Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * This file contains the default values for the operation of the
10 * Linux VM subsystem. Fine-tuning documentation can be found in
11 * Documentation/admin-guide/sysctl/vm.rst.
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17#include <linux/mm.h>
18#include <linux/sched.h>
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/mman.h>
22#include <linux/pagemap.h>
23#include <linux/pagevec.h>
24#include <linux/init.h>
25#include <linux/export.h>
26#include <linux/mm_inline.h>
27#include <linux/percpu_counter.h>
28#include <linux/memremap.h>
29#include <linux/percpu.h>
30#include <linux/cpu.h>
31#include <linux/notifier.h>
32#include <linux/backing-dev.h>
33#include <linux/memcontrol.h>
34#include <linux/gfp.h>
35#include <linux/uio.h>
36#include <linux/hugetlb.h>
37#include <linux/page_idle.h>
38
39#include "internal.h"
40
41#define CREATE_TRACE_POINTS
42#include <trace/events/pagemap.h>
43
44/* How many pages do we try to swap or page in/out together? */
45int page_cluster;
46
47static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
48static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
49static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
50static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
51static DEFINE_PER_CPU(struct pagevec, lru_lazyfree_pvecs);
52#ifdef CONFIG_SMP
53static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
54#endif
55
56/*
57 * This path almost never happens for VM activity - pages are normally
58 * freed via pagevecs. But it gets used by networking.
59 */
60static void __page_cache_release(struct page *page)
61{
62 if (PageLRU(page)) {
63 pg_data_t *pgdat = page_pgdat(page);
64 struct lruvec *lruvec;
65 unsigned long flags;
66
67 spin_lock_irqsave(&pgdat->lru_lock, flags);
68 lruvec = mem_cgroup_page_lruvec(page, pgdat);
69 VM_BUG_ON_PAGE(!PageLRU(page), page);
70 __ClearPageLRU(page);
71 del_page_from_lru_list(page, lruvec, page_off_lru(page));
72 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
73 }
74 __ClearPageWaiters(page);
75}
76
77static void __put_single_page(struct page *page)
78{
79 __page_cache_release(page);
80 mem_cgroup_uncharge(page);
81 free_unref_page(page);
82}
83
84static void __put_compound_page(struct page *page)
85{
86 compound_page_dtor *dtor;
87
88 /*
89 * __page_cache_release() is supposed to be called for thp, not for
90 * hugetlb. This is because hugetlb page does never have PageLRU set
91 * (it's never listed to any LRU lists) and no memcg routines should
92 * be called for hugetlb (it has a separate hugetlb_cgroup.)
93 */
94 if (!PageHuge(page))
95 __page_cache_release(page);
96 dtor = get_compound_page_dtor(page);
97 (*dtor)(page);
98}
99
100void __put_page(struct page *page)
101{
102 if (is_zone_device_page(page)) {
103 put_dev_pagemap(page->pgmap);
104
105 /*
106 * The page belongs to the device that created pgmap. Do
107 * not return it to page allocator.
108 */
109 return;
110 }
111
112 if (unlikely(PageCompound(page)))
113 __put_compound_page(page);
114 else
115 __put_single_page(page);
116}
117EXPORT_SYMBOL(__put_page);
118
119/**
120 * put_pages_list() - release a list of pages
121 * @pages: list of pages threaded on page->lru
122 *
123 * Release a list of pages which are strung together on page.lru. Currently
124 * used by read_cache_pages() and related error recovery code.
125 */
126void put_pages_list(struct list_head *pages)
127{
128 while (!list_empty(pages)) {
129 struct page *victim;
130
131 victim = lru_to_page(pages);
132 list_del(&victim->lru);
133 put_page(victim);
134 }
135}
136EXPORT_SYMBOL(put_pages_list);
137
138/*
139 * get_kernel_pages() - pin kernel pages in memory
140 * @kiov: An array of struct kvec structures
141 * @nr_segs: number of segments to pin
142 * @write: pinning for read/write, currently ignored
143 * @pages: array that receives pointers to the pages pinned.
144 * Should be at least nr_segs long.
145 *
146 * Returns number of pages pinned. This may be fewer than the number
147 * requested. If nr_pages is 0 or negative, returns 0. If no pages
148 * were pinned, returns -errno. Each page returned must be released
149 * with a put_page() call when it is finished with.
150 */
151int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
152 struct page **pages)
153{
154 int seg;
155
156 for (seg = 0; seg < nr_segs; seg++) {
157 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
158 return seg;
159
160 pages[seg] = kmap_to_page(kiov[seg].iov_base);
161 get_page(pages[seg]);
162 }
163
164 return seg;
165}
166EXPORT_SYMBOL_GPL(get_kernel_pages);
167
168/*
169 * get_kernel_page() - pin a kernel page in memory
170 * @start: starting kernel address
171 * @write: pinning for read/write, currently ignored
172 * @pages: array that receives pointer to the page pinned.
173 * Must be at least nr_segs long.
174 *
175 * Returns 1 if page is pinned. If the page was not pinned, returns
176 * -errno. The page returned must be released with a put_page() call
177 * when it is finished with.
178 */
179int get_kernel_page(unsigned long start, int write, struct page **pages)
180{
181 const struct kvec kiov = {
182 .iov_base = (void *)start,
183 .iov_len = PAGE_SIZE
184 };
185
186 return get_kernel_pages(&kiov, 1, write, pages);
187}
188EXPORT_SYMBOL_GPL(get_kernel_page);
189
190static void pagevec_lru_move_fn(struct pagevec *pvec,
191 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
192 void *arg)
193{
194 int i;
195 struct pglist_data *pgdat = NULL;
196 struct lruvec *lruvec;
197 unsigned long flags = 0;
198
199 for (i = 0; i < pagevec_count(pvec); i++) {
200 struct page *page = pvec->pages[i];
201 struct pglist_data *pagepgdat = page_pgdat(page);
202
203 if (pagepgdat != pgdat) {
204 if (pgdat)
205 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
206 pgdat = pagepgdat;
207 spin_lock_irqsave(&pgdat->lru_lock, flags);
208 }
209
210 lruvec = mem_cgroup_page_lruvec(page, pgdat);
211 (*move_fn)(page, lruvec, arg);
212 }
213 if (pgdat)
214 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
215 release_pages(pvec->pages, pvec->nr);
216 pagevec_reinit(pvec);
217}
218
219static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
220 void *arg)
221{
222 int *pgmoved = arg;
223
224 if (PageLRU(page) && !PageUnevictable(page)) {
225 del_page_from_lru_list(page, lruvec, page_lru(page));
226 ClearPageActive(page);
227 add_page_to_lru_list_tail(page, lruvec, page_lru(page));
228 (*pgmoved)++;
229 }
230}
231
232/*
233 * pagevec_move_tail() must be called with IRQ disabled.
234 * Otherwise this may cause nasty races.
235 */
236static void pagevec_move_tail(struct pagevec *pvec)
237{
238 int pgmoved = 0;
239
240 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
241 __count_vm_events(PGROTATED, pgmoved);
242}
243
244/*
245 * Writeback is about to end against a page which has been marked for immediate
246 * reclaim. If it still appears to be reclaimable, move it to the tail of the
247 * inactive list.
