Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
   4 *
   5 *  Copyright (C) 2000       Andrew Henroid
   6 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   7 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   8 *  Copyright (c) 2008 Intel Corporation
   9 *   Author: Matthew Wilcox <willy@linux.intel.com>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/kernel.h>
  14#include <linux/slab.h>
  15#include <linux/mm.h>
  16#include <linux/highmem.h>
  17#include <linux/lockdep.h>
  18#include <linux/pci.h>
  19#include <linux/interrupt.h>
  20#include <linux/kmod.h>
  21#include <linux/delay.h>
  22#include <linux/workqueue.h>
  23#include <linux/nmi.h>
  24#include <linux/acpi.h>
 
  25#include <linux/efi.h>
  26#include <linux/ioport.h>
  27#include <linux/list.h>
  28#include <linux/jiffies.h>
  29#include <linux/semaphore.h>
  30#include <linux/security.h>
  31
  32#include <asm/io.h>
  33#include <linux/uaccess.h>
  34#include <linux/io-64-nonatomic-lo-hi.h>
  35
  36#include "acpica/accommon.h"
  37#include "acpica/acnamesp.h"
  38#include "internal.h"
  39
  40#define _COMPONENT		ACPI_OS_SERVICES
  41ACPI_MODULE_NAME("osl");
  42
  43struct acpi_os_dpc {
  44	acpi_osd_exec_callback function;
  45	void *context;
  46	struct work_struct work;
 
  47};
  48
 
 
 
 
  49#ifdef ENABLE_DEBUGGER
  50#include <linux/kdb.h>
  51
  52/* stuff for debugger support */
  53int acpi_in_debugger;
  54EXPORT_SYMBOL(acpi_in_debugger);
 
 
  55#endif				/*ENABLE_DEBUGGER */
  56
  57static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
  58				      u32 pm1b_ctrl);
  59static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
  60				      u32 val_b);
  61
  62static acpi_osd_handler acpi_irq_handler;
  63static void *acpi_irq_context;
  64static struct workqueue_struct *kacpid_wq;
  65static struct workqueue_struct *kacpi_notify_wq;
  66static struct workqueue_struct *kacpi_hotplug_wq;
  67static bool acpi_os_initialized;
  68unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
  69bool acpi_permanent_mmap = false;
  70
  71/*
  72 * This list of permanent mappings is for memory that may be accessed from
  73 * interrupt context, where we can't do the ioremap().
  74 */
  75struct acpi_ioremap {
  76	struct list_head list;
  77	void __iomem *virt;
  78	acpi_physical_address phys;
  79	acpi_size size;
  80	unsigned long refcount;
  81};
  82
  83static LIST_HEAD(acpi_ioremaps);
  84static DEFINE_MUTEX(acpi_ioremap_lock);
  85#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  86
  87static void __init acpi_request_region (struct acpi_generic_address *gas,
  88	unsigned int length, char *desc)
  89{
  90	u64 addr;
  91
  92	/* Handle possible alignment issues */
  93	memcpy(&addr, &gas->address, sizeof(addr));
  94	if (!addr || !length)
  95		return;
  96
  97	/* Resources are never freed */
  98	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
  99		request_region(addr, length, desc);
 100	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
 101		request_mem_region(addr, length, desc);
 102}
 103
 104static int __init acpi_reserve_resources(void)
 105{
 106	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
 107		"ACPI PM1a_EVT_BLK");
 108
 109	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
 110		"ACPI PM1b_EVT_BLK");
 111
 112	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
 113		"ACPI PM1a_CNT_BLK");
 114
 115	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
 116		"ACPI PM1b_CNT_BLK");
 117
 118	if (acpi_gbl_FADT.pm_timer_length == 4)
 119		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
 120
 121	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
 122		"ACPI PM2_CNT_BLK");
 123
 124	/* Length of GPE blocks must be a non-negative multiple of 2 */
 125
 126	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
 127		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
 128			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
 129
 130	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
 131		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
 132			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
 133
 134	return 0;
 135}
 136fs_initcall_sync(acpi_reserve_resources);
 137
 138void acpi_os_printf(const char *fmt, ...)
 139{
 140	va_list args;
 141	va_start(args, fmt);
 142	acpi_os_vprintf(fmt, args);
 143	va_end(args);
 144}
 145EXPORT_SYMBOL(acpi_os_printf);
 146
 147void acpi_os_vprintf(const char *fmt, va_list args)
 148{
 149	static char buffer[512];
 150
 151	vsprintf(buffer, fmt, args);
 152
 153#ifdef ENABLE_DEBUGGER
 154	if (acpi_in_debugger) {
 155		kdb_printf("%s", buffer);
 156	} else {
 157		if (printk_get_level(buffer))
 158			printk("%s", buffer);
 159		else
 160			printk(KERN_CONT "%s", buffer);
 161	}
 162#else
 163	if (acpi_debugger_write_log(buffer) < 0) {
 164		if (printk_get_level(buffer))
 165			printk("%s", buffer);
 166		else
 167			printk(KERN_CONT "%s", buffer);
 168	}
 169#endif
 170}
 171
 172#ifdef CONFIG_KEXEC
 173static unsigned long acpi_rsdp;
 174static int __init setup_acpi_rsdp(char *arg)
 175{
 176	return kstrtoul(arg, 16, &acpi_rsdp);
 
 177}
 178early_param("acpi_rsdp", setup_acpi_rsdp);
 179#endif
 180
 181acpi_physical_address __init acpi_os_get_root_pointer(void)
 182{
 183	acpi_physical_address pa;
 184
 185#ifdef CONFIG_KEXEC
 186	/*
 187	 * We may have been provided with an RSDP on the command line,
 188	 * but if a malicious user has done so they may be pointing us
 189	 * at modified ACPI tables that could alter kernel behaviour -
 190	 * so, we check the lockdown status before making use of
 191	 * it. If we trust it then also stash it in an architecture
 192	 * specific location (if appropriate) so it can be carried
 193	 * over further kexec()s.
 194	 */
 195	if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
 196		acpi_arch_set_root_pointer(acpi_rsdp);
 197		return acpi_rsdp;
 198	}
 199#endif
 200	pa = acpi_arch_get_root_pointer();
 201	if (pa)
 202		return pa;
 203
 204	if (efi_enabled(EFI_CONFIG_TABLES)) {
 205		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 206			return efi.acpi20;
 207		if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 208			return efi.acpi;
 209		pr_err(PREFIX "System description tables not found\n");
 210	} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
 
 
 
 
 
 
 211		acpi_find_root_pointer(&pa);
 
 212	}
 213
 214	return pa;
 215}
 216
 217/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 218static struct acpi_ioremap *
 219acpi_map_lookup(acpi_physical_address phys, acpi_size size)
 220{
 221	struct acpi_ioremap *map;
 222
 223	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
 224		if (map->phys <= phys &&
 225		    phys + size <= map->phys + map->size)
 226			return map;
 227
 228	return NULL;
 229}
 230
 231/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 232static void __iomem *
 233acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
 234{
 235	struct acpi_ioremap *map;
 236
 237	map = acpi_map_lookup(phys, size);
 238	if (map)
 239		return map->virt + (phys - map->phys);
 240
 241	return NULL;
 242}
 243
 244void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
 245{
 246	struct acpi_ioremap *map;
 247	void __iomem *virt = NULL;
 248
 249	mutex_lock(&acpi_ioremap_lock);
 250	map = acpi_map_lookup(phys, size);
 251	if (map) {
 252		virt = map->virt + (phys - map->phys);
 253		map->refcount++;
 254	}
 255	mutex_unlock(&acpi_ioremap_lock);
 256	return virt;
 257}
 258EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
 259
 260/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 261static struct acpi_ioremap *
 262acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
 263{
 264	struct acpi_ioremap *map;
 265
 266	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
 267		if (map->virt <= virt &&
 268		    virt + size <= map->virt + map->size)
 269			return map;
 270
 271	return NULL;
 272}
 273
 274#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
 
 
 275/* ioremap will take care of cache attributes */
 276#define should_use_kmap(pfn)   0
 277#else
 278#define should_use_kmap(pfn)   page_is_ram(pfn)
 279#endif
 280
 281static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
 282{
 283	unsigned long pfn;
 284
 285	pfn = pg_off >> PAGE_SHIFT;
 286	if (should_use_kmap(pfn)) {
 287		if (pg_sz > PAGE_SIZE)
 288			return NULL;
 289		return (void __iomem __force *)kmap(pfn_to_page(pfn));
 290	} else
 291		return acpi_os_ioremap(pg_off, pg_sz);
 292}
 293
 294static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
 295{
 296	unsigned long pfn;
 297
 298	pfn = pg_off >> PAGE_SHIFT;
 299	if (should_use_kmap(pfn))
 300		kunmap(pfn_to_page(pfn));
 301	else
 302		iounmap(vaddr);
 303}
 304
 305/**
 306 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
 307 * @phys: Start of the physical address range to map.
 308 * @size: Size of the physical address range to map.
 309 *
 310 * Look up the given physical address range in the list of existing ACPI memory
 311 * mappings.  If found, get a reference to it and return a pointer to it (its
 312 * virtual address).  If not found, map it, add it to that list and return a
 313 * pointer to it.
 314 *
 315 * During early init (when acpi_permanent_mmap has not been set yet) this
 316 * routine simply calls __acpi_map_table() to get the job done.
 317 */
 318void __iomem __ref
 319*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
 320{
 321	struct acpi_ioremap *map;
 322	void __iomem *virt;
 323	acpi_physical_address pg_off;
 324	acpi_size pg_sz;
 325
 326	if (phys > ULONG_MAX) {
 327		printk(KERN_ERR PREFIX "Cannot map memory that high\n");
 328		return NULL;
 329	}
 330
 331	if (!acpi_permanent_mmap)
 332		return __acpi_map_table((unsigned long)phys, size);
 333
 334	mutex_lock(&acpi_ioremap_lock);
 335	/* Check if there's a suitable mapping already. */
 336	map = acpi_map_lookup(phys, size);
 337	if (map) {
 338		map->refcount++;
 339		goto out;
 340	}
 341
 342	map = kzalloc(sizeof(*map), GFP_KERNEL);
 343	if (!map) {
 344		mutex_unlock(&acpi_ioremap_lock);
 345		return NULL;
 346	}
 347
 348	pg_off = round_down(phys, PAGE_SIZE);
 349	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
 350	virt = acpi_map(pg_off, pg_sz);
 351	if (!virt) {
 352		mutex_unlock(&acpi_ioremap_lock);
 353		kfree(map);
 354		return NULL;
 355	}
 356
 357	INIT_LIST_HEAD(&map->list);
 358	map->virt = virt;
 359	map->phys = pg_off;
 360	map->size = pg_sz;
 361	map->refcount = 1;
 362
 363	list_add_tail_rcu(&map->list, &acpi_ioremaps);
 364
 365out:
 366	mutex_unlock(&acpi_ioremap_lock);
 367	return map->virt + (phys - map->phys);
 368}
 369EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
 370
 371void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
 372{
 373	return (void *)acpi_os_map_iomem(phys, size);
 374}
 375EXPORT_SYMBOL_GPL(acpi_os_map_memory);
 376
 377static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
 378{
 379	if (!--map->refcount)
 380		list_del_rcu(&map->list);
 381}
 382
 383static void acpi_os_map_cleanup(struct acpi_ioremap *map)
 384{
 385	if (!map->refcount) {
 386		synchronize_rcu_expedited();
 387		acpi_unmap(map->phys, map->virt);
 388		kfree(map);
 389	}
 390}
 391
 392/**
 393 * acpi_os_unmap_iomem - Drop a memory mapping reference.
 394 * @virt: Start of the address range to drop a reference to.
 395 * @size: Size of the address range to drop a reference to.
 396 *
 397 * Look up the given virtual address range in the list of existing ACPI memory
 398 * mappings, drop a reference to it and unmap it if there are no more active
 399 * references to it.
 400 *
 401 * During early init (when acpi_permanent_mmap has not been set yet) this
 402 * routine simply calls __acpi_unmap_table() to get the job done.  Since
 403 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
 404 * here.
 405 */
 406void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
 407{
 408	struct acpi_ioremap *map;
 409
 410	if (!acpi_permanent_mmap) {
 411		__acpi_unmap_table(virt, size);
 412		return;
 413	}
 414
 415	mutex_lock(&acpi_ioremap_lock);
 416	map = acpi_map_lookup_virt(virt, size);
 417	if (!map) {
 418		mutex_unlock(&acpi_ioremap_lock);
 419		WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
 420		return;
 421	}
 422	acpi_os_drop_map_ref(map);
 423	mutex_unlock(&acpi_ioremap_lock);
 424
 425	acpi_os_map_cleanup(map);
 426}
 427EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
 428
 429void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
 430{
 431	return acpi_os_unmap_iomem((void __iomem *)virt, size);
 
