Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4 *
5 * Copyright (C) 2000 Andrew Henroid
6 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8 * Copyright (c) 2008 Intel Corporation
9 * Author: Matthew Wilcox <willy@linux.intel.com>
10 */
11
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/slab.h>
15#include <linux/mm.h>
16#include <linux/highmem.h>
17#include <linux/lockdep.h>
18#include <linux/pci.h>
19#include <linux/interrupt.h>
20#include <linux/kmod.h>
21#include <linux/delay.h>
22#include <linux/workqueue.h>
23#include <linux/nmi.h>
24#include <linux/acpi.h>
25#include <linux/efi.h>
26#include <linux/ioport.h>
27#include <linux/list.h>
28#include <linux/jiffies.h>
29#include <linux/semaphore.h>
30#include <linux/security.h>
31
32#include <asm/io.h>
33#include <linux/uaccess.h>
34#include <linux/io-64-nonatomic-lo-hi.h>
35
36#include "acpica/accommon.h"
37#include "acpica/acnamesp.h"
38#include "internal.h"
39
40#define _COMPONENT ACPI_OS_SERVICES
41ACPI_MODULE_NAME("osl");
42
43struct acpi_os_dpc {
44 acpi_osd_exec_callback function;
45 void *context;
46 struct work_struct work;
47};
48
49#ifdef ENABLE_DEBUGGER
50#include <linux/kdb.h>
51
52/* stuff for debugger support */
53int acpi_in_debugger;
54EXPORT_SYMBOL(acpi_in_debugger);
55#endif /*ENABLE_DEBUGGER */
56
57static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
58 u32 pm1b_ctrl);
59static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
60 u32 val_b);
61
62static acpi_osd_handler acpi_irq_handler;
63static void *acpi_irq_context;
64static struct workqueue_struct *kacpid_wq;
65static struct workqueue_struct *kacpi_notify_wq;
66static struct workqueue_struct *kacpi_hotplug_wq;
67static bool acpi_os_initialized;
68unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
69bool acpi_permanent_mmap = false;
70
71/*
72 * This list of permanent mappings is for memory that may be accessed from
73 * interrupt context, where we can't do the ioremap().
74 */
75struct acpi_ioremap {
76 struct list_head list;
77 void __iomem *virt;
78 acpi_physical_address phys;
79 acpi_size size;
80 unsigned long refcount;
81};
82
83static LIST_HEAD(acpi_ioremaps);
84static DEFINE_MUTEX(acpi_ioremap_lock);
85#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
86
87static void __init acpi_request_region (struct acpi_generic_address *gas,
88 unsigned int length, char *desc)
89{
90 u64 addr;
91
92 /* Handle possible alignment issues */
93 memcpy(&addr, &gas->address, sizeof(addr));
94 if (!addr || !length)
95 return;
96
97 /* Resources are never freed */
98 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
99 request_region(addr, length, desc);
100 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
101 request_mem_region(addr, length, desc);
102}
103
104static int __init acpi_reserve_resources(void)
105{
106 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
107 "ACPI PM1a_EVT_BLK");
108
109 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
110 "ACPI PM1b_EVT_BLK");
111
112 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
113 "ACPI PM1a_CNT_BLK");
114
115 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
116 "ACPI PM1b_CNT_BLK");
117
118 if (acpi_gbl_FADT.pm_timer_length == 4)
119 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
120
121 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
122 "ACPI PM2_CNT_BLK");
123
124 /* Length of GPE blocks must be a non-negative multiple of 2 */
125
126 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
127 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
128 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
129
130 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
131 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
132 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
133
134 return 0;
135}
136fs_initcall_sync(acpi_reserve_resources);
137
138void acpi_os_printf(const char *fmt, ...)
139{
140 va_list args;
141 va_start(args, fmt);
142 acpi_os_vprintf(fmt, args);
143 va_end(args);
144}
145EXPORT_SYMBOL(acpi_os_printf);
146
147void acpi_os_vprintf(const char *fmt, va_list args)
148{
149 static char buffer[512];
150
151 vsprintf(buffer, fmt, args);
152
153#ifdef ENABLE_DEBUGGER
154 if (acpi_in_debugger) {
155 kdb_printf("%s", buffer);
156 } else {
157 if (printk_get_level(buffer))
158 printk("%s", buffer);
159 else
160 printk(KERN_CONT "%s", buffer);
161 }
162#else
163 if (acpi_debugger_write_log(buffer) < 0) {
164 if (printk_get_level(buffer))
165 printk("%s", buffer);
166 else
167 printk(KERN_CONT "%s", buffer);
168 }
169#endif
170}
171
172#ifdef CONFIG_KEXEC
173static unsigned long acpi_rsdp;
174static int __init setup_acpi_rsdp(char *arg)
175{
176 return kstrtoul(arg, 16, &acpi_rsdp);
177}
178early_param("acpi_rsdp", setup_acpi_rsdp);
179#endif
180
181acpi_physical_address __init acpi_os_get_root_pointer(void)
182{
183 acpi_physical_address pa;
184
185#ifdef CONFIG_KEXEC
186 /*
187 * We may have been provided with an RSDP on the command line,
188 * but if a malicious user has done so they may be pointing us
189 * at modified ACPI tables that could alter kernel behaviour -
190 * so, we check the lockdown status before making use of
191 * it. If we trust it then also stash it in an architecture
192 * specific location (if appropriate) so it can be carried
193 * over further kexec()s.
194 */
195 if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
196 acpi_arch_set_root_pointer(acpi_rsdp);
197 return acpi_rsdp;
198 }
199#endif
200 pa = acpi_arch_get_root_pointer();
201 if (pa)
202 return pa;
203
204 if (efi_enabled(EFI_CONFIG_TABLES)) {
205 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
206 return efi.acpi20;
207 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
208 return efi.acpi;
209 pr_err(PREFIX "System description tables not found\n");
210 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
211 acpi_find_root_pointer(&pa);
212 }
213
214 return pa;
215}
216
217/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
218static struct acpi_ioremap *
219acpi_map_lookup(acpi_physical_address phys, acpi_size size)
220{
221 struct acpi_ioremap *map;
222
223 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
224 if (map->phys <= phys &&
225 phys + size <= map->phys + map->size)
226 return map;
227
228 return NULL;
229}
230
231/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
232static void __iomem *
233acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
234{
235 struct acpi_ioremap *map;
236
237 map = acpi_map_lookup(phys, size);
238 if (map)
239 return map->virt + (phys - map->phys);
240
241 return NULL;
242}
243
244void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
245{
246 struct acpi_ioremap *map;
247 void __iomem *virt = NULL;
248
249 mutex_lock(&acpi_ioremap_lock);
250 map = acpi_map_lookup(phys, size);
251 if (map) {
252 virt = map->virt + (phys - map->phys);
253 map->refcount++;
254 }
255 mutex_unlock(&acpi_ioremap_lock);
256 return virt;
257}
258EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
259
260/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
261static struct acpi_ioremap *
262acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
263{
264 struct acpi_ioremap *map;
265
266 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
267 if (map->virt <= virt &&
268 virt + size <= map->virt + map->size)
269 return map;
270
271 return NULL;
272}
273
274#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
275/* ioremap will take care of cache attributes */
276#define should_use_kmap(pfn) 0
277#else
278#define should_use_kmap(pfn) page_is_ram(pfn)
279#endif
280
281static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
282{
283 unsigned long pfn;
284
285 pfn = pg_off >> PAGE_SHIFT;
286 if (should_use_kmap(pfn)) {
287 if (pg_sz > PAGE_SIZE)
288 return NULL;
289 return (void __iomem __force *)kmap(pfn_to_page(pfn));
290 } else
291 return acpi_os_ioremap(pg_off, pg_sz);
292}
293
294static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
295{
296 unsigned long pfn;
297
298 pfn = pg_off >> PAGE_SHIFT;
299 if (should_use_kmap(pfn))
300 kunmap(pfn_to_page(pfn));
301 else
302 iounmap(vaddr);
303}
304
305/**
306 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
307 * @phys: Start of the physical address range to map.
308 * @size: Size of the physical address range to map.
309 *
310 * Look up the given physical address range in the list of existing ACPI memory
311 * mappings. If found, get a reference to it and return a pointer to it (its
312 * virtual address). If not found, map it, add it to that list and return a
313 * pointer to it.
314 *
315 * During early init (when acpi_permanent_mmap has not been set yet) this
316 * routine simply calls __acpi_map_table() to get the job done.
317 */
318void __iomem __ref
319*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
320{
321 struct acpi_ioremap *map;
322 void __iomem *virt;
323 acpi_physical_address pg_off;
324 acpi_size pg_sz;
325
326 if (phys > ULONG_MAX) {
327 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
328 return NULL;
329 }
330
331 if (!acpi_permanent_mmap)
332 return __acpi_map_table((unsigned long)phys, size);
333
334 mutex_lock(&acpi_ioremap_lock);
335 /* Check if there's a suitable mapping already. */
336 map = acpi_map_lookup(phys, size);
337 if (map) {
338 map->refcount++;
339 goto out;
340 }
341
342 map = kzalloc(sizeof(*map), GFP_KERNEL);
343 if (!map) {
344 mutex_unlock(&acpi_ioremap_lock);
345 return NULL;
346 }
347
348 pg_off = round_down(phys, PAGE_SIZE);
349 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
350 virt = acpi_map(pg_off, pg_sz);
351 if (!virt) {
352 mutex_unlock(&acpi_ioremap_lock);
353 kfree(map);
354 return NULL;
355 }
356
357 INIT_LIST_HEAD(&map->list);
358 map->virt = virt;
359 map->phys = pg_off;
360 map->size = pg_sz;
361 map->refcount = 1;
362
363 list_add_tail_rcu(&map->list, &acpi_ioremaps);
364
365out:
366 mutex_unlock(&acpi_ioremap_lock);
367 return map->virt + (phys - map->phys);
368}
369EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
370
371void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
372{
373 return (void *)acpi_os_map_iomem(phys, size);
374}
375EXPORT_SYMBOL_GPL(acpi_os_map_memory);
376
377static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
378{
379 if (!--map->refcount)
380 list_del_rcu(&map->list);
381}
382
383static void acpi_os_map_cleanup(struct acpi_ioremap *map)
384{
385 if (!map->refcount) {
386 synchronize_rcu_expedited();
387 acpi_unmap(map->phys, map->virt);
388 kfree(map);
389 }
390}
391
392/**
393 * acpi_os_unmap_iomem - Drop a memory mapping reference.
394 * @virt: Start of the address range to drop a reference to.
395 * @size: Size of the address range to drop a reference to.
396 *
397 * Look up the given virtual address range in the list of existing ACPI memory
398 * mappings, drop a reference to it and unmap it if there are no more active
399 * references to it.
400 *
401 * During early init (when acpi_permanent_mmap has not been set yet) this
402 * routine simply calls __acpi_unmap_table() to get the job done. Since
403 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
404 * here.
