Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/swap.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 */
   7
   8/*
   9 * This file contains the default values for the operation of the
  10 * Linux VM subsystem. Fine-tuning documentation can be found in
  11 * Documentation/admin-guide/sysctl/vm.rst.
  12 * Started 18.12.91
  13 * Swap aging added 23.2.95, Stephen Tweedie.
  14 * Buffermem limits added 12.3.98, Rik van Riel.
  15 */
  16
  17#include <linux/mm.h>
  18#include <linux/sched.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/swap.h>
  21#include <linux/mman.h>
  22#include <linux/pagemap.h>
  23#include <linux/pagevec.h>
  24#include <linux/init.h>
  25#include <linux/export.h>
  26#include <linux/mm_inline.h>
  27#include <linux/percpu_counter.h>
  28#include <linux/memremap.h>
  29#include <linux/percpu.h>
  30#include <linux/cpu.h>
  31#include <linux/notifier.h>
  32#include <linux/backing-dev.h>
  33#include <linux/memcontrol.h>
  34#include <linux/gfp.h>
  35#include <linux/uio.h>
  36#include <linux/hugetlb.h>
  37#include <linux/page_idle.h>
 
 
  38
  39#include "internal.h"
  40
  41#define CREATE_TRACE_POINTS
  42#include <trace/events/pagemap.h>
  43
  44/* How many pages do we try to swap or page in/out together? */
  45int page_cluster;
 
  46
  47static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
  48static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
  49static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
  50static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
  51static DEFINE_PER_CPU(struct pagevec, lru_lazyfree_pvecs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  52#ifdef CONFIG_SMP
  53static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
  54#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  55
  56/*
  57 * This path almost never happens for VM activity - pages are normally
  58 * freed via pagevecs.  But it gets used by networking.
  59 */
  60static void __page_cache_release(struct page *page)
  61{
  62	if (PageLRU(page)) {
  63		pg_data_t *pgdat = page_pgdat(page);
  64		struct lruvec *lruvec;
  65		unsigned long flags;
  66
  67		spin_lock_irqsave(&pgdat->lru_lock, flags);
  68		lruvec = mem_cgroup_page_lruvec(page, pgdat);
  69		VM_BUG_ON_PAGE(!PageLRU(page), page);
  70		__ClearPageLRU(page);
  71		del_page_from_lru_list(page, lruvec, page_off_lru(page));
  72		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
  73	}
  74	__ClearPageWaiters(page);
  75}
  76
  77static void __put_single_page(struct page *page)
  78{
  79	__page_cache_release(page);
  80	mem_cgroup_uncharge(page);
  81	free_unref_page(page);
  82}
  83
  84static void __put_compound_page(struct page *page)
  85{
  86	compound_page_dtor *dtor;
  87
  88	/*
  89	 * __page_cache_release() is supposed to be called for thp, not for
  90	 * hugetlb. This is because hugetlb page does never have PageLRU set
  91	 * (it's never listed to any LRU lists) and no memcg routines should
  92	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
  93	 */
  94	if (!PageHuge(page))
  95		__page_cache_release(page);
  96	dtor = get_compound_page_dtor(page);
  97	(*dtor)(page);
  98}
  99
 100void __put_page(struct page *page)
 101{
 102	if (is_zone_device_page(page)) {
 103		put_dev_pagemap(page->pgmap);
 104
 105		/*
 106		 * The page belongs to the device that created pgmap. Do
 107		 * not return it to page allocator.
 108		 */
 109		return;
 110	}
 111
 112	if (unlikely(PageCompound(page)))
 113		__put_compound_page(page);
 114	else
 115		__put_single_page(page);
 116}
 117EXPORT_SYMBOL(__put_page);
 118
 119/**
 120 * put_pages_list() - release a list of pages
 121 * @pages: list of pages threaded on page->lru
 122 *
 123 * Release a list of pages which are strung together on page.lru.  Currently
 124 * used by read_cache_pages() and related error recovery code.
 125 */
 126void put_pages_list(struct list_head *pages)
 127{
 128	while (!list_empty(pages)) {
 129		struct page *victim;
 130
 131		victim = lru_to_page(pages);
 132		list_del(&victim->lru);
 133		put_page(victim);
 
 
 
 
 
 
 
 
 
 134	}
 
 
 
 
 135}
 136EXPORT_SYMBOL(put_pages_list);
 137
 138/*
 139 * get_kernel_pages() - pin kernel pages in memory
 140 * @kiov:	An array of struct kvec structures
 141 * @nr_segs:	number of segments to pin
 142 * @write:	pinning for read/write, currently ignored
 143 * @pages:	array that receives pointers to the pages pinned.
 144 *		Should be at least nr_segs long.
 145 *
 146 * Returns number of pages pinned. This may be fewer than the number
 147 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 148 * were pinned, returns -errno. Each page returned must be released
 149 * with a put_page() call when it is finished with.
 150 */
 151int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
 152		struct page **pages)
 153{
 154	int seg;
 
 155
 156	for (seg = 0; seg < nr_segs; seg++) {
 157		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
 158			return seg;
 159
 160		pages[seg] = kmap_to_page(kiov[seg].iov_base);
 161		get_page(pages[seg]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 162	}
 163
 164	return seg;
 165}
 166EXPORT_SYMBOL_GPL(get_kernel_pages);
 167
 168/*
 169 * get_kernel_page() - pin a kernel page in memory
 170 * @start:	starting kernel address
 171 * @write:	pinning for read/write, currently ignored
 172 * @pages:	array that receives pointer to the page pinned.
 173 *		Must be at least nr_segs long.
 174 *
 175 * Returns 1 if page is pinned. If the page was not pinned, returns
 176 * -errno. The page returned must be released with a put_page() call
 177 * when it is finished with.
 178 */
 179int get_kernel_page(unsigned long start, int write, struct page **pages)
 180{
 181	const struct kvec kiov = {
 182		.iov_base = (void *)start,
 183		.iov_len = PAGE_SIZE
 184	};
 185
 186	return get_kernel_pages(&kiov, 1, write, pages);
 187}
 188EXPORT_SYMBOL_GPL(get_kernel_page);
 189
 190static void pagevec_lru_move_fn(struct pagevec *pvec,
 191	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
 192	void *arg)
 193{
 194	int i;
 195	struct pglist_data *pgdat = NULL;
 196	struct lruvec *lruvec;
 197	unsigned long flags = 0;
 198
 199	for (i = 0; i < pagevec_count(pvec); i++) {
 200		struct page *page = pvec->pages[i];
 201		struct pglist_data *pagepgdat = page_pgdat(page);
 202
 203		if (pagepgdat != pgdat) {
 204			if (pgdat)
 205				spin_unlock_irqrestore(&pgdat->lru_lock, flags);
 206			pgdat = pagepgdat;
 207			spin_lock_irqsave(&pgdat->lru_lock, flags);
 208		}
 209
 210		lruvec = mem_cgroup_page_lruvec(page, pgdat);
 211		(*move_fn)(page, lruvec, arg);
 212	}
 213	if (pgdat)
 214		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
 215	release_pages(pvec->pages, pvec->nr);
 216	pagevec_reinit(pvec);
 217}
 218
 219static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
 220				 void *arg)
 221{
 222	int *pgmoved = arg;
 223
 224	if (PageLRU(page) && !PageUnevictable(page)) {
 225		del_page_from_lru_list(page, lruvec, page_lru(page));
 226		ClearPageActive(page);
 227		add_page_to_lru_list_tail(page, lruvec, page_lru(page));
 228		(*pgmoved)++;
 229	}
 
 
 
 
 230}
 231
 232/*
 233 * pagevec_move_tail() must be called with IRQ disabled.
 234 * Otherwise this may cause nasty races.
 235 */
 236static void pagevec_move_tail(struct pagevec *pvec)
 237{
 238	int pgmoved = 0;
 
 
 
 
 239
 240	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
 241	__count_vm_events(PGROTATED, pgmoved);
 
 
 
 
 
 
 242}
 243
 244/*
 245 * Writeback is about to end against a page which has been marked for immediate
 246 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 247 * inactive list.
 
 
 248 */
 249void rotate_reclaimable_page(struct page *page)
 250{
 251	if (!PageLocked(page) && !PageDirty(page) &&
 252	    !PageUnevictable(page) && PageLRU(page)) {
 253		struct pagevec *pvec;
 254		unsigned long flags;
 255
 256		get_page(page);
 257		local_irq_save(flags);
 258		pvec = this_cpu_ptr(&lru_rotate_pvecs);
 259		if (!pagevec_add(pvec, page) || PageCompound(page))
 260			pagevec_move_tail(pvec);
 261		local_irq_restore(flags);
 262	}
 263}
 264
 265static void update_page_reclaim_stat(struct lruvec *lruvec,
 266				     int file, int rotated)
 267{
 268	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 269
 270	reclaim_stat->recent_scanned[file]++;
 271	if (rotated)
 272		reclaim_stat->recent_rotated[file]++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 273}
 274
 275static void __activate_page(struct page *page, struct lruvec *lruvec,
 276			    void *arg)
 277{
 278	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 279		int file = page_is_file_cache(page);
 280		int lru = page_lru_base_type(page);
 281
 282		del_page_from_lru_list(page, lruvec, lru);
 283		SetPageActive(page);
 284		lru += LRU_ACTIVE;
 285		add_page_to_lru_list(page, lruvec, lru);
 286		trace_mm_lru_activate(page);
 
 
 
 
 287
 288		__count_vm_event(PGACTIVATE);
 289		update_page_reclaim_stat(lruvec, file, 1);
 