 432}
 433EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
 434
 435int acpi_os_map_generic_address(struct acpi_generic_address *gas)
 436{
 437	u64 addr;
 438	void __iomem *virt;
 439
 440	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 441		return 0;
 442
 443	/* Handle possible alignment issues */
 444	memcpy(&addr, &gas->address, sizeof(addr));
 445	if (!addr || !gas->bit_width)
 446		return -EINVAL;
 447
 448	virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
 449	if (!virt)
 450		return -EIO;
 451
 452	return 0;
 453}
 454EXPORT_SYMBOL(acpi_os_map_generic_address);
 455
 456void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
 457{
 458	u64 addr;
 459	struct acpi_ioremap *map;
 460
 461	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 462		return;
 463
 464	/* Handle possible alignment issues */
 465	memcpy(&addr, &gas->address, sizeof(addr));
 466	if (!addr || !gas->bit_width)
 467		return;
 468
 469	mutex_lock(&acpi_ioremap_lock);
 470	map = acpi_map_lookup(addr, gas->bit_width / 8);
 471	if (!map) {
 472		mutex_unlock(&acpi_ioremap_lock);
 473		return;
 474	}
 475	acpi_os_drop_map_ref(map);
 476	mutex_unlock(&acpi_ioremap_lock);
 477
 478	acpi_os_map_cleanup(map);
 479}
 480EXPORT_SYMBOL(acpi_os_unmap_generic_address);
 481
 482#ifdef ACPI_FUTURE_USAGE
 483acpi_status
 484acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
 485{
 486	if (!phys || !virt)
 487		return AE_BAD_PARAMETER;
 488
 489	*phys = virt_to_phys(virt);
 490
 491	return AE_OK;
 492}
 493#endif
 494
 495#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
 496static bool acpi_rev_override;
 497
 498int __init acpi_rev_override_setup(char *str)
 499{
 500	acpi_rev_override = true;
 501	return 1;
 502}
 503__setup("acpi_rev_override", acpi_rev_override_setup);
 504#else
 505#define acpi_rev_override	false
 506#endif
 507
 508#define ACPI_MAX_OVERRIDE_LEN 100
 509
 510static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
 511
 512acpi_status
 513acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
 514			    acpi_string *new_val)
 515{
 516	if (!init_val || !new_val)
 517		return AE_BAD_PARAMETER;
 518
 519	*new_val = NULL;
 520	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
 521		printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
 522		       acpi_os_name);
 523		*new_val = acpi_os_name;
 524	}
 525
 526	if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
 527		printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
 528		*new_val = (char *)5;
 529	}
 530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 531	return AE_OK;
 532}
 533
 
 
 
 
 
 
 
 
 
 534static irqreturn_t acpi_irq(int irq, void *dev_id)
 535{
 536	u32 handled;
 537
 538	handled = (*acpi_irq_handler) (acpi_irq_context);
 539
 540	if (handled) {
 541		acpi_irq_handled++;
 542		return IRQ_HANDLED;
 543	} else {
 544		acpi_irq_not_handled++;
 545		return IRQ_NONE;
 546	}
 547}
 548
 549acpi_status
 550acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
 551				  void *context)
 552{
 553	unsigned int irq;
 554
 555	acpi_irq_stats_init();
 556
 557	/*
 558	 * ACPI interrupts different from the SCI in our copy of the FADT are
 559	 * not supported.
 560	 */
 561	if (gsi != acpi_gbl_FADT.sci_interrupt)
 562		return AE_BAD_PARAMETER;
 563
 564	if (acpi_irq_handler)
 565		return AE_ALREADY_ACQUIRED;
 566
 567	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
 568		printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
 569		       gsi);
 570		return AE_OK;
 571	}
 572
 573	acpi_irq_handler = handler;
 574	acpi_irq_context = context;
 575	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
 576		printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
 577		acpi_irq_handler = NULL;
 578		return AE_NOT_ACQUIRED;
 579	}
 580	acpi_sci_irq = irq;
 581
 582	return AE_OK;
 583}
 584
 585acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
 586{
 587	if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
 588		return AE_BAD_PARAMETER;
 589
 590	free_irq(acpi_sci_irq, acpi_irq);
 591	acpi_irq_handler = NULL;
 592	acpi_sci_irq = INVALID_ACPI_IRQ;
 593
 594	return AE_OK;
 595}
 596
 597/*
 598 * Running in interpreter thread context, safe to sleep
 599 */
 600
 601void acpi_os_sleep(u64 ms)
 602{
 603	msleep(ms);
 604}
 605
 606void acpi_os_stall(u32 us)
 607{
 608	while (us) {
 609		u32 delay = 1000;
 610
 611		if (delay > us)
 612			delay = us;
 613		udelay(delay);
 614		touch_nmi_watchdog();
 615		us -= delay;
 616	}
 617}
 618
 619/*
 620 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
 621 * monotonically increasing timer with 100ns granularity. Do not use
 622 * ktime_get() to implement this function because this function may get
 623 * called after timekeeping has been suspended. Note: calling this function
 624 * after timekeeping has been suspended may lead to unexpected results
 625 * because when timekeeping is suspended the jiffies counter is not
 626 * incremented. See also timekeeping_suspend().
 627 */
 628u64 acpi_os_get_timer(void)
 629{
 630	return (get_jiffies_64() - INITIAL_JIFFIES) *
 631		(ACPI_100NSEC_PER_SEC / HZ);
 
 
 
 
 
 
 
 
 
 
 
 632}
 633
 634acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
 635{
 636	u32 dummy;
 637
 638	if (!value)
 639		value = &dummy;
 640
 641	*value = 0;
 642	if (width <= 8) {
 643		*(u8 *) value = inb(port);
 644	} else if (width <= 16) {
 645		*(u16 *) value = inw(port);
 646	} else if (width <= 32) {
 647		*(u32 *) value = inl(port);
 648	} else {
 649		BUG();
 650	}
 651
 652	return AE_OK;
 653}
 654
 655EXPORT_SYMBOL(acpi_os_read_port);
 656
 657acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
 658{
 659	if (width <= 8) {
 660		outb(value, port);
 661	} else if (width <= 16) {
 662		outw(value, port);
 663	} else if (width <= 32) {
 664		outl(value, port);
 665	} else {
 666		BUG();
 667	}
 668
 669	return AE_OK;
 670}
 671
 672EXPORT_SYMBOL(acpi_os_write_port);
 673
 674int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
 
 675{
 676
 677	switch (width) {
 678	case 8:
 679		*(u8 *) value = readb(virt_addr);
 680		break;
 681	case 16:
 682		*(u16 *) value = readw(virt_addr);
 683		break;
 684	case 32:
 685		*(u32 *) value = readl(virt_addr);
 686		break;
 687	case 64:
 688		*(u64 *) value = readq(virt_addr);
 689		break;
 690	default:
 691		return -EINVAL;
 692	}
 693
 694	return 0;
 695}
 
 
 
 
 
 
 
 
 
 696
 697acpi_status
 698acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
 699{
 700	void __iomem *virt_addr;
 701	unsigned int size = width / 8;
 702	bool unmap = false;
 703	u64 dummy;
 704	int error;
 705
 706	rcu_read_lock();
 707	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 708	if (!virt_addr) {
 709		rcu_read_unlock();
 710		virt_addr = acpi_os_ioremap(phys_addr, size);
 711		if (!virt_addr)
 712			return AE_BAD_ADDRESS;
 713		unmap = true;
 714	}
 715
 716	if (!value)
 717		value = &dummy;
 718
 719	error = acpi_os_read_iomem(virt_addr, value, width);
 720	BUG_ON(error);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 721
 722	if (unmap)
 723		iounmap(virt_addr);
 724	else
 725		rcu_read_unlock();
 726
 727	return AE_OK;
 728}
 729
 
 
 
 
 
 
 
 
 
 
 
 
 
 730acpi_status
 731acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
 732{
 733	void __iomem *virt_addr;
 734	unsigned int size = width / 8;
 735	bool unmap = false;
 736
 737	rcu_read_lock();
 738	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 739	if (!virt_addr) {
 740		rcu_read_unlock();
 741		virt_addr = acpi_os_ioremap(phys_addr, size);
 742		if (!virt_addr)
 743			return AE_BAD_ADDRESS;
 744		unmap = true;
 745	}
 746
 747	switch (width) {
 748	case 8:
 749		writeb(value, virt_addr);
 750		break;
 751	case 16:
 752		writew(value, virt_addr);
 753		break;
 754	case 32:
 755		writel(value, virt_addr);
 756		break;
 757	case 64:
 758		writeq(value, virt_addr);
 759		break;
 760	default:
 761		BUG();
 762	}
 763
 764	if (unmap)
 765		iounmap(virt_addr);
 766	else
 767		rcu_read_unlock();
 768
 769	return AE_OK;
 770}
 771
 772#ifdef CONFIG_PCI
 773acpi_status
 774acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 775			       u64 *value, u32 width)
 776{
 777	int result, size;
 778	u32 value32;
 779
 780	if (!value)
 781		return AE_BAD_PARAMETER;
 782
 783	switch (width) {
 784	case 8:
 785		size = 1;
 786		break;
 787	case 16:
 788		size = 2;
 789		break;
 790	case 32:
 791		size = 4;
 792		break;
 793	default:
 794		return AE_ERROR;
 795	}
 796
 797	result = raw_pci_read(pci_id->segment, pci_id->bus,
 798				PCI_DEVFN(pci_id->device, pci_id->function),
 799				reg, size, &value32);
 800	*value = value32;
 801
 802	return (result ? AE_ERROR : AE_OK);
 803}
 804
 805acpi_status
 806acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 807				u64 value, u32 width)
 808{
 809	int result, size;
 810
 811	switch (width) {
 812	case 8:
 813		size = 1;
 814		break;
 815	case 16:
 816		size = 2;
 817		break;
 818	case 32:
 819		size = 4;
 820		break;
 821	default:
 822		return AE_ERROR;
 823	}
 824
 825	result = raw_pci_write(pci_id->segment, pci_id->bus,
 826				PCI_DEVFN(pci_id->device, pci_id->function),
 827				reg, size, value);
 828
 829	return (result ? AE_ERROR : AE_OK);
 830}
 831#endif
 832
 833static void acpi_os_execute_deferred(struct work_struct *work)
 834{
 835	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
 836
 
 
 