405 */
406void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
407{
408 struct acpi_ioremap *map;
409
410 if (!acpi_permanent_mmap) {
411 __acpi_unmap_table(virt, size);
412 return;
413 }
414
415 mutex_lock(&acpi_ioremap_lock);
416 map = acpi_map_lookup_virt(virt, size);
417 if (!map) {
418 mutex_unlock(&acpi_ioremap_lock);
419 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
420 return;
421 }
422 acpi_os_drop_map_ref(map);
423 mutex_unlock(&acpi_ioremap_lock);
424
425 acpi_os_map_cleanup(map);
426}
427EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
428
429void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
430{
431 return acpi_os_unmap_iomem((void __iomem *)virt, size);
432}
433EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
434
435int acpi_os_map_generic_address(struct acpi_generic_address *gas)
436{
437 u64 addr;
438 void __iomem *virt;
439
440 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
441 return 0;
442
443 /* Handle possible alignment issues */
444 memcpy(&addr, &gas->address, sizeof(addr));
445 if (!addr || !gas->bit_width)
446 return -EINVAL;
447
448 virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
449 if (!virt)
450 return -EIO;
451
452 return 0;
453}
454EXPORT_SYMBOL(acpi_os_map_generic_address);
455
456void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
457{
458 u64 addr;
459 struct acpi_ioremap *map;
460
461 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
462 return;
463
464 /* Handle possible alignment issues */
465 memcpy(&addr, &gas->address, sizeof(addr));
466 if (!addr || !gas->bit_width)
467 return;
468
469 mutex_lock(&acpi_ioremap_lock);
470 map = acpi_map_lookup(addr, gas->bit_width / 8);
471 if (!map) {
472 mutex_unlock(&acpi_ioremap_lock);
473 return;
474 }
475 acpi_os_drop_map_ref(map);
476 mutex_unlock(&acpi_ioremap_lock);
477
478 acpi_os_map_cleanup(map);
479}
480EXPORT_SYMBOL(acpi_os_unmap_generic_address);
481
482#ifdef ACPI_FUTURE_USAGE
483acpi_status
484acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
485{
486 if (!phys || !virt)
487 return AE_BAD_PARAMETER;
488
489 *phys = virt_to_phys(virt);
490
491 return AE_OK;
492}
493#endif
494
495#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
496static bool acpi_rev_override;
497
498int __init acpi_rev_override_setup(char *str)
499{
500 acpi_rev_override = true;
501 return 1;
502}
503__setup("acpi_rev_override", acpi_rev_override_setup);
504#else
505#define acpi_rev_override false
506#endif
507
508#define ACPI_MAX_OVERRIDE_LEN 100
509
510static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
511
512acpi_status
513acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
514 acpi_string *new_val)
515{
516 if (!init_val || !new_val)
517 return AE_BAD_PARAMETER;
518
519 *new_val = NULL;
520 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
521 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
522 acpi_os_name);
523 *new_val = acpi_os_name;
524 }
525
526 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
527 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
528 *new_val = (char *)5;
529 }
530
531 return AE_OK;
532}
533
534static irqreturn_t acpi_irq(int irq, void *dev_id)
535{
536 u32 handled;
537
538 handled = (*acpi_irq_handler) (acpi_irq_context);
539
540 if (handled) {
541 acpi_irq_handled++;
542 return IRQ_HANDLED;
543 } else {
544 acpi_irq_not_handled++;
545 return IRQ_NONE;
546 }
547}
548
549acpi_status
550acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
551 void *context)
552{
553 unsigned int irq;
554
555 acpi_irq_stats_init();
556
557 /*
558 * ACPI interrupts different from the SCI in our copy of the FADT are
559 * not supported.
560 */
561 if (gsi != acpi_gbl_FADT.sci_interrupt)
562 return AE_BAD_PARAMETER;
563
564 if (acpi_irq_handler)
565 return AE_ALREADY_ACQUIRED;
566
567 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
568 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
569 gsi);
570 return AE_OK;
571 }
572
573 acpi_irq_handler = handler;
574 acpi_irq_context = context;
575 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
576 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
577 acpi_irq_handler = NULL;
578 return AE_NOT_ACQUIRED;
579 }
580 acpi_sci_irq = irq;
581
582 return AE_OK;
583}
584
585acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
586{
587 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
588 return AE_BAD_PARAMETER;
589
590 free_irq(acpi_sci_irq, acpi_irq);
591 acpi_irq_handler = NULL;
592 acpi_sci_irq = INVALID_ACPI_IRQ;
593
594 return AE_OK;
595}
596
597/*
598 * Running in interpreter thread context, safe to sleep
599 */
600
601void acpi_os_sleep(u64 ms)
602{
603 msleep(ms);
604}
605
606void acpi_os_stall(u32 us)
607{
608 while (us) {
609 u32 delay = 1000;
610
611 if (delay > us)
612 delay = us;
613 udelay(delay);
614 touch_nmi_watchdog();
615 us -= delay;
616 }
617}
618
619/*
620 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
621 * monotonically increasing timer with 100ns granularity. Do not use
622 * ktime_get() to implement this function because this function may get
623 * called after timekeeping has been suspended. Note: calling this function
624 * after timekeeping has been suspended may lead to unexpected results
625 * because when timekeeping is suspended the jiffies counter is not
626 * incremented. See also timekeeping_suspend().
627 */
628u64 acpi_os_get_timer(void)
629{
630 return (get_jiffies_64() - INITIAL_JIFFIES) *
631 (ACPI_100NSEC_PER_SEC / HZ);
632}
633
634acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
635{
636 u32 dummy;
637
638 if (!value)
639 value = &dummy;
640
641 *value = 0;
642 if (width <= 8) {
643 *(u8 *) value = inb(port);
644 } else if (width <= 16) {
645 *(u16 *) value = inw(port);
646 } else if (width <= 32) {
647 *(u32 *) value = inl(port);
648 } else {
649 BUG();
650 }
651
652 return AE_OK;
653}
654
655EXPORT_SYMBOL(acpi_os_read_port);
656
657acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
658{
659 if (width <= 8) {
660 outb(value, port);
661 } else if (width <= 16) {
662 outw(value, port);
663 } else if (width <= 32) {
664 outl(value, port);
665 } else {
666 BUG();
667 }
668
669 return AE_OK;
670}
671
672EXPORT_SYMBOL(acpi_os_write_port);
673
674int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
675{
676
677 switch (width) {
678 case 8:
679 *(u8 *) value = readb(virt_addr);
680 break;
681 case 16:
682 *(u16 *) value = readw(virt_addr);
683 break;
684 case 32:
685 *(u32 *) value = readl(virt_addr);
686 break;
687 case 64:
688 *(u64 *) value = readq(virt_addr);
689 break;
690 default:
691 return -EINVAL;
692 }
693
694 return 0;
695}
696
697acpi_status
698acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
699{
700 void __iomem *virt_addr;
701 unsigned int size = width / 8;
702 bool unmap = false;
703 u64 dummy;
704 int error;
705
706 rcu_read_lock();
707 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
708 if (!virt_addr) {
709 rcu_read_unlock();
710 virt_addr = acpi_os_ioremap(phys_addr, size);
711 if (!virt_addr)
712 return AE_BAD_ADDRESS;
713 unmap = true;
714 }
715
716 if (!value)
717 value = &dummy;
718
719 error = acpi_os_read_iomem(virt_addr, value, width);
720 BUG_ON(error);
721
722 if (unmap)
723 iounmap(virt_addr);
724 else
725 rcu_read_unlock();
726
727 return AE_OK;
728}
729
730acpi_status
731acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
732{
733 void __iomem *virt_addr;
734 unsigned int size = width / 8;
735 bool unmap = false;
736
737 rcu_read_lock();
738 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
739 if (!virt_addr) {
740 rcu_read_unlock();
741 virt_addr = acpi_os_ioremap(phys_addr, size);
742 if (!virt_addr)
743 return AE_BAD_ADDRESS;
744 unmap = true;
745 }
746
747 switch (width) {
748 case 8:
749 writeb(value, virt_addr);
750 break;
751 case 16:
752 writew(value, virt_addr);
753 break;
754 case 32:
755 writel(value, virt_addr);
756 break;
757 case 64:
758 writeq(value, virt_addr);
759 break;
760 default:
761 BUG();
762 }
763
764 if (unmap)
765 iounmap(virt_addr);
766 else
767 rcu_read_unlock();
768
769 return AE_OK;
770}
771
772#ifdef CONFIG_PCI
773acpi_status
774acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
775 u64 *value, u32 width)
776{
777 int result, size;
778 u32 value32;
779
780 if (!value)
781 return AE_BAD_PARAMETER;
782
783 switch (width) {
784 case 8:
785 size = 1;
786 break;
787 case 16:
788 size = 2;
789 break;
790 case 32:
791 size = 4;
792 break;
793 default:
794 return AE_ERROR;
795 }
796
797 result = raw_pci_read(pci_id->segment, pci_id->bus,
798 PCI_DEVFN(pci_id->device, pci_id->function),
799 reg, size, &value32);
800 *value = value32;
801
802 return (result ? AE_ERROR : AE_OK);
803}
804
805acpi_status
806acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
807 u64 value, u32 width)
808{
809 int result, size;
810
811 switch (width) {
812 case 8:
813 size = 1;
814 break;
815 case 16:
816 size = 2;
817 break;
818 case 32:
819 size = 4;
820 break;
821 default:
822 return AE_ERROR;
823 }
824
825 result = raw_pci_write(pci_id->segment, pci_id->bus,
826 PCI_DEVFN(pci_id->device, pci_id->function),
827 reg, size, value);
828
829 return (result ? AE_ERROR : AE_OK);
830}
831#endif
832
833static void acpi_os_execute_deferred(struct work_struct *work)
834{
835 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
836
837 dpc->function(dpc->context);
838 kfree(dpc);
839}
840
841#ifdef CONFIG_ACPI_DEBUGGER
842static struct acpi_debugger acpi_debugger;
843static bool acpi_debugger_initialized;
844
845int acpi_register_debugger(struct module *owner,
846 const struct acpi_debugger_ops *ops)
847{
848 int ret = 0;
849
850 mutex_lock(&acpi_debugger.lock);
851 if (acpi_debugger.ops) {
852 ret = -EBUSY;
853 goto err_lock;
854 }
855
856 acpi_debugger.owner = owner;
857 acpi_debugger.ops = ops;
858
859err_lock:
860 mutex_unlock(&acpi_debugger.lock);
861 return ret;
862}
863EXPORT_SYMBOL(acpi_register_debugger);
864
865void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
866{
867 mutex_lock(&acpi_debugger.lock);
868 if (ops == acpi_debugger.ops) {
869 acpi_debugger.ops = NULL;
870 acpi_debugger.owner = NULL;
871 }
872 mutex_unlock(&acpi_debugger.lock);
873}
874EXPORT_SYMBOL(acpi_unregister_debugger);
875
876int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
877{
878 int ret;
879 int (*func)(acpi_osd_exec_callback, void *);
880 struct module *owner;
881
882 if (!acpi_debugger_initialized)
883 return -ENODEV;
884 mutex_lock(&acpi_debugger.lock);
885 if (!acpi_debugger.ops) {
886 ret = -ENODEV;
887 goto err_lock;
888 }
889 if (!try_module_get(acpi_debugger.owner)) {
890 ret = -ENODEV;
891 goto err_lock;
892 }
893 func = acpi_debugger.ops->create_thread;
894 owner = acpi_debugger.owner;
895 mutex_unlock(&acpi_debugger.lock);
896
897 ret = func(function, context);
898
899 mutex_lock(&acpi_debugger.lock);
900 module_put(owner);
901err_lock:
902 mutex_unlock(&acpi_debugger.lock);
903 return ret;
904}
905
906ssize_t acpi_debugger_write_log(const char *msg)
907{
908 ssize_t ret;
909 ssize_t (*func)(const char *);
910 struct module *owner;
911
912 if (!acpi_debugger_initialized)
913 return -ENODEV;
914 mutex_lock(&acpi_debugger.lock);
915 if (!acpi_debugger.ops) {
916 ret = -ENODEV;
917 goto err_lock;
918 }
919 if (!try_module_get(acpi_debugger.owner)) {
920 ret = -ENODEV;
921 goto err_lock;
