Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * zs.c: Serial port driver for IOASIC DECstations.
   4 *
   5 * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras.
   6 * Derived from drivers/macintosh/macserial.c by Harald Koerfgen.
   7 *
   8 * DECstation changes
   9 * Copyright (C) 1998-2000 Harald Koerfgen
  10 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
  11 *
  12 * For the rest of the code the original Copyright applies:
  13 * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au)
  14 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
  15 *
  16 *
  17 * Note: for IOASIC systems the wiring is as follows:
  18 *
  19 * mouse/keyboard:
  20 * DIN-7 MJ-4  signal        SCC
  21 * 2     1     TxD       <-  A.TxD
  22 * 3     4     RxD       ->  A.RxD
  23 *
  24 * EIA-232/EIA-423:
  25 * DB-25 MMJ-6 signal        SCC
  26 * 2     2     TxD       <-  B.TxD
  27 * 3     5     RxD       ->  B.RxD
  28 * 4           RTS       <- ~A.RTS
  29 * 5           CTS       -> ~B.CTS
  30 * 6     6     DSR       -> ~A.SYNC
  31 * 8           CD        -> ~B.DCD
  32 * 12          DSRS(DCE) -> ~A.CTS  (*)
  33 * 15          TxC       ->  B.TxC
  34 * 17          RxC       ->  B.RxC
  35 * 20    1     DTR       <- ~A.DTR
  36 * 22          RI        -> ~A.DCD
  37 * 23          DSRS(DTE) <- ~B.RTS
  38 *
  39 * (*) EIA-232 defines the signal at this pin to be SCD, while DSRS(DCE)
  40 *     is shared with DSRS(DTE) at pin 23.
  41 *
  42 * As you can immediately notice the wiring of the RTS, DTR and DSR signals
  43 * is a bit odd.  This makes the handling of port B unnecessarily
  44 * complicated and prevents the use of some automatic modes of operation.
  45 */
  46
  47#if defined(CONFIG_SERIAL_ZS_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  48#define SUPPORT_SYSRQ
  49#endif
  50
  51#include <linux/bug.h>
  52#include <linux/console.h>
  53#include <linux/delay.h>
  54#include <linux/errno.h>
  55#include <linux/init.h>
  56#include <linux/interrupt.h>
  57#include <linux/io.h>
  58#include <linux/ioport.h>
  59#include <linux/irqflags.h>
  60#include <linux/kernel.h>
  61#include <linux/module.h>
  62#include <linux/major.h>
  63#include <linux/serial.h>
  64#include <linux/serial_core.h>
  65#include <linux/spinlock.h>
  66#include <linux/sysrq.h>
  67#include <linux/tty.h>
  68#include <linux/tty_flip.h>
  69#include <linux/types.h>
  70
  71#include <linux/atomic.h>
  72
  73#include <asm/dec/interrupts.h>
  74#include <asm/dec/ioasic_addrs.h>
  75#include <asm/dec/system.h>
  76
  77#include "zs.h"
  78
  79
  80MODULE_AUTHOR("Maciej W. Rozycki <macro@linux-mips.org>");
  81MODULE_DESCRIPTION("DECstation Z85C30 serial driver");
  82MODULE_LICENSE("GPL");
  83
  84
  85static char zs_name[] __initdata = "DECstation Z85C30 serial driver version ";
  86static char zs_version[] __initdata = "0.10";
  87
  88/*
  89 * It would be nice to dynamically allocate everything that
  90 * depends on ZS_NUM_SCCS, so we could support any number of
  91 * Z85C30s, but for now...
  92 */
  93#define ZS_NUM_SCCS	2		/* Max # of ZS chips supported.  */
  94#define ZS_NUM_CHAN	2		/* 2 channels per chip.  */
  95#define ZS_CHAN_A	0		/* Index of the channel A.  */
  96#define ZS_CHAN_B	1		/* Index of the channel B.  */
  97#define ZS_CHAN_IO_SIZE 8		/* IOMEM space size.  */
  98#define ZS_CHAN_IO_STRIDE 4		/* Register alignment.  */
  99#define ZS_CHAN_IO_OFFSET 1		/* The SCC resides on the high byte
 100					   of the 16-bit IOBUS.  */
 101#define ZS_CLOCK        7372800 	/* Z85C30 PCLK input clock rate.  */
 102
 103#define to_zport(uport) container_of(uport, struct zs_port, port)
 104
 105struct zs_parms {
 106	resource_size_t scc[ZS_NUM_SCCS];
 107	int irq[ZS_NUM_SCCS];
 108};
 109
 110static struct zs_scc zs_sccs[ZS_NUM_SCCS];
 111
 112static u8 zs_init_regs[ZS_NUM_REGS] __initdata = {
 113	0,				/* write 0 */
 114	PAR_SPEC,			/* write 1 */
 115	0,				/* write 2 */
 116	0,				/* write 3 */
 117	X16CLK | SB1,			/* write 4 */
 118	0,				/* write 5 */
 119	0, 0, 0,			/* write 6, 7, 8 */
 120	MIE | DLC | NV,			/* write 9 */
 121	NRZ,				/* write 10 */
 122	TCBR | RCBR,			/* write 11 */
 123	0, 0,				/* BRG time constant, write 12 + 13 */
 124	BRSRC | BRENABL,		/* write 14 */
 125	0,				/* write 15 */
 126};
 127
 128/*
 129 * Debugging.
 130 */
 131#undef ZS_DEBUG_REGS
 132
 133
 134/*
 135 * Reading and writing Z85C30 registers.
 136 */
 137static void recovery_delay(void)
 138{
 139	udelay(2);
 140}
 141
 142static u8 read_zsreg(struct zs_port *zport, int reg)
 143{
 144	void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
 145	u8 retval;
 146
 147	if (reg != 0) {
 148		writeb(reg & 0xf, control);
 149		fast_iob();
 150		recovery_delay();
 151	}
 152	retval = readb(control);
 153	recovery_delay();
 154	return retval;
 155}
 156
 157static void write_zsreg(struct zs_port *zport, int reg, u8 value)
 158{
 159	void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
 160
 161	if (reg != 0) {
 162		writeb(reg & 0xf, control);
 163		fast_iob(); recovery_delay();
 164	}
 165	writeb(value, control);
 166	fast_iob();
 167	recovery_delay();
 168	return;
 169}
 170
 171static u8 read_zsdata(struct zs_port *zport)
 172{
 173	void __iomem *data = zport->port.membase +
 174			     ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
 175	u8 retval;
 176
 177	retval = readb(data);
 178	recovery_delay();
 179	return retval;
 180}
 181
 182static void write_zsdata(struct zs_port *zport, u8 value)
 183{
 184	void __iomem *data = zport->port.membase +
 185			     ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
 186
 187	writeb(value, data);
 188	fast_iob();
 189	recovery_delay();
 190	return;
 191}
 192
 193#ifdef ZS_DEBUG_REGS
 194void zs_dump(void)
 195{
 196	struct zs_port *zport;
 197	int i, j;
 198
 199	for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
 200		zport = &zs_sccs[i / ZS_NUM_CHAN].zport[i % ZS_NUM_CHAN];
 201
 202		if (!zport->scc)
 203			continue;
 204
 205		for (j = 0; j < 16; j++)
 206			printk("W%-2d = 0x%02x\t", j, zport->regs[j]);
 207		printk("\n");
 208		for (j = 0; j < 16; j++)
 209			printk("R%-2d = 0x%02x\t", j, read_zsreg(zport, j));
 210		printk("\n\n");
 211	}
 212}
 213#endif
 214
 215
 216static void zs_spin_lock_cond_irq(spinlock_t *lock, int irq)
 217{
 218	if (irq)
 219		spin_lock_irq(lock);
 220	else
 221		spin_lock(lock);
 222}
 223
 224static void zs_spin_unlock_cond_irq(spinlock_t *lock, int irq)
 225{
 226	if (irq)
 227		spin_unlock_irq(lock);
 228	else
 229		spin_unlock(lock);
 230}
 231
 232static int zs_receive_drain(struct zs_port *zport)
 233{
 234	int loops = 10000;
 235
 236	while ((read_zsreg(zport, R0) & Rx_CH_AV) && --loops)
 237		read_zsdata(zport);
 238	return loops;
 239}
 240
 241static int zs_transmit_drain(struct zs_port *zport, int irq)
 242{
 243	struct zs_scc *scc = zport->scc;
 244	int loops = 10000;
 245
 246	while (!(read_zsreg(zport, R0) & Tx_BUF_EMP) && --loops) {
 247		zs_spin_unlock_cond_irq(&scc->zlock, irq);
 248		udelay(2);
 249		zs_spin_lock_cond_irq(&scc->zlock, irq);
 250	}
 251	return loops;
 252}
 253
 254static int zs_line_drain(struct zs_port *zport, int irq)
 255{
 256	struct zs_scc *scc = zport->scc;
 257	int loops = 10000;
 258
 259	while (!(read_zsreg(zport, R1) & ALL_SNT) && --loops) {
 260		zs_spin_unlock_cond_irq(&scc->zlock, irq);
 261		udelay(2);
 262		zs_spin_lock_cond_irq(&scc->zlock, irq);
 263	}
 264	return loops;
 265}
 266
 267
 268static void load_zsregs(struct zs_port *zport, u8 *regs, int irq)
 269{
 270	/* Let the current transmission finish.  */
 271	zs_line_drain(zport, irq);
 272	/* Load 'em up.  */
 273	write_zsreg(zport, R3, regs[3] & ~RxENABLE);
 274	write_zsreg(zport, R5, regs[5] & ~TxENAB);
 275	write_zsreg(zport, R4, regs[4]);
 276	write_zsreg(zport, R9, regs[9]);
 277	write_zsreg(zport, R1, regs[1]);
 278	write_zsreg(zport, R2, regs[2]);
 279	write_zsreg(zport, R10, regs[10]);
 280	write_zsreg(zport, R14, regs[14] & ~BRENABL);
 281	write_zsreg(zport, R11, regs[11]);
 282	write_zsreg(zport, R12, regs[12]);
 283	write_zsreg(zport, R13, regs[13]);
 284	write_zsreg(zport, R14, regs[14]);
 285	write_zsreg(zport, R15, regs[15]);
 286	if (regs[3] & RxENABLE)
 287		write_zsreg(zport, R3, regs[3]);
 288	if (regs[5] & TxENAB)
 289		write_zsreg(zport, R5, regs[5]);
 290	return;
 291}
 292
 293
 294/*
 295 * Status handling routines.
 296 */
 297
 298/*
 299 * zs_tx_empty() -- get the transmitter empty status
 300 *
 301 * Purpose: Let user call ioctl() to get info when the UART physically
 302 * 	    is emptied.  On bus types like RS485, the transmitter must
 303 * 	    release the bus after transmitting.  This must be done when
 304 * 	    the transmit shift register is empty, not be done when the
 305 * 	    transmit holding register is empty.  This functionality
 306 * 	    allows an RS485 driver to be written in user space.