 837	dpc->function(dpc->context);
 838	kfree(dpc);
 839}
 840
 841#ifdef CONFIG_ACPI_DEBUGGER
 842static struct acpi_debugger acpi_debugger;
 843static bool acpi_debugger_initialized;
 844
 845int acpi_register_debugger(struct module *owner,
 846			   const struct acpi_debugger_ops *ops)
 847{
 848	int ret = 0;
 849
 850	mutex_lock(&acpi_debugger.lock);
 851	if (acpi_debugger.ops) {
 852		ret = -EBUSY;
 853		goto err_lock;
 854	}
 855
 856	acpi_debugger.owner = owner;
 857	acpi_debugger.ops = ops;
 858
 859err_lock:
 860	mutex_unlock(&acpi_debugger.lock);
 861	return ret;
 862}
 863EXPORT_SYMBOL(acpi_register_debugger);
 864
 865void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
 866{
 867	mutex_lock(&acpi_debugger.lock);
 868	if (ops == acpi_debugger.ops) {
 869		acpi_debugger.ops = NULL;
 870		acpi_debugger.owner = NULL;
 871	}
 872	mutex_unlock(&acpi_debugger.lock);
 873}
 874EXPORT_SYMBOL(acpi_unregister_debugger);
 875
 876int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
 877{
 878	int ret;
 879	int (*func)(acpi_osd_exec_callback, void *);
 880	struct module *owner;
 881
 882	if (!acpi_debugger_initialized)
 883		return -ENODEV;
 884	mutex_lock(&acpi_debugger.lock);
 885	if (!acpi_debugger.ops) {
 886		ret = -ENODEV;
 887		goto err_lock;
 888	}
 889	if (!try_module_get(acpi_debugger.owner)) {
 890		ret = -ENODEV;
 891		goto err_lock;
 892	}
 893	func = acpi_debugger.ops->create_thread;
 894	owner = acpi_debugger.owner;
 895	mutex_unlock(&acpi_debugger.lock);
 896
 897	ret = func(function, context);
 898
 899	mutex_lock(&acpi_debugger.lock);
 900	module_put(owner);
 901err_lock:
 902	mutex_unlock(&acpi_debugger.lock);
 903	return ret;
 904}
 905
 906ssize_t acpi_debugger_write_log(const char *msg)
 907{
 908	ssize_t ret;
 909	ssize_t (*func)(const char *);
 910	struct module *owner;
 911
 912	if (!acpi_debugger_initialized)
 913		return -ENODEV;
 914	mutex_lock(&acpi_debugger.lock);
 915	if (!acpi_debugger.ops) {
 916		ret = -ENODEV;
 917		goto err_lock;
 918	}
 919	if (!try_module_get(acpi_debugger.owner)) {
 920		ret = -ENODEV;
 921		goto err_lock;
 922	}
 923	func = acpi_debugger.ops->write_log;
 924	owner = acpi_debugger.owner;
 925	mutex_unlock(&acpi_debugger.lock);
 926
 927	ret = func(msg);
 928
 929	mutex_lock(&acpi_debugger.lock);
 930	module_put(owner);
 931err_lock:
 932	mutex_unlock(&acpi_debugger.lock);
 933	return ret;
 934}
 935
 936ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
 937{
 938	ssize_t ret;
 939	ssize_t (*func)(char *, size_t);
 940	struct module *owner;
 941
 942	if (!acpi_debugger_initialized)
 943		return -ENODEV;
 944	mutex_lock(&acpi_debugger.lock);
 945	if (!acpi_debugger.ops) {
 946		ret = -ENODEV;
 947		goto err_lock;
 948	}
 949	if (!try_module_get(acpi_debugger.owner)) {
 950		ret = -ENODEV;
 951		goto err_lock;
 952	}
 953	func = acpi_debugger.ops->read_cmd;
 954	owner = acpi_debugger.owner;
 955	mutex_unlock(&acpi_debugger.lock);
 956
 957	ret = func(buffer, buffer_length);
 958
 959	mutex_lock(&acpi_debugger.lock);
 960	module_put(owner);
 961err_lock:
 962	mutex_unlock(&acpi_debugger.lock);
 963	return ret;
 964}
 965
 966int acpi_debugger_wait_command_ready(void)
 967{
 968	int ret;
 969	int (*func)(bool, char *, size_t);
 970	struct module *owner;
 971
 972	if (!acpi_debugger_initialized)
 973		return -ENODEV;
 974	mutex_lock(&acpi_debugger.lock);
 975	if (!acpi_debugger.ops) {
 976		ret = -ENODEV;
 977		goto err_lock;
 978	}
 979	if (!try_module_get(acpi_debugger.owner)) {
 980		ret = -ENODEV;
 981		goto err_lock;
 982	}
 983	func = acpi_debugger.ops->wait_command_ready;
 984	owner = acpi_debugger.owner;
 985	mutex_unlock(&acpi_debugger.lock);
 986
 987	ret = func(acpi_gbl_method_executing,
 988		   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
 989
 990	mutex_lock(&acpi_debugger.lock);
 991	module_put(owner);
 992err_lock:
 993	mutex_unlock(&acpi_debugger.lock);
 994	return ret;
 995}
 996
 997int acpi_debugger_notify_command_complete(void)
 998{
 999	int ret;
1000	int (*func)(void);
1001	struct module *owner;
1002
1003	if (!acpi_debugger_initialized)
1004		return -ENODEV;
1005	mutex_lock(&acpi_debugger.lock);
1006	if (!acpi_debugger.ops) {
1007		ret = -ENODEV;
1008		goto err_lock;
1009	}
1010	if (!try_module_get(acpi_debugger.owner)) {
1011		ret = -ENODEV;
1012		goto err_lock;
1013	}
1014	func = acpi_debugger.ops->notify_command_complete;
1015	owner = acpi_debugger.owner;
1016	mutex_unlock(&acpi_debugger.lock);
1017
1018	ret = func();
1019
1020	mutex_lock(&acpi_debugger.lock);
1021	module_put(owner);
1022err_lock:
1023	mutex_unlock(&acpi_debugger.lock);
1024	return ret;
1025}
1026
1027int __init acpi_debugger_init(void)
1028{
1029	mutex_init(&acpi_debugger.lock);
1030	acpi_debugger_initialized = true;
1031	return 0;
1032}
1033#endif
1034
1035/*******************************************************************************
1036 *
1037 * FUNCTION:    acpi_os_execute
1038 *
1039 * PARAMETERS:  Type               - Type of the callback
1040 *              Function           - Function to be executed
1041 *              Context            - Function parameters
1042 *
1043 * RETURN:      Status
1044 *
1045 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1046 *              immediately executes function on a separate thread.
1047 *
1048 ******************************************************************************/
1049
1050acpi_status acpi_os_execute(acpi_execute_type type,
1051			    acpi_osd_exec_callback function, void *context)
1052{
1053	acpi_status status = AE_OK;
1054	struct acpi_os_dpc *dpc;
1055	struct workqueue_struct *queue;
1056	int ret;
1057	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1058			  "Scheduling function [%p(%p)] for deferred execution.\n",
1059			  function, context));
1060
1061	if (type == OSL_DEBUGGER_MAIN_THREAD) {
1062		ret = acpi_debugger_create_thread(function, context);
1063		if (ret) {
1064			pr_err("Call to kthread_create() failed.\n");
1065			status = AE_ERROR;
1066		}
1067		goto out_thread;
1068	}
1069
1070	/*
1071	 * Allocate/initialize DPC structure.  Note that this memory will be
1072	 * freed by the callee.  The kernel handles the work_struct list  in a
1073	 * way that allows us to also free its memory inside the callee.
1074	 * Because we may want to schedule several tasks with different
1075	 * parameters we can't use the approach some kernel code uses of
1076	 * having a static work_struct.
1077	 */
1078
1079	dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1080	if (!dpc)
1081		return AE_NO_MEMORY;
1082
1083	dpc->function = function;
1084	dpc->context = context;
1085
1086	/*
1087	 * To prevent lockdep from complaining unnecessarily, make sure that
1088	 * there is a different static lockdep key for each workqueue by using
1089	 * INIT_WORK() for each of them separately.
 
1090	 */
1091	if (type == OSL_NOTIFY_HANDLER) {
1092		queue = kacpi_notify_wq;
 
 
 
1093		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1094	} else if (type == OSL_GPE_HANDLER) {
1095		queue = kacpid_wq;
 
1096		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1097	} else {
1098		pr_err("Unsupported os_execute type %d.\n", type);
1099		status = AE_ERROR;
1100	}
1101
1102	if (ACPI_FAILURE(status))
1103		goto err_workqueue;
1104
1105	/*
1106	 * On some machines, a software-initiated SMI causes corruption unless
1107	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1108	 * typically it's done in GPE-related methods that are run via
1109	 * workqueues, so we can avoid the known corruption cases by always
1110	 * queueing on CPU 0.
1111	 */
1112	ret = queue_work_on(0, queue, &dpc->work);
 
1113	if (!ret) {
1114		printk(KERN_ERR PREFIX
1115			  "Call to queue_work() failed.\n");
1116		status = AE_ERROR;
1117	}
1118err_workqueue:
1119	if (ACPI_FAILURE(status))
1120		kfree(dpc);
1121out_thread:
1122	return status;
1123}
1124EXPORT_SYMBOL(acpi_os_execute);
1125
1126void acpi_os_wait_events_complete(void)
 
1127{
1128	/*
1129	 * Make sure the GPE handler or the fixed event handler is not used
1130	 * on another CPU after removal.
1131	 */
1132	if (acpi_sci_irq_valid())
1133		synchronize_hardirq(acpi_sci_irq);
1134	flush_workqueue(kacpid_wq);
1135	flush_workqueue(kacpi_notify_wq);
1136}
1137EXPORT_SYMBOL(acpi_os_wait_events_complete);
1138
1139struct acpi_hp_work {
1140	struct work_struct work;
1141	struct acpi_device *adev;
1142	u32 src;
1143};
1144
1145static void acpi_hotplug_work_fn(struct work_struct *work)
 
1146{
1147	struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1148
1149	acpi_os_wait_events_complete();
1150	acpi_device_hotplug(hpw->adev, hpw->src);
1151	kfree(hpw);
1152}
1153
1154acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1155{
1156	struct acpi_hp_work *hpw;
1157
1158	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1159		  "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1160		  adev, src));
1161
1162	hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1163	if (!hpw)
1164		return AE_NO_MEMORY;
1165
1166	INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1167	hpw->adev = adev;
1168	hpw->src = src;
1169	/*
1170	 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1171	 * the hotplug code may call driver .remove() functions, which may
1172	 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1173	 * these workqueues.
1174	 */
1175	if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1176		kfree(hpw);
1177		return AE_ERROR;
1178	}
1179	return AE_OK;
1180}
1181
1182bool acpi_queue_hotplug_work(struct work_struct *work)
1183{
1184	return queue_work(kacpi_hotplug_wq, work);
1185}
1186
1187acpi_status
1188acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1189{
1190	struct semaphore *sem = NULL;
1191
1192	sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1193	if (!sem)
1194		return AE_NO_MEMORY;
 
1195
1196	sema_init(sem, initial_units);
1197
1198	*handle = (acpi_handle *) sem;
1199
1200	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1201			  *handle, initial_units));
1202
1203	return AE_OK;
1204}
1205
1206/*
1207 * TODO: A better way to delete semaphores?  Linux doesn't have a
1208 * 'delete_semaphore()' function -- may result in an invalid
1209 * pointer dereference for non-synchronized consumers.	Should
1210 * we at least check for blocked threads and signal/cancel them?
1211 */
1212
1213acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1214{
1215	struct semaphore *sem = (struct semaphore *)handle;
1216
1217	if (!sem)
1218		return AE_BAD_PARAMETER;
1219
1220	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1221
1222	BUG_ON(!list_empty(&sem->wait_list));
1223	kfree(sem);
1224	sem = NULL;
1225
1226	return AE_OK;
1227}
1228
1229/*
1230 * TODO: Support for units > 1?
1231 */
1232acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1233{
1234	acpi_status status = AE_OK;
1235	struct semaphore *sem = (struct semaphore *)handle;
1236	long jiffies;
1237	int ret = 0;
1238
1239	if (!acpi_os_initialized)
1240		return AE_OK;
1241
1242	if (!sem || (units < 1))
1243		return AE_BAD_PARAMETER;
1244
1245	if (units > 1)
1246		return AE_SUPPORT;
1247
1248	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1249			  handle, units, timeout));
1250
1251	if (timeout == ACPI_WAIT_FOREVER)
1252		jiffies = MAX_SCHEDULE_TIMEOUT;
1253	else
1254		jiffies = msecs_to_jiffies(timeout);
1255
1256	ret = down_timeout(sem, jiffies);
1257	if (ret)
1258		status = AE_TIME;
1259
1260	if (ACPI_FAILURE(status)) {
1261		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1262				  "Failed to acquire semaphore[%p|%d|%d], %s",
1263				  handle, units, timeout,
1264				  acpi_format_exception(status)));
1265	} else {
1266		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1267				  "Acquired semaphore[%p|%d|%d]", handle,
1268				  units, timeout));
1269	}
1270
1271	return status;
1272}
1273
1274/*
1275 * TODO: Support for units > 1?
1276 */
1277acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1278{
1279	struct semaphore *sem = (struct semaphore *)handle;
1280
1281	if (!acpi_os_initialized)
1282		return AE_OK;
1283
1284	if (!sem || (units < 1))
1285		return AE_BAD_PARAMETER;
1286
1287	if (units > 1)
1288		return AE_SUPPORT;
1289
1290	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1291			  units));
1292
1293	up(sem);
1294
1295	return AE_OK;
1296}
1297
1298acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
 