922 }
923 func = acpi_debugger.ops->write_log;
924 owner = acpi_debugger.owner;
925 mutex_unlock(&acpi_debugger.lock);
926
927 ret = func(msg);
928
929 mutex_lock(&acpi_debugger.lock);
930 module_put(owner);
931err_lock:
932 mutex_unlock(&acpi_debugger.lock);
933 return ret;
934}
935
936ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
937{
938 ssize_t ret;
939 ssize_t (*func)(char *, size_t);
940 struct module *owner;
941
942 if (!acpi_debugger_initialized)
943 return -ENODEV;
944 mutex_lock(&acpi_debugger.lock);
945 if (!acpi_debugger.ops) {
946 ret = -ENODEV;
947 goto err_lock;
948 }
949 if (!try_module_get(acpi_debugger.owner)) {
950 ret = -ENODEV;
951 goto err_lock;
952 }
953 func = acpi_debugger.ops->read_cmd;
954 owner = acpi_debugger.owner;
955 mutex_unlock(&acpi_debugger.lock);
956
957 ret = func(buffer, buffer_length);
958
959 mutex_lock(&acpi_debugger.lock);
960 module_put(owner);
961err_lock:
962 mutex_unlock(&acpi_debugger.lock);
963 return ret;
964}
965
966int acpi_debugger_wait_command_ready(void)
967{
968 int ret;
969 int (*func)(bool, char *, size_t);
970 struct module *owner;
971
972 if (!acpi_debugger_initialized)
973 return -ENODEV;
974 mutex_lock(&acpi_debugger.lock);
975 if (!acpi_debugger.ops) {
976 ret = -ENODEV;
977 goto err_lock;
978 }
979 if (!try_module_get(acpi_debugger.owner)) {
980 ret = -ENODEV;
981 goto err_lock;
982 }
983 func = acpi_debugger.ops->wait_command_ready;
984 owner = acpi_debugger.owner;
985 mutex_unlock(&acpi_debugger.lock);
986
987 ret = func(acpi_gbl_method_executing,
988 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
989
990 mutex_lock(&acpi_debugger.lock);
991 module_put(owner);
992err_lock:
993 mutex_unlock(&acpi_debugger.lock);
994 return ret;
995}
996
997int acpi_debugger_notify_command_complete(void)
998{
999 int ret;
1000 int (*func)(void);
1001 struct module *owner;
1002
1003 if (!acpi_debugger_initialized)
1004 return -ENODEV;
1005 mutex_lock(&acpi_debugger.lock);
1006 if (!acpi_debugger.ops) {
1007 ret = -ENODEV;
1008 goto err_lock;
1009 }
1010 if (!try_module_get(acpi_debugger.owner)) {
1011 ret = -ENODEV;
1012 goto err_lock;
1013 }
1014 func = acpi_debugger.ops->notify_command_complete;
1015 owner = acpi_debugger.owner;
1016 mutex_unlock(&acpi_debugger.lock);
1017
1018 ret = func();
1019
1020 mutex_lock(&acpi_debugger.lock);
1021 module_put(owner);
1022err_lock:
1023 mutex_unlock(&acpi_debugger.lock);
1024 return ret;
1025}
1026
1027int __init acpi_debugger_init(void)
1028{
1029 mutex_init(&acpi_debugger.lock);
1030 acpi_debugger_initialized = true;
1031 return 0;
1032}
1033#endif
1034
1035/*******************************************************************************
1036 *
1037 * FUNCTION: acpi_os_execute
1038 *
1039 * PARAMETERS: Type - Type of the callback
1040 * Function - Function to be executed
1041 * Context - Function parameters
1042 *
1043 * RETURN: Status
1044 *
1045 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1046 * immediately executes function on a separate thread.
1047 *
1048 ******************************************************************************/
1049
1050acpi_status acpi_os_execute(acpi_execute_type type,
1051 acpi_osd_exec_callback function, void *context)
1052{
1053 acpi_status status = AE_OK;
1054 struct acpi_os_dpc *dpc;
1055 struct workqueue_struct *queue;
1056 int ret;
1057 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1058 "Scheduling function [%p(%p)] for deferred execution.\n",
1059 function, context));
1060
1061 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1062 ret = acpi_debugger_create_thread(function, context);
1063 if (ret) {
1064 pr_err("Call to kthread_create() failed.\n");
1065 status = AE_ERROR;
1066 }
1067 goto out_thread;
1068 }
1069
1070 /*
1071 * Allocate/initialize DPC structure. Note that this memory will be
1072 * freed by the callee. The kernel handles the work_struct list in a
1073 * way that allows us to also free its memory inside the callee.
1074 * Because we may want to schedule several tasks with different
1075 * parameters we can't use the approach some kernel code uses of
1076 * having a static work_struct.
1077 */
1078
1079 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1080 if (!dpc)
1081 return AE_NO_MEMORY;
1082
1083 dpc->function = function;
1084 dpc->context = context;
1085
1086 /*
1087 * To prevent lockdep from complaining unnecessarily, make sure that
1088 * there is a different static lockdep key for each workqueue by using
1089 * INIT_WORK() for each of them separately.
1090 */
1091 if (type == OSL_NOTIFY_HANDLER) {
1092 queue = kacpi_notify_wq;
1093 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1094 } else if (type == OSL_GPE_HANDLER) {
1095 queue = kacpid_wq;
1096 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1097 } else {
1098 pr_err("Unsupported os_execute type %d.\n", type);
1099 status = AE_ERROR;
1100 }
1101
1102 if (ACPI_FAILURE(status))
1103 goto err_workqueue;
1104
1105 /*
1106 * On some machines, a software-initiated SMI causes corruption unless
1107 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
1108 * typically it's done in GPE-related methods that are run via
1109 * workqueues, so we can avoid the known corruption cases by always
1110 * queueing on CPU 0.
1111 */
1112 ret = queue_work_on(0, queue, &dpc->work);
1113 if (!ret) {
1114 printk(KERN_ERR PREFIX
1115 "Call to queue_work() failed.\n");
1116 status = AE_ERROR;
1117 }
1118err_workqueue:
1119 if (ACPI_FAILURE(status))
1120 kfree(dpc);
1121out_thread:
1122 return status;
1123}
1124EXPORT_SYMBOL(acpi_os_execute);
1125
1126void acpi_os_wait_events_complete(void)
1127{
1128 /*
1129 * Make sure the GPE handler or the fixed event handler is not used
1130 * on another CPU after removal.
1131 */
1132 if (acpi_sci_irq_valid())
1133 synchronize_hardirq(acpi_sci_irq);
1134 flush_workqueue(kacpid_wq);
1135 flush_workqueue(kacpi_notify_wq);
1136}
1137EXPORT_SYMBOL(acpi_os_wait_events_complete);
1138
1139struct acpi_hp_work {
1140 struct work_struct work;
1141 struct acpi_device *adev;
1142 u32 src;
1143};
1144
1145static void acpi_hotplug_work_fn(struct work_struct *work)
1146{
1147 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1148
1149 acpi_os_wait_events_complete();
1150 acpi_device_hotplug(hpw->adev, hpw->src);
1151 kfree(hpw);
1152}
1153
1154acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1155{
1156 struct acpi_hp_work *hpw;
1157
1158 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1159 "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1160 adev, src));
1161
1162 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1163 if (!hpw)
1164 return AE_NO_MEMORY;
1165
1166 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1167 hpw->adev = adev;
1168 hpw->src = src;
1169 /*
1170 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1171 * the hotplug code may call driver .remove() functions, which may
1172 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1173 * these workqueues.
1174 */
1175 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1176 kfree(hpw);
1177 return AE_ERROR;
1178 }
1179 return AE_OK;
1180}
1181
1182bool acpi_queue_hotplug_work(struct work_struct *work)
1183{
1184 return queue_work(kacpi_hotplug_wq, work);
1185}
1186
1187acpi_status
1188acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1189{
1190 struct semaphore *sem = NULL;
1191
1192 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1193 if (!sem)
1194 return AE_NO_MEMORY;
1195
1196 sema_init(sem, initial_units);
1197
1198 *handle = (acpi_handle *) sem;
1199
1200 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1201 *handle, initial_units));
1202
1203 return AE_OK;
1204}
1205
1206/*
1207 * TODO: A better way to delete semaphores? Linux doesn't have a
1208 * 'delete_semaphore()' function -- may result in an invalid
1209 * pointer dereference for non-synchronized consumers. Should
1210 * we at least check for blocked threads and signal/cancel them?
1211 */
1212
1213acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1214{
1215 struct semaphore *sem = (struct semaphore *)handle;
1216
1217 if (!sem)
1218 return AE_BAD_PARAMETER;
1219
1220 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1221
1222 BUG_ON(!list_empty(&sem->wait_list));
1223 kfree(sem);
1224 sem = NULL;
1225
1226 return AE_OK;
1227}
1228
1229/*
1230 * TODO: Support for units > 1?
1231 */
1232acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1233{
1234 acpi_status status = AE_OK;
1235 struct semaphore *sem = (struct semaphore *)handle;
1236 long jiffies;
1237 int ret = 0;
1238
1239 if (!acpi_os_initialized)
1240 return AE_OK;
1241
1242 if (!sem || (units < 1))
1243 return AE_BAD_PARAMETER;
1244
1245 if (units > 1)
1246 return AE_SUPPORT;
1247
1248 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1249 handle, units, timeout));
1250
1251 if (timeout == ACPI_WAIT_FOREVER)
1252 jiffies = MAX_SCHEDULE_TIMEOUT;
1253 else
1254 jiffies = msecs_to_jiffies(timeout);
1255
1256 ret = down_timeout(sem, jiffies);
1257 if (ret)
1258 status = AE_TIME;
1259
1260 if (ACPI_FAILURE(status)) {
1261 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1262 "Failed to acquire semaphore[%p|%d|%d], %s",
1263 handle, units, timeout,
1264 acpi_format_exception(status)));
1265 } else {
1266 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1267 "Acquired semaphore[%p|%d|%d]", handle,
1268 units, timeout));
1269 }
1270
1271 return status;
1272}
1273
1274/*
1275 * TODO: Support for units > 1?
1276 */
1277acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1278{
1279 struct semaphore *sem = (struct semaphore *)handle;
1280
1281 if (!acpi_os_initialized)
1282 return AE_OK;
1283
1284 if (!sem || (units < 1))
1285 return AE_BAD_PARAMETER;
1286
1287 if (units > 1)
1288 return AE_SUPPORT;
1289
1290 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1291 units));
1292
1293 up(sem);
1294
1295 return AE_OK;
1296}
1297
1298acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1299{
1300#ifdef ENABLE_DEBUGGER
1301 if (acpi_in_debugger) {
1302 u32 chars;
1303
1304 kdb_read(buffer, buffer_length);
1305
1306 /* remove the CR kdb includes */
1307 chars = strlen(buffer) - 1;
1308 buffer[chars] = '\0';
1309 }
1310#else
1311 int ret;
1312
1313 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1314 if (ret < 0)
1315 return AE_ERROR;
1316 if (bytes_read)
1317 *bytes_read = ret;
1318#endif
1319
1320 return AE_OK;
1321}
1322EXPORT_SYMBOL(acpi_os_get_line);
1323
1324acpi_status acpi_os_wait_command_ready(void)
1325{
1326 int ret;
1327
1328 ret = acpi_debugger_wait_command_ready();
1329 if (ret < 0)
1330 return AE_ERROR;
1331 return AE_OK;
1332}
1333
1334acpi_status acpi_os_notify_command_complete(void)
1335{
1336 int ret;
1337
1338 ret = acpi_debugger_notify_command_complete();
1339 if (ret < 0)
1340 return AE_ERROR;
1341 return AE_OK;
1342}
1343
1344acpi_status acpi_os_signal(u32 function, void *info)
1345{
1346 switch (function) {
1347 case ACPI_SIGNAL_FATAL:
1348 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1349 break;
1350 case ACPI_SIGNAL_BREAKPOINT:
1351 /*
1352 * AML Breakpoint
1353 * ACPI spec. says to treat it as a NOP unless
1354 * you are debugging. So if/when we integrate
1355 * AML debugger into the kernel debugger its
1356 * hook will go here. But until then it is
1357 * not useful to print anything on breakpoints.