248 */
249void rotate_reclaimable_page(struct page *page)
250{
251 if (!PageLocked(page) && !PageDirty(page) &&
252 !PageUnevictable(page) && PageLRU(page)) {
253 struct pagevec *pvec;
254 unsigned long flags;
255
256 get_page(page);
257 local_irq_save(flags);
258 pvec = this_cpu_ptr(&lru_rotate_pvecs);
259 if (!pagevec_add(pvec, page) || PageCompound(page))
260 pagevec_move_tail(pvec);
261 local_irq_restore(flags);
262 }
263}
264
265static void update_page_reclaim_stat(struct lruvec *lruvec,
266 int file, int rotated)
267{
268 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
269
270 reclaim_stat->recent_scanned[file]++;
271 if (rotated)
272 reclaim_stat->recent_rotated[file]++;
273}
274
275static void __activate_page(struct page *page, struct lruvec *lruvec,
276 void *arg)
277{
278 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
279 int file = page_is_file_cache(page);
280 int lru = page_lru_base_type(page);
281
282 del_page_from_lru_list(page, lruvec, lru);
283 SetPageActive(page);
284 lru += LRU_ACTIVE;
285 add_page_to_lru_list(page, lruvec, lru);
286 trace_mm_lru_activate(page);
287
288 __count_vm_event(PGACTIVATE);
289 update_page_reclaim_stat(lruvec, file, 1);
290 }
291}
292
293#ifdef CONFIG_SMP
294static void activate_page_drain(int cpu)
295{
296 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
297
298 if (pagevec_count(pvec))
299 pagevec_lru_move_fn(pvec, __activate_page, NULL);
300}
301
302static bool need_activate_page_drain(int cpu)
303{
304 return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
305}
306
307void activate_page(struct page *page)
308{
309 page = compound_head(page);
310 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
311 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
312
313 get_page(page);
314 if (!pagevec_add(pvec, page) || PageCompound(page))
315 pagevec_lru_move_fn(pvec, __activate_page, NULL);
316 put_cpu_var(activate_page_pvecs);
317 }
318}
319
320#else
321static inline void activate_page_drain(int cpu)
322{
323}
324
325void activate_page(struct page *page)
326{
327 pg_data_t *pgdat = page_pgdat(page);
328
329 page = compound_head(page);
330 spin_lock_irq(&pgdat->lru_lock);
331 __activate_page(page, mem_cgroup_page_lruvec(page, pgdat), NULL);
332 spin_unlock_irq(&pgdat->lru_lock);
333}
334#endif
335
336static void __lru_cache_activate_page(struct page *page)
337{
338 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
339 int i;
340
341 /*
342 * Search backwards on the optimistic assumption that the page being
343 * activated has just been added to this pagevec. Note that only
344 * the local pagevec is examined as a !PageLRU page could be in the
345 * process of being released, reclaimed, migrated or on a remote
346 * pagevec that is currently being drained. Furthermore, marking
347 * a remote pagevec's page PageActive potentially hits a race where
348 * a page is marked PageActive just after it is added to the inactive
349 * list causing accounting errors and BUG_ON checks to trigger.
350 */
351 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
352 struct page *pagevec_page = pvec->pages[i];
353
354 if (pagevec_page == page) {
355 SetPageActive(page);
356 break;
357 }
358 }
359
360 put_cpu_var(lru_add_pvec);
361}
362
363/*
364 * Mark a page as having seen activity.
365 *
366 * inactive,unreferenced -> inactive,referenced
367 * inactive,referenced -> active,unreferenced
368 * active,unreferenced -> active,referenced
369 *
370 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
371 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
372 */
373void mark_page_accessed(struct page *page)
374{
375 page = compound_head(page);
376 if (!PageActive(page) && !PageUnevictable(page) &&
377 PageReferenced(page)) {
378
379 /*
380 * If the page is on the LRU, queue it for activation via
381 * activate_page_pvecs. Otherwise, assume the page is on a
382 * pagevec, mark it active and it'll be moved to the active
383 * LRU on the next drain.
384 */
385 if (PageLRU(page))
386 activate_page(page);
387 else
388 __lru_cache_activate_page(page);
389 ClearPageReferenced(page);
390 if (page_is_file_cache(page))
391 workingset_activation(page);
392 } else if (!PageReferenced(page)) {
393 SetPageReferenced(page);
394 }
395 if (page_is_idle(page))
396 clear_page_idle(page);
397}
398EXPORT_SYMBOL(mark_page_accessed);
399
400static void __lru_cache_add(struct page *page)
401{
402 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
403
404 get_page(page);
405 if (!pagevec_add(pvec, page) || PageCompound(page))
406 __pagevec_lru_add(pvec);
407 put_cpu_var(lru_add_pvec);
408}
409
410/**
411 * lru_cache_add_anon - add a page to the page lists
412 * @page: the page to add
413 */
414void lru_cache_add_anon(struct page *page)
415{
416 if (PageActive(page))
417 ClearPageActive(page);
418 __lru_cache_add(page);
419}
420
421void lru_cache_add_file(struct page *page)
422{
423 if (PageActive(page))
424 ClearPageActive(page);
425 __lru_cache_add(page);
426}
427EXPORT_SYMBOL(lru_cache_add_file);
428
429/**
430 * lru_cache_add - add a page to a page list
431 * @page: the page to be added to the LRU.
432 *
433 * Queue the page for addition to the LRU via pagevec. The decision on whether
434 * to add the page to the [in]active [file|anon] list is deferred until the
435 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
436 * have the page added to the active list using mark_page_accessed().
437 */
438void lru_cache_add(struct page *page)
439{
440 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
441 VM_BUG_ON_PAGE(PageLRU(page), page);
442 __lru_cache_add(page);
443}
444
445/**
446 * lru_cache_add_active_or_unevictable
447 * @page: the page to be added to LRU
448 * @vma: vma in which page is mapped for determining reclaimability
449 *
450 * Place @page on the active or unevictable LRU list, depending on its
451 * evictability. Note that if the page is not evictable, it goes
452 * directly back onto it's zone's unevictable list, it does NOT use a
453 * per cpu pagevec.
454 */
455void lru_cache_add_active_or_unevictable(struct page *page,
456 struct vm_area_struct *vma)
457{
458 VM_BUG_ON_PAGE(PageLRU(page), page);
459
460 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED))
461 SetPageActive(page);
462 else if (!TestSetPageMlocked(page)) {
463 /*
464 * We use the irq-unsafe __mod_zone_page_stat because this
465 * counter is not modified from interrupt context, and the pte
466 * lock is held(spinlock), which implies preemption disabled.
467 */
468 __mod_zone_page_state(page_zone(page), NR_MLOCK,
469 hpage_nr_pages(page));
470 count_vm_event(UNEVICTABLE_PGMLOCKED);
471 }
472 lru_cache_add(page);
473}
474
475/*
476 * If the page can not be invalidated, it is moved to the
477 * inactive list to speed up its reclaim. It is moved to the
478 * head of the list, rather than the tail, to give the flusher
479 * threads some time to write it out, as this is much more
480 * effective than the single-page writeout from reclaim.