1299{
 
1300#ifdef ENABLE_DEBUGGER
1301	if (acpi_in_debugger) {
1302		u32 chars;
1303
1304		kdb_read(buffer, buffer_length);
1305
1306		/* remove the CR kdb includes */
1307		chars = strlen(buffer) - 1;
1308		buffer[chars] = '\0';
1309	}
1310#else
1311	int ret;
1312
1313	ret = acpi_debugger_read_cmd(buffer, buffer_length);
1314	if (ret < 0)
1315		return AE_ERROR;
1316	if (bytes_read)
1317		*bytes_read = ret;
1318#endif
1319
1320	return AE_OK;
1321}
1322EXPORT_SYMBOL(acpi_os_get_line);
1323
1324acpi_status acpi_os_wait_command_ready(void)
1325{
1326	int ret;
1327
1328	ret = acpi_debugger_wait_command_ready();
1329	if (ret < 0)
1330		return AE_ERROR;
1331	return AE_OK;
1332}
1333
1334acpi_status acpi_os_notify_command_complete(void)
1335{
1336	int ret;
1337
1338	ret = acpi_debugger_notify_command_complete();
1339	if (ret < 0)
1340		return AE_ERROR;
1341	return AE_OK;
1342}
 
1343
1344acpi_status acpi_os_signal(u32 function, void *info)
1345{
1346	switch (function) {
1347	case ACPI_SIGNAL_FATAL:
1348		printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1349		break;
1350	case ACPI_SIGNAL_BREAKPOINT:
1351		/*
1352		 * AML Breakpoint
1353		 * ACPI spec. says to treat it as a NOP unless
1354		 * you are debugging.  So if/when we integrate
1355		 * AML debugger into the kernel debugger its
1356		 * hook will go here.  But until then it is
1357		 * not useful to print anything on breakpoints.
1358		 */
1359		break;
1360	default:
1361		break;
1362	}
1363
1364	return AE_OK;
1365}
1366
1367static int __init acpi_os_name_setup(char *str)
1368{
1369	char *p = acpi_os_name;
1370	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1371
1372	if (!str || !*str)
1373		return 0;
1374
1375	for (; count-- && *str; str++) {
1376		if (isalnum(*str) || *str == ' ' || *str == ':')
1377			*p++ = *str;
1378		else if (*str == '\'' || *str == '"')
1379			continue;
1380		else
1381			break;
1382	}
1383	*p = 0;
1384
1385	return 1;
1386
1387}
1388
1389__setup("acpi_os_name=", acpi_os_name_setup);
1390
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1391/*
1392 * Disable the auto-serialization of named objects creation methods.
1393 *
1394 * This feature is enabled by default.  It marks the AML control methods
1395 * that contain the opcodes to create named objects as "Serialized".
 
1396 */
1397static int __init acpi_no_auto_serialize_setup(char *str)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1398{
1399	acpi_gbl_auto_serialize_methods = FALSE;
1400	pr_info("ACPI: auto-serialization disabled\n");
 
1401
1402	return 1;
1403}
1404
1405__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1406
1407/* Check of resource interference between native drivers and ACPI
1408 * OperationRegions (SystemIO and System Memory only).
1409 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1410 * in arbitrary AML code and can interfere with legacy drivers.
1411 * acpi_enforce_resources= can be set to:
1412 *
1413 *   - strict (default) (2)
1414 *     -> further driver trying to access the resources will not load
1415 *   - lax              (1)
1416 *     -> further driver trying to access the resources will load, but you
1417 *     get a system message that something might go wrong...
1418 *
1419 *   - no               (0)
1420 *     -> ACPI Operation Region resources will not be registered
1421 *
1422 */
1423#define ENFORCE_RESOURCES_STRICT 2
1424#define ENFORCE_RESOURCES_LAX    1
1425#define ENFORCE_RESOURCES_NO     0
1426
1427static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1428
1429static int __init acpi_enforce_resources_setup(char *str)
1430{
1431	if (str == NULL || *str == '\0')
1432		return 0;
1433
1434	if (!strcmp("strict", str))
1435		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1436	else if (!strcmp("lax", str))
1437		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1438	else if (!strcmp("no", str))
1439		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1440
1441	return 1;
1442}
1443
1444__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1445
1446/* Check for resource conflicts between ACPI OperationRegions and native
1447 * drivers */
1448int acpi_check_resource_conflict(const struct resource *res)
1449{
1450	acpi_adr_space_type space_id;
1451	acpi_size length;
1452	u8 warn = 0;
1453	int clash = 0;
1454
1455	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1456		return 0;
1457	if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1458		return 0;
1459
1460	if (res->flags & IORESOURCE_IO)
1461		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1462	else
1463		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1464
1465	length = resource_size(res);
1466	if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1467		warn = 1;
1468	clash = acpi_check_address_range(space_id, res->start, length, warn);
1469
1470	if (clash) {
1471		if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1472			if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1473				printk(KERN_NOTICE "ACPI: This conflict may"
1474				       " cause random problems and system"
1475				       " instability\n");
1476			printk(KERN_INFO "ACPI: If an ACPI driver is available"
1477			       " for this device, you should use it instead of"
1478			       " the native driver\n");
1479		}
1480		if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1481			return -EBUSY;
1482	}
1483	return 0;
1484}
1485EXPORT_SYMBOL(acpi_check_resource_conflict);
1486
1487int acpi_check_region(resource_size_t start, resource_size_t n,
1488		      const char *name)
1489{
1490	struct resource res = {
1491		.start = start,
1492		.end   = start + n - 1,
1493		.name  = name,
1494		.flags = IORESOURCE_IO,
1495	};
1496
1497	return acpi_check_resource_conflict(&res);
1498}
1499EXPORT_SYMBOL(acpi_check_region);
1500
1501static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1502					      void *_res, void **return_value)
1503{
1504	struct acpi_mem_space_context **mem_ctx;
1505	union acpi_operand_object *handler_obj;
1506	union acpi_operand_object *region_obj2;
1507	union acpi_operand_object *region_obj;
1508	struct resource *res = _res;
1509	acpi_status status;
1510
1511	region_obj = acpi_ns_get_attached_object(handle);
1512	if (!region_obj)
1513		return AE_OK;
1514
1515	handler_obj = region_obj->region.handler;
1516	if (!handler_obj)
1517		return AE_OK;
1518
1519	if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1520		return AE_OK;
1521
1522	if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1523		return AE_OK;
1524
1525	region_obj2 = acpi_ns_get_secondary_object(region_obj);
1526	if (!region_obj2)
1527		return AE_OK;
1528
1529	mem_ctx = (void *)&region_obj2->extra.region_context;
1530
1531	if (!(mem_ctx[0]->address >= res->start &&
1532	      mem_ctx[0]->address < res->end))
1533		return AE_OK;
1534
1535	status = handler_obj->address_space.setup(region_obj,
1536						  ACPI_REGION_DEACTIVATE,
1537						  NULL, (void **)mem_ctx);
1538	if (ACPI_SUCCESS(status))
1539		region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1540
1541	return status;
1542}
1543
1544/**
1545 * acpi_release_memory - Release any mappings done to a memory region
1546 * @handle: Handle to namespace node
1547 * @res: Memory resource
1548 * @level: A level that terminates the search
1549 *
1550 * Walks through @handle and unmaps all SystemMemory Operation Regions that
1551 * overlap with @res and that have already been activated (mapped).
1552 *
1553 * This is a helper that allows drivers to place special requirements on memory
1554 * region that may overlap with operation regions, primarily allowing them to
1555 * safely map the region as non-cached memory.
1556 *
1557 * The unmapped Operation Regions will be automatically remapped next time they
1558 * are called, so the drivers do not need to do anything else.
1559 */
1560acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1561				u32 level)
1562{
1563	if (!(res->flags & IORESOURCE_MEM))
1564		return AE_TYPE;
1565
1566	return acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1567				   acpi_deactivate_mem_region, NULL, res, NULL);
1568}
1569EXPORT_SYMBOL_GPL(acpi_release_memory);
1570
1571/*
1572 * Let drivers know whether the resource checks are effective
1573 */
1574int acpi_resources_are_enforced(void)
1575{
1576	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1577}
1578EXPORT_SYMBOL(acpi_resources_are_enforced);
1579
1580/*
1581 * Deallocate the memory for a spinlock.
1582 */
1583void acpi_os_delete_lock(acpi_spinlock handle)
1584{
1585	ACPI_FREE(handle);
1586}
1587
1588/*
1589 * Acquire a spinlock.
1590 *
1591 * handle is a pointer to the spinlock_t.
1592 */
1593
1594acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1595{
1596	acpi_cpu_flags flags;
1597	spin_lock_irqsave(lockp, flags);
1598	return flags;
1599}
1600
1601/*
1602 * Release a spinlock. See above.
1603 */
1604
1605void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1606{
1607	spin_unlock_irqrestore(lockp, flags);
1608}
1609
1610#ifndef ACPI_USE_LOCAL_CACHE
1611
1612/*******************************************************************************
1613 *
1614 * FUNCTION:    acpi_os_create_cache
1615 *
1616 * PARAMETERS:  name      - Ascii name for the cache
1617 *              size      - Size of each cached object
1618 *              depth     - Maximum depth of the cache (in objects) <ignored>
1619 *              cache     - Where the new cache object is returned
1620 *
1621 * RETURN:      status
1622 *
1623 * DESCRIPTION: Create a cache object
1624 *
1625 ******************************************************************************/
1626
1627acpi_status
1628acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1629{
1630	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1631	if (*cache == NULL)
1632		return AE_ERROR;
1633	else
1634		return AE_OK;
1635}
1636
1637/*******************************************************************************
1638 *
1639 * FUNCTION:    acpi_os_purge_cache
1640 *
1641 * PARAMETERS:  Cache           - Handle to cache object
1642 *
1643 * RETURN:      Status
1644 *
1645 * DESCRIPTION: Free all objects within the requested cache.
1646 *
1647 ******************************************************************************/
1648
1649acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1650{
1651	kmem_cache_shrink(cache);
1652	return (AE_OK);
1653}
1654
1655/*******************************************************************************
1656 *
1657 * FUNCTION:    acpi_os_delete_cache
1658 *
1659 * PARAMETERS:  Cache           - Handle to cache object
1660 *
1661 * RETURN:      Status
1662 *
1663 * DESCRIPTION: Free all objects within the requested cache and delete the
1664 *              cache object.
1665 *
1666 ******************************************************************************/
1667
1668acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1669{
1670	kmem_cache_destroy(cache);
1671	return (AE_OK);
1672}
1673
1674/*******************************************************************************
1675 *
1676 * FUNCTION:    acpi_os_release_object
1677 *
1678 * PARAMETERS:  Cache       - Handle to cache object
1679 *              Object      - The object to be released
1680 *
1681 * RETURN:      None
1682 *
1683 * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1684 *              the object is deleted.
1685 *
1686 ******************************************************************************/
1687
1688acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1689{
1690	kmem_cache_free(cache, object);
1691	return (AE_OK);
1692}
1693#endif
1694
1695static int __init acpi_no_static_ssdt_setup(char *s)
1696{
1697	acpi_gbl_disable_ssdt_table_install = TRUE;
1698	pr_info("ACPI: static SSDT installation disabled\n");
1699
1700	return 0;
1701}
1702
1703early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1704
1705static int __init acpi_disable_return_repair(char *s)
1706{
1707	printk(KERN_NOTICE PREFIX
1708	       "ACPI: Predefined validation mechanism disabled\n");
1709	acpi_gbl_disable_auto_repair = TRUE;
1710
1711	return 1;
1712}
1713
1714__setup("acpica_no_return_repair", acpi_disable_return_repair);
1715
1716acpi_status __init acpi_os_initialize(void)
1717{
1718	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1719	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1720	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1721	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1722	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1723		/*
1724		 * Use acpi_os_map_generic_address to pre-map the reset
1725		 * register if it's in system memory.
1726		 */
1727		int rv;
1728
1729		rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1730		pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1731	}
1732	acpi_os_initialized = true;
1733
1734	return AE_OK;
1735}
1736
1737acpi_status __init acpi_os_initialize1(void)
1738{
1739	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1740	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1741	kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1742	BUG_ON(!kacpid_wq);
1743	BUG_ON(!kacpi_notify_wq);
1744	BUG_ON(!kacpi_hotplug_wq);
1745	acpi_osi_init();
 