 290	}
 291}
 292
 293#ifdef CONFIG_SMP
 294static void activate_page_drain(int cpu)
 295{
 296	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
 297
 298	if (pagevec_count(pvec))
 299		pagevec_lru_move_fn(pvec, __activate_page, NULL);
 300}
 301
 302static bool need_activate_page_drain(int cpu)
 303{
 304	return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
 305}
 
 306
 307void activate_page(struct page *page)
 308{
 309	page = compound_head(page);
 310	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 311		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
 312
 313		get_page(page);
 314		if (!pagevec_add(pvec, page) || PageCompound(page))
 315			pagevec_lru_move_fn(pvec, __activate_page, NULL);
 316		put_cpu_var(activate_page_pvecs);
 317	}
 318}
 319
 320#else
 321static inline void activate_page_drain(int cpu)
 322{
 323}
 324
 325void activate_page(struct page *page)
 326{
 327	pg_data_t *pgdat = page_pgdat(page);
 328
 329	page = compound_head(page);
 330	spin_lock_irq(&pgdat->lru_lock);
 331	__activate_page(page, mem_cgroup_page_lruvec(page, pgdat), NULL);
 332	spin_unlock_irq(&pgdat->lru_lock);
 
 
 333}
 334#endif
 335
 336static void __lru_cache_activate_page(struct page *page)
 337{
 338	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
 339	int i;
 340
 
 
 
 341	/*
 342	 * Search backwards on the optimistic assumption that the page being
 343	 * activated has just been added to this pagevec. Note that only
 344	 * the local pagevec is examined as a !PageLRU page could be in the
 345	 * process of being released, reclaimed, migrated or on a remote
 346	 * pagevec that is currently being drained. Furthermore, marking
 347	 * a remote pagevec's page PageActive potentially hits a race where
 348	 * a page is marked PageActive just after it is added to the inactive
 349	 * list causing accounting errors and BUG_ON checks to trigger.
 350	 */
 351	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
 352		struct page *pagevec_page = pvec->pages[i];
 353
 354		if (pagevec_page == page) {
 355			SetPageActive(page);
 356			break;
 357		}
 358	}
 359
 360	put_cpu_var(lru_add_pvec);
 361}
 362
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 363/*
 364 * Mark a page as having seen activity.
 365 *
 366 * inactive,unreferenced	->	inactive,referenced
 367 * inactive,referenced		->	active,unreferenced
 368 * active,unreferenced		->	active,referenced
 369 *
 370 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
 371 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
 372 */
 373void mark_page_accessed(struct page *page)
 374{
 375	page = compound_head(page);
 376	if (!PageActive(page) && !PageUnevictable(page) &&
 377			PageReferenced(page)) {
 
 378
 
 
 
 379		/*
 380		 * If the page is on the LRU, queue it for activation via
 381		 * activate_page_pvecs. Otherwise, assume the page is on a
 382		 * pagevec, mark it active and it'll be moved to the active
 
 
 
 
 
 
 383		 * LRU on the next drain.
 384		 */
 385		if (PageLRU(page))
 386			activate_page(page);
 387		else
 388			__lru_cache_activate_page(page);
 389		ClearPageReferenced(page);
 390		if (page_is_file_cache(page))
 391			workingset_activation(page);
 392	} else if (!PageReferenced(page)) {
 393		SetPageReferenced(page);
 394	}
 395	if (page_is_idle(page))
 396		clear_page_idle(page);
 397}
 398EXPORT_SYMBOL(mark_page_accessed);
 399
 400static void __lru_cache_add(struct page *page)
 401{
 402	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
 403
 404	get_page(page);
 405	if (!pagevec_add(pvec, page) || PageCompound(page))
 406		__pagevec_lru_add(pvec);
 407	put_cpu_var(lru_add_pvec);
 408}
 409
 410/**
 411 * lru_cache_add_anon - add a page to the page lists
 412 * @page: the page to add
 413 */
 414void lru_cache_add_anon(struct page *page)
 415{
 416	if (PageActive(page))
 417		ClearPageActive(page);
 418	__lru_cache_add(page);
 419}
 420
 421void lru_cache_add_file(struct page *page)
 422{
 423	if (PageActive(page))
 424		ClearPageActive(page);
 425	__lru_cache_add(page);
 426}
 427EXPORT_SYMBOL(lru_cache_add_file);
 428
 429/**
 430 * lru_cache_add - add a page to a page list
 431 * @page: the page to be added to the LRU.
 432 *
 433 * Queue the page for addition to the LRU via pagevec. The decision on whether
 434 * to add the page to the [in]active [file|anon] list is deferred until the
 435 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
 436 * have the page added to the active list using mark_page_accessed().
 437 */
 438void lru_cache_add(struct page *page)
 439{
 440	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
 441	VM_BUG_ON_PAGE(PageLRU(page), page);
 442	__lru_cache_add(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 443}
 
 444
 445/**
 446 * lru_cache_add_active_or_unevictable
 447 * @page:  the page to be added to LRU
 448 * @vma:   vma in which page is mapped for determining reclaimability
 449 *
 450 * Place @page on the active or unevictable LRU list, depending on its
 451 * evictability.  Note that if the page is not evictable, it goes
 452 * directly back onto it's zone's unevictable list, it does NOT use a
 453 * per cpu pagevec.
 454 */
 455void lru_cache_add_active_or_unevictable(struct page *page,
 456					 struct vm_area_struct *vma)
 457{
 458	VM_BUG_ON_PAGE(PageLRU(page), page);
 459
 460	if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED))
 461		SetPageActive(page);
 462	else if (!TestSetPageMlocked(page)) {
 463		/*
 464		 * We use the irq-unsafe __mod_zone_page_stat because this
 465		 * counter is not modified from interrupt context, and the pte
 466		 * lock is held(spinlock), which implies preemption disabled.
 467		 */
 468		__mod_zone_page_state(page_zone(page), NR_MLOCK,
 469				    hpage_nr_pages(page));
 470		count_vm_event(UNEVICTABLE_PGMLOCKED);
 471	}
 472	lru_cache_add(page);
 473}
 474
 475/*
 476 * If the page can not be invalidated, it is moved to the
 477 * inactive list to speed up its reclaim.  It is moved to the
 478 * head of the list, rather than the tail, to give the flusher
 479 * threads some time to write it out, as this is much more
 480 * effective than the single-page writeout from reclaim.
 481 *
 482 * If the page isn't page_mapped and dirty/writeback, the page
 483 * could reclaim asap using PG_reclaim.
 484 *
 485 * 1. active, mapped page -> none
 486 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
 487 * 3. inactive, mapped page -> none
 488 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
 489 * 5. inactive, clean -> inactive, tail
 490 * 6. Others -> none
 491 *
 492 * In 4, why it moves inactive's head, the VM expects the page would
 493 * be write it out by flusher threads as this is much more effective
 494 * than the single-page writeout from reclaim.
 495 */
 496static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
 497			      void *arg)
 498{
 499	int lru, file;
 500	bool active;
 501
 502	if (!PageLRU(page))
 503		return;
 504
 505	if (PageUnevictable(page))
 506		return;
 507
 508	/* Some processes are using the page */
 509	if (page_mapped(page))
 510		return;
 511
 512	active = PageActive(page);
 513	file = page_is_file_cache(page);
 514	lru = page_lru_base_type(page);
 515
 516	del_page_from_lru_list(page, lruvec, lru + active);
 517	ClearPageActive(page);
 518	ClearPageReferenced(page);
 519
 520	if (PageWriteback(page) || PageDirty(page)) {
 521		/*
 522		 * PG_reclaim could be raced with end_page_writeback
 523		 * It can make readahead confusing.  But race window
 524		 * is _really_ small and  it's non-critical problem.
 
 525		 */
 526		add_page_to_lru_list(page, lruvec, lru);
 527		SetPageReclaim(page);
 528	} else {
 529		/*
 530		 * The page's writeback ends up during pagevec
 531		 * We moves tha page into tail of inactive.
 532		 */
 533		add_page_to_lru_list_tail(page, lruvec, lru);
 534		__count_vm_event(PGROTATED);
 535	}
 536
 537	if (active)
 538		__count_vm_event(PGDEACTIVATE);
 539	update_page_reclaim_stat(lruvec, file, 0);
 
 
 540}
 541
 542static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
 543			    void *arg)
 544{
 545	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
 546		int file = page_is_file_cache(page);
 547		int lru = page_lru_base_type(page);
 548
 549		del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
 550		ClearPageActive(page);
 551		ClearPageReferenced(page);
 552		add_page_to_lru_list(page, lruvec, lru);
 553
 554		__count_vm_events(PGDEACTIVATE, hpage_nr_pages(page));
 555		update_page_reclaim_stat(lruvec, file, 0);
 
 556	}
 557}
 558
 559static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
 560			    void *arg)
 561{
 562	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
 563	    !PageSwapCache(page) && !PageUnevictable(page)) {
 564		bool active = PageActive(page);
 565
 566		del_page_from_lru_list(page, lruvec,
 567				       LRU_INACTIVE_ANON + active);
 568		ClearPageActive(page);
 569		ClearPageReferenced(page);
 570		/*
 571		 * lazyfree pages are clean anonymous pages. They have
 572		 * SwapBacked flag cleared to distinguish normal anonymous
 573		 * pages
 574		 */
 575		ClearPageSwapBacked(page);
 576		add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
 577
 578		__count_vm_events(PGLAZYFREE, hpage_nr_pages(page));
 579		count_memcg_page_event(page, PGLAZYFREE);
 580		update_page_reclaim_stat(lruvec, 1, 0);
 581	}
 582}
 583
 584/*
 585 * Drain pages out of the cpu's pagevecs.
 586 * Either "cpu" is the current CPU, and preemption has already been
 587 * disabled; or "cpu" is being hot-unplugged, and is already dead.
 588 */
 589void lru_add_drain_cpu(int cpu)
 590{
 591	struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
 
 592
 593	if (pagevec_count(pvec))
 594		__pagevec_lru_add(pvec);
 595
 596	pvec = &per_cpu(lru_rotate_pvecs, cpu);
 597	if (pagevec_count(pvec)) {
 
 598		unsigned long flags;
 599
 600		/* No harm done if a racing interrupt already did this */
 601		local_irq_save(flags);
 602		pagevec_move_tail(pvec);
 603		local_irq_restore(flags);
 604	}
 605
 606	pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
 607	if (pagevec_count(pvec))
 608		pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
 609
 610	pvec = &per_cpu(lru_deactivate_pvecs, cpu);
 611	if (pagevec_count(pvec))
 612		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
 613
 614	pvec = &per_cpu(lru_lazyfree_pvecs, cpu);
 615	if (pagevec_count(pvec))
 616		pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
 617
 618	activate_page_drain(cpu);
 619}
 620
 621/**
 622 * deactivate_file_page - forcefully deactivate a file page
 623 * @page: page to deactivate
 624 *
 625 * This function hints the VM that @page is a good reclaim candidate,
 626 * for example if its invalidation fails due to the page being dirty
 627 * or under writeback.
 
