Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
  1/*
  2 * Copyright 2011 Red Hat Inc.
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice shall be included in
 12 * all copies or substantial portions of the Software.
 13 *
 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 20 * OTHER DEALINGS IN THE SOFTWARE.
 21 *
 22 * Authors: Ben Skeggs
 23 */
 24
 25#include "drmP.h"
 26#include "nouveau_drv.h"
 27#include "nouveau_bios.h"
 28#include "nouveau_pm.h"
 29
 30static u32 read_div(struct drm_device *, int, u32, u32);
 31static u32 read_pll(struct drm_device *, u32);
 32
 33static u32
 34read_vco(struct drm_device *dev, u32 dsrc)
 35{
 36	u32 ssrc = nv_rd32(dev, dsrc);
 37	if (!(ssrc & 0x00000100))
 38		return read_pll(dev, 0x00e800);
 39	return read_pll(dev, 0x00e820);
 40}
 41
 42static u32
 43read_pll(struct drm_device *dev, u32 pll)
 44{
 45	u32 ctrl = nv_rd32(dev, pll + 0);
 46	u32 coef = nv_rd32(dev, pll + 4);
 47	u32 P = (coef & 0x003f0000) >> 16;
 48	u32 N = (coef & 0x0000ff00) >> 8;
 49	u32 M = (coef & 0x000000ff) >> 0;
 50	u32 sclk, doff;
 51
 52	if (!(ctrl & 0x00000001))
 53		return 0;
 54
 55	switch (pll & 0xfff000) {
 56	case 0x00e000:
 57		sclk = 27000;
 58		P = 1;
 59		break;
 60	case 0x137000:
 61		doff = (pll - 0x137000) / 0x20;
 62		sclk = read_div(dev, doff, 0x137120, 0x137140);
 63		break;
 64	case 0x132000:
 65		switch (pll) {
 66		case 0x132000:
 67			sclk = read_pll(dev, 0x132020);
 68			break;
 69		case 0x132020:
 70			sclk = read_div(dev, 0, 0x137320, 0x137330);
 71			break;
 72		default:
 73			return 0;
 74		}
 75		break;
 76	default:
 77		return 0;
 78	}
 79
 80	return sclk * N / M / P;
 81}
 82
 83static u32
 84read_div(struct drm_device *dev, int doff, u32 dsrc, u32 dctl)
 85{
 86	u32 ssrc = nv_rd32(dev, dsrc + (doff * 4));
 87	u32 sctl = nv_rd32(dev, dctl + (doff * 4));
 88
 89	switch (ssrc & 0x00000003) {
 90	case 0:
 91		if ((ssrc & 0x00030000) != 0x00030000)
 92			return 27000;
 93		return 108000;
 94	case 2:
 95		return 100000;
 96	case 3:
 97		if (sctl & 0x80000000) {
 98			u32 sclk = read_vco(dev, dsrc + (doff * 4));
 99			u32 sdiv = (sctl & 0x0000003f) + 2;
100			return (sclk * 2) / sdiv;
101		}
102
103		return read_vco(dev, dsrc + (doff * 4));
104	default:
105		return 0;
106	}
107}
108
109static u32
110read_mem(struct drm_device *dev)
111{
112	u32 ssel = nv_rd32(dev, 0x1373f0);
113	if (ssel & 0x00000001)
114		return read_div(dev, 0, 0x137300, 0x137310);
115	return read_pll(dev, 0x132000);
116}
117
118static u32
119read_clk(struct drm_device *dev, int clk)
120{
121	u32 sctl = nv_rd32(dev, 0x137250 + (clk * 4));
122	u32 ssel = nv_rd32(dev, 0x137100);
123	u32 sclk, sdiv;
124
125	if (ssel & (1 << clk)) {
126		if (clk < 7)
127			sclk = read_pll(dev, 0x137000 + (clk * 0x20));
128		else
129			sclk = read_pll(dev, 0x1370e0);
130		sdiv = ((sctl & 0x00003f00) >> 8) + 2;
131	} else {
132		sclk = read_div(dev, clk, 0x137160, 0x1371d0);
133		sdiv = ((sctl & 0x0000003f) >> 0) + 2;
134	}
135