1746	return AE_OK;
1747}
1748
1749acpi_status acpi_os_terminate(void)
1750{
1751	if (acpi_irq_handler) {
1752		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1753						 acpi_irq_handler);
1754	}
1755
1756	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1757	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1758	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1759	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1760	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1761		acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1762
1763	destroy_workqueue(kacpid_wq);
1764	destroy_workqueue(kacpi_notify_wq);
1765	destroy_workqueue(kacpi_hotplug_wq);
1766
1767	return AE_OK;
1768}
1769
1770acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1771				  u32 pm1b_control)
1772{
1773	int rc = 0;
1774	if (__acpi_os_prepare_sleep)
1775		rc = __acpi_os_prepare_sleep(sleep_state,
1776					     pm1a_control, pm1b_control);
1777	if (rc < 0)
1778		return AE_ERROR;
1779	else if (rc > 0)
1780		return AE_CTRL_TERMINATE;
1781
1782	return AE_OK;
1783}
1784
1785void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1786			       u32 pm1a_ctrl, u32 pm1b_ctrl))
1787{
1788	__acpi_os_prepare_sleep = func;
1789}
1790
1791#if (ACPI_REDUCED_HARDWARE)
1792acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1793				  u32 val_b)
1794{
1795	int rc = 0;
1796	if (__acpi_os_prepare_extended_sleep)
1797		rc = __acpi_os_prepare_extended_sleep(sleep_state,
1798					     val_a, val_b);
1799	if (rc < 0)
1800		return AE_ERROR;
1801	else if (rc > 0)
1802		return AE_CTRL_TERMINATE;
1803
1804	return AE_OK;
1805}
1806#else
1807acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1808				  u32 val_b)
1809{
1810	return AE_OK;
1811}
1812#endif
1813
1814void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1815			       u32 val_a, u32 val_b))
1816{
1817	__acpi_os_prepare_extended_sleep = func;
1818}
1819
1820acpi_status acpi_os_enter_sleep(u8 sleep_state,
1821				u32 reg_a_value, u32 reg_b_value)
1822{
1823	acpi_status status;
1824
1825	if (acpi_gbl_reduced_hardware)
1826		status = acpi_os_prepare_extended_sleep(sleep_state,
1827							reg_a_value,
1828							reg_b_value);
1829	else
1830		status = acpi_os_prepare_sleep(sleep_state,
1831					       reg_a_value, reg_b_value);
1832	return status;
1833}
v3.5.6
 
   1/*
   2 *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
   3 *
   4 *  Copyright (C) 2000       Andrew Henroid
   5 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   6 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   7 *  Copyright (c) 2008 Intel Corporation
   8 *   Author: Matthew Wilcox <willy@linux.intel.com>
   9 *
  10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  11 *
  12 *  This program is free software; you can redistribute it and/or modify
  13 *  it under the terms of the GNU General Public License as published by
  14 *  the Free Software Foundation; either version 2 of the License, or
  15 *  (at your option) any later version.
  16 *
  17 *  This program is distributed in the hope that it will be useful,
  18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 *  GNU General Public License for more details.
  21 *
  22 *  You should have received a copy of the GNU General Public License
  23 *  along with this program; if not, write to the Free Software
  24 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  25 *
  26 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  27 *
  28 */
  29
  30#include <linux/module.h>
  31#include <linux/kernel.h>
  32#include <linux/slab.h>
  33#include <linux/mm.h>
  34#include <linux/highmem.h>
 
  35#include <linux/pci.h>
  36#include <linux/interrupt.h>
  37#include <linux/kmod.h>
  38#include <linux/delay.h>
  39#include <linux/workqueue.h>
  40#include <linux/nmi.h>
  41#include <linux/acpi.h>
  42#include <linux/acpi_io.h>
  43#include <linux/efi.h>
  44#include <linux/ioport.h>
  45#include <linux/list.h>
  46#include <linux/jiffies.h>
  47#include <linux/semaphore.h>
 
  48
  49#include <asm/io.h>
  50#include <asm/uaccess.h>
 
  51
  52#include <acpi/acpi.h>
  53#include <acpi/acpi_bus.h>
  54#include <acpi/processor.h>
  55
  56#define _COMPONENT		ACPI_OS_SERVICES
  57ACPI_MODULE_NAME("osl");
  58#define PREFIX		"ACPI: "
  59struct acpi_os_dpc {
  60	acpi_osd_exec_callback function;
  61	void *context;
  62	struct work_struct work;
  63	int wait;
  64};
  65
  66#ifdef CONFIG_ACPI_CUSTOM_DSDT
  67#include CONFIG_ACPI_CUSTOM_DSDT_FILE
  68#endif
  69
  70#ifdef ENABLE_DEBUGGER
  71#include <linux/kdb.h>
  72
  73/* stuff for debugger support */
  74int acpi_in_debugger;
  75EXPORT_SYMBOL(acpi_in_debugger);
  76
  77extern char line_buf[80];
  78#endif				/*ENABLE_DEBUGGER */
  79
  80static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
  81				      u32 pm1b_ctrl);
 
 
  82
  83static acpi_osd_handler acpi_irq_handler;
  84static void *acpi_irq_context;
  85static struct workqueue_struct *kacpid_wq;
  86static struct workqueue_struct *kacpi_notify_wq;
  87struct workqueue_struct *kacpi_hotplug_wq;
  88EXPORT_SYMBOL(kacpi_hotplug_wq);
 
 
  89
  90/*
  91 * This list of permanent mappings is for memory that may be accessed from
  92 * interrupt context, where we can't do the ioremap().
  93 */
  94struct acpi_ioremap {
  95	struct list_head list;
  96	void __iomem *virt;
  97	acpi_physical_address phys;
  98	acpi_size size;
  99	unsigned long refcount;
 100};
 101
 102static LIST_HEAD(acpi_ioremaps);
 103static DEFINE_MUTEX(acpi_ioremap_lock);
 104
 105static void __init acpi_osi_setup_late(void);
 106
 107/*
 108 * The story of _OSI(Linux)
 109 *
 110 * From pre-history through Linux-2.6.22,
 111 * Linux responded TRUE upon a BIOS OSI(Linux) query.
 112 *
 113 * Unfortunately, reference BIOS writers got wind of this
 114 * and put OSI(Linux) in their example code, quickly exposing
 115 * this string as ill-conceived and opening the door to
 116 * an un-bounded number of BIOS incompatibilities.
 117 *
 118 * For example, OSI(Linux) was used on resume to re-POST a
 119 * video card on one system, because Linux at that time
 120 * could not do a speedy restore in its native driver.
 121 * But then upon gaining quick native restore capability,
 122 * Linux has no way to tell the BIOS to skip the time-consuming
 123 * POST -- putting Linux at a permanent performance disadvantage.
 124 * On another system, the BIOS writer used OSI(Linux)
 125 * to infer native OS support for IPMI!  On other systems,
 126 * OSI(Linux) simply got in the way of Linux claiming to
 127 * be compatible with other operating systems, exposing
 128 * BIOS issues such as skipped device initialization.
 129 *
 130 * So "Linux" turned out to be a really poor chose of
 131 * OSI string, and from Linux-2.6.23 onward we respond FALSE.
 132 *
 133 * BIOS writers should NOT query _OSI(Linux) on future systems.
 134 * Linux will complain on the console when it sees it, and return FALSE.
 135 * To get Linux to return TRUE for your system  will require
 136 * a kernel source update to add a DMI entry,
 137 * or boot with "acpi_osi=Linux"
 138 */
 139
 140static struct osi_linux {
 141	unsigned int	enable:1;
 142	unsigned int	dmi:1;
 143	unsigned int	cmdline:1;
 144} osi_linux = {0, 0, 0};
 145
 146static u32 acpi_osi_handler(acpi_string interface, u32 supported)
 147{
 148	if (!strcmp("Linux", interface)) {
 149
 150		printk_once(KERN_NOTICE FW_BUG PREFIX
 151			"BIOS _OSI(Linux) query %s%s\n",
 152			osi_linux.enable ? "honored" : "ignored",
 153			osi_linux.cmdline ? " via cmdline" :
 154			osi_linux.dmi ? " via DMI" : "");
 155	}
 156
 157	return supported;
 158}
 159
 160static void __init acpi_request_region (struct acpi_generic_address *gas,
 161	unsigned int length, char *desc)
 162{
 163	u64 addr;
 164
 165	/* Handle possible alignment issues */
 166	memcpy(&addr, &gas->address, sizeof(addr));
 167	if (!addr || !length)
 168		return;
 169
 170	/* Resources are never freed */
 171	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
 172		request_region(addr, length, desc);
 173	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
 174		request_mem_region(addr, length, desc);
 175}
 176
 177static int __init acpi_reserve_resources(void)
 178{
 179	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
 180		"ACPI PM1a_EVT_BLK");
 181
 182	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
 183		"ACPI PM1b_EVT_BLK");
 184
 185	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
 186		"ACPI PM1a_CNT_BLK");
 187
 188	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
 189		"ACPI PM1b_CNT_BLK");
 190
 191	if (acpi_gbl_FADT.pm_timer_length == 4)
 192		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
 193
 194	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
 195		"ACPI PM2_CNT_BLK");
 196
 197	/* Length of GPE blocks must be a non-negative multiple of 2 */
 198
 199	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
 200		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
 201			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
 202
 203	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
 204		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
 205			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
 206
 207	return 0;
 208}
 209device_initcall(acpi_reserve_resources);
 210
 211void acpi_os_printf(const char *fmt, ...)
 212{
 213	va_list args;
 214	va_start(args, fmt);
 215	acpi_os_vprintf(fmt, args);
 216	va_end(args);
 217}
 
 218
 219void acpi_os_vprintf(const char *fmt, va_list args)
 220{
 221	static char buffer[512];
 222
 223	vsprintf(buffer, fmt, args);
 224
 225#ifdef ENABLE_DEBUGGER
 226	if (acpi_in_debugger) {
 227		kdb_printf("%s", buffer);
 228	} else {
 229		printk(KERN_CONT "%s", buffer);
 
 
 
 230	}
 231#else
 232	printk(KERN_CONT "%s", buffer);
 
 
 
 
 
 233#endif
 234}
 235
 236#ifdef CONFIG_KEXEC
 237static unsigned long acpi_rsdp;
 238static int __init setup_acpi_rsdp(char *arg)
 239{
 240	acpi_rsdp = simple_strtoul(arg, NULL, 16);
 241	return 0;
 242}
 243early_param("acpi_rsdp", setup_acpi_rsdp);
 244#endif
 245
 246acpi_physical_address __init acpi_os_get_root_pointer(void)
 247{
 
 
 248#ifdef CONFIG_KEXEC
 249	if (acpi_rsdp)
 
 
 
 
 
 
 
 
 
 
 250		return acpi_rsdp;
 
 251#endif
 
 
 
 252
 253	if (efi_enabled) {
 254		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 255			return efi.acpi20;
 256		else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 257			return efi.acpi;
 258		else {
 259			printk(KERN_ERR PREFIX
 260			       "System description tables not found\n");
 261			return 0;
 262		}
 263	} else {
 264		acpi_physical_address pa = 0;
 265
 266		acpi_find_root_pointer(&pa);
 267		return pa;
 268	}
 
