Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * zs.c: Serial port driver for IOASIC DECstations.
4 *
5 * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras.
6 * Derived from drivers/macintosh/macserial.c by Harald Koerfgen.
7 *
8 * DECstation changes
9 * Copyright (C) 1998-2000 Harald Koerfgen
10 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
11 *
12 * For the rest of the code the original Copyright applies:
13 * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au)
14 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
15 *
16 *
17 * Note: for IOASIC systems the wiring is as follows:
18 *
19 * mouse/keyboard:
20 * DIN-7 MJ-4 signal SCC
21 * 2 1 TxD <- A.TxD
22 * 3 4 RxD -> A.RxD
23 *
24 * EIA-232/EIA-423:
25 * DB-25 MMJ-6 signal SCC
26 * 2 2 TxD <- B.TxD
27 * 3 5 RxD -> B.RxD
28 * 4 RTS <- ~A.RTS
29 * 5 CTS -> ~B.CTS
30 * 6 6 DSR -> ~A.SYNC
31 * 8 CD -> ~B.DCD
32 * 12 DSRS(DCE) -> ~A.CTS (*)
33 * 15 TxC -> B.TxC
34 * 17 RxC -> B.RxC
35 * 20 1 DTR <- ~A.DTR
36 * 22 RI -> ~A.DCD
37 * 23 DSRS(DTE) <- ~B.RTS
38 *
39 * (*) EIA-232 defines the signal at this pin to be SCD, while DSRS(DCE)
40 * is shared with DSRS(DTE) at pin 23.
41 *
42 * As you can immediately notice the wiring of the RTS, DTR and DSR signals
43 * is a bit odd. This makes the handling of port B unnecessarily
44 * complicated and prevents the use of some automatic modes of operation.
45 */
46
47#if defined(CONFIG_SERIAL_ZS_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
48#define SUPPORT_SYSRQ
49#endif
50
51#include <linux/bug.h>
52#include <linux/console.h>
53#include <linux/delay.h>
54#include <linux/errno.h>
55#include <linux/init.h>
56#include <linux/interrupt.h>
57#include <linux/io.h>
58#include <linux/ioport.h>
59#include <linux/irqflags.h>
60#include <linux/kernel.h>
61#include <linux/module.h>
62#include <linux/major.h>
63#include <linux/serial.h>
64#include <linux/serial_core.h>
65#include <linux/spinlock.h>
66#include <linux/sysrq.h>
67#include <linux/tty.h>
68#include <linux/tty_flip.h>
69#include <linux/types.h>
70
71#include <linux/atomic.h>
72
73#include <asm/dec/interrupts.h>
74#include <asm/dec/ioasic_addrs.h>
75#include <asm/dec/system.h>
76
77#include "zs.h"
78
79
80MODULE_AUTHOR("Maciej W. Rozycki <macro@linux-mips.org>");
81MODULE_DESCRIPTION("DECstation Z85C30 serial driver");
82MODULE_LICENSE("GPL");
83
84
85static char zs_name[] __initdata = "DECstation Z85C30 serial driver version ";
86static char zs_version[] __initdata = "0.10";
87
88/*
89 * It would be nice to dynamically allocate everything that
90 * depends on ZS_NUM_SCCS, so we could support any number of
91 * Z85C30s, but for now...
92 */
93#define ZS_NUM_SCCS 2 /* Max # of ZS chips supported. */
94#define ZS_NUM_CHAN 2 /* 2 channels per chip. */
95#define ZS_CHAN_A 0 /* Index of the channel A. */
96#define ZS_CHAN_B 1 /* Index of the channel B. */
97#define ZS_CHAN_IO_SIZE 8 /* IOMEM space size. */
98#define ZS_CHAN_IO_STRIDE 4 /* Register alignment. */
99#define ZS_CHAN_IO_OFFSET 1 /* The SCC resides on the high byte
100 of the 16-bit IOBUS. */
101#define ZS_CLOCK 7372800 /* Z85C30 PCLK input clock rate. */
102
103#define to_zport(uport) container_of(uport, struct zs_port, port)
104
105struct zs_parms {
106 resource_size_t scc[ZS_NUM_SCCS];
107 int irq[ZS_NUM_SCCS];
108};
109
110static struct zs_scc zs_sccs[ZS_NUM_SCCS];
111
112static u8 zs_init_regs[ZS_NUM_REGS] __initdata = {
113 0, /* write 0 */
114 PAR_SPEC, /* write 1 */
115 0, /* write 2 */
116 0, /* write 3 */
117 X16CLK | SB1, /* write 4 */
118 0, /* write 5 */
119 0, 0, 0, /* write 6, 7, 8 */
120 MIE | DLC | NV, /* write 9 */
121 NRZ, /* write 10 */
122 TCBR | RCBR, /* write 11 */
123 0, 0, /* BRG time constant, write 12 + 13 */
124 BRSRC | BRENABL, /* write 14 */
125 0, /* write 15 */
126};
127
128/*
129 * Debugging.
130 */
131#undef ZS_DEBUG_REGS
132
133
134/*
135 * Reading and writing Z85C30 registers.
136 */
137static void recovery_delay(void)
138{
139 udelay(2);
140}
141
142static u8 read_zsreg(struct zs_port *zport, int reg)
143{
144 void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
145 u8 retval;
146
147 if (reg != 0) {
148 writeb(reg & 0xf, control);
149 fast_iob();
150 recovery_delay();
151 }
152 retval = readb(control);
153 recovery_delay();
154 return retval;
155}
156
157static void write_zsreg(struct zs_port *zport, int reg, u8 value)
158{
159 void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
160
161 if (reg != 0) {
162 writeb(reg & 0xf, control);
163 fast_iob(); recovery_delay();
164 }
165 writeb(value, control);
166 fast_iob();
167 recovery_delay();
168 return;
169}
170
171static u8 read_zsdata(struct zs_port *zport)
172{
173 void __iomem *data = zport->port.membase +
174 ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
175 u8 retval;
176
177 retval = readb(data);
178 recovery_delay();
179 return retval;
180}
181
182static void write_zsdata(struct zs_port *zport, u8 value)
183{
184 void __iomem *data = zport->port.membase +
185 ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
186
187 writeb(value, data);
188 fast_iob();
189 recovery_delay();
190 return;
191}
192
193#ifdef ZS_DEBUG_REGS
194void zs_dump(void)
195{
196 struct zs_port *zport;
197 int i, j;
198
199 for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
200 zport = &zs_sccs[i / ZS_NUM_CHAN].zport[i % ZS_NUM_CHAN];
201
202 if (!zport->scc)
203 continue;
204
205 for (j = 0; j < 16; j++)
206 printk("W%-2d = 0x%02x\t", j, zport->regs[j]);
207 printk("\n");
208 for (j = 0; j < 16; j++)
209 printk("R%-2d = 0x%02x\t", j, read_zsreg(zport, j));
210 printk("\n\n");
211 }
212}
213#endif
214
215
216static void zs_spin_lock_cond_irq(spinlock_t *lock, int irq)
217{
218 if (irq)
219 spin_lock_irq(lock);
220 else
221 spin_lock(lock);
222}
223
224static void zs_spin_unlock_cond_irq(spinlock_t *lock, int irq)
225{
226 if (irq)
227 spin_unlock_irq(lock);
228 else
229 spin_unlock(lock);
230}
231
232static int zs_receive_drain(struct zs_port *zport)
233{
234 int loops = 10000;
235
236 while ((read_zsreg(zport, R0) & Rx_CH_AV) && --loops)
237 read_zsdata(zport);
238 return loops;
239}
240
241static int zs_transmit_drain(struct zs_port *zport, int irq)
242{
243 struct zs_scc *scc = zport->scc;
244 int loops = 10000;
245
246 while (!(read_zsreg(zport, R0) & Tx_BUF_EMP) && --loops) {
247 zs_spin_unlock_cond_irq(&scc->zlock, irq);
248 udelay(2);
249 zs_spin_lock_cond_irq(&scc->zlock, irq);
250 }
251 return loops;
252}
253
254static int zs_line_drain(struct zs_port *zport, int irq)
255{
256 struct zs_scc *scc = zport->scc;
257 int loops = 10000;
258
259 while (!(read_zsreg(zport, R1) & ALL_SNT) && --loops) {
260 zs_spin_unlock_cond_irq(&scc->zlock, irq);
261 udelay(2);
262 zs_spin_lock_cond_irq(&scc->zlock, irq);
263 }
264 return loops;
265}
266
267
268static void load_zsregs(struct zs_port *zport, u8 *regs, int irq)
269{
270 /* Let the current transmission finish. */
271 zs_line_drain(zport, irq);
272 /* Load 'em up. */
273 write_zsreg(zport, R3, regs[3] & ~RxENABLE);
274 write_zsreg(zport, R5, regs[5] & ~TxENAB);
275 write_zsreg(zport, R4, regs[4]);
276 write_zsreg(zport, R9, regs[9]);
277 write_zsreg(zport, R1, regs[1]);
278 write_zsreg(zport, R2, regs[2]);
279 write_zsreg(zport, R10, regs[10]);
280 write_zsreg(zport, R14, regs[14] & ~BRENABL);
281 write_zsreg(zport, R11, regs[11]);
282 write_zsreg(zport, R12, regs[12]);
283 write_zsreg(zport, R13, regs[13]);
284 write_zsreg(zport, R14, regs[14]);
285 write_zsreg(zport, R15, regs[15]);
286 if (regs[3] & RxENABLE)
287 write_zsreg(zport, R3, regs[3]);
288 if (regs[5] & TxENAB)
289 write_zsreg(zport, R5, regs[5]);
290 return;
291}
292
293
294/*
295 * Status handling routines.
296 */
297
298/*
299 * zs_tx_empty() -- get the transmitter empty status
300 *
301 * Purpose: Let user call ioctl() to get info when the UART physically
302 * is emptied. On bus types like RS485, the transmitter must
303 * release the bus after transmitting. This must be done when
304 * the transmit shift register is empty, not be done when the
305 * transmit holding register is empty. This functionality
306 * allows an RS485 driver to be written in user space.
