Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/arch/parisc/mm/init.c
  4 *
  5 *  Copyright (C) 1995	Linus Torvalds
  6 *  Copyright 1999 SuSE GmbH
  7 *    changed by Philipp Rumpf
  8 *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
  9 *  Copyright 2004 Randolph Chung (tausq@debian.org)
 10 *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
 11 *
 12 */
 13
 14
 15#include <linux/module.h>
 16#include <linux/mm.h>
 17#include <linux/memblock.h>
 18#include <linux/gfp.h>
 19#include <linux/delay.h>
 20#include <linux/init.h>
 
 21#include <linux/initrd.h>
 22#include <linux/swap.h>
 23#include <linux/unistd.h>
 24#include <linux/nodemask.h>	/* for node_online_map */
 25#include <linux/pagemap.h>	/* for release_pages */
 26#include <linux/compat.h>
 27
 28#include <asm/pgalloc.h>
 29#include <asm/pgtable.h>
 30#include <asm/tlb.h>
 31#include <asm/pdc_chassis.h>
 32#include <asm/mmzone.h>
 33#include <asm/sections.h>
 34#include <asm/msgbuf.h>
 35#include <asm/sparsemem.h>
 36
 37extern int  data_start;
 38extern void parisc_kernel_start(void);	/* Kernel entry point in head.S */
 39
 40#if CONFIG_PGTABLE_LEVELS == 3
 41/* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
 42 * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
 43 * guarantee that global objects will be laid out in memory in the same order
 44 * as the order of declaration, so put these in different sections and use
 45 * the linker script to order them. */
 46pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE)));
 47#endif
 48
 49pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE)));
 50pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE)));
 51
 
 
 
 
 
 52static struct resource data_resource = {
 53	.name	= "Kernel data",
 54	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
 55};
 56
 57static struct resource code_resource = {
 58	.name	= "Kernel code",
 59	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
 60};
 61
 62static struct resource pdcdata_resource = {
 63	.name	= "PDC data (Page Zero)",
 64	.start	= 0,
 65	.end	= 0x9ff,
 66	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
 67};
 68
 69static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __ro_after_init;
 70
 71/* The following array is initialized from the firmware specific
 72 * information retrieved in kernel/inventory.c.
 73 */
 74
 75physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __initdata;
 76int npmem_ranges __initdata;
 77
 78#ifdef CONFIG_64BIT
 79#define MAX_MEM         (1UL << MAX_PHYSMEM_BITS)
 80#else /* !CONFIG_64BIT */
 81#define MAX_MEM         (3584U*1024U*1024U)
 82#endif /* !CONFIG_64BIT */
 83
 84static unsigned long mem_limit __read_mostly = MAX_MEM;
 85
 86static void __init mem_limit_func(void)
 87{
 88	char *cp, *end;
 89	unsigned long limit;
 90
 91	/* We need this before __setup() functions are called */
 92
 93	limit = MAX_MEM;
 94	for (cp = boot_command_line; *cp; ) {
 95		if (memcmp(cp, "mem=", 4) == 0) {
 96			cp += 4;
 97			limit = memparse(cp, &end);
 98			if (end != cp)
 99				break;
100			cp = end;
101		} else {
102			while (*cp != ' ' && *cp)
103				++cp;
104			while (*cp == ' ')
105				++cp;
106		}
107	}
108
109	if (limit < mem_limit)
110		mem_limit = limit;
111}
112
113#define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
114
115static void __init setup_bootmem(void)
116{
 
117	unsigned long mem_max;
118#ifndef CONFIG_SPARSEMEM
 
 
 
119	physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
120	int npmem_holes;
121#endif
122	int i, sysram_resource_count;
123
124	disable_sr_hashing(); /* Turn off space register hashing */
125
126	/*
127	 * Sort the ranges. Since the number of ranges is typically
128	 * small, and performance is not an issue here, just do
129	 * a simple insertion sort.
130	 */
131
132	for (i = 1; i < npmem_ranges; i++) {
133		int j;
134
135		for (j = i; j > 0; j--) {
136			physmem_range_t tmp;
137
138			if (pmem_ranges[j-1].start_pfn <
139			    pmem_ranges[j].start_pfn) {
140
141				break;
142			}
143			tmp = pmem_ranges[j-1];
144			pmem_ranges[j-1] = pmem_ranges[j];
145			pmem_ranges[j] = tmp;
 
 
 