 
 269}
 270
 271/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 272static struct acpi_ioremap *
 273acpi_map_lookup(acpi_physical_address phys, acpi_size size)
 274{
 275	struct acpi_ioremap *map;
 276
 277	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
 278		if (map->phys <= phys &&
 279		    phys + size <= map->phys + map->size)
 280			return map;
 281
 282	return NULL;
 283}
 284
 285/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 286static void __iomem *
 287acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
 288{
 289	struct acpi_ioremap *map;
 290
 291	map = acpi_map_lookup(phys, size);
 292	if (map)
 293		return map->virt + (phys - map->phys);
 294
 295	return NULL;
 296}
 297
 298void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
 299{
 300	struct acpi_ioremap *map;
 301	void __iomem *virt = NULL;
 302
 303	mutex_lock(&acpi_ioremap_lock);
 304	map = acpi_map_lookup(phys, size);
 305	if (map) {
 306		virt = map->virt + (phys - map->phys);
 307		map->refcount++;
 308	}
 309	mutex_unlock(&acpi_ioremap_lock);
 310	return virt;
 311}
 312EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
 313
 314/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 315static struct acpi_ioremap *
 316acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
 317{
 318	struct acpi_ioremap *map;
 319
 320	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
 321		if (map->virt <= virt &&
 322		    virt + size <= map->virt + map->size)
 323			return map;
 324
 325	return NULL;
 326}
 327
 328#ifndef CONFIG_IA64
 329#define should_use_kmap(pfn)   page_is_ram(pfn)
 330#else
 331/* ioremap will take care of cache attributes */
 332#define should_use_kmap(pfn)   0
 
 
 333#endif
 334
 335static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
 336{
 337	unsigned long pfn;
 338
 339	pfn = pg_off >> PAGE_SHIFT;
 340	if (should_use_kmap(pfn)) {
 341		if (pg_sz > PAGE_SIZE)
 342			return NULL;
 343		return (void __iomem __force *)kmap(pfn_to_page(pfn));
 344	} else
 345		return acpi_os_ioremap(pg_off, pg_sz);
 346}
 347
 348static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
 349{
 350	unsigned long pfn;
 351
 352	pfn = pg_off >> PAGE_SHIFT;
 353	if (should_use_kmap(pfn))
 354		kunmap(pfn_to_page(pfn));
 355	else
 356		iounmap(vaddr);
 357}
 358
 359void __iomem *__init_refok
 360acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 361{
 362	struct acpi_ioremap *map;
 363	void __iomem *virt;
 364	acpi_physical_address pg_off;
 365	acpi_size pg_sz;
 366
 367	if (phys > ULONG_MAX) {
 368		printk(KERN_ERR PREFIX "Cannot map memory that high\n");
 369		return NULL;
 370	}
 371
 372	if (!acpi_gbl_permanent_mmap)
 373		return __acpi_map_table((unsigned long)phys, size);
 374
 375	mutex_lock(&acpi_ioremap_lock);
 376	/* Check if there's a suitable mapping already. */
 377	map = acpi_map_lookup(phys, size);
 378	if (map) {
 379		map->refcount++;
 380		goto out;
 381	}
 382
 383	map = kzalloc(sizeof(*map), GFP_KERNEL);
 384	if (!map) {
 385		mutex_unlock(&acpi_ioremap_lock);
 386		return NULL;
 387	}
 388
 389	pg_off = round_down(phys, PAGE_SIZE);
 390	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
 391	virt = acpi_map(pg_off, pg_sz);
 392	if (!virt) {
 393		mutex_unlock(&acpi_ioremap_lock);
 394		kfree(map);
 395		return NULL;
 396	}
 397
 398	INIT_LIST_HEAD(&map->list);
 399	map->virt = virt;
 400	map->phys = pg_off;
 401	map->size = pg_sz;
 402	map->refcount = 1;
 403
 404	list_add_tail_rcu(&map->list, &acpi_ioremaps);
 405
 406 out:
 407	mutex_unlock(&acpi_ioremap_lock);
 408	return map->virt + (phys - map->phys);
 409}
 
 
 
 
 
 
 410EXPORT_SYMBOL_GPL(acpi_os_map_memory);
 411
 412static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
 413{
 414	if (!--map->refcount)
 415		list_del_rcu(&map->list);
 416}
 417
 418static void acpi_os_map_cleanup(struct acpi_ioremap *map)
 419{
 420	if (!map->refcount) {
 421		synchronize_rcu();
 422		acpi_unmap(map->phys, map->virt);
 423		kfree(map);
 424	}
 425}
 426
 427void __ref acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 428{
 429	struct acpi_ioremap *map;
 430
 431	if (!acpi_gbl_permanent_mmap) {
 432		__acpi_unmap_table(virt, size);
 433		return;
 434	}
 435
 436	mutex_lock(&acpi_ioremap_lock);
 437	map = acpi_map_lookup_virt(virt, size);
 438	if (!map) {
 439		mutex_unlock(&acpi_ioremap_lock);
 440		WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
 441		return;
 442	}
 443	acpi_os_drop_map_ref(map);
 444	mutex_unlock(&acpi_ioremap_lock);
 445
 446	acpi_os_map_cleanup(map);
 447}
 448EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
 449
 450void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
 451{
 452	if (!acpi_gbl_permanent_mmap)
 453		__acpi_unmap_table(virt, size);
 454}
 
 455
 456int acpi_os_map_generic_address(struct acpi_generic_address *gas)
 457{
 458	u64 addr;
 459	void __iomem *virt;
 460
 461	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 462		return 0;
 463
 464	/* Handle possible alignment issues */
 465	memcpy(&addr, &gas->address, sizeof(addr));
 466	if (!addr || !gas->bit_width)
 467		return -EINVAL;
 468
 469	virt = acpi_os_map_memory(addr, gas->bit_width / 8);
 470	if (!virt)
 471		return -EIO;
 472
 473	return 0;
 474}
 475EXPORT_SYMBOL(acpi_os_map_generic_address);
 476
 477void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
 478{
 479	u64 addr;
 480	struct acpi_ioremap *map;
 481
 482	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 483		return;
 484
 485	/* Handle possible alignment issues */
 486	memcpy(&addr, &gas->address, sizeof(addr));
 487	if (!addr || !gas->bit_width)
 488		return;
 489
 490	mutex_lock(&acpi_ioremap_lock);
 491	map = acpi_map_lookup(addr, gas->bit_width / 8);
 492	if (!map) {
 493		mutex_unlock(&acpi_ioremap_lock);
 494		return;
 495	}
 496	acpi_os_drop_map_ref(map);
 497	mutex_unlock(&acpi_ioremap_lock);
 498
 499	acpi_os_map_cleanup(map);
 500}
 501EXPORT_SYMBOL(acpi_os_unmap_generic_address);
 502
 503#ifdef ACPI_FUTURE_USAGE
 504acpi_status
 505acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
 506{
 507	if (!phys || !virt)
 508		return AE_BAD_PARAMETER;
 509
 510	*phys = virt_to_phys(virt);
 511
 512	return AE_OK;
 513}
 514#endif
 515
 
 
 
 
 
 
 
 
 
 
 
 
 
 516#define ACPI_MAX_OVERRIDE_LEN 100
 517
 518static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
 519
 520acpi_status
 521acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
 522			    acpi_string * new_val)
 523{
 524	if (!init_val || !new_val)
 525		return AE_BAD_PARAMETER;
 526
 527	*new_val = NULL;
 528	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
 529		printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
 530		       acpi_os_name);
 531		*new_val = acpi_os_name;
 532	}
 533
 534	return AE_OK;
 535}
 
 
 536
 537acpi_status
 538acpi_os_table_override(struct acpi_table_header * existing_table,
 539		       struct acpi_table_header ** new_table)
 540{
 541	if (!existing_table || !new_table)
 542		return AE_BAD_PARAMETER;
 543
 544	*new_table = NULL;
 545
 546#ifdef CONFIG_ACPI_CUSTOM_DSDT
 547	if (strncmp(existing_table->signature, "DSDT", 4) == 0)
 548		*new_table = (struct acpi_table_header *)AmlCode;
 549#endif
 550	if (*new_table != NULL) {
 551		printk(KERN_WARNING PREFIX "Override [%4.4s-%8.8s], "
 552			   "this is unsafe: tainting kernel\n",
 553		       existing_table->signature,
 554		       existing_table->oem_table_id);
 555		add_taint(TAINT_OVERRIDDEN_ACPI_TABLE);
 556	}
 557	return AE_OK;
 558}
 559
 560acpi_status
 561acpi_os_physical_table_override(struct acpi_table_header *existing_table,
 562				acpi_physical_address * new_address,
 563				u32 *new_table_length)
 564{
 565	return AE_SUPPORT;
 566}
 567
 568
 569static irqreturn_t acpi_irq(int irq, void *dev_id)
 570{
 571	u32 handled;
 572
 573	handled = (*acpi_irq_handler) (acpi_irq_context);
 574
 575	if (handled) {
 576		acpi_irq_handled++;
 577		return IRQ_HANDLED;
 578	} else {
 579		acpi_irq_not_handled++;
 580		return IRQ_NONE;
 581	}
 582}
 583
 584acpi_status
 585acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
 586				  void *context)
 587{
 588	unsigned int irq;
 589
 590	acpi_irq_stats_init();
 591
 592	/*
 593	 * ACPI interrupts different from the SCI in our copy of the FADT are
 594	 * not supported.
 595	 */
 596	if (gsi != acpi_gbl_FADT.sci_interrupt)
 597		return AE_BAD_PARAMETER;
 598
 599	if (acpi_irq_handler)
 600		return AE_ALREADY_ACQUIRED;
 601
 602	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
 603		printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
 604		       gsi);
 605		return AE_OK;
 606	}
 607
 608	acpi_irq_handler = handler;
 609	acpi_irq_context = context;
 610	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
 611		printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
 612		acpi_irq_handler = NULL;
 613		return AE_NOT_ACQUIRED;
 614	}
 
 615
 616	return AE_OK;
 617}
 618
 619acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
 620{
 621	if (irq != acpi_gbl_FADT.sci_interrupt)
 622		return AE_BAD_PARAMETER;
 623
 624	free_irq(irq, acpi_irq);
 625	acpi_irq_handler = NULL;
 
 626
 627	return AE_OK;
 628}
 629
 630/*
 631 * Running in interpreter thread context, safe to sleep
 632 */
 633
 634void acpi_os_sleep(u64 ms)
 635{
 636	schedule_timeout_interruptible(msecs_to_jiffies(ms));
 637}
 638
 639void acpi_os_stall(u32 us)
 640{
 641	while (us) {
 642		u32 delay = 1000;
 643
 644		if (delay > us)
 645			delay = us;
 646		udelay(delay);
 647		touch_nmi_watchdog();
 648		us -= delay;
 649	}
 650}
 651
 652/*
 653 * Support ACPI 3.0 AML Timer operand
 654 * Returns 64-bit free-running, monotonically increasing timer
 655 * with 100ns granularity
 
 
 
 
 656 */
 657u64 acpi_os_get_timer(void)
 658{
 659	static u64 t;
 660
 661#ifdef	CONFIG_HPET
 662	/* TBD: use HPET if available */
 663#endif
 664
 665#ifdef	CONFIG_X86_PM_TIMER
 666	/* TBD: default to PM timer if HPET was not available */
 667#endif
 668	if (!t)
 669		printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
 670
 671	return ++t;
 672}
 673
 674acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
 675{
 676	u32 dummy;
 677
 678	if (!value)
 679		value = &dummy;
 680
 681	*value = 0;
 682	if (width <= 8) {
 683		*(u8 *) value = inb(port);
 684	} else if (width <= 16) {
 685		*(u16 *) value = inw(port);
 686	} else if (width <= 32) {
 687		*(u32 *) value = inl(port);
 688	} else {
 689		BUG();
 690	}
 691
 692	return AE_OK;
 693}
 694
 695EXPORT_SYMBOL(acpi_os_read_port);
 696
 697acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
 698{
 699	if (width <= 8) {
 700		outb(value, port);
 701	} else if (width <= 16) {
 702		outw(value, port);
 703	} else if (width <= 32) {
 704		outl(value, port);
 705	} else {
 706		BUG();
 707	}
 708
 709	return AE_OK;
 710}
 711
 712EXPORT_SYMBOL(acpi_os_write_port);
 713
 714#ifdef readq
 715static inline u64 read64(const volatile void __iomem *addr)
 716{
 717	return readq(addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 718}
 719#else
 720static inline u64 read64(const volatile void __iomem *addr)
 721{
 722	u64 l, h;
 723	l = readl(addr);
 724	h = readl(addr+4);
 725	return l | (h << 32);
 726}
 727#endif
 728
 729acpi_status
 730acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
 731{
 732	void __iomem *virt_addr;
 733	unsigned int size = width / 8;
 734	bool unmap = false;
 735	u64 dummy;
 