481 *
482 * If the page isn't page_mapped and dirty/writeback, the page
483 * could reclaim asap using PG_reclaim.
484 *
485 * 1. active, mapped page -> none
486 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
487 * 3. inactive, mapped page -> none
488 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
489 * 5. inactive, clean -> inactive, tail
490 * 6. Others -> none
491 *
492 * In 4, why it moves inactive's head, the VM expects the page would
493 * be write it out by flusher threads as this is much more effective
494 * than the single-page writeout from reclaim.
495 */
496static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
497 void *arg)
498{
499 int lru, file;
500 bool active;
501
502 if (!PageLRU(page))
503 return;
504
505 if (PageUnevictable(page))
506 return;
507
508 /* Some processes are using the page */
509 if (page_mapped(page))
510 return;
511
512 active = PageActive(page);
513 file = page_is_file_cache(page);
514 lru = page_lru_base_type(page);
515
516 del_page_from_lru_list(page, lruvec, lru + active);
517 ClearPageActive(page);
518 ClearPageReferenced(page);
519
520 if (PageWriteback(page) || PageDirty(page)) {
521 /*
522 * PG_reclaim could be raced with end_page_writeback
523 * It can make readahead confusing. But race window
524 * is _really_ small and it's non-critical problem.
525 */
526 add_page_to_lru_list(page, lruvec, lru);
527 SetPageReclaim(page);
528 } else {
529 /*
530 * The page's writeback ends up during pagevec
531 * We moves tha page into tail of inactive.
532 */
533 add_page_to_lru_list_tail(page, lruvec, lru);
534 __count_vm_event(PGROTATED);
535 }
536
537 if (active)
538 __count_vm_event(PGDEACTIVATE);
539 update_page_reclaim_stat(lruvec, file, 0);
540}
541
542static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
543 void *arg)
544{
545 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
546 int file = page_is_file_cache(page);
547 int lru = page_lru_base_type(page);
548
549 del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
550 ClearPageActive(page);
551 ClearPageReferenced(page);
552 add_page_to_lru_list(page, lruvec, lru);
553
554 __count_vm_events(PGDEACTIVATE, hpage_nr_pages(page));
555 update_page_reclaim_stat(lruvec, file, 0);
556 }
557}
558
559static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
560 void *arg)
561{
562 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
563 !PageSwapCache(page) && !PageUnevictable(page)) {
564 bool active = PageActive(page);
565
566 del_page_from_lru_list(page, lruvec,
567 LRU_INACTIVE_ANON + active);
568 ClearPageActive(page);
569 ClearPageReferenced(page);
570 /*
571 * lazyfree pages are clean anonymous pages. They have
572 * SwapBacked flag cleared to distinguish normal anonymous
573 * pages
574 */
575 ClearPageSwapBacked(page);
576 add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
577
578 __count_vm_events(PGLAZYFREE, hpage_nr_pages(page));
579 count_memcg_page_event(page, PGLAZYFREE);
580 update_page_reclaim_stat(lruvec, 1, 0);
581 }
582}
583
584/*
585 * Drain pages out of the cpu's pagevecs.
586 * Either "cpu" is the current CPU, and preemption has already been
587 * disabled; or "cpu" is being hot-unplugged, and is already dead.
588 */
589void lru_add_drain_cpu(int cpu)
590{
591 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
592
593 if (pagevec_count(pvec))
594 __pagevec_lru_add(pvec);
595
596 pvec = &per_cpu(lru_rotate_pvecs, cpu);
597 if (pagevec_count(pvec)) {
598 unsigned long flags;
599
600 /* No harm done if a racing interrupt already did this */
601 local_irq_save(flags);
602 pagevec_move_tail(pvec);
603 local_irq_restore(flags);
604 }
605
606 pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
607 if (pagevec_count(pvec))
608 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
609
610 pvec = &per_cpu(lru_deactivate_pvecs, cpu);
611 if (pagevec_count(pvec))
612 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
613
614 pvec = &per_cpu(lru_lazyfree_pvecs, cpu);
615 if (pagevec_count(pvec))
616 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
617
618 activate_page_drain(cpu);
619}
620
621/**
622 * deactivate_file_page - forcefully deactivate a file page
623 * @page: page to deactivate
624 *
625 * This function hints the VM that @page is a good reclaim candidate,
626 * for example if its invalidation fails due to the page being dirty
627 * or under writeback.
628 */
629void deactivate_file_page(struct page *page)
630{
631 /*
632 * In a workload with many unevictable page such as mprotect,
633 * unevictable page deactivation for accelerating reclaim is pointless.
634 */
635 if (PageUnevictable(page))
636 return;
637
638 if (likely(get_page_unless_zero(page))) {
639 struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
640
641 if (!pagevec_add(pvec, page) || PageCompound(page))
642 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
643 put_cpu_var(lru_deactivate_file_pvecs);
644 }
645}
646
647/*
648 * deactivate_page - deactivate a page
649 * @page: page to deactivate
650 *
651 * deactivate_page() moves @page to the inactive list if @page was on the active
652 * list and was not an unevictable page. This is done to accelerate the reclaim
653 * of @page.
654 */
655void deactivate_page(struct page *page)
656{
657 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
658 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
659
660 get_page(page);
661 if (!pagevec_add(pvec, page) || PageCompound(page))
662 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
663 put_cpu_var(lru_deactivate_pvecs);
664 }
665}
666
667/**
668 * mark_page_lazyfree - make an anon page lazyfree
669 * @page: page to deactivate
670 *
671 * mark_page_lazyfree() moves @page to the inactive file list.
672 * This is done to accelerate the reclaim of @page.
673 */
674void mark_page_lazyfree(struct page *page)
675{
676 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
677 !PageSwapCache(page) && !PageUnevictable(page)) {
678 struct pagevec *pvec = &get_cpu_var(lru_lazyfree_pvecs);
679
680 get_page(page);
681 if (!pagevec_add(pvec, page) || PageCompound(page))
682 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
683 put_cpu_var(lru_lazyfree_pvecs);
684 }
685}
686
687void lru_add_drain(void)
688{
689 lru_add_drain_cpu(get_cpu());
690 put_cpu();
691}
692
693#ifdef CONFIG_SMP
694
695static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
696
697static void lru_add_drain_per_cpu(struct work_struct *dummy)
698{
699 lru_add_drain();
700}
701
702/*
703 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
704 * kworkers being shut down before our page_alloc_cpu_dead callback is
705 * executed on the offlined cpu.
706 * Calling this function with cpu hotplug locks held can actually lead
707 * to obscure indirect dependencies via WQ context.
708 */
709void lru_add_drain_all(void)
710{
711 static DEFINE_MUTEX(lock);
712 static struct cpumask has_work;
713 int cpu;
714
715 /*
716 * Make sure nobody triggers this path before mm_percpu_wq is fully
717 * initialized.