 307 */
 308static unsigned int zs_tx_empty(struct uart_port *uport)
 309{
 310	struct zs_port *zport = to_zport(uport);
 311	struct zs_scc *scc = zport->scc;
 312	unsigned long flags;
 313	u8 status;
 314
 315	spin_lock_irqsave(&scc->zlock, flags);
 316	status = read_zsreg(zport, R1);
 317	spin_unlock_irqrestore(&scc->zlock, flags);
 318
 319	return status & ALL_SNT ? TIOCSER_TEMT : 0;
 320}
 321
 322static unsigned int zs_raw_get_ab_mctrl(struct zs_port *zport_a,
 323					struct zs_port *zport_b)
 324{
 325	u8 status_a, status_b;
 326	unsigned int mctrl;
 327
 328	status_a = read_zsreg(zport_a, R0);
 329	status_b = read_zsreg(zport_b, R0);
 330
 331	mctrl = ((status_b & CTS) ? TIOCM_CTS : 0) |
 332		((status_b & DCD) ? TIOCM_CAR : 0) |
 333		((status_a & DCD) ? TIOCM_RNG : 0) |
 334		((status_a & SYNC_HUNT) ? TIOCM_DSR : 0);
 335
 336	return mctrl;
 337}
 338
 339static unsigned int zs_raw_get_mctrl(struct zs_port *zport)
 340{
 341	struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
 342
 343	return zport != zport_a ? zs_raw_get_ab_mctrl(zport_a, zport) : 0;
 344}
 345
 346static unsigned int zs_raw_xor_mctrl(struct zs_port *zport)
 347{
 348	struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
 349	unsigned int mmask, mctrl, delta;
 350	u8 mask_a, mask_b;
 351
 352	if (zport == zport_a)
 353		return 0;
 354
 355	mask_a = zport_a->regs[15];
 356	mask_b = zport->regs[15];
 357
 358	mmask = ((mask_b & CTSIE) ? TIOCM_CTS : 0) |
 359		((mask_b & DCDIE) ? TIOCM_CAR : 0) |
 360		((mask_a & DCDIE) ? TIOCM_RNG : 0) |
 361		((mask_a & SYNCIE) ? TIOCM_DSR : 0);
 362
 363	mctrl = zport->mctrl;
 364	if (mmask) {
 365		mctrl &= ~mmask;
 366		mctrl |= zs_raw_get_ab_mctrl(zport_a, zport) & mmask;
 367	}
 368
 369	delta = mctrl ^ zport->mctrl;
 370	if (delta)
 371		zport->mctrl = mctrl;
 372
 373	return delta;
 374}
 375
 376static unsigned int zs_get_mctrl(struct uart_port *uport)
 377{
 378	struct zs_port *zport = to_zport(uport);
 379	struct zs_scc *scc = zport->scc;
 380	unsigned int mctrl;
 381
 382	spin_lock(&scc->zlock);
 383	mctrl = zs_raw_get_mctrl(zport);
 384	spin_unlock(&scc->zlock);
 385
 386	return mctrl;
 387}
 388
 389static void zs_set_mctrl(struct uart_port *uport, unsigned int mctrl)
 390{
 391	struct zs_port *zport = to_zport(uport);
 392	struct zs_scc *scc = zport->scc;
 393	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
 394	u8 oldloop, newloop;
 395
 396	spin_lock(&scc->zlock);
 397	if (zport != zport_a) {
 398		if (mctrl & TIOCM_DTR)
 399			zport_a->regs[5] |= DTR;
 400		else
 401			zport_a->regs[5] &= ~DTR;
 402		if (mctrl & TIOCM_RTS)
 403			zport_a->regs[5] |= RTS;
 404		else
 405			zport_a->regs[5] &= ~RTS;
 406		write_zsreg(zport_a, R5, zport_a->regs[5]);
 407	}
 408
 409	/* Rarely modified, so don't poke at hardware unless necessary. */
 410	oldloop = zport->regs[14];
 411	newloop = oldloop;
 412	if (mctrl & TIOCM_LOOP)
 413		newloop |= LOOPBAK;
 414	else
 415		newloop &= ~LOOPBAK;
 416	if (newloop != oldloop) {
 417		zport->regs[14] = newloop;
 418		write_zsreg(zport, R14, zport->regs[14]);
 419	}
 420	spin_unlock(&scc->zlock);
 421}
 422
 423static void zs_raw_stop_tx(struct zs_port *zport)
 424{
 425	write_zsreg(zport, R0, RES_Tx_P);
 426	zport->tx_stopped = 1;
 427}
 428
 429static void zs_stop_tx(struct uart_port *uport)
 430{
 431	struct zs_port *zport = to_zport(uport);
 432	struct zs_scc *scc = zport->scc;
 433
 434	spin_lock(&scc->zlock);
 435	zs_raw_stop_tx(zport);
 436	spin_unlock(&scc->zlock);
 437}
 438
 439static void zs_raw_transmit_chars(struct zs_port *);
 440
 441static void zs_start_tx(struct uart_port *uport)
 442{
 443	struct zs_port *zport = to_zport(uport);
 444	struct zs_scc *scc = zport->scc;
 445
 446	spin_lock(&scc->zlock);
 447	if (zport->tx_stopped) {
 448		zs_transmit_drain(zport, 0);
 449		zport->tx_stopped = 0;
 450		zs_raw_transmit_chars(zport);
 451	}
 452	spin_unlock(&scc->zlock);
 453}
 454
 455static void zs_stop_rx(struct uart_port *uport)
 456{
 457	struct zs_port *zport = to_zport(uport);
 458	struct zs_scc *scc = zport->scc;
 459	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
 460
 461	spin_lock(&scc->zlock);
 462	zport->regs[15] &= ~BRKIE;
 463	zport->regs[1] &= ~(RxINT_MASK | TxINT_ENAB);
 464	zport->regs[1] |= RxINT_DISAB;
 465
 466	if (zport != zport_a) {
 467		/* A-side DCD tracks RI and SYNC tracks DSR.  */
 468		zport_a->regs[15] &= ~(DCDIE | SYNCIE);
 469		write_zsreg(zport_a, R15, zport_a->regs[15]);
 470		if (!(zport_a->regs[15] & BRKIE)) {
 471			zport_a->regs[1] &= ~EXT_INT_ENAB;
 472			write_zsreg(zport_a, R1, zport_a->regs[1]);
 473		}
 474
 475		/* This-side DCD tracks DCD and CTS tracks CTS.  */
 476		zport->regs[15] &= ~(DCDIE | CTSIE);
 477		zport->regs[1] &= ~EXT_INT_ENAB;
 478	} else {
 479		/* DCD tracks RI and SYNC tracks DSR for the B side.  */
 480		if (!(zport->regs[15] & (DCDIE | SYNCIE)))
 481			zport->regs[1] &= ~EXT_INT_ENAB;
 482	}
 483
 484	write_zsreg(zport, R15, zport->regs[15]);
 485	write_zsreg(zport, R1, zport->regs[1]);
 486	spin_unlock(&scc->zlock);
 487}
 488
 489static void zs_enable_ms(struct uart_port *uport)
 490{
 491	struct zs_port *zport = to_zport(uport);
 492	struct zs_scc *scc = zport->scc;
 493	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
 494
 495	if (zport == zport_a)
 496		return;
 497
 498	spin_lock(&scc->zlock);
 499
 500	/* Clear Ext interrupts if not being handled already.  */
 501	if (!(zport_a->regs[1] & EXT_INT_ENAB))
 502		write_zsreg(zport_a, R0, RES_EXT_INT);
 503
 504	/* A-side DCD tracks RI and SYNC tracks DSR.  */
 505	zport_a->regs[1] |= EXT_INT_ENAB;
 506	zport_a->regs[15] |= DCDIE | SYNCIE;
 507
 508	/* This-side DCD tracks DCD and CTS tracks CTS.  */
 509	zport->regs[15] |= DCDIE | CTSIE;
 510
 511	zs_raw_xor_mctrl(zport);
 512
 513	write_zsreg(zport_a, R1, zport_a->regs[1]);
 514	write_zsreg(zport_a, R15, zport_a->regs[15]);
 515	write_zsreg(zport, R15, zport->regs[15]);
 516	spin_unlock(&scc->zlock);
 517}
 518
 519static void zs_break_ctl(struct uart_port *uport, int break_state)
 520{
 521	struct zs_port *zport = to_zport(uport);
 522	struct zs_scc *scc = zport->scc;
 523	unsigned long flags;
 524
 525	spin_lock_irqsave(&scc->zlock, flags);
 526	if (break_state == -1)
 527		zport->regs[5] |= SND_BRK;
 528	else
 529		zport->regs[5] &= ~SND_BRK;
 530	write_zsreg(zport, R5, zport->regs[5]);
 531	spin_unlock_irqrestore(&scc->zlock, flags);
 532}
 533
 534
 535/*
 536 * Interrupt handling routines.
 537 */
 538#define Rx_BRK 0x0100			/* BREAK event software flag.  */
 539#define Rx_SYS 0x0200			/* SysRq event software flag.  */
 540
 541static void zs_receive_chars(struct zs_port *zport)
 542{
 543	struct uart_port *uport = &zport->port;
 544	struct zs_scc *scc = zport->scc;
 545	struct uart_icount *icount;
 546	unsigned int avail, status, ch, flag;
 547	int count;
 548
 549	for (count = 16; count; count--) {
 550		spin_lock(&scc->zlock);
 551		avail = read_zsreg(zport, R0) & Rx_CH_AV;
 552		spin_unlock(&scc->zlock);
 553		if (!avail)
 554			break;
 555
 556		spin_lock(&scc->zlock);
 557		status = read_zsreg(zport, R1) & (Rx_OVR | FRM_ERR | PAR_ERR);
 558		ch = read_zsdata(zport);
 559		spin_unlock(&scc->zlock);
 560
 561		flag = TTY_NORMAL;
 562
 563		icount = &uport->icount;
 564		icount->rx++;
 565
 566		/* Handle the null char got when BREAK is removed.  */
 567		if (!ch)
 568			status |= zport->tty_break;
 569		if (unlikely(status &
 570			     (Rx_OVR | FRM_ERR | PAR_ERR | Rx_SYS | Rx_BRK))) {
 571			zport->tty_break = 0;
 572
 573			/* Reset the error indication.  */
 574			if (status & (Rx_OVR | FRM_ERR | PAR_ERR)) {
 575				spin_lock(&scc->zlock);
 576				write_zsreg(zport, R0, ERR_RES);
 577				spin_unlock(&scc->zlock);
 578			}
 579
 580			if (status & (Rx_SYS | Rx_BRK)) {
 581				icount->brk++;
 582				/* SysRq discards the null char.  */
 583				if (status & Rx_SYS)
 584					continue;
 585			} else if (status & FRM_ERR)
 586				icount->frame++;
 587			else if (status & PAR_ERR)
 588				icount->parity++;
 589			if (status & Rx_OVR)
 590				icount->overrun++;
 591
 592			status &= uport->read_status_mask;
 593			if (status & Rx_BRK)
 594				flag = TTY_BREAK;
 595			else if (status & FRM_ERR)
 596				flag = TTY_FRAME;
 597			else if (status & PAR_ERR)
 598				flag = TTY_PARITY;
 599		}
 600
 601		if (uart_handle_sysrq_char(uport, ch))
 602			continue;
 603
 604		uart_insert_char(uport, status, Rx_OVR, ch, flag);
 605	}
 606
 607	tty_flip_buffer_push(&uport->state->port);
 608}
 609
 610static void zs_raw_transmit_chars(struct zs_port *zport)
 611{
 612	struct circ_buf *xmit = &zport->port.state->xmit;
 613
 614	/* XON/XOFF chars.  */
 615	if (zport->port.x_char) {
 616		write_zsdata(zport, zport->port.x_char);
 617		zport->port.icount.tx++;
 618		zport->port.x_char = 0;
 619		return;
 620	}
 621
 622	/* If nothing to do or stopped or hardware stopped.  */
 623	if (uart_circ_empty(xmit) || uart_tx_stopped(&zport->port)) {
 624		zs_raw_stop_tx(zport);
 625		return;
 626	}
 627
 628	/* Send char.  */
 629	write_zsdata(zport, xmit->buf[xmit->tail]);
 630	xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
 631	zport->port.icount.tx++;
 632
 633	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 634		uart_write_wakeup(&zport->port);
 635
 636	/* Are we are done?  */
 637	if (uart_circ_empty(xmit))
 638		zs_raw_stop_tx(zport);
 639}
 640
 641static void zs_transmit_chars(struct zs_port *zport)
 642{
 643	struct zs_scc *scc = zport->scc;
 644
 645	spin_lock(&scc->zlock);
 646	zs_raw_transmit_chars(zport);
 647	spin_unlock(&scc->zlock);
 648}
 649
 650static void zs_status_handle(struct zs_port *zport, struct zs_port *zport_a)
 651{
 652	struct uart_port *uport = &zport->port;
 653	struct zs_scc *scc = zport->scc;
 654	unsigned int delta;
 655	u8 status, brk;
 656
 657	spin_lock(&scc->zlock);
 658
 659	/* Get status from Read Register 0.  */
 660	status = read_zsreg(zport, R0);
 661
 662	if (zport->regs[15] & BRKIE) {
 663		brk = status & BRK_ABRT;
 664		if (brk && !zport->brk) {
 665			spin_unlock(&scc->zlock);
 666			if (uart_handle_break(uport))
 667				zport->tty_break = Rx_SYS;
 668			else
 669				zport->tty_break = Rx_BRK;
 670			spin_lock(&scc->zlock);
 671		}
 672		zport->brk = brk;
 673	}
 674
 675	if (zport != zport_a) {
 676		delta = zs_raw_xor_mctrl(zport);
 677		spin_unlock(&scc->zlock);
 678
 679		if (delta & TIOCM_CTS)
 680			uart_handle_cts_change(uport,
 681					       zport->mctrl & TIOCM_CTS);
 682		if (delta & TIOCM_CAR)
 683			uart_handle_dcd_change(uport,
 684					       zport->mctrl & TIOCM_CAR);
 685		if (delta & TIOCM_RNG)
 686			uport->icount.dsr++;
 687		if (delta & TIOCM_DSR)
 688			uport->icount.rng++;
 689
 690		if (delta)
 691			wake_up_interruptible(&uport->state->port.delta_msr_wait);
 692
 693		spin_lock(&scc->zlock);
 694	}
 695
 696	/* Clear the status condition...  */
 697	write_zsreg(zport, R0, RES_EXT_INT);
 698
 699	spin_unlock(&scc->zlock);
 700}
 701
 702/*
 703 * This is the Z85C30 driver's generic interrupt routine.