146		}
147	}
148
149#ifndef CONFIG_SPARSEMEM
150	/*
151	 * Throw out ranges that are too far apart (controlled by
152	 * MAX_GAP).
153	 */
154
155	for (i = 1; i < npmem_ranges; i++) {
156		if (pmem_ranges[i].start_pfn -
157			(pmem_ranges[i-1].start_pfn +
158			 pmem_ranges[i-1].pages) > MAX_GAP) {
159			npmem_ranges = i;
160			printk("Large gap in memory detected (%ld pages). "
161			       "Consider turning on CONFIG_SPARSEMEM\n",
162			       pmem_ranges[i].start_pfn -
163			       (pmem_ranges[i-1].start_pfn +
164			        pmem_ranges[i-1].pages));
165			break;
166		}
167	}
168#endif
169
170	/* Print the memory ranges */
171	pr_info("Memory Ranges:\n");
172
173	for (i = 0; i < npmem_ranges; i++) {
174		struct resource *res = &sysram_resources[i];
175		unsigned long start;
176		unsigned long size;
177
178		size = (pmem_ranges[i].pages << PAGE_SHIFT);
179		start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
180		pr_info("%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
181			i, start, start + (size - 1), size >> 20);
182
183		/* request memory resource */
184		res->name = "System RAM";
185		res->start = start;
186		res->end = start + size - 1;
187		res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
188		request_resource(&iomem_resource, res);
 
 
 
189	}
190
191	sysram_resource_count = npmem_ranges;
 
 
 
 
 
 
 
 
192
193	/*
194	 * For 32 bit kernels we limit the amount of memory we can
195	 * support, in order to preserve enough kernel address space
196	 * for other purposes. For 64 bit kernels we don't normally
197	 * limit the memory, but this mechanism can be used to
198	 * artificially limit the amount of memory (and it is written
199	 * to work with multiple memory ranges).
200	 */
201
202	mem_limit_func();       /* check for "mem=" argument */
203
204	mem_max = 0;
 
205	for (i = 0; i < npmem_ranges; i++) {
206		unsigned long rsize;
207
208		rsize = pmem_ranges[i].pages << PAGE_SHIFT;
209		if ((mem_max + rsize) > mem_limit) {
210			printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
211			if (mem_max == mem_limit)
212				npmem_ranges = i;
213			else {
214				pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
215						       - (mem_max >> PAGE_SHIFT);
216				npmem_ranges = i + 1;
217				mem_max = mem_limit;
218			}
 
219			break;
220		}
 
221		mem_max += rsize;
222	}
223
224	printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
225
226#ifndef CONFIG_SPARSEMEM
227	/* Merge the ranges, keeping track of the holes */
 
228	{
229		unsigned long end_pfn;
230		unsigned long hole_pages;
231
232		npmem_holes = 0;
233		end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
234		for (i = 1; i < npmem_ranges; i++) {
235
236			hole_pages = pmem_ranges[i].start_pfn - end_pfn;
237			if (hole_pages) {
238				pmem_holes[npmem_holes].start_pfn = end_pfn;
239				pmem_holes[npmem_holes++].pages = hole_pages;
240				end_pfn += hole_pages;
241			}
242			end_pfn += pmem_ranges[i].pages;
243		}
244
245		pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
246		npmem_ranges = 1;
247	}
248#endif
249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
250	/*
251	 * Initialize and free the full range of memory in each range.
 
 
 
252	 */
253
 
254	max_pfn = 0;
255	for (i = 0; i < npmem_ranges; i++) {
256		unsigned long start_pfn;
257		unsigned long npages;
258		unsigned long start;
259		unsigned long size;
260
261		start_pfn = pmem_ranges[i].start_pfn;
262		npages = pmem_ranges[i].pages;
263
264		start = start_pfn << PAGE_SHIFT;
265		size = npages << PAGE_SHIFT;
266
267		/* add system RAM memblock */
268		memblock_add(start, size);
269
 
 
270		if ((start_pfn + npages) > max_pfn)
271			max_pfn = start_pfn + npages;
272	}
273
274	/*
275	 * We can't use memblock top-down allocations because we only
276	 * created the initial mapping up to KERNEL_INITIAL_SIZE in
277	 * the assembly bootup code.
278	 */
279	memblock_set_bottom_up(true);
280
281	/* IOMMU is always used to access "high mem" on those boxes
282	 * that can support enough mem that a PCI device couldn't
283	 * directly DMA to any physical addresses.
284	 * ISA DMA support will need to revisit this.
285	 */
286	max_low_pfn = max_pfn;
287
 
 
 