1358 */
1359 break;
1360 default:
1361 break;
1362 }
1363
1364 return AE_OK;
1365}
1366
1367static int __init acpi_os_name_setup(char *str)
1368{
1369 char *p = acpi_os_name;
1370 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1371
1372 if (!str || !*str)
1373 return 0;
1374
1375 for (; count-- && *str; str++) {
1376 if (isalnum(*str) || *str == ' ' || *str == ':')
1377 *p++ = *str;
1378 else if (*str == '\'' || *str == '"')
1379 continue;
1380 else
1381 break;
1382 }
1383 *p = 0;
1384
1385 return 1;
1386
1387}
1388
1389__setup("acpi_os_name=", acpi_os_name_setup);
1390
1391/*
1392 * Disable the auto-serialization of named objects creation methods.
1393 *
1394 * This feature is enabled by default. It marks the AML control methods
1395 * that contain the opcodes to create named objects as "Serialized".
1396 */
1397static int __init acpi_no_auto_serialize_setup(char *str)
1398{
1399 acpi_gbl_auto_serialize_methods = FALSE;
1400 pr_info("ACPI: auto-serialization disabled\n");
1401
1402 return 1;
1403}
1404
1405__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1406
1407/* Check of resource interference between native drivers and ACPI
1408 * OperationRegions (SystemIO and System Memory only).
1409 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1410 * in arbitrary AML code and can interfere with legacy drivers.
1411 * acpi_enforce_resources= can be set to:
1412 *
1413 * - strict (default) (2)
1414 * -> further driver trying to access the resources will not load
1415 * - lax (1)
1416 * -> further driver trying to access the resources will load, but you
1417 * get a system message that something might go wrong...
1418 *
1419 * - no (0)
1420 * -> ACPI Operation Region resources will not be registered
1421 *
1422 */
1423#define ENFORCE_RESOURCES_STRICT 2
1424#define ENFORCE_RESOURCES_LAX 1
1425#define ENFORCE_RESOURCES_NO 0
1426
1427static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1428
1429static int __init acpi_enforce_resources_setup(char *str)
1430{
1431 if (str == NULL || *str == '\0')
1432 return 0;
1433
1434 if (!strcmp("strict", str))
1435 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1436 else if (!strcmp("lax", str))
1437 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1438 else if (!strcmp("no", str))
1439 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1440
1441 return 1;
1442}
1443
1444__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1445
1446/* Check for resource conflicts between ACPI OperationRegions and native
1447 * drivers */
1448int acpi_check_resource_conflict(const struct resource *res)
1449{
1450 acpi_adr_space_type space_id;
1451 acpi_size length;
1452 u8 warn = 0;
1453 int clash = 0;
1454
1455 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1456 return 0;
1457 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1458 return 0;
1459
1460 if (res->flags & IORESOURCE_IO)
1461 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1462 else
1463 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1464
1465 length = resource_size(res);
1466 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1467 warn = 1;
1468 clash = acpi_check_address_range(space_id, res->start, length, warn);
1469
1470 if (clash) {
1471 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1472 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1473 printk(KERN_NOTICE "ACPI: This conflict may"
1474 " cause random problems and system"
1475 " instability\n");
1476 printk(KERN_INFO "ACPI: If an ACPI driver is available"
1477 " for this device, you should use it instead of"
1478 " the native driver\n");
1479 }
1480 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1481 return -EBUSY;
1482 }
1483 return 0;
1484}
1485EXPORT_SYMBOL(acpi_check_resource_conflict);
1486
1487int acpi_check_region(resource_size_t start, resource_size_t n,
1488 const char *name)
1489{
1490 struct resource res = {
1491 .start = start,
1492 .end = start + n - 1,
1493 .name = name,
1494 .flags = IORESOURCE_IO,
1495 };
1496
1497 return acpi_check_resource_conflict(&res);
1498}
1499EXPORT_SYMBOL(acpi_check_region);
1500
1501static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1502 void *_res, void **return_value)
1503{
1504 struct acpi_mem_space_context **mem_ctx;
1505 union acpi_operand_object *handler_obj;
1506 union acpi_operand_object *region_obj2;
1507 union acpi_operand_object *region_obj;
1508 struct resource *res = _res;
1509 acpi_status status;
1510
1511 region_obj = acpi_ns_get_attached_object(handle);
1512 if (!region_obj)
1513 return AE_OK;
1514
1515 handler_obj = region_obj->region.handler;
1516 if (!handler_obj)
1517 return AE_OK;
1518
1519 if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1520 return AE_OK;
1521
1522 if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1523 return AE_OK;
1524
1525 region_obj2 = acpi_ns_get_secondary_object(region_obj);
1526 if (!region_obj2)
1527 return AE_OK;
1528
1529 mem_ctx = (void *)®ion_obj2->extra.region_context;
1530
1531 if (!(mem_ctx[0]->address >= res->start &&
1532 mem_ctx[0]->address < res->end))
1533 return AE_OK;
1534
1535 status = handler_obj->address_space.setup(region_obj,
1536 ACPI_REGION_DEACTIVATE,
1537 NULL, (void **)mem_ctx);
1538 if (ACPI_SUCCESS(status))
1539 region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1540
1541 return status;
1542}
1543
1544/**
1545 * acpi_release_memory - Release any mappings done to a memory region
1546 * @handle: Handle to namespace node
1547 * @res: Memory resource
1548 * @level: A level that terminates the search
1549 *
1550 * Walks through @handle and unmaps all SystemMemory Operation Regions that
1551 * overlap with @res and that have already been activated (mapped).
1552 *
1553 * This is a helper that allows drivers to place special requirements on memory
1554 * region that may overlap with operation regions, primarily allowing them to
1555 * safely map the region as non-cached memory.
1556 *
1557 * The unmapped Operation Regions will be automatically remapped next time they
1558 * are called, so the drivers do not need to do anything else.
1559 */
1560acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1561 u32 level)
1562{
1563 if (!(res->flags & IORESOURCE_MEM))
1564 return AE_TYPE;
1565
1566 return acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1567 acpi_deactivate_mem_region, NULL, res, NULL);
1568}
1569EXPORT_SYMBOL_GPL(acpi_release_memory);
1570
1571/*
1572 * Let drivers know whether the resource checks are effective
1573 */
1574int acpi_resources_are_enforced(void)
1575{
1576 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1577}
1578EXPORT_SYMBOL(acpi_resources_are_enforced);
1579
1580/*
1581 * Deallocate the memory for a spinlock.
1582 */
1583void acpi_os_delete_lock(acpi_spinlock handle)
1584{
1585 ACPI_FREE(handle);
1586}
1587
1588/*
1589 * Acquire a spinlock.
1590 *
1591 * handle is a pointer to the spinlock_t.
1592 */
1593
1594acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1595{
1596 acpi_cpu_flags flags;
1597 spin_lock_irqsave(lockp, flags);
1598 return flags;
1599}
1600
1601/*
1602 * Release a spinlock. See above.
1603 */
1604
1605void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1606{
1607 spin_unlock_irqrestore(lockp, flags);
1608}
1609
1610#ifndef ACPI_USE_LOCAL_CACHE
1611
1612/*******************************************************************************
1613 *
1614 * FUNCTION: acpi_os_create_cache
1615 *
1616 * PARAMETERS: name - Ascii name for the cache
1617 * size - Size of each cached object
1618 * depth - Maximum depth of the cache (in objects) <ignored>
1619 * cache - Where the new cache object is returned
1620 *
1621 * RETURN: status
1622 *
1623 * DESCRIPTION: Create a cache object
1624 *
1625 ******************************************************************************/
1626
1627acpi_status
1628acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1629{
1630 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1631 if (*cache == NULL)
1632 return AE_ERROR;
1633 else
1634 return AE_OK;
1635}
1636
1637/*******************************************************************************
1638 *
1639 * FUNCTION: acpi_os_purge_cache
1640 *
1641 * PARAMETERS: Cache - Handle to cache object
1642 *
1643 * RETURN: Status
1644 *
1645 * DESCRIPTION: Free all objects within the requested cache.
1646 *
1647 ******************************************************************************/
1648
1649acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1650{
1651 kmem_cache_shrink(cache);
1652 return (AE_OK);
1653}
1654
1655/*******************************************************************************
1656 *
1657 * FUNCTION: acpi_os_delete_cache
1658 *
1659 * PARAMETERS: Cache - Handle to cache object
1660 *
1661 * RETURN: Status
1662 *
1663 * DESCRIPTION: Free all objects within the requested cache and delete the
1664 * cache object.
1665 *
1666 ******************************************************************************/
1667
1668acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1669{
1670 kmem_cache_destroy(cache);
1671 return (AE_OK);
1672}
1673
1674/*******************************************************************************
1675 *
1676 * FUNCTION: acpi_os_release_object
1677 *
1678 * PARAMETERS: Cache - Handle to cache object
1679 * Object - The object to be released
1680 *
1681 * RETURN: None
1682 *
1683 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1684 * the object is deleted.
1685 *
1686 ******************************************************************************/
1687
1688acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1689{
1690 kmem_cache_free(cache, object);
1691 return (AE_OK);
1692}
1693#endif
1694
1695static int __init acpi_no_static_ssdt_setup(char *s)
1696{
1697 acpi_gbl_disable_ssdt_table_install = TRUE;
1698 pr_info("ACPI: static SSDT installation disabled\n");
1699
1700 return 0;
1701}
1702
1703early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1704
1705static int __init acpi_disable_return_repair(char *s)
1706{
1707 printk(KERN_NOTICE PREFIX
1708 "ACPI: Predefined validation mechanism disabled\n");
1709 acpi_gbl_disable_auto_repair = TRUE;
1710
1711 return 1;
1712}
1713
1714__setup("acpica_no_return_repair", acpi_disable_return_repair);
1715
1716acpi_status __init acpi_os_initialize(void)
1717{
1718 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1719 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1720 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1721 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1722 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1723 /*
1724 * Use acpi_os_map_generic_address to pre-map the reset
1725 * register if it's in system memory.