718 */
719 if (WARN_ON(!mm_percpu_wq))
720 return;
721
722 mutex_lock(&lock);
723 cpumask_clear(&has_work);
724
725 for_each_online_cpu(cpu) {
726 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
727
728 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
729 pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
730 pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
731 pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
732 pagevec_count(&per_cpu(lru_lazyfree_pvecs, cpu)) ||
733 need_activate_page_drain(cpu)) {
734 INIT_WORK(work, lru_add_drain_per_cpu);
735 queue_work_on(cpu, mm_percpu_wq, work);
736 cpumask_set_cpu(cpu, &has_work);
737 }
738 }
739
740 for_each_cpu(cpu, &has_work)
741 flush_work(&per_cpu(lru_add_drain_work, cpu));
742
743 mutex_unlock(&lock);
744}
745#else
746void lru_add_drain_all(void)
747{
748 lru_add_drain();
749}
750#endif
751
752/**
753 * release_pages - batched put_page()
754 * @pages: array of pages to release
755 * @nr: number of pages
756 *
757 * Decrement the reference count on all the pages in @pages. If it
758 * fell to zero, remove the page from the LRU and free it.
759 */
760void release_pages(struct page **pages, int nr)
761{
762 int i;
763 LIST_HEAD(pages_to_free);
764 struct pglist_data *locked_pgdat = NULL;
765 struct lruvec *lruvec;
766 unsigned long uninitialized_var(flags);
767 unsigned int uninitialized_var(lock_batch);
768
769 for (i = 0; i < nr; i++) {
770 struct page *page = pages[i];
771
772 /*
773 * Make sure the IRQ-safe lock-holding time does not get
774 * excessive with a continuous string of pages from the
775 * same pgdat. The lock is held only if pgdat != NULL.
776 */
777 if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
778 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
779 locked_pgdat = NULL;
780 }
781
782 if (is_huge_zero_page(page))
783 continue;
784
785 if (is_zone_device_page(page)) {
786 if (locked_pgdat) {
787 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
788 flags);
789 locked_pgdat = NULL;
790 }
791 /*
792 * ZONE_DEVICE pages that return 'false' from
793 * put_devmap_managed_page() do not require special
794 * processing, and instead, expect a call to
795 * put_page_testzero().
796 */
797 if (put_devmap_managed_page(page))
798 continue;
799 }
800
801 page = compound_head(page);
802 if (!put_page_testzero(page))
803 continue;
804
805 if (PageCompound(page)) {
806 if (locked_pgdat) {
807 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
808 locked_pgdat = NULL;
809 }
810 __put_compound_page(page);
811 continue;
812 }
813
814 if (PageLRU(page)) {
815 struct pglist_data *pgdat = page_pgdat(page);
816
817 if (pgdat != locked_pgdat) {
818 if (locked_pgdat)
819 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
820 flags);
821 lock_batch = 0;
822 locked_pgdat = pgdat;
823 spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
824 }
825
826 lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
827 VM_BUG_ON_PAGE(!PageLRU(page), page);
828 __ClearPageLRU(page);
829 del_page_from_lru_list(page, lruvec, page_off_lru(page));
830 }
831
832 /* Clear Active bit in case of parallel mark_page_accessed */
833 __ClearPageActive(page);
834 __ClearPageWaiters(page);
835
836 list_add(&page->lru, &pages_to_free);
837 }
838 if (locked_pgdat)
839 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
840
841 mem_cgroup_uncharge_list(&pages_to_free);
842 free_unref_page_list(&pages_to_free);
843}
844EXPORT_SYMBOL(release_pages);
845
846/*
847 * The pages which we're about to release may be in the deferred lru-addition
848 * queues. That would prevent them from really being freed right now. That's
849 * OK from a correctness point of view but is inefficient - those pages may be
850 * cache-warm and we want to give them back to the page allocator ASAP.
851 *
852 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
853 * and __pagevec_lru_add_active() call release_pages() directly to avoid
854 * mutual recursion.
855 */
856void __pagevec_release(struct pagevec *pvec)
857{
858 if (!pvec->percpu_pvec_drained) {
859 lru_add_drain();
860 pvec->percpu_pvec_drained = true;
861 }
862 release_pages(pvec->pages, pagevec_count(pvec));
863 pagevec_reinit(pvec);
864}
865EXPORT_SYMBOL(__pagevec_release);
866
867#ifdef CONFIG_TRANSPARENT_HUGEPAGE
868/* used by __split_huge_page_refcount() */
869void lru_add_page_tail(struct page *page, struct page *page_tail,
870 struct lruvec *lruvec, struct list_head *list)
871{
872 const int file = 0;
873
874 VM_BUG_ON_PAGE(!PageHead(page), page);
875 VM_BUG_ON_PAGE(PageCompound(page_tail), page);
876 VM_BUG_ON_PAGE(PageLRU(page_tail), page);
877 lockdep_assert_held(&lruvec_pgdat(lruvec)->lru_lock);
878
879 if (!list)
880 SetPageLRU(page_tail);
881
882 if (likely(PageLRU(page)))
883 list_add_tail(&page_tail->lru, &page->lru);
884 else if (list) {
885 /* page reclaim is reclaiming a huge page */
886 get_page(page_tail);
887 list_add_tail(&page_tail->lru, list);
888 } else {
889 /*
890 * Head page has not yet been counted, as an hpage,
891 * so we must account for each subpage individually.
892 *
893 * Put page_tail on the list at the correct position
894 * so they all end up in order.
895 */
896 add_page_to_lru_list_tail(page_tail, lruvec,
897 page_lru(page_tail));
898 }
899
900 if (!PageUnevictable(page))
901 update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
902}
903#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
904
905static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
906 void *arg)
907{
908 enum lru_list lru;
909 int was_unevictable = TestClearPageUnevictable(page);
910
911 VM_BUG_ON_PAGE(PageLRU(page), page);
912
913 SetPageLRU(page);
914 /*
915 * Page becomes evictable in two ways:
916 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
917 * 2) Before acquiring LRU lock to put the page to correct LRU and then
918 * a) do PageLRU check with lock [check_move_unevictable_pages]
919 * b) do PageLRU check before lock [clear_page_mlock]
920 *
921 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
922 * following strict ordering:
923 *
924 * #0: __pagevec_lru_add_fn #1: clear_page_mlock
925 *
926 * SetPageLRU() TestClearPageMlocked()
927 * smp_mb() // explicit ordering // above provides strict
928 * // ordering
929 * PageMlocked() PageLRU()
930 *
931 *
932 * if '#1' does not observe setting of PG_lru by '#0' and fails
933 * isolation, the explicit barrier will make sure that page_evictable
934 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
935 * can be reordered after PageMlocked check and can make '#1' to fail
936 * the isolation of the page whose Mlocked bit is cleared (#0 is also
937 * looking at the same page) and the evictable page will be stranded
938 * in an unevictable LRU.
939 */
940 smp_mb();
941
942 if (page_evictable(page)) {
943 lru = page_lru(page);
944 update_page_reclaim_stat(lruvec, page_is_file_cache(page),
945 PageActive(page));
946 if (was_unevictable)
947 count_vm_event(UNEVICTABLE_PGRESCUED);
948 } else {
949 lru = LRU_UNEVICTABLE;
950 ClearPageActive(page);
951 SetPageUnevictable(page);
952 if (!was_unevictable)
953 count_vm_event(UNEVICTABLE_PGCULLED);
954 }
955
956 add_page_to_lru_list(page, lruvec, lru);
957 trace_mm_lru_insertion(page, lru);
958}
959
960/*
961 * Add the passed pages to the LRU, then drop the caller's refcount
962 * on them. Reinitialises the caller's pagevec.