307 */
308static unsigned int zs_tx_empty(struct uart_port *uport)
309{
310 struct zs_port *zport = to_zport(uport);
311 struct zs_scc *scc = zport->scc;
312 unsigned long flags;
313 u8 status;
314
315 spin_lock_irqsave(&scc->zlock, flags);
316 status = read_zsreg(zport, R1);
317 spin_unlock_irqrestore(&scc->zlock, flags);
318
319 return status & ALL_SNT ? TIOCSER_TEMT : 0;
320}
321
322static unsigned int zs_raw_get_ab_mctrl(struct zs_port *zport_a,
323 struct zs_port *zport_b)
324{
325 u8 status_a, status_b;
326 unsigned int mctrl;
327
328 status_a = read_zsreg(zport_a, R0);
329 status_b = read_zsreg(zport_b, R0);
330
331 mctrl = ((status_b & CTS) ? TIOCM_CTS : 0) |
332 ((status_b & DCD) ? TIOCM_CAR : 0) |
333 ((status_a & DCD) ? TIOCM_RNG : 0) |
334 ((status_a & SYNC_HUNT) ? TIOCM_DSR : 0);
335
336 return mctrl;
337}
338
339static unsigned int zs_raw_get_mctrl(struct zs_port *zport)
340{
341 struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
342
343 return zport != zport_a ? zs_raw_get_ab_mctrl(zport_a, zport) : 0;
344}
345
346static unsigned int zs_raw_xor_mctrl(struct zs_port *zport)
347{
348 struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
349 unsigned int mmask, mctrl, delta;
350 u8 mask_a, mask_b;
351
352 if (zport == zport_a)
353 return 0;
354
355 mask_a = zport_a->regs[15];
356 mask_b = zport->regs[15];
357
358 mmask = ((mask_b & CTSIE) ? TIOCM_CTS : 0) |
359 ((mask_b & DCDIE) ? TIOCM_CAR : 0) |
360 ((mask_a & DCDIE) ? TIOCM_RNG : 0) |
361 ((mask_a & SYNCIE) ? TIOCM_DSR : 0);
362
363 mctrl = zport->mctrl;
364 if (mmask) {
365 mctrl &= ~mmask;
366 mctrl |= zs_raw_get_ab_mctrl(zport_a, zport) & mmask;
367 }
368
369 delta = mctrl ^ zport->mctrl;
370 if (delta)
371 zport->mctrl = mctrl;
372
373 return delta;
374}
375
376static unsigned int zs_get_mctrl(struct uart_port *uport)
377{
378 struct zs_port *zport = to_zport(uport);
379 struct zs_scc *scc = zport->scc;
380 unsigned int mctrl;
381
382 spin_lock(&scc->zlock);
383 mctrl = zs_raw_get_mctrl(zport);
384 spin_unlock(&scc->zlock);
385
386 return mctrl;
387}
388
389static void zs_set_mctrl(struct uart_port *uport, unsigned int mctrl)
390{
391 struct zs_port *zport = to_zport(uport);
392 struct zs_scc *scc = zport->scc;
393 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
394 u8 oldloop, newloop;
395
396 spin_lock(&scc->zlock);
397 if (zport != zport_a) {
398 if (mctrl & TIOCM_DTR)
399 zport_a->regs[5] |= DTR;
400 else
401 zport_a->regs[5] &= ~DTR;
402 if (mctrl & TIOCM_RTS)
403 zport_a->regs[5] |= RTS;
404 else
405 zport_a->regs[5] &= ~RTS;
406 write_zsreg(zport_a, R5, zport_a->regs[5]);
407 }
408
409 /* Rarely modified, so don't poke at hardware unless necessary. */
410 oldloop = zport->regs[14];
411 newloop = oldloop;
412 if (mctrl & TIOCM_LOOP)
413 newloop |= LOOPBAK;
414 else
415 newloop &= ~LOOPBAK;
416 if (newloop != oldloop) {
417 zport->regs[14] = newloop;
418 write_zsreg(zport, R14, zport->regs[14]);
419 }
420 spin_unlock(&scc->zlock);
421}
422
423static void zs_raw_stop_tx(struct zs_port *zport)
424{
425 write_zsreg(zport, R0, RES_Tx_P);
426 zport->tx_stopped = 1;
427}
428
429static void zs_stop_tx(struct uart_port *uport)
430{
431 struct zs_port *zport = to_zport(uport);
432 struct zs_scc *scc = zport->scc;
433
434 spin_lock(&scc->zlock);
435 zs_raw_stop_tx(zport);
436 spin_unlock(&scc->zlock);
437}
438
439static void zs_raw_transmit_chars(struct zs_port *);
440
441static void zs_start_tx(struct uart_port *uport)
442{
443 struct zs_port *zport = to_zport(uport);
444 struct zs_scc *scc = zport->scc;
445
446 spin_lock(&scc->zlock);
447 if (zport->tx_stopped) {
448 zs_transmit_drain(zport, 0);
449 zport->tx_stopped = 0;
450 zs_raw_transmit_chars(zport);
451 }
452 spin_unlock(&scc->zlock);
453}
454
455static void zs_stop_rx(struct uart_port *uport)
456{
457 struct zs_port *zport = to_zport(uport);
458 struct zs_scc *scc = zport->scc;
459 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
460
461 spin_lock(&scc->zlock);
462 zport->regs[15] &= ~BRKIE;
463 zport->regs[1] &= ~(RxINT_MASK | TxINT_ENAB);
464 zport->regs[1] |= RxINT_DISAB;
465
466 if (zport != zport_a) {
467 /* A-side DCD tracks RI and SYNC tracks DSR. */
468 zport_a->regs[15] &= ~(DCDIE | SYNCIE);
469 write_zsreg(zport_a, R15, zport_a->regs[15]);
470 if (!(zport_a->regs[15] & BRKIE)) {
471 zport_a->regs[1] &= ~EXT_INT_ENAB;
472 write_zsreg(zport_a, R1, zport_a->regs[1]);
473 }
474
475 /* This-side DCD tracks DCD and CTS tracks CTS. */
476 zport->regs[15] &= ~(DCDIE | CTSIE);
477 zport->regs[1] &= ~EXT_INT_ENAB;
478 } else {
479 /* DCD tracks RI and SYNC tracks DSR for the B side. */
480 if (!(zport->regs[15] & (DCDIE | SYNCIE)))
481 zport->regs[1] &= ~EXT_INT_ENAB;
482 }
483
484 write_zsreg(zport, R15, zport->regs[15]);
485 write_zsreg(zport, R1, zport->regs[1]);
486 spin_unlock(&scc->zlock);
487}
488
489static void zs_enable_ms(struct uart_port *uport)
490{
491 struct zs_port *zport = to_zport(uport);
492 struct zs_scc *scc = zport->scc;
493 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
494
495 if (zport == zport_a)
496 return;
497
498 spin_lock(&scc->zlock);
499
500 /* Clear Ext interrupts if not being handled already. */
501 if (!(zport_a->regs[1] & EXT_INT_ENAB))
502 write_zsreg(zport_a, R0, RES_EXT_INT);
503
504 /* A-side DCD tracks RI and SYNC tracks DSR. */
505 zport_a->regs[1] |= EXT_INT_ENAB;
506 zport_a->regs[15] |= DCDIE | SYNCIE;
507
508 /* This-side DCD tracks DCD and CTS tracks CTS. */
509 zport->regs[15] |= DCDIE | CTSIE;
510
511 zs_raw_xor_mctrl(zport);
512
513 write_zsreg(zport_a, R1, zport_a->regs[1]);
514 write_zsreg(zport_a, R15, zport_a->regs[15]);
515 write_zsreg(zport, R15, zport->regs[15]);
516 spin_unlock(&scc->zlock);
517}
518
519static void zs_break_ctl(struct uart_port *uport, int break_state)
520{
521 struct zs_port *zport = to_zport(uport);
522 struct zs_scc *scc = zport->scc;
523 unsigned long flags;
524
525 spin_lock_irqsave(&scc->zlock, flags);
526 if (break_state == -1)
527 zport->regs[5] |= SND_BRK;
528 else
529 zport->regs[5] &= ~SND_BRK;
530 write_zsreg(zport, R5, zport->regs[5]);
531 spin_unlock_irqrestore(&scc->zlock, flags);
532}
533
534
535/*
536 * Interrupt handling routines.
537 */
538#define Rx_BRK 0x0100 /* BREAK event software flag. */
539#define Rx_SYS 0x0200 /* SysRq event software flag. */
540
541static void zs_receive_chars(struct zs_port *zport)
542{
543 struct uart_port *uport = &zport->port;
544 struct zs_scc *scc = zport->scc;
545 struct uart_icount *icount;
546 unsigned int avail, status, ch, flag;
547 int count;
548
549 for (count = 16; count; count--) {
550 spin_lock(&scc->zlock);
551 avail = read_zsreg(zport, R0) & Rx_CH_AV;
552 spin_unlock(&scc->zlock);
553 if (!avail)
554 break;
555
556 spin_lock(&scc->zlock);
557 status = read_zsreg(zport, R1) & (Rx_OVR | FRM_ERR | PAR_ERR);
558 ch = read_zsdata(zport);
559 spin_unlock(&scc->zlock);
560
561 flag = TTY_NORMAL;
562
563 icount = &uport->icount;
564 icount->rx++;
565
566 /* Handle the null char got when BREAK is removed. */
567 if (!ch)
568 status |= zport->tty_break;
569 if (unlikely(status &
570 (Rx_OVR | FRM_ERR | PAR_ERR | Rx_SYS | Rx_BRK))) {
571 zport->tty_break = 0;
572
573 /* Reset the error indication. */
574 if (status & (Rx_OVR | FRM_ERR | PAR_ERR)) {
575 spin_lock(&scc->zlock);
576 write_zsreg(zport, R0, ERR_RES);
577 spin_unlock(&scc->zlock);
578 }
579
580 if (status & (Rx_SYS | Rx_BRK)) {
581 icount->brk++;
582 /* SysRq discards the null char. */
583 if (status & Rx_SYS)
584 continue;
585 } else if (status & FRM_ERR)
586 icount->frame++;
587 else if (status & PAR_ERR)
588 icount->parity++;
589 if (status & Rx_OVR)
590 icount->overrun++;
591
592 status &= uport->read_status_mask;
593 if (status & Rx_BRK)
594 flag = TTY_BREAK;
595 else if (status & FRM_ERR)
596 flag = TTY_FRAME;
597 else if (status & PAR_ERR)
598 flag = TTY_PARITY;
599 }
600
601 if (uart_handle_sysrq_char(uport, ch))
602 continue;
603
604 uart_insert_char(uport, status, Rx_OVR, ch, flag);
605 }
606
607 tty_flip_buffer_push(&uport->state->port);
608}
609
610static void zs_raw_transmit_chars(struct zs_port *zport)
611{
612 struct circ_buf *xmit = &zport->port.state->xmit;
613
614 /* XON/XOFF chars. */
615 if (zport->port.x_char) {
616 write_zsdata(zport, zport->port.x_char);
617 zport->port.icount.tx++;
618 zport->port.x_char = 0;
619 return;
620 }
621
622 /* If nothing to do or stopped or hardware stopped. */
623 if (uart_circ_empty(xmit) || uart_tx_stopped(&zport->port)) {
624 zs_raw_stop_tx(zport);
625 return;
626 }
627
628 /* Send char. */
629 write_zsdata(zport, xmit->buf[xmit->tail]);
630 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
631 zport->port.icount.tx++;
632
633 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
634 uart_write_wakeup(&zport->port);
635
636 /* Are we are done? */
637 if (uart_circ_empty(xmit))
638 zs_raw_stop_tx(zport);
639}
640
641static void zs_transmit_chars(struct zs_port *zport)
642{
643 struct zs_scc *scc = zport->scc;
644
645 spin_lock(&scc->zlock);
646 zs_raw_transmit_chars(zport);
647 spin_unlock(&scc->zlock);
648}
649
650static void zs_status_handle(struct zs_port *zport, struct zs_port *zport_a)
651{
652 struct uart_port *uport = &zport->port;
653 struct zs_scc *scc = zport->scc;
654 unsigned int delta;
655 u8 status, brk;
656
657 spin_lock(&scc->zlock);
658
659 /* Get status from Read Register 0. */
660 status = read_zsreg(zport, R0);
661
662 if (zport->regs[15] & BRKIE) {
663 brk = status & BRK_ABRT;
664 if (brk && !zport->brk) {
665 spin_unlock(&scc->zlock);
666 if (uart_handle_break(uport))
667 zport->tty_break = Rx_SYS;
668 else
669 zport->tty_break = Rx_BRK;
670 spin_lock(&scc->zlock);
671 }
672 zport->brk = brk;
673 }
674
675 if (zport != zport_a) {
676 delta = zs_raw_xor_mctrl(zport);
677 spin_unlock(&scc->zlock);
678
679 if (delta & TIOCM_CTS)
680 uart_handle_cts_change(uport,
681 zport->mctrl & TIOCM_CTS);
682 if (delta & TIOCM_CAR)
683 uart_handle_dcd_change(uport,
684 zport->mctrl & TIOCM_CAR);
685 if (delta & TIOCM_RNG)
686 uport->icount.dsr++;
687 if (delta & TIOCM_DSR)
688 uport->icount.rng++;
689
690 if (delta)
691 wake_up_interruptible(&uport->state->port.delta_msr_wait);
692
693 spin_lock(&scc->zlock);
694 }
695
696 /* Clear the status condition... */
697 write_zsreg(zport, R0, RES_EXT_INT);
698
699 spin_unlock(&scc->zlock);
700}
701
702/*
703 * This is the Z85C30 driver's generic interrupt routine.
