Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * RTC subsystem, interface functions
   4 *
   5 * Copyright (C) 2005 Tower Technologies
   6 * Author: Alessandro Zummo <a.zummo@towertech.it>
   7 *
   8 * based on arch/arm/common/rtctime.c
   9 */
 
 
 
 
  10
  11#include <linux/rtc.h>
  12#include <linux/sched.h>
  13#include <linux/module.h>
  14#include <linux/log2.h>
  15#include <linux/workqueue.h>
  16
  17#define CREATE_TRACE_POINTS
  18#include <trace/events/rtc.h>
  19
  20static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
  21static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
  22
  23static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm)
  24{
  25	time64_t secs;
  26
  27	if (!rtc->offset_secs)
  28		return;
  29
  30	secs = rtc_tm_to_time64(tm);
  31
  32	/*
  33	 * Since the reading time values from RTC device are always in the RTC
  34	 * original valid range, but we need to skip the overlapped region
  35	 * between expanded range and original range, which is no need to add
  36	 * the offset.
  37	 */
  38	if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) ||
  39	    (rtc->start_secs < rtc->range_min &&
  40	     secs <= (rtc->start_secs + rtc->range_max - rtc->range_min)))
  41		return;
  42
  43	rtc_time64_to_tm(secs + rtc->offset_secs, tm);
  44}
  45
  46static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm)
  47{
  48	time64_t secs;
  49
  50	if (!rtc->offset_secs)
  51		return;
  52
  53	secs = rtc_tm_to_time64(tm);
  54
  55	/*
  56	 * If the setting time values are in the valid range of RTC hardware
  57	 * device, then no need to subtract the offset when setting time to RTC
  58	 * device. Otherwise we need to subtract the offset to make the time
  59	 * values are valid for RTC hardware device.
  60	 */
  61	if (secs >= rtc->range_min && secs <= rtc->range_max)
  62		return;
  63
  64	rtc_time64_to_tm(secs - rtc->offset_secs, tm);
  65}
  66
  67static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm)
  68{
  69	if (rtc->range_min != rtc->range_max) {
  70		time64_t time = rtc_tm_to_time64(tm);
  71		time64_t range_min = rtc->set_start_time ? rtc->start_secs :
  72			rtc->range_min;
  73		time64_t range_max = rtc->set_start_time ?
  74			(rtc->start_secs + rtc->range_max - rtc->range_min) :
  75			rtc->range_max;
  76
  77		if (time < range_min || time > range_max)
  78			return -ERANGE;
  79	}
  80
  81	return 0;
  82}
  83
  84static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
  85{
  86	int err;
  87
  88	if (!rtc->ops) {
  89		err = -ENODEV;
  90	} else if (!rtc->ops->read_time) {
  91		err = -EINVAL;
  92	} else {
  93		memset(tm, 0, sizeof(struct rtc_time));
  94		err = rtc->ops->read_time(rtc->dev.parent, tm);
  95		if (err < 0) {
  96			dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
  97				err);
  98			return err;
  99		}
 100
 101		rtc_add_offset(rtc, tm);
 102
 103		err = rtc_valid_tm(tm);
 104		if (err < 0)
 105			dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
 106	}
 107	return err;
 108}
 109
 110int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 111{
 112	int err;
 113
 114	err = mutex_lock_interruptible(&rtc->ops_lock);
 115	if (err)
 116		return err;
 117
 118	err = __rtc_read_time(rtc, tm);
 119	mutex_unlock(&rtc->ops_lock);
 120
 121	trace_rtc_read_time(rtc_tm_to_time64(tm), err);
 122	return err;
 123}
 124EXPORT_SYMBOL_GPL(rtc_read_time);
 125
 126int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
 127{
 128	int err;
 129
 130	err = rtc_valid_tm(tm);
 131	if (err != 0)
 132		return err;
 133
 134	err = rtc_valid_range(rtc, tm);
 135	if (err)
 136		return err;
 137
 138	rtc_subtract_offset(rtc, tm);
 139
 140	err = mutex_lock_interruptible(&rtc->ops_lock);
 141	if (err)
 142		return err;
 143
 144	if (!rtc->ops)
 145		err = -ENODEV;
 146	else if (rtc->ops->set_time)
 147		err = rtc->ops->set_time(rtc->dev.parent, tm);
 148	else
 
 
 
 
 
 
 
 149		err = -EINVAL;
 150
 151	pm_stay_awake(rtc->dev.parent);
 152	mutex_unlock(&rtc->ops_lock);
 153	/* A timer might have just expired */
 154	schedule_work(&rtc->irqwork);
 155
 156	trace_rtc_set_time(rtc_tm_to_time64(tm), err);
 157	return err;
 158}
 159EXPORT_SYMBOL_GPL(rtc_set_time);
 160
 161static int rtc_read_alarm_internal(struct rtc_device *rtc,
 162				   struct rtc_wkalrm *alarm)
 163{
 164	int err;
 165
 166	err = mutex_lock_interruptible(&rtc->ops_lock);
 167	if (err)
 168		return err;
 169
 170	if (!rtc->ops) {
 171		err = -ENODEV;
 172	} else if (!rtc->ops->read_alarm) {
 173		err = -EINVAL;
 174	} else {
 175		alarm->enabled = 0;
 176		alarm->pending = 0;
 177		alarm->time.tm_sec = -1;
 178		alarm->time.tm_min = -1;
 179		alarm->time.tm_hour = -1;
 180		alarm->time.tm_mday = -1;
 181		alarm->time.tm_mon = -1;
 182		alarm->time.tm_year = -1;
 183		alarm->time.tm_wday = -1;
 184		alarm->time.tm_yday = -1;
 185		alarm->time.tm_isdst = -1;
 186		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
 187	}
 188
 189	mutex_unlock(&rtc->ops_lock);
 190
 191	trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
 192	return err;
 193}
 194
 195int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 196{
 197	int err;
 198	struct rtc_time before, now;
 199	int first_time = 1;
 200	time64_t t_now, t_alm;
 201	enum { none, day, month, year } missing = none;
 202	unsigned int days;
 203
 204	/* The lower level RTC driver may return -1 in some fields,
 205	 * creating invalid alarm->time values, for reasons like:
 206	 *
 207	 *   - The hardware may not be capable of filling them in;
 208	 *     many alarms match only on time-of-day fields, not
 209	 *     day/month/year calendar data.
 210	 *
 211	 *   - Some hardware uses illegal values as "wildcard" match
 212	 *     values, which non-Linux firmware (like a BIOS) may try
 213	 *     to set up as e.g. "alarm 15 minutes after each hour".
 214	 *     Linux uses only oneshot alarms.
 215	 *
 216	 * When we see that here, we deal with it by using values from
 217	 * a current RTC timestamp for any missing (-1) values.  The
 218	 * RTC driver prevents "periodic alarm" modes.
 219	 *
 220	 * But this can be racey, because some fields of the RTC timestamp
 221	 * may have wrapped in the interval since we read the RTC alarm,
 222	 * which would lead to us inserting inconsistent values in place
 223	 * of the -1 fields.
 224	 *
 225	 * Reading the alarm and timestamp in the reverse sequence
 226	 * would have the same race condition, and not solve the issue.
 227	 *
 228	 * So, we must first read the RTC timestamp,
 229	 * then read the RTC alarm value,
 230	 * and then read a second RTC timestamp.
 231	 *
 232	 * If any fields of the second timestamp have changed
 233	 * when compared with the first timestamp, then we know
 234	 * our timestamp may be inconsistent with that used by
 235	 * the low-level rtc_read_alarm_internal() function.
 236	 *
 237	 * So, when the two timestamps disagree, we just loop and do
 238	 * the process again to get a fully consistent set of values.
 239	 *
 240	 * This could all instead be done in the lower level driver,
 241	 * but since more than one lower level RTC implementation needs it,
 242	 * then it's probably best best to do it here instead of there..
 243	 */
 244
 245	/* Get the "before" timestamp */
 246	err = rtc_read_time(rtc, &before);
 247	if (err < 0)
 248		return err;
 249	do {
 250		if (!first_time)
 251			memcpy(&before, &now, sizeof(struct rtc_time));
 252		first_time = 0;
 253
 254		/* get the RTC alarm values, which may be incomplete */
 255		err = rtc_read_alarm_internal(rtc, alarm);
 256		if (err)
 257			return err;
 258
 259		/* full-function RTCs won't have such missing fields */
 260		if (rtc_valid_tm(&alarm->time) == 0) {
 261			rtc_add_offset(rtc, &alarm->time);
 262			return 0;
 263		}
 264
 265		/* get the "after" timestamp, to detect wrapped fields */
 266		err = rtc_read_time(rtc, &now);
 267		if (err < 0)
 268			return err;
 269
 270		/* note that tm_sec is a "don't care" value here: */
 271	} while (before.tm_min  != now.tm_min ||
 272		 before.tm_hour != now.tm_hour ||
 273		 before.tm_mon  != now.tm_mon ||
 274		 before.tm_year != now.tm_year);
 275
 276	/* Fill in the missing alarm fields using the timestamp; we
 277	 * know there's at least one since alarm->time is invalid.
 278	 */
 279	if (alarm->time.tm_sec == -1)
 280		alarm->time.tm_sec = now.tm_sec;
 281	if (alarm->time.tm_min == -1)
 282		alarm->time.tm_min = now.tm_min;
 283	if (alarm->time.tm_hour == -1)
 284		alarm->time.tm_hour = now.tm_hour;
 285
 286	/* For simplicity, only support date rollover for now */
 287	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
 288		alarm->time.tm_mday = now.tm_mday;
 289		missing = day;
 290	}
 291	if ((unsigned int)alarm->time.tm_mon >= 12) {
 292		alarm->time.tm_mon = now.tm_mon;
 293		if (missing == none)
 294			missing = month;
 295	}
 296	if (alarm->time.tm_year == -1) {
 297		alarm->time.tm_year = now.tm_year;
 298		if (missing == none)
 299			missing = year;
 300	}
 301
 302	/* Can't proceed if alarm is still invalid after replacing
 303	 * missing fields.
 304	 */
 305	err = rtc_valid_tm(&alarm->time);
 306	if (err)
 307		goto done;
 308
 309	/* with luck, no rollover is needed */
 310	t_now = rtc_tm_to_time64(&now);
 311	t_alm = rtc_tm_to_time64(&alarm->time);
 312	if (t_now < t_alm)
 313		goto done;
 314
 315	switch (missing) {
 