 736
 737	rcu_read_lock();
 738	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 739	if (!virt_addr) {
 740		rcu_read_unlock();
 741		virt_addr = acpi_os_ioremap(phys_addr, size);
 742		if (!virt_addr)
 743			return AE_BAD_ADDRESS;
 744		unmap = true;
 745	}
 746
 747	if (!value)
 748		value = &dummy;
 749
 750	switch (width) {
 751	case 8:
 752		*(u8 *) value = readb(virt_addr);
 753		break;
 754	case 16:
 755		*(u16 *) value = readw(virt_addr);
 756		break;
 757	case 32:
 758		*(u32 *) value = readl(virt_addr);
 759		break;
 760	case 64:
 761		*(u64 *) value = read64(virt_addr);
 762		break;
 763	default:
 764		BUG();
 765	}
 766
 767	if (unmap)
 768		iounmap(virt_addr);
 769	else
 770		rcu_read_unlock();
 771
 772	return AE_OK;
 773}
 774
 775#ifdef writeq
 776static inline void write64(u64 val, volatile void __iomem *addr)
 777{
 778	writeq(val, addr);
 779}
 780#else
 781static inline void write64(u64 val, volatile void __iomem *addr)
 782{
 783	writel(val, addr);
 784	writel(val>>32, addr+4);
 785}
 786#endif
 787
 788acpi_status
 789acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
 790{
 791	void __iomem *virt_addr;
 792	unsigned int size = width / 8;
 793	bool unmap = false;
 794
 795	rcu_read_lock();
 796	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 797	if (!virt_addr) {
 798		rcu_read_unlock();
 799		virt_addr = acpi_os_ioremap(phys_addr, size);
 800		if (!virt_addr)
 801			return AE_BAD_ADDRESS;
 802		unmap = true;
 803	}
 804
 805	switch (width) {
 806	case 8:
 807		writeb(value, virt_addr);
 808		break;
 809	case 16:
 810		writew(value, virt_addr);
 811		break;
 812	case 32:
 813		writel(value, virt_addr);
 814		break;
 815	case 64:
 816		write64(value, virt_addr);
 817		break;
 818	default:
 819		BUG();
 820	}
 821
 822	if (unmap)
 823		iounmap(virt_addr);
 824	else
 825		rcu_read_unlock();
 826
 827	return AE_OK;
 828}
 829
 
 830acpi_status
 831acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 832			       u64 *value, u32 width)
 833{
 834	int result, size;
 835	u32 value32;
 836
 837	if (!value)
 838		return AE_BAD_PARAMETER;
 839
 840	switch (width) {
 841	case 8:
 842		size = 1;
 843		break;
 844	case 16:
 845		size = 2;
 846		break;
 847	case 32:
 848		size = 4;
 849		break;
 850	default:
 851		return AE_ERROR;
 852	}
 853
 854	result = raw_pci_read(pci_id->segment, pci_id->bus,
 855				PCI_DEVFN(pci_id->device, pci_id->function),
 856				reg, size, &value32);
 857	*value = value32;
 858
 859	return (result ? AE_ERROR : AE_OK);
 860}
 861
 862acpi_status
 863acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 864				u64 value, u32 width)
 865{
 866	int result, size;
 867
 868	switch (width) {
 869	case 8:
 870		size = 1;
 871		break;
 872	case 16:
 873		size = 2;
 874		break;
 875	case 32:
 876		size = 4;
 877		break;
 878	default:
 879		return AE_ERROR;
 880	}
 881
 882	result = raw_pci_write(pci_id->segment, pci_id->bus,
 883				PCI_DEVFN(pci_id->device, pci_id->function),
 884				reg, size, value);
 885
 886	return (result ? AE_ERROR : AE_OK);
 887}
 
 888
 889static void acpi_os_execute_deferred(struct work_struct *work)
 890{
 891	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
 892
 893	if (dpc->wait)
 894		acpi_os_wait_events_complete(NULL);
 895
 896	dpc->function(dpc->context);
 897	kfree(dpc);
 898}
 899
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 900/*******************************************************************************
 901 *
 902 * FUNCTION:    acpi_os_execute
 903 *
 904 * PARAMETERS:  Type               - Type of the callback
 905 *              Function           - Function to be executed
 906 *              Context            - Function parameters
 907 *
 908 * RETURN:      Status
 909 *
 910 * DESCRIPTION: Depending on type, either queues function for deferred execution or
 911 *              immediately executes function on a separate thread.
 912 *
 913 ******************************************************************************/
 914
 915static acpi_status __acpi_os_execute(acpi_execute_type type,
 916	acpi_osd_exec_callback function, void *context, int hp)
 917{
 918	acpi_status status = AE_OK;
 919	struct acpi_os_dpc *dpc;
 920	struct workqueue_struct *queue;
 921	int ret;
 922	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
 923			  "Scheduling function [%p(%p)] for deferred execution.\n",
 924			  function, context));
 925
 
 
 
 
 
 
 
 
 
 926	/*
 927	 * Allocate/initialize DPC structure.  Note that this memory will be
 928	 * freed by the callee.  The kernel handles the work_struct list  in a
 929	 * way that allows us to also free its memory inside the callee.
 930	 * Because we may want to schedule several tasks with different
 931	 * parameters we can't use the approach some kernel code uses of
 932	 * having a static work_struct.
 933	 */
 934
 935	dpc = kmalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
 936	if (!dpc)
 937		return AE_NO_MEMORY;
 938
 939	dpc->function = function;
 940	dpc->context = context;
 941
 942	/*
 943	 * We can't run hotplug code in keventd_wq/kacpid_wq/kacpid_notify_wq
 944	 * because the hotplug code may call driver .remove() functions,
 945	 * which invoke flush_scheduled_work/acpi_os_wait_events_complete
 946	 * to flush these workqueues.
 947	 */
 948	queue = hp ? kacpi_hotplug_wq :
 949		(type == OSL_NOTIFY_HANDLER ? kacpi_notify_wq : kacpid_wq);
 950	dpc->wait = hp ? 1 : 0;
 951
 952	if (queue == kacpi_hotplug_wq)
 953		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
 954	else if (queue == kacpi_notify_wq)
 955		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
 956	else
 957		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
 
 
 
 
 
 
 
 958
 959	/*
 960	 * On some machines, a software-initiated SMI causes corruption unless
 961	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
 962	 * typically it's done in GPE-related methods that are run via
 963	 * workqueues, so we can avoid the known corruption cases by always
 964	 * queueing on CPU 0.
 965	 */
 966	ret = queue_work_on(0, queue, &dpc->work);
 967
 968	if (!ret) {
 969		printk(KERN_ERR PREFIX
 970			  "Call to queue_work() failed.\n");
 971		status = AE_ERROR;
 
 
 
 972		kfree(dpc);
 973	}
 974	return status;
 975}
 
 976
 977acpi_status acpi_os_execute(acpi_execute_type type,
 978			    acpi_osd_exec_callback function, void *context)
 979{
 980	return __acpi_os_execute(type, function, context, 0);
 
 
 
 
 
 
 
 981}
 982EXPORT_SYMBOL(acpi_os_execute);
 
 
 
 
 
 
 983
 984acpi_status acpi_os_hotplug_execute(acpi_osd_exec_callback function,
 985	void *context)
 986{
 987	return __acpi_os_execute(0, function, context, 1);
 
 
 
 
 988}
 989
 990void acpi_os_wait_events_complete(void *context)
 991{
 992	flush_workqueue(kacpid_wq);
 993	flush_workqueue(kacpi_notify_wq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 994}
 995
 996EXPORT_SYMBOL(acpi_os_wait_events_complete);
 
 
 
 997
 998acpi_status
 999acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1000{
1001	struct semaphore *sem = NULL;
1002
1003	sem = acpi_os_allocate(sizeof(struct semaphore));
1004	if (!sem)
1005		return AE_NO_MEMORY;
1006	memset(sem, 0, sizeof(struct semaphore));
1007
1008	sema_init(sem, initial_units);
1009
1010	*handle = (acpi_handle *) sem;
1011
1012	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1013			  *handle, initial_units));
1014
1015	return AE_OK;
1016}
1017
1018/*
1019 * TODO: A better way to delete semaphores?  Linux doesn't have a
1020 * 'delete_semaphore()' function -- may result in an invalid
1021 * pointer dereference for non-synchronized consumers.	Should
1022 * we at least check for blocked threads and signal/cancel them?
1023 */
1024
1025acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1026{
1027	struct semaphore *sem = (struct semaphore *)handle;
1028
1029	if (!sem)
1030		return AE_BAD_PARAMETER;
1031
1032	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1033
1034	BUG_ON(!list_empty(&sem->wait_list));
1035	kfree(sem);
1036	sem = NULL;
1037
1038	return AE_OK;
1039}
1040
1041/*
1042 * TODO: Support for units > 1?
1043 */
1044acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1045{
1046	acpi_status status = AE_OK;
1047	struct semaphore *sem = (struct semaphore *)handle;
1048	long jiffies;
1049	int ret = 0;
1050
 
 
 
1051	if (!sem || (units < 1))
1052		return AE_BAD_PARAMETER;
1053
1054	if (units > 1)
1055		return AE_SUPPORT;
1056
1057	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1058			  handle, units, timeout));
1059
1060	if (timeout == ACPI_WAIT_FOREVER)
1061		jiffies = MAX_SCHEDULE_TIMEOUT;
1062	else
1063		jiffies = msecs_to_jiffies(timeout);
1064	
1065	ret = down_timeout(sem, jiffies);
1066	if (ret)
1067		status = AE_TIME;
1068
1069	if (ACPI_FAILURE(status)) {
1070		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1071				  "Failed to acquire semaphore[%p|%d|%d], %s",
1072				  handle, units, timeout,
1073				  acpi_format_exception(status)));
1074	} else {
1075		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1076				  "Acquired semaphore[%p|%d|%d]", handle,
1077				  units, timeout));
1078	}
1079
1080	return status;
1081}
1082
1083/*
1084 * TODO: Support for units > 1?
1085 */
1086acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1087{
1088	struct semaphore *sem = (struct semaphore *)handle;
1089
 
 
 
1090	if (!sem || (units < 1))
1091		return AE_BAD_PARAMETER;
1092
1093	if (units > 1)
1094		return AE_SUPPORT;
1095
1096	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1097			  units));
1098
1099	up(sem);
1100
1101	return AE_OK;
1102}
1103
1104#ifdef ACPI_FUTURE_USAGE
1105u32 acpi_os_get_line(char *buffer)
1106{
1107
1108#ifdef ENABLE_DEBUGGER
1109	if (acpi_in_debugger) {
1110		u32 chars;
1111
1112		kdb_read(buffer, sizeof(line_buf));
1113
1114		/* remove the CR kdb includes */
1115		chars = strlen(buffer) - 1;
1116		buffer[chars] = '\0';
1117	}
 
 
 
 
 
 
 