704 */
705static irqreturn_t zs_interrupt(int irq, void *dev_id)
706{
707 struct zs_scc *scc = dev_id;
708 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
709 struct zs_port *zport_b = &scc->zport[ZS_CHAN_B];
710 irqreturn_t status = IRQ_NONE;
711 u8 zs_intreg;
712 int count;
713
714 /*
715 * NOTE: The read register 3, which holds the irq status,
716 * does so for both channels on each chip. Although
717 * the status value itself must be read from the A
718 * channel and is only valid when read from channel A.
719 * Yes... broken hardware...
720 */
721 for (count = 16; count; count--) {
722 spin_lock(&scc->zlock);
723 zs_intreg = read_zsreg(zport_a, R3);
724 spin_unlock(&scc->zlock);
725 if (!zs_intreg)
726 break;
727
728 /*
729 * We do not like losing characters, so we prioritise
730 * interrupt sources a little bit differently than
731 * the SCC would, was it allowed to.
732 */
733 if (zs_intreg & CHBRxIP)
734 zs_receive_chars(zport_b);
735 if (zs_intreg & CHARxIP)
736 zs_receive_chars(zport_a);
737 if (zs_intreg & CHBEXT)
738 zs_status_handle(zport_b, zport_a);
739 if (zs_intreg & CHAEXT)
740 zs_status_handle(zport_a, zport_a);
741 if (zs_intreg & CHBTxIP)
742 zs_transmit_chars(zport_b);
743 if (zs_intreg & CHATxIP)
744 zs_transmit_chars(zport_a);
745
746 status = IRQ_HANDLED;
747 }
748
749 return status;
750}
751
752
753/*
754 * Finally, routines used to initialize the serial port.
755 */
756static int zs_startup(struct uart_port *uport)
757{
758 struct zs_port *zport = to_zport(uport);
759 struct zs_scc *scc = zport->scc;
760 unsigned long flags;
761 int irq_guard;
762 int ret;
763
764 irq_guard = atomic_add_return(1, &scc->irq_guard);
765 if (irq_guard == 1) {
766 ret = request_irq(zport->port.irq, zs_interrupt,
767 IRQF_SHARED, "scc", scc);
768 if (ret) {
769 atomic_add(-1, &scc->irq_guard);
770 printk(KERN_ERR "zs: can't get irq %d\n",
771 zport->port.irq);
772 return ret;
773 }
774 }
775
776 spin_lock_irqsave(&scc->zlock, flags);
777
778 /* Clear the receive FIFO. */
779 zs_receive_drain(zport);
780
781 /* Clear the interrupt registers. */
782 write_zsreg(zport, R0, ERR_RES);
783 write_zsreg(zport, R0, RES_Tx_P);
784 /* But Ext only if not being handled already. */
785 if (!(zport->regs[1] & EXT_INT_ENAB))
786 write_zsreg(zport, R0, RES_EXT_INT);
787
788 /* Finally, enable sequencing and interrupts. */
789 zport->regs[1] &= ~RxINT_MASK;
790 zport->regs[1] |= RxINT_ALL | TxINT_ENAB | EXT_INT_ENAB;
791 zport->regs[3] |= RxENABLE;
792 zport->regs[15] |= BRKIE;
793 write_zsreg(zport, R1, zport->regs[1]);
794 write_zsreg(zport, R3, zport->regs[3]);
795 write_zsreg(zport, R5, zport->regs[5]);
796 write_zsreg(zport, R15, zport->regs[15]);
797
798 /* Record the current state of RR0. */
799 zport->mctrl = zs_raw_get_mctrl(zport);
800 zport->brk = read_zsreg(zport, R0) & BRK_ABRT;
801
802 zport->tx_stopped = 1;
803
804 spin_unlock_irqrestore(&scc->zlock, flags);
805
806 return 0;
807}
808
809static void zs_shutdown(struct uart_port *uport)
810{
811 struct zs_port *zport = to_zport(uport);
812 struct zs_scc *scc = zport->scc;
813 unsigned long flags;
814 int irq_guard;
815
816 spin_lock_irqsave(&scc->zlock, flags);
817
818 zport->regs[3] &= ~RxENABLE;
819 write_zsreg(zport, R5, zport->regs[5]);
820 write_zsreg(zport, R3, zport->regs[3]);
821
822 spin_unlock_irqrestore(&scc->zlock, flags);
823
824 irq_guard = atomic_add_return(-1, &scc->irq_guard);
825 if (!irq_guard)
826 free_irq(zport->port.irq, scc);
827}
828
829
830static void zs_reset(struct zs_port *zport)
831{
832 struct zs_scc *scc = zport->scc;
833 int irq;
834 unsigned long flags;
835
836 spin_lock_irqsave(&scc->zlock, flags);
837 irq = !irqs_disabled_flags(flags);
838 if (!scc->initialised) {
839 /* Reset the pointer first, just in case... */
840 read_zsreg(zport, R0);
841 /* And let the current transmission finish. */
842 zs_line_drain(zport, irq);
843 write_zsreg(zport, R9, FHWRES);
844 udelay(10);
845 write_zsreg(zport, R9, 0);
846 scc->initialised = 1;
847 }
848 load_zsregs(zport, zport->regs, irq);
849 spin_unlock_irqrestore(&scc->zlock, flags);
850}
851
852static void zs_set_termios(struct uart_port *uport, struct ktermios *termios,
853 struct ktermios *old_termios)
854{
855 struct zs_port *zport = to_zport(uport);
856 struct zs_scc *scc = zport->scc;
857 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
858 int irq;
859 unsigned int baud, brg;
860 unsigned long flags;
861
862 spin_lock_irqsave(&scc->zlock, flags);
863 irq = !irqs_disabled_flags(flags);
864
865 /* Byte size. */
866 zport->regs[3] &= ~RxNBITS_MASK;
867 zport->regs[5] &= ~TxNBITS_MASK;
868 switch (termios->c_cflag & CSIZE) {
869 case CS5:
870 zport->regs[3] |= Rx5;
871 zport->regs[5] |= Tx5;
872 break;
873 case CS6:
874 zport->regs[3] |= Rx6;
875 zport->regs[5] |= Tx6;
876 break;
877 case CS7:
878 zport->regs[3] |= Rx7;
879 zport->regs[5] |= Tx7;
880 break;
881 case CS8:
882 default:
883 zport->regs[3] |= Rx8;
884 zport->regs[5] |= Tx8;
885 break;
886 }
887
888 /* Parity and stop bits. */
889 zport->regs[4] &= ~(XCLK_MASK | SB_MASK | PAR_ENA | PAR_EVEN);
890 if (termios->c_cflag & CSTOPB)
891 zport->regs[4] |= SB2;
892 else
893 zport->regs[4] |= SB1;
894 if (termios->c_cflag & PARENB)
895 zport->regs[4] |= PAR_ENA;
896 if (!(termios->c_cflag & PARODD))
897 zport->regs[4] |= PAR_EVEN;
898 switch (zport->clk_mode) {
899 case 64:
900 zport->regs[4] |= X64CLK;
901 break;
902 case 32:
903 zport->regs[4] |= X32CLK;
904 break;
905 case 16:
906 zport->regs[4] |= X16CLK;
907 break;
908 case 1:
909 zport->regs[4] |= X1CLK;
910 break;
911 default:
912 BUG();
913 }
914
915 baud = uart_get_baud_rate(uport, termios, old_termios, 0,
916 uport->uartclk / zport->clk_mode / 4);
917
918 brg = ZS_BPS_TO_BRG(baud, uport->uartclk / zport->clk_mode);
919 zport->regs[12] = brg & 0xff;
920 zport->regs[13] = (brg >> 8) & 0xff;
921
922 uart_update_timeout(uport, termios->c_cflag, baud);
923
924 uport->read_status_mask = Rx_OVR;
925 if (termios->c_iflag & INPCK)
926 uport->read_status_mask |= FRM_ERR | PAR_ERR;
927 if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
928 uport->read_status_mask |= Rx_BRK;
929
930 uport->ignore_status_mask = 0;
931 if (termios->c_iflag & IGNPAR)
932 uport->ignore_status_mask |= FRM_ERR | PAR_ERR;
933 if (termios->c_iflag & IGNBRK) {
934 uport->ignore_status_mask |= Rx_BRK;
935 if (termios->c_iflag & IGNPAR)
936 uport->ignore_status_mask |= Rx_OVR;
937 }
938
939 if (termios->c_cflag & CREAD)
940 zport->regs[3] |= RxENABLE;
941 else
942 zport->regs[3] &= ~RxENABLE;
943
944 if (zport != zport_a) {
945 if (!(termios->c_cflag & CLOCAL)) {
946 zport->regs[15] |= DCDIE;
947 } else
948 zport->regs[15] &= ~DCDIE;
949 if (termios->c_cflag & CRTSCTS) {
950 zport->regs[15] |= CTSIE;
951 } else
952 zport->regs[15] &= ~CTSIE;
953 zs_raw_xor_mctrl(zport);
954 }
955
956 /* Load up the new values. */
957 load_zsregs(zport, zport->regs, irq);
958
959 spin_unlock_irqrestore(&scc->zlock, flags);
960}
961
962/*
963 * Hack alert!
964 * Required solely so that the initial PROM-based console
965 * works undisturbed in parallel with this one.
