wait for pipe to turn off
 841 * @dev: drm device
 842 * @pipe: pipe to wait for
 843 *
 844 * After disabling a pipe, we can't wait for vblank in the usual way,
 845 * spinning on the vblank interrupt status bit, since we won't actually
 846 * see an interrupt when the pipe is disabled.
 847 *
 848 * On Gen4 and above:
 849 *   wait for the pipe register state bit to turn off
 850 *
 851 * Otherwise:
 852 *   wait for the display line value to settle (it usually
 853 *   ends up stopping at the start of the next frame).
 854 *
 855 */
 856void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
 857{
 858	struct drm_i915_private *dev_priv = dev->dev_private;
 859
 860	if (INTEL_INFO(dev)->gen >= 4) {
 861		int reg = PIPECONF(pipe);
 862
 863		/* Wait for the Pipe State to go off */
 864		if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
 865			     100))
 866			DRM_DEBUG_KMS("pipe_off wait timed out\n");
 867	} else {
 868		u32 last_line, line_mask;
 869		int reg = PIPEDSL(pipe);
 870		unsigned long timeout = jiffies + msecs_to_jiffies(100);
 871
 872		if (IS_GEN2(dev))
 873			line_mask = DSL_LINEMASK_GEN2;
 874		else
 875			line_mask = DSL_LINEMASK_GEN3;
 876
 877		/* Wait for the display line to settle */
 878		do {
 879			last_line = I915_READ(reg) & line_mask;
 880			mdelay(5);
 881		} while (((I915_READ(reg) & line_mask) != last_line) &&
 882			 time_after(timeout, jiffies));
 883		if (time_after(jiffies, timeout))
 884			DRM_DEBUG_KMS("pipe_off wait timed out\n");
 885	}
 886}
 887
 888static const char *state_string(bool enabled)
 889{
 890	return enabled ? "on" : "off";
 891}
 892
 893/* Only for pre-ILK configs */
 894static void assert_pll(struct drm_i915_private *dev_priv,
 895		       enum pipe pipe, bool state)
 896{
 897	int reg;
 898	u32 val;
 899	bool cur_state;
 900
 901	reg = DPLL(pipe);
 902	val = I915_READ(reg);
 903	cur_state = !!(val & DPLL_VCO_ENABLE);
 904	WARN(cur_state != state,
 905	     "PLL state assertion failure (expected %s, current %s)\n",
 906	     state_string(state), state_string(cur_state));
 907}
 908#define assert_pll_enabled(d, p) assert_pll(d, p, true)
 909#define assert_pll_disabled(d, p) assert_pll(d, p, false)
 910
 911/* For ILK+ */
 912static void assert_pch_pll(struct drm_i915_private *dev_priv,
 913			   struct intel_pch_pll *pll,
 914			   struct intel_crtc *crtc,
 915			   bool state)
 916{
 917	u32 val;
 918	bool cur_state;
 919
 920	if (HAS_PCH_LPT(dev_priv->dev)) {
 921		DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
 922		return;
 923	}
 924
 925	if (WARN (!pll,
 926		  "asserting PCH PLL %s with no PLL\n", state_string(state)))
 927		return;
 928
 929	val = I915_READ(pll->pll_reg);
 930	cur_state = !!(val & DPLL_VCO_ENABLE);
 931	WARN(cur_state != state,
 932	     "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
 933	     pll->pll_reg, state_string(state), state_string(cur_state), val);
 934
 935	/* Make sure the selected PLL is correctly attached to the transcoder */
 936	if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
 937		u32 pch_dpll;
 938
 939		pch_dpll = I915_READ(PCH_DPLL_SEL);
 940		cur_state = pll->pll_reg == _PCH_DPLL_B;
 941		if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
 942			  "PLL[%d] not attached to this transcoder %d: %08x\n",
 943			  cur_state, crtc->pipe, pch_dpll)) {
 944			cur_state = !!(val >> (4*crtc->pipe + 3));
 945			WARN(cur_state != state,
 946			     "PLL[%d] not %s on this transcoder %d: %08x\n",
 947			     pll->pll_reg == _PCH_DPLL_B,
 948			     state_string(state),
 949			     crtc->pipe,
 950			     val);
 951		}
 952	}
 953}
 954#define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
 955#define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
 956
 957static void assert_fdi_tx(struct drm_i915_private *dev_priv,
 958			  enum pipe pipe, bool state)
 959{
 960	int reg;
 961	u32 val;
 962	bool cur_state;
 963
 964	if (IS_HASWELL(dev_priv->dev)) {
 965		/* On Haswell, DDI is used instead of FDI_TX_CTL */
 966		reg = DDI_FUNC_CTL(pipe);
 967		val = I915_READ(reg);
 968		cur_state = !!(val & PIPE_DDI_FUNC_ENABLE);
 969	} else {
 970		reg = FDI_TX_CTL(pipe);
 971		val = I915_READ(reg);
 972		cur_state = !!(val & FDI_TX_ENABLE);
 973	}
 974	WARN(cur_state != state,
 975	     "FDI TX state assertion failure (expected %s, current %s)\n",
 976	     state_string(state), state_string(cur_state));
 977}
 978#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
 979#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
 980
 981static void assert_fdi_rx(struct drm_i915_private *dev_priv,
 982			  enum pipe pipe, bool state)
 983{
 984	int reg;
 985	u32 val;
 986	bool cur_state;
 987
 988	if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
 989			DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
 990			return;
 991	} else {
 992		reg = FDI_RX_CTL(pipe);
 993		val = I915_READ(reg);
 994		cur_state = !!(val & FDI_RX_ENABLE);
 995	}
 996	WARN(cur_state != state,
 997	     "FDI RX state assertion failure (expected %s, current %s)\n",
 998	     state_string(state), state_string(cur_state));
 999}
1000#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1001#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1002
1003static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1004				      enum pipe pipe)
1005{
1006	int reg;
1007	u32 val;
1008
1009	/* ILK FDI PLL is always enabled */
1010	if (dev_priv->info->gen == 5)
1011		return;
1012
1013	/* On Haswell, DDI ports are responsible for the FDI PLL setup */
1014	if (IS_HASWELL(dev_priv->dev))
1015		return;
1016
1017	reg = FDI_TX_CTL(pipe);
1018	val = I915_READ(reg);
1019	WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1020}
1021
1022static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1023				      enum pipe pipe)
1024{
1025	int reg;
1026	u32 val;
1027
1028	if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1029		DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1030		return;
1031	}
1032	reg = FDI_RX_CTL(pipe);
1033	val = I915_READ(reg);
1034	WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1035}
1036
1037static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1038				  enum pipe pipe)
1039{
1040	int pp_reg, lvds_reg;
1041	u32 val;
1042	enum pipe panel_pipe = PIPE_A;
1043	bool locked = true;
1044
1045	if (HAS_PCH_SPLIT(dev_priv->dev)) {
1046		pp_reg = PCH_PP_CONTROL;
1047		lvds_reg = PCH_LVDS;
1048	} else {
1049		pp_reg = PP_CONTROL;
1050		lvds_reg = LVDS;
1051	}
1052
1053	val = I915_READ(pp_reg);
1054	if (!(val & PANEL_POWER_ON) ||
1055	    ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1056		locked = false;
1057
1058	if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1059		panel_pipe = PIPE_B;
1060
1061	WARN(panel_pipe == pipe && locked,
1062	     "panel assertion failure, pipe %c regs locked\n",
1063	     pipe_name(pipe));
1064}
1065
1066void assert_pipe(struct drm_i915_private *dev_priv,
1067		 enum pipe pipe, bool state)
1068{
1069	int reg;
1070	u32 val;
1071	bool cur_state;
1072
1073	/* if we need the pipe A quirk it must be always on */
1074	if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1075		state = true;
1076
1077	reg = PIPECONF(pipe);
1078	val = I915_READ(reg);
1079	cur_state = !!(val & PIPECONF_ENABLE);
1080	WARN(cur_state != state,
1081	     "pipe %c assertion failure (expected %s, current %s)\n",
1082	     pipe_name(pipe), state_string(state), state_string(cur_state));
1083}
1084
1085static void assert_plane(struct drm_i915_private *dev_priv,
1086			 enum plane plane, bool state)
1087{
1088	int reg;
1089	u32 val;
1090	bool cur_state;
1091
1092	reg = DSPCNTR(plane);
1093	val = I915_READ(reg);
1094	cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1095	WARN(cur_state != state,
1096	     "plane %c assertion failure (expected %s, current %s)\n",
1097	     plane_name(plane), state_string(state), state_string(cur_state));
1098}
1099
1100#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1101#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1102
1103static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1104				   enum pipe pipe)
1105{
1106	int reg, i;
1107	u32 val;
1108	int cur_pipe;
1109
1110	/* Planes are fixed to pipes on ILK+ */
1111	if (HAS_PCH_SPLIT(dev_priv->dev)) {
1112		reg = DSPCNTR(pipe);
1113		val = I915_READ(reg);
1114		WARN((val & DISPLAY_PLANE_ENABLE),
1115		     "plane %c assertion failure, should be disabled but not\n",
1116		     plane_name(pipe));
1117		return;
1118	}
1119
1120	/* Need to check both planes against the pipe */
1121	for (i = 0; i < 2; i++) {
1122		reg = DSPCNTR(i);
1123		val = I915_READ(reg);
1124		cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1125			DISPPLANE_SEL_PIPE_SHIFT;
1126		WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1127		     "plane %c assertion failure, should be off on pipe %c but is still active\n",
1128		     plane_name(i), pipe_name(pipe));
1129	}
1130}
1131
1132static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1133{
1134	u32 val;
1135	bool enabled;
1136
1137	if (HAS_PCH_LPT(dev_priv->dev)) {
1138		DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1139		return;
1140	}
1141
1142	val = I915_READ(PCH_DREF_CONTROL);
1143	enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1144			    DREF_SUPERSPREAD_SOURCE_MASK));
1145	WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1146}
1147
1148static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1149				       enum pipe pipe)
1150{
1151	int reg;
1152	u32 val;
1153	bool enabled;
1154
1155	reg = TRANSCONF(pipe);
1156	val = I915_READ(reg);
1157	enabled = !!(val & TRANS_ENABLE);
1158	WARN(enabled,
1159	     "transcoder assertion failed, should be off on pipe %c but is still active\n",
1160	     pipe_name(pipe));
1161}
1162
1163static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1164			    enum pipe pipe, u32 port_sel, u32 val)
1165{
1166	if ((val & DP_PORT_EN) == 0)
1167		return false;
1168
1169	if (HAS_PCH_CPT(dev_priv->dev)) {
1170		u32	trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1171		u32	trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1172		if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1173			return false;
1174	} else {
1175		if ((val & DP_PIPE_MASK) != (pipe << 30))
1176			return false;
1177	}
1178	return true;
1179}
1180
1181static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1182			      enum pipe pipe, u32 val)
1183{
1184	if ((val & PORT_ENABLE) == 0)
1185		return false;
1186
1187	if (HAS_PCH_CPT(dev_priv->dev)) {
1188		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1189			return false;
1190	} else {
1191		if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1192			return false;
1193	}
1194	return true;
1195}
1196
1197static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1198			      enum pipe pipe, u32 val)
1199{
1200	if ((val & LVDS_PORT_EN) == 0)
1201		return false;
1202
1203	if (HAS_PCH_CPT(dev_priv->dev)) {
1204		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1205			return false;
1206	} else {
1207		if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1208			return false;
1209	}
1210	return true;
1211}
1212
1213static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1214			      enum pipe pipe, u32 val)
1215{
1216	if ((val & ADPA_DAC_ENABLE) == 0)
1217		return false;
1218	if (HAS_PCH_CPT(dev_priv->dev)) {
1219		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1220			return false;
1221	} else {
1222		if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1223			return false;
1224	}
1225	return true;
1226}
1227
1228static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1229				   enum pipe pipe, int reg, u32 port_sel)
1230{
1231	u32 val = I915_READ(reg);
1232	WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1233	     "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1234	     reg, pipe_name(pipe));
1235}
1236
1237static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1238				     enum pipe pipe, int reg)
1239{
1240	u32 val = I915_READ(reg);
1241	WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1242	     "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1243	     reg, pipe_name(pipe));
1244}
1245
1246static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1247				      enum pipe pipe)
1248{
1249	int reg;
1250	u32 val;
1251
1252	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1253	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1254	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1255
1256	reg = PCH_ADPA;
1257	val = I915_READ(reg);
1258	WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1259	     "PCH VGA enabled on transcoder %c, should be disabled\n",
1260	     pipe_name(pipe));
1261
1262	reg = PCH_LVDS;
1263	val = I915_READ(reg);
1264	WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1265	     "PCH LVDS enabled on transcoder %c, should be disabled\n",
1266	     pipe_name(pipe));
1267
1268	assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1269	assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1270	assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1271}
1272
1273/**
1274 * intel_enable_pll - enable a PLL
1275 * @dev_priv: i915 private structure
1276 * @pipe: pipe PLL to enable
1277 *
1278 * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1279 * make sure the PLL reg is writable first though, since the panel write
1280 * protect mechanism may be enabled.
1281 *
1282 * Note!  This is for pre-ILK only.
1283 */
1284static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1285{
1286	int reg;
1287	u32 val;
1288
1289	/* No really, not for ILK+ */
1290	BUG_ON(dev_priv->info->gen >= 5);
1291
1292	/* PLL is protected by panel, make sure we can write it */
1293	if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1294		assert_panel_unlocked(dev_priv, pipe);
1295
1296	reg = DPLL(pipe);
1297	val = I915_READ(reg);
1298	val |= DPLL_VCO_ENABLE;
1299
1300	/* We do this three times for luck */
1301	I915_WRITE(reg, val);
1302	POSTING_READ(reg);
1303	udelay(150); /* wait for warmup */
1304	I915_WRITE(reg, val);
1305	POSTING_READ(reg);
1306	udelay(150); /* wait for warmup */
1307	I915_WRITE(reg, val);
1308	POSTING_READ(reg);
1309	udelay(150); /* wait for warmup */
1310}
1311
1312/**
1313 * intel_disable_pll - disable a PLL
1314 * @dev_priv: i915 private structure
1315 * @pipe: pipe PLL to disable
1316 *
1317 * Disable the PLL for @pipe, making sure the pipe is off first.
1318 *
1319 * Note!  This is for pre-ILK only.
1320 */
1321static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1322{
1323	int reg;
1324	u32 val;
1325
1326	/* Don't disable pipe A or pipe A PLLs if needed */
1327	if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1328		return;
1329
1330	/* Make sure the pipe isn't still relying on us */
1331	assert_pipe_disabled(dev_priv, pipe);
1332
1333	reg = DPLL(pipe);
1334	val = I915_READ(reg);
1335	val &= ~DPLL_VCO_ENABLE;
1336	I915_WRITE(reg, val);
1337	POSTING_READ(reg);
1338}
1339
1340/* SBI access */
1341static void
1342intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1343{
1344	unsigned long flags;
1345
1346	spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1347	if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_READY) == 0,
1348				100)) {
1349		DRM_ERROR("timeout waiting for SBI to become ready\n");
1350		goto out_unlock;
1351	}
1352
1353	I915_WRITE(SBI_ADDR,
1354			(reg << 16));
1355	I915_WRITE(SBI_DATA,
1356			value);
1357	I915_WRITE(SBI_CTL_STAT,
1358			SBI_BUSY |
1359			SBI_CTL_OP_CRWR);
1360
1361	if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_READY | SBI_RESPONSE_SUCCESS)) == 0,
1362				100)) {
1363		DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1364		goto out_unlock;
1365	}
1366
1367out_unlock:
1368	spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1369}
1370
1371static u32
1372intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1373{
1374	unsigned long flags;
1375	u32 value;
1376
1377	spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1378	if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_READY) == 0,
1379				100)) {
1380		DRM_ERROR("timeout waiting for SBI to become ready\n");
1381		goto out_unlock;
1382	}
1383
1384	I915_WRITE(SBI_ADDR,
1385			(reg << 16));
1386	I915_WRITE(SBI_CTL_STAT,
1387			SBI_BUSY |
1388			SBI_CTL_OP_CRRD);
1389
1390	if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_READY | SBI_RESPONSE_SUCCESS)) == 0,
1391				100)) {
1392		DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1393		goto out_unlock;
1394	}
1395
1396	value = I915_READ(SBI_DATA);
1397
1398out_unlock:
1399	spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1400	return value;
1401}
1402
1403/**
1404 * intel_enable_pch_pll - enable PCH PLL
1405 * @dev_priv: i915 private structure
1406 * @pipe: pipe PLL to enable
1407 *
1408 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1409 * drives the transcoder clock.
1410 */
1411static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
1412{
1413	struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1414	struct intel_pch_pll *pll;
1415	int reg;
1416	u32 val;
1417
1418	/* PCH PLLs only available on ILK, SNB and IVB */
1419	BUG_ON(dev_priv->info->gen < 5);
1420	pll = intel_crtc->pch_pll;
1421	if (pll == NULL)
1422		return;
1423
1424	if (WARN_ON(pll->refcount == 0))
1425		return;
1426
1427	DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1428		      pll->pll_reg, pll->active, pll->on,
1429		      intel_crtc->base.base.id);
1430
1431	/* PCH refclock must be enabled first */
1432	assert_pch_refclk_enabled(dev_priv);
1433
1434	if (pll->active++ && pll->on) {
1435		assert_pch_pll_enabled(dev_priv, pll, NULL);
1436		return;
1437	}
1438
1439	DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1440
1441	reg = pll->pll_reg;
1442	val = I915_READ(reg);
1443	val |= DPLL_VCO_ENABLE;
1444	I915_WRITE(reg, val);
1445	POSTING_READ(reg);
1446	udelay(200);
1447
1448	pll->on = true;
1449}
1450
1451static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1452{
1453	struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1454	struct intel_pch_pll *pll = intel_crtc->pch_pll;
1455	int reg;
1456	u32 val;
1457
1458	/* PCH only available on ILK+ */
1459	BUG_ON(dev_priv->info->gen < 5);
1460	if (pll == NULL)
1461	       return;
1462
1463	if (WARN_ON(pll->refcount == 0))
1464		return;
1465
1466	DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1467		      pll->pll_reg, pll->active, pll->on,
1468		      intel_crtc->base.base.id);
1469
1470	if (WARN_ON(pll->active == 0)) {
1471		assert_pch_pll_disabled(dev_priv, pll, NULL);
1472		return;
1473	}
1474
1475	if (--pll->active) {
1476		assert_pch_pll_enabled(dev_priv, pll, NULL);
1477		return;
1478	}
1479
1480	DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1481
1482	/* Make sure transcoder isn't still depending on us */
1483	assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1484
1485	reg = pll->pll_reg;
1486	val = I915_READ(reg);
1487	val &= ~DPLL_VCO_ENABLE;
1488	I915_WRITE(reg, val);
1489	POSTING_READ(reg);
1490	udelay(200);
1491
1492	pll->on = false;
1493}
1494
1495static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1496				    enum pipe pipe)
1497{
1498	int reg;
1499	u32 val, pipeconf_val;
1500	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1501
1502	/* PCH only available on ILK+ */
1503	BUG_ON(dev_priv->info->gen < 5);
1504
1505	/* Make sure PCH DPLL is enabled */
1506	assert_pch_pll_enabled(dev_priv,
1507			       to_intel_crtc(crtc)->pch_pll,
1508			       to_intel_crtc(crtc));
1509
1510	/* FDI must be feeding us bits for PCH ports */
1511	assert_fdi_tx_enabled(dev_priv, pipe);
1512	assert_fdi_rx_enabled(dev_priv, pipe);
1513
1514	if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1515		DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1516		return;
1517	}
1518	reg = TRANSCONF(pipe);
1519	val = I915_READ(reg);
1520	pipeconf_val = I915_READ(PIPECONF(pipe));
1521
1522	if (HAS_PCH_IBX(dev_priv->dev)) {
1523		/*
1524		 * make the BPC in transcoder be consistent with
1525		 * that in pipeconf reg.
1526		 */
1527		val &= ~PIPE_BPC_MASK;
1528		val |= pipeconf_val & PIPE_BPC_MASK;
1529	}
1530
1531	val &= ~TRANS_INTERLACE_MASK;
1532	if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1533		if (HAS_PCH_IBX(dev_priv->dev) &&
1534		    intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1535			val |= TRANS_LEGACY_INTERLACED_ILK;
1536		else
1537			val |= TRANS_INTERLACED;
1538	else
1539		val |= TRANS_PROGRESSIVE;
1540
1541	I915_WRITE(reg, val | TRANS_ENABLE);
1542	if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1543		DRM_ERROR("failed to enable transcoder %d\n", pipe);
1544}
1545
1546static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1547				     enum pipe pipe)
1548{
1549	int reg;
1550	u32 val;
1551
1552	/* FDI relies on the transcoder */
1553	assert_fdi_tx_disabled(dev_priv, pipe);
1554	assert_fdi_rx_disabled(dev_priv, pipe);
1555
1556	/* Ports must be off as well */
1557	assert_pch_ports_disabled(dev_priv, pipe);
1558
1559	reg = TRANSCONF(pipe);
1560	val = I915_READ(reg);
1561	val &= ~TRANS_ENABLE;
1562	I915_WRITE(reg, val);
1563	/* wait for PCH transcoder off, transcoder state */
1564	if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1565		DRM_ERROR("failed to disable transcoder %d\n", pipe);
1566}
1567
1568/**
1569 * intel_enable_pipe - enable a pipe, asserting requirements
1570 * @dev_priv: i915 private structure
1571 * @pipe: pipe to enable
1572 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1573 *
1574 * Enable @pipe, making sure that various hardware specific requirements
1575 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1576 *
1577 * @pipe should be %PIPE_A or %PIPE_B.
1578 *
1579 * Will wait until the pipe is actually running (i.e. first vblank) before
1580 * returning.
1581 */
1582static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1583			      bool pch_port)
1584{
1585	int reg;
1586	u32 val;
1587
1588	/*
1589	 * A pipe without a PLL won't actually be able to drive bits from
1590	 * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1591	 * need the check.
1592	 */
1593	if (!HAS_PCH_SPLIT(dev_priv->dev))
1594		assert_pll_enabled(dev_priv, pipe);
1595	else {
1596		if (pch_port) {
1597			/* if driving the PCH, we need FDI enabled */
1598			assert_fdi_rx_pll_enabled(dev_priv, pipe);
1599			assert_fdi_tx_pll_enabled(dev_priv, pipe);
1600		}
1601		/* FIXME: assert CPU port conditions for SNB+ */
1602	}
1603
1604	reg = PIPECONF(pipe);
1605	val = I915_READ(reg);
1606	if (val & PIPECONF_ENABLE)
1607		return;
1608
1609	I915_WRITE(reg, val | PIPECONF_ENABLE);
1610	intel_wait_for_vblank(dev_priv->dev, pipe);
1611}
1612
1613/**
1614 * intel_disable_pipe - disable a pipe, asserting requirements
1615 * @dev_priv: i915 private structure
1616 * @pipe: pipe to disable
1617 *
1618 * Disable @pipe, making sure that various hardware specific requirements
1619 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1620 *
1621 * @pipe should be %PIPE_A or %PIPE_B.
1622 *
1623 * Will wait until the pipe has shut down before returning.
1624 */
1625static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1626			       enum pipe pipe)
1627{
1628	int reg;
1629	u32 val;
1630
1631	/*
1632	 * Make sure planes won't keep trying to pump pixels to us,
1633	 * or we might hang the display.
1634	 */
1635	assert_planes_disabled(dev_priv, pipe);
1636
1637	/* Don't disable pipe A or pipe A PLLs if needed */
1638	if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1639		return;
1640
1641	reg = PIPECONF(pipe);
1642	val = I915_READ(reg);
1643	if ((val & PIPECONF_ENABLE) == 0)
1644		return;
1645
1646	I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1647	intel_wait_for_pipe_off(dev_priv->dev, pipe);
1648}
1649
1650/*
1651 * Plane regs are double buffered, going from enabled->disabled needs a
1652 * trigger in order to latch.  The display address reg provides this.
1653 */
1654void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1655				      enum plane plane)
1656{
1657	I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1658	I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1659}
1660
1661/**
1662 * intel_enable_plane - enable a display plane on a given pipe
1663 * @dev_priv: i915 private structure
1664 * @plane: plane to enable
1665 * @pipe: pipe being fed
1666 *
1667 * Enable @plane on @pipe, making sure that @pipe is running first.
1668 */
1669static void intel_enable_plane(struct drm_i915_private *dev_priv,
1670			       enum plane plane, enum pipe pipe)
1671{
1672	int reg;
1673	u32 val;
1674
1675	/* If the pipe isn't enabled, we can't pump pixels and may hang */
1676	assert_pipe_enabled(dev_priv, pipe);
1677
1678	reg = DSPCNTR(plane);
1679	val = I915_READ(reg);
1680	if (val & DISPLAY_PLANE_ENABLE)
1681		return;
1682
1683	I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1684	intel_flush_display_plane(dev_priv, plane);
1685	intel_wait_for_vblank(dev_priv->dev, pipe);
1686}
1687
1688/**
1689 * intel_disable_plane - disable a display plane
1690 * @dev_priv: i915 private structure
1691 * @plane: plane to disable
1692 * @pipe: pipe consuming the data
1693 *
1694 * Disable @plane; should be an independent operation.