 
 628 */
 629void deactivate_file_page(struct page *page)
 630{
 631	/*
 632	 * In a workload with many unevictable page such as mprotect,
 633	 * unevictable page deactivation for accelerating reclaim is pointless.
 634	 */
 635	if (PageUnevictable(page))
 636		return;
 637
 638	if (likely(get_page_unless_zero(page))) {
 639		struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
 
 640
 641		if (!pagevec_add(pvec, page) || PageCompound(page))
 642			pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
 643		put_cpu_var(lru_deactivate_file_pvecs);
 644	}
 
 645}
 646
 647/*
 648 * deactivate_page - deactivate a page
 649 * @page: page to deactivate
 650 *
 651 * deactivate_page() moves @page to the inactive list if @page was on the active
 652 * list and was not an unevictable page.  This is done to accelerate the reclaim
 653 * of @page.
 654 */
 655void deactivate_page(struct page *page)
 656{
 657	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
 658		struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
 659
 660		get_page(page);
 661		if (!pagevec_add(pvec, page) || PageCompound(page))
 662			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
 663		put_cpu_var(lru_deactivate_pvecs);
 
 
 664	}
 665}
 666
 667/**
 668 * mark_page_lazyfree - make an anon page lazyfree
 669 * @page: page to deactivate
 670 *
 671 * mark_page_lazyfree() moves @page to the inactive file list.
 672 * This is done to accelerate the reclaim of @page.
 673 */
 674void mark_page_lazyfree(struct page *page)
 675{
 676	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
 677	    !PageSwapCache(page) && !PageUnevictable(page)) {
 678		struct pagevec *pvec = &get_cpu_var(lru_lazyfree_pvecs);
 679
 680		get_page(page);
 681		if (!pagevec_add(pvec, page) || PageCompound(page))
 682			pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
 683		put_cpu_var(lru_lazyfree_pvecs);
 
 
 684	}
 685}
 686
 687void lru_add_drain(void)
 688{
 689	lru_add_drain_cpu(get_cpu());
 690	put_cpu();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 691}
 692
 693#ifdef CONFIG_SMP
 694
 695static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
 696
 697static void lru_add_drain_per_cpu(struct work_struct *dummy)
 698{
 699	lru_add_drain();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 700}
 701
 702/*
 703 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
 704 * kworkers being shut down before our page_alloc_cpu_dead callback is
 705 * executed on the offlined cpu.
 706 * Calling this function with cpu hotplug locks held can actually lead
 707 * to obscure indirect dependencies via WQ context.
 708 */
 709void lru_add_drain_all(void)
 710{
 711	static DEFINE_MUTEX(lock);
 
 
 
 
 
 
 
 
 
 
 712	static struct cpumask has_work;
 713	int cpu;
 
 714
 715	/*
 716	 * Make sure nobody triggers this path before mm_percpu_wq is fully
 717	 * initialized.
 718	 */
 719	if (WARN_ON(!mm_percpu_wq))
 720		return;
 721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 722	mutex_lock(&lock);
 723	cpumask_clear(&has_work);
 724
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 725	for_each_online_cpu(cpu) {
 726		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
 727
 728		if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
 729		    pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
 730		    pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
 731		    pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
 732		    pagevec_count(&per_cpu(lru_lazyfree_pvecs, cpu)) ||
 733		    need_activate_page_drain(cpu)) {
 734			INIT_WORK(work, lru_add_drain_per_cpu);
 735			queue_work_on(cpu, mm_percpu_wq, work);
 736			cpumask_set_cpu(cpu, &has_work);
 737		}
 738	}
 739
 740	for_each_cpu(cpu, &has_work)
 741		flush_work(&per_cpu(lru_add_drain_work, cpu));
 742
 
 743	mutex_unlock(&lock);
 744}
 
 
 
 
 
 745#else
 746void lru_add_drain_all(void)
 747{
 748	lru_add_drain();
 749}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 750#endif
 
 751
 752/**
 753 * release_pages - batched put_page()
 754 * @pages: array of pages to release
 755 * @nr: number of pages
 
 
 
 
 
 
 
 756 *
 757 * Decrement the reference count on all the pages in @pages.  If it
 758 * fell to zero, remove the page from the LRU and free it.
 759 */
 760void release_pages(struct page **pages, int nr)
 761{
 762	int i;
 763	LIST_HEAD(pages_to_free);
 764	struct pglist_data *locked_pgdat = NULL;
 765	struct lruvec *lruvec;
 766	unsigned long uninitialized_var(flags);
 767	unsigned int uninitialized_var(lock_batch);
 768
 769	for (i = 0; i < nr; i++) {
 770		struct page *page = pages[i];
 771
 772		/*
 773		 * Make sure the IRQ-safe lock-holding time does not get
 774		 * excessive with a continuous string of pages from the
 775		 * same pgdat. The lock is held only if pgdat != NULL.
 776		 */
 777		if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
 778			spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
 779			locked_pgdat = NULL;
 780		}
 781
 782		if (is_huge_zero_page(page))
 783			continue;
 784
 785		if (is_zone_device_page(page)) {
 786			if (locked_pgdat) {
 787				spin_unlock_irqrestore(&locked_pgdat->lru_lock,
 788						       flags);
 789				locked_pgdat = NULL;
 790			}
 791			/*
 792			 * ZONE_DEVICE pages that return 'false' from
 793			 * put_devmap_managed_page() do not require special
 794			 * processing, and instead, expect a call to
 795			 * put_page_testzero().
 796			 */
 797			if (put_devmap_managed_page(page))
 798				continue;
 
 
 
 799		}
 800
 801		page = compound_head(page);
 802		if (!put_page_testzero(page))
 803			continue;
 804
 805		if (PageCompound(page)) {
 806			if (locked_pgdat) {
 807				spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
 808				locked_pgdat = NULL;
 
 809			}
 810			__put_compound_page(page);
 811			continue;
 812		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 813
 814		if (PageLRU(page)) {
 815			struct pglist_data *pgdat = page_pgdat(page);
 
 
 
 816
 817			if (pgdat != locked_pgdat) {
 818				if (locked_pgdat)
 819					spin_unlock_irqrestore(&locked_pgdat->lru_lock,
 820									flags);
 821				lock_batch = 0;
 822				locked_pgdat = pgdat;
 823				spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
 824			}
 
 
 
 
 
 
 
 
 
 
 825
 826			lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
 827			VM_BUG_ON_PAGE(!PageLRU(page), page);
 828			__ClearPageLRU(page);
 829			del_page_from_lru_list(page, lruvec, page_off_lru(page));
 830		}
 831
 832		/* Clear Active bit in case of parallel mark_page_accessed */
 833		__ClearPageActive(page);
 834		__ClearPageWaiters(page);
 
 
 835
 836		list_add(&page->lru, &pages_to_free);
 