966 */
967static void zs_pm(struct uart_port *uport, unsigned int state,
968 unsigned int oldstate)
969{
970 struct zs_port *zport = to_zport(uport);
971
972 if (state < 3)
973 zport->regs[5] |= TxENAB;
974 else
975 zport->regs[5] &= ~TxENAB;
976 write_zsreg(zport, R5, zport->regs[5]);
977}
978
979
980static const char *zs_type(struct uart_port *uport)
981{
982 return "Z85C30 SCC";
983}
984
985static void zs_release_port(struct uart_port *uport)
986{
987 iounmap(uport->membase);
988 uport->membase = 0;
989 release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
990}
991
992static int zs_map_port(struct uart_port *uport)
993{
994 if (!uport->membase)
995 uport->membase = ioremap_nocache(uport->mapbase,
996 ZS_CHAN_IO_SIZE);
997 if (!uport->membase) {
998 printk(KERN_ERR "zs: Cannot map MMIO\n");
999 return -ENOMEM;
1000 }
1001 return 0;
1002}
1003
1004static int zs_request_port(struct uart_port *uport)
1005{
1006 int ret;
1007
1008 if (!request_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE, "scc")) {
1009 printk(KERN_ERR "zs: Unable to reserve MMIO resource\n");
1010 return -EBUSY;
1011 }
1012 ret = zs_map_port(uport);
1013 if (ret) {
1014 release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
1015 return ret;
1016 }
1017 return 0;
1018}
1019
1020static void zs_config_port(struct uart_port *uport, int flags)
1021{
1022 struct zs_port *zport = to_zport(uport);
1023
1024 if (flags & UART_CONFIG_TYPE) {
1025 if (zs_request_port(uport))
1026 return;
1027
1028 uport->type = PORT_ZS;
1029
1030 zs_reset(zport);
1031 }
1032}
1033
1034static int zs_verify_port(struct uart_port *uport, struct serial_struct *ser)
1035{
1036 struct zs_port *zport = to_zport(uport);
1037 int ret = 0;
1038
1039 if (ser->type != PORT_UNKNOWN && ser->type != PORT_ZS)
1040 ret = -EINVAL;
1041 if (ser->irq != uport->irq)
1042 ret = -EINVAL;
1043 if (ser->baud_base != uport->uartclk / zport->clk_mode / 4)
1044 ret = -EINVAL;
1045 return ret;
1046}
1047
1048
1049static const struct uart_ops zs_ops = {
1050 .tx_empty = zs_tx_empty,
1051 .set_mctrl = zs_set_mctrl,
1052 .get_mctrl = zs_get_mctrl,
1053 .stop_tx = zs_stop_tx,
1054 .start_tx = zs_start_tx,
1055 .stop_rx = zs_stop_rx,
1056 .enable_ms = zs_enable_ms,
1057 .break_ctl = zs_break_ctl,
1058 .startup = zs_startup,
1059 .shutdown = zs_shutdown,
1060 .set_termios = zs_set_termios,
1061 .pm = zs_pm,
1062 .type = zs_type,
1063 .release_port = zs_release_port,
1064 .request_port = zs_request_port,
1065 .config_port = zs_config_port,
1066 .verify_port = zs_verify_port,
1067};
1068
1069/*
1070 * Initialize Z85C30 port structures.
1071 */
1072static int __init zs_probe_sccs(void)
1073{
1074 static int probed;
1075 struct zs_parms zs_parms;
1076 int chip, side, irq;
1077 int n_chips = 0;
1078 int i;
1079
1080 if (probed)
1081 return 0;
1082
1083 irq = dec_interrupt[DEC_IRQ_SCC0];
1084 if (irq >= 0) {
1085 zs_parms.scc[n_chips] = IOASIC_SCC0;
1086 zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC0];
1087 n_chips++;
1088 }
1089 irq = dec_interrupt[DEC_IRQ_SCC1];
1090 if (irq >= 0) {
1091 zs_parms.scc[n_chips] = IOASIC_SCC1;
1092 zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC1];
1093 n_chips++;
1094 }
1095 if (!n_chips)
1096 return -ENXIO;
1097
1098 probed = 1;
1099
1100 for (chip = 0; chip < n_chips; chip++) {
1101 spin_lock_init(&zs_sccs[chip].zlock);
1102 for (side = 0; side < ZS_NUM_CHAN; side++) {
1103 struct zs_port *zport = &zs_sccs[chip].zport[side];
1104 struct uart_port *uport = &zport->port;
1105
1106 zport->scc = &zs_sccs[chip];
1107 zport->clk_mode = 16;
1108
1109 uport->irq = zs_parms.irq[chip];
1110 uport->uartclk = ZS_CLOCK;
1111 uport->fifosize = 1;
1112 uport->iotype = UPIO_MEM;
1113 uport->flags = UPF_BOOT_AUTOCONF;
1114 uport->ops = &zs_ops;
1115 uport->line = chip * ZS_NUM_CHAN + side;
1116 uport->mapbase = dec_kn_slot_base +
1117 zs_parms.scc[chip] +
1118 (side ^ ZS_CHAN_B) * ZS_CHAN_IO_SIZE;
1119
1120 for (i = 0; i < ZS_NUM_REGS; i++)
1121 zport->regs[i] = zs_init_regs[i];
1122 }
1123 }
1124
1125 return 0;
1126}
1127
1128
1129#ifdef CONFIG_SERIAL_ZS_CONSOLE
1130static void zs_console_putchar(struct uart_port *uport, int ch)
1131{
1132 struct zs_port *zport = to_zport(uport);
1133 struct zs_scc *scc = zport->scc;
1134 int irq;
1135 unsigned long flags;
1136
1137 spin_lock_irqsave(&scc->zlock, flags);
1138 irq = !irqs_disabled_flags(flags);
1139 if (zs_transmit_drain(zport, irq))
1140 write_zsdata(zport, ch);
1141 spin_unlock_irqrestore(&scc->zlock, flags);
1142}
1143
1144/*
1145 * Print a string to the serial port trying not to disturb
1146 * any possible real use of the port...
1147 */
1148static void zs_console_write(struct console *co, const char *s,
1149 unsigned int count)
1150{
1151 int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1152 struct zs_port *zport = &zs_sccs[chip].zport[side];
1153 struct zs_scc *scc = zport->scc;
1154 unsigned long flags;
1155 u8 txint, txenb;
1156 int irq;
1157
1158 /* Disable transmit interrupts and enable the transmitter. */
1159 spin_lock_irqsave(&scc->zlock, flags);
1160 txint = zport->regs[1];
1161 txenb = zport->regs[5];
1162 if (txint & TxINT_ENAB) {
1163 zport->regs[1] = txint & ~TxINT_ENAB;
1164 write_zsreg(zport, R1, zport->regs[1]);
1165 }
1166 if (!(txenb & TxENAB)) {
1167 zport->regs[5] = txenb | TxENAB;
1168 write_zsreg(zport, R5, zport->regs[5]);
1169 }
1170 spin_unlock_irqrestore(&scc->zlock, flags);
1171
1172 uart_console_write(&zport->port, s, count, zs_console_putchar);
1173
1174 /* Restore transmit interrupts and the transmitter enable. */
1175 spin_lock_irqsave(&scc->zlock, flags);
1176 irq = !irqs_disabled_flags(flags);
1177 zs_line_drain(zport, irq);
1178 if (!(txenb & TxENAB)) {
1179 zport->regs[5] &= ~TxENAB;
1180 write_zsreg(zport, R5, zport->regs[5]);
1181 }
1182 if (txint & TxINT_ENAB) {
1183 zport->regs[1] |= TxINT_ENAB;
1184 write_zsreg(zport, R1, zport->regs[1]);
1185
1186 /* Resume any transmission as the TxIP bit won't be set. */
1187 if (!zport->tx_stopped)
1188 zs_raw_transmit_chars(zport);
1189 }
1190 spin_unlock_irqrestore(&scc->zlock, flags);
1191}
1192
1193/*
1194 * Setup serial console baud/bits/parity. We do two things here:
1195 * - construct a cflag setting for the first uart_open()
1196 * - initialise the serial port
1197 * Return non-zero if we didn't find a serial port.
1198 */
1199static int __init zs_console_setup(struct console *co, char *options)
1200{
1201 int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1202 struct zs_port *zport = &zs_sccs[chip].zport[side];
1203 struct uart_port *uport = &zport->port;
1204 int baud = 9600;
1205 int bits = 8;
1206 int parity = 'n';
1207 int flow = 'n';
1208 int ret;
1209
1210 ret = zs_map_port(uport);
1211 if (ret)
1212 return ret;
1213
1214 zs_reset(zport);
1215 zs_pm(uport, 0, -1);
1216
1217 if (options)
1218 uart_parse_options(options, &baud, &parity, &bits, &flow);
1219 return uart_set_options(uport, co, baud, parity, bits, flow);
1220}
1221
1222static struct uart_driver zs_reg;
1223static struct console zs_console = {
1224 .name = "ttyS",
1225 .write = zs_console_write,
1226 .device = uart_console_device,
1227 .setup = zs_console_setup,
1228 .flags = CON_PRINTBUFFER,
1229 .index = -1,
1230 .data = &zs_reg,
1231};
1232
1233/*
1234 * Register console.
1235 */
1236static int __init zs_serial_console_init(void)
1237{
1238 int ret;
1239
1240 ret = zs_probe_sccs();
1241 if (ret)
1242 return ret;
1243 register_console(&zs_console);
1244
1245 return 0;
1246}
1247
1248console_initcall(zs_serial_console_init);
1249
1250#define SERIAL_ZS_CONSOLE &zs_console
1251#else
1252#define SERIAL_ZS_CONSOLE NULL
1253#endif /* CONFIG_SERIAL_ZS_CONSOLE */
1254
1255static struct uart_driver zs_reg = {
1256 .owner = THIS_MODULE,
1257 .driver_name = "serial",
1258 .dev_name = "ttyS",
1259 .major = TTY_MAJOR,
1260 .minor = 64,
1261 .nr = ZS_NUM_SCCS * ZS_NUM_CHAN,
1262 .cons = SERIAL_ZS_CONSOLE,
1263};
1264
1265/* zs_init inits the driver. */
1266static int __init zs_init(void)
1267{
1268 int i, ret;
1269
1270 pr_info("%s%s\n", zs_name, zs_version);
1271
1272 /* Find out how many Z85C30 SCCs we have. */
1273 ret = zs_probe_sccs();
1274 if (ret)
1275 return ret;
1276
1277 ret = uart_register_driver(&zs_reg);
1278 if (ret)
1279 return ret;
1280
1281 for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
1282 struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1283 struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1284 struct uart_port *uport = &zport->port;
1285
1286 if (zport->scc)
1287 uart_add_one_port(&zs_reg, uport);
1288 }
1289
1290 return 0;
1291}
1292
1293static void __exit zs_exit(void)
1294{
1295 int i;
1296
1297 for (i = ZS_NUM_SCCS * ZS_NUM_CHAN - 1; i >= 0; i--) {
1298 struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1299 struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1300 struct uart_port *uport = &zport->port;
1301
1302 if (zport->scc)
1303 uart_remove_one_port(&zs_reg, uport);
1304 }
1305
1306 uart_unregister_driver(&zs_reg);
1307}
1308
1309module_init(zs_init);
1310module_exit(zs_exit);
1/*
2 * zs.c: Serial port driver for IOASIC DECstations.