 704 */
 705static irqreturn_t zs_interrupt(int irq, void *dev_id)
 706{
 707	struct zs_scc *scc = dev_id;
 708	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
 709	struct zs_port *zport_b = &scc->zport[ZS_CHAN_B];
 710	irqreturn_t status = IRQ_NONE;
 711	u8 zs_intreg;
 712	int count;
 713
 714	/*
 715	 * NOTE: The read register 3, which holds the irq status,
 716	 *       does so for both channels on each chip.  Although
 717	 *       the status value itself must be read from the A
 718	 *       channel and is only valid when read from channel A.
 719	 *       Yes... broken hardware...
 720	 */
 721	for (count = 16; count; count--) {
 722		spin_lock(&scc->zlock);
 723		zs_intreg = read_zsreg(zport_a, R3);
 724		spin_unlock(&scc->zlock);
 725		if (!zs_intreg)
 726			break;
 727
 728		/*
 729		 * We do not like losing characters, so we prioritise
 730		 * interrupt sources a little bit differently than
 731		 * the SCC would, was it allowed to.
 732		 */
 733		if (zs_intreg & CHBRxIP)
 734			zs_receive_chars(zport_b);
 735		if (zs_intreg & CHARxIP)
 736			zs_receive_chars(zport_a);
 737		if (zs_intreg & CHBEXT)
 738			zs_status_handle(zport_b, zport_a);
 739		if (zs_intreg & CHAEXT)
 740			zs_status_handle(zport_a, zport_a);
 741		if (zs_intreg & CHBTxIP)
 742			zs_transmit_chars(zport_b);
 743		if (zs_intreg & CHATxIP)
 744			zs_transmit_chars(zport_a);
 745
 746		status = IRQ_HANDLED;
 747	}
 748
 749	return status;
 750}
 751
 752
 753/*
 754 * Finally, routines used to initialize the serial port.
 755 */
 756static int zs_startup(struct uart_port *uport)
 757{
 758	struct zs_port *zport = to_zport(uport);
 759	struct zs_scc *scc = zport->scc;
 760	unsigned long flags;
 761	int irq_guard;
 762	int ret;
 763
 764	irq_guard = atomic_add_return(1, &scc->irq_guard);
 765	if (irq_guard == 1) {
 766		ret = request_irq(zport->port.irq, zs_interrupt,
 767				  IRQF_SHARED, "scc", scc);
 768		if (ret) {
 769			atomic_add(-1, &scc->irq_guard);
 770			printk(KERN_ERR "zs: can't get irq %d\n",
 771			       zport->port.irq);
 772			return ret;
 773		}
 774	}
 775
 776	spin_lock_irqsave(&scc->zlock, flags);
 777
 778	/* Clear the receive FIFO.  */
 779	zs_receive_drain(zport);
 780
 781	/* Clear the interrupt registers.  */
 782	write_zsreg(zport, R0, ERR_RES);
 783	write_zsreg(zport, R0, RES_Tx_P);
 784	/* But Ext only if not being handled already.  */
 785	if (!(zport->regs[1] & EXT_INT_ENAB))
 786		write_zsreg(zport, R0, RES_EXT_INT);
 787
 788	/* Finally, enable sequencing and interrupts.  */
 789	zport->regs[1] &= ~RxINT_MASK;
 790	zport->regs[1] |= RxINT_ALL | TxINT_ENAB | EXT_INT_ENAB;
 791	zport->regs[3] |= RxENABLE;
 792	zport->regs[15] |= BRKIE;
 793	write_zsreg(zport, R1, zport->regs[1]);
 794	write_zsreg(zport, R3, zport->regs[3]);
 795	write_zsreg(zport, R5, zport->regs[5]);
 796	write_zsreg(zport, R15, zport->regs[15]);
 797
 798	/* Record the current state of RR0.  */
 799	zport->mctrl = zs_raw_get_mctrl(zport);
 800	zport->brk = read_zsreg(zport, R0) & BRK_ABRT;
 801
 802	zport->tx_stopped = 1;
 803
 804	spin_unlock_irqrestore(&scc->zlock, flags);
 805
 806	return 0;
 807}
 808
 809static void zs_shutdown(struct uart_port *uport)
 810{
 811	struct zs_port *zport = to_zport(uport);
 812	struct zs_scc *scc = zport->scc;
 813	unsigned long flags;
 814	int irq_guard;
 815
 816	spin_lock_irqsave(&scc->zlock, flags);
 817
 818	zport->regs[3] &= ~RxENABLE;
 819	write_zsreg(zport, R5, zport->regs[5]);
 820	write_zsreg(zport, R3, zport->regs[3]);
 821
 822	spin_unlock_irqrestore(&scc->zlock, flags);
 823
 824	irq_guard = atomic_add_return(-1, &scc->irq_guard);
 825	if (!irq_guard)
 826		free_irq(zport->port.irq, scc);
 827}
 828
 829
 830static void zs_reset(struct zs_port *zport)
 831{
 832	struct zs_scc *scc = zport->scc;
 833	int irq;
 834	unsigned long flags;
 835
 836	spin_lock_irqsave(&scc->zlock, flags);
 837	irq = !irqs_disabled_flags(flags);
 838	if (!scc->initialised) {
 839		/* Reset the pointer first, just in case...  */
 840		read_zsreg(zport, R0);
 841		/* And let the current transmission finish.  */
 842		zs_line_drain(zport, irq);
 843		write_zsreg(zport, R9, FHWRES);
 844		udelay(10);
 845		write_zsreg(zport, R9, 0);
 846		scc->initialised = 1;
 847	}
 848	load_zsregs(zport, zport->regs, irq);
 849	spin_unlock_irqrestore(&scc->zlock, flags);
 850}
 851
 852static void zs_set_termios(struct uart_port *uport, struct ktermios *termios,
 853			   struct ktermios *old_termios)
 854{
 855	struct zs_port *zport = to_zport(uport);
 856	struct zs_scc *scc = zport->scc;
 857	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
 858	int irq;
 859	unsigned int baud, brg;
 860	unsigned long flags;
 861
 862	spin_lock_irqsave(&scc->zlock, flags);
 863	irq = !irqs_disabled_flags(flags);
 864
 865	/* Byte size.  */
 866	zport->regs[3] &= ~RxNBITS_MASK;
 867	zport->regs[5] &= ~TxNBITS_MASK;
 868	switch (termios->c_cflag & CSIZE) {
 869	case CS5:
 870		zport->regs[3] |= Rx5;
 871		zport->regs[5] |= Tx5;
 872		break;
 873	case CS6:
 874		zport->regs[3] |= Rx6;
 875		zport->regs[5] |= Tx6;
 876		break;
 877	case CS7:
 878		zport->regs[3] |= Rx7;
 879		zport->regs[5] |= Tx7;
 880		break;
 881	case CS8:
 882	default:
 883		zport->regs[3] |= Rx8;
 884		zport->regs[5] |= Tx8;
 885		break;
 886	}
 887
 888	/* Parity and stop bits.  */
 889	zport->regs[4] &= ~(XCLK_MASK | SB_MASK | PAR_ENA | PAR_EVEN);
 890	if (termios->c_cflag & CSTOPB)
 891		zport->regs[4] |= SB2;
 892	else
 893		zport->regs[4] |= SB1;
 894	if (termios->c_cflag & PARENB)
 895		zport->regs[4] |= PAR_ENA;
 896	if (!(termios->c_cflag & PARODD))
 897		zport->regs[4] |= PAR_EVEN;
 898	switch (zport->clk_mode) {
 899	case 64:
 900		zport->regs[4] |= X64CLK;
 901		break;
 902	case 32:
 903		zport->regs[4] |= X32CLK;
 904		break;
 905	case 16:
 906		zport->regs[4] |= X16CLK;
 907		break;
 908	case 1:
 909		zport->regs[4] |= X1CLK;
 910		break;
 911	default:
 912		BUG();
 913	}
 914
 915	baud = uart_get_baud_rate(uport, termios, old_termios, 0,
 916				  uport->uartclk / zport->clk_mode / 4);
 917
 918	brg = ZS_BPS_TO_BRG(baud, uport->uartclk / zport->clk_mode);
 919	zport->regs[12] = brg & 0xff;
 920	zport->regs[13] = (brg >> 8) & 0xff;
 921
 922	uart_update_timeout(uport, termios->c_cflag, baud);
 923
 924	uport->read_status_mask = Rx_OVR;
 925	if (termios->c_iflag & INPCK)
 926		uport->read_status_mask |= FRM_ERR | PAR_ERR;
 927	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
 928		uport->read_status_mask |= Rx_BRK;
 929
 930	uport->ignore_status_mask = 0;
 931	if (termios->c_iflag & IGNPAR)
 932		uport->ignore_status_mask |= FRM_ERR | PAR_ERR;
 933	if (termios->c_iflag & IGNBRK) {
 934		uport->ignore_status_mask |= Rx_BRK;
 935		if (termios->c_iflag & IGNPAR)
 936			uport->ignore_status_mask |= Rx_OVR;
 937	}
 938
 939	if (termios->c_cflag & CREAD)
 940		zport->regs[3] |= RxENABLE;
 941	else
 942		zport->regs[3] &= ~RxENABLE;
 943
 944	if (zport != zport_a) {
 945		if (!(termios->c_cflag & CLOCAL)) {
 946			zport->regs[15] |= DCDIE;
 947		} else
 948			zport->regs[15] &= ~DCDIE;
 949		if (termios->c_cflag & CRTSCTS) {
 950			zport->regs[15] |= CTSIE;
 951		} else
 952			zport->regs[15] &= ~CTSIE;
 953		zs_raw_xor_mctrl(zport);
 954	}
 955
 956	/* Load up the new values.  */
 957	load_zsregs(zport, zport->regs, irq);
 958
 959	spin_unlock_irqrestore(&scc->zlock, flags);
 960}
 961
 962/*
 963 * Hack alert!