 316	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
 317	 * that will trigger at 5am will do so at 5am Tuesday, which
 318	 * could also be in the next month or year.  This is a common
 319	 * case, especially for PCs.
 320	 */
 321	case day:
 322		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
 323		t_alm += 24 * 60 * 60;
 324		rtc_time64_to_tm(t_alm, &alarm->time);
 325		break;
 326
 327	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
 328	 * be next month.  An alarm matching on the 30th, 29th, or 28th
 329	 * may end up in the month after that!  Many newer PCs support
 330	 * this type of alarm.
 331	 */
 332	case month:
 333		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
 334		do {
 335			if (alarm->time.tm_mon < 11) {
 336				alarm->time.tm_mon++;
 337			} else {
 338				alarm->time.tm_mon = 0;
 339				alarm->time.tm_year++;
 340			}
 341			days = rtc_month_days(alarm->time.tm_mon,
 342					      alarm->time.tm_year);
 343		} while (days < alarm->time.tm_mday);
 344		break;
 345
 346	/* Year rollover ... easy except for leap years! */
 347	case year:
 348		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
 349		do {
 350			alarm->time.tm_year++;
 351		} while (!is_leap_year(alarm->time.tm_year + 1900) &&
 352			 rtc_valid_tm(&alarm->time) != 0);
 353		break;
 354
 355	default:
 356		dev_warn(&rtc->dev, "alarm rollover not handled\n");
 357	}
 358
 
 359	err = rtc_valid_tm(&alarm->time);
 360
 361done:
 362	if (err)
 363		dev_warn(&rtc->dev, "invalid alarm value: %ptR\n",
 364			 &alarm->time);
 
 
 365
 366	return err;
 367}
 368
 369int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 370{
 371	int err;
 372
 373	err = mutex_lock_interruptible(&rtc->ops_lock);
 374	if (err)
 375		return err;
 376	if (!rtc->ops) {
 377		err = -ENODEV;
 378	} else if (!rtc->ops->read_alarm) {
 379		err = -EINVAL;
 380	} else {
 381		memset(alarm, 0, sizeof(struct rtc_wkalrm));
 382		alarm->enabled = rtc->aie_timer.enabled;
 383		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
 384	}
 385	mutex_unlock(&rtc->ops_lock);
 386
 387	trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
 388	return err;
 389}
 390EXPORT_SYMBOL_GPL(rtc_read_alarm);
 391
 392static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 393{
 394	struct rtc_time tm;
 395	time64_t now, scheduled;
 396	int err;
 397
 398	err = rtc_valid_tm(&alarm->time);
 399	if (err)
 400		return err;
 401
 402	scheduled = rtc_tm_to_time64(&alarm->time);
 403
 404	/* Make sure we're not setting alarms in the past */
 405	err = __rtc_read_time(rtc, &tm);
 406	if (err)
 407		return err;
 408	now = rtc_tm_to_time64(&tm);
 409	if (scheduled <= now)
 410		return -ETIME;
 411	/*
 412	 * XXX - We just checked to make sure the alarm time is not
 413	 * in the past, but there is still a race window where if
 414	 * the is alarm set for the next second and the second ticks
 415	 * over right here, before we set the alarm.
 416	 */
 417
 418	rtc_subtract_offset(rtc, &alarm->time);
 419
 420	if (!rtc->ops)
 421		err = -ENODEV;
 422	else if (!rtc->ops->set_alarm)
 423		err = -EINVAL;
 424	else
 425		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
 426
 427	trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err);
 428	return err;
 429}
 430
 431int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 432{
 433	int err;
 434
 435	if (!rtc->ops)
 436		return -ENODEV;
 437	else if (!rtc->ops->set_alarm)
 438		return -EINVAL;
 439
 440	err = rtc_valid_tm(&alarm->time);
 441	if (err != 0)
 442		return err;
 443
 444	err = rtc_valid_range(rtc, &alarm->time);
 445	if (err)
 446		return err;
 447
 448	err = mutex_lock_interruptible(&rtc->ops_lock);
 449	if (err)
 450		return err;
 451	if (rtc->aie_timer.enabled)
 452		rtc_timer_remove(rtc, &rtc->aie_timer);
 453
 454	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
 455	rtc->aie_timer.period = 0;
 456	if (alarm->enabled)
 457		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 458
 459	mutex_unlock(&rtc->ops_lock);
 460
 461	return err;
 462}
 463EXPORT_SYMBOL_GPL(rtc_set_alarm);
 464
 465/* Called once per device from rtc_device_register */
 466int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 467{
 468	int err;
 469	struct rtc_time now;
 470
 471	err = rtc_valid_tm(&alarm->time);
 472	if (err != 0)
 473		return err;
 474
 475	err = rtc_read_time(rtc, &now);
 476	if (err)
 477		return err;
 478
 479	err = mutex_lock_interruptible(&rtc->ops_lock);
 480	if (err)
 481		return err;
 482
 483	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
 484	rtc->aie_timer.period = 0;
 485
 486	/* Alarm has to be enabled & in the future for us to enqueue it */
 487	if (alarm->enabled && (rtc_tm_to_ktime(now) <
 488			 rtc->aie_timer.node.expires)) {
 