3 *
4 * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras.
5 * Derived from drivers/macintosh/macserial.c by Harald Koerfgen.
6 *
7 * DECstation changes
8 * Copyright (C) 1998-2000 Harald Koerfgen
9 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
10 *
11 * For the rest of the code the original Copyright applies:
12 * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au)
13 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
14 *
15 *
16 * Note: for IOASIC systems the wiring is as follows:
17 *
18 * mouse/keyboard:
19 * DIN-7 MJ-4 signal SCC
20 * 2 1 TxD <- A.TxD
21 * 3 4 RxD -> A.RxD
22 *
23 * EIA-232/EIA-423:
24 * DB-25 MMJ-6 signal SCC
25 * 2 2 TxD <- B.TxD
26 * 3 5 RxD -> B.RxD
27 * 4 RTS <- ~A.RTS
28 * 5 CTS -> ~B.CTS
29 * 6 6 DSR -> ~A.SYNC
30 * 8 CD -> ~B.DCD
31 * 12 DSRS(DCE) -> ~A.CTS (*)
32 * 15 TxC -> B.TxC
33 * 17 RxC -> B.RxC
34 * 20 1 DTR <- ~A.DTR
35 * 22 RI -> ~A.DCD
36 * 23 DSRS(DTE) <- ~B.RTS
37 *
38 * (*) EIA-232 defines the signal at this pin to be SCD, while DSRS(DCE)
39 * is shared with DSRS(DTE) at pin 23.
40 *
41 * As you can immediately notice the wiring of the RTS, DTR and DSR signals
42 * is a bit odd. This makes the handling of port B unnecessarily
43 * complicated and prevents the use of some automatic modes of operation.
44 */
45
46#if defined(CONFIG_SERIAL_ZS_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
47#define SUPPORT_SYSRQ
48#endif
49
50#include <linux/bug.h>
51#include <linux/console.h>
52#include <linux/delay.h>
53#include <linux/errno.h>
54#include <linux/init.h>
55#include <linux/interrupt.h>
56#include <linux/io.h>
57#include <linux/ioport.h>
58#include <linux/irqflags.h>
59#include <linux/kernel.h>
60#include <linux/module.h>
61#include <linux/major.h>
62#include <linux/serial.h>
63#include <linux/serial_core.h>
64#include <linux/spinlock.h>
65#include <linux/sysrq.h>
66#include <linux/tty.h>
67#include <linux/tty_flip.h>
68#include <linux/types.h>
69
70#include <linux/atomic.h>
71
72#include <asm/dec/interrupts.h>
73#include <asm/dec/ioasic_addrs.h>
74#include <asm/dec/system.h>
75
76#include "zs.h"
77
78
79MODULE_AUTHOR("Maciej W. Rozycki <macro@linux-mips.org>");
80MODULE_DESCRIPTION("DECstation Z85C30 serial driver");
81MODULE_LICENSE("GPL");
82
83
84static char zs_name[] __initdata = "DECstation Z85C30 serial driver version ";
85static char zs_version[] __initdata = "0.10";
86
87/*
88 * It would be nice to dynamically allocate everything that
89 * depends on ZS_NUM_SCCS, so we could support any number of
90 * Z85C30s, but for now...
91 */
92#define ZS_NUM_SCCS 2 /* Max # of ZS chips supported. */
93#define ZS_NUM_CHAN 2 /* 2 channels per chip. */
94#define ZS_CHAN_A 0 /* Index of the channel A. */
95#define ZS_CHAN_B 1 /* Index of the channel B. */
96#define ZS_CHAN_IO_SIZE 8 /* IOMEM space size. */
97#define ZS_CHAN_IO_STRIDE 4 /* Register alignment. */
98#define ZS_CHAN_IO_OFFSET 1 /* The SCC resides on the high byte
99 of the 16-bit IOBUS. */
100#define ZS_CLOCK 7372800 /* Z85C30 PCLK input clock rate. */
101
102#define to_zport(uport) container_of(uport, struct zs_port, port)
103
104struct zs_parms {
105 resource_size_t scc[ZS_NUM_SCCS];
106 int irq[ZS_NUM_SCCS];
107};
108
109static struct zs_scc zs_sccs[ZS_NUM_SCCS];
110
111static u8 zs_init_regs[ZS_NUM_REGS] __initdata = {
112 0, /* write 0 */
113 PAR_SPEC, /* write 1 */
114 0, /* write 2 */
115 0, /* write 3 */
116 X16CLK | SB1, /* write 4 */
117 0, /* write 5 */
118 0, 0, 0, /* write 6, 7, 8 */
119 MIE | DLC | NV, /* write 9 */
120 NRZ, /* write 10 */
121 TCBR | RCBR, /* write 11 */
122 0, 0, /* BRG time constant, write 12 + 13 */
123 BRSRC | BRENABL, /* write 14 */
124 0, /* write 15 */
125};
126
127/*
128 * Debugging.
129 */
130#undef ZS_DEBUG_REGS
131
132
133/*
134 * Reading and writing Z85C30 registers.
135 */
136static void recovery_delay(void)
137{
138 udelay(2);
139}
140
141static u8 read_zsreg(struct zs_port *zport, int reg)
142{
143 void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
144 u8 retval;
145
146 if (reg != 0) {
147 writeb(reg & 0xf, control);
148 fast_iob();
149 recovery_delay();
150 }
151 retval = readb(control);
152 recovery_delay();
153 return retval;
154}
155
156static void write_zsreg(struct zs_port *zport, int reg, u8 value)
157{
158 void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
159
160 if (reg != 0) {
161 writeb(reg & 0xf, control);
162 fast_iob(); recovery_delay();
163 }
164 writeb(value, control);
165 fast_iob();
166 recovery_delay();
167 return;
168}
169
170static u8 read_zsdata(struct zs_port *zport)
171{
172 void __iomem *data = zport->port.membase +
173 ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
174 u8 retval;
175
176 retval = readb(data);
177 recovery_delay();
178 return retval;
179}
180
181static void write_zsdata(struct zs_port *zport, u8 value)
182{
183 void __iomem *data = zport->port.membase +
184 ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
185
186 writeb(value, data);
187 fast_iob();
188 recovery_delay();
189 return;
190}
191
192#ifdef ZS_DEBUG_REGS
193void zs_dump(void)
194{
195 struct zs_port *zport;
196 int i, j;
197
198 for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
199 zport = &zs_sccs[i / ZS_NUM_CHAN].zport[i % ZS_NUM_CHAN];
200
201 if (!zport->scc)
202 continue;
203
204 for (j = 0; j < 16; j++)
205 printk("W%-2d = 0x%02x\t", j, zport->regs[j]);
206 printk("\n");
207 for (j = 0; j < 16; j++)
208 printk("R%-2d = 0x%02x\t", j, read_zsreg(zport, j));
209 printk("\n\n");
210 }
211}
212#endif
213
214
215static void zs_spin_lock_cond_irq(spinlock_t *lock, int irq)
216{
217 if (irq)
218 spin_lock_irq(lock);
219 else
220 spin_lock(lock);
221}
222
223static void zs_spin_unlock_cond_irq(spinlock_t *lock, int irq)
224{
225 if (irq)
226 spin_unlock_irq(lock);
227 else
228 spin_unlock(lock);
229}
230
231static int zs_receive_drain(struct zs_port *zport)
232{
233 int loops = 10000;
234
235 while ((read_zsreg(zport, R0) & Rx_CH_AV) && --loops)
236 read_zsdata(zport);
237 return loops;
238}
239
240static int zs_transmit_drain(struct zs_port *zport, int irq)
241{
242 struct zs_scc *scc = zport->scc;
243 int loops = 10000;
244
245 while (!(read_zsreg(zport, R0) & Tx_BUF_EMP) && --loops) {
246 zs_spin_unlock_cond_irq(&scc->zlock, irq);
247 udelay(2);
248 zs_spin_lock_cond_irq(&scc->zlock, irq);
249 }
250 return loops;
251}
252
253static int zs_line_drain(struct zs_port *zport, int irq)
254{
255 struct zs_scc *scc = zport->scc;
256 int loops = 10000;
257
258 while (!(read_zsreg(zport, R1) & ALL_SNT) && --loops) {
259 zs_spin_unlock_cond_irq(&scc->zlock, irq);
260 udelay(2);
261 zs_spin_lock_cond_irq(&scc->zlock, irq);
262 }
263 return loops;
264}
265
266
267static void load_zsregs(struct zs_port *zport, u8 *regs, int irq)
268{
269 /* Let the current transmission finish. */
270 zs_line_drain(zport, irq);
271 /* Load 'em up. */
272 write_zsreg(zport, R3, regs[3] & ~RxENABLE);
273 write_zsreg(zport, R5, regs[5] & ~TxENAB);
274 write_zsreg(zport, R4, regs[4]);
275 write_zsreg(zport, R9, regs[9]);
276 write_zsreg(zport, R1, regs[1]);
277 write_zsreg(zport, R2, regs[2]);
278 write_zsreg(zport, R10, regs[10]);
279 write_zsreg(zport, R14, regs[14] & ~BRENABL);
280 write_zsreg(zport, R11, regs[11]);
281 write_zsreg(zport, R12, regs[12]);
282 write_zsreg(zport, R13, regs[13]);
283 write_zsreg(zport, R14, regs[14]);
284 write_zsreg(zport, R15, regs[15]);
285 if (regs[3] & RxENABLE)
286 write_zsreg(zport, R3, regs[3]);
287 if (regs[5] & TxENAB)
288 write_zsreg(zport, R5, regs[5]);
289 return;
290}
291
292
293/*
294 * Status handling routines.
295 */
296
297/*
298 * zs_tx_empty() -- get the transmitter empty status
299 *
300 * Purpose: Let user call ioctl() to get info when the UART physically
301 * is emptied. On bus types like RS485, the transmitter must
302 * release the bus after transmitting. This must be done when
303 * the transmit shift register is empty, not be done when the
304 * transmit holding register is empty. This functionality
305 * allows an RS485 driver to be written in user space.