 964 * Required solely so that the initial PROM-based console
 965 * works undisturbed in parallel with this one.
 966 */
 967static void zs_pm(struct uart_port *uport, unsigned int state,
 968		  unsigned int oldstate)
 969{
 970	struct zs_port *zport = to_zport(uport);
 971
 972	if (state < 3)
 973		zport->regs[5] |= TxENAB;
 974	else
 975		zport->regs[5] &= ~TxENAB;
 976	write_zsreg(zport, R5, zport->regs[5]);
 977}
 978
 979
 980static const char *zs_type(struct uart_port *uport)
 981{
 982	return "Z85C30 SCC";
 983}
 984
 985static void zs_release_port(struct uart_port *uport)
 986{
 987	iounmap(uport->membase);
 988	uport->membase = 0;
 989	release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
 990}
 991
 992static int zs_map_port(struct uart_port *uport)
 993{
 994	if (!uport->membase)
 995		uport->membase = ioremap_nocache(uport->mapbase,
 996						 ZS_CHAN_IO_SIZE);
 997	if (!uport->membase) {
 998		printk(KERN_ERR "zs: Cannot map MMIO\n");
 999		return -ENOMEM;
1000	}
1001	return 0;
1002}
1003
1004static int zs_request_port(struct uart_port *uport)
1005{
1006	int ret;
1007
1008	if (!request_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE, "scc")) {
1009		printk(KERN_ERR "zs: Unable to reserve MMIO resource\n");
1010		return -EBUSY;
1011	}
1012	ret = zs_map_port(uport);
1013	if (ret) {
1014		release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
1015		return ret;
1016	}
1017	return 0;
1018}
1019
1020static void zs_config_port(struct uart_port *uport, int flags)
1021{
1022	struct zs_port *zport = to_zport(uport);
1023
1024	if (flags & UART_CONFIG_TYPE) {
1025		if (zs_request_port(uport))
1026			return;
1027
1028		uport->type = PORT_ZS;
1029
1030		zs_reset(zport);
1031	}
1032}
1033
1034static int zs_verify_port(struct uart_port *uport, struct serial_struct *ser)
1035{
1036	struct zs_port *zport = to_zport(uport);
1037	int ret = 0;
1038
1039	if (ser->type != PORT_UNKNOWN && ser->type != PORT_ZS)
1040		ret = -EINVAL;
1041	if (ser->irq != uport->irq)
1042		ret = -EINVAL;
1043	if (ser->baud_base != uport->uartclk / zport->clk_mode / 4)
1044		ret = -EINVAL;
1045	return ret;
1046}
1047
1048
1049static const struct uart_ops zs_ops = {
1050	.tx_empty	= zs_tx_empty,
1051	.set_mctrl	= zs_set_mctrl,
1052	.get_mctrl	= zs_get_mctrl,
1053	.stop_tx	= zs_stop_tx,
1054	.start_tx	= zs_start_tx,
1055	.stop_rx	= zs_stop_rx,
1056	.enable_ms	= zs_enable_ms,
1057	.break_ctl	= zs_break_ctl,
1058	.startup	= zs_startup,
1059	.shutdown	= zs_shutdown,
1060	.set_termios	= zs_set_termios,
1061	.pm		= zs_pm,
1062	.type		= zs_type,
1063	.release_port	= zs_release_port,
1064	.request_port	= zs_request_port,
1065	.config_port	= zs_config_port,
1066	.verify_port	= zs_verify_port,
1067};
1068
1069/*
1070 * Initialize Z85C30 port structures.
1071 */
1072static int __init zs_probe_sccs(void)
1073{
1074	static int probed;
1075	struct zs_parms zs_parms;
1076	int chip, side, irq;
1077	int n_chips = 0;
1078	int i;
1079
1080	if (probed)
1081		return 0;
1082
1083	irq = dec_interrupt[DEC_IRQ_SCC0];
1084	if (irq >= 0) {
1085		zs_parms.scc[n_chips] = IOASIC_SCC0;
1086		zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC0];
1087		n_chips++;
1088	}
1089	irq = dec_interrupt[DEC_IRQ_SCC1];
1090	if (irq >= 0) {
1091		zs_parms.scc[n_chips] = IOASIC_SCC1;
1092		zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC1];
1093		n_chips++;
1094	}
1095	if (!n_chips)
1096		return -ENXIO;
1097
1098	probed = 1;
1099
1100	for (chip = 0; chip < n_chips; chip++) {
1101		spin_lock_init(&zs_sccs[chip].zlock);
1102		for (side = 0; side < ZS_NUM_CHAN; side++) {
1103			struct zs_port *zport = &zs_sccs[chip].zport[side];
1104			struct uart_port *uport = &zport->port;
1105
1106			zport->scc	= &zs_sccs[chip];
1107			zport->clk_mode	= 16;
1108
1109			uport->irq	= zs_parms.irq[chip];
1110			uport->uartclk	= ZS_CLOCK;
1111			uport->fifosize	= 1;
1112			uport->iotype	= UPIO_MEM;
1113			uport->flags	= UPF_BOOT_AUTOCONF;
1114			uport->ops	= &zs_ops;
1115			uport->line	= chip * ZS_NUM_CHAN + side;
1116			uport->mapbase	= dec_kn_slot_base +
1117					  zs_parms.scc[chip] +
1118					  (side ^ ZS_CHAN_B) * ZS_CHAN_IO_SIZE;
1119
1120			for (i = 0; i < ZS_NUM_REGS; i++)
1121				zport->regs[i] = zs_init_regs[i];
1122		}
1123	}
1124
1125	return 0;
1126}
1127
1128
1129#ifdef CONFIG_SERIAL_ZS_CONSOLE
1130static void zs_console_putchar(struct uart_port *uport, int ch)
1131{
1132	struct zs_port *zport = to_zport(uport);
1133	struct zs_scc *scc = zport->scc;
1134	int irq;
1135	unsigned long flags;
1136
1137	spin_lock_irqsave(&scc->zlock, flags);
1138	irq = !irqs_disabled_flags(flags);
1139	if (zs_transmit_drain(zport, irq))
1140		write_zsdata(zport, ch);
1141	spin_unlock_irqrestore(&scc->zlock, flags);
1142}
1143
1144/*
1145 * Print a string to the serial port trying not to disturb
1146 * any possible real use of the port...
1147 */
1148static void zs_console_write(struct console *co, const char *s,
1149			     unsigned int count)
1150{
1151	int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1152	struct zs_port *zport = &zs_sccs[chip].zport[side];
1153	struct zs_scc *scc = zport->scc;
1154	unsigned long flags;
1155	u8 txint, txenb;
1156	int irq;
1157
1158	/* Disable transmit interrupts and enable the transmitter. */
1159	spin_lock_irqsave(&scc->zlock, flags);
1160	txint = zport->regs[1];
1161	txenb = zport->regs[5];
1162	if (txint & TxINT_ENAB) {
1163		zport->regs[1] = txint & ~TxINT_ENAB;
1164		write_zsreg(zport, R1, zport->regs[1]);
1165	}
1166	if (!(txenb & TxENAB)) {
1167		zport->regs[5] = txenb | TxENAB;
1168		write_zsreg(zport, R5, zport->regs[5]);
1169	}
1170	spin_unlock_irqrestore(&scc->zlock, flags);
1171
1172	uart_console_write(&zport->port, s, count, zs_console_putchar);
1173
1174	/* Restore transmit interrupts and the transmitter enable. */
1175	spin_lock_irqsave(&scc->zlock, flags);
1176	irq = !irqs_disabled_flags(flags);
1177	zs_line_drain(zport, irq);
1178	if (!(txenb & TxENAB)) {
1179		zport->regs[5] &= ~TxENAB;
1180		write_zsreg(zport, R5, zport->regs[5]);
1181	}
1182	if (txint & TxINT_ENAB) {
1183		zport->regs[1] |= TxINT_ENAB;
1184		write_zsreg(zport, R1, zport->regs[1]);
1185
1186		/* Resume any transmission as the TxIP bit won't be set.  */
1187		if (!zport->tx_stopped)
1188			zs_raw_transmit_chars(zport);
1189	}
1190	spin_unlock_irqrestore(&scc->zlock, flags);
1191}
1192
1193/*
1194 * Setup serial console baud/bits/parity.  We do two things here:
1195 * - construct a cflag setting for the first uart_open()
1196 * - initialise the serial port
1197 * Return non-zero if we didn't find a serial port.
1198 */
1199static int __init zs_console_setup(struct console *co, char *options)
1200{
1201	int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1202	struct zs_port *zport = &zs_sccs[chip].zport[side];
1203	struct uart_port *uport = &zport->port;
1204	int baud = 9600;
1205	int bits = 8;
1206	int parity = 'n';
1207	int flow = 'n';
1208	int ret;
1209
1210	ret = zs_map_port(uport);
1211	if (ret)
1212		return ret;
1213
1214	zs_reset(zport);
1215	zs_pm(uport, 0, -1);
1216
1217	if (options)
1218		uart_parse_options(options, &baud, &parity, &bits, &flow);
1219	return uart_set_options(uport, co, baud, parity, bits, flow);
1220}
1221
1222static struct uart_driver zs_reg;
1223static struct console zs_console = {
1224	.name	= "ttyS",
1225	.write	= zs_console_write,
1226	.device	= uart_console_device,
1227	.setup	= zs_console_setup,
1228	.flags	= CON_PRINTBUFFER,
1229	.index	= -1,
1230	.data	= &zs_reg,
1231};
1232
1233/*
1234 *	Register console.
1235 */
1236static int __init zs_serial_console_init(void)
1237{
1238	int ret;
1239
1240	ret = zs_probe_sccs();
1241	if (ret)
1242		return ret;
1243	register_console(&zs_console);
1244
1245	return 0;
1246}
1247
1248console_initcall(zs_serial_console_init);
1249
1250#define SERIAL_ZS_CONSOLE	&zs_console
1251#else
1252#define SERIAL_ZS_CONSOLE	NULL
1253#endif /* CONFIG_SERIAL_ZS_CONSOLE */
1254
1255static struct uart_driver zs_reg = {
1256	.owner			= THIS_MODULE,
1257	.driver_name		= "serial",
1258	.dev_name		= "ttyS",
1259	.major			= TTY_MAJOR,
1260	.minor			= 64,
1261	.nr			= ZS_NUM_SCCS * ZS_NUM_CHAN,
1262	.cons			= SERIAL_ZS_CONSOLE,
1263};
1264
1265/* zs_init inits the driver. */
1266static int __init zs_init(void)
1267{
1268	int i, ret;
1269
1270	pr_info("%s%s\n", zs_name, zs_version);
1271
1272	/* Find out how many Z85C30 SCCs we have.  */
1273	ret = zs_probe_sccs();
1274	if (ret)
1275		return ret;
1276
1277	ret = uart_register_driver(&zs_reg);
1278	if (ret)
1279		return ret;
1280
1281	for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
1282		struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1283		struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1284		struct uart_port *uport = &zport->port;
1285
1286		if (zport->scc)
1287			uart_add_one_port(&zs_reg, uport);
1288	}
1289
1290	return 0;
1291}
1292
1293static void __exit zs_exit(void)
1294{
1295	int i;
1296
1297	for (i = ZS_NUM_SCCS * ZS_NUM_CHAN - 1; i >= 0; i--) {
1298		struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1299		struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1300		struct uart_port *uport = &zport->port;
1301
1302		if (zport->scc)
1303			uart_remove_one_port(&zs_reg, uport);
1304	}
1305
1306	uart_unregister_driver(&zs_reg);
1307}
1308
1309module_init(zs_init);
1310module_exit(zs_exit);
v4.10.11
 
   1/*
   2 * zs.c: Serial port driver for IOASIC DECstations.