 
1118#endif
1119
1120	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1121}
1122#endif				/*  ACPI_FUTURE_USAGE  */
1123
1124acpi_status acpi_os_signal(u32 function, void *info)
1125{
1126	switch (function) {
1127	case ACPI_SIGNAL_FATAL:
1128		printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1129		break;
1130	case ACPI_SIGNAL_BREAKPOINT:
1131		/*
1132		 * AML Breakpoint
1133		 * ACPI spec. says to treat it as a NOP unless
1134		 * you are debugging.  So if/when we integrate
1135		 * AML debugger into the kernel debugger its
1136		 * hook will go here.  But until then it is
1137		 * not useful to print anything on breakpoints.
1138		 */
1139		break;
1140	default:
1141		break;
1142	}
1143
1144	return AE_OK;
1145}
1146
1147static int __init acpi_os_name_setup(char *str)
1148{
1149	char *p = acpi_os_name;
1150	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1151
1152	if (!str || !*str)
1153		return 0;
1154
1155	for (; count-- && str && *str; str++) {
1156		if (isalnum(*str) || *str == ' ' || *str == ':')
1157			*p++ = *str;
1158		else if (*str == '\'' || *str == '"')
1159			continue;
1160		else
1161			break;
1162	}
1163	*p = 0;
1164
1165	return 1;
1166
1167}
1168
1169__setup("acpi_os_name=", acpi_os_name_setup);
1170
1171#define	OSI_STRING_LENGTH_MAX 64	/* arbitrary */
1172#define	OSI_STRING_ENTRIES_MAX 16	/* arbitrary */
1173
1174struct osi_setup_entry {
1175	char string[OSI_STRING_LENGTH_MAX];
1176	bool enable;
1177};
1178
1179static struct osi_setup_entry __initdata
1180		osi_setup_entries[OSI_STRING_ENTRIES_MAX] = {
1181	{"Module Device", true},
1182	{"Processor Device", true},
1183	{"3.0 _SCP Extensions", true},
1184	{"Processor Aggregator Device", true},
1185};
1186
1187void __init acpi_osi_setup(char *str)
1188{
1189	struct osi_setup_entry *osi;
1190	bool enable = true;
1191	int i;
1192
1193	if (!acpi_gbl_create_osi_method)
1194		return;
1195
1196	if (str == NULL || *str == '\0') {
1197		printk(KERN_INFO PREFIX "_OSI method disabled\n");
1198		acpi_gbl_create_osi_method = FALSE;
1199		return;
1200	}
1201
1202	if (*str == '!') {
1203		str++;
1204		enable = false;
1205	}
1206
1207	for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1208		osi = &osi_setup_entries[i];
1209		if (!strcmp(osi->string, str)) {
1210			osi->enable = enable;
1211			break;
1212		} else if (osi->string[0] == '\0') {
1213			osi->enable = enable;
1214			strncpy(osi->string, str, OSI_STRING_LENGTH_MAX);
1215			break;
1216		}
1217	}
1218}
1219
1220static void __init set_osi_linux(unsigned int enable)
1221{
1222	if (osi_linux.enable != enable)
1223		osi_linux.enable = enable;
1224
1225	if (osi_linux.enable)
1226		acpi_osi_setup("Linux");
1227	else
1228		acpi_osi_setup("!Linux");
1229
1230	return;
1231}
1232
1233static void __init acpi_cmdline_osi_linux(unsigned int enable)
1234{
1235	osi_linux.cmdline = 1;	/* cmdline set the default and override DMI */
1236	osi_linux.dmi = 0;
1237	set_osi_linux(enable);
1238
1239	return;
1240}
1241
1242void __init acpi_dmi_osi_linux(int enable, const struct dmi_system_id *d)
1243{
1244	printk(KERN_NOTICE PREFIX "DMI detected: %s\n", d->ident);
1245
1246	if (enable == -1)
1247		return;
1248
1249	osi_linux.dmi = 1;	/* DMI knows that this box asks OSI(Linux) */
1250	set_osi_linux(enable);
1251
1252	return;
1253}
1254
1255/*
1256 * Modify the list of "OS Interfaces" reported to BIOS via _OSI
1257 *
1258 * empty string disables _OSI
1259 * string starting with '!' disables that string
1260 * otherwise string is added to list, augmenting built-in strings
1261 */
1262static void __init acpi_osi_setup_late(void)
1263{
1264	struct osi_setup_entry *osi;
1265	char *str;
1266	int i;
1267	acpi_status status;
1268
1269	for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1270		osi = &osi_setup_entries[i];
1271		str = osi->string;
1272
1273		if (*str == '\0')
1274			break;
1275		if (osi->enable) {
1276			status = acpi_install_interface(str);
1277
1278			if (ACPI_SUCCESS(status))
1279				printk(KERN_INFO PREFIX "Added _OSI(%s)\n", str);
1280		} else {
1281			status = acpi_remove_interface(str);
1282
1283			if (ACPI_SUCCESS(status))
1284				printk(KERN_INFO PREFIX "Deleted _OSI(%s)\n", str);
1285		}
1286	}
1287}
1288
1289static int __init osi_setup(char *str)
1290{
1291	if (str && !strcmp("Linux", str))
1292		acpi_cmdline_osi_linux(1);
1293	else if (str && !strcmp("!Linux", str))
1294		acpi_cmdline_osi_linux(0);
1295	else
1296		acpi_osi_setup(str);
1297
1298	return 1;
1299}
1300
1301__setup("acpi_osi=", osi_setup);
1302
1303/* enable serialization to combat AE_ALREADY_EXISTS errors */
1304static int __init acpi_serialize_setup(char *str)
1305{
1306	printk(KERN_INFO PREFIX "serialize enabled\n");
1307
1308	acpi_gbl_all_methods_serialized = TRUE;
1309
1310	return 1;
1311}
1312
1313__setup("acpi_serialize", acpi_serialize_setup);
1314
1315/* Check of resource interference between native drivers and ACPI
1316 * OperationRegions (SystemIO and System Memory only).
1317 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1318 * in arbitrary AML code and can interfere with legacy drivers.
1319 * acpi_enforce_resources= can be set to:
1320 *
1321 *   - strict (default) (2)
1322 *     -> further driver trying to access the resources will not load
1323 *   - lax              (1)
1324 *     -> further driver trying to access the resources will load, but you
1325 *     get a system message that something might go wrong...
1326 *
1327 *   - no               (0)
1328 *     -> ACPI Operation Region resources will not be registered
1329 *
1330 */
1331#define ENFORCE_RESOURCES_STRICT 2
1332#define ENFORCE_RESOURCES_LAX    1
1333#define ENFORCE_RESOURCES_NO     0
1334
1335static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1336
1337static int __init acpi_enforce_resources_setup(char *str)
1338{
1339	if (str == NULL || *str == '\0')
1340		return 0;
1341
1342	if (!strcmp("strict", str))
1343		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1344	else if (!strcmp("lax", str))
1345		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1346	else if (!strcmp("no", str))
1347		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1348
1349	return 1;
1350}
1351
1352__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1353
1354/* Check for resource conflicts between ACPI OperationRegions and native
1355 * drivers */
1356int acpi_check_resource_conflict(const struct resource *res)
1357{
1358	acpi_adr_space_type space_id;
1359	acpi_size length;
1360	u8 warn = 0;
1361	int clash = 0;
1362
1363	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1364		return 0;
1365	if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1366		return 0;
1367
1368	if (res->flags & IORESOURCE_IO)
1369		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1370	else
1371		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1372
1373	length = res->end - res->start + 1;
1374	if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1375		warn = 1;
1376	clash = acpi_check_address_range(space_id, res->start, length, warn);
1377
1378	if (clash) {
1379		if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1380			if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1381				printk(KERN_NOTICE "ACPI: This conflict may"
1382				       " cause random problems and system"
1383				       " instability\n");
1384			printk(KERN_INFO "ACPI: If an ACPI driver is available"
1385			       " for this device, you should use it instead of"
1386			       " the native driver\n");
1387		}
1388		if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1389			return -EBUSY;
1390	}
1391	return 0;
1392}
1393EXPORT_SYMBOL(acpi_check_resource_conflict);
1394
1395int acpi_check_region(resource_size_t start, resource_size_t n,
1396		      const char *name)
1397{
1398	struct resource res = {
1399		.start = start,
1400		.end   = start + n - 1,
1401		.name  = name,
1402		.flags = IORESOURCE_IO,
1403	};
1404
1405	return acpi_check_resource_conflict(&res);
1406}
1407EXPORT_SYMBOL(acpi_check_region);
1408
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1409/*
1410 * Let drivers know whether the resource checks are effective
1411 */
1412int acpi_resources_are_enforced(void)
1413{
1414	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1415}
1416EXPORT_SYMBOL(acpi_resources_are_enforced);
1417
1418/*
1419 * Deallocate the memory for a spinlock.
1420 */
1421void acpi_os_delete_lock(acpi_spinlock handle)
1422{
1423	ACPI_FREE(handle);
1424}
1425
1426/*
1427 * Acquire a spinlock.
1428 *
1429 * handle is a pointer to the spinlock_t.
1430 */
1431
1432acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1433{
1434	acpi_cpu_flags flags;
1435	spin_lock_irqsave(lockp, flags);
1436	return flags;
1437}
1438
1439/*
1440 * Release a spinlock. See above.
1441 */
1442
1443void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1444{
1445	spin_unlock_irqrestore(lockp, flags);
1446}
1447
1448#ifndef ACPI_USE_LOCAL_CACHE
1449
1450/*******************************************************************************
1451 *
1452 * FUNCTION:    acpi_os_create_cache
1453 *
1454 * PARAMETERS:  name      - Ascii name for the cache
1455 *              size      - Size of each cached object
1456 *              depth     - Maximum depth of the cache (in objects) <ignored>
1457 *              cache     - Where the new cache object is returned
1458 *
1459 * RETURN:      status
1460 *
1461 * DESCRIPTION: Create a cache object
1462 *
1463 ******************************************************************************/
1464
1465acpi_status
1466acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1467{
1468	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1469	if (*cache == NULL)
1470		return AE_ERROR;
1471	else
1472		return AE_OK;
1473}
1474
1475/*******************************************************************************
1476 *
1477 * FUNCTION:    acpi_os_purge_cache
1478 *
1479 * PARAMETERS:  Cache           - Handle to cache object
1480 *
1481 * RETURN:      Status
1482 *
1483 * DESCRIPTION: Free all objects within the requested cache.
1484 *
1485 ******************************************************************************/
1486
1487acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1488{
1489	kmem_cache_shrink(cache);
1490	return (AE_OK);
1491}
1492
1493/*******************************************************************************
1494 *
1495 * FUNCTION:    acpi_os_delete_cache
1496 *
1497 * PARAMETERS:  Cache           - Handle to cache object
1498 *
1499 * RETURN:      Status
1500 *
1501 * DESCRIPTION: Free all objects within the requested cache and delete the
1502 *              cache object.
1503 *
1504 ******************************************************************************/
1505
1506acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1507{
1508	kmem_cache_destroy(cache);
1509	return (AE_OK);
1510}
1511
1512/*******************************************************************************
1513 *
1514 * FUNCTION:    acpi_os_release_object
1515 *
1516 * PARAMETERS:  Cache       - Handle to cache object
1517 *              Object      - The object to be released
1518 *
1519 * RETURN:      None
1520 *
1521 * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1522 *              the object is deleted.
1523 *
1524 ******************************************************************************/
1525
1526acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1527{
1528	kmem_cache_free(cache, object);
1529	return (AE_OK);
1530}
1531#endif
1532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1533acpi_status __init acpi_os_initialize(void)
1534{
1535	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1536	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1537	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1538	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
 
 
 
 
 
 
 
 
 
 
 
1539
1540	return AE_OK;
1541}
1542
1543acpi_status __init acpi_os_initialize1(void)
1544{
1545	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1546	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1547	kacpi_hotplug_wq = alloc_workqueue("kacpi_hotplug", 0, 1);
1548	BUG_ON(!kacpid_wq);
1549	BUG_ON(!kacpi_notify_wq);
1550	BUG_ON(!kacpi_hotplug_wq);
1551	acpi_install_interface_handler(acpi_osi_handler);
1552	acpi_osi_setup_late();
1553	return AE_OK;
1554}
1555
1556acpi_status acpi_os_terminate(void)
1557{
1558	if (acpi_irq_handler) {
1559		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1560						 acpi_irq_handler);
1561	}
1562
1563	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1564	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1565	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1566	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
 
 
1567
1568	destroy_workqueue(kacpid_wq);
1569	destroy_workqueue(kacpi_notify_wq);
1570	destroy_workqueue(kacpi_hotplug_wq);
1571
1572	return AE_OK;
1573}
1574
1575acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1576				  u32 pm1b_control)
1577{
1578	int rc = 0;
1579	if (__acpi_os_prepare_sleep)
1580		rc = __acpi_os_prepare_sleep(sleep_state,
1581					     pm1a_control, pm1b_control);
1582	if (rc < 0)
1583		return AE_ERROR;
1584	else if (rc > 0)
1585		return AE_CTRL_SKIP;
1586
1587	return AE_OK;
1588}
1589
1590void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1591			       u32 pm1a_ctrl, u32 pm1b_ctrl))
1592{
1593	__acpi_os_prepare_sleep = func;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1594}