963 */
964void __pagevec_lru_add(struct pagevec *pvec)
965{
966 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
967}
968EXPORT_SYMBOL(__pagevec_lru_add);
969
970/**
971 * pagevec_lookup_entries - gang pagecache lookup
972 * @pvec: Where the resulting entries are placed
973 * @mapping: The address_space to search
974 * @start: The starting entry index
975 * @nr_entries: The maximum number of pages
976 * @indices: The cache indices corresponding to the entries in @pvec
977 *
978 * pagevec_lookup_entries() will search for and return a group of up
979 * to @nr_pages pages and shadow entries in the mapping. All
980 * entries are placed in @pvec. pagevec_lookup_entries() takes a
981 * reference against actual pages in @pvec.
982 *
983 * The search returns a group of mapping-contiguous entries with
984 * ascending indexes. There may be holes in the indices due to
985 * not-present entries.
986 *
987 * pagevec_lookup_entries() returns the number of entries which were
988 * found.
989 */
990unsigned pagevec_lookup_entries(struct pagevec *pvec,
991 struct address_space *mapping,
992 pgoff_t start, unsigned nr_entries,
993 pgoff_t *indices)
994{
995 pvec->nr = find_get_entries(mapping, start, nr_entries,
996 pvec->pages, indices);
997 return pagevec_count(pvec);
998}
999
1000/**
1001 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1002 * @pvec: The pagevec to prune
1003 *
1004 * pagevec_lookup_entries() fills both pages and exceptional radix
1005 * tree entries into the pagevec. This function prunes all
1006 * exceptionals from @pvec without leaving holes, so that it can be
1007 * passed on to page-only pagevec operations.
1008 */
1009void pagevec_remove_exceptionals(struct pagevec *pvec)
1010{
1011 int i, j;
1012
1013 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1014 struct page *page = pvec->pages[i];
1015 if (!xa_is_value(page))
1016 pvec->pages[j++] = page;
1017 }
1018 pvec->nr = j;
1019}
1020
1021/**
1022 * pagevec_lookup_range - gang pagecache lookup
1023 * @pvec: Where the resulting pages are placed
1024 * @mapping: The address_space to search
1025 * @start: The starting page index
1026 * @end: The final page index
1027 *
1028 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1029 * pages in the mapping starting from index @start and upto index @end
1030 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
1031 * reference against the pages in @pvec.
1032 *
1033 * The search returns a group of mapping-contiguous pages with ascending
1034 * indexes. There may be holes in the indices due to not-present pages. We
1035 * also update @start to index the next page for the traversal.
1036 *
1037 * pagevec_lookup_range() returns the number of pages which were found. If this
1038 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1039 * reached.
1040 */
1041unsigned pagevec_lookup_range(struct pagevec *pvec,
1042 struct address_space *mapping, pgoff_t *start, pgoff_t end)
1043{
1044 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1045 pvec->pages);
1046 return pagevec_count(pvec);
1047}
1048EXPORT_SYMBOL(pagevec_lookup_range);
1049
1050unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1051 struct address_space *mapping, pgoff_t *index, pgoff_t end,
1052 xa_mark_t tag)
1053{
1054 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1055 PAGEVEC_SIZE, pvec->pages);
1056 return pagevec_count(pvec);
1057}
1058EXPORT_SYMBOL(pagevec_lookup_range_tag);
1059
1060unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1061 struct address_space *mapping, pgoff_t *index, pgoff_t end,
1062 xa_mark_t tag, unsigned max_pages)
1063{
1064 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1065 min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1066 return pagevec_count(pvec);
1067}
1068EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1069/*
1070 * Perform any setup for the swap system
1071 */
1072void __init swap_setup(void)
1073{
1074 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1075
1076 /* Use a smaller cluster for small-memory machines */
1077 if (megs < 16)
1078 page_cluster = 2;
1079 else
1080 page_cluster = 3;
1081 /*
1082 * Right now other parts of the system means that we
1083 * _really_ don't want to cluster much more
1084 */
1085}
1/*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16#include <linux/mm.h>
17#include <linux/sched.h>
18#include <linux/kernel_stat.h>
19#include <linux/swap.h>
20#include <linux/mman.h>
21#include <linux/pagemap.h>
22#include <linux/pagevec.h>
23#include <linux/init.h>
24#include <linux/export.h>
25#include <linux/mm_inline.h>
26#include <linux/percpu_counter.h>
27#include <linux/percpu.h>
28#include <linux/cpu.h>
29#include <linux/notifier.h>
30#include <linux/backing-dev.h>
31#include <linux/memcontrol.h>
32#include <linux/gfp.h>
33
34#include "internal.h"
35
36/* How many pages do we try to swap or page in/out together? */
37int page_cluster;
38
39static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
40static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
41static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
42
43/*
44 * This path almost never happens for VM activity - pages are normally
45 * freed via pagevecs. But it gets used by networking.
46 */
47static void __page_cache_release(struct page *page)
48{
49 if (PageLRU(page)) {
50 struct zone *zone = page_zone(page);
51 struct lruvec *lruvec;
52 unsigned long flags;
53
54 spin_lock_irqsave(&zone->lru_lock, flags);
55 lruvec = mem_cgroup_page_lruvec(page, zone);
56 VM_BUG_ON(!PageLRU(page));
57 __ClearPageLRU(page);
58 del_page_from_lru_list(page, lruvec, page_off_lru(page));
59 spin_unlock_irqrestore(&zone->lru_lock, flags);
60 }
61}
62
63static void __put_single_page(struct page *page)
64{
65 __page_cache_release(page);
66 free_hot_cold_page(page, 0);
67}
68
69static void __put_compound_page(struct page *page)
70{
71 compound_page_dtor *dtor;
72
73 __page_cache_release(page);
74 dtor = get_compound_page_dtor(page);
75 (*dtor)(page);
76}
77
78static void put_compound_page(struct page *page)
79{
80 if (unlikely(PageTail(page))) {
81 /* __split_huge_page_refcount can run under us */
82 struct page *page_head = compound_trans_head(page);
83
84 if (likely(page != page_head &&
85 get_page_unless_zero(page_head))) {
86 unsigned long flags;
87
88 /*
89 * THP can not break up slab pages so avoid taking
90 * compound_lock(). Slab performs non-atomic bit ops
91 * on page->flags for better performance. In particular
92 * slab_unlock() in slub used to be a hot path. It is
93 * still hot on arches that do not support
94 * this_cpu_cmpxchg_double().
95 */
96 if (PageSlab(page_head)) {
97 if (PageTail(page)) {
98 if (put_page_testzero(page_head))
99 VM_BUG_ON(1);
100
101 atomic_dec(&page->_mapcount);
102 goto skip_lock_tail;
103 } else
104 goto skip_lock;
105 }
106 /*
107 * page_head wasn't a dangling pointer but it
108 * may not be a head page anymore by the time
109 * we obtain the lock. That is ok as long as it
110 * can't be freed from under us.