 489		rtc->aie_timer.enabled = 1;
 490		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
 491		trace_rtc_timer_enqueue(&rtc->aie_timer);
 492	}
 493	mutex_unlock(&rtc->ops_lock);
 494	return err;
 495}
 496EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
 497
 498int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 499{
 500	int err;
 501
 502	err = mutex_lock_interruptible(&rtc->ops_lock);
 503	if (err)
 504		return err;
 505
 506	if (rtc->aie_timer.enabled != enabled) {
 507		if (enabled)
 508			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 509		else
 510			rtc_timer_remove(rtc, &rtc->aie_timer);
 511	}
 512
 513	if (err)
 514		/* nothing */;
 515	else if (!rtc->ops)
 516		err = -ENODEV;
 517	else if (!rtc->ops->alarm_irq_enable)
 518		err = -EINVAL;
 519	else
 520		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
 521
 522	mutex_unlock(&rtc->ops_lock);
 523
 524	trace_rtc_alarm_irq_enable(enabled, err);
 525	return err;
 526}
 527EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
 528
 529int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 530{
 531	int err;
 532
 533	err = mutex_lock_interruptible(&rtc->ops_lock);
 534	if (err)
 535		return err;
 536
 537#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 538	if (enabled == 0 && rtc->uie_irq_active) {
 539		mutex_unlock(&rtc->ops_lock);
 540		return rtc_dev_update_irq_enable_emul(rtc, 0);
 541	}
 542#endif
 543	/* make sure we're changing state */
 544	if (rtc->uie_rtctimer.enabled == enabled)
 545		goto out;
 546
 547	if (rtc->uie_unsupported) {
 548		err = -EINVAL;
 549		goto out;
 550	}
 551
 552	if (enabled) {
 553		struct rtc_time tm;
 554		ktime_t now, onesec;
 555
 556		__rtc_read_time(rtc, &tm);
 557		onesec = ktime_set(1, 0);
 558		now = rtc_tm_to_ktime(tm);
 559		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
 560		rtc->uie_rtctimer.period = ktime_set(1, 0);
 561		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
 562	} else {
 563		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
 564	}
 565
 566out:
 567	mutex_unlock(&rtc->ops_lock);
 568#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 569	/*
 570	 * Enable emulation if the driver returned -EINVAL to signal that it has
 571	 * been configured without interrupts or they are not available at the
 572	 * moment.
 
 573	 */
 574	if (err == -EINVAL)
 575		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
 576#endif
 577	return err;
 
 578}
 579EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
 580
 
 581/**
 582 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
 583 * @rtc: pointer to the rtc device
 584 *
 585 * This function is called when an AIE, UIE or PIE mode interrupt
 586 * has occurred (or been emulated).
 587 *
 
 588 */
 589void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
 590{
 591	unsigned long flags;
 592
 593	/* mark one irq of the appropriate mode */
 594	spin_lock_irqsave(&rtc->irq_lock, flags);
 595	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF | mode);
 596	spin_unlock_irqrestore(&rtc->irq_lock, flags);
 597
 
 
 
 
 
 
 598	wake_up_interruptible(&rtc->irq_queue);
 599	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
 600}
 601
 
 602/**
 603 * rtc_aie_update_irq - AIE mode rtctimer hook
 604 * @rtc: pointer to the rtc_device
 605 *
 606 * This functions is called when the aie_timer expires.
 607 */
 608void rtc_aie_update_irq(struct rtc_device *rtc)
 609{
 
 610	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
 611}
 612
 
 613/**
 614 * rtc_uie_update_irq - UIE mode rtctimer hook
 615 * @rtc: pointer to the rtc_device
 616 *
 617 * This functions is called when the uie_timer expires.
 618 */
 619void rtc_uie_update_irq(struct rtc_device *rtc)
 620{
 
 621	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
 622}
 623
 
 624/**
 625 * rtc_pie_update_irq - PIE mode hrtimer hook
 626 * @timer: pointer to the pie mode hrtimer
 627 *
 628 * This function is used to emulate PIE mode interrupts
 629 * using an hrtimer. This function is called when the periodic
 630 * hrtimer expires.
 631 */
 632enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
 633{
 634	struct rtc_device *rtc;
 635	ktime_t period;
 636	u64 count;
 637
 638	rtc = container_of(timer, struct rtc_device, pie_timer);
 639
 640	period = NSEC_PER_SEC / rtc->irq_freq;
 641	count = hrtimer_forward_now(timer, period);
 642
 643	rtc_handle_legacy_irq(rtc, count, RTC_PF);
 644
 645	return HRTIMER_RESTART;
 646}
 647
 648/**
 649 * rtc_update_irq - Triggered when a RTC interrupt occurs.
 650 * @rtc: the rtc device
 651 * @num: how many irqs are being reported (usually one)
 652 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
 653 * Context: any
 654 */
 655void rtc_update_irq(struct rtc_device *rtc,
 656		    unsigned long num, unsigned long events)
 657{
 658	if (IS_ERR_OR_NULL(rtc))
 659		return;
 660
 661	pm_stay_awake(rtc->dev.parent);
 662	schedule_work(&rtc->irqwork);
 663}
 664EXPORT_SYMBOL_GPL(rtc_update_irq);
 665
 
 
 
 
 
 
 
 
 
 666struct rtc_device *rtc_class_open(const char *name)
 667{
 668	struct device *dev;
 669	struct rtc_device *rtc = NULL;
 670
 671	dev = class_find_device_by_name(rtc_class, name);
 672	if (dev)
 673		rtc = to_rtc_device(dev);
 674
 675	if (rtc) {
 676		if (!try_module_get(rtc->owner)) {
 677			put_device(dev);
 678			rtc = NULL;
 679		}
 680	}
 681
 682	return rtc;
 683}
 684EXPORT_SYMBOL_GPL(rtc_class_open);
 685
 686void rtc_class_close(struct rtc_device *rtc)
 687{
 688	module_put(rtc->owner);
 689	put_device(&rtc->dev);
 690}
 691EXPORT_SYMBOL_GPL(rtc_class_close);
 692
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 693static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
 694{
 695	/*
 696	 * We always cancel the timer here first, because otherwise
 697	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
 698	 * when we manage to start the timer before the callback
 699	 * returns HRTIMER_RESTART.
 700	 *
 701	 * We cannot use hrtimer_cancel() here as a running callback
 702	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
 703	 * would spin forever.
 704	 */
 705	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
 706		return -1;
 707
 708	if (enabled) {
 709		ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
 710
 711		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
 712	}
 713	return 0;
 714}
 715
 716/**
 717 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
 718 * @rtc: the rtc device
 
 719 * @enabled: true to enable periodic IRQs
 720 * Context: any
 721 *
 722 * Note that rtc_irq_set_freq() should previously have been used to
 723 * specify the desired frequency of periodic IRQ.
 724 */
 725int rtc_irq_set_state(struct rtc_device *rtc, int enabled)
 726{
 727	int err = 0;
 
 728
 729	while (rtc_update_hrtimer(rtc, enabled) < 0)
 730		cpu_relax();
 731
 732	rtc->pie_enabled = enabled;
 733
 734	trace_rtc_irq_set_state(enabled, err);
 
 
 
 
 
 
 
 
 
 735	return err;
 736}
 
 737
 738/**
 739 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
 740 * @rtc: the rtc device
 741 * @freq: positive frequency
 
 742 * Context: any
 743 *
 744 * Note that rtc_irq_set_state() is used to enable or disable the
 745 * periodic IRQs.
 746 */
 747int rtc_irq_set_freq(struct rtc_device *rtc, int freq)
 748{
 749	int err = 0;
 
 750
 751	if (freq <= 0 || freq > RTC_MAX_FREQ)
 752		return -EINVAL;
 753
 754	rtc->irq_freq = freq;
 755	while (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0)
 756		cpu_relax();
 757
 758	trace_rtc_irq_set_freq(freq, err);
 
 
 
 
 
 
 
 
 