   3 *
   4 * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras.
   5 * Derived from drivers/macintosh/macserial.c by Harald Koerfgen.
   6 *
   7 * DECstation changes
   8 * Copyright (C) 1998-2000 Harald Koerfgen
   9 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
  10 *
  11 * For the rest of the code the original Copyright applies:
  12 * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au)
  13 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
  14 *
  15 *
  16 * Note: for IOASIC systems the wiring is as follows:
  17 *
  18 * mouse/keyboard:
  19 * DIN-7 MJ-4  signal        SCC
  20 * 2     1     TxD       <-  A.TxD
  21 * 3     4     RxD       ->  A.RxD
  22 *
  23 * EIA-232/EIA-423:
  24 * DB-25 MMJ-6 signal        SCC
  25 * 2     2     TxD       <-  B.TxD
  26 * 3     5     RxD       ->  B.RxD
  27 * 4           RTS       <- ~A.RTS
  28 * 5           CTS       -> ~B.CTS
  29 * 6     6     DSR       -> ~A.SYNC
  30 * 8           CD        -> ~B.DCD
  31 * 12          DSRS(DCE) -> ~A.CTS  (*)
  32 * 15          TxC       ->  B.TxC
  33 * 17          RxC       ->  B.RxC
  34 * 20    1     DTR       <- ~A.DTR
  35 * 22          RI        -> ~A.DCD
  36 * 23          DSRS(DTE) <- ~B.RTS
  37 *
  38 * (*) EIA-232 defines the signal at this pin to be SCD, while DSRS(DCE)
  39 *     is shared with DSRS(DTE) at pin 23.
  40 *
  41 * As you can immediately notice the wiring of the RTS, DTR and DSR signals
  42 * is a bit odd.  This makes the handling of port B unnecessarily
  43 * complicated and prevents the use of some automatic modes of operation.
  44 */
  45
  46#if defined(CONFIG_SERIAL_ZS_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  47#define SUPPORT_SYSRQ
  48#endif
  49
  50#include <linux/bug.h>
  51#include <linux/console.h>
  52#include <linux/delay.h>
  53#include <linux/errno.h>
  54#include <linux/init.h>
  55#include <linux/interrupt.h>
  56#include <linux/io.h>
  57#include <linux/ioport.h>
  58#include <linux/irqflags.h>
  59#include <linux/kernel.h>
  60#include <linux/module.h>
  61#include <linux/major.h>
  62#include <linux/serial.h>
  63#include <linux/serial_core.h>
  64#include <linux/spinlock.h>
  65#include <linux/sysrq.h>
  66#include <linux/tty.h>
  67#include <linux/tty_flip.h>
  68#include <linux/types.h>
  69
  70#include <linux/atomic.h>
  71
  72#include <asm/dec/interrupts.h>
  73#include <asm/dec/ioasic_addrs.h>
  74#include <asm/dec/system.h>
  75
  76#include "zs.h"
  77
  78
  79MODULE_AUTHOR("Maciej W. Rozycki <macro@linux-mips.org>");
  80MODULE_DESCRIPTION("DECstation Z85C30 serial driver");
  81MODULE_LICENSE("GPL");
  82
  83
  84static char zs_name[] __initdata = "DECstation Z85C30 serial driver version ";
  85static char zs_version[] __initdata = "0.10";
  86
  87/*
  88 * It would be nice to dynamically allocate everything that
  89 * depends on ZS_NUM_SCCS, so we could support any number of
  90 * Z85C30s, but for now...
  91 */
  92#define ZS_NUM_SCCS	2		/* Max # of ZS chips supported.  */
  93#define ZS_NUM_CHAN	2		/* 2 channels per chip.  */
  94#define ZS_CHAN_A	0		/* Index of the channel A.  */
  95#define ZS_CHAN_B	1		/* Index of the channel B.  */
  96#define ZS_CHAN_IO_SIZE 8		/* IOMEM space size.  */
  97#define ZS_CHAN_IO_STRIDE 4		/* Register alignment.  */
  98#define ZS_CHAN_IO_OFFSET 1		/* The SCC resides on the high byte
  99					   of the 16-bit IOBUS.  */
 100#define ZS_CLOCK        7372800 	/* Z85C30 PCLK input clock rate.  */
 101
 102#define to_zport(uport) container_of(uport, struct zs_port, port)
 103
 104struct zs_parms {
 105	resource_size_t scc[ZS_NUM_SCCS];
 106	int irq[ZS_NUM_SCCS];
 107};
 108
 109static struct zs_scc zs_sccs[ZS_NUM_SCCS];
 110
 111static u8 zs_init_regs[ZS_NUM_REGS] __initdata = {
 112	0,				/* write 0 */
 113	PAR_SPEC,			/* write 1 */
 114	0,				/* write 2 */
 115	0,				/* write 3 */
 116	X16CLK | SB1,			/* write 4 */
 117	0,				/* write 5 */
 118	0, 0, 0,			/* write 6, 7, 8 */
 119	MIE | DLC | NV,			/* write 9 */
 120	NRZ,				/* write 10 */
 121	TCBR | RCBR,			/* write 11 */
 122	0, 0,				/* BRG time constant, write 12 + 13 */
 123	BRSRC | BRENABL,		/* write 14 */
 124	0,				/* write 15 */
 125};
 126
 127/*
 128 * Debugging.
 129 */
 130#undef ZS_DEBUG_REGS
 131
 132
 133/*
 134 * Reading and writing Z85C30 registers.
 135 */
 136static void recovery_delay(void)
 137{
 138	udelay(2);
 139}
 140
 141static u8 read_zsreg(struct zs_port *zport, int reg)
 142{
 143	void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
 144	u8 retval;
 145
 146	if (reg != 0) {
 147		writeb(reg & 0xf, control);
 148		fast_iob();
 149		recovery_delay();
 150	}
 151	retval = readb(control);
 152	recovery_delay();
 153	return retval;
 154}
 155
 156static void write_zsreg(struct zs_port *zport, int reg, u8 value)
 157{
 158	void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
 159
 160	if (reg != 0) {
 161		writeb(reg & 0xf, control);
 162		fast_iob(); recovery_delay();
 163	}
 164	writeb(value, control);
 165	fast_iob();
 166	recovery_delay();
 167	return;
 168}
 169
 170static u8 read_zsdata(struct zs_port *zport)
 171{
 172	void __iomem *data = zport->port.membase +
 173			     ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
 174	u8 retval;
 175
 176	retval = readb(data);
 177	recovery_delay();
 178	return retval;
 179}
 180
 181static void write_zsdata(struct zs_port *zport, u8 value)
 182{
 183	void __iomem *data = zport->port.membase +
 184			     ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
 185
 186	writeb(value, data);
 187	fast_iob();
 188	recovery_delay();
 189	return;
 190}
 191
 192#ifdef ZS_DEBUG_REGS
 193void zs_dump(void)
 194{
 195	struct zs_port *zport;
 196	int i, j;
 197
 198	for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
 199		zport = &zs_sccs[i / ZS_NUM_CHAN].zport[i % ZS_NUM_CHAN];
 200
 201		if (!zport->scc)
 202			continue;
 203
 204		for (j = 0; j < 16; j++)
 205			printk("W%-2d = 0x%02x\t", j, zport->regs[j]);
 206		printk("\n");
 207		for (j = 0; j < 16; j++)
 208			printk("R%-2d = 0x%02x\t", j, read_zsreg(zport, j));
 209		printk("\n\n");
 210	}
 211}
 212#endif
 213
 214
 215static void zs_spin_lock_cond_irq(spinlock_t *lock, int irq)
 216{
 217	if (irq)
 218		spin_lock_irq(lock);
 219	else
 220		spin_lock(lock);
 221}
 222
 223static void zs_spin_unlock_cond_irq(spinlock_t *lock, int irq)
 224{
 225	if (irq)
 226		spin_unlock_irq(lock);
 227	else
 228		spin_unlock(lock);
 229}
 230
 231static int zs_receive_drain(struct zs_port *zport)
 232{
 233	int loops = 10000;
 234
 235	while ((read_zsreg(zport, R0) & Rx_CH_AV) && --loops)
 236		read_zsdata(zport);
 237	return loops;
 238}
 239
 240static int zs_transmit_drain(struct zs_port *zport, int irq)
 241{
 242	struct zs_scc *scc = zport->scc;
 243	int loops = 10000;
 244
 245	while (!(read_zsreg(zport, R0) & Tx_BUF_EMP) && --loops) {
 246		zs_spin_unlock_cond_irq(&scc->zlock, irq);
 247		udelay(2);
 248		zs_spin_lock_cond_irq(&scc->zlock, irq);
 249	}
 250	return loops;
 251}
 252
 253static int zs_line_drain(struct zs_port *zport, int irq)
 254{
 255	struct zs_scc *scc = zport->scc;
 256	int loops = 10000;
 257
 258	while (!(read_zsreg(zport, R1) & ALL_SNT) && --loops) {
 259		zs_spin_unlock_cond_irq(&scc->zlock, irq);
 260		udelay(2);
 261		zs_spin_lock_cond_irq(&scc->zlock, irq);
 262	}
 263	return loops;
 264}
 265
 266
 267static void load_zsregs(struct zs_port *zport, u8 *regs, int irq)
 268{
 269	/* Let the current transmission finish.  */
 270	zs_line_drain(zport, irq);
 271	/* Load 'em up.  */
 272	write_zsreg(zport, R3, regs[3] & ~RxENABLE);
 273	write_zsreg(zport, R5, regs[5] & ~TxENAB);
 274	write_zsreg(zport, R4, regs[4]);
 275	write_zsreg(zport, R9, regs[9]);
 276	write_zsreg(zport, R1, regs[1]);
 277	write_zsreg(zport, R2, regs[2]);
 278	write_zsreg(zport, R10, regs[10]);
 279	write_zsreg(zport, R14, regs[14] & ~BRENABL);
 280	write_zsreg(zport, R11, regs[11]);
 281	write_zsreg(zport, R12, regs[12]);
 282	write_zsreg(zport, R13, regs[13]);
 283	write_zsreg(zport, R14, regs[14]);
 284	write_zsreg(zport, R15, regs[15]);
 285	if (regs[3] & RxENABLE)
 286		write_zsreg(zport, R3, regs[3]);
 287	if (regs[5] & TxENAB)
 288		write_zsreg(zport, R5, regs[5]);
 289	return;
 290}
 291
 292
 293/*
 294 * Status handling routines.
 295 */
 296
 297/*
 298 * zs_tx_empty() -- get the transmitter empty status
 299 *
 300 * Purpose: Let user call ioctl() to get info when the UART physically
 301 * 	    is emptied.  On bus types like RS485, the transmitter must
 302 * 	    release the bus after transmitting.  This must be done when
 303 * 	    the transmit shift register is empty, not be done when the
 304 * 	    transmit holding register is empty.  This functionality
 305 * 	    allows an RS485 driver to be written in user space.