1726 */
1727 int rv;
1728
1729 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1730 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1731 }
1732 acpi_os_initialized = true;
1733
1734 return AE_OK;
1735}
1736
1737acpi_status __init acpi_os_initialize1(void)
1738{
1739 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1740 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1741 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1742 BUG_ON(!kacpid_wq);
1743 BUG_ON(!kacpi_notify_wq);
1744 BUG_ON(!kacpi_hotplug_wq);
1745 acpi_osi_init();
1746 return AE_OK;
1747}
1748
1749acpi_status acpi_os_terminate(void)
1750{
1751 if (acpi_irq_handler) {
1752 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1753 acpi_irq_handler);
1754 }
1755
1756 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1757 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1758 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1759 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1760 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1761 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1762
1763 destroy_workqueue(kacpid_wq);
1764 destroy_workqueue(kacpi_notify_wq);
1765 destroy_workqueue(kacpi_hotplug_wq);
1766
1767 return AE_OK;
1768}
1769
1770acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1771 u32 pm1b_control)
1772{
1773 int rc = 0;
1774 if (__acpi_os_prepare_sleep)
1775 rc = __acpi_os_prepare_sleep(sleep_state,
1776 pm1a_control, pm1b_control);
1777 if (rc < 0)
1778 return AE_ERROR;
1779 else if (rc > 0)
1780 return AE_CTRL_TERMINATE;
1781
1782 return AE_OK;
1783}
1784
1785void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1786 u32 pm1a_ctrl, u32 pm1b_ctrl))
1787{
1788 __acpi_os_prepare_sleep = func;
1789}
1790
1791#if (ACPI_REDUCED_HARDWARE)
1792acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1793 u32 val_b)
1794{
1795 int rc = 0;
1796 if (__acpi_os_prepare_extended_sleep)
1797 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1798 val_a, val_b);
1799 if (rc < 0)
1800 return AE_ERROR;
1801 else if (rc > 0)
1802 return AE_CTRL_TERMINATE;
1803
1804 return AE_OK;
1805}
1806#else
1807acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1808 u32 val_b)
1809{
1810 return AE_OK;
1811}
1812#endif
1813
1814void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1815 u32 val_a, u32 val_b))
1816{
1817 __acpi_os_prepare_extended_sleep = func;
1818}
1819
1820acpi_status acpi_os_enter_sleep(u8 sleep_state,
1821 u32 reg_a_value, u32 reg_b_value)
1822{
1823 acpi_status status;
1824
1825 if (acpi_gbl_reduced_hardware)
1826 status = acpi_os_prepare_extended_sleep(sleep_state,
1827 reg_a_value,
1828 reg_b_value);
1829 else
1830 status = acpi_os_prepare_sleep(sleep_state,
1831 reg_a_value, reg_b_value);
1832 return status;
1833}
1/*
2 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3 *
4 * Copyright (C) 2000 Andrew Henroid
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (c) 2008 Intel Corporation
8 * Author: Matthew Wilcox <willy@linux.intel.com>
9 *
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23 *
24 */
25
26#include <linux/module.h>
27#include <linux/kernel.h>
28#include <linux/slab.h>
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/pci.h>
32#include <linux/interrupt.h>
33#include <linux/kmod.h>
34#include <linux/delay.h>
35#include <linux/workqueue.h>
36#include <linux/nmi.h>
37#include <linux/acpi.h>
38#include <linux/efi.h>
39#include <linux/ioport.h>
40#include <linux/list.h>
41#include <linux/jiffies.h>
42#include <linux/semaphore.h>
43
44#include <asm/io.h>
45#include <linux/uaccess.h>
46#include <linux/io-64-nonatomic-lo-hi.h>
47
48#include "internal.h"
49
50#define _COMPONENT ACPI_OS_SERVICES
51ACPI_MODULE_NAME("osl");
52
53struct acpi_os_dpc {
54 acpi_osd_exec_callback function;
55 void *context;
56 struct work_struct work;
57};
58
59#ifdef ENABLE_DEBUGGER
60#include <linux/kdb.h>
61
62/* stuff for debugger support */
63int acpi_in_debugger;
64EXPORT_SYMBOL(acpi_in_debugger);
65#endif /*ENABLE_DEBUGGER */
66
67static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
68 u32 pm1b_ctrl);
69static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
70 u32 val_b);
71
72static acpi_osd_handler acpi_irq_handler;
73static void *acpi_irq_context;
74static struct workqueue_struct *kacpid_wq;
75static struct workqueue_struct *kacpi_notify_wq;
76static struct workqueue_struct *kacpi_hotplug_wq;
77static bool acpi_os_initialized;
78unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
79bool acpi_permanent_mmap = false;
80
81/*
82 * This list of permanent mappings is for memory that may be accessed from
83 * interrupt context, where we can't do the ioremap().
84 */
85struct acpi_ioremap {
86 struct list_head list;
87 void __iomem *virt;
88 acpi_physical_address phys;
89 acpi_size size;
90 unsigned long refcount;
91};
92
93static LIST_HEAD(acpi_ioremaps);
94static DEFINE_MUTEX(acpi_ioremap_lock);
95
96static void __init acpi_request_region (struct acpi_generic_address *gas,
97 unsigned int length, char *desc)
98{
99 u64 addr;
100
101 /* Handle possible alignment issues */
102 memcpy(&addr, &gas->address, sizeof(addr));
103 if (!addr || !length)
104 return;
105
106 /* Resources are never freed */
107 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
108 request_region(addr, length, desc);
109 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
110 request_mem_region(addr, length, desc);
111}
112
113static int __init acpi_reserve_resources(void)
114{
115 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
116 "ACPI PM1a_EVT_BLK");
117
118 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
119 "ACPI PM1b_EVT_BLK");
120
121 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
122 "ACPI PM1a_CNT_BLK");
123
124 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
125 "ACPI PM1b_CNT_BLK");
126
127 if (acpi_gbl_FADT.pm_timer_length == 4)
128 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
129
130 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
131 "ACPI PM2_CNT_BLK");
132
133 /* Length of GPE blocks must be a non-negative multiple of 2 */
134
135 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
136 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
137 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
138
139 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
140 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
141 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
142
143 return 0;
144}
145fs_initcall_sync(acpi_reserve_resources);
146
147void acpi_os_printf(const char *fmt, ...)
148{
149 va_list args;
150 va_start(args, fmt);
151 acpi_os_vprintf(fmt, args);
152 va_end(args);
153}
154EXPORT_SYMBOL(acpi_os_printf);
155
156void acpi_os_vprintf(const char *fmt, va_list args)
157{
158 static char buffer[512];
159
160 vsprintf(buffer, fmt, args);
161
162#ifdef ENABLE_DEBUGGER
163 if (acpi_in_debugger) {
164 kdb_printf("%s", buffer);
165 } else {
166 if (printk_get_level(buffer))
167 printk("%s", buffer);
168 else
169 printk(KERN_CONT "%s", buffer);
170 }
171#else
172 if (acpi_debugger_write_log(buffer) < 0) {
173 if (printk_get_level(buffer))
174 printk("%s", buffer);
175 else
176 printk(KERN_CONT "%s", buffer);
177 }
178#endif
179}
180
181#ifdef CONFIG_KEXEC
182static unsigned long acpi_rsdp;
183static int __init setup_acpi_rsdp(char *arg)
184{
185 return kstrtoul(arg, 16, &acpi_rsdp);
186}
187early_param("acpi_rsdp", setup_acpi_rsdp);
188#endif
189
190acpi_physical_address __init acpi_os_get_root_pointer(void)
191{
192 acpi_physical_address pa = 0;
193
194#ifdef CONFIG_KEXEC
195 if (acpi_rsdp)
196 return acpi_rsdp;
197#endif
198
199 if (efi_enabled(EFI_CONFIG_TABLES)) {
200 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
201 return efi.acpi20;
202 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
203 return efi.acpi;
204 pr_err(PREFIX "System description tables not found\n");
205 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
206 acpi_find_root_pointer(&pa);
207 }
208
209 return pa;
210}
211
212/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
213static struct acpi_ioremap *
214acpi_map_lookup(acpi_physical_address phys, acpi_size size)
215{
216 struct acpi_ioremap *map;
217
218 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
219 if (map->phys <= phys &&
220 phys + size <= map->phys + map->size)
221 return map;
222
223 return NULL;
224}
225
226/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
227static void __iomem *
228acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
229{
230 struct acpi_ioremap *map;
231
232 map = acpi_map_lookup(phys, size);
233 if (map)
234 return map->virt + (phys - map->phys);
235
236 return NULL;
237}
238
239void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
240{
241 struct acpi_ioremap *map;
242 void __iomem *virt = NULL;
243
244 mutex_lock(&acpi_ioremap_lock);
245 map = acpi_map_lookup(phys, size);
246 if (map) {
247 virt = map->virt + (phys - map->phys);
248 map->refcount++;
249 }
250 mutex_unlock(&acpi_ioremap_lock);
251 return virt;
252}
253EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
254
255/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
256static struct acpi_ioremap *
257acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
258{
259 struct acpi_ioremap *map;
260
261 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
262 if (map->virt <= virt &&
263 virt + size <= map->virt + map->size)
264 return map;
265
266 return NULL;
267}
268
269#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
270/* ioremap will take care of cache attributes */
271#define should_use_kmap(pfn) 0
272#else
273#define should_use_kmap(pfn) page_is_ram(pfn)
274#endif
275
276static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
277{
278 unsigned long pfn;
279
280 pfn = pg_off >> PAGE_SHIFT;
281 if (should_use_kmap(pfn)) {
282 if (pg_sz > PAGE_SIZE)
283 return NULL;
284 return (void __iomem __force *)kmap(pfn_to_page(pfn));
285 } else
286 return acpi_os_ioremap(pg_off, pg_sz);
287}
288
289static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
290{
291 unsigned long pfn;
292
293 pfn = pg_off >> PAGE_SHIFT;
294 if (should_use_kmap(pfn))
295 kunmap(pfn_to_page(pfn));
296 else
297 iounmap(vaddr);
298}
299
300/**
301 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
302 * @phys: Start of the physical address range to map.
303 * @size: Size of the physical address range to map.
304 *
305 * Look up the given physical address range in the list of existing ACPI memory
306 * mappings. If found, get a reference to it and return a pointer to it (its
307 * virtual address). If not found, map it, add it to that list and return a
308 * pointer to it.
309 *
310 * During early init (when acpi_permanent_mmap has not been set yet) this
311 * routine simply calls __acpi_map_table() to get the job done.
312 */
313void __iomem *__ref
314acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
315{
316 struct acpi_ioremap *map;
317 void __iomem *virt;
318 acpi_physical_address pg_off;
319 acpi_size pg_sz;
320
321 if (phys > ULONG_MAX) {
322 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
323 return NULL;
324 }
325
326 if (!acpi_permanent_mmap)
327 return __acpi_map_table((unsigned long)phys, size);
328
329 mutex_lock(&acpi_ioremap_lock);
330 /* Check if there's a suitable mapping already. */
331 map = acpi_map_lookup(phys, size);
332 if (map) {
333 map->refcount++;
334 goto out;
335 }
336
337 map = kzalloc(sizeof(*map), GFP_KERNEL);
338 if (!map) {
339 mutex_unlock(&acpi_ioremap_lock);
340 return NULL;
341 }
342
343 pg_off = round_down(phys, PAGE_SIZE);
344 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
345 virt = acpi_map(pg_off, pg_sz);
346 if (!virt) {
347 mutex_unlock(&acpi_ioremap_lock);
348 kfree(map);
349 return NULL;
350 }
351
352 INIT_LIST_HEAD(&map->list);
353 map->virt = virt;
354 map->phys = pg_off;
355 map->size = pg_sz;
356 map->refcount = 1;
357
358 list_add_tail_rcu(&map->list, &acpi_ioremaps);
359
360out:
361 mutex_unlock(&acpi_ioremap_lock);
362 return map->virt + (phys - map->phys);
363}
364EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
365
366void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
367{
368 return (void *)acpi_os_map_iomem(phys, size);
369}
370EXPORT_SYMBOL_GPL(acpi_os_map_memory);
371
372static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
373{
374 if (!--map->refcount)
375 list_del_rcu(&map->list);
376}
377
378static void acpi_os_map_cleanup(struct acpi_ioremap *map)
379{
380 if (!map->refcount) {
381 synchronize_rcu_expedited();
382 acpi_unmap(map->phys, map->virt);
383 kfree(map);
384 }
385}
386
387/**
388 * acpi_os_unmap_iomem - Drop a memory mapping reference.