 759	return err;
 760}
 
 761
 762/**
 763 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
 764 * @rtc rtc device
 765 * @timer timer being added.
 766 *
 767 * Enqueues a timer onto the rtc devices timerqueue and sets
 768 * the next alarm event appropriately.
 769 *
 770 * Sets the enabled bit on the added timer.
 771 *
 772 * Must hold ops_lock for proper serialization of timerqueue
 773 */
 774static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
 775{
 776	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 777	struct rtc_time tm;
 778	ktime_t now;
 779
 780	timer->enabled = 1;
 781	__rtc_read_time(rtc, &tm);
 782	now = rtc_tm_to_ktime(tm);
 783
 784	/* Skip over expired timers */
 785	while (next) {
 786		if (next->expires >= now)
 787			break;
 788		next = timerqueue_iterate_next(next);
 789	}
 790
 791	timerqueue_add(&rtc->timerqueue, &timer->node);
 792	trace_rtc_timer_enqueue(timer);
 793	if (!next || ktime_before(timer->node.expires, next->expires)) {
 794		struct rtc_wkalrm alarm;
 795		int err;
 796
 797		alarm.time = rtc_ktime_to_tm(timer->node.expires);
 798		alarm.enabled = 1;
 799		err = __rtc_set_alarm(rtc, &alarm);
 800		if (err == -ETIME) {
 801			pm_stay_awake(rtc->dev.parent);
 802			schedule_work(&rtc->irqwork);
 803		} else if (err) {
 804			timerqueue_del(&rtc->timerqueue, &timer->node);
 805			trace_rtc_timer_dequeue(timer);
 806			timer->enabled = 0;
 807			return err;
 808		}
 809	}
 810	return 0;
 811}
 812
 813static void rtc_alarm_disable(struct rtc_device *rtc)
 814{
 815	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
 816		return;
 817
 818	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
 819	trace_rtc_alarm_irq_enable(0, 0);
 820}
 821
 822/**
 823 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
 824 * @rtc rtc device
 825 * @timer timer being removed.
 826 *
 827 * Removes a timer onto the rtc devices timerqueue and sets
 828 * the next alarm event appropriately.
 829 *
 830 * Clears the enabled bit on the removed timer.
 831 *
 832 * Must hold ops_lock for proper serialization of timerqueue
 833 */
 834static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
 835{
 836	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 837
 838	timerqueue_del(&rtc->timerqueue, &timer->node);
 839	trace_rtc_timer_dequeue(timer);
 840	timer->enabled = 0;
 841	if (next == &timer->node) {
 842		struct rtc_wkalrm alarm;
 843		int err;
 844
 845		next = timerqueue_getnext(&rtc->timerqueue);
 846		if (!next) {
 847			rtc_alarm_disable(rtc);
 848			return;
 849		}
 850		alarm.time = rtc_ktime_to_tm(next->expires);
 851		alarm.enabled = 1;
 852		err = __rtc_set_alarm(rtc, &alarm);
 853		if (err == -ETIME) {
 854			pm_stay_awake(rtc->dev.parent);
 855			schedule_work(&rtc->irqwork);
 856		}
 857	}
 858}
 859
 860/**
 861 * rtc_timer_do_work - Expires rtc timers
 862 * @rtc rtc device
 863 * @timer timer being removed.
 864 *
 865 * Expires rtc timers. Reprograms next alarm event if needed.
 866 * Called via worktask.
 867 *
 868 * Serializes access to timerqueue via ops_lock mutex
 869 */
 870void rtc_timer_do_work(struct work_struct *work)
 871{
 872	struct rtc_timer *timer;
 873	struct timerqueue_node *next;
 874	ktime_t now;
 875	struct rtc_time tm;
 876
 877	struct rtc_device *rtc =
 878		container_of(work, struct rtc_device, irqwork);
 879
 880	mutex_lock(&rtc->ops_lock);
 881again:
 882	__rtc_read_time(rtc, &tm);
 883	now = rtc_tm_to_ktime(tm);
 884	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
 885		if (next->expires > now)
 886			break;
 887
 888		/* expire timer */
 889		timer = container_of(next, struct rtc_timer, node);
 890		timerqueue_del(&rtc->timerqueue, &timer->node);
 891		trace_rtc_timer_dequeue(timer);
 892		timer->enabled = 0;
 893		if (timer->func)
 894			timer->func(timer->rtc);
 895
 896		trace_rtc_timer_fired(timer);
 897		/* Re-add/fwd periodic timers */
 898		if (ktime_to_ns(timer->period)) {
 899			timer->node.expires = ktime_add(timer->node.expires,
 900							timer->period);
 901			timer->enabled = 1;
 902			timerqueue_add(&rtc->timerqueue, &timer->node);
 903			trace_rtc_timer_enqueue(timer);
 904		}
 905	}
 906
 907	/* Set next alarm */
 908	if (next) {
 909		struct rtc_wkalrm alarm;
 910		int err;
 911		int retry = 3;
 912
 913		alarm.time = rtc_ktime_to_tm(next->expires);
 914		alarm.enabled = 1;
 915reprogram:
 916		err = __rtc_set_alarm(rtc, &alarm);
 917		if (err == -ETIME) {
 918			goto again;
 919		} else if (err) {
 920			if (retry-- > 0)
 921				goto reprogram;
 922
 923			timer = container_of(next, struct rtc_timer, node);
 924			timerqueue_del(&rtc->timerqueue, &timer->node);
 925			trace_rtc_timer_dequeue(timer);
 926			timer->enabled = 0;
 927			dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
 928			goto again;
 929		}
 930	} else {
 931		rtc_alarm_disable(rtc);
 932	}
 933
 934	pm_relax(rtc->dev.parent);
 935	mutex_unlock(&rtc->ops_lock);
 936}
 937
 
 938/* rtc_timer_init - Initializes an rtc_timer
 939 * @timer: timer to be intiialized
 940 * @f: function pointer to be called when timer fires
 941 * @rtc: pointer to the rtc_device
 942 *
 943 * Kernel interface to initializing an rtc_timer.
 944 */
 945void rtc_timer_init(struct rtc_timer *timer, void (*f)(struct rtc_device *r),
 946		    struct rtc_device *rtc)
 947{
 948	timerqueue_init(&timer->node);
 949	timer->enabled = 0;
 950	timer->func = f;
 951	timer->rtc = rtc;
 952}
 953
 954/* rtc_timer_start - Sets an rtc_timer to fire in the future
 955 * @ rtc: rtc device to be used
 956 * @ timer: timer being set
 957 * @ expires: time at which to expire the timer
 958 * @ period: period that the timer will recur
 959 *
 960 * Kernel interface to set an rtc_timer
 961 */
 962int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
 963		    ktime_t expires, ktime_t period)
 964{
 965	int ret = 0;
 966
 967	mutex_lock(&rtc->ops_lock);
 968	if (timer->enabled)
 969		rtc_timer_remove(rtc, timer);
 970
 971	timer->node.expires = expires;
 972	timer->period = period;
 973
 974	ret = rtc_timer_enqueue(rtc, timer);
 975
 976	mutex_unlock(&rtc->ops_lock);
 977	return ret;
 978}
 979
 980/* rtc_timer_cancel - Stops an rtc_timer
 981 * @ rtc: rtc device to be used
 982 * @ timer: timer being set
 983 *
 984 * Kernel interface to cancel an rtc_timer
 985 */
 986void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
 987{
 988	mutex_lock(&rtc->ops_lock);
 989	if (timer->enabled)
 990		rtc_timer_remove(rtc, timer);
 991	mutex_unlock(&rtc->ops_lock);
 992}
 993
 994/**
 995 * rtc_read_offset - Read the amount of rtc offset in parts per billion
 996 * @ rtc: rtc device to be used
 997 * @ offset: the offset in parts per billion
 998 *
 999 * see below for details.
1000 *
1001 * Kernel interface to read rtc clock offset
1002 * Returns 0 on success, or a negative number on error.
1003 * If read_offset() is not implemented for the rtc, return -EINVAL
1004 */
1005int rtc_read_offset(struct rtc_device *rtc, long *offset)
1006{
1007	int ret;
1008
1009	if (!rtc->ops)
1010		return -ENODEV;
1011
1012	if (!rtc->ops->read_offset)
1013		return -EINVAL;
1014
1015	mutex_lock(&rtc->ops_lock);
1016	ret = rtc->ops->read_offset(rtc->dev.parent, offset);
1017	mutex_unlock(&rtc->ops_lock);
1018
1019	trace_rtc_read_offset(*offset, ret);
1020	return ret;
1021}
1022
1023/**
1024 * rtc_set_offset - Adjusts the duration of the average second
1025 * @ rtc: rtc device to be used
1026 * @ offset: the offset in parts per billion
1027 *
1028 * Some rtc's allow an adjustment to the average duration of a second
1029 * to compensate for differences in the actual clock rate due to temperature,
1030 * the crystal, capacitor, etc.
1031 *
1032 * The adjustment applied is as follows:
1033 *   t = t0 * (1 + offset * 1e-9)
1034 * where t0 is the measured length of 1 RTC second with offset = 0
1035 *
1036 * Kernel interface to adjust an rtc clock offset.
1037 * Return 0 on success, or a negative number on error.
1038 * If the rtc offset is not setable (or not implemented), return -EINVAL
1039 */
1040int rtc_set_offset(struct rtc_device *rtc, long offset)
1041{
1042	int ret;
1043
1044	if (!rtc->ops)
1045		return -ENODEV;
1046
1047	if (!rtc->ops->set_offset)
1048		return -EINVAL;
1049
1050	mutex_lock(&rtc->ops_lock);
1051	ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1052	mutex_unlock(&rtc->ops_lock);
1053
1054	trace_rtc_set_offset(offset, ret);
1055	return ret;
1056}
v4.10.11
 