 
 837	}
 838	if (locked_pgdat)
 839		spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
 840
 841	mem_cgroup_uncharge_list(&pages_to_free);
 842	free_unref_page_list(&pages_to_free);
 843}
 844EXPORT_SYMBOL(release_pages);
 845
 846/*
 847 * The pages which we're about to release may be in the deferred lru-addition
 848 * queues.  That would prevent them from really being freed right now.  That's
 849 * OK from a correctness point of view but is inefficient - those pages may be
 850 * cache-warm and we want to give them back to the page allocator ASAP.
 851 *
 852 * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
 853 * and __pagevec_lru_add_active() call release_pages() directly to avoid
 854 * mutual recursion.
 855 */
 856void __pagevec_release(struct pagevec *pvec)
 857{
 858	if (!pvec->percpu_pvec_drained) {
 859		lru_add_drain();
 860		pvec->percpu_pvec_drained = true;
 861	}
 862	release_pages(pvec->pages, pagevec_count(pvec));
 863	pagevec_reinit(pvec);
 864}
 865EXPORT_SYMBOL(__pagevec_release);
 866
 867#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 868/* used by __split_huge_page_refcount() */
 869void lru_add_page_tail(struct page *page, struct page *page_tail,
 870		       struct lruvec *lruvec, struct list_head *list)
 871{
 872	const int file = 0;
 873
 874	VM_BUG_ON_PAGE(!PageHead(page), page);
 875	VM_BUG_ON_PAGE(PageCompound(page_tail), page);
 876	VM_BUG_ON_PAGE(PageLRU(page_tail), page);
 877	lockdep_assert_held(&lruvec_pgdat(lruvec)->lru_lock);
 878
 879	if (!list)
 880		SetPageLRU(page_tail);
 881
 882	if (likely(PageLRU(page)))
 883		list_add_tail(&page_tail->lru, &page->lru);
 884	else if (list) {
 885		/* page reclaim is reclaiming a huge page */
 886		get_page(page_tail);
 887		list_add_tail(&page_tail->lru, list);
 888	} else {
 889		/*
 890		 * Head page has not yet been counted, as an hpage,
 891		 * so we must account for each subpage individually.
 892		 *
 893		 * Put page_tail on the list at the correct position
 894		 * so they all end up in order.
 895		 */
 896		add_page_to_lru_list_tail(page_tail, lruvec,
 897					  page_lru(page_tail));
 898	}
 899
 900	if (!PageUnevictable(page))
 901		update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
 902}
 903#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 904
 905static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
 906				 void *arg)
 907{
 908	enum lru_list lru;
 909	int was_unevictable = TestClearPageUnevictable(page);
 910
 911	VM_BUG_ON_PAGE(PageLRU(page), page);
 912
 913	SetPageLRU(page);
 914	/*
 915	 * Page becomes evictable in two ways:
 916	 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
 917	 * 2) Before acquiring LRU lock to put the page to correct LRU and then
 918	 *   a) do PageLRU check with lock [check_move_unevictable_pages]
 919	 *   b) do PageLRU check before lock [clear_page_mlock]
 920	 *
 921	 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
 922	 * following strict ordering:
 923	 *
 924	 * #0: __pagevec_lru_add_fn		#1: clear_page_mlock
 925	 *
 926	 * SetPageLRU()				TestClearPageMlocked()
 927	 * smp_mb() // explicit ordering	// above provides strict
 928	 *					// ordering
 929	 * PageMlocked()			PageLRU()
 930	 *
 931	 *
 932	 * if '#1' does not observe setting of PG_lru by '#0' and fails
 933	 * isolation, the explicit barrier will make sure that page_evictable
 934	 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
 935	 * can be reordered after PageMlocked check and can make '#1' to fail
 936	 * the isolation of the page whose Mlocked bit is cleared (#0 is also
 937	 * looking at the same page) and the evictable page will be stranded
 938	 * in an unevictable LRU.
 939	 */
 940	smp_mb();
 941
 942	if (page_evictable(page)) {
 943		lru = page_lru(page);
 944		update_page_reclaim_stat(lruvec, page_is_file_cache(page),
 945					 PageActive(page));
 946		if (was_unevictable)
 947			count_vm_event(UNEVICTABLE_PGRESCUED);
 948	} else {
 949		lru = LRU_UNEVICTABLE;
 950		ClearPageActive(page);
 951		SetPageUnevictable(page);
 952		if (!was_unevictable)
 953			count_vm_event(UNEVICTABLE_PGCULLED);
 954	}
 955
 956	add_page_to_lru_list(page, lruvec, lru);
 957	trace_mm_lru_insertion(page, lru);
 958}
 959
 960/*
 961 * Add the passed pages to the LRU, then drop the caller's refcount
 962 * on them.  Reinitialises the caller's pagevec.
 963 */
 964void __pagevec_lru_add(struct pagevec *pvec)
 965{
 966	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
 967}
 968EXPORT_SYMBOL(__pagevec_lru_add);
 969
 970/**
 971 * pagevec_lookup_entries - gang pagecache lookup
 972 * @pvec:	Where the resulting entries are placed
 973 * @mapping:	The address_space to search
 974 * @start:	The starting entry index
 975 * @nr_entries:	The maximum number of pages
 976 * @indices:	The cache indices corresponding to the entries in @pvec
 977 *
 978 * pagevec_lookup_entries() will search for and return a group of up
 979 * to @nr_pages pages and shadow entries in the mapping.  All
 980 * entries are placed in @pvec.  pagevec_lookup_entries() takes a
 981 * reference against actual pages in @pvec.
 982 *
 983 * The search returns a group of mapping-contiguous entries with
 984 * ascending indexes.  There may be holes in the indices due to
 985 * not-present entries.
 986 *
 987 * pagevec_lookup_entries() returns the number of entries which were
 988 * found.
 989 */
 990unsigned pagevec_lookup_entries(struct pagevec *pvec,
 991				struct address_space *mapping,
 992				pgoff_t start, unsigned nr_entries,
 993				pgoff_t *indices)
 994{
 995	pvec->nr = find_get_entries(mapping, start, nr_entries,
 996				    pvec->pages, indices);
 997	return pagevec_count(pvec);
 998}
 
 999
1000/**
1001 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1002 * @pvec:	The pagevec to prune
1003 *
1004 * pagevec_lookup_entries() fills both pages and exceptional radix
1005 * tree entries into the pagevec.  This function prunes all
1006 * exceptionals from @pvec without leaving holes, so that it can be
1007 * passed on to page-only pagevec operations.
1008 */
1009void pagevec_remove_exceptionals(struct pagevec *pvec)
1010{
1011	int i, j;
1012
1013	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1014		struct page *page = pvec->pages[i];
1015		if (!xa_is_value(page))
1016			pvec->pages[j++] = page;
1017	}
1018	pvec->nr = j;
1019}
1020
1021/**
1022 * pagevec_lookup_range - gang pagecache lookup
1023 * @pvec:	Where the resulting pages are placed
1024 * @mapping:	The address_space to search
1025 * @start:	The starting page index
1026 * @end:	The final page index
1027 *
1028 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1029 * pages in the mapping starting from index @start and upto index @end
1030 * (inclusive).  The pages are placed in @pvec.  pagevec_lookup() takes a
1031 * reference against the pages in @pvec.
1032 *
1033 * The search returns a group of mapping-contiguous pages with ascending
1034 * indexes.  There may be holes in the indices due to not-present pages. We
1035 * also update @start to index the next page for the traversal.
1036 *
1037 * pagevec_lookup_range() returns the number of pages which were found. If this
1038 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1039 * reached.
1040 */
1041unsigned pagevec_lookup_range(struct pagevec *pvec,
1042		struct address_space *mapping, pgoff_t *start, pgoff_t end)
1043{
1044	pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1045					pvec->pages);
1046	return pagevec_count(pvec);
1047}
1048EXPORT_SYMBOL(pagevec_lookup_range);
1049
1050unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1051		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1052		xa_mark_t tag)
1053{
1054	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1055					PAGEVEC_SIZE, pvec->pages);
1056	return pagevec_count(pvec);
1057}
1058EXPORT_SYMBOL(pagevec_lookup_range_tag);
1059
1060unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1061		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1062		xa_mark_t tag, unsigned max_pages)
1063{
1064	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1065		min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1066	return pagevec_count(pvec);
1067}
1068EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1069/*
1070 * Perform any setup for the swap system
1071 */
1072void __init swap_setup(void)
1073{
1074	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1075
1076	/* Use a smaller cluster for small-memory machines */
1077	if (megs < 16)
1078		page_cluster = 2;
1079	else
1080		page_cluster = 3;
1081	/*
1082	 * Right now other parts of the system means that we
1083	 * _really_ don't want to cluster much more
1084	 */
1085}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/swap.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 */
   7
   8/*
   9 * This file contains the default values for the operation of the
  10 * Linux VM subsystem. Fine-tuning documentation can be found in
  11 * Documentation/admin-guide/sysctl/vm.rst.
  12 * Started 18.12.91
  13 * Swap aging added 23.2.95, Stephen Tweedie.
  14 * Buffermem limits added 12.3.98, Rik van Riel.
  15 */
  16
  17#include <linux/mm.h>
  18#include <linux/sched.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/swap.h>
  21#include <linux/mman.h>
  22#include <linux/pagemap.h>
  23#include <linux/pagevec.h>
  24#include <linux/init.h>
  25#include <linux/export.h>
  26#include <linux/mm_inline.h>
  27#include <linux/percpu_counter.h>
  28#include <linux/memremap.h>
  29#include <linux/percpu.h>
  30#include <linux/cpu.h>
  31#include <linux/notifier.h>
  32#include <linux/backing-dev.h>
  33#include <linux/memcontrol.h>
  34#include <linux/gfp.h>
  35#include <linux/uio.h>
  36#include <linux/hugetlb.h>
  37#include <linux/page_idle.h>
  38#include <linux/local_lock.h>
  39#include <linux/buffer_head.h>
  40
  41#include "internal.h"
  42
  43#define CREATE_TRACE_POINTS
  44#include <trace/events/pagemap.h>
  45
  46/* How many pages do we try to swap or page in/out together? As a power of 2 */
  47int page_cluster;
  48const int page_cluster_max = 31;
  49
  50/* Protecting only lru_rotate.fbatch which requires disabling interrupts */
  51struct lru_rotate {
  52	local_lock_t lock;
  53	struct folio_batch fbatch;
  54};
  55static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
  56	.lock = INIT_LOCAL_LOCK(lock),
  57};
  58
  59/*
  60 * The following folio batches are grouped together because they are protected
  61 * by disabling preemption (and interrupts remain enabled).
  62 */
  63struct cpu_fbatches {
  64	local_lock_t lock;
  65	struct folio_batch lru_add;
  66	struct folio_batch lru_deactivate_file;
  67	struct folio_batch lru_deactivate;
  68	struct folio_batch lru_lazyfree;
  69#ifdef CONFIG_SMP
  70	struct folio_batch activate;
  71#endif
  72};
  73static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = {
  74	.lock = INIT_LOCAL_LOCK(lock),
  75};
  76
  77static void __page_cache_release(struct folio *folio, struct lruvec **lruvecp,
  78		unsigned long *flagsp)
  79{
  80	if (folio_test_lru(folio)) {
  81		folio_lruvec_relock_irqsave(folio, lruvecp, flagsp);
  82		lruvec_del_folio(*lruvecp, folio);
  83		__folio_clear_lru_flags(folio);
  84	}
  85
  86	/*
  87	 * In rare cases, when truncation or holepunching raced with
  88	 * munlock after VM_LOCKED was cleared, Mlocked may still be
  89	 * found set here.  This does not indicate a problem, unless
  90	 * "unevictable_pgs_cleared" appears worryingly large.
  91	 */
  92	if (unlikely(folio_test_mlocked(folio))) {
  93		long nr_pages = folio_nr_pages(folio);
  94
  95		__folio_clear_mlocked(folio);
  96		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
  97		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
  98	}
  99}
 100
 101/*
 102 * This path almost never happens for VM activity - pages are normally freed
 103 * in batches.  But it gets used by networking - and for compound pages.
 104 */
 105static void page_cache_release(struct folio *folio)
 106{
 107	struct lruvec *lruvec = NULL;
 108	unsigned long flags;
 