1695 */
1696static void intel_disable_plane(struct drm_i915_private *dev_priv,
1697				enum plane plane, enum pipe pipe)
1698{
1699	int reg;
1700	u32 val;
1701
1702	reg = DSPCNTR(plane);
1703	val = I915_READ(reg);
1704	if ((val & DISPLAY_PLANE_ENABLE) == 0)
1705		return;
1706
1707	I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1708	intel_flush_display_plane(dev_priv, plane);
1709	intel_wait_for_vblank(dev_priv->dev, pipe);
1710}
1711
1712static void disable_pch_dp(struct drm_i915_private *dev_priv,
1713			   enum pipe pipe, int reg, u32 port_sel)
1714{
1715	u32 val = I915_READ(reg);
1716	if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1717		DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1718		I915_WRITE(reg, val & ~DP_PORT_EN);
1719	}
1720}
1721
1722static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1723			     enum pipe pipe, int reg)
1724{
1725	u32 val = I915_READ(reg);
1726	if (hdmi_pipe_enabled(dev_priv, pipe, val)) {
1727		DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1728			      reg, pipe);
1729		I915_WRITE(reg, val & ~PORT_ENABLE);
1730	}
1731}
1732
1733/* Disable any ports connected to this transcoder */
1734static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1735				    enum pipe pipe)
1736{
1737	u32 reg, val;
1738
1739	val = I915_READ(PCH_PP_CONTROL);
1740	I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1741
1742	disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1743	disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1744	disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1745
1746	reg = PCH_ADPA;
1747	val = I915_READ(reg);
1748	if (adpa_pipe_enabled(dev_priv, pipe, val))
1749		I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1750
1751	reg = PCH_LVDS;
1752	val = I915_READ(reg);
1753	if (lvds_pipe_enabled(dev_priv, pipe, val)) {
1754		DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1755		I915_WRITE(reg, val & ~LVDS_PORT_EN);
1756		POSTING_READ(reg);
1757		udelay(100);
1758	}
1759
1760	disable_pch_hdmi(dev_priv, pipe, HDMIB);
1761	disable_pch_hdmi(dev_priv, pipe, HDMIC);
1762	disable_pch_hdmi(dev_priv, pipe, HDMID);
1763}
1764
1765int
1766intel_pin_and_fence_fb_obj(struct drm_device *dev,
1767			   struct drm_i915_gem_object *obj,
1768			   struct intel_ring_buffer *pipelined)
1769{
1770	struct drm_i915_private *dev_priv = dev->dev_private;
1771	u32 alignment;
1772	int ret;
1773
1774	switch (obj->tiling_mode) {
1775	case I915_TILING_NONE:
1776		if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1777			alignment = 128 * 1024;
1778		else if (INTEL_INFO(dev)->gen >= 4)
1779			alignment = 4 * 1024;
1780		else
1781			alignment = 64 * 1024;
1782		break;
1783	case I915_TILING_X:
1784		/* pin() will align the object as required by fence */
1785		alignment = 0;
1786		break;
1787	case I915_TILING_Y:
1788		/* FIXME: Is this true? */
1789		DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1790		return -EINVAL;
1791	default:
1792		BUG();
1793	}
1794
1795	dev_priv->mm.interruptible = false;
1796	ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1797	if (ret)
1798		goto err_interruptible;
1799
1800	/* Install a fence for tiled scan-out. Pre-i965 always needs a
1801	 * fence, whereas 965+ only requires a fence if using
1802	 * framebuffer compression.  For simplicity, we always install
1803	 * a fence as the cost is not that onerous.
1804	 */
1805	ret = i915_gem_object_get_fence(obj);
1806	if (ret)
1807		goto err_unpin;
1808
1809	i915_gem_object_pin_fence(obj);
1810
1811	dev_priv->mm.interruptible = true;
1812	return 0;
1813
1814err_unpin:
1815	i915_gem_object_unpin(obj);
1816err_interruptible:
1817	dev_priv->mm.interruptible = true;
1818	return ret;
1819}
1820
1821void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1822{
1823	i915_gem_object_unpin_fence(obj);
1824	i915_gem_object_unpin(obj);
1825}
1826
1827static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1828			     int x, int y)
1829{
1830	struct drm_device *dev = crtc->dev;
1831	struct drm_i915_private *dev_priv = dev->dev_private;
1832	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1833	struct intel_framebuffer *intel_fb;
1834	struct drm_i915_gem_object *obj;
1835	int plane = intel_crtc->plane;
1836	unsigned long Start, Offset;
1837	u32 dspcntr;
1838	u32 reg;
1839
1840	switch (plane) {
1841	case 0:
1842	case 1:
1843		break;
1844	default:
1845		DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1846		return -EINVAL;
1847	}
1848
1849	intel_fb = to_intel_framebuffer(fb);
1850	obj = intel_fb->obj;
1851
1852	reg = DSPCNTR(plane);
1853	dspcntr = I915_READ(reg);
1854	/* Mask out pixel format bits in case we change it */
1855	dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1856	switch (fb->bits_per_pixel) {
1857	case 8:
1858		dspcntr |= DISPPLANE_8BPP;
1859		break;
1860	case 16:
1861		if (fb->depth == 15)
1862			dspcntr |= DISPPLANE_15_16BPP;
1863		else
1864			dspcntr |= DISPPLANE_16BPP;
1865		break;
1866	case 24:
1867	case 32:
1868		dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1869		break;
1870	default:
1871		DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
1872		return -EINVAL;
1873	}
1874	if (INTEL_INFO(dev)->gen >= 4) {
1875		if (obj->tiling_mode != I915_TILING_NONE)
1876			dspcntr |= DISPPLANE_TILED;
1877		else
1878			dspcntr &= ~DISPPLANE_TILED;
1879	}
1880
1881	I915_WRITE(reg, dspcntr);
1882
1883	Start = obj->gtt_offset;
1884	Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1885
1886	DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1887		      Start, Offset, x, y, fb->pitches[0]);
1888	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
1889	if (INTEL_INFO(dev)->gen >= 4) {
1890		I915_MODIFY_DISPBASE(DSPSURF(plane), Start);
1891		I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1892		I915_WRITE(DSPADDR(plane), Offset);
1893	} else
1894		I915_WRITE(DSPADDR(plane), Start + Offset);
1895	POSTING_READ(reg);
1896
1897	return 0;
1898}
1899
1900static int ironlake_update_plane(struct drm_crtc *crtc,
1901				 struct drm_framebuffer *fb, int x, int y)
1902{
1903	struct drm_device *dev = crtc->dev;
1904	struct drm_i915_private *dev_priv = dev->dev_private;
1905	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1906	struct intel_framebuffer *intel_fb;
1907	struct drm_i915_gem_object *obj;
1908	int plane = intel_crtc->plane;
1909	unsigned long Start, Offset;
1910	u32 dspcntr;
1911	u32 reg;
1912
1913	switch (plane) {
1914	case 0:
1915	case 1:
1916	case 2:
1917		break;
1918	default:
1919		DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1920		return -EINVAL;
1921	}
1922
1923	intel_fb = to_intel_framebuffer(fb);
1924	obj = intel_fb->obj;
1925
1926	reg = DSPCNTR(plane);
1927	dspcntr = I915_READ(reg);
1928	/* Mask out pixel format bits in case we change it */
1929	dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1930	switch (fb->bits_per_pixel) {
1931	case 8:
1932		dspcntr |= DISPPLANE_8BPP;
1933		break;
1934	case 16:
1935		if (fb->depth != 16)
1936			return -EINVAL;
1937
1938		dspcntr |= DISPPLANE_16BPP;
1939		break;
1940	case 24:
1941	case 32:
1942		if (fb->depth == 24)
1943			dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1944		else if (fb->depth == 30)
1945			dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
1946		else
1947			return -EINVAL;
1948		break;
1949	default:
1950		DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
1951		return -EINVAL;
1952	}
1953
1954	if (obj->tiling_mode != I915_TILING_NONE)
1955		dspcntr |= DISPPLANE_TILED;
1956	else
1957		dspcntr &= ~DISPPLANE_TILED;
1958
1959	/* must disable */
1960	dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1961
1962	I915_WRITE(reg, dspcntr);
1963
1964	Start = obj->gtt_offset;
1965	Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1966
1967	DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1968		      Start, Offset, x, y, fb->pitches[0]);
1969	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
1970	I915_MODIFY_DISPBASE(DSPSURF(plane), Start);
1971	I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1972	I915_WRITE(DSPADDR(plane), Offset);
1973	POSTING_READ(reg);
1974
1975	return 0;
1976}
1977
1978/* Assume fb object is pinned & idle & fenced and just update base pointers */
1979static int
1980intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1981			   int x, int y, enum mode_set_atomic state)
1982{
1983	struct drm_device *dev = crtc->dev;
1984	struct drm_i915_private *dev_priv = dev->dev_private;
1985
1986	if (dev_priv->display.disable_fbc)
1987		dev_priv->display.disable_fbc(dev);
1988	intel_increase_pllclock(crtc);
1989
1990	return dev_priv->display.update_plane(crtc, fb, x, y);
1991}
1992
1993static int
1994intel_finish_fb(struct drm_framebuffer *old_fb)
1995{
1996	struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
1997	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1998	bool was_interruptible = dev_priv->mm.interruptible;
1999	int ret;
2000
2001	wait_event(dev_priv->pending_flip_queue,
2002		   atomic_read(&dev_priv->mm.wedged) ||
2003		   atomic_read(&obj->pending_flip) == 0);
2004
2005	/* Big Hammer, we also need to ensure that any pending
2006	 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2007	 * current scanout is retired before unpinning the old
2008	 * framebuffer.
2009	 *
2010	 * This should only fail upon a hung GPU, in which case we
2011	 * can safely continue.
2012	 */
2013	dev_priv->mm.interruptible = false;
2014	ret = i915_gem_object_finish_gpu(obj);
2015	dev_priv->mm.interruptible = was_interruptible;
2016
2017	return ret;
2018}
2019
2020static int
2021intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2022		    struct drm_framebuffer *old_fb)
2023{
2024	struct drm_device *dev = crtc->dev;
2025	struct drm_i915_private *dev_priv = dev->dev_private;
2026	struct drm_i915_master_private *master_priv;
2027	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2028	int ret;
2029
2030	/* no fb bound */
2031	if (!crtc->fb) {
2032		DRM_ERROR("No FB bound\n");
2033		return 0;
2034	}
2035
2036	if(intel_crtc->plane > dev_priv->num_pipe) {
2037		DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2038				intel_crtc->plane,
2039				dev_priv->num_pipe);
2040		return -EINVAL;
2041	}
2042
2043	mutex_lock(&dev->struct_mutex);
2044	ret = intel_pin_and_fence_fb_obj(dev,
2045					 to_intel_framebuffer(crtc->fb)->obj,
2046					 NULL);
2047	if (ret != 0) {
2048		mutex_unlock(&dev->struct_mutex);
2049		DRM_ERROR("pin & fence failed\n");
2050		return ret;
2051	}
2052
2053	if (old_fb)
2054		intel_finish_fb(old_fb);
2055
2056	ret = dev_priv->display.update_plane(crtc, crtc->fb, x, y);
2057	if (ret) {
2058		intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
2059		mutex_unlock(&dev->struct_mutex);
2060		DRM_ERROR("failed to update base address\n");
2061		return ret;
2062	}
2063
2064	if (old_fb) {
2065		intel_wait_for_vblank(dev, intel_crtc->pipe);
2066		intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2067	}
2068
2069	intel_update_fbc(dev);
2070	mutex_unlock(&dev->struct_mutex);
2071
2072	if (!dev->primary->master)
2073		return 0;
2074
2075	master_priv = dev->primary->master->driver_priv;
2076	if (!master_priv->sarea_priv)
2077		return 0;
2078
2079	if (intel_crtc->pipe) {
2080		master_priv->sarea_priv->pipeB_x = x;
2081		master_priv->sarea_priv->pipeB_y = y;
2082	} else {
2083		master_priv->sarea_priv->pipeA_x = x;
2084		master_priv->sarea_priv->pipeA_y = y;
2085	}
2086
2087	return 0;
2088}
2089
2090static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2091{
2092	struct drm_device *dev = crtc->dev;
2093	struct drm_i915_private *dev_priv = dev->dev_private;
2094	u32 dpa_ctl;
2095
2096	DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2097	dpa_ctl = I915_READ(DP_A);
2098	dpa_ctl &= ~DP_PLL_FREQ_MASK;
2099
2100	if (clock < 200000) {
2101		u32 temp;
2102		dpa_ctl |= DP_PLL_FREQ_160MHZ;
2103		/* workaround for 160Mhz:
2104		   1) program 0x4600c bits 15:0 = 0x8124
2105		   2) program 0x46010 bit 0 = 1
2106		   3) program 0x46034 bit 24 = 1
2107		   4) program 0x64000 bit 14 = 1
2108		   */
2109		temp = I915_READ(0x4600c);
2110		temp &= 0xffff0000;
2111		I915_WRITE(0x4600c, temp | 0x8124);
2112
2113		temp = I915_READ(0x46010);
2114		I915_WRITE(0x46010, temp | 1);
2115
2116		temp = I915_READ(0x46034);
2117		I915_WRITE(0x46034, temp | (1 << 24));
2118	} else {
2119		dpa_ctl |= DP_PLL_FREQ_270MHZ;
2120	}
2121	I915_WRITE(DP_A, dpa_ctl);
2122
2123	POSTING_READ(DP_A);
2124	udelay(500);
2125}
2126
2127static void intel_fdi_normal_train(struct drm_crtc *crtc)
2128{
2129	struct drm_device *dev = crtc->dev;
2130	struct drm_i915_private *dev_priv = dev->dev_private;
2131	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2132	int pipe = intel_crtc->pipe;
2133	u32 reg, temp;
2134
2135	/* enable normal train */
2136	reg = FDI_TX_CTL(pipe);
2137	temp = I915_READ(reg);
2138	if (IS_IVYBRIDGE(dev)) {
2139		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2140		temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2141	} else {
2142		temp &= ~FDI_LINK_TRAIN_NONE;
2143		temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2144	}
2145	I915_WRITE(reg, temp);
2146
2147	reg = FDI_RX_CTL(pipe);
2148	temp = I915_READ(reg);
2149	if (HAS_PCH_CPT(dev)) {
2150		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2151		temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2152	} else {
2153		temp &= ~FDI_LINK_TRAIN_NONE;
2154		temp |= FDI_LINK_TRAIN_NONE;
2155	}
2156	I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2157
2158	/* wait one idle pattern time */
2159	POSTING_READ(reg);
2160	udelay(1000);
2161
2162	/* IVB wants error correction enabled */
2163	if (IS_IVYBRIDGE(dev))
2164		I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2165			   FDI_FE_ERRC_ENABLE);
2166}
2167
2168static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2169{
2170	struct drm_i915_private *dev_priv = dev->dev_private;
2171	u32 flags = I915_READ(SOUTH_CHICKEN1);
2172
2173	flags |= FDI_PHASE_SYNC_OVR(pipe);
2174	I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2175	flags |= FDI_PHASE_SYNC_EN(pipe);
2176	I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2177	POSTING_READ(SOUTH_CHICKEN1);
2178}
2179
2180/* The FDI link training functions for ILK/Ibexpeak. */
2181static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2182{
2183	struct drm_device *dev = crtc->dev;
2184	struct drm_i915_private *dev_priv = dev->dev_private;
2185	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2186	int pipe = intel_crtc->pipe;
2187	int plane = intel_crtc->plane;
2188	u32 reg, temp, tries;
2189
2190	/* FDI needs bits from pipe & plane first */
2191	assert_pipe_enabled(dev_priv, pipe);
2192	assert_plane_enabled(dev_priv, plane);
2193
2194	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2195	   for train result */
2196	reg = FDI_RX_IMR(pipe);
2197	temp = I915_READ(reg);
2198	temp &= ~FDI_RX_SYMBOL_LOCK;
2199	temp &= ~FDI_RX_BIT_LOCK;
2200	I915_WRITE(reg, temp);
2201	I915_READ(reg);
2202	udelay(150);
2203
2204	/* enable CPU FDI TX and PCH FDI RX */
2205	reg = FDI_TX_CTL(pipe);
2206	temp = I915_READ(reg);
2207	temp &= ~(7 << 19);
2208	temp |= (intel_crtc->fdi_lanes - 1) << 19;
2209	temp &= ~FDI_LINK_TRAIN_NONE;
2210	temp |= FDI_LINK_TRAIN_PATTERN_1;
2211	I915_WRITE(reg, temp | FDI_TX_ENABLE);
2212
2213	reg = FDI_RX_CTL(pipe);
2214	temp = I915_READ(reg);
2215	temp &= ~FDI_LINK_TRAIN_NONE;
2216	temp |= FDI_LINK_TRAIN_PATTERN_1;
2217	I915_WRITE(reg, temp | FDI_RX_ENABLE);
2218
2219	POSTING_READ(reg);
2220	udelay(150);
2221
2222	/* Ironlake workaround, enable clock pointer after FDI enable*/
2223	if (HAS_PCH_IBX(dev)) {
2224		I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2225		I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2226			   FDI_RX_PHASE_SYNC_POINTER_EN);
2227	}
2228
2229	reg = FDI_RX_IIR(pipe);
2230	for (tries = 0; tries < 5; tries++) {
2231		temp = I915_READ(reg);
2232		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2233
2234		if ((temp & FDI_RX_BIT_LOCK)) {
2235			DRM_DEBUG_KMS("FDI train 1 done.\n");
2236			I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2237			break;
2238		}
2239	}
2240	if (tries == 5)
2241		DRM_ERROR("FDI train 1 fail!\n");
2242
2243	/* Train 2 */
2244	reg = FDI_TX_CTL(pipe);
2245	temp = I915_READ(reg);
2246	temp &= ~FDI_LINK_TRAIN_NONE;
2247	temp |= FDI_LINK_TRAIN_PATTERN_2;
2248	I915_WRITE(reg, temp);
2249
2250	reg = FDI_RX_CTL(pipe);
2251	temp = I915_READ(reg);
2252	temp &= ~FDI_LINK_TRAIN_NONE;
2253	temp |= FDI_LINK_TRAIN_PATTERN_2;
2254	I915_WRITE(reg, temp);
2255
2256	POSTING_READ(reg);
2257	udelay(150);
2258
2259	reg = FDI_RX_IIR(pipe);
2260	for (tries = 0; tries < 5; tries++) {
2261		temp = I915_READ(reg);
2262		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2263
2264		if (temp & FDI_RX_SYMBOL_LOCK) {
2265			I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2266			DRM_DEBUG_KMS("FDI train 2 done.\n");
2267			break;
2268		}
2269	}
2270	if (tries == 5)
2271		DRM_ERROR("FDI train 2 fail!\n");
2272
2273	DRM_DEBUG_KMS("FDI train done\n");
2274
2275}
2276
2277static const int snb_b_fdi_train_param[] = {
2278	FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2279	FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2280	FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2281	FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2282};
2283
2284/* The FDI link training functions for SNB/Cougarpoint. */
2285static void gen6_fdi_link_train(struct drm_crtc *crtc)
2286{
2287	struct drm_device *dev = crtc->dev;
2288	struct drm_i915_private *dev_priv = dev->dev_private;
2289	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2290	int pipe = intel_crtc->pipe;
2291	u32 reg, temp, i, retry;
2292
2293	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2294	   for train result */
2295	reg = FDI_RX_IMR(pipe);
2296	temp = I915_READ(reg);
2297	temp &= ~FDI_RX_SYMBOL_LOCK;
2298	temp &= ~FDI_RX_BIT_LOCK;
2299	I915_WRITE(reg, temp);
2300
2301	POSTING_READ(reg);
2302	udelay(150);
2303
2304	/* enable CPU FDI TX and PCH FDI RX */
2305	reg = FDI_TX_CTL(pipe);
2306	temp = I915_READ(reg);
2307	temp &= ~(7 << 19);
2308	temp |= (intel_crtc->fdi_lanes - 1) << 19;
2309	temp &= ~FDI_LINK_TRAIN_NONE;
2310	temp |= FDI_LINK_TRAIN_PATTERN_1;
2311	temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2312	/* SNB-B */
2313	temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2314	I915_WRITE(reg, temp | FDI_TX_ENABLE);
2315
2316	reg = FDI_RX_CTL(pipe);
2317	temp = I915_READ(reg);
2318	if (HAS_PCH_CPT(dev)) {
2319		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2320		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2321	} else {
2322		temp &= ~FDI_LINK_TRAIN_NONE;
2323		temp |= FDI_LINK_TRAIN_PATTERN_1;
2324	}
2325	I915_WRITE(reg, temp | FDI_RX_ENABLE);
2326
2327	POSTING_READ(reg);
2328	udelay(150);
2329
2330	if (HAS_PCH_CPT(dev))
2331		cpt_phase_pointer_enable(dev, pipe);
2332
2333	for (i = 0; i < 4; i++) {
2334		reg = FDI_TX_CTL(pipe);
2335		temp = I915_READ(reg);
2336		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2337		temp |= snb_b_fdi_train_param[i];
2338		I915_WRITE(reg, temp);
2339
2340		POSTING_READ(reg);
2341		udelay(500);
2342
2343		for (retry = 0; retry < 5; retry++) {
2344			reg = FDI_RX_IIR(pipe);
2345			temp = I915_READ(reg);
2346			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2347			if (temp & FDI_RX_BIT_LOCK) {
2348				I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2349				DRM_DEBUG_KMS("FDI train 1 done.\n");
2350				break;
2351			}
2352			udelay(50);
2353		}
2354		if (retry < 5)
2355			break;
2356	}
2357	if (i == 4)
2358		DRM_ERROR("FDI train 1 fail!\n");
2359
2360	/* Train 2 */
2361	reg = FDI_TX_CTL(pipe);
2362	temp = I915_READ(reg);
2363	temp &= ~FDI_LINK_TRAIN_NONE;
2364	temp |= FDI_LINK_TRAIN_PATTERN_2;
2365	if (IS_GEN6(dev)) {
2366		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2367		/* SNB-B */
2368		temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2369	}
2370	I915_WRITE(reg, temp);
2371
2372	reg = FDI_RX_CTL(pipe);
2373	temp = I915_READ(reg);
2374	if (HAS_PCH_CPT(dev)) {
2375		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2376		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2377	} else {
2378		temp &= ~FDI_LINK_TRAIN_NONE;
2379		temp |= FDI_LINK_TRAIN_PATTERN_2;
2380	}
2381	I915_WRITE(reg, temp);
2382
2383	POSTING_READ(reg);
2384	udelay(150);
2385
2386	for (i = 0; i < 4; i++) {
2387		reg = FDI_TX_CTL(pipe);
2388		temp = I915_READ(reg);
2389		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2390		temp |= snb_b_fdi_train_param[i];
2391		I915_WRITE(reg, temp);
2392
2393		POSTING_READ(reg);
2394		udelay(500);
2395
2396		for (retry = 0; retry < 5; retry++) {
2397			reg = FDI_RX_IIR(pipe);
2398			temp = I915_READ(reg);
2399			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2400			if (temp & FDI_RX_SYMBOL_LOCK) {
2401				I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2402				DRM_DEBUG_KMS("FDI train 2 done.\n");
2403				break;
2404			}
2405			udelay(50);
2406		}
2407		if (retry < 5)
2408			break;
2409	}
2410	if (i == 4)
2411		DRM_ERROR("FDI train 2 fail!\n");
2412
2413	DRM_DEBUG_KMS("FDI train done.\n");
2414}
2415
2416/* Manual link training for Ivy Bridge A0 parts */
2417static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2418{
2419	struct drm_device *dev = crtc->dev;
2420	struct drm_i915_private *dev_priv = dev->dev_private;
2421	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2422	int pipe = intel_crtc->pipe;
2423	u32 reg, temp, i;
2424
2425	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2426	   for train result */
2427	reg = FDI_RX_IMR(pipe);
2428	temp = I915_READ(reg);
2429	temp &= ~FDI_RX_SYMBOL_LOCK;
2430	temp &= ~FDI_RX_BIT_LOCK;
2431	I915_WRITE(reg, temp);
2432
2433	POSTING_READ(reg);
2434	udelay(150);
2435
2436	/* enable CPU FDI TX and PCH FDI RX */
2437	reg = FDI_TX_CTL(pipe);
2438	temp = I915_READ(reg);
2439	temp &= ~(7 << 19);
2440	temp |= (intel_crtc->fdi_lanes - 1) << 19;
2441	temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2442	temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2443	temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2444	temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2445	temp |= FDI_COMPOSITE_SYNC;
2446	I915_WRITE(reg, temp | FDI_TX_ENABLE);
2447
2448	reg = FDI_RX_CTL(pipe);
2449	temp = I915_READ(reg);
2450	temp &= ~FDI_LINK_TRAIN_AUTO;
2451	temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2452	temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2453	temp |= FDI_COMPOSITE_SYNC;
2454	I915_WRITE(reg, temp | FDI_RX_ENABLE);
2455
2456	POSTING_READ(reg);
2457	udelay(150);
2458
2459	if (HAS_PCH_CPT(dev))
2460		cpt_phase_pointer_enable(dev, pipe);
2461
2462	for (i = 0; i < 4; i++) {
2463		reg = FDI_TX_CTL(pipe);
2464		temp = I915_READ(reg);
2465		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2466		temp |= snb_b_fdi_train_param[i];
2467		I915_WRITE(reg, temp);
2468
2469		POSTING_READ(reg);
2470		udelay(500);
2471
2472		reg = FDI_RX_IIR(pipe);
2473		temp = I915_READ(reg);
2474		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2475
2476		if (temp & FDI_RX_BIT_LOCK ||
2477		    (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2478			I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2479			DRM_DEBUG_KMS("FDI train 1 done.\n");
2480			break;
2481		}
2482	}
2483	if (i == 4)
2484		DRM_ERROR("FDI train 1 fail!\n");
2485
2486	/* Train 2 */
2487	reg = FDI_TX_CTL(pipe);
2488	temp = I915_READ(reg);
2489	temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2490	temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2491	temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2492	temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2493	I915_WRITE(reg, temp);
2494
2495	reg = FDI_RX_CTL(pipe);
2496	temp = I915_READ(reg);
2497	temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2498	temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2499	I915_WRITE(reg, temp);
2500
2501	POSTING_READ(reg);
2502	udelay(150);
2503
2504	for (i = 0; i < 4; i++) {
2505		reg = FDI_TX_CTL(pipe);
2506		temp = I915_READ(reg);
2507		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2508		temp |= snb_b_fdi_train_param[i];
2509		I915_WRITE(reg, temp);
2510
2511		POSTING_READ(reg);
2512		udelay(500);
2513
2514		reg = FDI_RX_IIR(pipe);
2515		temp = I915_READ(reg);
2516		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2517
2518		if (temp & FDI_RX_SYMBOL_LOCK) {
2519			I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2520			DRM_DEBUG_KMS("FDI train 2 done.\n");
2521			break;
2522		}
2523	}
2524	if (i == 4)
2525		DRM_ERROR("FDI train 2 fail!\n");
2526
2527	DRM_DEBUG_KMS("FDI train done.\n");
2528}
2529
2530static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2531{
2532	struct drm_device *dev = crtc->dev;
2533	struct drm_i915_private *dev_priv = dev->dev_private;
2534	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2535	int pipe = intel_crtc->pipe;
2536	u32 reg, temp;
2537
2538	/* Write the TU size bits so error detection works */
2539	I915_WRITE(FDI_RX_TUSIZE1(pipe),
2540		   I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2541
2542	/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2543	reg = FDI_RX_CTL(pipe);
2544	temp = I915_READ(reg);
2545	temp &= ~((0x7 << 19) | (0x7 << 16));
2546	temp |= (intel_crtc->fdi_lanes - 1) << 19;
2547	temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2548	I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2549
2550	POSTING_READ(reg);
2551	udelay(200);
2552
2553	/* Switch from Rawclk to PCDclk */
2554	temp = I915_READ(reg);
2555	I915_WRITE(reg, temp | FDI_PCDCLK);
2556
2557	POSTING_READ(reg);
2558	udelay(200);
2559
2560	/* On Haswell, the PLL configuration for ports and pipes is handled
2561	 * separately, as part of DDI setup */
2562	if (!IS_HASWELL(dev)) {
2563		/* Enable CPU FDI TX PLL, always on for Ironlake */
2564		reg = FDI_TX_CTL(pipe);
2565		temp = I915_READ(reg);
2566		if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2567			I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2568
2569			POSTING_READ(reg);
2570			udelay(100);
2571		}
2572	}
2573}
2574
2575static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2576{
2577	struct drm_i915_private *dev_priv = dev->dev_private;
2578	u32 flags = I915_READ(SOUTH_CHICKEN1);
2579
2580	flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2581	I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2582	flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2583	I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2584	POSTING_READ(SOUTH_CHICKEN1);
2585}
2586static void ironlake_fdi_disable(struct drm_crtc *crtc)
2587{
2588	struct drm_device *dev = crtc->dev;
2589	struct drm_i915_private *dev_priv = dev->dev_private;
2590	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2591	int pipe = intel_crtc->pipe;
2592	u32 reg, temp;
2593
2594	/* disable CPU FDI tx and PCH FDI rx */
2595	reg = FDI_TX_CTL(pipe);
2596	temp = I915_READ(reg);
2597	I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2598	POSTING_READ(reg);
2599
2600	reg = FDI_RX_CTL(pipe);
2601	temp = I915_READ(reg);
2602	temp &= ~(0x7 << 16);
2603	temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2604	I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2605
2606	POSTING_READ(reg);
2607	udelay(100);
2608
2609	/* Ironlake workaround, disable clock pointer after downing FDI */
2610	if (HAS_PCH_IBX(dev)) {
2611		I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2612		I915_WRITE(FDI_RX_CHICKEN(pipe),
2613			   I915_READ(FDI_RX_CHICKEN(pipe) &
2614				     ~FDI_RX_PHASE_SYNC_POINTER_EN));
2615	} else if (HAS_PCH_CPT(dev)) {
2616		cpt_phase_pointer_disable(dev, pipe);
2617	}
2618
2619	/* still set train pattern 1 */
2620	reg = FDI_TX_CTL(pipe);
2621	temp = I915_READ(reg);
2622	temp &= ~FDI_LINK_TRAIN_NONE;
2623	temp |= FDI_LINK_TRAIN_PATTERN_1;
2624	I915_WRITE(reg, temp);
2625
2626	reg = FDI_RX_CTL(pipe);
2627	temp = I915_READ(reg);
2628	if (HAS_PCH_CPT(dev)) {
2629		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2630		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2631	} else {
2632		temp &= ~FDI_LINK_TRAIN_NONE;
2633		temp |= FDI_LINK_TRAIN_PATTERN_1;
2634	}
2635	/* BPC in FDI rx is consistent with that in PIPECONF */
2636	temp &= ~(0x07 << 16);
2637	temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2638	I915_WRITE(reg, temp);
2639
2640	POSTING_READ(reg);
2641	udelay(100);
2642}
2643
2644static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2645{
2646	struct drm_device *dev = crtc->dev;
2647
2648	if (crtc->fb == NULL)
2649		return;
2650
2651	mutex_lock(&dev->struct_mutex);
2652	intel_finish_fb(crtc->fb);
2653	mutex_unlock(&dev->struct_mutex);
2654}
2655
2656static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2657{
2658	struct drm_device *dev = crtc->dev;
2659	struct drm_mode_config *mode_config = &dev->mode_config;
2660	struct intel_encoder *encoder;
2661
2662	/*
2663	 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2664	 * must be driven by its own crtc; no sharing is possible.