   1/*
   2 * RTC subsystem, interface functions
   3 *
   4 * Copyright (C) 2005 Tower Technologies
   5 * Author: Alessandro Zummo <a.zummo@towertech.it>
   6 *
   7 * based on arch/arm/common/rtctime.c
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12*/
  13
  14#include <linux/rtc.h>
  15#include <linux/sched.h>
  16#include <linux/module.h>
  17#include <linux/log2.h>
  18#include <linux/workqueue.h>
  19
 
 
 
  20static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
  21static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
  22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  23static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
  24{
  25	int err;
  26	if (!rtc->ops)
 
  27		err = -ENODEV;
  28	else if (!rtc->ops->read_time)
  29		err = -EINVAL;
  30	else {
  31		memset(tm, 0, sizeof(struct rtc_time));
  32		err = rtc->ops->read_time(rtc->dev.parent, tm);
  33		if (err < 0) {
  34			dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
  35				err);
  36			return err;
  37		}
  38
 
 
  39		err = rtc_valid_tm(tm);
  40		if (err < 0)
  41			dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
  42	}
  43	return err;
  44}
  45
  46int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
  47{
  48	int err;
  49
  50	err = mutex_lock_interruptible(&rtc->ops_lock);
  51	if (err)
  52		return err;
  53
  54	err = __rtc_read_time(rtc, tm);
  55	mutex_unlock(&rtc->ops_lock);
 
 
  56	return err;
  57}
  58EXPORT_SYMBOL_GPL(rtc_read_time);
  59
  60int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
  61{
  62	int err;
  63
  64	err = rtc_valid_tm(tm);
  65	if (err != 0)
  66		return err;
  67
 
 
 
 
 
 
  68	err = mutex_lock_interruptible(&rtc->ops_lock);
  69	if (err)
  70		return err;
  71
  72	if (!rtc->ops)
  73		err = -ENODEV;
  74	else if (rtc->ops->set_time)
  75		err = rtc->ops->set_time(rtc->dev.parent, tm);
  76	else if (rtc->ops->set_mmss64) {
  77		time64_t secs64 = rtc_tm_to_time64(tm);
  78
  79		err = rtc->ops->set_mmss64(rtc->dev.parent, secs64);
  80	} else if (rtc->ops->set_mmss) {
  81		time64_t secs64 = rtc_tm_to_time64(tm);
  82		err = rtc->ops->set_mmss(rtc->dev.parent, secs64);
  83	} else
  84		err = -EINVAL;
  85
  86	pm_stay_awake(rtc->dev.parent);
  87	mutex_unlock(&rtc->ops_lock);
  88	/* A timer might have just expired */
  89	schedule_work(&rtc->irqwork);
 
 
  90	return err;
  91}
  92EXPORT_SYMBOL_GPL(rtc_set_time);
  93
  94static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 
  95{
  96	int err;
  97
  98	err = mutex_lock_interruptible(&rtc->ops_lock);
  99	if (err)
 100		return err;
 101
 102	if (rtc->ops == NULL)
 103		err = -ENODEV;
 104	else if (!rtc->ops->read_alarm)
 105		err = -EINVAL;
 106	else {
 107		alarm->enabled = 0;
 108		alarm->pending = 0;
 109		alarm->time.tm_sec = -1;
 110		alarm->time.tm_min = -1;
 111		alarm->time.tm_hour = -1;
 112		alarm->time.tm_mday = -1;
 113		alarm->time.tm_mon = -1;
 114		alarm->time.tm_year = -1;
 115		alarm->time.tm_wday = -1;
 116		alarm->time.tm_yday = -1;
 117		alarm->time.tm_isdst = -1;
 118		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
 119	}
 120
 121	mutex_unlock(&rtc->ops_lock);
 
 
 122	return err;
 123}
 124
 125int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 126{
 127	int err;
 128	struct rtc_time before, now;
 129	int first_time = 1;
 130	time64_t t_now, t_alm;
 131	enum { none, day, month, year } missing = none;
 132	unsigned days;
 133
 134	/* The lower level RTC driver may return -1 in some fields,
 135	 * creating invalid alarm->time values, for reasons like:
 136	 *
 137	 *   - The hardware may not be capable of filling them in;
 138	 *     many alarms match only on time-of-day fields, not
 139	 *     day/month/year calendar data.
 140	 *
 141	 *   - Some hardware uses illegal values as "wildcard" match
 142	 *     values, which non-Linux firmware (like a BIOS) may try
 143	 *     to set up as e.g. "alarm 15 minutes after each hour".
 144	 *     Linux uses only oneshot alarms.
 145	 *
 146	 * When we see that here, we deal with it by using values from
 147	 * a current RTC timestamp for any missing (-1) values.  The
 148	 * RTC driver prevents "periodic alarm" modes.
 149	 *
 150	 * But this can be racey, because some fields of the RTC timestamp
 151	 * may have wrapped in the interval since we read the RTC alarm,
 152	 * which would lead to us inserting inconsistent values in place
 153	 * of the -1 fields.
 154	 *
 155	 * Reading the alarm and timestamp in the reverse sequence
 156	 * would have the same race condition, and not solve the issue.
 157	 *
 158	 * So, we must first read the RTC timestamp,
 159	 * then read the RTC alarm value,
 160	 * and then read a second RTC timestamp.
 161	 *
 162	 * If any fields of the second timestamp have changed
 163	 * when compared with the first timestamp, then we know
 164	 * our timestamp may be inconsistent with that used by
 165	 * the low-level rtc_read_alarm_internal() function.
 166	 *
 167	 * So, when the two timestamps disagree, we just loop and do
 168	 * the process again to get a fully consistent set of values.
 169	 *
 170	 * This could all instead be done in the lower level driver,
 171	 * but since more than one lower level RTC implementation needs it,
 172	 * then it's probably best best to do it here instead of there..
 173	 */
 174
 175	/* Get the "before" timestamp */
 176	err = rtc_read_time(rtc, &before);
 177	if (err < 0)
 178		return err;
 179	do {
 180		if (!first_time)
 181			memcpy(&before, &now, sizeof(struct rtc_time));
 182		first_time = 0;
 183
 184		/* get the RTC alarm values, which may be incomplete */
 185		err = rtc_read_alarm_internal(rtc, alarm);
 186		if (err)
 187			return err;
 188
 189		/* full-function RTCs won't have such missing fields */
 190		if (rtc_valid_tm(&alarm->time) == 0)
 
 191			return 0;
 
 192
 193		/* get the "after" timestamp, to detect wrapped fields */
 194		err = rtc_read_time(rtc, &now);
 195		if (err < 0)
 196			return err;
 197
 198		/* note that tm_sec is a "don't care" value here: */
 199	} while (   before.tm_min   != now.tm_min
 200		 || before.tm_hour  != now.tm_hour
 201		 || before.tm_mon   != now.tm_mon
 202		 || before.tm_year  != now.tm_year);
 203
 204	/* Fill in the missing alarm fields using the timestamp; we
 205	 * know there's at least one since alarm->time is invalid.
 206	 */
 207	if (alarm->time.tm_sec == -1)
 208		alarm->time.tm_sec = now.tm_sec;
 209	if (alarm->time.tm_min == -1)
 210		alarm->time.tm_min = now.tm_min;
 211	if (alarm->time.tm_hour == -1)
 212		alarm->time.tm_hour = now.tm_hour;
 213
 214	/* For simplicity, only support date rollover for now */
 215	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
 216		alarm->time.tm_mday = now.tm_mday;
 217		missing = day;
 218	}
 219	if ((unsigned)alarm->time.tm_mon >= 12) {
 220		alarm->time.tm_mon = now.tm_mon;
 221		if (missing == none)
 222			missing = month;
 223	}
 224	if (alarm->time.tm_year == -1) {
 225		alarm->time.tm_year = now.tm_year;
 226		if (missing == none)
 227			missing = year;
 228	}
 229
 