 
 109
 110	__page_cache_release(folio, &lruvec, &flags);
 111	if (lruvec)
 112		unlock_page_lruvec_irqrestore(lruvec, flags);
 
 
 
 
 
 113}
 114
 115static void __folio_put_small(struct folio *folio)
 116{
 117	page_cache_release(folio);
 118	mem_cgroup_uncharge(folio);
 119	free_unref_page(&folio->page, 0);
 120}
 121
 122static void __folio_put_large(struct folio *folio)
 123{
 
 
 124	/*
 125	 * __page_cache_release() is supposed to be called for thp, not for
 126	 * hugetlb. This is because hugetlb page does never have PageLRU set
 127	 * (it's never listed to any LRU lists) and no memcg routines should
 128	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
 129	 */
 130	if (!folio_test_hugetlb(folio))
 131		page_cache_release(folio);
 132	destroy_large_folio(folio);
 
 133}
 134
 135void __folio_put(struct folio *folio)
 136{
 137	if (unlikely(folio_is_zone_device(folio)))
 138		free_zone_device_page(&folio->page);
 139	else if (unlikely(folio_test_large(folio)))
 140		__folio_put_large(folio);
 
 
 
 
 
 
 
 
 141	else
 142		__folio_put_small(folio);
 143}
 144EXPORT_SYMBOL(__folio_put);
 145
 146/**
 147 * put_pages_list() - release a list of pages
 148 * @pages: list of pages threaded on page->lru
 149 *
 150 * Release a list of pages which are strung together on page.lru.
 
 151 */
 152void put_pages_list(struct list_head *pages)
 153{
 154	struct folio_batch fbatch;
 155	struct folio *folio, *next;
 156
 157	folio_batch_init(&fbatch);
 158	list_for_each_entry_safe(folio, next, pages, lru) {
 159		if (!folio_put_testzero(folio))
 160			continue;
 161		if (folio_test_large(folio)) {
 162			__folio_put_large(folio);
 163			continue;
 164		}
 165		/* LRU flag must be clear because it's passed using the lru */
 166		if (folio_batch_add(&fbatch, folio) > 0)
 167			continue;
 168		free_unref_folios(&fbatch);
 169	}
 170
 171	if (fbatch.nr)
 172		free_unref_folios(&fbatch);
 173	INIT_LIST_HEAD(pages);
 174}
 175EXPORT_SYMBOL(put_pages_list);
 176
 177typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio);
 178
 179static void lru_add_fn(struct lruvec *lruvec, struct folio *folio)
 
 
 
 
 
 
 
 
 
 
 
 
 180{
 181	int was_unevictable = folio_test_clear_unevictable(folio);
 182	long nr_pages = folio_nr_pages(folio);
 183
 184	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
 
 
 185
 186	/*
 187	 * Is an smp_mb__after_atomic() still required here, before
 188	 * folio_evictable() tests the mlocked flag, to rule out the possibility
 189	 * of stranding an evictable folio on an unevictable LRU?  I think
 190	 * not, because __munlock_folio() only clears the mlocked flag
 191	 * while the LRU lock is held.
 192	 *
 193	 * (That is not true of __page_cache_release(), and not necessarily
 194	 * true of folios_put(): but those only clear the mlocked flag after
 195	 * folio_put_testzero() has excluded any other users of the folio.)
 196	 */
 197	if (folio_evictable(folio)) {
 198		if (was_unevictable)
 199			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
 200	} else {
 201		folio_clear_active(folio);
 202		folio_set_unevictable(folio);
 203		/*
 204		 * folio->mlock_count = !!folio_test_mlocked(folio)?
 205		 * But that leaves __mlock_folio() in doubt whether another
 206		 * actor has already counted the mlock or not.  Err on the
 207		 * safe side, underestimate, let page reclaim fix it, rather
 208		 * than leaving a page on the unevictable LRU indefinitely.
 209		 */
 210		folio->mlock_count = 0;
 211		if (!was_unevictable)
 212			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
 213	}
 214
 215	lruvec_add_folio(lruvec, folio);
 216	trace_mm_lru_insertion(folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 217}
 
 218
 219static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn)
 
 
 220{
 221	int i;
 222	struct lruvec *lruvec = NULL;
 
 223	unsigned long flags = 0;
 224
 225	for (i = 0; i < folio_batch_count(fbatch); i++) {
 226		struct folio *folio = fbatch->folios[i];
 
 
 
 
 
 
 
 
 227
 228		/* block memcg migration while the folio moves between lru */
 229		if (move_fn != lru_add_fn && !folio_test_clear_lru(folio))
 230			continue;
 
 
 
 
 
 231
 232		folio_lruvec_relock_irqsave(folio, &lruvec, &flags);
 233		move_fn(lruvec, folio);
 
 
 234
 235		folio_set_lru(folio);
 
 
 
 
 236	}
 237
 238	if (lruvec)
 239		unlock_page_lruvec_irqrestore(lruvec, flags);
 240	folios_put(fbatch);
 241}
 242
 243static void folio_batch_add_and_move(struct folio_batch *fbatch,
 244		struct folio *folio, move_fn_t move_fn)
 
 
 
 245{
 246	if (folio_batch_add(fbatch, folio) && !folio_test_large(folio) &&
 247	    !lru_cache_disabled())
 248		return;
 249	folio_batch_move_lru(fbatch, move_fn);
 250}
 251
 252static void lru_move_tail_fn(struct lruvec *lruvec, struct folio *folio)
 253{
 254	if (!folio_test_unevictable(folio)) {
 255		lruvec_del_folio(lruvec, folio);
 256		folio_clear_active(folio);
 257		lruvec_add_folio_tail(lruvec, folio);
 258		__count_vm_events(PGROTATED, folio_nr_pages(folio));
 259	}
 260}
 261
 262/*
 263 * Writeback is about to end against a folio which has been marked for
 264 * immediate reclaim.  If it still appears to be reclaimable, move it
 265 * to the tail of the inactive list.
 266 *
 267 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
 268 */
 269void folio_rotate_reclaimable(struct folio *folio)
 270{
 271	if (!folio_test_locked(folio) && !folio_test_dirty(folio) &&
 272	    !folio_test_unevictable(folio) && folio_test_lru(folio)) {
 273		struct folio_batch *fbatch;
 274		unsigned long flags;
 275
 276		folio_get(folio);
 277		local_lock_irqsave(&lru_rotate.lock, flags);
 278		fbatch = this_cpu_ptr(&lru_rotate.fbatch);
 279		folio_batch_add_and_move(fbatch, folio, lru_move_tail_fn);
 280		local_unlock_irqrestore(&lru_rotate.lock, flags);
 
 281	}
 282}
 283
 284void lru_note_cost(struct lruvec *lruvec, bool file,
 285		   unsigned int nr_io, unsigned int nr_rotated)
 286{
 287	unsigned long cost;
 288
 289	/*
 290	 * Reflect the relative cost of incurring IO and spending CPU
 291	 * time on rotations. This doesn't attempt to make a precise
 292	 * comparison, it just says: if reloads are about comparable
 293	 * between the LRU lists, or rotations are overwhelmingly
 294	 * different between them, adjust scan balance for CPU work.
 295	 */
 296	cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated;
 297
 298	do {
 299		unsigned long lrusize;
 300
 301		/*
 302		 * Hold lruvec->lru_lock is safe here, since
 303		 * 1) The pinned lruvec in reclaim, or
 304		 * 2) From a pre-LRU page during refault (which also holds the
 305		 *    rcu lock, so would be safe even if the page was on the LRU
 306		 *    and could move simultaneously to a new lruvec).
 307		 */
 308		spin_lock_irq(&lruvec->lru_lock);
 309		/* Record cost event */
 310		if (file)
 311			lruvec->file_cost += cost;
 312		else
 313			lruvec->anon_cost += cost;
 314
 315		/*
 316		 * Decay previous events
 317		 *
 318		 * Because workloads change over time (and to avoid
 319		 * overflow) we keep these statistics as a floating
 320		 * average, which ends up weighing recent refaults
 321		 * more than old ones.
 322		 */
 323		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
 324			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
 325			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
 326			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
 327
 328		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
 329			lruvec->file_cost /= 2;
 330			lruvec->anon_cost /= 2;
 331		}
 332		spin_unlock_irq(&lruvec->lru_lock);
 333	} while ((lruvec = parent_lruvec(lruvec)));
 334}
 335
 336void lru_note_cost_refault(struct folio *folio)
 