2665	 */
2666	list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2667		if (encoder->base.crtc != crtc)
2668			continue;
2669
2670		/* On Haswell, LPT PCH handles the VGA connection via FDI, and Haswell
2671		 * CPU handles all others */
2672		if (IS_HASWELL(dev)) {
2673			/* It is still unclear how this will work on PPT, so throw up a warning */
2674			WARN_ON(!HAS_PCH_LPT(dev));
2675
2676			if (encoder->type == DRM_MODE_ENCODER_DAC) {
2677				DRM_DEBUG_KMS("Haswell detected DAC encoder, assuming is PCH\n");
2678				return true;
2679			} else {
2680				DRM_DEBUG_KMS("Haswell detected encoder %d, assuming is CPU\n",
2681						encoder->type);
2682				return false;
2683			}
2684		}
2685
2686		switch (encoder->type) {
2687		case INTEL_OUTPUT_EDP:
2688			if (!intel_encoder_is_pch_edp(&encoder->base))
2689				return false;
2690			continue;
2691		}
2692	}
2693
2694	return true;
2695}
2696
2697/* Program iCLKIP clock to the desired frequency */
2698static void lpt_program_iclkip(struct drm_crtc *crtc)
2699{
2700	struct drm_device *dev = crtc->dev;
2701	struct drm_i915_private *dev_priv = dev->dev_private;
2702	u32 divsel, phaseinc, auxdiv, phasedir = 0;
2703	u32 temp;
2704
2705	/* It is necessary to ungate the pixclk gate prior to programming
2706	 * the divisors, and gate it back when it is done.
2707	 */
2708	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2709
2710	/* Disable SSCCTL */
2711	intel_sbi_write(dev_priv, SBI_SSCCTL6,
2712				intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2713					SBI_SSCCTL_DISABLE);
2714
2715	/* 20MHz is a corner case which is out of range for the 7-bit divisor */
2716	if (crtc->mode.clock == 20000) {
2717		auxdiv = 1;
2718		divsel = 0x41;
2719		phaseinc = 0x20;
2720	} else {
2721		/* The iCLK virtual clock root frequency is in MHz,
2722		 * but the crtc->mode.clock in in KHz. To get the divisors,
2723		 * it is necessary to divide one by another, so we
2724		 * convert the virtual clock precision to KHz here for higher
2725		 * precision.
2726		 */
2727		u32 iclk_virtual_root_freq = 172800 * 1000;
2728		u32 iclk_pi_range = 64;
2729		u32 desired_divisor, msb_divisor_value, pi_value;
2730
2731		desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2732		msb_divisor_value = desired_divisor / iclk_pi_range;
2733		pi_value = desired_divisor % iclk_pi_range;
2734
2735		auxdiv = 0;
2736		divsel = msb_divisor_value - 2;
2737		phaseinc = pi_value;
2738	}
2739
2740	/* This should not happen with any sane values */
2741	WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2742		~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2743	WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2744		~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2745
2746	DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2747			crtc->mode.clock,
2748			auxdiv,
2749			divsel,
2750			phasedir,
2751			phaseinc);
2752
2753	/* Program SSCDIVINTPHASE6 */
2754	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
2755	temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2756	temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2757	temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2758	temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2759	temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2760	temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2761
2762	intel_sbi_write(dev_priv,
2763			SBI_SSCDIVINTPHASE6,
2764			temp);
2765
2766	/* Program SSCAUXDIV */
2767	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
2768	temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2769	temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2770	intel_sbi_write(dev_priv,
2771			SBI_SSCAUXDIV6,
2772			temp);
2773
2774
2775	/* Enable modulator and associated divider */
2776	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
2777	temp &= ~SBI_SSCCTL_DISABLE;
2778	intel_sbi_write(dev_priv,
2779			SBI_SSCCTL6,
2780			temp);
2781
2782	/* Wait for initialization time */
2783	udelay(24);
2784
2785	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2786}
2787
2788/*
2789 * Enable PCH resources required for PCH ports:
2790 *   - PCH PLLs
2791 *   - FDI training & RX/TX
2792 *   - update transcoder timings
2793 *   - DP transcoding bits
2794 *   - transcoder
2795 */
2796static void ironlake_pch_enable(struct drm_crtc *crtc)
2797{
2798	struct drm_device *dev = crtc->dev;
2799	struct drm_i915_private *dev_priv = dev->dev_private;
2800	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2801	int pipe = intel_crtc->pipe;
2802	u32 reg, temp;
2803
2804	assert_transcoder_disabled(dev_priv, pipe);
2805
2806	/* For PCH output, training FDI link */
2807	dev_priv->display.fdi_link_train(crtc);
2808
2809	intel_enable_pch_pll(intel_crtc);
2810
2811	if (HAS_PCH_LPT(dev)) {
2812		DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
2813		lpt_program_iclkip(crtc);
2814	} else if (HAS_PCH_CPT(dev)) {
2815		u32 sel;
2816
2817		temp = I915_READ(PCH_DPLL_SEL);
2818		switch (pipe) {
2819		default:
2820		case 0:
2821			temp |= TRANSA_DPLL_ENABLE;
2822			sel = TRANSA_DPLLB_SEL;
2823			break;
2824		case 1:
2825			temp |= TRANSB_DPLL_ENABLE;
2826			sel = TRANSB_DPLLB_SEL;
2827			break;
2828		case 2:
2829			temp |= TRANSC_DPLL_ENABLE;
2830			sel = TRANSC_DPLLB_SEL;
2831			break;
2832		}
2833		if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
2834			temp |= sel;
2835		else
2836			temp &= ~sel;
2837		I915_WRITE(PCH_DPLL_SEL, temp);
2838	}
2839
2840	/* set transcoder timing, panel must allow it */
2841	assert_panel_unlocked(dev_priv, pipe);
2842	I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2843	I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2844	I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
2845
2846	I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2847	I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2848	I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
2849	I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
2850
2851	if (!IS_HASWELL(dev))
2852		intel_fdi_normal_train(crtc);
2853
2854	/* For PCH DP, enable TRANS_DP_CTL */
2855	if (HAS_PCH_CPT(dev) &&
2856	    (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
2857	     intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2858		u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
2859		reg = TRANS_DP_CTL(pipe);
2860		temp = I915_READ(reg);
2861		temp &= ~(TRANS_DP_PORT_SEL_MASK |
2862			  TRANS_DP_SYNC_MASK |
2863			  TRANS_DP_BPC_MASK);
2864		temp |= (TRANS_DP_OUTPUT_ENABLE |
2865			 TRANS_DP_ENH_FRAMING);
2866		temp |= bpc << 9; /* same format but at 11:9 */
2867
2868		if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2869			temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2870		if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2871			temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2872
2873		switch (intel_trans_dp_port_sel(crtc)) {
2874		case PCH_DP_B:
2875			temp |= TRANS_DP_PORT_SEL_B;
2876			break;
2877		case PCH_DP_C:
2878			temp |= TRANS_DP_PORT_SEL_C;
2879			break;
2880		case PCH_DP_D:
2881			temp |= TRANS_DP_PORT_SEL_D;
2882			break;
2883		default:
2884			DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2885			temp |= TRANS_DP_PORT_SEL_B;
2886			break;
2887		}
2888
2889		I915_WRITE(reg, temp);
2890	}
2891
2892	intel_enable_transcoder(dev_priv, pipe);
2893}
2894
2895static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
2896{
2897	struct intel_pch_pll *pll = intel_crtc->pch_pll;
2898
2899	if (pll == NULL)
2900		return;
2901
2902	if (pll->refcount == 0) {
2903		WARN(1, "bad PCH PLL refcount\n");
2904		return;
2905	}
2906
2907	--pll->refcount;
2908	intel_crtc->pch_pll = NULL;
2909}
2910
2911static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
2912{
2913	struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
2914	struct intel_pch_pll *pll;
2915	int i;
2916
2917	pll = intel_crtc->pch_pll;
2918	if (pll) {
2919		DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
2920			      intel_crtc->base.base.id, pll->pll_reg);
2921		goto prepare;
2922	}
2923
2924	if (HAS_PCH_IBX(dev_priv->dev)) {
2925		/* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
2926		i = intel_crtc->pipe;
2927		pll = &dev_priv->pch_plls[i];
2928
2929		DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
2930			      intel_crtc->base.base.id, pll->pll_reg);
2931
2932		goto found;
2933	}
2934
2935	for (i = 0; i < dev_priv->num_pch_pll; i++) {
2936		pll = &dev_priv->pch_plls[i];
2937
2938		/* Only want to check enabled timings first */
2939		if (pll->refcount == 0)
2940			continue;
2941
2942		if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
2943		    fp == I915_READ(pll->fp0_reg)) {
2944			DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
2945				      intel_crtc->base.base.id,
2946				      pll->pll_reg, pll->refcount, pll->active);
2947
2948			goto found;
2949		}
2950	}
2951
2952	/* Ok no matching timings, maybe there's a free one? */
2953	for (i = 0; i < dev_priv->num_pch_pll; i++) {
2954		pll = &dev_priv->pch_plls[i];
2955		if (pll->refcount == 0) {
2956			DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
2957				      intel_crtc->base.base.id, pll->pll_reg);
2958			goto found;
2959		}
2960	}
2961
2962	return NULL;
2963
2964found:
2965	intel_crtc->pch_pll = pll;
2966	pll->refcount++;
2967	DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
2968prepare: /* separate function? */
2969	DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
2970
2971	/* Wait for the clocks to stabilize before rewriting the regs */
2972	I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
2973	POSTING_READ(pll->pll_reg);
2974	udelay(150);
2975
2976	I915_WRITE(pll->fp0_reg, fp);
2977	I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
2978	pll->on = false;
2979	return pll;
2980}
2981
2982void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
2983{
2984	struct drm_i915_private *dev_priv = dev->dev_private;
2985	int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
2986	u32 temp;
2987
2988	temp = I915_READ(dslreg);
2989	udelay(500);
2990	if (wait_for(I915_READ(dslreg) != temp, 5)) {
2991		/* Without this, mode sets may fail silently on FDI */
2992		I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
2993		udelay(250);
2994		I915_WRITE(tc2reg, 0);
2995		if (wait_for(I915_READ(dslreg) != temp, 5))
2996			DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
2997	}
2998}
2999
3000static void ironlake_crtc_enable(struct drm_crtc *crtc)
3001{
3002	struct drm_device *dev = crtc->dev;
3003	struct drm_i915_private *dev_priv = dev->dev_private;
3004	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3005	int pipe = intel_crtc->pipe;
3006	int plane = intel_crtc->plane;
3007	u32 temp;
3008	bool is_pch_port;
3009
3010	if (intel_crtc->active)
3011		return;
3012
3013	intel_crtc->active = true;
3014	intel_update_watermarks(dev);
3015
3016	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3017		temp = I915_READ(PCH_LVDS);
3018		if ((temp & LVDS_PORT_EN) == 0)
3019			I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3020	}
3021
3022	is_pch_port = intel_crtc_driving_pch(crtc);
3023
3024	if (is_pch_port)
3025		ironlake_fdi_pll_enable(crtc);
3026	else
3027		ironlake_fdi_disable(crtc);
3028
3029	/* Enable panel fitting for LVDS */
3030	if (dev_priv->pch_pf_size &&
3031	    (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3032		/* Force use of hard-coded filter coefficients
3033		 * as some pre-programmed values are broken,
3034		 * e.g. x201.
3035		 */
3036		I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3037		I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3038		I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3039	}
3040
3041	/*
3042	 * On ILK+ LUT must be loaded before the pipe is running but with
3043	 * clocks enabled
3044	 */
3045	intel_crtc_load_lut(crtc);
3046
3047	intel_enable_pipe(dev_priv, pipe, is_pch_port);
3048	intel_enable_plane(dev_priv, plane, pipe);
3049
3050	if (is_pch_port)
3051		ironlake_pch_enable(crtc);
3052
3053	mutex_lock(&dev->struct_mutex);
3054	intel_update_fbc(dev);
3055	mutex_unlock(&dev->struct_mutex);
3056
3057	intel_crtc_update_cursor(crtc, true);
3058}
3059
3060static void ironlake_crtc_disable(struct drm_crtc *crtc)
3061{
3062	struct drm_device *dev = crtc->dev;
3063	struct drm_i915_private *dev_priv = dev->dev_private;
3064	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3065	int pipe = intel_crtc->pipe;
3066	int plane = intel_crtc->plane;
3067	u32 reg, temp;
3068
3069	if (!intel_crtc->active)
3070		return;
3071
3072	intel_crtc_wait_for_pending_flips(crtc);
3073	drm_vblank_off(dev, pipe);
3074	intel_crtc_update_cursor(crtc, false);
3075
3076	intel_disable_plane(dev_priv, plane, pipe);
3077
3078	if (dev_priv->cfb_plane == plane)
3079		intel_disable_fbc(dev);
3080
3081	intel_disable_pipe(dev_priv, pipe);
3082
3083	/* Disable PF */
3084	I915_WRITE(PF_CTL(pipe), 0);
3085	I915_WRITE(PF_WIN_SZ(pipe), 0);
3086
3087	ironlake_fdi_disable(crtc);
3088
3089	/* This is a horrible layering violation; we should be doing this in
3090	 * the connector/encoder ->prepare instead, but we don't always have
3091	 * enough information there about the config to know whether it will
3092	 * actually be necessary or just cause undesired flicker.
3093	 */
3094	intel_disable_pch_ports(dev_priv, pipe);
3095
3096	intel_disable_transcoder(dev_priv, pipe);
3097
3098	if (HAS_PCH_CPT(dev)) {
3099		/* disable TRANS_DP_CTL */
3100		reg = TRANS_DP_CTL(pipe);
3101		temp = I915_READ(reg);
3102		temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3103		temp |= TRANS_DP_PORT_SEL_NONE;
3104		I915_WRITE(reg, temp);
3105
3106		/* disable DPLL_SEL */
3107		temp = I915_READ(PCH_DPLL_SEL);
3108		switch (pipe) {
3109		case 0:
3110			temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3111			break;
3112		case 1:
3113			temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3114			break;
3115		case 2:
3116			/* C shares PLL A or B */
3117			temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3118			break;
3119		default:
3120			BUG(); /* wtf */
3121		}
3122		I915_WRITE(PCH_DPLL_SEL, temp);
3123	}
3124
3125	/* disable PCH DPLL */
3126	intel_disable_pch_pll(intel_crtc);
3127
3128	/* Switch from PCDclk to Rawclk */
3129	reg = FDI_RX_CTL(pipe);
3130	temp = I915_READ(reg);
3131	I915_WRITE(reg, temp & ~FDI_PCDCLK);
3132
3133	/* Disable CPU FDI TX PLL */
3134	reg = FDI_TX_CTL(pipe);
3135	temp = I915_READ(reg);
3136	I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3137
3138	POSTING_READ(reg);
3139	udelay(100);
3140
3141	reg = FDI_RX_CTL(pipe);
3142	temp = I915_READ(reg);
3143	I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3144
3145	/* Wait for the clocks to turn off. */
3146	POSTING_READ(reg);
3147	udelay(100);
3148
3149	intel_crtc->active = false;
3150	intel_update_watermarks(dev);
3151
3152	mutex_lock(&dev->struct_mutex);
3153	intel_update_fbc(dev);
3154	mutex_unlock(&dev->struct_mutex);
3155}
3156
3157static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3158{
3159	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3160	int pipe = intel_crtc->pipe;
3161	int plane = intel_crtc->plane;
3162
3163	/* XXX: When our outputs are all unaware of DPMS modes other than off
3164	 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3165	 */
3166	switch (mode) {
3167	case DRM_MODE_DPMS_ON:
3168	case DRM_MODE_DPMS_STANDBY:
3169	case DRM_MODE_DPMS_SUSPEND:
3170		DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3171		ironlake_crtc_enable(crtc);
3172		break;
3173
3174	case DRM_MODE_DPMS_OFF:
3175		DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3176		ironlake_crtc_disable(crtc);
3177		break;
3178	}
3179}
3180
3181static void ironlake_crtc_off(struct drm_crtc *crtc)
3182{
3183	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3184	intel_put_pch_pll(intel_crtc);
3185}
3186
3187static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3188{
3189	if (!enable && intel_crtc->overlay) {
3190		struct drm_device *dev = intel_crtc->base.dev;
3191		struct drm_i915_private *dev_priv = dev->dev_private;
3192
3193		mutex_lock(&dev->struct_mutex);
3194		dev_priv->mm.interruptible = false;
3195		(void) intel_overlay_switch_off(intel_crtc->overlay);
3196		dev_priv->mm.interruptible = true;
3197		mutex_unlock(&dev->struct_mutex);
3198	}
3199
3200	/* Let userspace switch the overlay on again. In most cases userspace
3201	 * has to recompute where to put it anyway.
3202	 */
3203}
3204
3205static void i9xx_crtc_enable(struct drm_crtc *crtc)
3206{
3207	struct drm_device *dev = crtc->dev;
3208	struct drm_i915_private *dev_priv = dev->dev_private;
3209	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3210	int pipe = intel_crtc->pipe;
3211	int plane = intel_crtc->plane;
3212
3213	if (intel_crtc->active)
3214		return;
3215
3216	intel_crtc->active = true;
3217	intel_update_watermarks(dev);
3218
3219	intel_enable_pll(dev_priv, pipe);
3220	intel_enable_pipe(dev_priv, pipe, false);
3221	intel_enable_plane(dev_priv, plane, pipe);
3222
3223	intel_crtc_load_lut(crtc);
3224	intel_update_fbc(dev);
3225
3226	/* Give the overlay scaler a chance to enable if it's on this pipe */
3227	intel_crtc_dpms_overlay(intel_crtc, true);
3228	intel_crtc_update_cursor(crtc, true);
3229}
3230
3231static void i9xx_crtc_disable(struct drm_crtc *crtc)
3232{
3233	struct drm_device *dev = crtc->dev;
3234	struct drm_i915_private *dev_priv = dev->dev_private;
3235	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3236	int pipe = intel_crtc->pipe;
3237	int plane = intel_crtc->plane;
3238
3239	if (!intel_crtc->active)
3240		return;
3241
3242	/* Give the overlay scaler a chance to disable if it's on this pipe */
3243	intel_crtc_wait_for_pending_flips(crtc);
3244	drm_vblank_off(dev, pipe);
3245	intel_crtc_dpms_overlay(intel_crtc, false);
3246	intel_crtc_update_cursor(crtc, false);
3247
3248	if (dev_priv->cfb_plane == plane)
3249		intel_disable_fbc(dev);
3250
3251	intel_disable_plane(dev_priv, plane, pipe);
3252	intel_disable_pipe(dev_priv, pipe);
3253	intel_disable_pll(dev_priv, pipe);
3254
3255	intel_crtc->active = false;
3256	intel_update_fbc(dev);
3257	intel_update_watermarks(dev);
3258}
3259
3260static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3261{
3262	/* XXX: When our outputs are all unaware of DPMS modes other than off
3263	 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3264	 */
3265	switch (mode) {
3266	case DRM_MODE_DPMS_ON:
3267	case DRM_MODE_DPMS_STANDBY:
3268	case DRM_MODE_DPMS_SUSPEND:
3269		i9xx_crtc_enable(crtc);
3270		break;
3271	case DRM_MODE_DPMS_OFF:
3272		i9xx_crtc_disable(crtc);
3273		break;
3274	}
3275}
3276
3277static void i9xx_crtc_off(struct drm_crtc *crtc)
3278{
3279}
3280
3281/**
3282 * Sets the power management mode of the pipe and plane.