136	if (sctl & 0x80000000)
137		return (sclk * 2) / sdiv;
138	return sclk;
139}
140
141int
142nvc0_pm_clocks_get(struct drm_device *dev, struct nouveau_pm_level *perflvl)
143{
144	perflvl->shader = read_clk(dev, 0x00);
145	perflvl->core   = perflvl->shader / 2;
146	perflvl->memory = read_mem(dev);
147	perflvl->rop    = read_clk(dev, 0x01);
148	perflvl->hub07  = read_clk(dev, 0x02);
149	perflvl->hub06  = read_clk(dev, 0x07);
150	perflvl->hub01  = read_clk(dev, 0x08);
151	perflvl->copy   = read_clk(dev, 0x09);
152	perflvl->daemon = read_clk(dev, 0x0c);
153	perflvl->vdec   = read_clk(dev, 0x0e);
154	return 0;
155}
156
157struct nvc0_pm_clock {
158	u32 freq;
159	u32 ssel;
160	u32 mdiv;
161	u32 dsrc;
162	u32 ddiv;
163	u32 coef;
164};
165
166struct nvc0_pm_state {
167	struct nouveau_pm_level *perflvl;
168	struct nvc0_pm_clock eng[16];
169	struct nvc0_pm_clock mem;
170};
171
172static u32
173calc_div(struct drm_device *dev, int clk, u32 ref, u32 freq, u32 *ddiv)
174{
175	u32 div = min((ref * 2) / freq, (u32)65);
176	if (div < 2)
177		div = 2;
178
179	*ddiv = div - 2;
180	return (ref * 2) / div;
181}
182
183static u32
184calc_src(struct drm_device *dev, int clk, u32 freq, u32 *dsrc, u32 *ddiv)
185{
186	u32 sclk;
187
188	/* use one of the fixed frequencies if possible */
189	*ddiv = 0x00000000;
190	switch (freq) {
191	case  27000:
192	case 108000:
193		*dsrc = 0x00000000;
194		if (freq == 108000)
195			*dsrc |= 0x00030000;
196		return freq;
197	case 100000:
198		*dsrc = 0x00000002;
199		return freq;
200	default:
201		*dsrc = 0x00000003;
202		break;
203	}
204
205	/* otherwise, calculate the closest divider */
206	sclk = read_vco(dev, clk);
207	if (clk < 7)
208		sclk = calc_div(dev, clk, sclk, freq, ddiv);
209	return sclk;
210}
211
212static u32
213calc_pll(struct drm_device *dev, int clk, u32 freq, u32 *coef)
214{
215	struct pll_lims limits;
216	int N, M, P, ret;
217
218	ret = get_pll_limits(dev, 0x137000 + (clk * 0x20), &limits);
219	if (ret)
220		return 0;
221
222	limits.refclk = read_div(dev, clk, 0x137120, 0x137140);
223	if (!limits.refclk)
224		return 0;
225
226	ret = nva3_calc_pll(dev, &limits, freq, &N, NULL, &M, &P);
227	if (ret <= 0)
228		return 0;
229
230	*coef = (P << 16) | (N << 8) | M;
231	return ret;
232}
233
234/* A (likely rather simplified and incomplete) view of the clock tree
235 *
236 * Key:
237 *
238 * S: source select
239 * D: divider
240 * P: pll
241 * F: switch
242 *
243 * Engine clocks:
244 *
245 * 137250(D) ---- 137100(F0) ---- 137160(S)/1371d0(D) ------------------- ref
246 *                      (F1) ---- 1370X0(P) ---- 137120(S)/137140(D) ---- ref
247 *
248 * Not all registers exist for all clocks.  For example: clocks >= 8 don't
249 * have their own PLL (all tied to clock 7's PLL when in PLL mode), nor do
250 * they have the divider at 1371d0, though the source selection at 137160
251 * still exists.  You must use the divider at 137250 for these instead.
252 *
253 * Memory clock:
254 *
255 * TBD, read_mem() above is likely very wrong...