306 */
307static unsigned int zs_tx_empty(struct uart_port *uport)
308{
309 struct zs_port *zport = to_zport(uport);
310 struct zs_scc *scc = zport->scc;
311 unsigned long flags;
312 u8 status;
313
314 spin_lock_irqsave(&scc->zlock, flags);
315 status = read_zsreg(zport, R1);
316 spin_unlock_irqrestore(&scc->zlock, flags);
317
318 return status & ALL_SNT ? TIOCSER_TEMT : 0;
319}
320
321static unsigned int zs_raw_get_ab_mctrl(struct zs_port *zport_a,
322 struct zs_port *zport_b)
323{
324 u8 status_a, status_b;
325 unsigned int mctrl;
326
327 status_a = read_zsreg(zport_a, R0);
328 status_b = read_zsreg(zport_b, R0);
329
330 mctrl = ((status_b & CTS) ? TIOCM_CTS : 0) |
331 ((status_b & DCD) ? TIOCM_CAR : 0) |
332 ((status_a & DCD) ? TIOCM_RNG : 0) |
333 ((status_a & SYNC_HUNT) ? TIOCM_DSR : 0);
334
335 return mctrl;
336}
337
338static unsigned int zs_raw_get_mctrl(struct zs_port *zport)
339{
340 struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
341
342 return zport != zport_a ? zs_raw_get_ab_mctrl(zport_a, zport) : 0;
343}
344
345static unsigned int zs_raw_xor_mctrl(struct zs_port *zport)
346{
347 struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
348 unsigned int mmask, mctrl, delta;
349 u8 mask_a, mask_b;
350
351 if (zport == zport_a)
352 return 0;
353
354 mask_a = zport_a->regs[15];
355 mask_b = zport->regs[15];
356
357 mmask = ((mask_b & CTSIE) ? TIOCM_CTS : 0) |
358 ((mask_b & DCDIE) ? TIOCM_CAR : 0) |
359 ((mask_a & DCDIE) ? TIOCM_RNG : 0) |
360 ((mask_a & SYNCIE) ? TIOCM_DSR : 0);
361
362 mctrl = zport->mctrl;
363 if (mmask) {
364 mctrl &= ~mmask;
365 mctrl |= zs_raw_get_ab_mctrl(zport_a, zport) & mmask;
366 }
367
368 delta = mctrl ^ zport->mctrl;
369 if (delta)
370 zport->mctrl = mctrl;
371
372 return delta;
373}
374
375static unsigned int zs_get_mctrl(struct uart_port *uport)
376{
377 struct zs_port *zport = to_zport(uport);
378 struct zs_scc *scc = zport->scc;
379 unsigned int mctrl;
380
381 spin_lock(&scc->zlock);
382 mctrl = zs_raw_get_mctrl(zport);
383 spin_unlock(&scc->zlock);
384
385 return mctrl;
386}
387
388static void zs_set_mctrl(struct uart_port *uport, unsigned int mctrl)
389{
390 struct zs_port *zport = to_zport(uport);
391 struct zs_scc *scc = zport->scc;
392 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
393 u8 oldloop, newloop;
394
395 spin_lock(&scc->zlock);
396 if (zport != zport_a) {
397 if (mctrl & TIOCM_DTR)
398 zport_a->regs[5] |= DTR;
399 else
400 zport_a->regs[5] &= ~DTR;
401 if (mctrl & TIOCM_RTS)
402 zport_a->regs[5] |= RTS;
403 else
404 zport_a->regs[5] &= ~RTS;
405 write_zsreg(zport_a, R5, zport_a->regs[5]);
406 }
407
408 /* Rarely modified, so don't poke at hardware unless necessary. */
409 oldloop = zport->regs[14];
410 newloop = oldloop;
411 if (mctrl & TIOCM_LOOP)
412 newloop |= LOOPBAK;
413 else
414 newloop &= ~LOOPBAK;
415 if (newloop != oldloop) {
416 zport->regs[14] = newloop;
417 write_zsreg(zport, R14, zport->regs[14]);
418 }
419 spin_unlock(&scc->zlock);
420}
421
422static void zs_raw_stop_tx(struct zs_port *zport)
423{
424 write_zsreg(zport, R0, RES_Tx_P);
425 zport->tx_stopped = 1;
426}
427
428static void zs_stop_tx(struct uart_port *uport)
429{
430 struct zs_port *zport = to_zport(uport);
431 struct zs_scc *scc = zport->scc;
432
433 spin_lock(&scc->zlock);
434 zs_raw_stop_tx(zport);
435 spin_unlock(&scc->zlock);
436}
437
438static void zs_raw_transmit_chars(struct zs_port *);
439
440static void zs_start_tx(struct uart_port *uport)
441{
442 struct zs_port *zport = to_zport(uport);
443 struct zs_scc *scc = zport->scc;
444
445 spin_lock(&scc->zlock);
446 if (zport->tx_stopped) {
447 zs_transmit_drain(zport, 0);
448 zport->tx_stopped = 0;
449 zs_raw_transmit_chars(zport);
450 }
451 spin_unlock(&scc->zlock);
452}
453
454static void zs_stop_rx(struct uart_port *uport)
455{
456 struct zs_port *zport = to_zport(uport);
457 struct zs_scc *scc = zport->scc;
458 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
459
460 spin_lock(&scc->zlock);
461 zport->regs[15] &= ~BRKIE;
462 zport->regs[1] &= ~(RxINT_MASK | TxINT_ENAB);
463 zport->regs[1] |= RxINT_DISAB;
464
465 if (zport != zport_a) {
466 /* A-side DCD tracks RI and SYNC tracks DSR. */
467 zport_a->regs[15] &= ~(DCDIE | SYNCIE);
468 write_zsreg(zport_a, R15, zport_a->regs[15]);
469 if (!(zport_a->regs[15] & BRKIE)) {
470 zport_a->regs[1] &= ~EXT_INT_ENAB;
471 write_zsreg(zport_a, R1, zport_a->regs[1]);
472 }
473
474 /* This-side DCD tracks DCD and CTS tracks CTS. */
475 zport->regs[15] &= ~(DCDIE | CTSIE);
476 zport->regs[1] &= ~EXT_INT_ENAB;
477 } else {
478 /* DCD tracks RI and SYNC tracks DSR for the B side. */
479 if (!(zport->regs[15] & (DCDIE | SYNCIE)))
480 zport->regs[1] &= ~EXT_INT_ENAB;
481 }
482
483 write_zsreg(zport, R15, zport->regs[15]);
484 write_zsreg(zport, R1, zport->regs[1]);
485 spin_unlock(&scc->zlock);
486}
487
488static void zs_enable_ms(struct uart_port *uport)
489{
490 struct zs_port *zport = to_zport(uport);
491 struct zs_scc *scc = zport->scc;
492 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
493
494 if (zport == zport_a)
495 return;
496
497 spin_lock(&scc->zlock);
498
499 /* Clear Ext interrupts if not being handled already. */
500 if (!(zport_a->regs[1] & EXT_INT_ENAB))
501 write_zsreg(zport_a, R0, RES_EXT_INT);
502
503 /* A-side DCD tracks RI and SYNC tracks DSR. */
504 zport_a->regs[1] |= EXT_INT_ENAB;
505 zport_a->regs[15] |= DCDIE | SYNCIE;
506
507 /* This-side DCD tracks DCD and CTS tracks CTS. */
508 zport->regs[15] |= DCDIE | CTSIE;
509
510 zs_raw_xor_mctrl(zport);
511
512 write_zsreg(zport_a, R1, zport_a->regs[1]);
513 write_zsreg(zport_a, R15, zport_a->regs[15]);
514 write_zsreg(zport, R15, zport->regs[15]);
515 spin_unlock(&scc->zlock);
516}
517
518static void zs_break_ctl(struct uart_port *uport, int break_state)
519{
520 struct zs_port *zport = to_zport(uport);
521 struct zs_scc *scc = zport->scc;
522 unsigned long flags;
523
524 spin_lock_irqsave(&scc->zlock, flags);
525 if (break_state == -1)
526 zport->regs[5] |= SND_BRK;
527 else
528 zport->regs[5] &= ~SND_BRK;
529 write_zsreg(zport, R5, zport->regs[5]);
530 spin_unlock_irqrestore(&scc->zlock, flags);
531}
532
533
534/*
535 * Interrupt handling routines.
536 */
537#define Rx_BRK 0x0100 /* BREAK event software flag. */
538#define Rx_SYS 0x0200 /* SysRq event software flag. */
539
540static void zs_receive_chars(struct zs_port *zport)
541{
542 struct uart_port *uport = &zport->port;
543 struct zs_scc *scc = zport->scc;
544 struct uart_icount *icount;
545 unsigned int avail, status, ch, flag;
546 int count;
547
548 for (count = 16; count; count--) {
549 spin_lock(&scc->zlock);
550 avail = read_zsreg(zport, R0) & Rx_CH_AV;
551 spin_unlock(&scc->zlock);
552 if (!avail)
553 break;
554
555 spin_lock(&scc->zlock);
556 status = read_zsreg(zport, R1) & (Rx_OVR | FRM_ERR | PAR_ERR);
557 ch = read_zsdata(zport);
558 spin_unlock(&scc->zlock);
559
560 flag = TTY_NORMAL;
561
562 icount = &uport->icount;
563 icount->rx++;
564
565 /* Handle the null char got when BREAK is removed. */
566 if (!ch)
567 status |= zport->tty_break;
568 if (unlikely(status &
569 (Rx_OVR | FRM_ERR | PAR_ERR | Rx_SYS | Rx_BRK))) {
570 zport->tty_break = 0;
571
572 /* Reset the error indication. */
573 if (status & (Rx_OVR | FRM_ERR | PAR_ERR)) {
574 spin_lock(&scc->zlock);
575 write_zsreg(zport, R0, ERR_RES);
576 spin_unlock(&scc->zlock);
577 }
578
579 if (status & (Rx_SYS | Rx_BRK)) {
580 icount->brk++;
581 /* SysRq discards the null char. */
582 if (status & Rx_SYS)
583 continue;
584 } else if (status & FRM_ERR)
585 icount->frame++;
586 else if (status & PAR_ERR)
587 icount->parity++;
588 if (status & Rx_OVR)
589 icount->overrun++;
590
591 status &= uport->read_status_mask;
592 if (status & Rx_BRK)
593 flag = TTY_BREAK;
594 else if (status & FRM_ERR)
595 flag = TTY_FRAME;
596 else if (status & PAR_ERR)
597 flag = TTY_PARITY;
598 }
599
600 if (uart_handle_sysrq_char(uport, ch))
601 continue;
602
603 uart_insert_char(uport, status, Rx_OVR, ch, flag);
604 }
605
606 tty_flip_buffer_push(uport->state->port.tty);
607}
608
609static void zs_raw_transmit_chars(struct zs_port *zport)
610{
611 struct circ_buf *xmit = &zport->port.state->xmit;
612
613 /* XON/XOFF chars. */
614 if (zport->port.x_char) {
615 write_zsdata(zport, zport->port.x_char);
616 zport->port.icount.tx++;
617 zport->port.x_char = 0;
618 return;
619 }
620
621 /* If nothing to do or stopped or hardware stopped. */
622 if (uart_circ_empty(xmit) || uart_tx_stopped(&zport->port)) {
623 zs_raw_stop_tx(zport);
624 return;
625 }
626
627 /* Send char. */
628 write_zsdata(zport, xmit->buf[xmit->tail]);
629 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
630 zport->port.icount.tx++;
631
632 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
633 uart_write_wakeup(&zport->port);
634
635 /* Are we are done? */
636 if (uart_circ_empty(xmit))
637 zs_raw_stop_tx(zport);
638}
639
640static void zs_transmit_chars(struct zs_port *zport)
641{
642 struct zs_scc *scc = zport->scc;
643
644 spin_lock(&scc->zlock);
645 zs_raw_transmit_chars(zport);
646 spin_unlock(&scc->zlock);
647}
648
649static void zs_status_handle(struct zs_port *zport, struct zs_port *zport_a)
650{
651 struct uart_port *uport = &zport->port;
652 struct zs_scc *scc = zport->scc;
653 unsigned int delta;
654 u8 status, brk;
655
656 spin_lock(&scc->zlock);
657
658 /* Get status from Read Register 0. */
659 status = read_zsreg(zport, R0);
660
661 if (zport->regs[15] & BRKIE) {
662 brk = status & BRK_ABRT;
663 if (brk && !zport->brk) {
664 spin_unlock(&scc->zlock);
665 if (uart_handle_break(uport))
666 zport->tty_break = Rx_SYS;
667 else
668 zport->tty_break = Rx_BRK;
669 spin_lock(&scc->zlock);
670 }
671 zport->brk = brk;
672 }
673
674 if (zport != zport_a) {
675 delta = zs_raw_xor_mctrl(zport);
676 spin_unlock(&scc->zlock);
677
678 if (delta & TIOCM_CTS)
679 uart_handle_cts_change(uport,
680 zport->mctrl & TIOCM_CTS);
681 if (delta & TIOCM_CAR)
682 uart_handle_dcd_change(uport,
683 zport->mctrl & TIOCM_CAR);
684 if (delta & TIOCM_RNG)
685 uport->icount.dsr++;
686 if (delta & TIOCM_DSR)
687 uport->icount.rng++;
688
689 if (delta)
690 wake_up_interruptible(&uport->state->port.delta_msr_wait);
691
692 spin_lock(&scc->zlock);
693 }
694
695 /* Clear the status condition... */
696 write_zsreg(zport, R0, RES_EXT_INT);
697
698 spin_unlock(&scc->zlock);
699}
700
701/*
702 * This is the Z85C30 driver's generic interrupt routine.