3283 */
3284static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3285{
3286	struct drm_device *dev = crtc->dev;
3287	struct drm_i915_private *dev_priv = dev->dev_private;
3288	struct drm_i915_master_private *master_priv;
3289	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3290	int pipe = intel_crtc->pipe;
3291	bool enabled;
3292
3293	if (intel_crtc->dpms_mode == mode)
3294		return;
3295
3296	intel_crtc->dpms_mode = mode;
3297
3298	dev_priv->display.dpms(crtc, mode);
3299
3300	if (!dev->primary->master)
3301		return;
3302
3303	master_priv = dev->primary->master->driver_priv;
3304	if (!master_priv->sarea_priv)
3305		return;
3306
3307	enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3308
3309	switch (pipe) {
3310	case 0:
3311		master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3312		master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3313		break;
3314	case 1:
3315		master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3316		master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3317		break;
3318	default:
3319		DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3320		break;
3321	}
3322}
3323
3324static void intel_crtc_disable(struct drm_crtc *crtc)
3325{
3326	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3327	struct drm_device *dev = crtc->dev;
3328	struct drm_i915_private *dev_priv = dev->dev_private;
3329
3330	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3331	dev_priv->display.off(crtc);
3332
3333	assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3334	assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3335
3336	if (crtc->fb) {
3337		mutex_lock(&dev->struct_mutex);
3338		intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3339		mutex_unlock(&dev->struct_mutex);
3340	}
3341}
3342
3343/* Prepare for a mode set.
3344 *
3345 * Note we could be a lot smarter here.  We need to figure out which outputs
3346 * will be enabled, which disabled (in short, how the config will changes)
3347 * and perform the minimum necessary steps to accomplish that, e.g. updating
3348 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3349 * panel fitting is in the proper state, etc.
3350 */
3351static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3352{
3353	i9xx_crtc_disable(crtc);
3354}
3355
3356static void i9xx_crtc_commit(struct drm_crtc *crtc)
3357{
3358	i9xx_crtc_enable(crtc);
3359}
3360
3361static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3362{
3363	ironlake_crtc_disable(crtc);
3364}
3365
3366static void ironlake_crtc_commit(struct drm_crtc *crtc)
3367{
3368	ironlake_crtc_enable(crtc);
3369}
3370
3371void intel_encoder_prepare(struct drm_encoder *encoder)
3372{
3373	struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3374	/* lvds has its own version of prepare see intel_lvds_prepare */
3375	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3376}
3377
3378void intel_encoder_commit(struct drm_encoder *encoder)
3379{
3380	struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3381	struct drm_device *dev = encoder->dev;
3382	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
3383
3384	/* lvds has its own version of commit see intel_lvds_commit */
3385	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3386
3387	if (HAS_PCH_CPT(dev))
3388		intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3389}
3390
3391void intel_encoder_destroy(struct drm_encoder *encoder)
3392{
3393	struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3394
3395	drm_encoder_cleanup(encoder);
3396	kfree(intel_encoder);
3397}
3398
3399static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3400				  struct drm_display_mode *mode,
3401				  struct drm_display_mode *adjusted_mode)
3402{
3403	struct drm_device *dev = crtc->dev;
3404
3405	if (HAS_PCH_SPLIT(dev)) {
3406		/* FDI link clock is fixed at 2.7G */
3407		if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3408			return false;
3409	}
3410
3411	/* All interlaced capable intel hw wants timings in frames. Note though
3412	 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3413	 * timings, so we need to be careful not to clobber these.*/
3414	if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3415		drm_mode_set_crtcinfo(adjusted_mode, 0);
3416
3417	return true;
3418}
3419
3420static int valleyview_get_display_clock_speed(struct drm_device *dev)
3421{
3422	return 400000; /* FIXME */
3423}
3424
3425static int i945_get_display_clock_speed(struct drm_device *dev)
3426{
3427	return 400000;
3428}
3429
3430static int i915_get_display_clock_speed(struct drm_device *dev)
3431{
3432	return 333000;
3433}
3434
3435static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3436{
3437	return 200000;
3438}
3439
3440static int i915gm_get_display_clock_speed(struct drm_device *dev)
3441{
3442	u16 gcfgc = 0;
3443
3444	pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3445
3446	if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3447		return 133000;
3448	else {
3449		switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3450		case GC_DISPLAY_CLOCK_333_MHZ:
3451			return 333000;
3452		default:
3453		case GC_DISPLAY_CLOCK_190_200_MHZ:
3454			return 190000;
3455		}
3456	}
3457}
3458
3459static int i865_get_display_clock_speed(struct drm_device *dev)
3460{
3461	return 266000;
3462}
3463
3464static int i855_get_display_clock_speed(struct drm_device *dev)
3465{
3466	u16 hpllcc = 0;
3467	/* Assume that the hardware is in the high speed state.  This
3468	 * should be the default.
3469	 */
3470	switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3471	case GC_CLOCK_133_200:
3472	case GC_CLOCK_100_200:
3473		return 200000;
3474	case GC_CLOCK_166_250:
3475		return 250000;
3476	case GC_CLOCK_100_133:
3477		return 133000;
3478	}
3479
3480	/* Shouldn't happen */
3481	return 0;
3482}
3483
3484static int i830_get_display_clock_speed(struct drm_device *dev)
3485{
3486	return 133000;
3487}
3488
3489struct fdi_m_n {
3490	u32        tu;
3491	u32        gmch_m;
3492	u32        gmch_n;
3493	u32        link_m;
3494	u32        link_n;
3495};
3496
3497static void
3498fdi_reduce_ratio(u32 *num, u32 *den)
3499{
3500	while (*num > 0xffffff || *den > 0xffffff) {
3501		*num >>= 1;
3502		*den >>= 1;
3503	}
3504}
3505
3506static void
3507ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3508		     int link_clock, struct fdi_m_n *m_n)
3509{
3510	m_n->tu = 64; /* default size */
3511
3512	/* BUG_ON(pixel_clock > INT_MAX / 36); */
3513	m_n->gmch_m = bits_per_pixel * pixel_clock;
3514	m_n->gmch_n = link_clock * nlanes * 8;
3515	fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3516
3517	m_n->link_m = pixel_clock;
3518	m_n->link_n = link_clock;
3519	fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3520}
3521
3522static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3523{
3524	if (i915_panel_use_ssc >= 0)
3525		return i915_panel_use_ssc != 0;
3526	return dev_priv->lvds_use_ssc
3527		&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
3528}
3529
3530/**
3531 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
3532 * @crtc: CRTC structure
3533 * @mode: requested mode
3534 *
3535 * A pipe may be connected to one or more outputs.  Based on the depth of the
3536 * attached framebuffer, choose a good color depth to use on the pipe.
3537 *
3538 * If possible, match the pipe depth to the fb depth.  In some cases, this
3539 * isn't ideal, because the connected output supports a lesser or restricted
3540 * set of depths.  Resolve that here:
3541 *    LVDS typically supports only 6bpc, so clamp down in that case
3542 *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
3543 *    Displays may support a restricted set as well, check EDID and clamp as
3544 *      appropriate.
3545 *    DP may want to dither down to 6bpc to fit larger modes
3546 *
3547 * RETURNS:
3548 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
3549 * true if they don't match).
3550 */
3551static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
3552					 unsigned int *pipe_bpp,
3553					 struct drm_display_mode *mode)
3554{
3555	struct drm_device *dev = crtc->dev;
3556	struct drm_i915_private *dev_priv = dev->dev_private;
3557	struct drm_encoder *encoder;
3558	struct drm_connector *connector;
3559	unsigned int display_bpc = UINT_MAX, bpc;
3560
3561	/* Walk the encoders & connectors on this crtc, get min bpc */
3562	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3563		struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3564
3565		if (encoder->crtc != crtc)
3566			continue;
3567
3568		if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
3569			unsigned int lvds_bpc;
3570
3571			if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
3572			    LVDS_A3_POWER_UP)
3573				lvds_bpc = 8;
3574			else
3575				lvds_bpc = 6;
3576
3577			if (lvds_bpc < display_bpc) {
3578				DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
3579				display_bpc = lvds_bpc;
3580			}
3581			continue;
3582		}
3583
3584		/* Not one of the known troublemakers, check the EDID */
3585		list_for_each_entry(connector, &dev->mode_config.connector_list,
3586				    head) {
3587			if (connector->encoder != encoder)
3588				continue;
3589
3590			/* Don't use an invalid EDID bpc value */
3591			if (connector->display_info.bpc &&
3592			    connector->display_info.bpc < display_bpc) {
3593				DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
3594				display_bpc = connector->display_info.bpc;
3595			}
3596		}
3597
3598		/*
3599		 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
3600		 * through, clamp it down.  (Note: >12bpc will be caught below.)
3601		 */
3602		if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
3603			if (display_bpc > 8 && display_bpc < 12) {
3604				DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
3605				display_bpc = 12;
3606			} else {
3607				DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
3608				display_bpc = 8;
3609			}
3610		}
3611	}
3612
3613	if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3614		DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
3615		display_bpc = 6;
3616	}
3617
3618	/*
3619	 * We could just drive the pipe at the highest bpc all the time and
3620	 * enable dithering as needed, but that costs bandwidth.  So choose
3621	 * the minimum value that expresses the full color range of the fb but
3622	 * also stays within the max display bpc discovered above.
3623	 */
3624
3625	switch (crtc->fb->depth) {
3626	case 8:
3627		bpc = 8; /* since we go through a colormap */
3628		break;
3629	case 15:
3630	case 16:
3631		bpc = 6; /* min is 18bpp */
3632		break;
3633	case 24:
3634		bpc = 8;
3635		break;
3636	case 30:
3637		bpc = 10;
3638		break;
3639	case 48:
3640		bpc = 12;
3641		break;
3642	default:
3643		DRM_DEBUG("unsupported depth, assuming 24 bits\n");
3644		bpc = min((unsigned int)8, display_bpc);
3645		break;
3646	}
3647
3648	display_bpc = min(display_bpc, bpc);
3649
3650	DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
3651		      bpc, display_bpc);
3652
3653	*pipe_bpp = display_bpc * 3;
3654
3655	return display_bpc != bpc;
3656}
3657
3658static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
3659{
3660	struct drm_device *dev = crtc->dev;
3661	struct drm_i915_private *dev_priv = dev->dev_private;
3662	int refclk;
3663
3664	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3665	    intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
3666		refclk = dev_priv->lvds_ssc_freq * 1000;
3667		DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3668			      refclk / 1000);
3669	} else if (!IS_GEN2(dev)) {
3670		refclk = 96000;
3671	} else {
3672		refclk = 48000;
3673	}
3674
3675	return refclk;
3676}
3677
3678static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
3679				      intel_clock_t *clock)
3680{
3681	/* SDVO TV has fixed PLL values depend on its clock range,
3682	   this mirrors vbios setting. */
3683	if (adjusted_mode->clock >= 100000
3684	    && adjusted_mode->clock < 140500) {
3685		clock->p1 = 2;
3686		clock->p2 = 10;
3687		clock->n = 3;
3688		clock->m1 = 16;
3689		clock->m2 = 8;
3690	} else if (adjusted_mode->clock >= 140500
3691		   && adjusted_mode->clock <= 200000) {
3692		clock->p1 = 1;
3693		clock->p2 = 10;
3694		clock->n = 6;
3695		clock->m1 = 12;
3696		clock->m2 = 8;
3697	}
3698}
3699
3700static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
3701				     intel_clock_t *clock,
3702				     intel_clock_t *reduced_clock)
3703{
3704	struct drm_device *dev = crtc->dev;
3705	struct drm_i915_private *dev_priv = dev->dev_private;
3706	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3707	int pipe = intel_crtc->pipe;
3708	u32 fp, fp2 = 0;
3709
3710	if (IS_PINEVIEW(dev)) {
3711		fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
3712		if (reduced_clock)
3713			fp2 = (1 << reduced_clock->n) << 16 |
3714				reduced_clock->m1 << 8 | reduced_clock->m2;
3715	} else {
3716		fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
3717		if (reduced_clock)
3718			fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
3719				reduced_clock->m2;
3720	}
3721
3722	I915_WRITE(FP0(pipe), fp);
3723
3724	intel_crtc->lowfreq_avail = false;
3725	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3726	    reduced_clock && i915_powersave) {
3727		I915_WRITE(FP1(pipe), fp2);
3728		intel_crtc->lowfreq_avail = true;
3729	} else {
3730		I915_WRITE(FP1(pipe), fp);
3731	}
3732}
3733
3734static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
3735			      struct drm_display_mode *adjusted_mode)
3736{
3737	struct drm_device *dev = crtc->dev;
3738	struct drm_i915_private *dev_priv = dev->dev_private;
3739	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3740	int pipe = intel_crtc->pipe;
3741	u32 temp;
3742
3743	temp = I915_READ(LVDS);
3744	temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3745	if (pipe == 1) {
3746		temp |= LVDS_PIPEB_SELECT;
3747	} else {
3748		temp &= ~LVDS_PIPEB_SELECT;
3749	}
3750	/* set the corresponsding LVDS_BORDER bit */
3751	temp |= dev_priv->lvds_border_bits;
3752	/* Set the B0-B3 data pairs corresponding to whether we're going to
3753	 * set the DPLLs for dual-channel mode or not.
3754	 */
3755	if (clock->p2 == 7)
3756		temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3757	else
3758		temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3759
3760	/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3761	 * appropriately here, but we need to look more thoroughly into how
3762	 * panels behave in the two modes.
3763	 */
3764	/* set the dithering flag on LVDS as needed */
3765	if (INTEL_INFO(dev)->gen >= 4) {
3766		if (dev_priv->lvds_dither)
3767			temp |= LVDS_ENABLE_DITHER;
3768		else
3769			temp &= ~LVDS_ENABLE_DITHER;
3770	}
3771	temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
3772	if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
3773		temp |= LVDS_HSYNC_POLARITY;
3774	if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
3775		temp |= LVDS_VSYNC_POLARITY;
3776	I915_WRITE(LVDS, temp);
3777}
3778
3779static void i9xx_update_pll(struct drm_crtc *crtc,
3780			    struct drm_display_mode *mode,
3781			    struct drm_display_mode *adjusted_mode,
3782			    intel_clock_t *clock, intel_clock_t *reduced_clock,
3783			    int num_connectors)
3784{
3785	struct drm_device *dev = crtc->dev;
3786	struct drm_i915_private *dev_priv = dev->dev_private;
3787	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3788	int pipe = intel_crtc->pipe;
3789	u32 dpll;
3790	bool is_sdvo;
3791
3792	is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
3793		intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
3794
3795	dpll = DPLL_VGA_MODE_DIS;
3796
3797	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
3798		dpll |= DPLLB_MODE_LVDS;
3799	else
3800		dpll |= DPLLB_MODE_DAC_SERIAL;
3801	if (is_sdvo) {
3802		int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
3803		if (pixel_multiplier > 1) {
3804			if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3805				dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3806		}
3807		dpll |= DPLL_DVO_HIGH_SPEED;
3808	}
3809	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
3810		dpll |= DPLL_DVO_HIGH_SPEED;
3811
3812	/* compute bitmask from p1 value */
3813	if (IS_PINEVIEW(dev))
3814		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3815	else {
3816		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3817		if (IS_G4X(dev) && reduced_clock)
3818			dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3819	}
3820	switch (clock->p2) {
3821	case 5:
3822		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3823		break;
3824	case 7:
3825		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3826		break;
3827	case 10:
3828		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3829		break;
3830	case 14:
3831		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3832		break;
3833	}
3834	if (INTEL_INFO(dev)->gen >= 4)
3835		dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3836
3837	if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
3838		dpll |= PLL_REF_INPUT_TVCLKINBC;
3839	else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
3840		/* XXX: just matching BIOS for now */
3841		/*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
3842		dpll |= 3;
3843	else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3844		 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
3845		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3846	else
3847		dpll |= PLL_REF_INPUT_DREFCLK;
3848
3849	dpll |= DPLL_VCO_ENABLE;
3850	I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
3851	POSTING_READ(DPLL(pipe));
3852	udelay(150);
3853
3854	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
3855	 * This is an exception to the general rule that mode_set doesn't turn
3856	 * things on.
3857	 */
3858	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
3859		intel_update_lvds(crtc, clock, adjusted_mode);
3860
3861	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
3862		intel_dp_set_m_n(crtc, mode, adjusted_mode);
3863
3864	I915_WRITE(DPLL(pipe), dpll);
3865
3866	/* Wait for the clocks to stabilize. */
3867	POSTING_READ(DPLL(pipe));
3868	udelay(150);
3869
3870	if (INTEL_INFO(dev)->gen >= 4) {
3871		u32 temp = 0;
3872		if (is_sdvo) {
3873			temp = intel_mode_get_pixel_multiplier(adjusted_mode);
3874			if (temp > 1)
3875				temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
3876			else
3877				temp = 0;
3878		}
3879		I915_WRITE(DPLL_MD(pipe), temp);
3880	} else {
3881		/* The pixel multiplier can only be updated once the
3882		 * DPLL is enabled and the clocks are stable.
3883		 *
3884		 * So write it again.
3885		 */
3886		I915_WRITE(DPLL(pipe), dpll);
3887	}
3888}
3889
3890static void i8xx_update_pll(struct drm_crtc *crtc,
3891			    struct drm_display_mode *adjusted_mode,
3892			    intel_clock_t *clock,
3893			    int num_connectors)
3894{
3895	struct drm_device *dev = crtc->dev;
3896	struct drm_i915_private *dev_priv = dev->dev_private;
3897	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3898	int pipe = intel_crtc->pipe;
3899	u32 dpll;
3900
3901	dpll = DPLL_VGA_MODE_DIS;
3902
3903	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3904		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3905	} else {
3906		if (clock->p1 == 2)
3907			dpll |= PLL_P1_DIVIDE_BY_TWO;
3908		else
3909			dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3910		if (clock->p2 == 4)
3911			dpll |= PLL_P2_DIVIDE_BY_4;
3912	}
3913
3914	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
3915		/* XXX: just matching BIOS for now */
3916		/*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
3917		dpll |= 3;
3918	else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3919		 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
3920		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3921	else
3922		dpll |= PLL_REF_INPUT_DREFCLK;
3923
3924	dpll |= DPLL_VCO_ENABLE;
3925	I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
3926	POSTING_READ(DPLL(pipe));
3927	udelay(150);
3928
3929	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
3930	 * This is an exception to the general rule that mode_set doesn't turn
3931	 * things on.
3932	 */
3933	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
3934		intel_update_lvds(crtc, clock, adjusted_mode);
3935
3936	I915_WRITE(DPLL(pipe), dpll);
3937
3938	/* Wait for the clocks to stabilize. */
3939	POSTING_READ(DPLL(pipe));
3940	udelay(150);
3941
3942	/* The pixel multiplier can only be updated once the
3943	 * DPLL is enabled and the clocks are stable.
3944	 *
3945	 * So write it again.
3946	 */
3947	I915_WRITE(DPLL(pipe), dpll);
3948}
3949
3950static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
3951			      struct drm_display_mode *mode,
3952			      struct drm_display_mode *adjusted_mode,
3953			      int x, int y,
3954			      struct drm_framebuffer *old_fb)
3955{
3956	struct drm_device *dev = crtc->dev;
3957	struct drm_i915_private *dev_priv = dev->dev_private;
3958	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3959	int pipe = intel_crtc->pipe;
3960	int plane = intel_crtc->plane;
3961	int refclk, num_connectors = 0;
3962	intel_clock_t clock, reduced_clock;
3963	u32 dspcntr, pipeconf, vsyncshift;
3964	bool ok, has_reduced_clock = false, is_sdvo = false;
3965	bool is_lvds = false, is_tv = false, is_dp = false;
3966	struct drm_mode_config *mode_config = &dev->mode_config;
3967	struct intel_encoder *encoder;
3968	const intel_limit_t *limit;
3969	int ret;
3970
3971	list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
3972		if (encoder->base.crtc != crtc)
3973			continue;
3974
3975		switch (encoder->type) {
3976		case INTEL_OUTPUT_LVDS:
3977			is_lvds = true;
3978			break;
3979		case INTEL_OUTPUT_SDVO:
3980		case INTEL_OUTPUT_HDMI:
3981			is_sdvo = true;
3982			if (encoder->needs_tv_clock)
3983				is_tv = true;
3984			break;
3985		case INTEL_OUTPUT_TVOUT:
3986			is_tv = true;
3987			break;
3988		case INTEL_OUTPUT_DISPLAYPORT:
3989			is_dp = true;
3990			break;
3991		}
3992
3993		num_connectors++;
3994	}
3995
3996	refclk = i9xx_get_refclk(crtc, num_connectors);
3997
3998	/*
3999	 * Returns a set of divisors for the desired target clock with the given
4000	 * refclk, or FALSE.  The returned values represent the clock equation:
4001	 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4002	 */
4003	limit = intel_limit(crtc, refclk);
4004	ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4005			     &clock);
4006	if (!ok) {
4007		DRM_ERROR("Couldn't find PLL settings for mode!\n");
4008		return -EINVAL;
4009	}
4010
4011	/* Ensure that the cursor is valid for the new mode before changing... */
4012	intel_crtc_update_cursor(crtc, true);
4013
4014	if (is_lvds && dev_priv->lvds_downclock_avail) {
4015		/*
4016		 * Ensure we match the reduced clock's P to the target clock.
4017		 * If the clocks don't match, we can't switch the display clock
4018		 * by using the FP0/FP1. In such case we will disable the LVDS
4019		 * downclock feature.
4020		*/
4021		has_reduced_clock = limit->find_pll(limit, crtc,
4022						    dev_priv->lvds_downclock,
4023						    refclk,
4024						    &clock,
4025						    &reduced_clock);
4026	}
4027
4028	if (is_sdvo && is_tv)
4029		i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4030
4031	i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
4032				 &reduced_clock : NULL);
4033
4034	if (IS_GEN2(dev))
4035		i8xx_update_pll(crtc, adjusted_mode, &clock, num_connectors);
4036	else
4037		i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4038				has_reduced_clock ? &reduced_clock : NULL,
4039				num_connectors);
4040
4041	/* setup pipeconf */
4042	pipeconf = I915_READ(PIPECONF(pipe));
4043
4044	/* Set up the display plane register */
4045	dspcntr = DISPPLANE_GAMMA_ENABLE;
4046
4047	if (pipe == 0)
4048		dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4049	else
4050		dspcntr |= DISPPLANE_SEL_PIPE_B;
4051
4052	if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4053		/* Enable pixel doubling when the dot clock is > 90% of the (display)
4054		 * core speed.
4055		 *
4056		 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4057		 * pipe == 0 check?
4058		 */
4059		if (mode->clock >
4060		    dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4061			pipeconf |= PIPECONF_DOUBLE_WIDE;
4062		else
4063			pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4064	}
4065
4066	/* default to 8bpc */
4067	pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4068	if (is_dp) {
4069		if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4070			pipeconf |= PIPECONF_BPP_6 |
4071				    PIPECONF_DITHER_EN |
4072				    PIPECONF_DITHER_TYPE_SP;
4073		}
4074	}
4075
4076	DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4077	drm_mode_debug_printmodeline(mode);
4078
4079	if (HAS_PIPE_CXSR(dev)) {
4080		if (intel_crtc->lowfreq_avail) {
4081			DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4082			pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4083		} else {
4084			DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4085			pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4086		}
4087	}
4088
4089	pipeconf &= ~PIPECONF_INTERLACE_MASK;
4090	if (!IS_GEN2(dev) &&
4091	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4092		pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4093		/* the chip adds 2 halflines automatically */
4094		adjusted_mode->crtc_vtotal -= 1;
4095		adjusted_mode->crtc_vblank_end -= 1;
4096		vsyncshift = adjusted_mode->crtc_hsync_start
4097			     - adjusted_mode->crtc_htotal/2;
4098	} else {
4099		pipeconf |= PIPECONF_PROGRESSIVE;
4100		vsyncshift = 0;
4101	}
4102
4103	if (!IS_GEN3(dev))
4104		I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
4105
4106	I915_WRITE(HTOTAL(pipe),
4107		   (adjusted_mode->crtc_hdisplay - 1) |
4108		   ((adjusted_mode->crtc_htotal - 1) << 16));
4109	I915_WRITE(HBLANK(pipe),
4110		   (adjusted_mode->crtc_hblank_start - 1) |
4111		   ((adjusted_mode->crtc_hblank_end - 1) << 16));
4112	I915_WRITE(HSYNC(pipe),
4113		   (adjusted_mode->crtc_hsync_start - 1) |
4114		   ((adjusted_mode->crtc_hsync_end - 1) << 16));
4115
4116	I915_WRITE(VTOTAL(pipe),
4117		   (adjusted_mode->crtc_vdisplay - 1) |
4118		   ((adjusted_mode->crtc_vtotal - 1) << 16));
4119	I915_WRITE(VBLANK(pipe),
4120		   (adjusted_mode->crtc_vblank_start - 1) |
4121		   ((adjusted_mode->crtc_vblank_end - 1) << 16));
4122	I915_WRITE(VSYNC(pipe),
4123		   (adjusted_mode->crtc_vsync_start - 1) |
4124		   ((adjusted_mode->crtc_vsync_end - 1) << 16));
4125
4126	/* pipesrc and dspsize control the size that is scaled from,
4127	 * which should always be the user's requested size.