 337{
 338	lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
 339		      folio_nr_pages(folio), 0);
 340}
 341
 342static void folio_activate_fn(struct lruvec *lruvec, struct folio *folio)
 343{
 344	if (!folio_test_active(folio) && !folio_test_unevictable(folio)) {
 345		long nr_pages = folio_nr_pages(folio);
 346
 347		lruvec_del_folio(lruvec, folio);
 348		folio_set_active(folio);
 349		lruvec_add_folio(lruvec, folio);
 350		trace_mm_lru_activate(folio);
 351
 352		__count_vm_events(PGACTIVATE, nr_pages);
 353		__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
 354				     nr_pages);
 355	}
 356}
 357
 358#ifdef CONFIG_SMP
 359static void folio_activate_drain(int cpu)
 360{
 361	struct folio_batch *fbatch = &per_cpu(cpu_fbatches.activate, cpu);
 362
 363	if (folio_batch_count(fbatch))
 364		folio_batch_move_lru(fbatch, folio_activate_fn);
 365}
 366
 367void folio_activate(struct folio *folio)
 368{
 369	if (folio_test_lru(folio) && !folio_test_active(folio) &&
 370	    !folio_test_unevictable(folio)) {
 371		struct folio_batch *fbatch;
 372
 373		folio_get(folio);
 374		local_lock(&cpu_fbatches.lock);
 375		fbatch = this_cpu_ptr(&cpu_fbatches.activate);
 376		folio_batch_add_and_move(fbatch, folio, folio_activate_fn);
 377		local_unlock(&cpu_fbatches.lock);
 
 
 
 
 
 378	}
 379}
 380
 381#else
 382static inline void folio_activate_drain(int cpu)
 383{
 384}
 385
 386void folio_activate(struct folio *folio)
 387{
 388	struct lruvec *lruvec;
 389
 390	if (folio_test_clear_lru(folio)) {
 391		lruvec = folio_lruvec_lock_irq(folio);
 392		folio_activate_fn(lruvec, folio);
 393		unlock_page_lruvec_irq(lruvec);
 394		folio_set_lru(folio);
 395	}
 396}
 397#endif
 398
 399static void __lru_cache_activate_folio(struct folio *folio)
 400{
 401	struct folio_batch *fbatch;
 402	int i;
 403
 404	local_lock(&cpu_fbatches.lock);
 405	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
 406
 407	/*
 408	 * Search backwards on the optimistic assumption that the folio being
 409	 * activated has just been added to this batch. Note that only
 410	 * the local batch is examined as a !LRU folio could be in the
 411	 * process of being released, reclaimed, migrated or on a remote
 412	 * batch that is currently being drained. Furthermore, marking
 413	 * a remote batch's folio active potentially hits a race where
 414	 * a folio is marked active just after it is added to the inactive
 415	 * list causing accounting errors and BUG_ON checks to trigger.
 416	 */
 417	for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) {
 418		struct folio *batch_folio = fbatch->folios[i];
 419
 420		if (batch_folio == folio) {
 421			folio_set_active(folio);
 422			break;
 423		}
 424	}
 425
 426	local_unlock(&cpu_fbatches.lock);
 427}
 428
 429#ifdef CONFIG_LRU_GEN
 430static void folio_inc_refs(struct folio *folio)
 431{
 432	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
 433
 434	if (folio_test_unevictable(folio))
 435		return;
 436
 437	if (!folio_test_referenced(folio)) {
 438		folio_set_referenced(folio);
 439		return;
 440	}
 441
 442	if (!folio_test_workingset(folio)) {
 443		folio_set_workingset(folio);
 444		return;
 445	}
 446
 447	/* see the comment on MAX_NR_TIERS */
 448	do {
 449		new_flags = old_flags & LRU_REFS_MASK;
 450		if (new_flags == LRU_REFS_MASK)
 451			break;
 452
 453		new_flags += BIT(LRU_REFS_PGOFF);
 454		new_flags |= old_flags & ~LRU_REFS_MASK;
 455	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
 456}
 457#else
 458static void folio_inc_refs(struct folio *folio)
 459{
 460}
 461#endif /* CONFIG_LRU_GEN */
 462
 463/*
 464 * Mark a page as having seen activity.
 465 *
 466 * inactive,unreferenced	->	inactive,referenced
 467 * inactive,referenced		->	active,unreferenced
 468 * active,unreferenced		->	active,referenced
 469 *
 470 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
 471 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
 472 */
 473void folio_mark_accessed(struct folio *folio)
 474{
 475	if (lru_gen_enabled()) {
 476		folio_inc_refs(folio);
 477		return;
 478	}
 479
 480	if (!folio_test_referenced(folio)) {
 481		folio_set_referenced(folio);
 482	} else if (folio_test_unevictable(folio)) {
 483		/*
 484		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
 485		 * this list is never rotated or maintained, so marking an
 486		 * unevictable page accessed has no effect.
 487		 */
 488	} else if (!folio_test_active(folio)) {
 489		/*
 490		 * If the folio is on the LRU, queue it for activation via
 491		 * cpu_fbatches.activate. Otherwise, assume the folio is in a
 492		 * folio_batch, mark it active and it'll be moved to the active
 493		 * LRU on the next drain.
 494		 */
 495		if (folio_test_lru(folio))
 496			folio_activate(folio);
 497		else
 498			__lru_cache_activate_folio(folio);
 499		folio_clear_referenced(folio);
 500		workingset_activation(folio);
 501	}
 502	if (folio_test_idle(folio))
 503		folio_clear_idle(folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 504}
 505EXPORT_SYMBOL(folio_mark_accessed);
 506
 507/**
 508 * folio_add_lru - Add a folio to an LRU list.
 509 * @folio: The folio to be added to the LRU.
 510 *
 511 * Queue the folio for addition to the LRU. The decision on whether
 512 * to add the page to the [in]active [file|anon] list is deferred until the
 513 * folio_batch is drained. This gives a chance for the caller of folio_add_lru()
 514 * have the folio added to the active list using folio_mark_accessed().
 515 */
 516void folio_add_lru(struct folio *folio)
 517{
 518	struct folio_batch *fbatch;
 519
 520	VM_BUG_ON_FOLIO(folio_test_active(folio) &&
 521			folio_test_unevictable(folio), folio);
 522	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
 523
 524	/* see the comment in lru_gen_add_folio() */
 525	if (lru_gen_enabled() && !folio_test_unevictable(folio) &&
 526	    lru_gen_in_fault() && !(current->flags & PF_MEMALLOC))
 527		folio_set_active(folio);
 528
 529	folio_get(folio);
 530	local_lock(&cpu_fbatches.lock);
 531	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
 532	folio_batch_add_and_move(fbatch, folio, lru_add_fn);
 533	local_unlock(&cpu_fbatches.lock);
 534}
 535EXPORT_SYMBOL(folio_add_lru);
 536
 537/**
 538 * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA.
 539 * @folio: The folio to be added to the LRU.
 540 * @vma: VMA in which the folio is mapped.
 541 *
 542 * If the VMA is mlocked, @folio is added to the unevictable list.
 543 * Otherwise, it is treated the same way as folio_add_lru().
 
 
 544 */
 545void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma)
 
 546{
 547	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
 548
 549	if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
 550		mlock_new_folio(folio);
 551	else
 552		folio_add_lru(folio);
 
 
 
 
 
 
 
 
 
 553}
 554
 555/*
 556 * If the folio cannot be invalidated, it is moved to the
 557 * inactive list to speed up its reclaim.  It is moved to the
 558 * head of the list, rather than the tail, to give the flusher
 559 * threads some time to write it out, as this is much more
 560 * effective than the single-page writeout from reclaim.
 561 *
 562 * If the folio isn't mapped and dirty/writeback, the folio
 563 * could be reclaimed asap using the reclaim flag.
 564 *
 565 * 1. active, mapped folio -> none
 566 * 2. active, dirty/writeback folio -> inactive, head, reclaim
 567 * 3. inactive, mapped folio -> none
 568 * 4. inactive, dirty/writeback folio -> inactive, head, reclaim
 569 * 5. inactive, clean -> inactive, tail
 570 * 6. Others -> none
 571 *
 572 * In 4, it moves to the head of the inactive list so the folio is
 573 * written out by flusher threads as this is much more efficient
 574 * than the single-page writeout from reclaim.
 575 */
 576static void lru_deactivate_file_fn(struct lruvec *lruvec, struct folio *folio)
 
 577{
 578	bool active = folio_test_active(folio);
 579	long nr_pages = folio_nr_pages(folio);
 
 
 
 580
 581	if (folio_test_unevictable(folio))
 582		return;
 583
 584	/* Some processes are using the folio */
 585	if (folio_mapped(folio))
 586		return;
 587
 588	lruvec_del_folio(lruvec, folio);
 589	folio_clear_active(folio);
 590	folio_clear_referenced(folio);
 
 
 
 
 591
 592	if (folio_test_writeback(folio) || folio_test_dirty(folio)) {
 593		/*
 594		 * Setting the reclaim flag could race with
 595		 * folio_end_writeback() and confuse readahead.  But the
 596		 * race window is _really_ small and  it's not a critical
 597		 * problem.
 598		 */
 599		lruvec_add_folio(lruvec, folio);
 600		folio_set_reclaim(folio);
 601	} else {
 602		/*
 603		 * The folio's writeback ended while it was in the batch.
 604		 * We move that folio to the tail of the inactive list.
 605		 */
 606		lruvec_add_folio_tail(lruvec, folio);
 607		__count_vm_events(PGROTATED, nr_pages);
 608	}
 609
 610	if (active) {
 611		__count_vm_events(PGDEACTIVATE, nr_pages);
 612		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
 613				     nr_pages);
 614	}
 615}
 616
 617static void lru_deactivate_fn(struct lruvec *lruvec, struct folio *folio)
 