703 */
704static irqreturn_t zs_interrupt(int irq, void *dev_id)
705{
706 struct zs_scc *scc = dev_id;
707 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
708 struct zs_port *zport_b = &scc->zport[ZS_CHAN_B];
709 irqreturn_t status = IRQ_NONE;
710 u8 zs_intreg;
711 int count;
712
713 /*
714 * NOTE: The read register 3, which holds the irq status,
715 * does so for both channels on each chip. Although
716 * the status value itself must be read from the A
717 * channel and is only valid when read from channel A.
718 * Yes... broken hardware...
719 */
720 for (count = 16; count; count--) {
721 spin_lock(&scc->zlock);
722 zs_intreg = read_zsreg(zport_a, R3);
723 spin_unlock(&scc->zlock);
724 if (!zs_intreg)
725 break;
726
727 /*
728 * We do not like losing characters, so we prioritise
729 * interrupt sources a little bit differently than
730 * the SCC would, was it allowed to.
731 */
732 if (zs_intreg & CHBRxIP)
733 zs_receive_chars(zport_b);
734 if (zs_intreg & CHARxIP)
735 zs_receive_chars(zport_a);
736 if (zs_intreg & CHBEXT)
737 zs_status_handle(zport_b, zport_a);
738 if (zs_intreg & CHAEXT)
739 zs_status_handle(zport_a, zport_a);
740 if (zs_intreg & CHBTxIP)
741 zs_transmit_chars(zport_b);
742 if (zs_intreg & CHATxIP)
743 zs_transmit_chars(zport_a);
744
745 status = IRQ_HANDLED;
746 }
747
748 return status;
749}
750
751
752/*
753 * Finally, routines used to initialize the serial port.
754 */
755static int zs_startup(struct uart_port *uport)
756{
757 struct zs_port *zport = to_zport(uport);
758 struct zs_scc *scc = zport->scc;
759 unsigned long flags;
760 int irq_guard;
761 int ret;
762
763 irq_guard = atomic_add_return(1, &scc->irq_guard);
764 if (irq_guard == 1) {
765 ret = request_irq(zport->port.irq, zs_interrupt,
766 IRQF_SHARED, "scc", scc);
767 if (ret) {
768 atomic_add(-1, &scc->irq_guard);
769 printk(KERN_ERR "zs: can't get irq %d\n",
770 zport->port.irq);
771 return ret;
772 }
773 }
774
775 spin_lock_irqsave(&scc->zlock, flags);
776
777 /* Clear the receive FIFO. */
778 zs_receive_drain(zport);
779
780 /* Clear the interrupt registers. */
781 write_zsreg(zport, R0, ERR_RES);
782 write_zsreg(zport, R0, RES_Tx_P);
783 /* But Ext only if not being handled already. */
784 if (!(zport->regs[1] & EXT_INT_ENAB))
785 write_zsreg(zport, R0, RES_EXT_INT);
786
787 /* Finally, enable sequencing and interrupts. */
788 zport->regs[1] &= ~RxINT_MASK;
789 zport->regs[1] |= RxINT_ALL | TxINT_ENAB | EXT_INT_ENAB;
790 zport->regs[3] |= RxENABLE;
791 zport->regs[15] |= BRKIE;
792 write_zsreg(zport, R1, zport->regs[1]);
793 write_zsreg(zport, R3, zport->regs[3]);
794 write_zsreg(zport, R5, zport->regs[5]);
795 write_zsreg(zport, R15, zport->regs[15]);
796
797 /* Record the current state of RR0. */
798 zport->mctrl = zs_raw_get_mctrl(zport);
799 zport->brk = read_zsreg(zport, R0) & BRK_ABRT;
800
801 zport->tx_stopped = 1;
802
803 spin_unlock_irqrestore(&scc->zlock, flags);
804
805 return 0;
806}
807
808static void zs_shutdown(struct uart_port *uport)
809{
810 struct zs_port *zport = to_zport(uport);
811 struct zs_scc *scc = zport->scc;
812 unsigned long flags;
813 int irq_guard;
814
815 spin_lock_irqsave(&scc->zlock, flags);
816
817 zport->regs[3] &= ~RxENABLE;
818 write_zsreg(zport, R5, zport->regs[5]);
819 write_zsreg(zport, R3, zport->regs[3]);
820
821 spin_unlock_irqrestore(&scc->zlock, flags);
822
823 irq_guard = atomic_add_return(-1, &scc->irq_guard);
824 if (!irq_guard)
825 free_irq(zport->port.irq, scc);
826}
827
828
829static void zs_reset(struct zs_port *zport)
830{
831 struct zs_scc *scc = zport->scc;
832 int irq;
833 unsigned long flags;
834
835 spin_lock_irqsave(&scc->zlock, flags);
836 irq = !irqs_disabled_flags(flags);
837 if (!scc->initialised) {
838 /* Reset the pointer first, just in case... */
839 read_zsreg(zport, R0);
840 /* And let the current transmission finish. */
841 zs_line_drain(zport, irq);
842 write_zsreg(zport, R9, FHWRES);
843 udelay(10);
844 write_zsreg(zport, R9, 0);
845 scc->initialised = 1;
846 }
847 load_zsregs(zport, zport->regs, irq);
848 spin_unlock_irqrestore(&scc->zlock, flags);
849}
850
851static void zs_set_termios(struct uart_port *uport, struct ktermios *termios,
852 struct ktermios *old_termios)
853{
854 struct zs_port *zport = to_zport(uport);
855 struct zs_scc *scc = zport->scc;
856 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
857 int irq;
858 unsigned int baud, brg;
859 unsigned long flags;
860
861 spin_lock_irqsave(&scc->zlock, flags);
862 irq = !irqs_disabled_flags(flags);
863
864 /* Byte size. */
865 zport->regs[3] &= ~RxNBITS_MASK;
866 zport->regs[5] &= ~TxNBITS_MASK;
867 switch (termios->c_cflag & CSIZE) {
868 case CS5:
869 zport->regs[3] |= Rx5;
870 zport->regs[5] |= Tx5;
871 break;
872 case CS6:
873 zport->regs[3] |= Rx6;
874 zport->regs[5] |= Tx6;
875 break;
876 case CS7:
877 zport->regs[3] |= Rx7;
878 zport->regs[5] |= Tx7;
879 break;
880 case CS8:
881 default:
882 zport->regs[3] |= Rx8;
883 zport->regs[5] |= Tx8;
884 break;
885 }
886
887 /* Parity and stop bits. */
888 zport->regs[4] &= ~(XCLK_MASK | SB_MASK | PAR_ENA | PAR_EVEN);
889 if (termios->c_cflag & CSTOPB)
890 zport->regs[4] |= SB2;
891 else
892 zport->regs[4] |= SB1;
893 if (termios->c_cflag & PARENB)
894 zport->regs[4] |= PAR_ENA;
895 if (!(termios->c_cflag & PARODD))
896 zport->regs[4] |= PAR_EVEN;
897 switch (zport->clk_mode) {
898 case 64:
899 zport->regs[4] |= X64CLK;
900 break;
901 case 32:
902 zport->regs[4] |= X32CLK;
903 break;
904 case 16:
905 zport->regs[4] |= X16CLK;
906 break;
907 case 1:
908 zport->regs[4] |= X1CLK;
909 break;
910 default:
911 BUG();
912 }
913
914 baud = uart_get_baud_rate(uport, termios, old_termios, 0,
915 uport->uartclk / zport->clk_mode / 4);
916
917 brg = ZS_BPS_TO_BRG(baud, uport->uartclk / zport->clk_mode);
918 zport->regs[12] = brg & 0xff;
919 zport->regs[13] = (brg >> 8) & 0xff;
920
921 uart_update_timeout(uport, termios->c_cflag, baud);
922
923 uport->read_status_mask = Rx_OVR;
924 if (termios->c_iflag & INPCK)
925 uport->read_status_mask |= FRM_ERR | PAR_ERR;
926 if (termios->c_iflag & (BRKINT | PARMRK))
927 uport->read_status_mask |= Rx_BRK;
928
929 uport->ignore_status_mask = 0;
930 if (termios->c_iflag & IGNPAR)
931 uport->ignore_status_mask |= FRM_ERR | PAR_ERR;
932 if (termios->c_iflag & IGNBRK) {
933 uport->ignore_status_mask |= Rx_BRK;
934 if (termios->c_iflag & IGNPAR)
935 uport->ignore_status_mask |= Rx_OVR;
936 }
937
938 if (termios->c_cflag & CREAD)
939 zport->regs[3] |= RxENABLE;
940 else
941 zport->regs[3] &= ~RxENABLE;
942
943 if (zport != zport_a) {
944 if (!(termios->c_cflag & CLOCAL)) {
945 zport->regs[15] |= DCDIE;
946 } else
947 zport->regs[15] &= ~DCDIE;
948 if (termios->c_cflag & CRTSCTS) {
949 zport->regs[15] |= CTSIE;
950 } else
951 zport->regs[15] &= ~CTSIE;
952 zs_raw_xor_mctrl(zport);
953 }
954
955 /* Load up the new values. */
956 load_zsregs(zport, zport->regs, irq);
957
958 spin_unlock_irqrestore(&scc->zlock, flags);
959}
960
961/*
962 * Hack alert!
963 * Required solely so that the initial PROM-based console
964 * works undisturbed in parallel with this one.