 306 */
 307static unsigned int zs_tx_empty(struct uart_port *uport)
 308{
 309	struct zs_port *zport = to_zport(uport);
 310	struct zs_scc *scc = zport->scc;
 311	unsigned long flags;
 312	u8 status;
 313
 314	spin_lock_irqsave(&scc->zlock, flags);
 315	status = read_zsreg(zport, R1);
 316	spin_unlock_irqrestore(&scc->zlock, flags);
 317
 318	return status & ALL_SNT ? TIOCSER_TEMT : 0;
 319}
 320
 321static unsigned int zs_raw_get_ab_mctrl(struct zs_port *zport_a,
 322					struct zs_port *zport_b)
 323{
 324	u8 status_a, status_b;
 325	unsigned int mctrl;
 326
 327	status_a = read_zsreg(zport_a, R0);
 328	status_b = read_zsreg(zport_b, R0);
 329
 330	mctrl = ((status_b & CTS) ? TIOCM_CTS : 0) |
 331		((status_b & DCD) ? TIOCM_CAR : 0) |
 332		((status_a & DCD) ? TIOCM_RNG : 0) |
 333		((status_a & SYNC_HUNT) ? TIOCM_DSR : 0);
 334
 335	return mctrl;
 336}
 337
 338static unsigned int zs_raw_get_mctrl(struct zs_port *zport)
 339{
 340	struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
 341
 342	return zport != zport_a ? zs_raw_get_ab_mctrl(zport_a, zport) : 0;
 343}
 344
 345static unsigned int zs_raw_xor_mctrl(struct zs_port *zport)
 346{
 347	struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
 348	unsigned int mmask, mctrl, delta;
 349	u8 mask_a, mask_b;
 350
 351	if (zport == zport_a)
 352		return 0;
 353
 354	mask_a = zport_a->regs[15];
 355	mask_b = zport->regs[15];
 356
 357	mmask = ((mask_b & CTSIE) ? TIOCM_CTS : 0) |
 358		((mask_b & DCDIE) ? TIOCM_CAR : 0) |
 359		((mask_a & DCDIE) ? TIOCM_RNG : 0) |
 360		((mask_a & SYNCIE) ? TIOCM_DSR : 0);
 361
 362	mctrl = zport->mctrl;
 363	if (mmask) {
 364		mctrl &= ~mmask;
 365		mctrl |= zs_raw_get_ab_mctrl(zport_a, zport) & mmask;
 366	}
 367
 368	delta = mctrl ^ zport->mctrl;
 369	if (delta)
 370		zport->mctrl = mctrl;
 371
 372	return delta;
 373}
 374
 375static unsigned int zs_get_mctrl(struct uart_port *uport)
 376{
 377	struct zs_port *zport = to_zport(uport);
 378	struct zs_scc *scc = zport->scc;
 379	unsigned int mctrl;
 380
 381	spin_lock(&scc->zlock);
 382	mctrl = zs_raw_get_mctrl(zport);
 383	spin_unlock(&scc->zlock);
 384
 385	return mctrl;
 386}
 387
 388static void zs_set_mctrl(struct uart_port *uport, unsigned int mctrl)
 389{
 390	struct zs_port *zport = to_zport(uport);
 391	struct zs_scc *scc = zport->scc;
 392	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
 393	u8 oldloop, newloop;
 394
 395	spin_lock(&scc->zlock);
 396	if (zport != zport_a) {
 397		if (mctrl & TIOCM_DTR)
 398			zport_a->regs[5] |= DTR;
 399		else
 400			zport_a->regs[5] &= ~DTR;
 401		if (mctrl & TIOCM_RTS)
 402			zport_a->regs[5] |= RTS;
 403		else
 404			zport_a->regs[5] &= ~RTS;
 405		write_zsreg(zport_a, R5, zport_a->regs[5]);
 406	}
 407
 408	/* Rarely modified, so don't poke at hardware unless necessary. */
 409	oldloop = zport->regs[14];
 410	newloop = oldloop;
 411	if (mctrl & TIOCM_LOOP)
 412		newloop |= LOOPBAK;
 413	else
 414		newloop &= ~LOOPBAK;
 415	if (newloop != oldloop) {
 416		zport->regs[14] = newloop;
 417		write_zsreg(zport, R14, zport->regs[14]);
 418	}
 419	spin_unlock(&scc->zlock);
 420}
 421
 422static void zs_raw_stop_tx(struct zs_port *zport)
 423{
 424	write_zsreg(zport, R0, RES_Tx_P);
 425	zport->tx_stopped = 1;
 426}
 427
 428static void zs_stop_tx(struct uart_port *uport)
 429{
 430	struct zs_port *zport = to_zport(uport);
 431	struct zs_scc *scc = zport->scc;
 432
 433	spin_lock(&scc->zlock);
 434	zs_raw_stop_tx(zport);
 435	spin_unlock(&scc->zlock);
 436}
 437
 438static void zs_raw_transmit_chars(struct zs_port *);
 439
 440static void zs_start_tx(struct uart_port *uport)
 441{
 442	struct zs_port *zport = to_zport(uport);
 443	struct zs_scc *scc = zport->scc;
 444
 445	spin_lock(&scc->zlock);
 446	if (zport->tx_stopped) {
 447		zs_transmit_drain(zport, 0);
 448		zport->tx_stopped = 0;
 449		zs_raw_transmit_chars(zport);
 450	}
 451	spin_unlock(&scc->zlock);
 452}
 453
 454static void zs_stop_rx(struct uart_port *uport)
 455{
 456	struct zs_port *zport = to_zport(uport);
 457	struct zs_scc *scc = zport->scc;
 458	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
 459
 460	spin_lock(&scc->zlock);
 461	zport->regs[15] &= ~BRKIE;
 462	zport->regs[1] &= ~(RxINT_MASK | TxINT_ENAB);
 463	zport->regs[1] |= RxINT_DISAB;
 464
 465	if (zport != zport_a) {
 466		/* A-side DCD tracks RI and SYNC tracks DSR.  */
 467		zport_a->regs[15] &= ~(DCDIE | SYNCIE);
 468		write_zsreg(zport_a, R15, zport_a->regs[15]);
 469		if (!(zport_a->regs[15] & BRKIE)) {
 470			zport_a->regs[1] &= ~EXT_INT_ENAB;
 471			write_zsreg(zport_a, R1, zport_a->regs[1]);
 472		}
 473
 474		/* This-side DCD tracks DCD and CTS tracks CTS.  */
 475		zport->regs[15] &= ~(DCDIE | CTSIE);
 476		zport->regs[1] &= ~EXT_INT_ENAB;
 477	} else {
 478		/* DCD tracks RI and SYNC tracks DSR for the B side.  */
 479		if (!(zport->regs[15] & (DCDIE | SYNCIE)))
 480			zport->regs[1] &= ~EXT_INT_ENAB;
 481	}
 482
 483	write_zsreg(zport, R15, zport->regs[15]);
 484	write_zsreg(zport, R1, zport->regs[1]);
 485	spin_unlock(&scc->zlock);
 486}
 487
 488static void zs_enable_ms(struct uart_port *uport)
 489{
 490	struct zs_port *zport = to_zport(uport);
 491	struct zs_scc *scc = zport->scc;
 492	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
 493
 494	if (zport == zport_a)
 495		return;
 496
 497	spin_lock(&scc->zlock);
 498
 499	/* Clear Ext interrupts if not being handled already.  */
 500	if (!(zport_a->regs[1] & EXT_INT_ENAB))
 501		write_zsreg(zport_a, R0, RES_EXT_INT);
 502
 503	/* A-side DCD tracks RI and SYNC tracks DSR.  */
 504	zport_a->regs[1] |= EXT_INT_ENAB;
 505	zport_a->regs[15] |= DCDIE | SYNCIE;
 506
 507	/* This-side DCD tracks DCD and CTS tracks CTS.  */
 508	zport->regs[15] |= DCDIE | CTSIE;
 509
 510	zs_raw_xor_mctrl(zport);
 511
 512	write_zsreg(zport_a, R1, zport_a->regs[1]);
 513	write_zsreg(zport_a, R15, zport_a->regs[15]);
 514	write_zsreg(zport, R15, zport->regs[15]);
 515	spin_unlock(&scc->zlock);
 516}
 517
 518static void zs_break_ctl(struct uart_port *uport, int break_state)
 519{
 520	struct zs_port *zport = to_zport(uport);
 521	struct zs_scc *scc = zport->scc;
 522	unsigned long flags;
 523
 524	spin_lock_irqsave(&scc->zlock, flags);
 525	if (break_state == -1)
 526		zport->regs[5] |= SND_BRK;
 527	else
 528		zport->regs[5] &= ~SND_BRK;
 529	write_zsreg(zport, R5, zport->regs[5]);
 530	spin_unlock_irqrestore(&scc->zlock, flags);
 531}
 532
 533
 534/*
 535 * Interrupt handling routines.
 536 */
 537#define Rx_BRK 0x0100			/* BREAK event software flag.  */
 538#define Rx_SYS 0x0200			/* SysRq event software flag.  */
 539
 540static void zs_receive_chars(struct zs_port *zport)
 541{
 542	struct uart_port *uport = &zport->port;
 543	struct zs_scc *scc = zport->scc;
 544	struct uart_icount *icount;
 545	unsigned int avail, status, ch, flag;
 546	int count;
 547
 548	for (count = 16; count; count--) {
 549		spin_lock(&scc->zlock);
 550		avail = read_zsreg(zport, R0) & Rx_CH_AV;
 551		spin_unlock(&scc->zlock);
 552		if (!avail)
 553			break;
 554
 555		spin_lock(&scc->zlock);
 556		status = read_zsreg(zport, R1) & (Rx_OVR | FRM_ERR | PAR_ERR);
 557		ch = read_zsdata(zport);
 558		spin_unlock(&scc->zlock);
 559
 560		flag = TTY_NORMAL;
 561
 562		icount = &uport->icount;
 563		icount->rx++;
 564
 565		/* Handle the null char got when BREAK is removed.  */
 566		if (!ch)
 567			status |= zport->tty_break;
 568		if (unlikely(status &
 569			     (Rx_OVR | FRM_ERR | PAR_ERR | Rx_SYS | Rx_BRK))) {
 570			zport->tty_break = 0;
 571
 572			/* Reset the error indication.  */
 573			if (status & (Rx_OVR | FRM_ERR | PAR_ERR)) {
 574				spin_lock(&scc->zlock);
 575				write_zsreg(zport, R0, ERR_RES);
 576				spin_unlock(&scc->zlock);
 577			}
 578
 579			if (status & (Rx_SYS | Rx_BRK)) {
 580				icount->brk++;
 581				/* SysRq discards the null char.  */
 582				if (status & Rx_SYS)
 583					continue;
 584			} else if (status & FRM_ERR)
 585				icount->frame++;
 586			else if (status & PAR_ERR)
 587				icount->parity++;
 588			if (status & Rx_OVR)
 589				icount->overrun++;
 590
 591			status &= uport->read_status_mask;
 592			if (status & Rx_BRK)
 593				flag = TTY_BREAK;
 594			else if (status & FRM_ERR)
 595				flag = TTY_FRAME;
 596			else if (status & PAR_ERR)
 597				flag = TTY_PARITY;
 598		}
 599
 600		if (uart_handle_sysrq_char(uport, ch))
 601			continue;
 602
 603		uart_insert_char(uport, status, Rx_OVR, ch, flag);
 604	}
 605
 606	tty_flip_buffer_push(&uport->state->port);
 607}
 608
 609static void zs_raw_transmit_chars(struct zs_port *zport)
 610{
 611	struct circ_buf *xmit = &zport->port.state->xmit;
 612
 613	/* XON/XOFF chars.  */
 614	if (zport->port.x_char) {
 615		write_zsdata(zport, zport->port.x_char);
 616		zport->port.icount.tx++;
 617		zport->port.x_char = 0;
 618		return;
 619	}
 620
 621	/* If nothing to do or stopped or hardware stopped.  */
 622	if (uart_circ_empty(xmit) || uart_tx_stopped(&zport->port)) {
 623		zs_raw_stop_tx(zport);
 624		return;
 625	}
 626
 627	/* Send char.  */
 628	write_zsdata(zport, xmit->buf[xmit->tail]);
 629	xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
 630	zport->port.icount.tx++;
 631
 632	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 633		uart_write_wakeup(&zport->port);
 634
 635	/* Are we are done?  */
 636	if (uart_circ_empty(xmit))
 637		zs_raw_stop_tx(zport);
 638}
 639
 640static void zs_transmit_chars(struct zs_port *zport)
 641{
 642	struct zs_scc *scc = zport->scc;
 643
 644	spin_lock(&scc->zlock);
 645	zs_raw_transmit_chars(zport);
 646	spin_unlock(&scc->zlock);
 647}
 648
 649static void zs_status_handle(struct zs_port *zport, struct zs_port *zport_a)
 650{
 651	struct uart_port *uport = &zport->port;
 652	struct zs_scc *scc = zport->scc;
 653	unsigned int delta;
 654	u8 status, brk;
 655
 656	spin_lock(&scc->zlock);
 657
 658	/* Get status from Read Register 0.  */
 659	status = read_zsreg(zport, R0);
 660
 661	if (zport->regs[15] & BRKIE) {
 662		brk = status & BRK_ABRT;
 663		if (brk && !zport->brk) {
 664			spin_unlock(&scc->zlock);
 665			if (uart_handle_break(uport))
 666				zport->tty_break = Rx_SYS;
 667			else
 668				zport->tty_break = Rx_BRK;
 669			spin_lock(&scc->zlock);
 670		}
 671		zport->brk = brk;
 672	}
 673
 674	if (zport != zport_a) {
 675		delta = zs_raw_xor_mctrl(zport);
 676		spin_unlock(&scc->zlock);
 677
 678		if (delta & TIOCM_CTS)
 679			uart_handle_cts_change(uport,
 680					       zport->mctrl & TIOCM_CTS);
 681		if (delta & TIOCM_CAR)
 682			uart_handle_dcd_change(uport,
 683					       zport->mctrl & TIOCM_CAR);
 684		if (delta & TIOCM_RNG)
 685			uport->icount.dsr++;
 686		if (delta & TIOCM_DSR)
 687			uport->icount.rng++;
 688
 689		if (delta)
 690			wake_up_interruptible(&uport->state->port.delta_msr_wait);
 691
 692		spin_lock(&scc->zlock);
 693	}
 694
 695	/* Clear the status condition...  */
 696	write_zsreg(zport, R0, RES_EXT_INT);
 697
 698	spin_unlock(&scc->zlock);
 699}
 700
 701/*
 702 * This is the Z85C30 driver's generic interrupt routine.