111 */
112 flags = compound_lock_irqsave(page_head);
113 if (unlikely(!PageTail(page))) {
114 /* __split_huge_page_refcount run before us */
115 compound_unlock_irqrestore(page_head, flags);
116skip_lock:
117 if (put_page_testzero(page_head))
118 __put_single_page(page_head);
119out_put_single:
120 if (put_page_testzero(page))
121 __put_single_page(page);
122 return;
123 }
124 VM_BUG_ON(page_head != page->first_page);
125 /*
126 * We can release the refcount taken by
127 * get_page_unless_zero() now that
128 * __split_huge_page_refcount() is blocked on
129 * the compound_lock.
130 */
131 if (put_page_testzero(page_head))
132 VM_BUG_ON(1);
133 /* __split_huge_page_refcount will wait now */
134 VM_BUG_ON(page_mapcount(page) <= 0);
135 atomic_dec(&page->_mapcount);
136 VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
137 VM_BUG_ON(atomic_read(&page->_count) != 0);
138 compound_unlock_irqrestore(page_head, flags);
139
140skip_lock_tail:
141 if (put_page_testzero(page_head)) {
142 if (PageHead(page_head))
143 __put_compound_page(page_head);
144 else
145 __put_single_page(page_head);
146 }
147 } else {
148 /* page_head is a dangling pointer */
149 VM_BUG_ON(PageTail(page));
150 goto out_put_single;
151 }
152 } else if (put_page_testzero(page)) {
153 if (PageHead(page))
154 __put_compound_page(page);
155 else
156 __put_single_page(page);
157 }
158}
159
160void put_page(struct page *page)
161{
162 if (unlikely(PageCompound(page)))
163 put_compound_page(page);
164 else if (put_page_testzero(page))
165 __put_single_page(page);
166}
167EXPORT_SYMBOL(put_page);
168
169/*
170 * This function is exported but must not be called by anything other
171 * than get_page(). It implements the slow path of get_page().
172 */
173bool __get_page_tail(struct page *page)
174{
175 /*
176 * This takes care of get_page() if run on a tail page
177 * returned by one of the get_user_pages/follow_page variants.
178 * get_user_pages/follow_page itself doesn't need the compound
179 * lock because it runs __get_page_tail_foll() under the
180 * proper PT lock that already serializes against
181 * split_huge_page().
182 */
183 unsigned long flags;
184 bool got = false;
185 struct page *page_head = compound_trans_head(page);
186
187 if (likely(page != page_head && get_page_unless_zero(page_head))) {
188
189 /* Ref to put_compound_page() comment. */
190 if (PageSlab(page_head)) {
191 if (likely(PageTail(page))) {
192 __get_page_tail_foll(page, false);
193 return true;
194 } else {
195 put_page(page_head);
196 return false;
197 }
198 }
199
200 /*
201 * page_head wasn't a dangling pointer but it
202 * may not be a head page anymore by the time
203 * we obtain the lock. That is ok as long as it
204 * can't be freed from under us.
205 */
206 flags = compound_lock_irqsave(page_head);
207 /* here __split_huge_page_refcount won't run anymore */
208 if (likely(PageTail(page))) {
209 __get_page_tail_foll(page, false);
210 got = true;
211 }
212 compound_unlock_irqrestore(page_head, flags);
213 if (unlikely(!got))
214 put_page(page_head);
215 }
216 return got;
217}
218EXPORT_SYMBOL(__get_page_tail);
219
220/**
221 * put_pages_list() - release a list of pages
222 * @pages: list of pages threaded on page->lru
223 *
224 * Release a list of pages which are strung together on page.lru. Currently
225 * used by read_cache_pages() and related error recovery code.
226 */
227void put_pages_list(struct list_head *pages)
228{
229 while (!list_empty(pages)) {
230 struct page *victim;
231
232 victim = list_entry(pages->prev, struct page, lru);
233 list_del(&victim->lru);
234 page_cache_release(victim);
235 }
236}
237EXPORT_SYMBOL(put_pages_list);
238
239static void pagevec_lru_move_fn(struct pagevec *pvec,
240 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
241 void *arg)
242{
243 int i;
244 struct zone *zone = NULL;
245 struct lruvec *lruvec;
246 unsigned long flags = 0;
247
248 for (i = 0; i < pagevec_count(pvec); i++) {
249 struct page *page = pvec->pages[i];
250 struct zone *pagezone = page_zone(page);
251
252 if (pagezone != zone) {
253 if (zone)
254 spin_unlock_irqrestore(&zone->lru_lock, flags);
255 zone = pagezone;
256 spin_lock_irqsave(&zone->lru_lock, flags);
257 }
258
259 lruvec = mem_cgroup_page_lruvec(page, zone);
260 (*move_fn)(page, lruvec, arg);
261 }
262 if (zone)
263 spin_unlock_irqrestore(&zone->lru_lock, flags);
264 release_pages(pvec->pages, pvec->nr, pvec->cold);
265 pagevec_reinit(pvec);
266}
267
268static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
269 void *arg)
270{
271 int *pgmoved = arg;
272
273 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
274 enum lru_list lru = page_lru_base_type(page);
275 list_move_tail(&page->lru, &lruvec->lists[lru]);
276 (*pgmoved)++;
277 }
278}
279
280/*
281 * pagevec_move_tail() must be called with IRQ disabled.
282 * Otherwise this may cause nasty races.
283 */
284static void pagevec_move_tail(struct pagevec *pvec)
285{
286 int pgmoved = 0;
287
288 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
289 __count_vm_events(PGROTATED, pgmoved);
290}
291
292/*
293 * Writeback is about to end against a page which has been marked for immediate
294 * reclaim. If it still appears to be reclaimable, move it to the tail of the
295 * inactive list.
296 */
297void rotate_reclaimable_page(struct page *page)
298{
299 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
300 !PageUnevictable(page) && PageLRU(page)) {
301 struct pagevec *pvec;
302 unsigned long flags;
303
304 page_cache_get(page);
305 local_irq_save(flags);
306 pvec = &__get_cpu_var(lru_rotate_pvecs);
307 if (!pagevec_add(pvec, page))
308 pagevec_move_tail(pvec);
309 local_irq_restore(flags);
310 }
311}
312
313static void update_page_reclaim_stat(struct lruvec *lruvec,
314 int file, int rotated)
315{
316 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
317
318 reclaim_stat->recent_scanned[file]++;
319 if (rotated)
320 reclaim_stat->recent_rotated[file]++;
321}
322
323static void __activate_page(struct page *page, struct lruvec *lruvec,
324 void *arg)
325{
326 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
327 int file = page_is_file_cache(page);
328 int lru = page_lru_base_type(page);
329
330 del_page_from_lru_list(page, lruvec, lru);
331 SetPageActive(page);
332 lru += LRU_ACTIVE;
333 add_page_to_lru_list(page, lruvec, lru);
334
335 __count_vm_event(PGACTIVATE);
336 update_page_reclaim_stat(lruvec, file, 1);
337 }
338}
339
340#ifdef CONFIG_SMP
341static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
342
343static void activate_page_drain(int cpu)
344{
345 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
346
347 if (pagevec_count(pvec))
348 pagevec_lru_move_fn(pvec, __activate_page, NULL);
349}
350
351void activate_page(struct page *page)
352{
353 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
354 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
355
356 page_cache_get(page);
357 if (!pagevec_add(pvec, page))
358 pagevec_lru_move_fn(pvec, __activate_page, NULL);
359 put_cpu_var(activate_page_pvecs);
360 }
361}
362
363#else
364static inline void activate_page_drain(int cpu)
365{
366}
367
368void activate_page(struct page *page)
369{
370 struct zone *zone = page_zone(page);
371
372 spin_lock_irq(&zone->lru_lock);
373 __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
374 spin_unlock_irq(&zone->lru_lock);
375}
376#endif
377
378/*
379 * Mark a page as having seen activity.