389 * @virt: Start of the address range to drop a reference to.
390 * @size: Size of the address range to drop a reference to.
391 *
392 * Look up the given virtual address range in the list of existing ACPI memory
393 * mappings, drop a reference to it and unmap it if there are no more active
394 * references to it.
395 *
396 * During early init (when acpi_permanent_mmap has not been set yet) this
397 * routine simply calls __acpi_unmap_table() to get the job done. Since
398 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
399 * here.
400 */
401void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
402{
403 struct acpi_ioremap *map;
404
405 if (!acpi_permanent_mmap) {
406 __acpi_unmap_table(virt, size);
407 return;
408 }
409
410 mutex_lock(&acpi_ioremap_lock);
411 map = acpi_map_lookup_virt(virt, size);
412 if (!map) {
413 mutex_unlock(&acpi_ioremap_lock);
414 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
415 return;
416 }
417 acpi_os_drop_map_ref(map);
418 mutex_unlock(&acpi_ioremap_lock);
419
420 acpi_os_map_cleanup(map);
421}
422EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
423
424void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
425{
426 return acpi_os_unmap_iomem((void __iomem *)virt, size);
427}
428EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
429
430int acpi_os_map_generic_address(struct acpi_generic_address *gas)
431{
432 u64 addr;
433 void __iomem *virt;
434
435 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
436 return 0;
437
438 /* Handle possible alignment issues */
439 memcpy(&addr, &gas->address, sizeof(addr));
440 if (!addr || !gas->bit_width)
441 return -EINVAL;
442
443 virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
444 if (!virt)
445 return -EIO;
446
447 return 0;
448}
449EXPORT_SYMBOL(acpi_os_map_generic_address);
450
451void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
452{
453 u64 addr;
454 struct acpi_ioremap *map;
455
456 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
457 return;
458
459 /* Handle possible alignment issues */
460 memcpy(&addr, &gas->address, sizeof(addr));
461 if (!addr || !gas->bit_width)
462 return;
463
464 mutex_lock(&acpi_ioremap_lock);
465 map = acpi_map_lookup(addr, gas->bit_width / 8);
466 if (!map) {
467 mutex_unlock(&acpi_ioremap_lock);
468 return;
469 }
470 acpi_os_drop_map_ref(map);
471 mutex_unlock(&acpi_ioremap_lock);
472
473 acpi_os_map_cleanup(map);
474}
475EXPORT_SYMBOL(acpi_os_unmap_generic_address);
476
477#ifdef ACPI_FUTURE_USAGE
478acpi_status
479acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
480{
481 if (!phys || !virt)
482 return AE_BAD_PARAMETER;
483
484 *phys = virt_to_phys(virt);
485
486 return AE_OK;
487}
488#endif
489
490#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
491static bool acpi_rev_override;
492
493int __init acpi_rev_override_setup(char *str)
494{
495 acpi_rev_override = true;
496 return 1;
497}
498__setup("acpi_rev_override", acpi_rev_override_setup);
499#else
500#define acpi_rev_override false
501#endif
502
503#define ACPI_MAX_OVERRIDE_LEN 100
504
505static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
506
507acpi_status
508acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
509 acpi_string *new_val)
510{
511 if (!init_val || !new_val)
512 return AE_BAD_PARAMETER;
513
514 *new_val = NULL;
515 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
516 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
517 acpi_os_name);
518 *new_val = acpi_os_name;
519 }
520
521 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
522 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
523 *new_val = (char *)5;
524 }
525
526 return AE_OK;
527}
528
529static irqreturn_t acpi_irq(int irq, void *dev_id)
530{
531 u32 handled;
532
533 handled = (*acpi_irq_handler) (acpi_irq_context);
534
535 if (handled) {
536 acpi_irq_handled++;
537 return IRQ_HANDLED;
538 } else {
539 acpi_irq_not_handled++;
540 return IRQ_NONE;
541 }
542}
543
544acpi_status
545acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
546 void *context)
547{
548 unsigned int irq;
549
550 acpi_irq_stats_init();
551
552 /*
553 * ACPI interrupts different from the SCI in our copy of the FADT are
554 * not supported.
555 */
556 if (gsi != acpi_gbl_FADT.sci_interrupt)
557 return AE_BAD_PARAMETER;
558
559 if (acpi_irq_handler)
560 return AE_ALREADY_ACQUIRED;
561
562 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
563 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
564 gsi);
565 return AE_OK;
566 }
567
568 acpi_irq_handler = handler;
569 acpi_irq_context = context;
570 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
571 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
572 acpi_irq_handler = NULL;
573 return AE_NOT_ACQUIRED;
574 }
575 acpi_sci_irq = irq;
576
577 return AE_OK;
578}
579
580acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
581{
582 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
583 return AE_BAD_PARAMETER;
584
585 free_irq(acpi_sci_irq, acpi_irq);
586 acpi_irq_handler = NULL;
587 acpi_sci_irq = INVALID_ACPI_IRQ;
588
589 return AE_OK;
590}
591
592/*
593 * Running in interpreter thread context, safe to sleep
594 */
595
596void acpi_os_sleep(u64 ms)
597{
598 msleep(ms);
599}
600
601void acpi_os_stall(u32 us)
602{
603 while (us) {
604 u32 delay = 1000;
605
606 if (delay > us)
607 delay = us;
608 udelay(delay);
609 touch_nmi_watchdog();
610 us -= delay;
611 }
612}
613
614/*
615 * Support ACPI 3.0 AML Timer operand
616 * Returns 64-bit free-running, monotonically increasing timer
617 * with 100ns granularity
618 */
619u64 acpi_os_get_timer(void)
620{
621 u64 time_ns = ktime_to_ns(ktime_get());
622 do_div(time_ns, 100);
623 return time_ns;
624}
625
626acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
627{
628 u32 dummy;
629
630 if (!value)
631 value = &dummy;
632
633 *value = 0;
634 if (width <= 8) {
635 *(u8 *) value = inb(port);
636 } else if (width <= 16) {
637 *(u16 *) value = inw(port);
638 } else if (width <= 32) {
639 *(u32 *) value = inl(port);
640 } else {
641 BUG();
642 }
643
644 return AE_OK;
645}
646
647EXPORT_SYMBOL(acpi_os_read_port);
648
649acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
650{
651 if (width <= 8) {
652 outb(value, port);
653 } else if (width <= 16) {
654 outw(value, port);
655 } else if (width <= 32) {
656 outl(value, port);
657 } else {
658 BUG();
659 }
660
661 return AE_OK;
662}
663
664EXPORT_SYMBOL(acpi_os_write_port);
665
666acpi_status
667acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
668{
669 void __iomem *virt_addr;
670 unsigned int size = width / 8;
671 bool unmap = false;
672 u64 dummy;
673
674 rcu_read_lock();
675 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
676 if (!virt_addr) {
677 rcu_read_unlock();
678 virt_addr = acpi_os_ioremap(phys_addr, size);
679 if (!virt_addr)
680 return AE_BAD_ADDRESS;
681 unmap = true;
682 }
683
684 if (!value)
685 value = &dummy;
686
687 switch (width) {
688 case 8:
689 *(u8 *) value = readb(virt_addr);
690 break;
691 case 16:
692 *(u16 *) value = readw(virt_addr);
693 break;
694 case 32:
695 *(u32 *) value = readl(virt_addr);
696 break;
697 case 64:
698 *(u64 *) value = readq(virt_addr);
699 break;
700 default:
701 BUG();
702 }
703
704 if (unmap)
705 iounmap(virt_addr);
706 else
707 rcu_read_unlock();
708
709 return AE_OK;
710}
711
712acpi_status
713acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
714{
715 void __iomem *virt_addr;
716 unsigned int size = width / 8;
717 bool unmap = false;
718
719 rcu_read_lock();
720 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
721 if (!virt_addr) {
722 rcu_read_unlock();
723 virt_addr = acpi_os_ioremap(phys_addr, size);
724 if (!virt_addr)
725 return AE_BAD_ADDRESS;
726 unmap = true;
727 }
728
729 switch (width) {
730 case 8:
731 writeb(value, virt_addr);
732 break;
733 case 16:
734 writew(value, virt_addr);
735 break;
736 case 32:
737 writel(value, virt_addr);
738 break;
739 case 64:
740 writeq(value, virt_addr);
741 break;
742 default:
743 BUG();
744 }
745
746 if (unmap)
747 iounmap(virt_addr);
748 else
749 rcu_read_unlock();
750
751 return AE_OK;
752}
753
754acpi_status
755acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
756 u64 *value, u32 width)
757{
758 int result, size;
759 u32 value32;
760
761 if (!value)
762 return AE_BAD_PARAMETER;
763
764 switch (width) {
765 case 8:
766 size = 1;
767 break;
768 case 16:
769 size = 2;
770 break;
771 case 32:
772 size = 4;
773 break;
774 default:
775 return AE_ERROR;
776 }
777
778 result = raw_pci_read(pci_id->segment, pci_id->bus,
779 PCI_DEVFN(pci_id->device, pci_id->function),
780 reg, size, &value32);
781 *value = value32;
782
783 return (result ? AE_ERROR : AE_OK);
784}
785
786acpi_status
787acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
788 u64 value, u32 width)
789{
790 int result, size;
791
792 switch (width) {
793 case 8:
794 size = 1;
795 break;
796 case 16:
797 size = 2;
798 break;
799 case 32:
800 size = 4;
801 break;
802 default:
803 return AE_ERROR;
804 }
805
806 result = raw_pci_write(pci_id->segment, pci_id->bus,
807 PCI_DEVFN(pci_id->device, pci_id->function),
808 reg, size, value);
809
810 return (result ? AE_ERROR : AE_OK);
811}
812
813static void acpi_os_execute_deferred(struct work_struct *work)
814{
815 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
816
817 dpc->function(dpc->context);
818 kfree(dpc);
819}
820
821#ifdef CONFIG_ACPI_DEBUGGER
822static struct acpi_debugger acpi_debugger;
823static bool acpi_debugger_initialized;
824
825int acpi_register_debugger(struct module *owner,
826 const struct acpi_debugger_ops *ops)
827{
828 int ret = 0;
829
830 mutex_lock(&acpi_debugger.lock);
831 if (acpi_debugger.ops) {
832 ret = -EBUSY;
833 goto err_lock;
834 }
835
836 acpi_debugger.owner = owner;
837 acpi_debugger.ops = ops;
838
839err_lock:
840 mutex_unlock(&acpi_debugger.lock);
841 return ret;
842}
843EXPORT_SYMBOL(acpi_register_debugger);
844
845void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
846{
847 mutex_lock(&acpi_debugger.lock);
848 if (ops == acpi_debugger.ops) {
849 acpi_debugger.ops = NULL;
850 acpi_debugger.owner = NULL;
851 }
852 mutex_unlock(&acpi_debugger.lock);
853}
854EXPORT_SYMBOL(acpi_unregister_debugger);
855
856int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
857{
858 int ret;
859 int (*func)(acpi_osd_exec_callback, void *);
860 struct module *owner;