 618{
 619	if (!folio_test_unevictable(folio) && (folio_test_active(folio) || lru_gen_enabled())) {
 620		long nr_pages = folio_nr_pages(folio);
 
 621
 622		lruvec_del_folio(lruvec, folio);
 623		folio_clear_active(folio);
 624		folio_clear_referenced(folio);
 625		lruvec_add_folio(lruvec, folio);
 626
 627		__count_vm_events(PGDEACTIVATE, nr_pages);
 628		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
 629				     nr_pages);
 630	}
 631}
 632
 633static void lru_lazyfree_fn(struct lruvec *lruvec, struct folio *folio)
 
 634{
 635	if (folio_test_anon(folio) && folio_test_swapbacked(folio) &&
 636	    !folio_test_swapcache(folio) && !folio_test_unevictable(folio)) {
 637		long nr_pages = folio_nr_pages(folio);
 638
 639		lruvec_del_folio(lruvec, folio);
 640		folio_clear_active(folio);
 641		folio_clear_referenced(folio);
 
 642		/*
 643		 * Lazyfree folios are clean anonymous folios.  They have
 644		 * the swapbacked flag cleared, to distinguish them from normal
 645		 * anonymous folios
 646		 */
 647		folio_clear_swapbacked(folio);
 648		lruvec_add_folio(lruvec, folio);
 649
 650		__count_vm_events(PGLAZYFREE, nr_pages);
 651		__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
 652				     nr_pages);
 653	}
 654}
 655
 656/*
 657 * Drain pages out of the cpu's folio_batch.
 658 * Either "cpu" is the current CPU, and preemption has already been
 659 * disabled; or "cpu" is being hot-unplugged, and is already dead.
 660 */
 661void lru_add_drain_cpu(int cpu)
 662{
 663	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
 664	struct folio_batch *fbatch = &fbatches->lru_add;
 665
 666	if (folio_batch_count(fbatch))
 667		folio_batch_move_lru(fbatch, lru_add_fn);
 668
 669	fbatch = &per_cpu(lru_rotate.fbatch, cpu);
 670	/* Disabling interrupts below acts as a compiler barrier. */
 671	if (data_race(folio_batch_count(fbatch))) {
 672		unsigned long flags;
 673
 674		/* No harm done if a racing interrupt already did this */
 675		local_lock_irqsave(&lru_rotate.lock, flags);
 676		folio_batch_move_lru(fbatch, lru_move_tail_fn);
 677		local_unlock_irqrestore(&lru_rotate.lock, flags);
 678	}
 679
 680	fbatch = &fbatches->lru_deactivate_file;
 681	if (folio_batch_count(fbatch))
 682		folio_batch_move_lru(fbatch, lru_deactivate_file_fn);
 683
 684	fbatch = &fbatches->lru_deactivate;
 685	if (folio_batch_count(fbatch))
 686		folio_batch_move_lru(fbatch, lru_deactivate_fn);
 687
 688	fbatch = &fbatches->lru_lazyfree;
 689	if (folio_batch_count(fbatch))
 690		folio_batch_move_lru(fbatch, lru_lazyfree_fn);
 691
 692	folio_activate_drain(cpu);
 693}
 694
 695/**
 696 * deactivate_file_folio() - Deactivate a file folio.
 697 * @folio: Folio to deactivate.
 698 *
 699 * This function hints to the VM that @folio is a good reclaim candidate,
 700 * for example if its invalidation fails due to the folio being dirty
 701 * or under writeback.
 702 *
 703 * Context: Caller holds a reference on the folio.
 704 */
 705void deactivate_file_folio(struct folio *folio)
 706{
 707	struct folio_batch *fbatch;
 
 
 
 
 
 708
 709	/* Deactivating an unevictable folio will not accelerate reclaim */
 710	if (folio_test_unevictable(folio))
 711		return;
 712
 713	folio_get(folio);
 714	local_lock(&cpu_fbatches.lock);
 715	fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate_file);
 716	folio_batch_add_and_move(fbatch, folio, lru_deactivate_file_fn);
 717	local_unlock(&cpu_fbatches.lock);
 718}
 719
 720/*
 721 * folio_deactivate - deactivate a folio
 722 * @folio: folio to deactivate
 723 *
 724 * folio_deactivate() moves @folio to the inactive list if @folio was on the
 725 * active list and was not unevictable. This is done to accelerate the
 726 * reclaim of @folio.
 727 */
 728void folio_deactivate(struct folio *folio)
 729{
 730	if (folio_test_lru(folio) && !folio_test_unevictable(folio) &&
 731	    (folio_test_active(folio) || lru_gen_enabled())) {
 732		struct folio_batch *fbatch;
 733
 734		folio_get(folio);
 735		local_lock(&cpu_fbatches.lock);
 736		fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate);
 737		folio_batch_add_and_move(fbatch, folio, lru_deactivate_fn);
 738		local_unlock(&cpu_fbatches.lock);
 739	}
 740}
 741
 742/**
 743 * folio_mark_lazyfree - make an anon folio lazyfree
 744 * @folio: folio to deactivate
 745 *
 746 * folio_mark_lazyfree() moves @folio to the inactive file list.
 747 * This is done to accelerate the reclaim of @folio.
 748 */
 749void folio_mark_lazyfree(struct folio *folio)
 750{
 751	if (folio_test_lru(folio) && folio_test_anon(folio) &&
 752	    folio_test_swapbacked(folio) && !folio_test_swapcache(folio) &&
 753	    !folio_test_unevictable(folio)) {
 754		struct folio_batch *fbatch;
 755
 756		folio_get(folio);
 757		local_lock(&cpu_fbatches.lock);
 758		fbatch = this_cpu_ptr(&cpu_fbatches.lru_lazyfree);
 759		folio_batch_add_and_move(fbatch, folio, lru_lazyfree_fn);
 760		local_unlock(&cpu_fbatches.lock);
 761	}
 762}
 763
 764void lru_add_drain(void)
 765{
 766	local_lock(&cpu_fbatches.lock);
 767	lru_add_drain_cpu(smp_processor_id());
 768	local_unlock(&cpu_fbatches.lock);
 769	mlock_drain_local();
 770}
 771
 772/*
 773 * It's called from per-cpu workqueue context in SMP case so
 774 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
 775 * the same cpu. It shouldn't be a problem in !SMP case since
 776 * the core is only one and the locks will disable preemption.
 777 */
 778static void lru_add_and_bh_lrus_drain(void)
 779{
 780	local_lock(&cpu_fbatches.lock);
 781	lru_add_drain_cpu(smp_processor_id());
 782	local_unlock(&cpu_fbatches.lock);
 783	invalidate_bh_lrus_cpu();
 784	mlock_drain_local();
 785}
 786
 787void lru_add_drain_cpu_zone(struct zone *zone)
 788{
 789	local_lock(&cpu_fbatches.lock);
 790	lru_add_drain_cpu(smp_processor_id());
 791	drain_local_pages(zone);
 792	local_unlock(&cpu_fbatches.lock);
 793	mlock_drain_local();
 794}
 795
 796#ifdef CONFIG_SMP
 797
 798static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
 799
 800static void lru_add_drain_per_cpu(struct work_struct *dummy)
 801{
 802	lru_add_and_bh_lrus_drain();
 803}
 804
 805static bool cpu_needs_drain(unsigned int cpu)
 806{
 807	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
 808
 809	/* Check these in order of likelihood that they're not zero */
 810	return folio_batch_count(&fbatches->lru_add) ||
 811		data_race(folio_batch_count(&per_cpu(lru_rotate.fbatch, cpu))) ||
 812		folio_batch_count(&fbatches->lru_deactivate_file) ||
 813		folio_batch_count(&fbatches->lru_deactivate) ||
 814		folio_batch_count(&fbatches->lru_lazyfree) ||
 815		folio_batch_count(&fbatches->activate) ||
 816		need_mlock_drain(cpu) ||
 817		has_bh_in_lru(cpu, NULL);
 818}
 819
 820/*
 821 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
 822 * kworkers being shut down before our page_alloc_cpu_dead callback is
 823 * executed on the offlined cpu.
 824 * Calling this function with cpu hotplug locks held can actually lead
 825 * to obscure indirect dependencies via WQ context.
 826 */
 827static inline void __lru_add_drain_all(bool force_all_cpus)
 828{
 829	/*
 830	 * lru_drain_gen - Global pages generation number
 831	 *
 832	 * (A) Definition: global lru_drain_gen = x implies that all generations
 833	 *     0 < n <= x are already *scheduled* for draining.
 834	 *
 835	 * This is an optimization for the highly-contended use case where a
 836	 * user space workload keeps constantly generating a flow of pages for
 837	 * each CPU.
 838	 */
 839	static unsigned int lru_drain_gen;
 840	static struct cpumask has_work;
 841	static DEFINE_MUTEX(lock);
 842	unsigned cpu, this_gen;
 843
 844	/*
 845	 * Make sure nobody triggers this path before mm_percpu_wq is fully
 846	 * initialized.
 847	 */
 848	if (WARN_ON(!mm_percpu_wq))
 849		return;
 850
 851	/*
 852	 * Guarantee folio_batch counter stores visible by this CPU
 853	 * are visible to other CPUs before loading the current drain
 854	 * generation.
 855	 */
 856	smp_mb();
 857
 858	/*
 859	 * (B) Locally cache global LRU draining generation number
 860	 *
 861	 * The read barrier ensures that the counter is loaded before the mutex
 862	 * is taken. It pairs with smp_mb() inside the mutex critical section
 863	 * at (D).
 864	 */
 865	this_gen = smp_load_acquire(&lru_drain_gen);
 866
 867	mutex_lock(&lock);
 