380 *
381 * inactive,unreferenced -> inactive,referenced
382 * inactive,referenced -> active,unreferenced
383 * active,unreferenced -> active,referenced
384 */
385void mark_page_accessed(struct page *page)
386{
387 if (!PageActive(page) && !PageUnevictable(page) &&
388 PageReferenced(page) && PageLRU(page)) {
389 activate_page(page);
390 ClearPageReferenced(page);
391 } else if (!PageReferenced(page)) {
392 SetPageReferenced(page);
393 }
394}
395EXPORT_SYMBOL(mark_page_accessed);
396
397void __lru_cache_add(struct page *page, enum lru_list lru)
398{
399 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
400
401 page_cache_get(page);
402 if (!pagevec_add(pvec, page))
403 __pagevec_lru_add(pvec, lru);
404 put_cpu_var(lru_add_pvecs);
405}
406EXPORT_SYMBOL(__lru_cache_add);
407
408/**
409 * lru_cache_add_lru - add a page to a page list
410 * @page: the page to be added to the LRU.
411 * @lru: the LRU list to which the page is added.
412 */
413void lru_cache_add_lru(struct page *page, enum lru_list lru)
414{
415 if (PageActive(page)) {
416 VM_BUG_ON(PageUnevictable(page));
417 ClearPageActive(page);
418 } else if (PageUnevictable(page)) {
419 VM_BUG_ON(PageActive(page));
420 ClearPageUnevictable(page);
421 }
422
423 VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
424 __lru_cache_add(page, lru);
425}
426
427/**
428 * add_page_to_unevictable_list - add a page to the unevictable list
429 * @page: the page to be added to the unevictable list
430 *
431 * Add page directly to its zone's unevictable list. To avoid races with
432 * tasks that might be making the page evictable, through eg. munlock,
433 * munmap or exit, while it's not on the lru, we want to add the page
434 * while it's locked or otherwise "invisible" to other tasks. This is
435 * difficult to do when using the pagevec cache, so bypass that.
436 */
437void add_page_to_unevictable_list(struct page *page)
438{
439 struct zone *zone = page_zone(page);
440 struct lruvec *lruvec;
441
442 spin_lock_irq(&zone->lru_lock);
443 lruvec = mem_cgroup_page_lruvec(page, zone);
444 SetPageUnevictable(page);
445 SetPageLRU(page);
446 add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
447 spin_unlock_irq(&zone->lru_lock);
448}
449
450/*
451 * If the page can not be invalidated, it is moved to the
452 * inactive list to speed up its reclaim. It is moved to the
453 * head of the list, rather than the tail, to give the flusher
454 * threads some time to write it out, as this is much more
455 * effective than the single-page writeout from reclaim.
456 *
457 * If the page isn't page_mapped and dirty/writeback, the page
458 * could reclaim asap using PG_reclaim.
459 *
460 * 1. active, mapped page -> none
461 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
462 * 3. inactive, mapped page -> none
463 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
464 * 5. inactive, clean -> inactive, tail
465 * 6. Others -> none
466 *
467 * In 4, why it moves inactive's head, the VM expects the page would
468 * be write it out by flusher threads as this is much more effective
469 * than the single-page writeout from reclaim.
470 */
471static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
472 void *arg)
473{
474 int lru, file;
475 bool active;
476
477 if (!PageLRU(page))
478 return;
479
480 if (PageUnevictable(page))
481 return;
482
483 /* Some processes are using the page */
484 if (page_mapped(page))
485 return;
486
487 active = PageActive(page);
488 file = page_is_file_cache(page);
489 lru = page_lru_base_type(page);
490
491 del_page_from_lru_list(page, lruvec, lru + active);
492 ClearPageActive(page);
493 ClearPageReferenced(page);
494 add_page_to_lru_list(page, lruvec, lru);
495
496 if (PageWriteback(page) || PageDirty(page)) {
497 /*
498 * PG_reclaim could be raced with end_page_writeback
499 * It can make readahead confusing. But race window
500 * is _really_ small and it's non-critical problem.
501 */
502 SetPageReclaim(page);
503 } else {
504 /*
505 * The page's writeback ends up during pagevec
506 * We moves tha page into tail of inactive.
507 */
508 list_move_tail(&page->lru, &lruvec->lists[lru]);
509 __count_vm_event(PGROTATED);
510 }
511
512 if (active)
513 __count_vm_event(PGDEACTIVATE);
514 update_page_reclaim_stat(lruvec, file, 0);
515}
516
517/*
518 * Drain pages out of the cpu's pagevecs.
519 * Either "cpu" is the current CPU, and preemption has already been
520 * disabled; or "cpu" is being hot-unplugged, and is already dead.
521 */
522void lru_add_drain_cpu(int cpu)
523{
524 struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
525 struct pagevec *pvec;
526 int lru;
527
528 for_each_lru(lru) {
529 pvec = &pvecs[lru - LRU_BASE];
530 if (pagevec_count(pvec))
531 __pagevec_lru_add(pvec, lru);
532 }
533
534 pvec = &per_cpu(lru_rotate_pvecs, cpu);
535 if (pagevec_count(pvec)) {
536 unsigned long flags;
537
538 /* No harm done if a racing interrupt already did this */
539 local_irq_save(flags);
540 pagevec_move_tail(pvec);
541 local_irq_restore(flags);
542 }
543
544 pvec = &per_cpu(lru_deactivate_pvecs, cpu);
545 if (pagevec_count(pvec))
546 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
547
548 activate_page_drain(cpu);
549}
550
551/**
552 * deactivate_page - forcefully deactivate a page
553 * @page: page to deactivate
554 *
555 * This function hints the VM that @page is a good reclaim candidate,
556 * for example if its invalidation fails due to the page being dirty
557 * or under writeback.
558 */
559void deactivate_page(struct page *page)
560{
561 /*
562 * In a workload with many unevictable page such as mprotect, unevictable
563 * page deactivation for accelerating reclaim is pointless.