 
 
 
 
 
 
 230	/* with luck, no rollover is needed */
 231	t_now = rtc_tm_to_time64(&now);
 232	t_alm = rtc_tm_to_time64(&alarm->time);
 233	if (t_now < t_alm)
 234		goto done;
 235
 236	switch (missing) {
 237
 238	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
 239	 * that will trigger at 5am will do so at 5am Tuesday, which
 240	 * could also be in the next month or year.  This is a common
 241	 * case, especially for PCs.
 242	 */
 243	case day:
 244		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
 245		t_alm += 24 * 60 * 60;
 246		rtc_time64_to_tm(t_alm, &alarm->time);
 247		break;
 248
 249	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
 250	 * be next month.  An alarm matching on the 30th, 29th, or 28th
 251	 * may end up in the month after that!  Many newer PCs support
 252	 * this type of alarm.
 253	 */
 254	case month:
 255		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
 256		do {
 257			if (alarm->time.tm_mon < 11)
 258				alarm->time.tm_mon++;
 259			else {
 260				alarm->time.tm_mon = 0;
 261				alarm->time.tm_year++;
 262			}
 263			days = rtc_month_days(alarm->time.tm_mon,
 264					alarm->time.tm_year);
 265		} while (days < alarm->time.tm_mday);
 266		break;
 267
 268	/* Year rollover ... easy except for leap years! */
 269	case year:
 270		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
 271		do {
 272			alarm->time.tm_year++;
 273		} while (!is_leap_year(alarm->time.tm_year + 1900)
 274			&& rtc_valid_tm(&alarm->time) != 0);
 275		break;
 276
 277	default:
 278		dev_warn(&rtc->dev, "alarm rollover not handled\n");
 279	}
 280
 281done:
 282	err = rtc_valid_tm(&alarm->time);
 283
 284	if (err) {
 285		dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
 286			alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
 287			alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
 288			alarm->time.tm_sec);
 289	}
 290
 291	return err;
 292}
 293
 294int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 295{
 296	int err;
 297
 298	err = mutex_lock_interruptible(&rtc->ops_lock);
 299	if (err)
 300		return err;
 301	if (rtc->ops == NULL)
 302		err = -ENODEV;
 303	else if (!rtc->ops->read_alarm)
 304		err = -EINVAL;
 305	else {
 306		memset(alarm, 0, sizeof(struct rtc_wkalrm));
 307		alarm->enabled = rtc->aie_timer.enabled;
 308		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
 309	}
 310	mutex_unlock(&rtc->ops_lock);
 311
 
 312	return err;
 313}
 314EXPORT_SYMBOL_GPL(rtc_read_alarm);
 315
 316static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 317{
 318	struct rtc_time tm;
 319	time64_t now, scheduled;
 320	int err;
 321
 322	err = rtc_valid_tm(&alarm->time);
 323	if (err)
 324		return err;
 
 325	scheduled = rtc_tm_to_time64(&alarm->time);
 326
 327	/* Make sure we're not setting alarms in the past */
 328	err = __rtc_read_time(rtc, &tm);
 329	if (err)
 330		return err;
 331	now = rtc_tm_to_time64(&tm);
 332	if (scheduled <= now)
 333		return -ETIME;
 334	/*
 335	 * XXX - We just checked to make sure the alarm time is not
 336	 * in the past, but there is still a race window where if
 337	 * the is alarm set for the next second and the second ticks
 338	 * over right here, before we set the alarm.
 339	 */
 340
 
 
 341	if (!rtc->ops)
 342		err = -ENODEV;
 343	else if (!rtc->ops->set_alarm)
 344		err = -EINVAL;
 345	else
 346		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
 347
 
 348	return err;
 349}
 350
 351int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 352{
 353	int err;
 354
 
 
 
 
 
 355	err = rtc_valid_tm(&alarm->time);
 356	if (err != 0)
 357		return err;
 358
 
 
 
 
 359	err = mutex_lock_interruptible(&rtc->ops_lock);
 360	if (err)
 361		return err;
 362	if (rtc->aie_timer.enabled)
 363		rtc_timer_remove(rtc, &rtc->aie_timer);
 364
 365	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
 366	rtc->aie_timer.period = 0;
 367	if (alarm->enabled)
 368		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 369
 370	mutex_unlock(&rtc->ops_lock);
 
 371	return err;
 372}
 373EXPORT_SYMBOL_GPL(rtc_set_alarm);
 374
 375/* Called once per device from rtc_device_register */
 376int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 377{
 378	int err;
 379	struct rtc_time now;
 380
 381	err = rtc_valid_tm(&alarm->time);
 382	if (err != 0)
 383		return err;
 384
 385	err = rtc_read_time(rtc, &now);
 386	if (err)
 387		return err;
 388
 389	err = mutex_lock_interruptible(&rtc->ops_lock);
 390	if (err)
 391		return err;
 392
 393	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
 394	rtc->aie_timer.period = 0;
 395
 396	/* Alarm has to be enabled & in the future for us to enqueue it */
 397	if (alarm->enabled && (rtc_tm_to_ktime(now) <
 398			 rtc->aie_timer.node.expires)) {
 399
 400		rtc->aie_timer.enabled = 1;
 401		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
 
 402	}
 403	mutex_unlock(&rtc->ops_lock);
 404	return err;
 405}
 406EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
 407
 408int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 409{
 410	int err = mutex_lock_interruptible(&rtc->ops_lock);
 
 
 411	if (err)
 412		return err;
 413
 414	if (rtc->aie_timer.enabled != enabled) {
 415		if (enabled)
 416			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 417		else
 418			rtc_timer_remove(rtc, &rtc->aie_timer);
 419	}
 420
 421	if (err)
 422		/* nothing */;
 423	else if (!rtc->ops)
 424		err = -ENODEV;
 425	else if (!rtc->ops->alarm_irq_enable)
 426		err = -EINVAL;
 427	else
 428		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
 429
 430	mutex_unlock(&rtc->ops_lock);
 
 
 431	return err;
 432}
 433EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
 434
 435int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 436{
 437	int err = mutex_lock_interruptible(&rtc->ops_lock);
 
 
 438	if (err)
 439		return err;
 440
 441#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 442	if (enabled == 0 && rtc->uie_irq_active) {
 443		mutex_unlock(&rtc->ops_lock);
 444		return rtc_dev_update_irq_enable_emul(rtc, 0);
 445	}
 446#endif
 447	/* make sure we're changing state */
 448	if (rtc->uie_rtctimer.enabled == enabled)
 449		goto out;
 450
 451	if (rtc->uie_unsupported) {
 452		err = -EINVAL;
 453		goto out;
 454	}
 455
 456	if (enabled) {
 457		struct rtc_time tm;
 458		ktime_t now, onesec;
 459
 460		__rtc_read_time(rtc, &tm);
 461		onesec = ktime_set(1, 0);
 462		now = rtc_tm_to_ktime(tm);
 463		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
 464		rtc->uie_rtctimer.period = ktime_set(1, 0);
 465		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
 466	} else
 467		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
 