 868
 869	/*
 870	 * (C) Exit the draining operation if a newer generation, from another
 871	 * lru_add_drain_all(), was already scheduled for draining. Check (A).
 872	 */
 873	if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
 874		goto done;
 875
 876	/*
 877	 * (D) Increment global generation number
 878	 *
 879	 * Pairs with smp_load_acquire() at (B), outside of the critical
 880	 * section. Use a full memory barrier to guarantee that the
 881	 * new global drain generation number is stored before loading
 882	 * folio_batch counters.
 883	 *
 884	 * This pairing must be done here, before the for_each_online_cpu loop
 885	 * below which drains the page vectors.
 886	 *
 887	 * Let x, y, and z represent some system CPU numbers, where x < y < z.
 888	 * Assume CPU #z is in the middle of the for_each_online_cpu loop
 889	 * below and has already reached CPU #y's per-cpu data. CPU #x comes
 890	 * along, adds some pages to its per-cpu vectors, then calls
 891	 * lru_add_drain_all().
 892	 *
 893	 * If the paired barrier is done at any later step, e.g. after the
 894	 * loop, CPU #x will just exit at (C) and miss flushing out all of its
 895	 * added pages.
 896	 */
 897	WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
 898	smp_mb();
 899
 900	cpumask_clear(&has_work);
 901	for_each_online_cpu(cpu) {
 902		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
 903
 904		if (cpu_needs_drain(cpu)) {
 
 
 
 
 
 905			INIT_WORK(work, lru_add_drain_per_cpu);
 906			queue_work_on(cpu, mm_percpu_wq, work);
 907			__cpumask_set_cpu(cpu, &has_work);
 908		}
 909	}
 910
 911	for_each_cpu(cpu, &has_work)
 912		flush_work(&per_cpu(lru_add_drain_work, cpu));
 913
 914done:
 915	mutex_unlock(&lock);
 916}
 917
 918void lru_add_drain_all(void)
 919{
 920	__lru_add_drain_all(false);
 921}
 922#else
 923void lru_add_drain_all(void)
 924{
 925	lru_add_drain();
 926}
 927#endif /* CONFIG_SMP */
 928
 929atomic_t lru_disable_count = ATOMIC_INIT(0);
 930
 931/*
 932 * lru_cache_disable() needs to be called before we start compiling
 933 * a list of pages to be migrated using isolate_lru_page().
 934 * It drains pages on LRU cache and then disable on all cpus until
 935 * lru_cache_enable is called.
 936 *
 937 * Must be paired with a call to lru_cache_enable().
 938 */
 939void lru_cache_disable(void)
 940{
 941	atomic_inc(&lru_disable_count);
 942	/*
 943	 * Readers of lru_disable_count are protected by either disabling
 944	 * preemption or rcu_read_lock:
 945	 *
 946	 * preempt_disable, local_irq_disable  [bh_lru_lock()]
 947	 * rcu_read_lock		       [rt_spin_lock CONFIG_PREEMPT_RT]
 948	 * preempt_disable		       [local_lock !CONFIG_PREEMPT_RT]
 949	 *
 950	 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
 951	 * preempt_disable() regions of code. So any CPU which sees
 952	 * lru_disable_count = 0 will have exited the critical
 953	 * section when synchronize_rcu() returns.
 954	 */
 955	synchronize_rcu_expedited();
 956#ifdef CONFIG_SMP
 957	__lru_add_drain_all(true);
 958#else
 959	lru_add_and_bh_lrus_drain();
 960#endif
 961}
 962
 963/**
 964 * folios_put_refs - Reduce the reference count on a batch of folios.
 965 * @folios: The folios.
 966 * @refs: The number of refs to subtract from each folio.
 967 *
 968 * Like folio_put(), but for a batch of folios.  This is more efficient
 969 * than writing the loop yourself as it will optimise the locks which need
 970 * to be taken if the folios are freed.  The folios batch is returned
 971 * empty and ready to be reused for another batch; there is no need
 972 * to reinitialise it.  If @refs is NULL, we subtract one from each
 973 * folio refcount.
 974 *
 975 * Context: May be called in process or interrupt context, but not in NMI
 976 * context.  May be called while holding a spinlock.
 977 */
 978void folios_put_refs(struct folio_batch *folios, unsigned int *refs)
 979{
 980	int i, j;
 981	struct lruvec *lruvec = NULL;
 982	unsigned long flags = 0;
 
 
 
 
 
 
 983
 984	for (i = 0, j = 0; i < folios->nr; i++) {
 985		struct folio *folio = folios->folios[i];
 986		unsigned int nr_refs = refs ? refs[i] : 1;
 
 
 
 
 
 
 987
 988		if (is_huge_zero_page(&folio->page))
 989			continue;
 990
 991		if (folio_is_zone_device(folio)) {
 992			if (lruvec) {
 993				unlock_page_lruvec_irqrestore(lruvec, flags);
 994				lruvec = NULL;
 
 995			}
 996			if (put_devmap_managed_page_refs(&folio->page, nr_refs))
 
 
 
 
 
 
 997				continue;
 998			if (folio_ref_sub_and_test(folio, nr_refs))
 999				free_zone_device_page(&folio->page);
1000			continue;
1001		}
1002
1003		if (!folio_ref_sub_and_test(folio, nr_refs))
 
1004			continue;
1005
1006		/* hugetlb has its own memcg */
1007		if (folio_test_hugetlb(folio)) {
1008			if (lruvec) {
1009				unlock_page_lruvec_irqrestore(lruvec, flags);
1010				lruvec = NULL;
1011			}
1012			free_huge_folio(folio);
1013			continue;
1014		}
1015		if (folio_test_large(folio) &&
1016		    folio_test_large_rmappable(folio))
1017			folio_undo_large_rmappable(folio);
1018
1019		__page_cache_release(folio, &lruvec, &flags);
1020
1021		if (j != i)
1022			folios->folios[j] = folio;
1023		j++;
1024	}
1025	if (lruvec)
1026		unlock_page_lruvec_irqrestore(lruvec, flags);
1027	if (!j) {
1028		folio_batch_reinit(folios);
1029		return;
1030	}
1031
1032	folios->nr = j;
1033	mem_cgroup_uncharge_folios(folios);
1034	free_unref_folios(folios);
1035}
1036EXPORT_SYMBOL(folios_put_refs);
1037
1038/**
1039 * release_pages - batched put_page()
1040 * @arg: array of pages to release
1041 * @nr: number of pages
1042 *
1043 * Decrement the reference count on all the pages in @arg.  If it
1044 * fell to zero, remove the page from the LRU and free it.
1045 *
1046 * Note that the argument can be an array of pages, encoded pages,
1047 * or folio pointers. We ignore any encoded bits, and turn any of
1048 * them into just a folio that gets free'd.
1049 */
1050void release_pages(release_pages_arg arg, int nr)
1051{
1052	struct folio_batch fbatch;
1053	int refs[PAGEVEC_SIZE];
1054	struct encoded_page **encoded = arg.encoded_pages;
1055	int i;
1056
1057	folio_batch_init(&fbatch);
1058	for (i = 0; i < nr; i++) {
1059		/* Turn any of the argument types into a folio */
1060		struct folio *folio = page_folio(encoded_page_ptr(encoded[i]));
 
1061
1062		/* Is our next entry actually "nr_pages" -> "nr_refs" ? */
1063		refs[fbatch.nr] = 1;
1064		if (unlikely(encoded_page_flags(encoded[i]) &
1065			     ENCODED_PAGE_BIT_NR_PAGES_NEXT))
1066			refs[fbatch.nr] = encoded_nr_pages(encoded[++i]);
1067
1068		if (folio_batch_add(&fbatch, folio) > 0)
1069			continue;
1070		folios_put_refs(&fbatch, refs);
1071	}
 
 
1072
1073	if (fbatch.nr)
1074		folios_put_refs(&fbatch, refs);
1075}
1076EXPORT_SYMBOL(release_pages);
1077
1078/*
1079 * The folios which we're about to release may be in the deferred lru-addition
1080 * queues.  That would prevent them from really being freed right now.  That's
1081 * OK from a correctness point of view but is inefficient - those folios may be
1082 * cache-warm and we want to give them back to the page allocator ASAP.
1083 *
1084 * So __folio_batch_release() will drain those queues here.
1085 * folio_batch_move_lru() calls folios_put() directly to avoid
1086 * mutual recursion.
1087 */
1088void __folio_batch_release(struct folio_batch *fbatch)
1089{
1090	if (!fbatch->percpu_pvec_drained) {
1091		lru_add_drain();
1092		fbatch->percpu_pvec_drained = true;
1093	}
1094	folios_put(fbatch);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1095}
1096EXPORT_SYMBOL(__folio_batch_release);
1097
1098/**
1099 * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1100 * @fbatch: The batch to prune
1101 *
1102 * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1103 * entries.  This function prunes all the non-folio entries from @fbatch
1104 * without leaving holes, so that it can be passed on to folio-only batch
1105 * operations.
1106 */
1107void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
1108{
1109	unsigned int i, j;
1110
1111	for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
1112		struct folio *folio = fbatch->folios[i];
1113		if (!xa_is_value(folio))
1114			fbatch->folios[j++] = folio;
1115	}
1116	fbatch->nr = j;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1117}
 
1118
 
 
 
 
 
 
 
 
 
1119/*
1120 * Perform any setup for the swap system
1121 */
1122void __init swap_setup(void)
1123{
1124	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1125
1126	/* Use a smaller cluster for small-memory machines */
1127	if (megs < 16)
1128		page_cluster = 2;
1129	else
1130		page_cluster = 3;
1131	/*
1132	 * Right now other parts of the system means that we
1133	 * _really_ don't want to cluster much more
1134	 */
1135}