 703 */
 704static irqreturn_t zs_interrupt(int irq, void *dev_id)
 705{
 706	struct zs_scc *scc = dev_id;
 707	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
 708	struct zs_port *zport_b = &scc->zport[ZS_CHAN_B];
 709	irqreturn_t status = IRQ_NONE;
 710	u8 zs_intreg;
 711	int count;
 712
 713	/*
 714	 * NOTE: The read register 3, which holds the irq status,
 715	 *       does so for both channels on each chip.  Although
 716	 *       the status value itself must be read from the A
 717	 *       channel and is only valid when read from channel A.
 718	 *       Yes... broken hardware...
 719	 */
 720	for (count = 16; count; count--) {
 721		spin_lock(&scc->zlock);
 722		zs_intreg = read_zsreg(zport_a, R3);
 723		spin_unlock(&scc->zlock);
 724		if (!zs_intreg)
 725			break;
 726
 727		/*
 728		 * We do not like losing characters, so we prioritise
 729		 * interrupt sources a little bit differently than
 730		 * the SCC would, was it allowed to.
 731		 */
 732		if (zs_intreg & CHBRxIP)
 733			zs_receive_chars(zport_b);
 734		if (zs_intreg & CHARxIP)
 735			zs_receive_chars(zport_a);
 736		if (zs_intreg & CHBEXT)
 737			zs_status_handle(zport_b, zport_a);
 738		if (zs_intreg & CHAEXT)
 739			zs_status_handle(zport_a, zport_a);
 740		if (zs_intreg & CHBTxIP)
 741			zs_transmit_chars(zport_b);
 742		if (zs_intreg & CHATxIP)
 743			zs_transmit_chars(zport_a);
 744
 745		status = IRQ_HANDLED;
 746	}
 747
 748	return status;
 749}
 750
 751
 752/*
 753 * Finally, routines used to initialize the serial port.
 754 */
 755static int zs_startup(struct uart_port *uport)
 756{
 757	struct zs_port *zport = to_zport(uport);
 758	struct zs_scc *scc = zport->scc;
 759	unsigned long flags;
 760	int irq_guard;
 761	int ret;
 762
 763	irq_guard = atomic_add_return(1, &scc->irq_guard);
 764	if (irq_guard == 1) {
 765		ret = request_irq(zport->port.irq, zs_interrupt,
 766				  IRQF_SHARED, "scc", scc);
 767		if (ret) {
 768			atomic_add(-1, &scc->irq_guard);
 769			printk(KERN_ERR "zs: can't get irq %d\n",
 770			       zport->port.irq);
 771			return ret;
 772		}
 773	}
 774
 775	spin_lock_irqsave(&scc->zlock, flags);
 776
 777	/* Clear the receive FIFO.  */
 778	zs_receive_drain(zport);
 779
 780	/* Clear the interrupt registers.  */
 781	write_zsreg(zport, R0, ERR_RES);
 782	write_zsreg(zport, R0, RES_Tx_P);
 783	/* But Ext only if not being handled already.  */
 784	if (!(zport->regs[1] & EXT_INT_ENAB))
 785		write_zsreg(zport, R0, RES_EXT_INT);
 786
 787	/* Finally, enable sequencing and interrupts.  */
 788	zport->regs[1] &= ~RxINT_MASK;
 789	zport->regs[1] |= RxINT_ALL | TxINT_ENAB | EXT_INT_ENAB;
 790	zport->regs[3] |= RxENABLE;
 791	zport->regs[15] |= BRKIE;
 792	write_zsreg(zport, R1, zport->regs[1]);
 793	write_zsreg(zport, R3, zport->regs[3]);
 794	write_zsreg(zport, R5, zport->regs[5]);
 795	write_zsreg(zport, R15, zport->regs[15]);
 796
 797	/* Record the current state of RR0.  */
 798	zport->mctrl = zs_raw_get_mctrl(zport);
 799	zport->brk = read_zsreg(zport, R0) & BRK_ABRT;
 800
 801	zport->tx_stopped = 1;
 802
 803	spin_unlock_irqrestore(&scc->zlock, flags);
 804
 805	return 0;
 806}
 807
 808static void zs_shutdown(struct uart_port *uport)
 809{
 810	struct zs_port *zport = to_zport(uport);
 811	struct zs_scc *scc = zport->scc;
 812	unsigned long flags;
 813	int irq_guard;
 814
 815	spin_lock_irqsave(&scc->zlock, flags);
 816
 817	zport->regs[3] &= ~RxENABLE;
 818	write_zsreg(zport, R5, zport->regs[5]);
 819	write_zsreg(zport, R3, zport->regs[3]);
 820
 821	spin_unlock_irqrestore(&scc->zlock, flags);
 822
 823	irq_guard = atomic_add_return(-1, &scc->irq_guard);
 824	if (!irq_guard)
 825		free_irq(zport->port.irq, scc);
 826}
 827
 828
 829static void zs_reset(struct zs_port *zport)
 830{
 831	struct zs_scc *scc = zport->scc;
 832	int irq;
 833	unsigned long flags;
 834
 835	spin_lock_irqsave(&scc->zlock, flags);
 836	irq = !irqs_disabled_flags(flags);
 837	if (!scc->initialised) {
 838		/* Reset the pointer first, just in case...  */
 839		read_zsreg(zport, R0);
 840		/* And let the current transmission finish.  */
 841		zs_line_drain(zport, irq);
 842		write_zsreg(zport, R9, FHWRES);
 843		udelay(10);
 844		write_zsreg(zport, R9, 0);
 845		scc->initialised = 1;
 846	}
 847	load_zsregs(zport, zport->regs, irq);
 848	spin_unlock_irqrestore(&scc->zlock, flags);
 849}
 850
 851static void zs_set_termios(struct uart_port *uport, struct ktermios *termios,
 852			   struct ktermios *old_termios)
 853{
 854	struct zs_port *zport = to_zport(uport);
 855	struct zs_scc *scc = zport->scc;
 856	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
 857	int irq;
 858	unsigned int baud, brg;
 859	unsigned long flags;
 860
 861	spin_lock_irqsave(&scc->zlock, flags);
 862	irq = !irqs_disabled_flags(flags);
 863
 864	/* Byte size.  */
 865	zport->regs[3] &= ~RxNBITS_MASK;
 866	zport->regs[5] &= ~TxNBITS_MASK;
 867	switch (termios->c_cflag & CSIZE) {
 868	case CS5:
 869		zport->regs[3] |= Rx5;
 870		zport->regs[5] |= Tx5;
 871		break;
 872	case CS6:
 873		zport->regs[3] |= Rx6;
 874		zport->regs[5] |= Tx6;
 875		break;
 876	case CS7:
 877		zport->regs[3] |= Rx7;
 878		zport->regs[5] |= Tx7;
 879		break;
 880	case CS8:
 881	default:
 882		zport->regs[3] |= Rx8;
 883		zport->regs[5] |= Tx8;
 884		break;
 885	}
 886
 887	/* Parity and stop bits.  */
 888	zport->regs[4] &= ~(XCLK_MASK | SB_MASK | PAR_ENA | PAR_EVEN);
 889	if (termios->c_cflag & CSTOPB)
 890		zport->regs[4] |= SB2;
 891	else
 892		zport->regs[4] |= SB1;
 893	if (termios->c_cflag & PARENB)
 894		zport->regs[4] |= PAR_ENA;
 895	if (!(termios->c_cflag & PARODD))
 896		zport->regs[4] |= PAR_EVEN;
 897	switch (zport->clk_mode) {
 898	case 64:
 899		zport->regs[4] |= X64CLK;
 900		break;
 901	case 32:
 902		zport->regs[4] |= X32CLK;
 903		break;
 904	case 16:
 905		zport->regs[4] |= X16CLK;
 906		break;
 907	case 1:
 908		zport->regs[4] |= X1CLK;
 909		break;
 910	default:
 911		BUG();
 912	}
 913
 914	baud = uart_get_baud_rate(uport, termios, old_termios, 0,
 915				  uport->uartclk / zport->clk_mode / 4);
 916
 917	brg = ZS_BPS_TO_BRG(baud, uport->uartclk / zport->clk_mode);
 918	zport->regs[12] = brg & 0xff;
 919	zport->regs[13] = (brg >> 8) & 0xff;
 920
 921	uart_update_timeout(uport, termios->c_cflag, baud);
 922
 923	uport->read_status_mask = Rx_OVR;
 924	if (termios->c_iflag & INPCK)
 925		uport->read_status_mask |= FRM_ERR | PAR_ERR;
 926	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
 927		uport->read_status_mask |= Rx_BRK;
 928
 929	uport->ignore_status_mask = 0;
 930	if (termios->c_iflag & IGNPAR)
 931		uport->ignore_status_mask |= FRM_ERR | PAR_ERR;
 932	if (termios->c_iflag & IGNBRK) {
 933		uport->ignore_status_mask |= Rx_BRK;
 934		if (termios->c_iflag & IGNPAR)
 935			uport->ignore_status_mask |= Rx_OVR;
 936	}
 937
 938	if (termios->c_cflag & CREAD)
 939		zport->regs[3] |= RxENABLE;
 940	else
 941		zport->regs[3] &= ~RxENABLE;
 942
 943	if (zport != zport_a) {
 944		if (!(termios->c_cflag & CLOCAL)) {
 945			zport->regs[15] |= DCDIE;
 946		} else
 947			zport->regs[15] &= ~DCDIE;
 948		if (termios->c_cflag & CRTSCTS) {
 949			zport->regs[15] |= CTSIE;
 950		} else
 951			zport->regs[15] &= ~CTSIE;
 952		zs_raw_xor_mctrl(zport);
 953	}
 954
 955	/* Load up the new values.  */
 956	load_zsregs(zport, zport->regs, irq);
 957
 958	spin_unlock_irqrestore(&scc->zlock, flags);
 959}
 960
 961/*
 962 * Hack alert!