4128	 */
4129	I915_WRITE(DSPSIZE(plane),
4130		   ((mode->vdisplay - 1) << 16) |
4131		   (mode->hdisplay - 1));
4132	I915_WRITE(DSPPOS(plane), 0);
4133	I915_WRITE(PIPESRC(pipe),
4134		   ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4135
4136	I915_WRITE(PIPECONF(pipe), pipeconf);
4137	POSTING_READ(PIPECONF(pipe));
4138	intel_enable_pipe(dev_priv, pipe, false);
4139
4140	intel_wait_for_vblank(dev, pipe);
4141
4142	I915_WRITE(DSPCNTR(plane), dspcntr);
4143	POSTING_READ(DSPCNTR(plane));
4144
4145	ret = intel_pipe_set_base(crtc, x, y, old_fb);
4146
4147	intel_update_watermarks(dev);
4148
4149	return ret;
4150}
4151
4152/*
4153 * Initialize reference clocks when the driver loads
4154 */
4155void ironlake_init_pch_refclk(struct drm_device *dev)
4156{
4157	struct drm_i915_private *dev_priv = dev->dev_private;
4158	struct drm_mode_config *mode_config = &dev->mode_config;
4159	struct intel_encoder *encoder;
4160	u32 temp;
4161	bool has_lvds = false;
4162	bool has_cpu_edp = false;
4163	bool has_pch_edp = false;
4164	bool has_panel = false;
4165	bool has_ck505 = false;
4166	bool can_ssc = false;
4167
4168	/* We need to take the global config into account */
4169	list_for_each_entry(encoder, &mode_config->encoder_list,
4170			    base.head) {
4171		switch (encoder->type) {
4172		case INTEL_OUTPUT_LVDS:
4173			has_panel = true;
4174			has_lvds = true;
4175			break;
4176		case INTEL_OUTPUT_EDP:
4177			has_panel = true;
4178			if (intel_encoder_is_pch_edp(&encoder->base))
4179				has_pch_edp = true;
4180			else
4181				has_cpu_edp = true;
4182			break;
4183		}
4184	}
4185
4186	if (HAS_PCH_IBX(dev)) {
4187		has_ck505 = dev_priv->display_clock_mode;
4188		can_ssc = has_ck505;
4189	} else {
4190		has_ck505 = false;
4191		can_ssc = true;
4192	}
4193
4194	DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4195		      has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4196		      has_ck505);
4197
4198	/* Ironlake: try to setup display ref clock before DPLL
4199	 * enabling. This is only under driver's control after
4200	 * PCH B stepping, previous chipset stepping should be
4201	 * ignoring this setting.
4202	 */
4203	temp = I915_READ(PCH_DREF_CONTROL);
4204	/* Always enable nonspread source */
4205	temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4206
4207	if (has_ck505)
4208		temp |= DREF_NONSPREAD_CK505_ENABLE;
4209	else
4210		temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4211
4212	if (has_panel) {
4213		temp &= ~DREF_SSC_SOURCE_MASK;
4214		temp |= DREF_SSC_SOURCE_ENABLE;
4215
4216		/* SSC must be turned on before enabling the CPU output  */
4217		if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4218			DRM_DEBUG_KMS("Using SSC on panel\n");
4219			temp |= DREF_SSC1_ENABLE;
4220		} else
4221			temp &= ~DREF_SSC1_ENABLE;
4222
4223		/* Get SSC going before enabling the outputs */
4224		I915_WRITE(PCH_DREF_CONTROL, temp);
4225		POSTING_READ(PCH_DREF_CONTROL);
4226		udelay(200);
4227
4228		temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4229
4230		/* Enable CPU source on CPU attached eDP */
4231		if (has_cpu_edp) {
4232			if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4233				DRM_DEBUG_KMS("Using SSC on eDP\n");
4234				temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4235			}
4236			else
4237				temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4238		} else
4239			temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4240
4241		I915_WRITE(PCH_DREF_CONTROL, temp);
4242		POSTING_READ(PCH_DREF_CONTROL);
4243		udelay(200);
4244	} else {
4245		DRM_DEBUG_KMS("Disabling SSC entirely\n");
4246
4247		temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4248
4249		/* Turn off CPU output */
4250		temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4251
4252		I915_WRITE(PCH_DREF_CONTROL, temp);
4253		POSTING_READ(PCH_DREF_CONTROL);
4254		udelay(200);
4255
4256		/* Turn off the SSC source */
4257		temp &= ~DREF_SSC_SOURCE_MASK;
4258		temp |= DREF_SSC_SOURCE_DISABLE;
4259
4260		/* Turn off SSC1 */
4261		temp &= ~ DREF_SSC1_ENABLE;
4262
4263		I915_WRITE(PCH_DREF_CONTROL, temp);
4264		POSTING_READ(PCH_DREF_CONTROL);
4265		udelay(200);
4266	}
4267}
4268
4269static int ironlake_get_refclk(struct drm_crtc *crtc)
4270{
4271	struct drm_device *dev = crtc->dev;
4272	struct drm_i915_private *dev_priv = dev->dev_private;
4273	struct intel_encoder *encoder;
4274	struct drm_mode_config *mode_config = &dev->mode_config;
4275	struct intel_encoder *edp_encoder = NULL;
4276	int num_connectors = 0;
4277	bool is_lvds = false;
4278
4279	list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4280		if (encoder->base.crtc != crtc)
4281			continue;
4282
4283		switch (encoder->type) {
4284		case INTEL_OUTPUT_LVDS:
4285			is_lvds = true;
4286			break;
4287		case INTEL_OUTPUT_EDP:
4288			edp_encoder = encoder;
4289			break;
4290		}
4291		num_connectors++;
4292	}
4293
4294	if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4295		DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4296			      dev_priv->lvds_ssc_freq);
4297		return dev_priv->lvds_ssc_freq * 1000;
4298	}
4299
4300	return 120000;
4301}
4302
4303static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
4304				  struct drm_display_mode *mode,
4305				  struct drm_display_mode *adjusted_mode,
4306				  int x, int y,
4307				  struct drm_framebuffer *old_fb)
4308{
4309	struct drm_device *dev = crtc->dev;
4310	struct drm_i915_private *dev_priv = dev->dev_private;
4311	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4312	int pipe = intel_crtc->pipe;
4313	int plane = intel_crtc->plane;
4314	int refclk, num_connectors = 0;
4315	intel_clock_t clock, reduced_clock;
4316	u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4317	bool ok, has_reduced_clock = false, is_sdvo = false;
4318	bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4319	struct drm_mode_config *mode_config = &dev->mode_config;
4320	struct intel_encoder *encoder, *edp_encoder = NULL;
4321	const intel_limit_t *limit;
4322	int ret;
4323	struct fdi_m_n m_n = {0};
4324	u32 temp;
4325	int target_clock, pixel_multiplier, lane, link_bw, factor;
4326	unsigned int pipe_bpp;
4327	bool dither;
4328	bool is_cpu_edp = false, is_pch_edp = false;
4329
4330	list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4331		if (encoder->base.crtc != crtc)
4332			continue;
4333
4334		switch (encoder->type) {
4335		case INTEL_OUTPUT_LVDS:
4336			is_lvds = true;
4337			break;
4338		case INTEL_OUTPUT_SDVO:
4339		case INTEL_OUTPUT_HDMI:
4340			is_sdvo = true;
4341			if (encoder->needs_tv_clock)
4342				is_tv = true;
4343			break;
4344		case INTEL_OUTPUT_TVOUT:
4345			is_tv = true;
4346			break;
4347		case INTEL_OUTPUT_ANALOG:
4348			is_crt = true;
4349			break;
4350		case INTEL_OUTPUT_DISPLAYPORT:
4351			is_dp = true;
4352			break;
4353		case INTEL_OUTPUT_EDP:
4354			is_dp = true;
4355			if (intel_encoder_is_pch_edp(&encoder->base))
4356				is_pch_edp = true;
4357			else
4358				is_cpu_edp = true;
4359			edp_encoder = encoder;
4360			break;
4361		}
4362
4363		num_connectors++;
4364	}
4365
4366	refclk = ironlake_get_refclk(crtc);
4367
4368	/*
4369	 * Returns a set of divisors for the desired target clock with the given
4370	 * refclk, or FALSE.  The returned values represent the clock equation:
4371	 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4372	 */
4373	limit = intel_limit(crtc, refclk);
4374	ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4375			     &clock);
4376	if (!ok) {
4377		DRM_ERROR("Couldn't find PLL settings for mode!\n");
4378		return -EINVAL;
4379	}
4380
4381	/* Ensure that the cursor is valid for the new mode before changing... */
4382	intel_crtc_update_cursor(crtc, true);
4383
4384	if (is_lvds && dev_priv->lvds_downclock_avail) {
4385		/*
4386		 * Ensure we match the reduced clock's P to the target clock.
4387		 * If the clocks don't match, we can't switch the display clock
4388		 * by using the FP0/FP1. In such case we will disable the LVDS
4389		 * downclock feature.
4390		*/
4391		has_reduced_clock = limit->find_pll(limit, crtc,
4392						    dev_priv->lvds_downclock,
4393						    refclk,
4394						    &clock,
4395						    &reduced_clock);
4396	}
4397	/* SDVO TV has fixed PLL values depend on its clock range,
4398	   this mirrors vbios setting. */
4399	if (is_sdvo && is_tv) {
4400		if (adjusted_mode->clock >= 100000
4401		    && adjusted_mode->clock < 140500) {
4402			clock.p1 = 2;
4403			clock.p2 = 10;
4404			clock.n = 3;
4405			clock.m1 = 16;
4406			clock.m2 = 8;
4407		} else if (adjusted_mode->clock >= 140500
4408			   && adjusted_mode->clock <= 200000) {
4409			clock.p1 = 1;
4410			clock.p2 = 10;
4411			clock.n = 6;
4412			clock.m1 = 12;
4413			clock.m2 = 8;
4414		}
4415	}
4416
4417	/* FDI link */
4418	pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4419	lane = 0;
4420	/* CPU eDP doesn't require FDI link, so just set DP M/N
4421	   according to current link config */
4422	if (is_cpu_edp) {
4423		target_clock = mode->clock;
4424		intel_edp_link_config(edp_encoder, &lane, &link_bw);
4425	} else {
4426		/* [e]DP over FDI requires target mode clock
4427		   instead of link clock */
4428		if (is_dp)
4429			target_clock = mode->clock;
4430		else
4431			target_clock = adjusted_mode->clock;
4432
4433		/* FDI is a binary signal running at ~2.7GHz, encoding
4434		 * each output octet as 10 bits. The actual frequency
4435		 * is stored as a divider into a 100MHz clock, and the
4436		 * mode pixel clock is stored in units of 1KHz.
4437		 * Hence the bw of each lane in terms of the mode signal
4438		 * is:
4439		 */
4440		link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4441	}
4442
4443	/* determine panel color depth */
4444	temp = I915_READ(PIPECONF(pipe));
4445	temp &= ~PIPE_BPC_MASK;
4446	dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
4447	switch (pipe_bpp) {
4448	case 18:
4449		temp |= PIPE_6BPC;
4450		break;
4451	case 24:
4452		temp |= PIPE_8BPC;
4453		break;
4454	case 30:
4455		temp |= PIPE_10BPC;
4456		break;
4457	case 36:
4458		temp |= PIPE_12BPC;
4459		break;
4460	default:
4461		WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
4462			pipe_bpp);
4463		temp |= PIPE_8BPC;
4464		pipe_bpp = 24;
4465		break;
4466	}
4467
4468	intel_crtc->bpp = pipe_bpp;
4469	I915_WRITE(PIPECONF(pipe), temp);
4470
4471	if (!lane) {
4472		/*
4473		 * Account for spread spectrum to avoid
4474		 * oversubscribing the link. Max center spread
4475		 * is 2.5%; use 5% for safety's sake.
4476		 */
4477		u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
4478		lane = bps / (link_bw * 8) + 1;
4479	}
4480
4481	intel_crtc->fdi_lanes = lane;
4482
4483	if (pixel_multiplier > 1)
4484		link_bw *= pixel_multiplier;
4485	ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
4486			     &m_n);
4487
4488	fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4489	if (has_reduced_clock)
4490		fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4491			reduced_clock.m2;
4492
4493	/* Enable autotuning of the PLL clock (if permissible) */
4494	factor = 21;
4495	if (is_lvds) {
4496		if ((intel_panel_use_ssc(dev_priv) &&
4497		     dev_priv->lvds_ssc_freq == 100) ||
4498		    (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
4499			factor = 25;
4500	} else if (is_sdvo && is_tv)
4501		factor = 20;
4502
4503	if (clock.m < factor * clock.n)
4504		fp |= FP_CB_TUNE;
4505
4506	dpll = 0;
4507
4508	if (is_lvds)
4509		dpll |= DPLLB_MODE_LVDS;
4510	else
4511		dpll |= DPLLB_MODE_DAC_SERIAL;
4512	if (is_sdvo) {
4513		int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4514		if (pixel_multiplier > 1) {
4515			dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
4516		}
4517		dpll |= DPLL_DVO_HIGH_SPEED;
4518	}
4519	if (is_dp && !is_cpu_edp)
4520		dpll |= DPLL_DVO_HIGH_SPEED;
4521
4522	/* compute bitmask from p1 value */
4523	dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4524	/* also FPA1 */
4525	dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4526
4527	switch (clock.p2) {
4528	case 5:
4529		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4530		break;
4531	case 7:
4532		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4533		break;
4534	case 10:
4535		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4536		break;
4537	case 14:
4538		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4539		break;
4540	}
4541
4542	if (is_sdvo && is_tv)
4543		dpll |= PLL_REF_INPUT_TVCLKINBC;
4544	else if (is_tv)
4545		/* XXX: just matching BIOS for now */
4546		/*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
4547		dpll |= 3;
4548	else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4549		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4550	else
4551		dpll |= PLL_REF_INPUT_DREFCLK;
4552
4553	/* setup pipeconf */
4554	pipeconf = I915_READ(PIPECONF(pipe));
4555
4556	/* Set up the display plane register */
4557	dspcntr = DISPPLANE_GAMMA_ENABLE;
4558
4559	DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
4560	drm_mode_debug_printmodeline(mode);
4561
4562	/* CPU eDP is the only output that doesn't need a PCH PLL of its own on
4563	 * pre-Haswell/LPT generation */
4564	if (HAS_PCH_LPT(dev)) {
4565		DRM_DEBUG_KMS("LPT detected: no PLL for pipe %d necessary\n",
4566				pipe);
4567	} else if (!is_cpu_edp) {
4568		struct intel_pch_pll *pll;
4569
4570		pll = intel_get_pch_pll(intel_crtc, dpll, fp);
4571		if (pll == NULL) {
4572			DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
4573					 pipe);
4574			return -EINVAL;
4575		}
4576	} else
4577		intel_put_pch_pll(intel_crtc);
4578
4579	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
4580	 * This is an exception to the general rule that mode_set doesn't turn
4581	 * things on.
4582	 */
4583	if (is_lvds) {
4584		temp = I915_READ(PCH_LVDS);
4585		temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4586		if (HAS_PCH_CPT(dev)) {
4587			temp &= ~PORT_TRANS_SEL_MASK;
4588			temp |= PORT_TRANS_SEL_CPT(pipe);
4589		} else {
4590			if (pipe == 1)
4591				temp |= LVDS_PIPEB_SELECT;
4592			else
4593				temp &= ~LVDS_PIPEB_SELECT;
4594		}
4595
4596		/* set the corresponsding LVDS_BORDER bit */
4597		temp |= dev_priv->lvds_border_bits;
4598		/* Set the B0-B3 data pairs corresponding to whether we're going to
4599		 * set the DPLLs for dual-channel mode or not.
4600		 */
4601		if (clock.p2 == 7)
4602			temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4603		else
4604			temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4605
4606		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4607		 * appropriately here, but we need to look more thoroughly into how
4608		 * panels behave in the two modes.
4609		 */
4610		temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4611		if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4612			temp |= LVDS_HSYNC_POLARITY;
4613		if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4614			temp |= LVDS_VSYNC_POLARITY;
4615		I915_WRITE(PCH_LVDS, temp);
4616	}
4617
4618	pipeconf &= ~PIPECONF_DITHER_EN;
4619	pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
4620	if ((is_lvds && dev_priv->lvds_dither) || dither) {
4621		pipeconf |= PIPECONF_DITHER_EN;
4622		pipeconf |= PIPECONF_DITHER_TYPE_SP;
4623	}
4624	if (is_dp && !is_cpu_edp) {
4625		intel_dp_set_m_n(crtc, mode, adjusted_mode);
4626	} else {
4627		/* For non-DP output, clear any trans DP clock recovery setting.*/
4628		I915_WRITE(TRANSDATA_M1(pipe), 0);
4629		I915_WRITE(TRANSDATA_N1(pipe), 0);
4630		I915_WRITE(TRANSDPLINK_M1(pipe), 0);
4631		I915_WRITE(TRANSDPLINK_N1(pipe), 0);
4632	}
4633
4634	if (intel_crtc->pch_pll) {
4635		I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
4636
4637		/* Wait for the clocks to stabilize. */
4638		POSTING_READ(intel_crtc->pch_pll->pll_reg);
4639		udelay(150);
4640
4641		/* The pixel multiplier can only be updated once the
4642		 * DPLL is enabled and the clocks are stable.
4643		 *
4644		 * So write it again.
4645		 */
4646		I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
4647	}
4648
4649	intel_crtc->lowfreq_avail = false;
4650	if (intel_crtc->pch_pll) {
4651		if (is_lvds && has_reduced_clock && i915_powersave) {
4652			I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
4653			intel_crtc->lowfreq_avail = true;
4654			if (HAS_PIPE_CXSR(dev)) {
4655				DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4656				pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4657			}
4658		} else {
4659			I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
4660			if (HAS_PIPE_CXSR(dev)) {
4661				DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4662				pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4663			}
4664		}
4665	}
4666
4667	pipeconf &= ~PIPECONF_INTERLACE_MASK;
4668	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4669		pipeconf |= PIPECONF_INTERLACED_ILK;
4670		/* the chip adds 2 halflines automatically */
4671		adjusted_mode->crtc_vtotal -= 1;
4672		adjusted_mode->crtc_vblank_end -= 1;
4673		I915_WRITE(VSYNCSHIFT(pipe),
4674			   adjusted_mode->crtc_hsync_start
4675			   - adjusted_mode->crtc_htotal/2);
4676	} else {
4677		pipeconf |= PIPECONF_PROGRESSIVE;
4678		I915_WRITE(VSYNCSHIFT(pipe), 0);
4679	}
4680
4681	I915_WRITE(HTOTAL(pipe),
4682		   (adjusted_mode->crtc_hdisplay - 1) |
4683		   ((adjusted_mode->crtc_htotal - 1) << 16));
4684	I915_WRITE(HBLANK(pipe),
4685		   (adjusted_mode->crtc_hblank_start - 1) |
4686		   ((adjusted_mode->crtc_hblank_end - 1) << 16));
4687	I915_WRITE(HSYNC(pipe),
4688		   (adjusted_mode->crtc_hsync_start - 1) |
4689		   ((adjusted_mode->crtc_hsync_end - 1) << 16));
4690
4691	I915_WRITE(VTOTAL(pipe),
4692		   (adjusted_mode->crtc_vdisplay - 1) |
4693		   ((adjusted_mode->crtc_vtotal - 1) << 16));
4694	I915_WRITE(VBLANK(pipe),
4695		   (adjusted_mode->crtc_vblank_start - 1) |
4696		   ((adjusted_mode->crtc_vblank_end - 1) << 16));
4697	I915_WRITE(VSYNC(pipe),
4698		   (adjusted_mode->crtc_vsync_start - 1) |
4699		   ((adjusted_mode->crtc_vsync_end - 1) << 16));
4700
4701	/* pipesrc controls the size that is scaled from, which should
4702	 * always be the user's requested size.
4703	 */
4704	I915_WRITE(PIPESRC(pipe),
4705		   ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4706
4707	I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
4708	I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
4709	I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
4710	I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
4711
4712	if (is_cpu_edp)
4713		ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4714
4715	I915_WRITE(PIPECONF(pipe), pipeconf);
4716	POSTING_READ(PIPECONF(pipe));
4717
4718	intel_wait_for_vblank(dev, pipe);
4719
4720	I915_WRITE(DSPCNTR(plane), dspcntr);
4721	POSTING_READ(DSPCNTR(plane));
4722
4723	ret = intel_pipe_set_base(crtc, x, y, old_fb);
4724
4725	intel_update_watermarks(dev);
4726
4727	intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
4728
4729	return ret;
4730}
4731
4732static int intel_crtc_mode_set(struct drm_crtc *crtc,
4733			       struct drm_display_mode *mode,
4734			       struct drm_display_mode *adjusted_mode,
4735			       int x, int y,
4736			       struct drm_framebuffer *old_fb)
4737{
4738	struct drm_device *dev = crtc->dev;
4739	struct drm_i915_private *dev_priv = dev->dev_private;
4740	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4741	int pipe = intel_crtc->pipe;
4742	int ret;
4743
4744	drm_vblank_pre_modeset(dev, pipe);
4745
4746	ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
4747					      x, y, old_fb);
4748	drm_vblank_post_modeset(dev, pipe);
4749
4750	if (ret)
4751		intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
4752	else
4753		intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
4754
4755	return ret;
4756}
4757
4758static bool intel_eld_uptodate(struct drm_connector *connector,
4759			       int reg_eldv, uint32_t bits_eldv,
4760			       int reg_elda, uint32_t bits_elda,
4761			       int reg_edid)
4762{
4763	struct drm_i915_private *dev_priv = connector->dev->dev_private;
4764	uint8_t *eld = connector->eld;
4765	uint32_t i;
4766
4767	i = I915_READ(reg_eldv);
4768	i &= bits_eldv;
4769
4770	if (!eld[0])
4771		return !i;
4772
4773	if (!i)
4774		return false;
4775
4776	i = I915_READ(reg_elda);
4777	i &= ~bits_elda;
4778	I915_WRITE(reg_elda, i);
4779
4780	for (i = 0; i < eld[2]; i++)
4781		if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
4782			return false;
4783
4784	return true;
4785}
4786
4787static void g4x_write_eld(struct drm_connector *connector,
4788			  struct drm_crtc *crtc)
4789{
4790	struct drm_i915_private *dev_priv = connector->dev->dev_private;
4791	uint8_t *eld = connector->eld;
4792	uint32_t eldv;
4793	uint32_t len;
4794	uint32_t i;
4795
4796	i = I915_READ(G4X_AUD_VID_DID);
4797
4798	if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
4799		eldv = G4X_ELDV_DEVCL_DEVBLC;
4800	else
4801		eldv = G4X_ELDV_DEVCTG;
4802
4803	if (intel_eld_uptodate(connector,
4804			       G4X_AUD_CNTL_ST, eldv,
4805			       G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
4806			       G4X_HDMIW_HDMIEDID))
4807		return;
4808
4809	i = I915_READ(G4X_AUD_CNTL_ST);
4810	i &= ~(eldv | G4X_ELD_ADDR);
4811	len = (i >> 9) & 0x1f;		/* ELD buffer size */
4812	I915_WRITE(G4X_AUD_CNTL_ST, i);
4813
4814	if (!eld[0])
4815		return;
4816
4817	len = min_t(uint8_t, eld[2], len);
4818	DRM_DEBUG_DRIVER("ELD size %d\n", len);
4819	for (i = 0; i < len; i++)
4820		I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
4821
4822	i = I915_READ(G4X_AUD_CNTL_ST);
4823	i |= eldv;
4824	I915_WRITE(G4X_AUD_CNTL_ST, i);
4825}
4826
4827static void ironlake_write_eld(struct drm_connector *connector,
4828				     struct drm_crtc *crtc)
4829{
4830	struct drm_i915_private *dev_priv = connector->dev->dev_private;
4831	uint8_t *eld = connector->eld;
4832	uint32_t eldv;
4833	uint32_t i;
4834	int len;
4835	int hdmiw_hdmiedid;
4836	int aud_config;
4837	int aud_cntl_st;
4838	int aud_cntrl_st2;
4839
4840	if (HAS_PCH_IBX(connector->dev)) {
4841		hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
4842		aud_config = IBX_AUD_CONFIG_A;
4843		aud_cntl_st = IBX_AUD_CNTL_ST_A;
4844		aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
4845	} else {
4846		hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
4847		aud_config = CPT_AUD_CONFIG_A;
4848		aud_cntl_st = CPT_AUD_CNTL_ST_A;
4849		aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
4850	}
4851
4852	i = to_intel_crtc(crtc)->pipe;
4853	hdmiw_hdmiedid += i * 0x100;
4854	aud_cntl_st += i * 0x100;
4855	aud_config += i * 0x100;
4856
4857	DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
4858
4859	i = I915_READ(aud_cntl_st);
4860	i = (i >> 29) & 0x3;		/* DIP_Port_Select, 0x1 = PortB */
4861	if (!i) {
4862		DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
4863		/* operate blindly on all ports */
4864		eldv = IBX_ELD_VALIDB;
4865		eldv |= IBX_ELD_VALIDB << 4;
4866		eldv |= IBX_ELD_VALIDB << 8;
4867	} else {
4868		DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
4869		eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
4870	}
4871
4872	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
4873		DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
4874		eld[5] |= (1 << 2);	/* Conn_Type, 0x1 = DisplayPort */
4875		I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
4876	} else
4877		I915_WRITE(aud_config, 0);
4878
4879	if (intel_eld_uptodate(connector,
4880			       aud_cntrl_st2, eldv,
4881			       aud_cntl_st, IBX_ELD_ADDRESS,
4882			       hdmiw_hdmiedid))
4883		return;
4884
4885	i = I915_READ(aud_cntrl_st2);
4886	i &= ~eldv;
4887	I915_WRITE(aud_cntrl_st2, i);
4888
4889	if (!eld[0])
4890		return;
4891
4892	i = I915_READ(aud_cntl_st);
4893	i &= ~IBX_ELD_ADDRESS;
4894	I915_WRITE(aud_cntl_st, i);
4895
4896	len = min_t(uint8_t, eld[2], 21);	/* 84 bytes of hw ELD buffer */
4897	DRM_DEBUG_DRIVER("ELD size %d\n", len);
4898	for (i = 0; i < len; i++)
4899		I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
4900
4901	i = I915_READ(aud_cntrl_st2);
4902	i |= eldv;
4903	I915_WRITE(aud_cntrl_st2, i);
4904}
4905
4906void intel_write_eld(struct drm_encoder *encoder,
4907		     struct drm_display_mode *mode)
4908{
4909	struct drm_crtc *crtc = encoder->crtc;
4910	struct drm_connector *connector;
4911	struct drm_device *dev = encoder->dev;
4912	struct drm_i915_private *dev_priv = dev->dev_private;
4913
4914	connector = drm_select_eld(encoder, mode);
4915	if (!connector)
4916		return;
4917
4918	DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
4919			 connector->base.id,
4920			 drm_get_connector_name(connector),
4921			 connector->encoder->base.id,
4922			 drm_get_encoder_name(connector->encoder));
4923
4924	connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
4925
4926	if (dev_priv->display.write_eld)
4927		dev_priv->display.write_eld(connector, crtc);
4928}
4929
4930/** Loads the palette/gamma unit for the CRTC with the prepared values */
4931void intel_crtc_load_lut(struct drm_crtc *crtc)
4932{
4933	struct drm_device *dev = crtc->dev;
4934	struct drm_i915_private *dev_priv = dev->dev_private;
4935	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4936	int palreg = PALETTE(intel_crtc->pipe);
4937	int i;
4938
4939	/* The clocks have to be on to load the palette. */
4940	if (!crtc->enabled || !intel_crtc->active)
4941		return;
4942
4943	/* use legacy palette for Ironlake */
4944	if (HAS_PCH_SPLIT(dev))
4945		palreg = LGC_PALETTE(intel_crtc->pipe);
4946
4947	for (i = 0; i < 256; i++) {
4948		I915_WRITE(palreg + 4 * i,
4949			   (intel_crtc->lut_r[i] << 16) |
4950			   (intel_crtc->lut_g[i] << 8) |
4951			   intel_crtc->lut_b[i]);
4952	}
4953}
4954
4955static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
4956{
4957	struct drm_device *dev = crtc->dev;
4958	struct drm_i915_private *dev_priv = dev->dev_private;
4959	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4960	bool visible = base != 0;
4961	u32 cntl;
4962
4963	if (intel_crtc->cursor_visible == visible)
4964		return;
4965
4966	cntl = I915_READ(_CURACNTR);
4967	if (visible) {
4968		/* On these chipsets we can only modify the base whilst
4969		 * the cursor is disabled.