861
862 if (!acpi_debugger_initialized)
863 return -ENODEV;
864 mutex_lock(&acpi_debugger.lock);
865 if (!acpi_debugger.ops) {
866 ret = -ENODEV;
867 goto err_lock;
868 }
869 if (!try_module_get(acpi_debugger.owner)) {
870 ret = -ENODEV;
871 goto err_lock;
872 }
873 func = acpi_debugger.ops->create_thread;
874 owner = acpi_debugger.owner;
875 mutex_unlock(&acpi_debugger.lock);
876
877 ret = func(function, context);
878
879 mutex_lock(&acpi_debugger.lock);
880 module_put(owner);
881err_lock:
882 mutex_unlock(&acpi_debugger.lock);
883 return ret;
884}
885
886ssize_t acpi_debugger_write_log(const char *msg)
887{
888 ssize_t ret;
889 ssize_t (*func)(const char *);
890 struct module *owner;
891
892 if (!acpi_debugger_initialized)
893 return -ENODEV;
894 mutex_lock(&acpi_debugger.lock);
895 if (!acpi_debugger.ops) {
896 ret = -ENODEV;
897 goto err_lock;
898 }
899 if (!try_module_get(acpi_debugger.owner)) {
900 ret = -ENODEV;
901 goto err_lock;
902 }
903 func = acpi_debugger.ops->write_log;
904 owner = acpi_debugger.owner;
905 mutex_unlock(&acpi_debugger.lock);
906
907 ret = func(msg);
908
909 mutex_lock(&acpi_debugger.lock);
910 module_put(owner);
911err_lock:
912 mutex_unlock(&acpi_debugger.lock);
913 return ret;
914}
915
916ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
917{
918 ssize_t ret;
919 ssize_t (*func)(char *, size_t);
920 struct module *owner;
921
922 if (!acpi_debugger_initialized)
923 return -ENODEV;
924 mutex_lock(&acpi_debugger.lock);
925 if (!acpi_debugger.ops) {
926 ret = -ENODEV;
927 goto err_lock;
928 }
929 if (!try_module_get(acpi_debugger.owner)) {
930 ret = -ENODEV;
931 goto err_lock;
932 }
933 func = acpi_debugger.ops->read_cmd;
934 owner = acpi_debugger.owner;
935 mutex_unlock(&acpi_debugger.lock);
936
937 ret = func(buffer, buffer_length);
938
939 mutex_lock(&acpi_debugger.lock);
940 module_put(owner);
941err_lock:
942 mutex_unlock(&acpi_debugger.lock);
943 return ret;
944}
945
946int acpi_debugger_wait_command_ready(void)
947{
948 int ret;
949 int (*func)(bool, char *, size_t);
950 struct module *owner;
951
952 if (!acpi_debugger_initialized)
953 return -ENODEV;
954 mutex_lock(&acpi_debugger.lock);
955 if (!acpi_debugger.ops) {
956 ret = -ENODEV;
957 goto err_lock;
958 }
959 if (!try_module_get(acpi_debugger.owner)) {
960 ret = -ENODEV;
961 goto err_lock;
962 }
963 func = acpi_debugger.ops->wait_command_ready;
964 owner = acpi_debugger.owner;
965 mutex_unlock(&acpi_debugger.lock);
966
967 ret = func(acpi_gbl_method_executing,
968 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
969
970 mutex_lock(&acpi_debugger.lock);
971 module_put(owner);
972err_lock:
973 mutex_unlock(&acpi_debugger.lock);
974 return ret;
975}
976
977int acpi_debugger_notify_command_complete(void)
978{
979 int ret;
980 int (*func)(void);
981 struct module *owner;
982
983 if (!acpi_debugger_initialized)
984 return -ENODEV;
985 mutex_lock(&acpi_debugger.lock);
986 if (!acpi_debugger.ops) {
987 ret = -ENODEV;
988 goto err_lock;
989 }
990 if (!try_module_get(acpi_debugger.owner)) {
991 ret = -ENODEV;
992 goto err_lock;
993 }
994 func = acpi_debugger.ops->notify_command_complete;
995 owner = acpi_debugger.owner;
996 mutex_unlock(&acpi_debugger.lock);
997
998 ret = func();
999
1000 mutex_lock(&acpi_debugger.lock);
1001 module_put(owner);
1002err_lock:
1003 mutex_unlock(&acpi_debugger.lock);
1004 return ret;
1005}
1006
1007int __init acpi_debugger_init(void)
1008{
1009 mutex_init(&acpi_debugger.lock);
1010 acpi_debugger_initialized = true;
1011 return 0;
1012}
1013#endif
1014
1015/*******************************************************************************
1016 *
1017 * FUNCTION: acpi_os_execute
1018 *
1019 * PARAMETERS: Type - Type of the callback
1020 * Function - Function to be executed
1021 * Context - Function parameters
1022 *
1023 * RETURN: Status
1024 *
1025 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1026 * immediately executes function on a separate thread.
1027 *
1028 ******************************************************************************/
1029
1030acpi_status acpi_os_execute(acpi_execute_type type,
1031 acpi_osd_exec_callback function, void *context)
1032{
1033 acpi_status status = AE_OK;
1034 struct acpi_os_dpc *dpc;
1035 struct workqueue_struct *queue;
1036 int ret;
1037 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1038 "Scheduling function [%p(%p)] for deferred execution.\n",
1039 function, context));
1040
1041 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1042 ret = acpi_debugger_create_thread(function, context);
1043 if (ret) {
1044 pr_err("Call to kthread_create() failed.\n");
1045 status = AE_ERROR;
1046 }
1047 goto out_thread;
1048 }
1049
1050 /*
1051 * Allocate/initialize DPC structure. Note that this memory will be
1052 * freed by the callee. The kernel handles the work_struct list in a
1053 * way that allows us to also free its memory inside the callee.
1054 * Because we may want to schedule several tasks with different
1055 * parameters we can't use the approach some kernel code uses of
1056 * having a static work_struct.
1057 */
1058
1059 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1060 if (!dpc)
1061 return AE_NO_MEMORY;
1062
1063 dpc->function = function;
1064 dpc->context = context;
1065
1066 /*
1067 * To prevent lockdep from complaining unnecessarily, make sure that
1068 * there is a different static lockdep key for each workqueue by using
1069 * INIT_WORK() for each of them separately.
1070 */
1071 if (type == OSL_NOTIFY_HANDLER) {
1072 queue = kacpi_notify_wq;
1073 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1074 } else if (type == OSL_GPE_HANDLER) {
1075 queue = kacpid_wq;
1076 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1077 } else {
1078 pr_err("Unsupported os_execute type %d.\n", type);
1079 status = AE_ERROR;
1080 }
1081
1082 if (ACPI_FAILURE(status))
1083 goto err_workqueue;
1084
1085 /*
1086 * On some machines, a software-initiated SMI causes corruption unless
1087 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
1088 * typically it's done in GPE-related methods that are run via
1089 * workqueues, so we can avoid the known corruption cases by always
1090 * queueing on CPU 0.
1091 */
1092 ret = queue_work_on(0, queue, &dpc->work);
1093 if (!ret) {
1094 printk(KERN_ERR PREFIX
1095 "Call to queue_work() failed.\n");
1096 status = AE_ERROR;
1097 }
1098err_workqueue:
1099 if (ACPI_FAILURE(status))
1100 kfree(dpc);
1101out_thread:
1102 return status;
1103}
1104EXPORT_SYMBOL(acpi_os_execute);
1105
1106void acpi_os_wait_events_complete(void)
1107{
1108 /*
1109 * Make sure the GPE handler or the fixed event handler is not used
1110 * on another CPU after removal.
1111 */
1112 if (acpi_sci_irq_valid())
1113 synchronize_hardirq(acpi_sci_irq);
1114 flush_workqueue(kacpid_wq);
1115 flush_workqueue(kacpi_notify_wq);
1116}
1117
1118struct acpi_hp_work {
1119 struct work_struct work;
1120 struct acpi_device *adev;
1121 u32 src;
1122};
1123
1124static void acpi_hotplug_work_fn(struct work_struct *work)
1125{
1126 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1127
1128 acpi_os_wait_events_complete();
1129 acpi_device_hotplug(hpw->adev, hpw->src);
1130 kfree(hpw);
1131}
1132
1133acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1134{
1135 struct acpi_hp_work *hpw;
1136
1137 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1138 "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1139 adev, src));
1140
1141 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1142 if (!hpw)
1143 return AE_NO_MEMORY;
1144
1145 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1146 hpw->adev = adev;
1147 hpw->src = src;
1148 /*
1149 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1150 * the hotplug code may call driver .remove() functions, which may
1151 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1152 * these workqueues.
1153 */
1154 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1155 kfree(hpw);
1156 return AE_ERROR;
1157 }
1158 return AE_OK;
1159}
1160
1161bool acpi_queue_hotplug_work(struct work_struct *work)
1162{
1163 return queue_work(kacpi_hotplug_wq, work);
1164}
1165
1166acpi_status
1167acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1168{
1169 struct semaphore *sem = NULL;
1170
1171 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1172 if (!sem)
1173 return AE_NO_MEMORY;
1174
1175 sema_init(sem, initial_units);
1176
1177 *handle = (acpi_handle *) sem;
1178
1179 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1180 *handle, initial_units));
1181
1182 return AE_OK;
1183}
1184
1185/*
1186 * TODO: A better way to delete semaphores? Linux doesn't have a
1187 * 'delete_semaphore()' function -- may result in an invalid
1188 * pointer dereference for non-synchronized consumers. Should
1189 * we at least check for blocked threads and signal/cancel them?
1190 */
1191
1192acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1193{
1194 struct semaphore *sem = (struct semaphore *)handle;
1195
1196 if (!sem)
1197 return AE_BAD_PARAMETER;
1198
1199 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1200
1201 BUG_ON(!list_empty(&sem->wait_list));
1202 kfree(sem);
1203 sem = NULL;
1204
1205 return AE_OK;
1206}
1207
1208/*
1209 * TODO: Support for units > 1?
1210 */
1211acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1212{
1213 acpi_status status = AE_OK;
1214 struct semaphore *sem = (struct semaphore *)handle;
1215 long jiffies;
1216 int ret = 0;
1217
1218 if (!acpi_os_initialized)
1219 return AE_OK;
1220
1221 if (!sem || (units < 1))
1222 return AE_BAD_PARAMETER;
1223
1224 if (units > 1)
1225 return AE_SUPPORT;
1226
1227 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1228 handle, units, timeout));
1229
1230 if (timeout == ACPI_WAIT_FOREVER)
1231 jiffies = MAX_SCHEDULE_TIMEOUT;
1232 else
1233 jiffies = msecs_to_jiffies(timeout);
1234
1235 ret = down_timeout(sem, jiffies);
1236 if (ret)
1237 status = AE_TIME;
1238
1239 if (ACPI_FAILURE(status)) {
1240 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1241 "Failed to acquire semaphore[%p|%d|%d], %s",
1242 handle, units, timeout,
1243 acpi_format_exception(status)));
1244 } else {
1245 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1246 "Acquired semaphore[%p|%d|%d]", handle,
1247 units, timeout));
1248 }
1249
1250 return status;
1251}
1252
1253/*
1254 * TODO: Support for units > 1?