256 *
257 */
258
259static int
260calc_clk(struct drm_device *dev, int clk, struct nvc0_pm_clock *info, u32 freq)
261{
262	u32 src0, div0, div1D, div1P = 0;
263	u32 clk0, clk1 = 0;
264
265	/* invalid clock domain */
266	if (!freq)
267		return 0;
268
269	/* first possible path, using only dividers */
270	clk0 = calc_src(dev, clk, freq, &src0, &div0);
271	clk0 = calc_div(dev, clk, clk0, freq, &div1D);
272
273	/* see if we can get any closer using PLLs */
274	if (clk0 != freq && (0x00004387 & (1 << clk))) {
275		if (clk < 7)
276			clk1 = calc_pll(dev, clk, freq, &info->coef);
277		else
278			clk1 = read_pll(dev, 0x1370e0);
279		clk1 = calc_div(dev, clk, clk1, freq, &div1P);
280	}
281
282	/* select the method which gets closest to target freq */
283	if (abs((int)freq - clk0) <= abs((int)freq - clk1)) {
284		info->dsrc = src0;
285		if (div0) {
286			info->ddiv |= 0x80000000;
287			info->ddiv |= div0 << 8;
288			info->ddiv |= div0;
289		}
290		if (div1D) {
291			info->mdiv |= 0x80000000;
292			info->mdiv |= div1D;
293		}
294		info->ssel = 0;
295		info->freq = clk0;
296	} else {
297		if (div1P) {
298			info->mdiv |= 0x80000000;
299			info->mdiv |= div1P << 8;
300		}
301		info->ssel = (1 << clk);
302		info->freq = clk1;
303	}
304
305	return 0;
306}
307
308static int
309calc_mem(struct drm_device *dev, struct nvc0_pm_clock *info, u32 freq)
310{
311	struct pll_lims pll;
312	int N, M, P, ret;
313	u32 ctrl;
314
315	/* mclk pll input freq comes from another pll, make sure it's on */
316	ctrl = nv_rd32(dev, 0x132020);
317	if (!(ctrl & 0x00000001)) {
318		/* if not, program it to 567MHz.  nfi where this value comes
319		 * from - it looks like it's in the pll limits table for
320		 * 132000 but the binary driver ignores all my attempts to
321		 * change this value.
322		 */
323		nv_wr32(dev, 0x137320, 0x00000103);
324		nv_wr32(dev, 0x137330, 0x81200606);
325		nv_wait(dev, 0x132020, 0x00010000, 0x00010000);
326		nv_wr32(dev, 0x132024, 0x0001150f);
327		nv_mask(dev, 0x132020, 0x00000001, 0x00000001);
328		nv_wait(dev, 0x137390, 0x00020000, 0x00020000);
329		nv_mask(dev, 0x132020, 0x00000004, 0x00000004);
330	}
331
332	/* for the moment, until the clock tree is better understood, use
333	 * pll mode for all clock frequencies
334	 */
335	ret = get_pll_limits(dev, 0x132000, &pll);
336	if (ret == 0) {
337		pll.refclk = read_pll(dev, 0x132020);
338		if (pll.refclk) {
339			ret = nva3_calc_pll(dev, &pll, freq, &N, NULL, &M, &P);
340			if (ret > 0) {
341				info->coef = (P << 16) | (N << 8) | M;
342				return 0;
343			}
344		}
345	}
346
347	return -EINVAL;
348}
349
350void *
351nvc0_pm_clocks_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl)
352{
353	struct drm_nouveau_private *dev_priv = dev->dev_private;
354	struct nvc0_pm_state *info;
355	int ret;
356
357	info = kzalloc(sizeof(*info), GFP_KERNEL);
358	if (!info)
359		return ERR_PTR(-ENOMEM);
360
361	/* NFI why this is still in the performance table, the ROPCs appear
362	 * to get their clock from clock 2 ("hub07", actually hub05 on this
363	 * chip, but, anyway...) as well.  nvatiming confirms hub05 and ROP
364	 * are always the same freq with the binary driver even when the
365	 * performance table says they should differ.