4970		 */
4971		I915_WRITE(_CURABASE, base);
4972
4973		cntl &= ~(CURSOR_FORMAT_MASK);
4974		/* XXX width must be 64, stride 256 => 0x00 << 28 */
4975		cntl |= CURSOR_ENABLE |
4976			CURSOR_GAMMA_ENABLE |
4977			CURSOR_FORMAT_ARGB;
4978	} else
4979		cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
4980	I915_WRITE(_CURACNTR, cntl);
4981
4982	intel_crtc->cursor_visible = visible;
4983}
4984
4985static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
4986{
4987	struct drm_device *dev = crtc->dev;
4988	struct drm_i915_private *dev_priv = dev->dev_private;
4989	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4990	int pipe = intel_crtc->pipe;
4991	bool visible = base != 0;
4992
4993	if (intel_crtc->cursor_visible != visible) {
4994		uint32_t cntl = I915_READ(CURCNTR(pipe));
4995		if (base) {
4996			cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
4997			cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4998			cntl |= pipe << 28; /* Connect to correct pipe */
4999		} else {
5000			cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5001			cntl |= CURSOR_MODE_DISABLE;
5002		}
5003		I915_WRITE(CURCNTR(pipe), cntl);
5004
5005		intel_crtc->cursor_visible = visible;
5006	}
5007	/* and commit changes on next vblank */
5008	I915_WRITE(CURBASE(pipe), base);
5009}
5010
5011static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
5012{
5013	struct drm_device *dev = crtc->dev;
5014	struct drm_i915_private *dev_priv = dev->dev_private;
5015	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5016	int pipe = intel_crtc->pipe;
5017	bool visible = base != 0;
5018
5019	if (intel_crtc->cursor_visible != visible) {
5020		uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
5021		if (base) {
5022			cntl &= ~CURSOR_MODE;
5023			cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5024		} else {
5025			cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5026			cntl |= CURSOR_MODE_DISABLE;
5027		}
5028		I915_WRITE(CURCNTR_IVB(pipe), cntl);
5029
5030		intel_crtc->cursor_visible = visible;
5031	}
5032	/* and commit changes on next vblank */
5033	I915_WRITE(CURBASE_IVB(pipe), base);
5034}
5035
5036/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5037static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5038				     bool on)
5039{
5040	struct drm_device *dev = crtc->dev;
5041	struct drm_i915_private *dev_priv = dev->dev_private;
5042	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5043	int pipe = intel_crtc->pipe;
5044	int x = intel_crtc->cursor_x;
5045	int y = intel_crtc->cursor_y;
5046	u32 base, pos;
5047	bool visible;
5048
5049	pos = 0;
5050
5051	if (on && crtc->enabled && crtc->fb) {
5052		base = intel_crtc->cursor_addr;
5053		if (x > (int) crtc->fb->width)
5054			base = 0;
5055
5056		if (y > (int) crtc->fb->height)
5057			base = 0;
5058	} else
5059		base = 0;
5060
5061	if (x < 0) {
5062		if (x + intel_crtc->cursor_width < 0)
5063			base = 0;
5064
5065		pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5066		x = -x;
5067	}
5068	pos |= x << CURSOR_X_SHIFT;
5069
5070	if (y < 0) {
5071		if (y + intel_crtc->cursor_height < 0)
5072			base = 0;
5073
5074		pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5075		y = -y;
5076	}
5077	pos |= y << CURSOR_Y_SHIFT;
5078
5079	visible = base != 0;
5080	if (!visible && !intel_crtc->cursor_visible)
5081		return;
5082
5083	if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
5084		I915_WRITE(CURPOS_IVB(pipe), pos);
5085		ivb_update_cursor(crtc, base);
5086	} else {
5087		I915_WRITE(CURPOS(pipe), pos);
5088		if (IS_845G(dev) || IS_I865G(dev))
5089			i845_update_cursor(crtc, base);
5090		else
5091			i9xx_update_cursor(crtc, base);
5092	}
5093}
5094
5095static int intel_crtc_cursor_set(struct drm_crtc *crtc,
5096				 struct drm_file *file,
5097				 uint32_t handle,
5098				 uint32_t width, uint32_t height)
5099{
5100	struct drm_device *dev = crtc->dev;
5101	struct drm_i915_private *dev_priv = dev->dev_private;
5102	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5103	struct drm_i915_gem_object *obj;
5104	uint32_t addr;
5105	int ret;
5106
5107	DRM_DEBUG_KMS("\n");
5108
5109	/* if we want to turn off the cursor ignore width and height */
5110	if (!handle) {
5111		DRM_DEBUG_KMS("cursor off\n");
5112		addr = 0;
5113		obj = NULL;
5114		mutex_lock(&dev->struct_mutex);
5115		goto finish;
5116	}
5117
5118	/* Currently we only support 64x64 cursors */
5119	if (width != 64 || height != 64) {
5120		DRM_ERROR("we currently only support 64x64 cursors\n");
5121		return -EINVAL;
5122	}
5123
5124	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
5125	if (&obj->base == NULL)
5126		return -ENOENT;
5127
5128	if (obj->base.size < width * height * 4) {
5129		DRM_ERROR("buffer is to small\n");
5130		ret = -ENOMEM;
5131		goto fail;
5132	}
5133
5134	/* we only need to pin inside GTT if cursor is non-phy */
5135	mutex_lock(&dev->struct_mutex);
5136	if (!dev_priv->info->cursor_needs_physical) {
5137		if (obj->tiling_mode) {
5138			DRM_ERROR("cursor cannot be tiled\n");
5139			ret = -EINVAL;
5140			goto fail_locked;
5141		}
5142
5143		ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
5144		if (ret) {
5145			DRM_ERROR("failed to move cursor bo into the GTT\n");
5146			goto fail_locked;
5147		}
5148
5149		ret = i915_gem_object_put_fence(obj);
5150		if (ret) {
5151			DRM_ERROR("failed to release fence for cursor");
5152			goto fail_unpin;
5153		}
5154
5155		addr = obj->gtt_offset;
5156	} else {
5157		int align = IS_I830(dev) ? 16 * 1024 : 256;
5158		ret = i915_gem_attach_phys_object(dev, obj,
5159						  (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5160						  align);
5161		if (ret) {
5162			DRM_ERROR("failed to attach phys object\n");
5163			goto fail_locked;
5164		}
5165		addr = obj->phys_obj->handle->busaddr;
5166	}
5167
5168	if (IS_GEN2(dev))
5169		I915_WRITE(CURSIZE, (height << 12) | width);
5170
5171 finish:
5172	if (intel_crtc->cursor_bo) {
5173		if (dev_priv->info->cursor_needs_physical) {
5174			if (intel_crtc->cursor_bo != obj)
5175				i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5176		} else
5177			i915_gem_object_unpin(intel_crtc->cursor_bo);
5178		drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
5179	}
5180
5181	mutex_unlock(&dev->struct_mutex);
5182
5183	intel_crtc->cursor_addr = addr;
5184	intel_crtc->cursor_bo = obj;
5185	intel_crtc->cursor_width = width;
5186	intel_crtc->cursor_height = height;
5187
5188	intel_crtc_update_cursor(crtc, true);
5189
5190	return 0;
5191fail_unpin:
5192	i915_gem_object_unpin(obj);
5193fail_locked:
5194	mutex_unlock(&dev->struct_mutex);
5195fail:
5196	drm_gem_object_unreference_unlocked(&obj->base);
5197	return ret;
5198}
5199
5200static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5201{
5202	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5203
5204	intel_crtc->cursor_x = x;
5205	intel_crtc->cursor_y = y;
5206
5207	intel_crtc_update_cursor(crtc, true);
5208
5209	return 0;
5210}
5211
5212/** Sets the color ramps on behalf of RandR */
5213void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5214				 u16 blue, int regno)
5215{
5216	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5217
5218	intel_crtc->lut_r[regno] = red >> 8;
5219	intel_crtc->lut_g[regno] = green >> 8;
5220	intel_crtc->lut_b[regno] = blue >> 8;
5221}
5222
5223void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5224			     u16 *blue, int regno)
5225{
5226	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5227
5228	*red = intel_crtc->lut_r[regno] << 8;
5229	*green = intel_crtc->lut_g[regno] << 8;
5230	*blue = intel_crtc->lut_b[regno] << 8;
5231}
5232
5233static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
5234				 u16 *blue, uint32_t start, uint32_t size)
5235{
5236	int end = (start + size > 256) ? 256 : start + size, i;
5237	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5238
5239	for (i = start; i < end; i++) {
5240		intel_crtc->lut_r[i] = red[i] >> 8;
5241		intel_crtc->lut_g[i] = green[i] >> 8;
5242		intel_crtc->lut_b[i] = blue[i] >> 8;
5243	}
5244
5245	intel_crtc_load_lut(crtc);
5246}
5247
5248/**
5249 * Get a pipe with a simple mode set on it for doing load-based monitor
5250 * detection.
5251 *
5252 * It will be up to the load-detect code to adjust the pipe as appropriate for
5253 * its requirements.  The pipe will be connected to no other encoders.
5254 *
5255 * Currently this code will only succeed if there is a pipe with no encoders
5256 * configured for it.  In the future, it could choose to temporarily disable
5257 * some outputs to free up a pipe for its use.
5258 *
5259 * \return crtc, or NULL if no pipes are available.
5260 */
5261
5262/* VESA 640x480x72Hz mode to set on the pipe */
5263static struct drm_display_mode load_detect_mode = {
5264	DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5265		 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5266};
5267
5268static struct drm_framebuffer *
5269intel_framebuffer_create(struct drm_device *dev,
5270			 struct drm_mode_fb_cmd2 *mode_cmd,
5271			 struct drm_i915_gem_object *obj)
5272{
5273	struct intel_framebuffer *intel_fb;
5274	int ret;
5275
5276	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5277	if (!intel_fb) {
5278		drm_gem_object_unreference_unlocked(&obj->base);
5279		return ERR_PTR(-ENOMEM);
5280	}
5281
5282	ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5283	if (ret) {
5284		drm_gem_object_unreference_unlocked(&obj->base);
5285		kfree(intel_fb);
5286		return ERR_PTR(ret);
5287	}
5288
5289	return &intel_fb->base;
5290}
5291
5292static u32
5293intel_framebuffer_pitch_for_width(int width, int bpp)
5294{
5295	u32 pitch = DIV_ROUND_UP(width * bpp, 8);
5296	return ALIGN(pitch, 64);
5297}
5298
5299static u32
5300intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
5301{
5302	u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5303	return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
5304}
5305
5306static struct drm_framebuffer *
5307intel_framebuffer_create_for_mode(struct drm_device *dev,
5308				  struct drm_display_mode *mode,
5309				  int depth, int bpp)
5310{
5311	struct drm_i915_gem_object *obj;
5312	struct drm_mode_fb_cmd2 mode_cmd;
5313
5314	obj = i915_gem_alloc_object(dev,
5315				    intel_framebuffer_size_for_mode(mode, bpp));
5316	if (obj == NULL)
5317		return ERR_PTR(-ENOMEM);
5318
5319	mode_cmd.width = mode->hdisplay;
5320	mode_cmd.height = mode->vdisplay;
5321	mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
5322								bpp);
5323	mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
5324
5325	return intel_framebuffer_create(dev, &mode_cmd, obj);
5326}
5327
5328static struct drm_framebuffer *
5329mode_fits_in_fbdev(struct drm_device *dev,
5330		   struct drm_display_mode *mode)
5331{
5332	struct drm_i915_private *dev_priv = dev->dev_private;
5333	struct drm_i915_gem_object *obj;
5334	struct drm_framebuffer *fb;
5335
5336	if (dev_priv->fbdev == NULL)
5337		return NULL;
5338
5339	obj = dev_priv->fbdev->ifb.obj;
5340	if (obj == NULL)
5341		return NULL;
5342
5343	fb = &dev_priv->fbdev->ifb.base;
5344	if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
5345							       fb->bits_per_pixel))
5346		return NULL;
5347
5348	if (obj->base.size < mode->vdisplay * fb->pitches[0])
5349		return NULL;
5350
5351	return fb;
5352}
5353
5354bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
5355				struct drm_connector *connector,
5356				struct drm_display_mode *mode,
5357				struct intel_load_detect_pipe *old)
5358{
5359	struct intel_crtc *intel_crtc;
5360	struct drm_crtc *possible_crtc;
5361	struct drm_encoder *encoder = &intel_encoder->base;
5362	struct drm_crtc *crtc = NULL;
5363	struct drm_device *dev = encoder->dev;
5364	struct drm_framebuffer *old_fb;
5365	int i = -1;
5366
5367	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5368		      connector->base.id, drm_get_connector_name(connector),
5369		      encoder->base.id, drm_get_encoder_name(encoder));
5370
5371	/*
5372	 * Algorithm gets a little messy:
5373	 *
5374	 *   - if the connector already has an assigned crtc, use it (but make
5375	 *     sure it's on first)
5376	 *
5377	 *   - try to find the first unused crtc that can drive this connector,
5378	 *     and use that if we find one
5379	 */
5380
5381	/* See if we already have a CRTC for this connector */
5382	if (encoder->crtc) {
5383		crtc = encoder->crtc;
5384
5385		intel_crtc = to_intel_crtc(crtc);
5386		old->dpms_mode = intel_crtc->dpms_mode;
5387		old->load_detect_temp = false;
5388
5389		/* Make sure the crtc and connector are running */
5390		if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
5391			struct drm_encoder_helper_funcs *encoder_funcs;
5392			struct drm_crtc_helper_funcs *crtc_funcs;
5393
5394			crtc_funcs = crtc->helper_private;
5395			crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
5396
5397			encoder_funcs = encoder->helper_private;
5398			encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
5399		}
5400
5401		return true;
5402	}
5403
5404	/* Find an unused one (if possible) */
5405	list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5406		i++;
5407		if (!(encoder->possible_crtcs & (1 << i)))
5408			continue;
5409		if (!possible_crtc->enabled) {
5410			crtc = possible_crtc;
5411			break;
5412		}
5413	}
5414
5415	/*
5416	 * If we didn't find an unused CRTC, don't use any.
5417	 */
5418	if (!crtc) {
5419		DRM_DEBUG_KMS("no pipe available for load-detect\n");
5420		return false;
5421	}
5422
5423	encoder->crtc = crtc;
5424	connector->encoder = encoder;
5425
5426	intel_crtc = to_intel_crtc(crtc);
5427	old->dpms_mode = intel_crtc->dpms_mode;
5428	old->load_detect_temp = true;
5429	old->release_fb = NULL;
5430
5431	if (!mode)
5432		mode = &load_detect_mode;
5433
5434	old_fb = crtc->fb;
5435
5436	/* We need a framebuffer large enough to accommodate all accesses
5437	 * that the plane may generate whilst we perform load detection.
5438	 * We can not rely on the fbcon either being present (we get called
5439	 * during its initialisation to detect all boot displays, or it may
5440	 * not even exist) or that it is large enough to satisfy the
5441	 * requested mode.
5442	 */
5443	crtc->fb = mode_fits_in_fbdev(dev, mode);
5444	if (crtc->fb == NULL) {
5445		DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
5446		crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
5447		old->release_fb = crtc->fb;
5448	} else
5449		DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
5450	if (IS_ERR(crtc->fb)) {
5451		DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
5452		crtc->fb = old_fb;
5453		return false;
5454	}
5455
5456	if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
5457		DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
5458		if (old->release_fb)
5459			old->release_fb->funcs->destroy(old->release_fb);
5460		crtc->fb = old_fb;
5461		return false;
5462	}
5463
5464	/* let the connector get through one full cycle before testing */
5465	intel_wait_for_vblank(dev, intel_crtc->pipe);
5466
5467	return true;
5468}
5469
5470void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
5471				    struct drm_connector *connector,
5472				    struct intel_load_detect_pipe *old)
5473{
5474	struct drm_encoder *encoder = &intel_encoder->base;
5475	struct drm_device *dev = encoder->dev;
5476	struct drm_crtc *crtc = encoder->crtc;
5477	struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
5478	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
5479
5480	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5481		      connector->base.id, drm_get_connector_name(connector),
5482		      encoder->base.id, drm_get_encoder_name(encoder));
5483
5484	if (old->load_detect_temp) {
5485		connector->encoder = NULL;
5486		drm_helper_disable_unused_functions(dev);
5487
5488		if (old->release_fb)
5489			old->release_fb->funcs->destroy(old->release_fb);
5490
5491		return;
5492	}
5493
5494	/* Switch crtc and encoder back off if necessary */
5495	if (old->dpms_mode != DRM_MODE_DPMS_ON) {
5496		encoder_funcs->dpms(encoder, old->dpms_mode);
5497		crtc_funcs->dpms(crtc, old->dpms_mode);
5498	}
5499}
5500
5501/* Returns the clock of the currently programmed mode of the given pipe. */
5502static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
5503{
5504	struct drm_i915_private *dev_priv = dev->dev_private;
5505	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5506	int pipe = intel_crtc->pipe;
5507	u32 dpll = I915_READ(DPLL(pipe));
5508	u32 fp;
5509	intel_clock_t clock;
5510
5511	if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
5512		fp = I915_READ(FP0(pipe));
5513	else
5514		fp = I915_READ(FP1(pipe));
5515
5516	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
5517	if (IS_PINEVIEW(dev)) {
5518		clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
5519		clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
5520	} else {
5521		clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
5522		clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
5523	}
5524
5525	if (!IS_GEN2(dev)) {
5526		if (IS_PINEVIEW(dev))
5527			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
5528				DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
5529		else
5530			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
5531			       DPLL_FPA01_P1_POST_DIV_SHIFT);
5532
5533		switch (dpll & DPLL_MODE_MASK) {
5534		case DPLLB_MODE_DAC_SERIAL:
5535			clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5536				5 : 10;
5537			break;
5538		case DPLLB_MODE_LVDS:
5539			clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
5540				7 : 14;
5541			break;
5542		default:
5543			DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
5544				  "mode\n", (int)(dpll & DPLL_MODE_MASK));
5545			return 0;
5546		}
5547
5548		/* XXX: Handle the 100Mhz refclk */
5549		intel_clock(dev, 96000, &clock);
5550	} else {
5551		bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
5552
5553		if (is_lvds) {
5554			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
5555				       DPLL_FPA01_P1_POST_DIV_SHIFT);
5556			clock.p2 = 14;
5557
5558			if ((dpll & PLL_REF_INPUT_MASK) ==
5559			    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
5560				/* XXX: might not be 66MHz */
5561				intel_clock(dev, 66000, &clock);
5562			} else
5563				intel_clock(dev, 48000, &clock);
5564		} else {
5565			if (dpll & PLL_P1_DIVIDE_BY_TWO)
5566				clock.p1 = 2;
5567			else {
5568				clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
5569					    DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
5570			}
5571			if (dpll & PLL_P2_DIVIDE_BY_4)
5572				clock.p2 = 4;
5573			else
5574				clock.p2 = 2;
5575
5576			intel_clock(dev, 48000, &clock);
5577		}
5578	}
5579
5580	/* XXX: It would be nice to validate the clocks, but we can't reuse
5581	 * i830PllIsValid() because it relies on the xf86_config connector
5582	 * configuration being accurate, which it isn't necessarily.
5583	 */
5584
5585	return clock.dot;
5586}
5587
5588/** Returns the currently programmed mode of the given pipe. */
5589struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
5590					     struct drm_crtc *crtc)
5591{
5592	struct drm_i915_private *dev_priv = dev->dev_private;
5593	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5594	int pipe = intel_crtc->pipe;
5595	struct drm_display_mode *mode;
5596	int htot = I915_READ(HTOTAL(pipe));
5597	int hsync = I915_READ(HSYNC(pipe));
5598	int vtot = I915_READ(VTOTAL(pipe));
5599	int vsync = I915_READ(VSYNC(pipe));
5600
5601	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
5602	if (!mode)
5603		return NULL;
5604
5605	mode->clock = intel_crtc_clock_get(dev, crtc);
5606	mode->hdisplay = (htot & 0xffff) + 1;
5607	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
5608	mode->hsync_start = (hsync & 0xffff) + 1;
5609	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
5610	mode->vdisplay = (vtot & 0xffff) + 1;
5611	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
5612	mode->vsync_start = (vsync & 0xffff) + 1;
5613	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
5614
5615	drm_mode_set_name(mode);
5616
5617	return mode;
5618}
5619
5620#define GPU_IDLE_TIMEOUT 500 /* ms */
5621
5622/* When this timer fires, we've been idle for awhile */
5623static void intel_gpu_idle_timer(unsigned long arg)
5624{
5625	struct drm_device *dev = (struct drm_device *)arg;
5626	drm_i915_private_t *dev_priv = dev->dev_private;
5627
5628	if (!list_empty(&dev_priv->mm.active_list)) {
5629		/* Still processing requests, so just re-arm the timer. */
5630		mod_timer(&dev_priv->idle_timer, jiffies +
5631			  msecs_to_jiffies(GPU_IDLE_TIMEOUT));
5632		return;
5633	}
5634
5635	dev_priv->busy = false;
5636	queue_work(dev_priv->wq, &dev_priv->idle_work);
5637}
5638
5639#define CRTC_IDLE_TIMEOUT 1000 /* ms */
5640
5641static void intel_crtc_idle_timer(unsigned long arg)
5642{
5643	struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
5644	struct drm_crtc *crtc = &intel_crtc->base;
5645	drm_i915_private_t *dev_priv = crtc->dev->dev_private;
5646	struct intel_framebuffer *intel_fb;
5647
5648	intel_fb = to_intel_framebuffer(crtc->fb);
5649	if (intel_fb && intel_fb->obj->active) {
5650		/* The framebuffer is still being accessed by the GPU. */
5651		mod_timer(&intel_crtc->idle_timer, jiffies +
5652			  msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5653		return;
5654	}
5655
5656	intel_crtc->busy = false;
5657	queue_work(dev_priv->wq, &dev_priv->idle_work);
5658}
5659
5660static void intel_increase_pllclock(struct drm_crtc *crtc)
5661{
5662	struct drm_device *dev = crtc->dev;
5663	drm_i915_private_t *dev_priv = dev->dev_private;
5664	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5665	int pipe = intel_crtc->pipe;
5666	int dpll_reg = DPLL(pipe);
5667	int dpll;
5668
5669	if (HAS_PCH_SPLIT(dev))
5670		return;
5671
5672	if (!dev_priv->lvds_downclock_avail)
5673		return;
5674
5675	dpll = I915_READ(dpll_reg);
5676	if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
5677		DRM_DEBUG_DRIVER("upclocking LVDS\n");
5678
5679		assert_panel_unlocked(dev_priv, pipe);
5680
5681		dpll &= ~DISPLAY_RATE_SELECT_FPA1;
5682		I915_WRITE(dpll_reg, dpll);
5683		intel_wait_for_vblank(dev, pipe);
5684
5685		dpll = I915_READ(dpll_reg);
5686		if (dpll & DISPLAY_RATE_SELECT_FPA1)
5687			DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
5688	}
5689
5690	/* Schedule downclock */
5691	mod_timer(&intel_crtc->idle_timer, jiffies +
5692		  msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5693}
5694
5695static void intel_decrease_pllclock(struct drm_crtc *crtc)
5696{
5697	struct drm_device *dev = crtc->dev;
5698	drm_i915_private_t *dev_priv = dev->dev_private;
5699	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5700
5701	if (HAS_PCH_SPLIT(dev))
5702		return;
5703
5704	if (!dev_priv->lvds_downclock_avail)
5705		return;
5706
5707	/*
5708	 * Since this is called by a timer, we should never get here in
5709	 * the manual case.