 963 * Required solely so that the initial PROM-based console
 964 * works undisturbed in parallel with this one.
 965 */
 966static void zs_pm(struct uart_port *uport, unsigned int state,
 967		  unsigned int oldstate)
 968{
 969	struct zs_port *zport = to_zport(uport);
 970
 971	if (state < 3)
 972		zport->regs[5] |= TxENAB;
 973	else
 974		zport->regs[5] &= ~TxENAB;
 975	write_zsreg(zport, R5, zport->regs[5]);
 976}
 977
 978
 979static const char *zs_type(struct uart_port *uport)
 980{
 981	return "Z85C30 SCC";
 982}
 983
 984static void zs_release_port(struct uart_port *uport)
 985{
 986	iounmap(uport->membase);
 987	uport->membase = 0;
 988	release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
 989}
 990
 991static int zs_map_port(struct uart_port *uport)
 992{
 993	if (!uport->membase)
 994		uport->membase = ioremap_nocache(uport->mapbase,
 995						 ZS_CHAN_IO_SIZE);
 996	if (!uport->membase) {
 997		printk(KERN_ERR "zs: Cannot map MMIO\n");
 998		return -ENOMEM;
 999	}
1000	return 0;
1001}
1002
1003static int zs_request_port(struct uart_port *uport)
1004{
1005	int ret;
1006
1007	if (!request_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE, "scc")) {
1008		printk(KERN_ERR "zs: Unable to reserve MMIO resource\n");
1009		return -EBUSY;
1010	}
1011	ret = zs_map_port(uport);
1012	if (ret) {
1013		release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
1014		return ret;
1015	}
1016	return 0;
1017}
1018
1019static void zs_config_port(struct uart_port *uport, int flags)
1020{
1021	struct zs_port *zport = to_zport(uport);
1022
1023	if (flags & UART_CONFIG_TYPE) {
1024		if (zs_request_port(uport))
1025			return;
1026
1027		uport->type = PORT_ZS;
1028
1029		zs_reset(zport);
1030	}
1031}
1032
1033static int zs_verify_port(struct uart_port *uport, struct serial_struct *ser)
1034{
1035	struct zs_port *zport = to_zport(uport);
1036	int ret = 0;
1037
1038	if (ser->type != PORT_UNKNOWN && ser->type != PORT_ZS)
1039		ret = -EINVAL;
1040	if (ser->irq != uport->irq)
1041		ret = -EINVAL;
1042	if (ser->baud_base != uport->uartclk / zport->clk_mode / 4)
1043		ret = -EINVAL;
1044	return ret;
1045}
1046
1047
1048static struct uart_ops zs_ops = {
1049	.tx_empty	= zs_tx_empty,
1050	.set_mctrl	= zs_set_mctrl,
1051	.get_mctrl	= zs_get_mctrl,
1052	.stop_tx	= zs_stop_tx,
1053	.start_tx	= zs_start_tx,
1054	.stop_rx	= zs_stop_rx,
1055	.enable_ms	= zs_enable_ms,
1056	.break_ctl	= zs_break_ctl,
1057	.startup	= zs_startup,
1058	.shutdown	= zs_shutdown,
1059	.set_termios	= zs_set_termios,
1060	.pm		= zs_pm,
1061	.type		= zs_type,
1062	.release_port	= zs_release_port,
1063	.request_port	= zs_request_port,
1064	.config_port	= zs_config_port,
1065	.verify_port	= zs_verify_port,
1066};
1067
1068/*
1069 * Initialize Z85C30 port structures.
1070 */
1071static int __init zs_probe_sccs(void)
1072{
1073	static int probed;
1074	struct zs_parms zs_parms;
1075	int chip, side, irq;
1076	int n_chips = 0;
1077	int i;
1078
1079	if (probed)
1080		return 0;
1081
1082	irq = dec_interrupt[DEC_IRQ_SCC0];
1083	if (irq >= 0) {
1084		zs_parms.scc[n_chips] = IOASIC_SCC0;
1085		zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC0];
1086		n_chips++;
1087	}
1088	irq = dec_interrupt[DEC_IRQ_SCC1];
1089	if (irq >= 0) {
1090		zs_parms.scc[n_chips] = IOASIC_SCC1;
1091		zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC1];
1092		n_chips++;
1093	}
1094	if (!n_chips)
1095		return -ENXIO;
1096
1097	probed = 1;
1098
1099	for (chip = 0; chip < n_chips; chip++) {
1100		spin_lock_init(&zs_sccs[chip].zlock);
1101		for (side = 0; side < ZS_NUM_CHAN; side++) {
1102			struct zs_port *zport = &zs_sccs[chip].zport[side];
1103			struct uart_port *uport = &zport->port;
1104
1105			zport->scc	= &zs_sccs[chip];
1106			zport->clk_mode	= 16;
1107
1108			uport->irq	= zs_parms.irq[chip];
1109			uport->uartclk	= ZS_CLOCK;
1110			uport->fifosize	= 1;
1111			uport->iotype	= UPIO_MEM;
1112			uport->flags	= UPF_BOOT_AUTOCONF;
1113			uport->ops	= &zs_ops;
1114			uport->line	= chip * ZS_NUM_CHAN + side;
1115			uport->mapbase	= dec_kn_slot_base +
1116					  zs_parms.scc[chip] +
1117					  (side ^ ZS_CHAN_B) * ZS_CHAN_IO_SIZE;
1118
1119			for (i = 0; i < ZS_NUM_REGS; i++)
1120				zport->regs[i] = zs_init_regs[i];
1121		}
1122	}
1123
1124	return 0;
1125}
1126
1127
1128#ifdef CONFIG_SERIAL_ZS_CONSOLE
1129static void zs_console_putchar(struct uart_port *uport, int ch)
1130{
1131	struct zs_port *zport = to_zport(uport);
1132	struct zs_scc *scc = zport->scc;
1133	int irq;
1134	unsigned long flags;
1135
1136	spin_lock_irqsave(&scc->zlock, flags);
1137	irq = !irqs_disabled_flags(flags);
1138	if (zs_transmit_drain(zport, irq))
1139		write_zsdata(zport, ch);
1140	spin_unlock_irqrestore(&scc->zlock, flags);
1141}
1142
1143/*
1144 * Print a string to the serial port trying not to disturb
1145 * any possible real use of the port...
1146 */
1147static void zs_console_write(struct console *co, const char *s,
1148			     unsigned int count)
1149{
1150	int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1151	struct zs_port *zport = &zs_sccs[chip].zport[side];
1152	struct zs_scc *scc = zport->scc;
1153	unsigned long flags;
1154	u8 txint, txenb;
1155	int irq;
1156
1157	/* Disable transmit interrupts and enable the transmitter. */
1158	spin_lock_irqsave(&scc->zlock, flags);
1159	txint = zport->regs[1];
1160	txenb = zport->regs[5];
1161	if (txint & TxINT_ENAB) {
1162		zport->regs[1] = txint & ~TxINT_ENAB;
1163		write_zsreg(zport, R1, zport->regs[1]);
1164	}
1165	if (!(txenb & TxENAB)) {
1166		zport->regs[5] = txenb | TxENAB;
1167		write_zsreg(zport, R5, zport->regs[5]);
1168	}
1169	spin_unlock_irqrestore(&scc->zlock, flags);
1170
1171	uart_console_write(&zport->port, s, count, zs_console_putchar);
1172
1173	/* Restore transmit interrupts and the transmitter enable. */
1174	spin_lock_irqsave(&scc->zlock, flags);
1175	irq = !irqs_disabled_flags(flags);
1176	zs_line_drain(zport, irq);
1177	if (!(txenb & TxENAB)) {
1178		zport->regs[5] &= ~TxENAB;
1179		write_zsreg(zport, R5, zport->regs[5]);
1180	}
1181	if (txint & TxINT_ENAB) {
1182		zport->regs[1] |= TxINT_ENAB;
1183		write_zsreg(zport, R1, zport->regs[1]);
1184
1185		/* Resume any transmission as the TxIP bit won't be set.  */
1186		if (!zport->tx_stopped)
1187			zs_raw_transmit_chars(zport);
1188	}
1189	spin_unlock_irqrestore(&scc->zlock, flags);
1190}
1191
1192/*
1193 * Setup serial console baud/bits/parity.  We do two things here:
1194 * - construct a cflag setting for the first uart_open()
1195 * - initialise the serial port
1196 * Return non-zero if we didn't find a serial port.
1197 */
1198static int __init zs_console_setup(struct console *co, char *options)
1199{
1200	int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1201	struct zs_port *zport = &zs_sccs[chip].zport[side];
1202	struct uart_port *uport = &zport->port;
1203	int baud = 9600;
1204	int bits = 8;
1205	int parity = 'n';
1206	int flow = 'n';
1207	int ret;
1208
1209	ret = zs_map_port(uport);
1210	if (ret)
1211		return ret;
1212
1213	zs_reset(zport);
1214	zs_pm(uport, 0, -1);
1215
1216	if (options)
1217		uart_parse_options(options, &baud, &parity, &bits, &flow);
1218	return uart_set_options(uport, co, baud, parity, bits, flow);
1219}
1220
1221static struct uart_driver zs_reg;
1222static struct console zs_console = {
1223	.name	= "ttyS",
1224	.write	= zs_console_write,
1225	.device	= uart_console_device,
1226	.setup	= zs_console_setup,
1227	.flags	= CON_PRINTBUFFER,
1228	.index	= -1,
1229	.data	= &zs_reg,
1230};
1231
1232/*
1233 *	Register console.
1234 */
1235static int __init zs_serial_console_init(void)
1236{
1237	int ret;
1238
1239	ret = zs_probe_sccs();
1240	if (ret)
1241		return ret;
1242	register_console(&zs_console);
1243
1244	return 0;
1245}
1246
1247console_initcall(zs_serial_console_init);
1248
1249#define SERIAL_ZS_CONSOLE	&zs_console
1250#else
1251#define SERIAL_ZS_CONSOLE	NULL
1252#endif /* CONFIG_SERIAL_ZS_CONSOLE */
1253
1254static struct uart_driver zs_reg = {
1255	.owner			= THIS_MODULE,
1256	.driver_name		= "serial",
1257	.dev_name		= "ttyS",
1258	.major			= TTY_MAJOR,
1259	.minor			= 64,
1260	.nr			= ZS_NUM_SCCS * ZS_NUM_CHAN,
1261	.cons			= SERIAL_ZS_CONSOLE,
1262};
1263
1264/* zs_init inits the driver. */
1265static int __init zs_init(void)
1266{
1267	int i, ret;
1268
1269	pr_info("%s%s\n", zs_name, zs_version);
1270
1271	/* Find out how many Z85C30 SCCs we have.  */
1272	ret = zs_probe_sccs();
1273	if (ret)
1274		return ret;
1275
1276	ret = uart_register_driver(&zs_reg);
1277	if (ret)
1278		return ret;
1279
1280	for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
1281		struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1282		struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1283		struct uart_port *uport = &zport->port;
1284
1285		if (zport->scc)
1286			uart_add_one_port(&zs_reg, uport);
1287	}
1288
1289	return 0;
1290}
1291
1292static void __exit zs_exit(void)
1293{
1294	int i;
1295
1296	for (i = ZS_NUM_SCCS * ZS_NUM_CHAN - 1; i >= 0; i--) {
1297		struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1298		struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1299		struct uart_port *uport = &zport->port;
1300
1301		if (zport->scc)
1302			uart_remove_one_port(&zs_reg, uport);
1303	}
1304
1305	uart_unregister_driver(&zs_reg);
1306}
1307
1308module_init(zs_init);
1309module_exit(zs_exit);