965 */
966static void zs_pm(struct uart_port *uport, unsigned int state,
967 unsigned int oldstate)
968{
969 struct zs_port *zport = to_zport(uport);
970
971 if (state < 3)
972 zport->regs[5] |= TxENAB;
973 else
974 zport->regs[5] &= ~TxENAB;
975 write_zsreg(zport, R5, zport->regs[5]);
976}
977
978
979static const char *zs_type(struct uart_port *uport)
980{
981 return "Z85C30 SCC";
982}
983
984static void zs_release_port(struct uart_port *uport)
985{
986 iounmap(uport->membase);
987 uport->membase = 0;
988 release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
989}
990
991static int zs_map_port(struct uart_port *uport)
992{
993 if (!uport->membase)
994 uport->membase = ioremap_nocache(uport->mapbase,
995 ZS_CHAN_IO_SIZE);
996 if (!uport->membase) {
997 printk(KERN_ERR "zs: Cannot map MMIO\n");
998 return -ENOMEM;
999 }
1000 return 0;
1001}
1002
1003static int zs_request_port(struct uart_port *uport)
1004{
1005 int ret;
1006
1007 if (!request_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE, "scc")) {
1008 printk(KERN_ERR "zs: Unable to reserve MMIO resource\n");
1009 return -EBUSY;
1010 }
1011 ret = zs_map_port(uport);
1012 if (ret) {
1013 release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
1014 return ret;
1015 }
1016 return 0;
1017}
1018
1019static void zs_config_port(struct uart_port *uport, int flags)
1020{
1021 struct zs_port *zport = to_zport(uport);
1022
1023 if (flags & UART_CONFIG_TYPE) {
1024 if (zs_request_port(uport))
1025 return;
1026
1027 uport->type = PORT_ZS;
1028
1029 zs_reset(zport);
1030 }
1031}
1032
1033static int zs_verify_port(struct uart_port *uport, struct serial_struct *ser)
1034{
1035 struct zs_port *zport = to_zport(uport);
1036 int ret = 0;
1037
1038 if (ser->type != PORT_UNKNOWN && ser->type != PORT_ZS)
1039 ret = -EINVAL;
1040 if (ser->irq != uport->irq)
1041 ret = -EINVAL;
1042 if (ser->baud_base != uport->uartclk / zport->clk_mode / 4)
1043 ret = -EINVAL;
1044 return ret;
1045}
1046
1047
1048static struct uart_ops zs_ops = {
1049 .tx_empty = zs_tx_empty,
1050 .set_mctrl = zs_set_mctrl,
1051 .get_mctrl = zs_get_mctrl,
1052 .stop_tx = zs_stop_tx,
1053 .start_tx = zs_start_tx,
1054 .stop_rx = zs_stop_rx,
1055 .enable_ms = zs_enable_ms,
1056 .break_ctl = zs_break_ctl,
1057 .startup = zs_startup,
1058 .shutdown = zs_shutdown,
1059 .set_termios = zs_set_termios,
1060 .pm = zs_pm,
1061 .type = zs_type,
1062 .release_port = zs_release_port,
1063 .request_port = zs_request_port,
1064 .config_port = zs_config_port,
1065 .verify_port = zs_verify_port,
1066};
1067
1068/*
1069 * Initialize Z85C30 port structures.
1070 */
1071static int __init zs_probe_sccs(void)
1072{
1073 static int probed;
1074 struct zs_parms zs_parms;
1075 int chip, side, irq;
1076 int n_chips = 0;
1077 int i;
1078
1079 if (probed)
1080 return 0;
1081
1082 irq = dec_interrupt[DEC_IRQ_SCC0];
1083 if (irq >= 0) {
1084 zs_parms.scc[n_chips] = IOASIC_SCC0;
1085 zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC0];
1086 n_chips++;
1087 }
1088 irq = dec_interrupt[DEC_IRQ_SCC1];
1089 if (irq >= 0) {
1090 zs_parms.scc[n_chips] = IOASIC_SCC1;
1091 zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC1];
1092 n_chips++;
1093 }
1094 if (!n_chips)
1095 return -ENXIO;
1096
1097 probed = 1;
1098
1099 for (chip = 0; chip < n_chips; chip++) {
1100 spin_lock_init(&zs_sccs[chip].zlock);
1101 for (side = 0; side < ZS_NUM_CHAN; side++) {
1102 struct zs_port *zport = &zs_sccs[chip].zport[side];
1103 struct uart_port *uport = &zport->port;
1104
1105 zport->scc = &zs_sccs[chip];
1106 zport->clk_mode = 16;
1107
1108 uport->irq = zs_parms.irq[chip];
1109 uport->uartclk = ZS_CLOCK;
1110 uport->fifosize = 1;
1111 uport->iotype = UPIO_MEM;
1112 uport->flags = UPF_BOOT_AUTOCONF;
1113 uport->ops = &zs_ops;
1114 uport->line = chip * ZS_NUM_CHAN + side;
1115 uport->mapbase = dec_kn_slot_base +
1116 zs_parms.scc[chip] +
1117 (side ^ ZS_CHAN_B) * ZS_CHAN_IO_SIZE;
1118
1119 for (i = 0; i < ZS_NUM_REGS; i++)
1120 zport->regs[i] = zs_init_regs[i];
1121 }
1122 }
1123
1124 return 0;
1125}
1126
1127
1128#ifdef CONFIG_SERIAL_ZS_CONSOLE
1129static void zs_console_putchar(struct uart_port *uport, int ch)
1130{
1131 struct zs_port *zport = to_zport(uport);
1132 struct zs_scc *scc = zport->scc;
1133 int irq;
1134 unsigned long flags;
1135
1136 spin_lock_irqsave(&scc->zlock, flags);
1137 irq = !irqs_disabled_flags(flags);
1138 if (zs_transmit_drain(zport, irq))
1139 write_zsdata(zport, ch);
1140 spin_unlock_irqrestore(&scc->zlock, flags);
1141}
1142
1143/*
1144 * Print a string to the serial port trying not to disturb
1145 * any possible real use of the port...
1146 */
1147static void zs_console_write(struct console *co, const char *s,
1148 unsigned int count)
1149{
1150 int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1151 struct zs_port *zport = &zs_sccs[chip].zport[side];
1152 struct zs_scc *scc = zport->scc;
1153 unsigned long flags;
1154 u8 txint, txenb;
1155 int irq;
1156
1157 /* Disable transmit interrupts and enable the transmitter. */
1158 spin_lock_irqsave(&scc->zlock, flags);
1159 txint = zport->regs[1];
1160 txenb = zport->regs[5];
1161 if (txint & TxINT_ENAB) {
1162 zport->regs[1] = txint & ~TxINT_ENAB;
1163 write_zsreg(zport, R1, zport->regs[1]);
1164 }
1165 if (!(txenb & TxENAB)) {
1166 zport->regs[5] = txenb | TxENAB;
1167 write_zsreg(zport, R5, zport->regs[5]);
1168 }
1169 spin_unlock_irqrestore(&scc->zlock, flags);
1170
1171 uart_console_write(&zport->port, s, count, zs_console_putchar);
1172
1173 /* Restore transmit interrupts and the transmitter enable. */
1174 spin_lock_irqsave(&scc->zlock, flags);
1175 irq = !irqs_disabled_flags(flags);
1176 zs_line_drain(zport, irq);
1177 if (!(txenb & TxENAB)) {
1178 zport->regs[5] &= ~TxENAB;
1179 write_zsreg(zport, R5, zport->regs[5]);
1180 }
1181 if (txint & TxINT_ENAB) {
1182 zport->regs[1] |= TxINT_ENAB;
1183 write_zsreg(zport, R1, zport->regs[1]);
1184 }
1185 spin_unlock_irqrestore(&scc->zlock, flags);
1186}
1187
1188/*
1189 * Setup serial console baud/bits/parity. We do two things here:
1190 * - construct a cflag setting for the first uart_open()
1191 * - initialise the serial port
1192 * Return non-zero if we didn't find a serial port.
1193 */
1194static int __init zs_console_setup(struct console *co, char *options)
1195{
1196 int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1197 struct zs_port *zport = &zs_sccs[chip].zport[side];
1198 struct uart_port *uport = &zport->port;
1199 int baud = 9600;
1200 int bits = 8;
1201 int parity = 'n';
1202 int flow = 'n';
1203 int ret;
1204
1205 ret = zs_map_port(uport);
1206 if (ret)
1207 return ret;
1208
1209 zs_reset(zport);
1210 zs_pm(uport, 0, -1);
1211
1212 if (options)
1213 uart_parse_options(options, &baud, &parity, &bits, &flow);
1214 return uart_set_options(uport, co, baud, parity, bits, flow);
1215}
1216
1217static struct uart_driver zs_reg;
1218static struct console zs_console = {
1219 .name = "ttyS",
1220 .write = zs_console_write,
1221 .device = uart_console_device,
1222 .setup = zs_console_setup,
1223 .flags = CON_PRINTBUFFER,
1224 .index = -1,
1225 .data = &zs_reg,
1226};
1227
1228/*
1229 * Register console.
1230 */
1231static int __init zs_serial_console_init(void)
1232{
1233 int ret;
1234
1235 ret = zs_probe_sccs();
1236 if (ret)
1237 return ret;
1238 register_console(&zs_console);
1239
1240 return 0;
1241}
1242
1243console_initcall(zs_serial_console_init);
1244
1245#define SERIAL_ZS_CONSOLE &zs_console
1246#else
1247#define SERIAL_ZS_CONSOLE NULL
1248#endif /* CONFIG_SERIAL_ZS_CONSOLE */
1249
1250static struct uart_driver zs_reg = {
1251 .owner = THIS_MODULE,
1252 .driver_name = "serial",
1253 .dev_name = "ttyS",
1254 .major = TTY_MAJOR,
1255 .minor = 64,
1256 .nr = ZS_NUM_SCCS * ZS_NUM_CHAN,
1257 .cons = SERIAL_ZS_CONSOLE,
1258};
1259
1260/* zs_init inits the driver. */
1261static int __init zs_init(void)
1262{
1263 int i, ret;
1264
1265 pr_info("%s%s\n", zs_name, zs_version);
1266
1267 /* Find out how many Z85C30 SCCs we have. */
1268 ret = zs_probe_sccs();
1269 if (ret)
1270 return ret;
1271
1272 ret = uart_register_driver(&zs_reg);
1273 if (ret)
1274 return ret;
1275
1276 for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
1277 struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1278 struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1279 struct uart_port *uport = &zport->port;
1280
1281 if (zport->scc)
1282 uart_add_one_port(&zs_reg, uport);
1283 }
1284
1285 return 0;
1286}
1287
1288static void __exit zs_exit(void)
1289{
1290 int i;
1291
1292 for (i = ZS_NUM_SCCS * ZS_NUM_CHAN - 1; i >= 0; i--) {
1293 struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1294 struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1295 struct uart_port *uport = &zport->port;
1296
1297 if (zport->scc)
1298 uart_remove_one_port(&zs_reg, uport);
1299 }
1300
1301 uart_unregister_driver(&zs_reg);
1302}
1303
1304module_init(zs_init);
1305module_exit(zs_exit);