5710	 */
5711	if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
5712		int pipe = intel_crtc->pipe;
5713		int dpll_reg = DPLL(pipe);
5714		int dpll;
5715
5716		DRM_DEBUG_DRIVER("downclocking LVDS\n");
5717
5718		assert_panel_unlocked(dev_priv, pipe);
5719
5720		dpll = I915_READ(dpll_reg);
5721		dpll |= DISPLAY_RATE_SELECT_FPA1;
5722		I915_WRITE(dpll_reg, dpll);
5723		intel_wait_for_vblank(dev, pipe);
5724		dpll = I915_READ(dpll_reg);
5725		if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
5726			DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
5727	}
5728
5729}
5730
5731/**
5732 * intel_idle_update - adjust clocks for idleness
5733 * @work: work struct
5734 *
5735 * Either the GPU or display (or both) went idle.  Check the busy status
5736 * here and adjust the CRTC and GPU clocks as necessary.
5737 */
5738static void intel_idle_update(struct work_struct *work)
5739{
5740	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
5741						    idle_work);
5742	struct drm_device *dev = dev_priv->dev;
5743	struct drm_crtc *crtc;
5744	struct intel_crtc *intel_crtc;
5745
5746	if (!i915_powersave)
5747		return;
5748
5749	mutex_lock(&dev->struct_mutex);
5750
5751	i915_update_gfx_val(dev_priv);
5752
5753	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5754		/* Skip inactive CRTCs */
5755		if (!crtc->fb)
5756			continue;
5757
5758		intel_crtc = to_intel_crtc(crtc);
5759		if (!intel_crtc->busy)
5760			intel_decrease_pllclock(crtc);
5761	}
5762
5763
5764	mutex_unlock(&dev->struct_mutex);
5765}
5766
5767/**
5768 * intel_mark_busy - mark the GPU and possibly the display busy
5769 * @dev: drm device
5770 * @obj: object we're operating on
5771 *
5772 * Callers can use this function to indicate that the GPU is busy processing
5773 * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
5774 * buffer), we'll also mark the display as busy, so we know to increase its
5775 * clock frequency.
5776 */
5777void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
5778{
5779	drm_i915_private_t *dev_priv = dev->dev_private;
5780	struct drm_crtc *crtc = NULL;
5781	struct intel_framebuffer *intel_fb;
5782	struct intel_crtc *intel_crtc;
5783
5784	if (!drm_core_check_feature(dev, DRIVER_MODESET))
5785		return;
5786
5787	if (!dev_priv->busy) {
5788		intel_sanitize_pm(dev);
5789		dev_priv->busy = true;
5790	} else
5791		mod_timer(&dev_priv->idle_timer, jiffies +
5792			  msecs_to_jiffies(GPU_IDLE_TIMEOUT));
5793
5794	if (obj == NULL)
5795		return;
5796
5797	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5798		if (!crtc->fb)
5799			continue;
5800
5801		intel_crtc = to_intel_crtc(crtc);
5802		intel_fb = to_intel_framebuffer(crtc->fb);
5803		if (intel_fb->obj == obj) {
5804			if (!intel_crtc->busy) {
5805				/* Non-busy -> busy, upclock */
5806				intel_increase_pllclock(crtc);
5807				intel_crtc->busy = true;
5808			} else {
5809				/* Busy -> busy, put off timer */
5810				mod_timer(&intel_crtc->idle_timer, jiffies +
5811					  msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5812			}
5813		}
5814	}
5815}
5816
5817static void intel_crtc_destroy(struct drm_crtc *crtc)
5818{
5819	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5820	struct drm_device *dev = crtc->dev;
5821	struct intel_unpin_work *work;
5822	unsigned long flags;
5823
5824	spin_lock_irqsave(&dev->event_lock, flags);
5825	work = intel_crtc->unpin_work;
5826	intel_crtc->unpin_work = NULL;
5827	spin_unlock_irqrestore(&dev->event_lock, flags);
5828
5829	if (work) {
5830		cancel_work_sync(&work->work);
5831		kfree(work);
5832	}
5833
5834	drm_crtc_cleanup(crtc);
5835
5836	kfree(intel_crtc);
5837}
5838
5839static void intel_unpin_work_fn(struct work_struct *__work)
5840{
5841	struct intel_unpin_work *work =
5842		container_of(__work, struct intel_unpin_work, work);
5843
5844	mutex_lock(&work->dev->struct_mutex);
5845	intel_unpin_fb_obj(work->old_fb_obj);
5846	drm_gem_object_unreference(&work->pending_flip_obj->base);
5847	drm_gem_object_unreference(&work->old_fb_obj->base);
5848
5849	intel_update_fbc(work->dev);
5850	mutex_unlock(&work->dev->struct_mutex);
5851	kfree(work);
5852}
5853
5854static void do_intel_finish_page_flip(struct drm_device *dev,
5855				      struct drm_crtc *crtc)
5856{
5857	drm_i915_private_t *dev_priv = dev->dev_private;
5858	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5859	struct intel_unpin_work *work;
5860	struct drm_i915_gem_object *obj;
5861	struct drm_pending_vblank_event *e;
5862	struct timeval tnow, tvbl;
5863	unsigned long flags;
5864
5865	/* Ignore early vblank irqs */
5866	if (intel_crtc == NULL)
5867		return;
5868
5869	do_gettimeofday(&tnow);
5870
5871	spin_lock_irqsave(&dev->event_lock, flags);
5872	work = intel_crtc->unpin_work;
5873	if (work == NULL || !work->pending) {
5874		spin_unlock_irqrestore(&dev->event_lock, flags);
5875		return;
5876	}
5877
5878	intel_crtc->unpin_work = NULL;
5879
5880	if (work->event) {
5881		e = work->event;
5882		e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
5883
5884		/* Called before vblank count and timestamps have
5885		 * been updated for the vblank interval of flip
5886		 * completion? Need to increment vblank count and
5887		 * add one videorefresh duration to returned timestamp
5888		 * to account for this. We assume this happened if we
5889		 * get called over 0.9 frame durations after the last
5890		 * timestamped vblank.
5891		 *
5892		 * This calculation can not be used with vrefresh rates
5893		 * below 5Hz (10Hz to be on the safe side) without
5894		 * promoting to 64 integers.
5895		 */
5896		if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
5897		    9 * crtc->framedur_ns) {
5898			e->event.sequence++;
5899			tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
5900					     crtc->framedur_ns);
5901		}
5902
5903		e->event.tv_sec = tvbl.tv_sec;
5904		e->event.tv_usec = tvbl.tv_usec;
5905
5906		list_add_tail(&e->base.link,
5907			      &e->base.file_priv->event_list);
5908		wake_up_interruptible(&e->base.file_priv->event_wait);
5909	}
5910
5911	drm_vblank_put(dev, intel_crtc->pipe);
5912
5913	spin_unlock_irqrestore(&dev->event_lock, flags);
5914
5915	obj = work->old_fb_obj;
5916
5917	atomic_clear_mask(1 << intel_crtc->plane,
5918			  &obj->pending_flip.counter);
5919	if (atomic_read(&obj->pending_flip) == 0)
5920		wake_up(&dev_priv->pending_flip_queue);
5921
5922	schedule_work(&work->work);
5923
5924	trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
5925}
5926
5927void intel_finish_page_flip(struct drm_device *dev, int pipe)
5928{
5929	drm_i915_private_t *dev_priv = dev->dev_private;
5930	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
5931
5932	do_intel_finish_page_flip(dev, crtc);
5933}
5934
5935void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
5936{
5937	drm_i915_private_t *dev_priv = dev->dev_private;
5938	struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
5939
5940	do_intel_finish_page_flip(dev, crtc);
5941}
5942
5943void intel_prepare_page_flip(struct drm_device *dev, int plane)
5944{
5945	drm_i915_private_t *dev_priv = dev->dev_private;
5946	struct intel_crtc *intel_crtc =
5947		to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
5948	unsigned long flags;
5949
5950	spin_lock_irqsave(&dev->event_lock, flags);
5951	if (intel_crtc->unpin_work) {
5952		if ((++intel_crtc->unpin_work->pending) > 1)
5953			DRM_ERROR("Prepared flip multiple times\n");
5954	} else {
5955		DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
5956	}
5957	spin_unlock_irqrestore(&dev->event_lock, flags);
5958}
5959
5960static int intel_gen2_queue_flip(struct drm_device *dev,
5961				 struct drm_crtc *crtc,
5962				 struct drm_framebuffer *fb,
5963				 struct drm_i915_gem_object *obj)
5964{
5965	struct drm_i915_private *dev_priv = dev->dev_private;
5966	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5967	unsigned long offset;
5968	u32 flip_mask;
5969	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
5970	int ret;
5971
5972	ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
5973	if (ret)
5974		goto err;
5975
5976	/* Offset into the new buffer for cases of shared fbs between CRTCs */
5977	offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
5978
5979	ret = intel_ring_begin(ring, 6);
5980	if (ret)
5981		goto err_unpin;
5982
5983	/* Can't queue multiple flips, so wait for the previous
5984	 * one to finish before executing the next.
5985	 */
5986	if (intel_crtc->plane)
5987		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
5988	else
5989		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
5990	intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
5991	intel_ring_emit(ring, MI_NOOP);
5992	intel_ring_emit(ring, MI_DISPLAY_FLIP |
5993			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5994	intel_ring_emit(ring, fb->pitches[0]);
5995	intel_ring_emit(ring, obj->gtt_offset + offset);
5996	intel_ring_emit(ring, 0); /* aux display base address, unused */
5997	intel_ring_advance(ring);
5998	return 0;
5999
6000err_unpin:
6001	intel_unpin_fb_obj(obj);
6002err:
6003	return ret;
6004}
6005
6006static int intel_gen3_queue_flip(struct drm_device *dev,
6007				 struct drm_crtc *crtc,
6008				 struct drm_framebuffer *fb,
6009				 struct drm_i915_gem_object *obj)
6010{
6011	struct drm_i915_private *dev_priv = dev->dev_private;
6012	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6013	unsigned long offset;
6014	u32 flip_mask;
6015	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6016	int ret;
6017
6018	ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6019	if (ret)
6020		goto err;
6021
6022	/* Offset into the new buffer for cases of shared fbs between CRTCs */
6023	offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
6024
6025	ret = intel_ring_begin(ring, 6);
6026	if (ret)
6027		goto err_unpin;
6028
6029	if (intel_crtc->plane)
6030		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6031	else
6032		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6033	intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6034	intel_ring_emit(ring, MI_NOOP);
6035	intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
6036			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6037	intel_ring_emit(ring, fb->pitches[0]);
6038	intel_ring_emit(ring, obj->gtt_offset + offset);
6039	intel_ring_emit(ring, MI_NOOP);
6040
6041	intel_ring_advance(ring);
6042	return 0;
6043
6044err_unpin:
6045	intel_unpin_fb_obj(obj);
6046err:
6047	return ret;
6048}
6049
6050static int intel_gen4_queue_flip(struct drm_device *dev,
6051				 struct drm_crtc *crtc,
6052				 struct drm_framebuffer *fb,
6053				 struct drm_i915_gem_object *obj)
6054{
6055	struct drm_i915_private *dev_priv = dev->dev_private;
6056	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6057	uint32_t pf, pipesrc;
6058	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6059	int ret;
6060
6061	ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6062	if (ret)
6063		goto err;
6064
6065	ret = intel_ring_begin(ring, 4);
6066	if (ret)
6067		goto err_unpin;
6068
6069	/* i965+ uses the linear or tiled offsets from the
6070	 * Display Registers (which do not change across a page-flip)
6071	 * so we need only reprogram the base address.
6072	 */
6073	intel_ring_emit(ring, MI_DISPLAY_FLIP |
6074			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6075	intel_ring_emit(ring, fb->pitches[0]);
6076	intel_ring_emit(ring, obj->gtt_offset | obj->tiling_mode);
6077
6078	/* XXX Enabling the panel-fitter across page-flip is so far
6079	 * untested on non-native modes, so ignore it for now.
6080	 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6081	 */
6082	pf = 0;
6083	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6084	intel_ring_emit(ring, pf | pipesrc);
6085	intel_ring_advance(ring);
6086	return 0;
6087
6088err_unpin:
6089	intel_unpin_fb_obj(obj);
6090err:
6091	return ret;
6092}
6093
6094static int intel_gen6_queue_flip(struct drm_device *dev,
6095				 struct drm_crtc *crtc,
6096				 struct drm_framebuffer *fb,
6097				 struct drm_i915_gem_object *obj)
6098{
6099	struct drm_i915_private *dev_priv = dev->dev_private;
6100	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6101	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6102	uint32_t pf, pipesrc;
6103	int ret;
6104
6105	ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6106	if (ret)
6107		goto err;
6108
6109	ret = intel_ring_begin(ring, 4);
6110	if (ret)
6111		goto err_unpin;
6112
6113	intel_ring_emit(ring, MI_DISPLAY_FLIP |
6114			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6115	intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
6116	intel_ring_emit(ring, obj->gtt_offset);
6117
6118	/* Contrary to the suggestions in the documentation,
6119	 * "Enable Panel Fitter" does not seem to be required when page
6120	 * flipping with a non-native mode, and worse causes a normal
6121	 * modeset to fail.
6122	 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6123	 */
6124	pf = 0;
6125	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6126	intel_ring_emit(ring, pf | pipesrc);
6127	intel_ring_advance(ring);
6128	return 0;
6129
6130err_unpin:
6131	intel_unpin_fb_obj(obj);
6132err:
6133	return ret;
6134}
6135
6136/*
6137 * On gen7 we currently use the blit ring because (in early silicon at least)
6138 * the render ring doesn't give us interrpts for page flip completion, which
6139 * means clients will hang after the first flip is queued.  Fortunately the
6140 * blit ring generates interrupts properly, so use it instead.
6141 */
6142static int intel_gen7_queue_flip(struct drm_device *dev,
6143				 struct drm_crtc *crtc,
6144				 struct drm_framebuffer *fb,
6145				 struct drm_i915_gem_object *obj)
6146{
6147	struct drm_i915_private *dev_priv = dev->dev_private;
6148	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6149	struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
6150	uint32_t plane_bit = 0;
6151	int ret;
6152
6153	ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6154	if (ret)
6155		goto err;
6156
6157	switch(intel_crtc->plane) {
6158	case PLANE_A:
6159		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
6160		break;
6161	case PLANE_B:
6162		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
6163		break;
6164	case PLANE_C:
6165		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
6166		break;
6167	default:
6168		WARN_ONCE(1, "unknown plane in flip command\n");
6169		ret = -ENODEV;
6170		goto err;
6171	}
6172
6173	ret = intel_ring_begin(ring, 4);
6174	if (ret)
6175		goto err_unpin;
6176
6177	intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
6178	intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
6179	intel_ring_emit(ring, (obj->gtt_offset));
6180	intel_ring_emit(ring, (MI_NOOP));
6181	intel_ring_advance(ring);
6182	return 0;
6183
6184err_unpin:
6185	intel_unpin_fb_obj(obj);
6186err:
6187	return ret;
6188}
6189
6190static int intel_default_queue_flip(struct drm_device *dev,
6191				    struct drm_crtc *crtc,
6192				    struct drm_framebuffer *fb,
6193				    struct drm_i915_gem_object *obj)
6194{
6195	return -ENODEV;
6196}
6197
6198static int intel_crtc_page_flip(struct drm_crtc *crtc,
6199				struct drm_framebuffer *fb,
6200				struct drm_pending_vblank_event *event)
6201{
6202	struct drm_device *dev = crtc->dev;
6203	struct drm_i915_private *dev_priv = dev->dev_private;
6204	struct intel_framebuffer *intel_fb;
6205	struct drm_i915_gem_object *obj;
6206	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6207	struct intel_unpin_work *work;
6208	unsigned long flags;
6209	int ret;
6210
6211	work = kzalloc(sizeof *work, GFP_KERNEL);
6212	if (work == NULL)
6213		return -ENOMEM;
6214
6215	work->event = event;
6216	work->dev = crtc->dev;
6217	intel_fb = to_intel_framebuffer(crtc->fb);
6218	work->old_fb_obj = intel_fb->obj;
6219	INIT_WORK(&work->work, intel_unpin_work_fn);
6220
6221	ret = drm_vblank_get(dev, intel_crtc->pipe);
6222	if (ret)
6223		goto free_work;
6224
6225	/* We borrow the event spin lock for protecting unpin_work */
6226	spin_lock_irqsave(&dev->event_lock, flags);
6227	if (intel_crtc->unpin_work) {
6228		spin_unlock_irqrestore(&dev->event_lock, flags);
6229		kfree(work);
6230		drm_vblank_put(dev, intel_crtc->pipe);
6231
6232		DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6233		return -EBUSY;
6234	}
6235	intel_crtc->unpin_work = work;
6236	spin_unlock_irqrestore(&dev->event_lock, flags);
6237
6238	intel_fb = to_intel_framebuffer(fb);
6239	obj = intel_fb->obj;
6240
6241	mutex_lock(&dev->struct_mutex);
6242
6243	/* Reference the objects for the scheduled work. */
6244	drm_gem_object_reference(&work->old_fb_obj->base);
6245	drm_gem_object_reference(&obj->base);
6246
6247	crtc->fb = fb;
6248
6249	work->pending_flip_obj = obj;
6250
6251	work->enable_stall_check = true;
6252
6253	/* Block clients from rendering to the new back buffer until
6254	 * the flip occurs and the object is no longer visible.
6255	 */
6256	atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6257
6258	ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
6259	if (ret)
6260		goto cleanup_pending;
6261
6262	intel_disable_fbc(dev);
6263	intel_mark_busy(dev, obj);
6264	mutex_unlock(&dev->struct_mutex);
6265
6266	trace_i915_flip_request(intel_crtc->plane, obj);
6267
6268	return 0;
6269
6270cleanup_pending:
6271	atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6272	drm_gem_object_unreference(&work->old_fb_obj->base);
6273	drm_gem_object_unreference(&obj->base);
6274	mutex_unlock(&dev->struct_mutex);
6275
6276	spin_lock_irqsave(&dev->event_lock, flags);
6277	intel_crtc->unpin_work = NULL;
6278	spin_unlock_irqrestore(&dev->event_lock, flags);
6279
6280	drm_vblank_put(dev, intel_crtc->pipe);
6281free_work:
6282	kfree(work);
6283
6284	return ret;
6285}
6286
6287static void intel_sanitize_modesetting(struct drm_device *dev,
6288				       int pipe, int plane)
6289{
6290	struct drm_i915_private *dev_priv = dev->dev_private;
6291	u32 reg, val;
6292	int i;
6293
6294	/* Clear any frame start delays used for debugging left by the BIOS */
6295	for_each_pipe(i) {
6296		reg = PIPECONF(i);
6297		I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
6298	}
6299
6300	if (HAS_PCH_SPLIT(dev))
6301		return;
6302
6303	/* Who knows what state these registers were left in by the BIOS or
6304	 * grub?
6305	 *
6306	 * If we leave the registers in a conflicting state (e.g. with the
6307	 * display plane reading from the other pipe than the one we intend
6308	 * to use) then when we attempt to teardown the active mode, we will
6309	 * not disable the pipes and planes in the correct order -- leaving
6310	 * a plane reading from a disabled pipe and possibly leading to
6311	 * undefined behaviour.
6312	 */
6313
6314	reg = DSPCNTR(plane);
6315	val = I915_READ(reg);
6316
6317	if ((val & DISPLAY_PLANE_ENABLE) == 0)
6318		return;
6319	if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
6320		return;
6321
6322	/* This display plane is active and attached to the other CPU pipe. */
6323	pipe = !pipe;
6324
6325	/* Disable the plane and wait for it to stop reading from the pipe. */
6326	intel_disable_plane(dev_priv, plane, pipe);
6327	intel_disable_pipe(dev_priv, pipe);
6328}
6329
6330static void intel_crtc_reset(struct drm_crtc *crtc)
6331{
6332	struct drm_device *dev = crtc->dev;
6333	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6334
6335	/* Reset flags back to the 'unknown' status so that they
6336	 * will be correctly set on the initial modeset.
6337	 */
6338	intel_crtc->dpms_mode = -1;
6339
6340	/* We need to fix up any BIOS configuration that conflicts with
6341	 * our expectations.