366	 */
367	if (dev_priv->chipset == 0xd9)
368		perflvl->rop = 0;
369
370	if ((ret = calc_clk(dev, 0x00, &info->eng[0x00], perflvl->shader)) ||
371	    (ret = calc_clk(dev, 0x01, &info->eng[0x01], perflvl->rop)) ||
372	    (ret = calc_clk(dev, 0x02, &info->eng[0x02], perflvl->hub07)) ||
373	    (ret = calc_clk(dev, 0x07, &info->eng[0x07], perflvl->hub06)) ||
374	    (ret = calc_clk(dev, 0x08, &info->eng[0x08], perflvl->hub01)) ||
375	    (ret = calc_clk(dev, 0x09, &info->eng[0x09], perflvl->copy)) ||
376	    (ret = calc_clk(dev, 0x0c, &info->eng[0x0c], perflvl->daemon)) ||
377	    (ret = calc_clk(dev, 0x0e, &info->eng[0x0e], perflvl->vdec))) {
378		kfree(info);
379		return ERR_PTR(ret);
380	}
381
382	if (perflvl->memory) {
383		ret = calc_mem(dev, &info->mem, perflvl->memory);
384		if (ret) {
385			kfree(info);
386			return ERR_PTR(ret);
387		}
388	}
389
390	info->perflvl = perflvl;
391	return info;
392}
393
394static void
395prog_clk(struct drm_device *dev, int clk, struct nvc0_pm_clock *info)
396{
397	/* program dividers at 137160/1371d0 first */
398	if (clk < 7 && !info->ssel) {
399		nv_mask(dev, 0x1371d0 + (clk * 0x04), 0x80003f3f, info->ddiv);
400		nv_wr32(dev, 0x137160 + (clk * 0x04), info->dsrc);
401	}
402
403	/* switch clock to non-pll mode */
404	nv_mask(dev, 0x137100, (1 << clk), 0x00000000);
405	nv_wait(dev, 0x137100, (1 << clk), 0x00000000);
406
407	/* reprogram pll */
408	if (clk < 7) {
409		/* make sure it's disabled first... */
410		u32 base = 0x137000 + (clk * 0x20);
411		u32 ctrl = nv_rd32(dev, base + 0x00);
412		if (ctrl & 0x00000001) {
413			nv_mask(dev, base + 0x00, 0x00000004, 0x00000000);
414			nv_mask(dev, base + 0x00, 0x00000001, 0x00000000);
415		}
416		/* program it to new values, if necessary */
417		if (info->ssel) {
418			nv_wr32(dev, base + 0x04, info->coef);
419			nv_mask(dev, base + 0x00, 0x00000001, 0x00000001);
420			nv_wait(dev, base + 0x00, 0x00020000, 0x00020000);
421			nv_mask(dev, base + 0x00, 0x00020004, 0x00000004);
422		}
423	}
424
425	/* select pll/non-pll mode, and program final clock divider */
426	nv_mask(dev, 0x137100, (1 << clk), info->ssel);
427	nv_wait(dev, 0x137100, (1 << clk), info->ssel);
428	nv_mask(dev, 0x137250 + (clk * 0x04), 0x00003f3f, info->mdiv);
429}
430
431static void
432mclk_precharge(struct nouveau_mem_exec_func *exec)
433{
434}
435
436static void
437mclk_refresh(struct nouveau_mem_exec_func *exec)
438{
439}
440
441static void
442mclk_refresh_auto(struct nouveau_mem_exec_func *exec, bool enable)
443{
444	nv_wr32(exec->dev, 0x10f210, enable ? 0x80000000 : 0x00000000);
445}
446
447static void
448mclk_refresh_self(struct nouveau_mem_exec_func *exec, bool enable)
449{
450}
451
452static void
453mclk_wait(struct nouveau_mem_exec_func *exec, u32 nsec)
454{
455	udelay((nsec + 500) / 1000);
456}
457
458static u32
459mclk_mrg(struct nouveau_mem_exec_func *exec, int mr)
460{
461	struct drm_device *dev = exec->dev;
462	struct drm_nouveau_private *dev_priv = dev->dev_private;
463	if (dev_priv->vram_type != NV_MEM_TYPE_GDDR5) {
464		if (mr <= 1)
465			return nv_rd32(dev, 0x10f300 + ((mr - 0) * 4));
466		return nv_rd32(dev, 0x10f320 + ((mr - 2) * 4));
467	} else {