 468
 469out:
 470	mutex_unlock(&rtc->ops_lock);
 471#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 472	/*
 473	 * Enable emulation if the driver did not provide
 474	 * the update_irq_enable function pointer or if returned
 475	 * -EINVAL to signal that it has been configured without
 476	 * interrupts or that are not available at the moment.
 477	 */
 478	if (err == -EINVAL)
 479		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
 480#endif
 481	return err;
 482
 483}
 484EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
 485
 486
 487/**
 488 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
 489 * @rtc: pointer to the rtc device
 490 *
 491 * This function is called when an AIE, UIE or PIE mode interrupt
 492 * has occurred (or been emulated).
 493 *
 494 * Triggers the registered irq_task function callback.
 495 */
 496void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
 497{
 498	unsigned long flags;
 499
 500	/* mark one irq of the appropriate mode */
 501	spin_lock_irqsave(&rtc->irq_lock, flags);
 502	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
 503	spin_unlock_irqrestore(&rtc->irq_lock, flags);
 504
 505	/* call the task func */
 506	spin_lock_irqsave(&rtc->irq_task_lock, flags);
 507	if (rtc->irq_task)
 508		rtc->irq_task->func(rtc->irq_task->private_data);
 509	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 510
 511	wake_up_interruptible(&rtc->irq_queue);
 512	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
 513}
 514
 515
 516/**
 517 * rtc_aie_update_irq - AIE mode rtctimer hook
 518 * @private: pointer to the rtc_device
 519 *
 520 * This functions is called when the aie_timer expires.
 521 */
 522void rtc_aie_update_irq(void *private)
 523{
 524	struct rtc_device *rtc = (struct rtc_device *)private;
 525	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
 526}
 527
 528
 529/**
 530 * rtc_uie_update_irq - UIE mode rtctimer hook
 531 * @private: pointer to the rtc_device
 532 *
 533 * This functions is called when the uie_timer expires.
 534 */
 535void rtc_uie_update_irq(void *private)
 536{
 537	struct rtc_device *rtc = (struct rtc_device *)private;
 538	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
 539}
 540
 541
 542/**
 543 * rtc_pie_update_irq - PIE mode hrtimer hook
 544 * @timer: pointer to the pie mode hrtimer
 545 *
 546 * This function is used to emulate PIE mode interrupts
 547 * using an hrtimer. This function is called when the periodic
 548 * hrtimer expires.
 549 */
 550enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
 551{
 552	struct rtc_device *rtc;
 553	ktime_t period;
 554	int count;
 
 555	rtc = container_of(timer, struct rtc_device, pie_timer);
 556
 557	period = NSEC_PER_SEC / rtc->irq_freq;
 558	count = hrtimer_forward_now(timer, period);
 559
 560	rtc_handle_legacy_irq(rtc, count, RTC_PF);
 561
 562	return HRTIMER_RESTART;
 563}
 564
 565/**
 566 * rtc_update_irq - Triggered when a RTC interrupt occurs.
 567 * @rtc: the rtc device
 568 * @num: how many irqs are being reported (usually one)
 569 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
 570 * Context: any
 571 */
 572void rtc_update_irq(struct rtc_device *rtc,
 573		unsigned long num, unsigned long events)
 574{
 575	if (IS_ERR_OR_NULL(rtc))
 576		return;
 577
 578	pm_stay_awake(rtc->dev.parent);
 579	schedule_work(&rtc->irqwork);
 580}
 581EXPORT_SYMBOL_GPL(rtc_update_irq);
 582
 583static int __rtc_match(struct device *dev, const void *data)
 584{
 585	const char *name = data;
 586
 587	if (strcmp(dev_name(dev), name) == 0)
 588		return 1;
 589	return 0;
 590}
 591
 592struct rtc_device *rtc_class_open(const char *name)
 593{
 594	struct device *dev;
 595	struct rtc_device *rtc = NULL;
 596
 597	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
 598	if (dev)
 599		rtc = to_rtc_device(dev);
 600
 601	if (rtc) {
 602		if (!try_module_get(rtc->owner)) {
 603			put_device(dev);
 604			rtc = NULL;
 605		}
 606	}
 607
 608	return rtc;
 609}
 610EXPORT_SYMBOL_GPL(rtc_class_open);
 611
 612void rtc_class_close(struct rtc_device *rtc)
 613{
 614	module_put(rtc->owner);
 615	put_device(&rtc->dev);
 616}
 617EXPORT_SYMBOL_GPL(rtc_class_close);
 618
 619int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
 620{
 621	int retval = -EBUSY;
 622
 623	if (task == NULL || task->func == NULL)
 624		return -EINVAL;
 625
 626	/* Cannot register while the char dev is in use */
 627	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
 628		return -EBUSY;
 629
 630	spin_lock_irq(&rtc->irq_task_lock);
 631	if (rtc->irq_task == NULL) {
 632		rtc->irq_task = task;
 633		retval = 0;
 634	}
 635	spin_unlock_irq(&rtc->irq_task_lock);
 636
 637	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
 638
 639	return retval;
 640}
 641EXPORT_SYMBOL_GPL(rtc_irq_register);
 642
 643void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
 644{
 645	spin_lock_irq(&rtc->irq_task_lock);
 646	if (rtc->irq_task == task)
 647		rtc->irq_task = NULL;
 648	spin_unlock_irq(&rtc->irq_task_lock);
 649}
 650EXPORT_SYMBOL_GPL(rtc_irq_unregister);
 651
 652static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
 653{
 654	/*
 655	 * We always cancel the timer here first, because otherwise
 656	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
 657	 * when we manage to start the timer before the callback
 658	 * returns HRTIMER_RESTART.
 659	 *
 660	 * We cannot use hrtimer_cancel() here as a running callback
 661	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
 662	 * would spin forever.
 663	 */
 664	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
 665		return -1;
 666
 667	if (enabled) {
 668		ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
 669
 670		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
 671	}
 672	return 0;
 673}
 674
 675/**
 676 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
 677 * @rtc: the rtc device
 678 * @task: currently registered with rtc_irq_register()
 679 * @enabled: true to enable periodic IRQs
 680 * Context: any
 681 *
 682 * Note that rtc_irq_set_freq() should previously have been used to
 683 * specify the desired frequency of periodic IRQ task->func() callbacks.
 684 */
 685int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
 686{
 687	int err = 0;
 688	unsigned long flags;
 689
 690retry:
 691	spin_lock_irqsave(&rtc->irq_task_lock, flags);
 692	if (rtc->irq_task != NULL && task == NULL)
 693		err = -EBUSY;
 694	else if (rtc->irq_task != task)
 695		err = -EACCES;
 696	else {
 697		if (rtc_update_hrtimer(rtc, enabled) < 0) {
 698			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 699			cpu_relax();
 700			goto retry;
 701		}
 702		rtc->pie_enabled = enabled;
 703	}
 704	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 705	return err;
 706}
 707EXPORT_SYMBOL_GPL(rtc_irq_set_state);
 708
 709/**
 710 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
 711 * @rtc: the rtc device
 712 * @task: currently registered with rtc_irq_register()
 713 * @freq: positive frequency with which task->func() will be called
 714 * Context: any
 715 *
 716 * Note that rtc_irq_set_state() is used to enable or disable the
 717 * periodic IRQs.
 718 */
 719int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
 720{
 721	int err = 0;
 722	unsigned long flags;
 723
 724	if (freq <= 0 || freq > RTC_MAX_FREQ)
 725		return -EINVAL;
 726retry:
 727	spin_lock_irqsave(&rtc->irq_task_lock, flags);
 728	if (rtc->irq_task != NULL && task == NULL)
 729		err = -EBUSY;
 730	else if (rtc->irq_task != task)
 731		err = -EACCES;
 732	else {
 733		rtc->irq_freq = freq;
 734		if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
 735			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 736			cpu_relax();
 737			goto retry;
 738		}
 739	}
 740	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 741	return err;
 742}
 743EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
 744
 745/**
 746 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
 747 * @rtc rtc device
 748 * @timer timer being added.
 749 *
 750 * Enqueues a timer onto the rtc devices timerqueue and sets
 751 * the next alarm event appropriately.
 752 *
 753 * Sets the enabled bit on the added timer.
 754 *
 755 * Must hold ops_lock for proper serialization of timerqueue
 756 */
 757static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
 758{
 759	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 760	struct rtc_time tm;
 761	ktime_t now;
 762
 763	timer->enabled = 1;
 764	__rtc_read_time(rtc, &tm);
 765	now = rtc_tm_to_ktime(tm);
 766
 767	/* Skip over expired timers */
 768	while (next) {
 769		if (next->expires >= now)
 770			break;
 771		next = timerqueue_iterate_next(next);
 772	}
 773
 774	timerqueue_add(&rtc->timerqueue, &timer->node);
 775	if (!next) {
 