6342	 */
6343	intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
6344}
6345
6346static struct drm_crtc_helper_funcs intel_helper_funcs = {
6347	.dpms = intel_crtc_dpms,
6348	.mode_fixup = intel_crtc_mode_fixup,
6349	.mode_set = intel_crtc_mode_set,
6350	.mode_set_base = intel_pipe_set_base,
6351	.mode_set_base_atomic = intel_pipe_set_base_atomic,
6352	.load_lut = intel_crtc_load_lut,
6353	.disable = intel_crtc_disable,
6354};
6355
6356static const struct drm_crtc_funcs intel_crtc_funcs = {
6357	.reset = intel_crtc_reset,
6358	.cursor_set = intel_crtc_cursor_set,
6359	.cursor_move = intel_crtc_cursor_move,
6360	.gamma_set = intel_crtc_gamma_set,
6361	.set_config = drm_crtc_helper_set_config,
6362	.destroy = intel_crtc_destroy,
6363	.page_flip = intel_crtc_page_flip,
6364};
6365
6366static void intel_pch_pll_init(struct drm_device *dev)
6367{
6368	drm_i915_private_t *dev_priv = dev->dev_private;
6369	int i;
6370
6371	if (dev_priv->num_pch_pll == 0) {
6372		DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
6373		return;
6374	}
6375
6376	for (i = 0; i < dev_priv->num_pch_pll; i++) {
6377		dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
6378		dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
6379		dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
6380	}
6381}
6382
6383static void intel_crtc_init(struct drm_device *dev, int pipe)
6384{
6385	drm_i915_private_t *dev_priv = dev->dev_private;
6386	struct intel_crtc *intel_crtc;
6387	int i;
6388
6389	intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
6390	if (intel_crtc == NULL)
6391		return;
6392
6393	drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
6394
6395	drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
6396	for (i = 0; i < 256; i++) {
6397		intel_crtc->lut_r[i] = i;
6398		intel_crtc->lut_g[i] = i;
6399		intel_crtc->lut_b[i] = i;
6400	}
6401
6402	/* Swap pipes & planes for FBC on pre-965 */
6403	intel_crtc->pipe = pipe;
6404	intel_crtc->plane = pipe;
6405	if (IS_MOBILE(dev) && IS_GEN3(dev)) {
6406		DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
6407		intel_crtc->plane = !pipe;
6408	}
6409
6410	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
6411	       dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
6412	dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
6413	dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
6414
6415	intel_crtc_reset(&intel_crtc->base);
6416	intel_crtc->active = true; /* force the pipe off on setup_init_config */
6417	intel_crtc->bpp = 24; /* default for pre-Ironlake */
6418
6419	if (HAS_PCH_SPLIT(dev)) {
6420		intel_helper_funcs.prepare = ironlake_crtc_prepare;
6421		intel_helper_funcs.commit = ironlake_crtc_commit;
6422	} else {
6423		intel_helper_funcs.prepare = i9xx_crtc_prepare;
6424		intel_helper_funcs.commit = i9xx_crtc_commit;
6425	}
6426
6427	drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
6428
6429	intel_crtc->busy = false;
6430
6431	setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
6432		    (unsigned long)intel_crtc);
6433}
6434
6435int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
6436				struct drm_file *file)
6437{
6438	struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
6439	struct drm_mode_object *drmmode_obj;
6440	struct intel_crtc *crtc;
6441
6442	if (!drm_core_check_feature(dev, DRIVER_MODESET))
6443		return -ENODEV;
6444
6445	drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
6446			DRM_MODE_OBJECT_CRTC);
6447
6448	if (!drmmode_obj) {
6449		DRM_ERROR("no such CRTC id\n");
6450		return -EINVAL;
6451	}
6452
6453	crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
6454	pipe_from_crtc_id->pipe = crtc->pipe;
6455
6456	return 0;
6457}
6458
6459static int intel_encoder_clones(struct drm_device *dev, int type_mask)
6460{
6461	struct intel_encoder *encoder;
6462	int index_mask = 0;
6463	int entry = 0;
6464
6465	list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6466		if (type_mask & encoder->clone_mask)
6467			index_mask |= (1 << entry);
6468		entry++;
6469	}
6470
6471	return index_mask;
6472}
6473
6474static bool has_edp_a(struct drm_device *dev)
6475{
6476	struct drm_i915_private *dev_priv = dev->dev_private;
6477
6478	if (!IS_MOBILE(dev))
6479		return false;
6480
6481	if ((I915_READ(DP_A) & DP_DETECTED) == 0)
6482		return false;
6483
6484	if (IS_GEN5(dev) &&
6485	    (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
6486		return false;
6487
6488	return true;
6489}
6490
6491static void intel_setup_outputs(struct drm_device *dev)
6492{
6493	struct drm_i915_private *dev_priv = dev->dev_private;
6494	struct intel_encoder *encoder;
6495	bool dpd_is_edp = false;
6496	bool has_lvds;
6497
6498	has_lvds = intel_lvds_init(dev);
6499	if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
6500		/* disable the panel fitter on everything but LVDS */
6501		I915_WRITE(PFIT_CONTROL, 0);
6502	}
6503
6504	if (HAS_PCH_SPLIT(dev)) {
6505		dpd_is_edp = intel_dpd_is_edp(dev);
6506
6507		if (has_edp_a(dev))
6508			intel_dp_init(dev, DP_A);
6509
6510		if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6511			intel_dp_init(dev, PCH_DP_D);
6512	}
6513
6514	intel_crt_init(dev);
6515
6516	if (IS_HASWELL(dev)) {
6517		int found;
6518
6519		/* Haswell uses DDI functions to detect digital outputs */
6520		found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
6521		/* DDI A only supports eDP */
6522		if (found)
6523			intel_ddi_init(dev, PORT_A);
6524
6525		/* DDI B, C and D detection is indicated by the SFUSE_STRAP
6526		 * register */
6527		found = I915_READ(SFUSE_STRAP);
6528
6529		if (found & SFUSE_STRAP_DDIB_DETECTED)
6530			intel_ddi_init(dev, PORT_B);
6531		if (found & SFUSE_STRAP_DDIC_DETECTED)
6532			intel_ddi_init(dev, PORT_C);
6533		if (found & SFUSE_STRAP_DDID_DETECTED)
6534			intel_ddi_init(dev, PORT_D);
6535	} else if (HAS_PCH_SPLIT(dev)) {
6536		int found;
6537
6538		if (I915_READ(HDMIB) & PORT_DETECTED) {
6539			/* PCH SDVOB multiplex with HDMIB */
6540			found = intel_sdvo_init(dev, PCH_SDVOB, true);
6541			if (!found)
6542				intel_hdmi_init(dev, HDMIB);
6543			if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
6544				intel_dp_init(dev, PCH_DP_B);
6545		}
6546
6547		if (I915_READ(HDMIC) & PORT_DETECTED)
6548			intel_hdmi_init(dev, HDMIC);
6549
6550		if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
6551			intel_hdmi_init(dev, HDMID);
6552
6553		if (I915_READ(PCH_DP_C) & DP_DETECTED)
6554			intel_dp_init(dev, PCH_DP_C);
6555
6556		if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6557			intel_dp_init(dev, PCH_DP_D);
6558
6559	} else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
6560		bool found = false;
6561
6562		if (I915_READ(SDVOB) & SDVO_DETECTED) {
6563			DRM_DEBUG_KMS("probing SDVOB\n");
6564			found = intel_sdvo_init(dev, SDVOB, true);
6565			if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
6566				DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
6567				intel_hdmi_init(dev, SDVOB);
6568			}
6569
6570			if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
6571				DRM_DEBUG_KMS("probing DP_B\n");
6572				intel_dp_init(dev, DP_B);
6573			}
6574		}
6575
6576		/* Before G4X SDVOC doesn't have its own detect register */
6577
6578		if (I915_READ(SDVOB) & SDVO_DETECTED) {
6579			DRM_DEBUG_KMS("probing SDVOC\n");
6580			found = intel_sdvo_init(dev, SDVOC, false);
6581		}
6582
6583		if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
6584
6585			if (SUPPORTS_INTEGRATED_HDMI(dev)) {
6586				DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
6587				intel_hdmi_init(dev, SDVOC);
6588			}
6589			if (SUPPORTS_INTEGRATED_DP(dev)) {
6590				DRM_DEBUG_KMS("probing DP_C\n");
6591				intel_dp_init(dev, DP_C);
6592			}
6593		}
6594
6595		if (SUPPORTS_INTEGRATED_DP(dev) &&
6596		    (I915_READ(DP_D) & DP_DETECTED)) {
6597			DRM_DEBUG_KMS("probing DP_D\n");
6598			intel_dp_init(dev, DP_D);
6599		}
6600	} else if (IS_GEN2(dev))
6601		intel_dvo_init(dev);
6602
6603	if (SUPPORTS_TV(dev))
6604		intel_tv_init(dev);
6605
6606	list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6607		encoder->base.possible_crtcs = encoder->crtc_mask;
6608		encoder->base.possible_clones =
6609			intel_encoder_clones(dev, encoder->clone_mask);
6610	}
6611
6612	/* disable all the possible outputs/crtcs before entering KMS mode */
6613	drm_helper_disable_unused_functions(dev);
6614
6615	if (HAS_PCH_SPLIT(dev))
6616		ironlake_init_pch_refclk(dev);
6617}
6618
6619static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
6620{
6621	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6622
6623	drm_framebuffer_cleanup(fb);
6624	drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
6625
6626	kfree(intel_fb);
6627}
6628
6629static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
6630						struct drm_file *file,
6631						unsigned int *handle)
6632{
6633	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6634	struct drm_i915_gem_object *obj = intel_fb->obj;
6635
6636	return drm_gem_handle_create(file, &obj->base, handle);
6637}
6638
6639static const struct drm_framebuffer_funcs intel_fb_funcs = {
6640	.destroy = intel_user_framebuffer_destroy,
6641	.create_handle = intel_user_framebuffer_create_handle,
6642};
6643
6644int intel_framebuffer_init(struct drm_device *dev,
6645			   struct intel_framebuffer *intel_fb,
6646			   struct drm_mode_fb_cmd2 *mode_cmd,
6647			   struct drm_i915_gem_object *obj)
6648{
6649	int ret;
6650
6651	if (obj->tiling_mode == I915_TILING_Y)
6652		return -EINVAL;
6653
6654	if (mode_cmd->pitches[0] & 63)
6655		return -EINVAL;
6656
6657	switch (mode_cmd->pixel_format) {
6658	case DRM_FORMAT_RGB332:
6659	case DRM_FORMAT_RGB565:
6660	case DRM_FORMAT_XRGB8888:
6661	case DRM_FORMAT_XBGR8888:
6662	case DRM_FORMAT_ARGB8888:
6663	case DRM_FORMAT_XRGB2101010:
6664	case DRM_FORMAT_ARGB2101010:
6665		/* RGB formats are common across chipsets */
6666		break;
6667	case DRM_FORMAT_YUYV:
6668	case DRM_FORMAT_UYVY:
6669	case DRM_FORMAT_YVYU:
6670	case DRM_FORMAT_VYUY:
6671		break;
6672	default:
6673		DRM_DEBUG_KMS("unsupported pixel format %u\n",
6674				mode_cmd->pixel_format);
6675		return -EINVAL;
6676	}
6677
6678	ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
6679	if (ret) {
6680		DRM_ERROR("framebuffer init failed %d\n", ret);
6681		return ret;
6682	}
6683
6684	drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
6685	intel_fb->obj = obj;
6686	return 0;
6687}
6688
6689static struct drm_framebuffer *
6690intel_user_framebuffer_create(struct drm_device *dev,
6691			      struct drm_file *filp,
6692			      struct drm_mode_fb_cmd2 *mode_cmd)
6693{
6694	struct drm_i915_gem_object *obj;
6695
6696	obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
6697						mode_cmd->handles[0]));
6698	if (&obj->base == NULL)
6699		return ERR_PTR(-ENOENT);
6700
6701	return intel_framebuffer_create(dev, mode_cmd, obj);
6702}
6703
6704static const struct drm_mode_config_funcs intel_mode_funcs = {
6705	.fb_create = intel_user_framebuffer_create,
6706	.output_poll_changed = intel_fb_output_poll_changed,
6707};
6708
6709/* Set up chip specific display functions */
6710static void intel_init_display(struct drm_device *dev)
6711{
6712	struct drm_i915_private *dev_priv = dev->dev_private;
6713
6714	/* We always want a DPMS function */
6715	if (HAS_PCH_SPLIT(dev)) {
6716		dev_priv->display.dpms = ironlake_crtc_dpms;
6717		dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
6718		dev_priv->display.off = ironlake_crtc_off;
6719		dev_priv->display.update_plane = ironlake_update_plane;
6720	} else {
6721		dev_priv->display.dpms = i9xx_crtc_dpms;
6722		dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
6723		dev_priv->display.off = i9xx_crtc_off;
6724		dev_priv->display.update_plane = i9xx_update_plane;
6725	}
6726
6727	/* Returns the core display clock speed */
6728	if (IS_VALLEYVIEW(dev))
6729		dev_priv->display.get_display_clock_speed =
6730			valleyview_get_display_clock_speed;
6731	else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
6732		dev_priv->display.get_display_clock_speed =
6733			i945_get_display_clock_speed;
6734	else if (IS_I915G(dev))
6735		dev_priv->display.get_display_clock_speed =
6736			i915_get_display_clock_speed;
6737	else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
6738		dev_priv->display.get_display_clock_speed =
6739			i9xx_misc_get_display_clock_speed;
6740	else if (IS_I915GM(dev))
6741		dev_priv->display.get_display_clock_speed =
6742			i915gm_get_display_clock_speed;
6743	else if (IS_I865G(dev))
6744		dev_priv->display.get_display_clock_speed =
6745			i865_get_display_clock_speed;
6746	else if (IS_I85X(dev))
6747		dev_priv->display.get_display_clock_speed =
6748			i855_get_display_clock_speed;
6749	else /* 852, 830 */
6750		dev_priv->display.get_display_clock_speed =
6751			i830_get_display_clock_speed;
6752
6753	if (HAS_PCH_SPLIT(dev)) {
6754		if (IS_GEN5(dev)) {
6755			dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
6756			dev_priv->display.write_eld = ironlake_write_eld;
6757		} else if (IS_GEN6(dev)) {
6758			dev_priv->display.fdi_link_train = gen6_fdi_link_train;
6759			dev_priv->display.write_eld = ironlake_write_eld;
6760		} else if (IS_IVYBRIDGE(dev)) {
6761			/* FIXME: detect B0+ stepping and use auto training */
6762			dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
6763			dev_priv->display.write_eld = ironlake_write_eld;
6764		} else if (IS_HASWELL(dev)) {
6765			dev_priv->display.fdi_link_train = hsw_fdi_link_train;
6766			dev_priv->display.write_eld = ironlake_write_eld;
6767		} else
6768			dev_priv->display.update_wm = NULL;
6769	} else if (IS_VALLEYVIEW(dev)) {
6770		dev_priv->display.force_wake_get = vlv_force_wake_get;
6771		dev_priv->display.force_wake_put = vlv_force_wake_put;
6772	} else if (IS_G4X(dev)) {
6773		dev_priv->display.write_eld = g4x_write_eld;
6774	}
6775
6776	/* Default just returns -ENODEV to indicate unsupported */
6777	dev_priv->display.queue_flip = intel_default_queue_flip;
6778
6779	switch (INTEL_INFO(dev)->gen) {
6780	case 2:
6781		dev_priv->display.queue_flip = intel_gen2_queue_flip;
6782		break;
6783
6784	case 3:
6785		dev_priv->display.queue_flip = intel_gen3_queue_flip;
6786		break;
6787
6788	case 4:
6789	case 5:
6790		dev_priv->display.queue_flip = intel_gen4_queue_flip;
6791		break;
6792
6793	case 6:
6794		dev_priv->display.queue_flip = intel_gen6_queue_flip;
6795		break;
6796	case 7:
6797		dev_priv->display.queue_flip = intel_gen7_queue_flip;
6798		break;
6799	}
6800}
6801
6802/*
6803 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
6804 * resume, or other times.  This quirk makes sure that's the case for
6805 * affected systems.
6806 */
6807static void quirk_pipea_force(struct drm_device *dev)
6808{
6809	struct drm_i915_private *dev_priv = dev->dev_private;
6810
6811	dev_priv->quirks |= QUIRK_PIPEA_FORCE;
6812	DRM_INFO("applying pipe a force quirk\n");
6813}
6814
6815/*
6816 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
6817 */
6818static void quirk_ssc_force_disable(struct drm_device *dev)
6819{
6820	struct drm_i915_private *dev_priv = dev->dev_private;
6821	dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
6822	DRM_INFO("applying lvds SSC disable quirk\n");
6823}
6824
6825/*
6826 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
6827 * brightness value
6828 */
6829static void quirk_invert_brightness(struct drm_device *dev)
6830{
6831	struct drm_i915_private *dev_priv = dev->dev_private;
6832	dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
6833	DRM_INFO("applying inverted panel brightness quirk\n");
6834}
6835
6836struct intel_quirk {
6837	int device;
6838	int subsystem_vendor;
6839	int subsystem_device;
6840	void (*hook)(struct drm_device *dev);
6841};
6842
6843static struct intel_quirk intel_quirks[] = {
6844	/* HP Mini needs pipe A force quirk (LP: #322104) */
6845	{ 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
6846
6847	/* Thinkpad R31 needs pipe A force quirk */
6848	{ 0x3577, 0x1014, 0x0505, quirk_pipea_force },
6849	/* Toshiba Protege R-205, S-209 needs pipe A force quirk */
6850	{ 0x2592, 0x1179, 0x0001, quirk_pipea_force },
6851
6852	/* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
6853	{ 0x3577,  0x1014, 0x0513, quirk_pipea_force },
6854	/* ThinkPad X40 needs pipe A force quirk */
6855
6856	/* ThinkPad T60 needs pipe A force quirk (bug #16494) */
6857	{ 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
6858
6859	/* 855 & before need to leave pipe A & dpll A up */
6860	{ 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6861	{ 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6862
6863	/* Lenovo U160 cannot use SSC on LVDS */
6864	{ 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
6865
6866	/* Sony Vaio Y cannot use SSC on LVDS */
6867	{ 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
6868
6869	/* Acer Aspire 5734Z must invert backlight brightness */
6870	{ 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
6871};
6872
6873static void intel_init_quirks(struct drm_device *dev)
6874{
6875	struct pci_dev *d = dev->pdev;
6876	int i;
6877
6878	for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
6879		struct intel_quirk *q = &intel_quirks[i];
6880
6881		if (d->device == q->device &&
6882		    (d->subsystem_vendor == q->subsystem_vendor ||
6883		     q->subsystem_vendor == PCI_ANY_ID) &&
6884		    (d->subsystem_device == q->subsystem_device ||
6885		     q->subsystem_device == PCI_ANY_ID))
6886			q->hook(dev);
6887	}
6888}
6889
6890/* Disable the VGA plane that we never use */
6891static void i915_disable_vga(struct drm_device *dev)
6892{
6893	struct drm_i915_private *dev_priv = dev->dev_private;
6894	u8 sr1;
6895	u32 vga_reg;
6896
6897	if (HAS_PCH_SPLIT(dev))
6898		vga_reg = CPU_VGACNTRL;
6899	else
6900		vga_reg = VGACNTRL;
6901
6902	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6903	outb(SR01, VGA_SR_INDEX);
6904	sr1 = inb(VGA_SR_DATA);
6905	outb(sr1 | 1<<5, VGA_SR_DATA);
6906	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6907	udelay(300);
6908
6909	I915_WRITE(vga_reg, VGA_DISP_DISABLE);
6910	POSTING_READ(vga_reg);
6911}
6912
6913void intel_modeset_init_hw(struct drm_device *dev)
6914{
6915	struct drm_i915_private *dev_priv = dev->dev_private;
6916
6917	intel_init_clock_gating(dev);
6918
6919	if (IS_IRONLAKE_M(dev)) {
6920		ironlake_enable_drps(dev);
6921		ironlake_enable_rc6(dev);
6922		intel_init_emon(dev);
6923	}
6924
6925	if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
6926		gen6_enable_rps(dev_priv);
6927		gen6_update_ring_freq(dev_priv);
6928	}
6929}
6930
6931void intel_modeset_init(struct drm_device *dev)
6932{
6933	struct drm_i915_private *dev_priv = dev->dev_private;
6934	int i, ret;
6935
6936	drm_mode_config_init(dev);
6937
6938	dev->mode_config.min_width = 0;
6939	dev->mode_config.min_height = 0;
6940
6941	dev->mode_config.preferred_depth = 24;
6942	dev->mode_config.prefer_shadow = 1;
6943
6944	dev->mode_config.funcs = &intel_mode_funcs;
6945
6946	intel_init_quirks(dev);
6947
6948	intel_init_pm(dev);
6949
6950	intel_prepare_ddi(dev);
6951
6952	intel_init_display(dev);
6953
6954	if (IS_GEN2(dev)) {
6955		dev->mode_config.max_width = 2048;
6956		dev->mode_config.max_height = 2048;
6957	} else if (IS_GEN3(dev)) {
6958		dev->mode_config.max_width = 4096;
6959		dev->mode_config.max_height = 4096;
6960	} else {
6961		dev->mode_config.max_width = 8192;
6962		dev->mode_config.max_height = 8192;
6963	}
6964	dev->mode_config.fb_base = dev->agp->base;
6965
6966	DRM_DEBUG_KMS("%d display pipe%s available.\n",
6967		      dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
6968
6969	for (i = 0; i < dev_priv->num_pipe; i++) {
6970		intel_crtc_init(dev, i);
6971		ret = intel_plane_init(dev, i);
6972		if (ret)
6973			DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
6974	}
6975
6976	intel_pch_pll_init(dev);
6977
6978	/* Just disable it once at startup */
6979	i915_disable_vga(dev);
6980	intel_setup_outputs(dev);
6981
6982	INIT_WORK(&dev_priv->idle_work, intel_idle_update);
6983	setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
6984		    (unsigned long)dev);
6985}
6986
6987void intel_modeset_gem_init(struct drm_device *dev)
6988{
6989	intel_modeset_init_hw(dev);
6990
6991	intel_setup_overlay(dev);
6992}
6993
6994void intel_modeset_cleanup(struct drm_device *dev)
6995{
6996	struct drm_i915_private *dev_priv = dev->dev_private;
6997	struct drm_crtc *crtc;
6998	struct intel_crtc *intel_crtc;
6999
7000	drm_kms_helper_poll_fini(dev);
7001	mutex_lock(&dev->struct_mutex);
7002
7003	intel_unregister_dsm_handler();
7004
7005
7006	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7007		/* Skip inactive CRTCs */
7008		if (!crtc->fb)
7009			continue;
7010
7011		intel_crtc = to_intel_crtc(crtc);
7012		intel_increase_pllclock(crtc);
7013	}
7014
7015	intel_disable_fbc(dev);
7016
7017	if (IS_IRONLAKE_M(dev))
7018		ironlake_disable_drps(dev);
7019	if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev))
7020		gen6_disable_rps(dev);
7021
7022	if (IS_IRONLAKE_M(dev))
7023		ironlake_disable_rc6(dev);
7024
7025	if (IS_VALLEYVIEW(dev))
7026		vlv_init_dpio(dev);
7027
7028	mutex_unlock(&dev->struct_mutex);
7029
7030	/* Disable the irq before mode object teardown, for the irq might
7031	 * enqueue unpin/hotplug work. */
7032	drm_irq_uninstall(dev);
7033	cancel_work_sync(&dev_priv->hotplug_work);
7034	cancel_work_sync(&dev_priv->rps_work);
7035
7036	/* flush any delayed tasks or pending work */
7037	flush_scheduled_work();
7038
7039	/* Shut off idle work before the crtcs get freed. */
7040	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7041		intel_crtc = to_intel_crtc(crtc);
7042		del_timer_sync(&intel_crtc->idle_timer);
7043	}
7044	del_timer_sync(&dev_priv->idle_timer);
7045	cancel_work_sync(&dev_priv->idle_work);
7046
7047	drm_mode_config_cleanup(dev);
7048}
7049
7050/*
7051 * Return which encoder is currently attached for connector.
7052 */
7053struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
7054{
7055	return &intel_attached_encoder(connector)->base;
7056}
7057
7058void intel_connector_attach_encoder(struct intel_connector *connector,
7059				    struct intel_encoder *encoder)
7060{
7061	connector->encoder = encoder;
7062	drm_mode_connector_attach_encoder(&connector->base,
7063					  &encoder->base);
7064}
7065
7066/*
7067 * set vga decode state - true == enable VGA decode
7068 */
7069int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
7070{
7071	struct drm_i915_private *dev_priv = dev->dev_private;
7072	u16 gmch_ctrl;
7073
7074	pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
7075	if (state)
7076		gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
7077	else
7078		gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
7079	pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
7080	return 0;
7081}
7082
7083#ifdef CONFIG_DEBUG_FS
7084#include <linux/seq_file.h>
7085
7086struct intel_display_error_state {
7087	struct intel_cursor_error_state {
7088		u32 control;
7089		u32 position;
7090		u32 base;
7091		u32 size;
7092	} cursor[2];
7093
7094	struct intel_pipe_error_state {
7095		u32 conf;
7096		u32 source;
7097
7098		u32 htotal;
7099		u32 hblank;
7100		u32 hsync;
7101		u32 vtotal;
7102		u32 vblank;
7103		u32 vsync;
7104	} pipe[2];
7105
7106	struct intel_plane_error_state {
7107		u32 control;
7108		u32 stride;
7109		u32 size;
7110		u32 pos;
7111		u32 addr;
7112		u32 surface;
7113		u32 tile_offset;
7114	} plane[2];
7115};
7116
7117struct intel_display_error_state *
7118intel_display_capture_error_state(struct drm_device *dev)
7119{
7120	drm_i915_private_t *dev_priv = dev->dev_private;
7121	struct intel_display_error_state *error;
7122	int i;
7123
7124	error = kmalloc(sizeof(*error), GFP_ATOMIC);
7125	if (error == NULL)
7126		return NULL;
7127
7128	for (i = 0; i < 2; i++) {
7129		error->cursor[i].control = I915_READ(CURCNTR(i));
7130		error->cursor[i].position = I915_READ(CURPOS(i));
7131		error->cursor[i].base = I915_READ(CURBASE(i));
7132
7133		error->plane[i].control = I915_READ(DSPCNTR(i));
7134		error->plane[i].stride = I915_READ(DSPSTRIDE(i));
7135		error->plane[i].size = I915_READ(DSPSIZE(i));
7136		error->plane[i].pos = I915_READ(DSPPOS(i));
7137		error->plane[i].addr = I915_READ(DSPADDR(i));
7138		if (INTEL_INFO(dev)->gen >= 4) {
7139			error->plane[i].surface = I915_READ(DSPSURF(i));
7140			error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
7141		}
7142
7143		error->pipe[i].conf = I915_READ(PIPECONF(i));
7144		error->pipe[i].source = I915_READ(PIPESRC(i));
7145		error->pipe[i].htotal = I915_READ(HTOTAL(i));
7146		error->pipe[i].hblank = I915_READ(HBLANK(i));
7147		error->pipe[i].hsync = I915_READ(HSYNC(i));
7148		error->pipe[i].vtotal = I915_READ(VTOTAL(i));
7149		error->pipe[i].vblank = I915_READ(VBLANK(i));
7150		error->pipe[i].vsync = I915_READ(VSYNC(i));
7151	}
7152
7153	return error;
7154}
7155
7156void
7157intel_display_print_error_state(struct seq_file *m,
7158				struct drm_device *dev,
7159				struct intel_display_error_state *error)
7160{
7161	int i;
7162
7163	for (i = 0; i < 2; i++) {
7164		seq_printf(m, "Pipe [%d]:\n", i);
7165		seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
7166		seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
7167		seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
7168		seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
7169		seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
7170		seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
7171		seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
7172		seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
7173
7174		seq_printf(m, "Plane [%d]:\n", i);
7175		seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
7176		seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
7177		seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
7178		seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
7179		seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
7180		if (INTEL_INFO(dev)->gen >= 4) {
7181			seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
7182			seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
7183		}
7184
7185		seq_printf(m, "Cursor [%d]:\n", i);
7186		seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
7187		seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
7188		seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
7189	}
7190}
7191#endif