564 */
565 if (PageUnevictable(page))
566 return;
567
568 if (likely(get_page_unless_zero(page))) {
569 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
570
571 if (!pagevec_add(pvec, page))
572 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
573 put_cpu_var(lru_deactivate_pvecs);
574 }
575}
576
577void lru_add_drain(void)
578{
579 lru_add_drain_cpu(get_cpu());
580 put_cpu();
581}
582
583static void lru_add_drain_per_cpu(struct work_struct *dummy)
584{
585 lru_add_drain();
586}
587
588/*
589 * Returns 0 for success
590 */
591int lru_add_drain_all(void)
592{
593 return schedule_on_each_cpu(lru_add_drain_per_cpu);
594}
595
596/*
597 * Batched page_cache_release(). Decrement the reference count on all the
598 * passed pages. If it fell to zero then remove the page from the LRU and
599 * free it.
600 *
601 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
602 * for the remainder of the operation.
603 *
604 * The locking in this function is against shrink_inactive_list(): we recheck
605 * the page count inside the lock to see whether shrink_inactive_list()
606 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
607 * will free it.
608 */
609void release_pages(struct page **pages, int nr, int cold)
610{
611 int i;
612 LIST_HEAD(pages_to_free);
613 struct zone *zone = NULL;
614 struct lruvec *lruvec;
615 unsigned long uninitialized_var(flags);
616
617 for (i = 0; i < nr; i++) {
618 struct page *page = pages[i];
619
620 if (unlikely(PageCompound(page))) {
621 if (zone) {
622 spin_unlock_irqrestore(&zone->lru_lock, flags);
623 zone = NULL;
624 }
625 put_compound_page(page);
626 continue;
627 }
628
629 if (!put_page_testzero(page))
630 continue;
631
632 if (PageLRU(page)) {
633 struct zone *pagezone = page_zone(page);
634
635 if (pagezone != zone) {
636 if (zone)
637 spin_unlock_irqrestore(&zone->lru_lock,
638 flags);
639 zone = pagezone;
640 spin_lock_irqsave(&zone->lru_lock, flags);
641 }
642
643 lruvec = mem_cgroup_page_lruvec(page, zone);
644 VM_BUG_ON(!PageLRU(page));
645 __ClearPageLRU(page);
646 del_page_from_lru_list(page, lruvec, page_off_lru(page));
647 }
648
649 list_add(&page->lru, &pages_to_free);
650 }
651 if (zone)
652 spin_unlock_irqrestore(&zone->lru_lock, flags);
653
654 free_hot_cold_page_list(&pages_to_free, cold);
655}
656EXPORT_SYMBOL(release_pages);
657
658/*
659 * The pages which we're about to release may be in the deferred lru-addition
660 * queues. That would prevent them from really being freed right now. That's
661 * OK from a correctness point of view but is inefficient - those pages may be
662 * cache-warm and we want to give them back to the page allocator ASAP.
663 *
664 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
665 * and __pagevec_lru_add_active() call release_pages() directly to avoid
666 * mutual recursion.
667 */
668void __pagevec_release(struct pagevec *pvec)
669{
670 lru_add_drain();
671 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
672 pagevec_reinit(pvec);
673}
674EXPORT_SYMBOL(__pagevec_release);
675
676#ifdef CONFIG_TRANSPARENT_HUGEPAGE
677/* used by __split_huge_page_refcount() */
678void lru_add_page_tail(struct page *page, struct page *page_tail,
679 struct lruvec *lruvec)
680{
681 int uninitialized_var(active);
682 enum lru_list lru;
683 const int file = 0;
684
685 VM_BUG_ON(!PageHead(page));
686 VM_BUG_ON(PageCompound(page_tail));
687 VM_BUG_ON(PageLRU(page_tail));
688 VM_BUG_ON(NR_CPUS != 1 &&
689 !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
690
691 SetPageLRU(page_tail);
692
693 if (page_evictable(page_tail, NULL)) {
694 if (PageActive(page)) {
695 SetPageActive(page_tail);
696 active = 1;
697 lru = LRU_ACTIVE_ANON;
698 } else {
699 active = 0;
700 lru = LRU_INACTIVE_ANON;
701 }
702 } else {
703 SetPageUnevictable(page_tail);
704 lru = LRU_UNEVICTABLE;
705 }
706
707 if (likely(PageLRU(page)))
708 list_add_tail(&page_tail->lru, &page->lru);
709 else {
710 struct list_head *list_head;
711 /*
712 * Head page has not yet been counted, as an hpage,
713 * so we must account for each subpage individually.
714 *
715 * Use the standard add function to put page_tail on the list,
716 * but then correct its position so they all end up in order.
717 */
718 add_page_to_lru_list(page_tail, lruvec, lru);
719 list_head = page_tail->lru.prev;
720 list_move_tail(&page_tail->lru, list_head);
721 }
722
723 if (!PageUnevictable(page))
724 update_page_reclaim_stat(lruvec, file, active);
725}
726#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
727
728static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
729 void *arg)
730{
731 enum lru_list lru = (enum lru_list)arg;
732 int file = is_file_lru(lru);
733 int active = is_active_lru(lru);
734
735 VM_BUG_ON(PageActive(page));
736 VM_BUG_ON(PageUnevictable(page));
737 VM_BUG_ON(PageLRU(page));
738
739 SetPageLRU(page);
740 if (active)
741 SetPageActive(page);
742 add_page_to_lru_list(page, lruvec, lru);
743 update_page_reclaim_stat(lruvec, file, active);
744}
745
746/*
747 * Add the passed pages to the LRU, then drop the caller's refcount
748 * on them. Reinitialises the caller's pagevec.
749 */
750void __pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
751{
752 VM_BUG_ON(is_unevictable_lru(lru));
753
754 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, (void *)lru);
755}
756EXPORT_SYMBOL(__pagevec_lru_add);
757
758/**
759 * pagevec_lookup - gang pagecache lookup
760 * @pvec: Where the resulting pages are placed
761 * @mapping: The address_space to search
762 * @start: The starting page index
763 * @nr_pages: The maximum number of pages
764 *
765 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
766 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
767 * reference against the pages in @pvec.
768 *
769 * The search returns a group of mapping-contiguous pages with ascending
770 * indexes. There may be holes in the indices due to not-present pages.
771 *
772 * pagevec_lookup() returns the number of pages which were found.
773 */
774unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
775 pgoff_t start, unsigned nr_pages)
776{
777 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
778 return pagevec_count(pvec);
779}
780EXPORT_SYMBOL(pagevec_lookup);
781
782unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
783 pgoff_t *index, int tag, unsigned nr_pages)
784{
785 pvec->nr = find_get_pages_tag(mapping, index, tag,
786 nr_pages, pvec->pages);
787 return pagevec_count(pvec);
788}
789EXPORT_SYMBOL(pagevec_lookup_tag);
790
791/*
792 * Perform any setup for the swap system
793 */
794void __init swap_setup(void)
795{
796 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
797
798#ifdef CONFIG_SWAP
799 bdi_init(swapper_space.backing_dev_info);
800#endif
801
802 /* Use a smaller cluster for small-memory machines */
803 if (megs < 16)
804 page_cluster = 2;
805 else
806 page_cluster = 3;
807 /*
808 * Right now other parts of the system means that we
809 * _really_ don't want to cluster much more
810 */
811}