 776		struct rtc_wkalrm alarm;
 777		int err;
 
 778		alarm.time = rtc_ktime_to_tm(timer->node.expires);
 779		alarm.enabled = 1;
 780		err = __rtc_set_alarm(rtc, &alarm);
 781		if (err == -ETIME) {
 782			pm_stay_awake(rtc->dev.parent);
 783			schedule_work(&rtc->irqwork);
 784		} else if (err) {
 785			timerqueue_del(&rtc->timerqueue, &timer->node);
 
 786			timer->enabled = 0;
 787			return err;
 788		}
 789	}
 790	return 0;
 791}
 792
 793static void rtc_alarm_disable(struct rtc_device *rtc)
 794{
 795	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
 796		return;
 797
 798	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
 
 799}
 800
 801/**
 802 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
 803 * @rtc rtc device
 804 * @timer timer being removed.
 805 *
 806 * Removes a timer onto the rtc devices timerqueue and sets
 807 * the next alarm event appropriately.
 808 *
 809 * Clears the enabled bit on the removed timer.
 810 *
 811 * Must hold ops_lock for proper serialization of timerqueue
 812 */
 813static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
 814{
 815	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 
 816	timerqueue_del(&rtc->timerqueue, &timer->node);
 
 817	timer->enabled = 0;
 818	if (next == &timer->node) {
 819		struct rtc_wkalrm alarm;
 820		int err;
 
 821		next = timerqueue_getnext(&rtc->timerqueue);
 822		if (!next) {
 823			rtc_alarm_disable(rtc);
 824			return;
 825		}
 826		alarm.time = rtc_ktime_to_tm(next->expires);
 827		alarm.enabled = 1;
 828		err = __rtc_set_alarm(rtc, &alarm);
 829		if (err == -ETIME) {
 830			pm_stay_awake(rtc->dev.parent);
 831			schedule_work(&rtc->irqwork);
 832		}
 833	}
 834}
 835
 836/**
 837 * rtc_timer_do_work - Expires rtc timers
 838 * @rtc rtc device
 839 * @timer timer being removed.
 840 *
 841 * Expires rtc timers. Reprograms next alarm event if needed.
 842 * Called via worktask.
 843 *
 844 * Serializes access to timerqueue via ops_lock mutex
 845 */
 846void rtc_timer_do_work(struct work_struct *work)
 847{
 848	struct rtc_timer *timer;
 849	struct timerqueue_node *next;
 850	ktime_t now;
 851	struct rtc_time tm;
 852
 853	struct rtc_device *rtc =
 854		container_of(work, struct rtc_device, irqwork);
 855
 856	mutex_lock(&rtc->ops_lock);
 857again:
 858	__rtc_read_time(rtc, &tm);
 859	now = rtc_tm_to_ktime(tm);
 860	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
 861		if (next->expires > now)
 862			break;
 863
 864		/* expire timer */
 865		timer = container_of(next, struct rtc_timer, node);
 866		timerqueue_del(&rtc->timerqueue, &timer->node);
 
 867		timer->enabled = 0;
 868		if (timer->task.func)
 869			timer->task.func(timer->task.private_data);
 870
 
 871		/* Re-add/fwd periodic timers */
 872		if (ktime_to_ns(timer->period)) {
 873			timer->node.expires = ktime_add(timer->node.expires,
 874							timer->period);
 875			timer->enabled = 1;
 876			timerqueue_add(&rtc->timerqueue, &timer->node);
 
 877		}
 878	}
 879
 880	/* Set next alarm */
 881	if (next) {
 882		struct rtc_wkalrm alarm;
 883		int err;
 884		int retry = 3;
 885
 886		alarm.time = rtc_ktime_to_tm(next->expires);
 887		alarm.enabled = 1;
 888reprogram:
 889		err = __rtc_set_alarm(rtc, &alarm);
 890		if (err == -ETIME)
 891			goto again;
 892		else if (err) {
 893			if (retry-- > 0)
 894				goto reprogram;
 895
 896			timer = container_of(next, struct rtc_timer, node);
 897			timerqueue_del(&rtc->timerqueue, &timer->node);
 
 898			timer->enabled = 0;
 899			dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
 900			goto again;
 901		}
 902	} else
 903		rtc_alarm_disable(rtc);
 
 904
 905	pm_relax(rtc->dev.parent);
 906	mutex_unlock(&rtc->ops_lock);
 907}
 908
 909
 910/* rtc_timer_init - Initializes an rtc_timer
 911 * @timer: timer to be intiialized
 912 * @f: function pointer to be called when timer fires
 913 * @data: private data passed to function pointer
 914 *
 915 * Kernel interface to initializing an rtc_timer.
 916 */
 917void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
 
 918{
 919	timerqueue_init(&timer->node);
 920	timer->enabled = 0;
 921	timer->task.func = f;
 922	timer->task.private_data = data;
 923}
 924
 925/* rtc_timer_start - Sets an rtc_timer to fire in the future
 926 * @ rtc: rtc device to be used
 927 * @ timer: timer being set
 928 * @ expires: time at which to expire the timer
 929 * @ period: period that the timer will recur
 930 *
 931 * Kernel interface to set an rtc_timer
 932 */
 933int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
 934			ktime_t expires, ktime_t period)
 935{
 936	int ret = 0;
 
 937	mutex_lock(&rtc->ops_lock);
 938	if (timer->enabled)
 939		rtc_timer_remove(rtc, timer);
 940
 941	timer->node.expires = expires;
 942	timer->period = period;
 943
 944	ret = rtc_timer_enqueue(rtc, timer);
 945
 946	mutex_unlock(&rtc->ops_lock);
 947	return ret;
 948}
 949
 950/* rtc_timer_cancel - Stops an rtc_timer
 951 * @ rtc: rtc device to be used
 952 * @ timer: timer being set
 953 *
 954 * Kernel interface to cancel an rtc_timer
 955 */
 956void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
 957{
 958	mutex_lock(&rtc->ops_lock);
 959	if (timer->enabled)
 960		rtc_timer_remove(rtc, timer);
 961	mutex_unlock(&rtc->ops_lock);
 962}
 963
 964/**
 965 * rtc_read_offset - Read the amount of rtc offset in parts per billion
 966 * @ rtc: rtc device to be used
 967 * @ offset: the offset in parts per billion
 968 *
 969 * see below for details.
 970 *
 971 * Kernel interface to read rtc clock offset
 972 * Returns 0 on success, or a negative number on error.
 973 * If read_offset() is not implemented for the rtc, return -EINVAL
 974 */
 975int rtc_read_offset(struct rtc_device *rtc, long *offset)
 976{
 977	int ret;
 978
 979	if (!rtc->ops)
 980		return -ENODEV;
 981
 982	if (!rtc->ops->read_offset)
 983		return -EINVAL;
 984
 985	mutex_lock(&rtc->ops_lock);
 986	ret = rtc->ops->read_offset(rtc->dev.parent, offset);
 987	mutex_unlock(&rtc->ops_lock);
 
 
 988	return ret;
 989}
 990
 991/**
 992 * rtc_set_offset - Adjusts the duration of the average second
 993 * @ rtc: rtc device to be used
 994 * @ offset: the offset in parts per billion
 995 *
 996 * Some rtc's allow an adjustment to the average duration of a second
 997 * to compensate for differences in the actual clock rate due to temperature,
 998 * the crystal, capacitor, etc.
 999 *
 
 
 
 
1000 * Kernel interface to adjust an rtc clock offset.
1001 * Return 0 on success, or a negative number on error.
1002 * If the rtc offset is not setable (or not implemented), return -EINVAL
1003 */
1004int rtc_set_offset(struct rtc_device *rtc, long offset)
1005{
1006	int ret;
1007
1008	if (!rtc->ops)
1009		return -ENODEV;
1010
1011	if (!rtc->ops->set_offset)
1012		return -EINVAL;
1013
1014	mutex_lock(&rtc->ops_lock);
1015	ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1016	mutex_unlock(&rtc->ops_lock);
 
 
1017	return ret;
1018}