468		if (mr == 0)
469			return nv_rd32(dev, 0x10f300 + (mr * 4));
470		else
471		if (mr <= 7)
472			return nv_rd32(dev, 0x10f32c + (mr * 4));
473		return nv_rd32(dev, 0x10f34c);
474	}
475}
476
477static void
478mclk_mrs(struct nouveau_mem_exec_func *exec, int mr, u32 data)
479{
480	struct drm_device *dev = exec->dev;
481	struct drm_nouveau_private *dev_priv = dev->dev_private;
482	if (dev_priv->vram_type != NV_MEM_TYPE_GDDR5) {
483		if (mr <= 1) {
484			nv_wr32(dev, 0x10f300 + ((mr - 0) * 4), data);
485			if (dev_priv->vram_rank_B)
486				nv_wr32(dev, 0x10f308 + ((mr - 0) * 4), data);
487		} else
488		if (mr <= 3) {
489			nv_wr32(dev, 0x10f320 + ((mr - 2) * 4), data);
490			if (dev_priv->vram_rank_B)
491				nv_wr32(dev, 0x10f328 + ((mr - 2) * 4), data);
492		}
493	} else {
494		if      (mr ==  0) nv_wr32(dev, 0x10f300 + (mr * 4), data);
495		else if (mr <=  7) nv_wr32(dev, 0x10f32c + (mr * 4), data);
496		else if (mr == 15) nv_wr32(dev, 0x10f34c, data);
497	}
498}
499
500static void
501mclk_clock_set(struct nouveau_mem_exec_func *exec)
502{
503	struct nvc0_pm_state *info = exec->priv;
504	struct drm_device *dev = exec->dev;
505	u32 ctrl = nv_rd32(dev, 0x132000);
506
507	nv_wr32(dev, 0x137360, 0x00000001);
508	nv_wr32(dev, 0x137370, 0x00000000);
509	nv_wr32(dev, 0x137380, 0x00000000);
510	if (ctrl & 0x00000001)
511		nv_wr32(dev, 0x132000, (ctrl &= ~0x00000001));
512
513	nv_wr32(dev, 0x132004, info->mem.coef);
514	nv_wr32(dev, 0x132000, (ctrl |= 0x00000001));
515	nv_wait(dev, 0x137390, 0x00000002, 0x00000002);
516	nv_wr32(dev, 0x132018, 0x00005000);
517
518	nv_wr32(dev, 0x137370, 0x00000001);
519	nv_wr32(dev, 0x137380, 0x00000001);
520	nv_wr32(dev, 0x137360, 0x00000000);
521}
522
523static void
524mclk_timing_set(struct nouveau_mem_exec_func *exec)
525{
526	struct nvc0_pm_state *info = exec->priv;
527	struct nouveau_pm_level *perflvl = info->perflvl;
528	int i;
529
530	for (i = 0; i < 5; i++)
531		nv_wr32(exec->dev, 0x10f290 + (i * 4), perflvl->timing.reg[i]);
532}
533
534static void
535prog_mem(struct drm_device *dev, struct nvc0_pm_state *info)
536{
537	struct drm_nouveau_private *dev_priv = dev->dev_private;
538	struct nouveau_mem_exec_func exec = {
539		.dev = dev,
540		.precharge = mclk_precharge,
541		.refresh = mclk_refresh,
542		.refresh_auto = mclk_refresh_auto,
543		.refresh_self = mclk_refresh_self,
544		.wait = mclk_wait,
545		.mrg = mclk_mrg,
546		.mrs = mclk_mrs,
547		.clock_set = mclk_clock_set,
548		.timing_set = mclk_timing_set,
549		.priv = info
550	};
551
552	if (dev_priv->chipset < 0xd0)
553		nv_wr32(dev, 0x611200, 0x00003300);
554	else
555		nv_wr32(dev, 0x62c000, 0x03030000);
556
557	nouveau_mem_exec(&exec, info->perflvl);
558
559	if (dev_priv->chipset < 0xd0)
560		nv_wr32(dev, 0x611200, 0x00003330);
561	else
562		nv_wr32(dev, 0x62c000, 0x03030300);
563}
564int
565nvc0_pm_clocks_set(struct drm_device *dev, void *data)
566{
567	struct nvc0_pm_state *info = data;
568	int i;
569
570	if (info->mem.coef)
571		prog_mem(dev, info);
572
573	for (i = 0; i < 16; i++) {
574		if (!info->eng[i].freq)
575			continue;
576		prog_clk(dev, i, &info->eng[i]);
577	}
578
579	kfree(info);
580	return 0;
581}