1255 */
1256acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1257{
1258 struct semaphore *sem = (struct semaphore *)handle;
1259
1260 if (!acpi_os_initialized)
1261 return AE_OK;
1262
1263 if (!sem || (units < 1))
1264 return AE_BAD_PARAMETER;
1265
1266 if (units > 1)
1267 return AE_SUPPORT;
1268
1269 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1270 units));
1271
1272 up(sem);
1273
1274 return AE_OK;
1275}
1276
1277acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1278{
1279#ifdef ENABLE_DEBUGGER
1280 if (acpi_in_debugger) {
1281 u32 chars;
1282
1283 kdb_read(buffer, buffer_length);
1284
1285 /* remove the CR kdb includes */
1286 chars = strlen(buffer) - 1;
1287 buffer[chars] = '\0';
1288 }
1289#else
1290 int ret;
1291
1292 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1293 if (ret < 0)
1294 return AE_ERROR;
1295 if (bytes_read)
1296 *bytes_read = ret;
1297#endif
1298
1299 return AE_OK;
1300}
1301EXPORT_SYMBOL(acpi_os_get_line);
1302
1303acpi_status acpi_os_wait_command_ready(void)
1304{
1305 int ret;
1306
1307 ret = acpi_debugger_wait_command_ready();
1308 if (ret < 0)
1309 return AE_ERROR;
1310 return AE_OK;
1311}
1312
1313acpi_status acpi_os_notify_command_complete(void)
1314{
1315 int ret;
1316
1317 ret = acpi_debugger_notify_command_complete();
1318 if (ret < 0)
1319 return AE_ERROR;
1320 return AE_OK;
1321}
1322
1323acpi_status acpi_os_signal(u32 function, void *info)
1324{
1325 switch (function) {
1326 case ACPI_SIGNAL_FATAL:
1327 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1328 break;
1329 case ACPI_SIGNAL_BREAKPOINT:
1330 /*
1331 * AML Breakpoint
1332 * ACPI spec. says to treat it as a NOP unless
1333 * you are debugging. So if/when we integrate
1334 * AML debugger into the kernel debugger its
1335 * hook will go here. But until then it is
1336 * not useful to print anything on breakpoints.
1337 */
1338 break;
1339 default:
1340 break;
1341 }
1342
1343 return AE_OK;
1344}
1345
1346static int __init acpi_os_name_setup(char *str)
1347{
1348 char *p = acpi_os_name;
1349 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1350
1351 if (!str || !*str)
1352 return 0;
1353
1354 for (; count-- && *str; str++) {
1355 if (isalnum(*str) || *str == ' ' || *str == ':')
1356 *p++ = *str;
1357 else if (*str == '\'' || *str == '"')
1358 continue;
1359 else
1360 break;
1361 }
1362 *p = 0;
1363
1364 return 1;
1365
1366}
1367
1368__setup("acpi_os_name=", acpi_os_name_setup);
1369
1370/*
1371 * Disable the auto-serialization of named objects creation methods.
1372 *
1373 * This feature is enabled by default. It marks the AML control methods
1374 * that contain the opcodes to create named objects as "Serialized".
1375 */
1376static int __init acpi_no_auto_serialize_setup(char *str)
1377{
1378 acpi_gbl_auto_serialize_methods = FALSE;
1379 pr_info("ACPI: auto-serialization disabled\n");
1380
1381 return 1;
1382}
1383
1384__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1385
1386/* Check of resource interference between native drivers and ACPI
1387 * OperationRegions (SystemIO and System Memory only).
1388 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1389 * in arbitrary AML code and can interfere with legacy drivers.
1390 * acpi_enforce_resources= can be set to:
1391 *
1392 * - strict (default) (2)
1393 * -> further driver trying to access the resources will not load
1394 * - lax (1)
1395 * -> further driver trying to access the resources will load, but you
1396 * get a system message that something might go wrong...
1397 *
1398 * - no (0)
1399 * -> ACPI Operation Region resources will not be registered
1400 *
1401 */
1402#define ENFORCE_RESOURCES_STRICT 2
1403#define ENFORCE_RESOURCES_LAX 1
1404#define ENFORCE_RESOURCES_NO 0
1405
1406static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1407
1408static int __init acpi_enforce_resources_setup(char *str)
1409{
1410 if (str == NULL || *str == '\0')
1411 return 0;
1412
1413 if (!strcmp("strict", str))
1414 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1415 else if (!strcmp("lax", str))
1416 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1417 else if (!strcmp("no", str))
1418 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1419
1420 return 1;
1421}
1422
1423__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1424
1425/* Check for resource conflicts between ACPI OperationRegions and native
1426 * drivers */
1427int acpi_check_resource_conflict(const struct resource *res)
1428{
1429 acpi_adr_space_type space_id;
1430 acpi_size length;
1431 u8 warn = 0;
1432 int clash = 0;
1433
1434 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1435 return 0;
1436 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1437 return 0;
1438
1439 if (res->flags & IORESOURCE_IO)
1440 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1441 else
1442 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1443
1444 length = resource_size(res);
1445 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1446 warn = 1;
1447 clash = acpi_check_address_range(space_id, res->start, length, warn);
1448
1449 if (clash) {
1450 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1451 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1452 printk(KERN_NOTICE "ACPI: This conflict may"
1453 " cause random problems and system"
1454 " instability\n");
1455 printk(KERN_INFO "ACPI: If an ACPI driver is available"
1456 " for this device, you should use it instead of"
1457 " the native driver\n");
1458 }
1459 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1460 return -EBUSY;
1461 }
1462 return 0;
1463}
1464EXPORT_SYMBOL(acpi_check_resource_conflict);
1465
1466int acpi_check_region(resource_size_t start, resource_size_t n,
1467 const char *name)
1468{
1469 struct resource res = {
1470 .start = start,
1471 .end = start + n - 1,
1472 .name = name,
1473 .flags = IORESOURCE_IO,
1474 };
1475
1476 return acpi_check_resource_conflict(&res);
1477}
1478EXPORT_SYMBOL(acpi_check_region);
1479
1480/*
1481 * Let drivers know whether the resource checks are effective
1482 */
1483int acpi_resources_are_enforced(void)
1484{
1485 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1486}
1487EXPORT_SYMBOL(acpi_resources_are_enforced);
1488
1489/*
1490 * Deallocate the memory for a spinlock.
1491 */
1492void acpi_os_delete_lock(acpi_spinlock handle)
1493{
1494 ACPI_FREE(handle);
1495}
1496
1497/*
1498 * Acquire a spinlock.
1499 *
1500 * handle is a pointer to the spinlock_t.
1501 */
1502
1503acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1504{
1505 acpi_cpu_flags flags;
1506 spin_lock_irqsave(lockp, flags);
1507 return flags;
1508}
1509
1510/*
1511 * Release a spinlock. See above.
1512 */
1513
1514void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1515{
1516 spin_unlock_irqrestore(lockp, flags);
1517}
1518
1519#ifndef ACPI_USE_LOCAL_CACHE
1520
1521/*******************************************************************************
1522 *
1523 * FUNCTION: acpi_os_create_cache
1524 *
1525 * PARAMETERS: name - Ascii name for the cache
1526 * size - Size of each cached object
1527 * depth - Maximum depth of the cache (in objects) <ignored>
1528 * cache - Where the new cache object is returned
1529 *
1530 * RETURN: status
1531 *
1532 * DESCRIPTION: Create a cache object
1533 *
1534 ******************************************************************************/
1535
1536acpi_status
1537acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1538{
1539 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1540 if (*cache == NULL)
1541 return AE_ERROR;
1542 else
1543 return AE_OK;
1544}
1545
1546/*******************************************************************************
1547 *
1548 * FUNCTION: acpi_os_purge_cache
1549 *
1550 * PARAMETERS: Cache - Handle to cache object
1551 *
1552 * RETURN: Status
1553 *
1554 * DESCRIPTION: Free all objects within the requested cache.
1555 *
1556 ******************************************************************************/
1557
1558acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1559{
1560 kmem_cache_shrink(cache);
1561 return (AE_OK);
1562}
1563
1564/*******************************************************************************
1565 *
1566 * FUNCTION: acpi_os_delete_cache
1567 *
1568 * PARAMETERS: Cache - Handle to cache object
1569 *
1570 * RETURN: Status
1571 *
1572 * DESCRIPTION: Free all objects within the requested cache and delete the
1573 * cache object.
1574 *
1575 ******************************************************************************/
1576
1577acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1578{
1579 kmem_cache_destroy(cache);
1580 return (AE_OK);
1581}
1582
1583/*******************************************************************************
1584 *
1585 * FUNCTION: acpi_os_release_object
1586 *
1587 * PARAMETERS: Cache - Handle to cache object
1588 * Object - The object to be released
1589 *
1590 * RETURN: None
1591 *
1592 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1593 * the object is deleted.
1594 *
1595 ******************************************************************************/
1596
1597acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1598{
1599 kmem_cache_free(cache, object);
1600 return (AE_OK);
1601}
1602#endif
1603
1604static int __init acpi_no_static_ssdt_setup(char *s)
1605{
1606 acpi_gbl_disable_ssdt_table_install = TRUE;
1607 pr_info("ACPI: static SSDT installation disabled\n");
1608
1609 return 0;
1610}
1611
1612early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1613
1614static int __init acpi_disable_return_repair(char *s)
1615{
1616 printk(KERN_NOTICE PREFIX
1617 "ACPI: Predefined validation mechanism disabled\n");
1618 acpi_gbl_disable_auto_repair = TRUE;
1619
1620 return 1;
1621}
1622
1623__setup("acpica_no_return_repair", acpi_disable_return_repair);
1624
1625acpi_status __init acpi_os_initialize(void)
1626{
1627 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1628 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1629 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1630 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1631 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1632 /*
1633 * Use acpi_os_map_generic_address to pre-map the reset
1634 * register if it's in system memory.
1635 */
1636 int rv;
1637
1638 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1639 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1640 }
1641 acpi_os_initialized = true;
1642
1643 return AE_OK;
1644}
1645
1646acpi_status __init acpi_os_initialize1(void)
1647{
1648 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1649 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1650 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1651 BUG_ON(!kacpid_wq);
1652 BUG_ON(!kacpi_notify_wq);
1653 BUG_ON(!kacpi_hotplug_wq);
1654 acpi_osi_init();
1655 return AE_OK;
1656}
1657
1658acpi_status acpi_os_terminate(void)
1659{
1660 if (acpi_irq_handler) {
1661 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1662 acpi_irq_handler);
1663 }
1664
1665 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1666 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1667 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1668 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1669 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1670 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1671
1672 destroy_workqueue(kacpid_wq);
1673 destroy_workqueue(kacpi_notify_wq);
1674 destroy_workqueue(kacpi_hotplug_wq);
1675
1676 return AE_OK;
1677}
1678
1679acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1680 u32 pm1b_control)
1681{
1682 int rc = 0;
1683 if (__acpi_os_prepare_sleep)
1684 rc = __acpi_os_prepare_sleep(sleep_state,
1685 pm1a_control, pm1b_control);
1686 if (rc < 0)
1687 return AE_ERROR;
1688 else if (rc > 0)
1689 return AE_CTRL_SKIP;
1690
1691 return AE_OK;
1692}
1693
1694void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1695 u32 pm1a_ctrl, u32 pm1b_ctrl))
1696{
1697 __acpi_os_prepare_sleep = func;
1698}
1699
1700acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1701 u32 val_b)
1702{
1703 int rc = 0;
1704 if (__acpi_os_prepare_extended_sleep)
1705 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1706 val_a, val_b);
1707 if (rc < 0)
1708 return AE_ERROR;
1709 else if (rc > 0)
1710 return AE_CTRL_SKIP;
1711
1712 return AE_OK;
1713}
1714
1715void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1716 u32 val_a, u32 val_b))
1717{
1718 __acpi_os_prepare_extended_sleep = func;
1719}