288	/* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
289
290#define PDC_CONSOLE_IO_IODC_SIZE 32768
291
292	memblock_reserve(0UL, (unsigned long)(PAGE0->mem_free +
293				PDC_CONSOLE_IO_IODC_SIZE));
294	memblock_reserve(__pa(KERNEL_BINARY_TEXT_START),
295			(unsigned long)(_end - KERNEL_BINARY_TEXT_START));
 
 
 
 
296
297#ifndef CONFIG_SPARSEMEM
298
299	/* reserve the holes */
300
301	for (i = 0; i < npmem_holes; i++) {
302		memblock_reserve((pmem_holes[i].start_pfn << PAGE_SHIFT),
303				(pmem_holes[i].pages << PAGE_SHIFT));
 
 
304	}
305#endif
306
307#ifdef CONFIG_BLK_DEV_INITRD
308	if (initrd_start) {
309		printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
310		if (__pa(initrd_start) < mem_max) {
311			unsigned long initrd_reserve;
312
313			if (__pa(initrd_end) > mem_max) {
314				initrd_reserve = mem_max - __pa(initrd_start);
315			} else {
316				initrd_reserve = initrd_end - initrd_start;
317			}
318			initrd_below_start_ok = 1;
319			printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
320
321			memblock_reserve(__pa(initrd_start), initrd_reserve);
 
322		}
323	}
324#endif
325
326	data_resource.start =  virt_to_phys(&data_start);
327	data_resource.end = virt_to_phys(_end) - 1;
328	code_resource.start = virt_to_phys(_text);
329	code_resource.end = virt_to_phys(&data_start)-1;
330
331	/* We don't know which region the kernel will be in, so try
332	 * all of them.
333	 */
334	for (i = 0; i < sysram_resource_count; i++) {
335		struct resource *res = &sysram_resources[i];
336		request_resource(res, &code_resource);
337		request_resource(res, &data_resource);
338	}
339	request_resource(&sysram_resources[0], &pdcdata_resource);
340
341	/* Initialize Page Deallocation Table (PDT) and check for bad memory. */
342	pdc_pdt_init();
343
344	memblock_allow_resize();
345	memblock_dump_all();
346}
347
348static bool kernel_set_to_readonly;
349
350static void __init map_pages(unsigned long start_vaddr,
351			     unsigned long start_paddr, unsigned long size,
352			     pgprot_t pgprot, int force)
353{
354	pgd_t *pg_dir;
355	pmd_t *pmd;
356	pte_t *pg_table;
357	unsigned long end_paddr;
358	unsigned long start_pmd;
359	unsigned long start_pte;
360	unsigned long tmp1;
361	unsigned long tmp2;
362	unsigned long address;
363	unsigned long vaddr;
364	unsigned long ro_start;
365	unsigned long ro_end;
366	unsigned long kernel_start, kernel_end;
 
 
 
367
368	ro_start = __pa((unsigned long)_text);
369	ro_end   = __pa((unsigned long)&data_start);
370	kernel_start = __pa((unsigned long)&__init_begin);
371	kernel_end  = __pa((unsigned long)&_end);
372
373	end_paddr = start_paddr + size;
374
375	pg_dir = pgd_offset_k(start_vaddr);
376
377#if PTRS_PER_PMD == 1
378	start_pmd = 0;
379#else
380	start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
381#endif
382	start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
383
384	address = start_paddr;
385	vaddr = start_vaddr;
386	while (address < end_paddr) {
387#if PTRS_PER_PMD == 1
388		pmd = (pmd_t *)__pa(pg_dir);
389#else
390		pmd = (pmd_t *)pgd_address(*pg_dir);
391
392		/*
393		 * pmd is physical at this point
394		 */
395
396		if (!pmd) {
397			pmd = memblock_alloc(PAGE_SIZE << PMD_ORDER,
398					     PAGE_SIZE << PMD_ORDER);
399			if (!pmd)
400				panic("pmd allocation failed.\n");
401			pmd = (pmd_t *) __pa(pmd);
402		}
403
404		pgd_populate(NULL, pg_dir, __va(pmd));
405#endif
406		pg_dir++;
407
408		/* now change pmd to kernel virtual addresses */
409
410		pmd = (pmd_t *)__va(pmd) + start_pmd;
411		for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
412
413			/*
414			 * pg_table is physical at this point
415			 */
416
417			pg_table = (pte_t *)pmd_address(*pmd);
418			if (!pg_table) {
419				pg_table = memblock_alloc(PAGE_SIZE,
420							  PAGE_SIZE);
421				if (!pg_table)
422					panic("page table allocation failed\n");
423				pg_table = (pte_t *) __pa(pg_table);
424			}
425
426			pmd_populate_kernel(NULL, pmd, __va(pg_table));
427
428			/* now change pg_table to kernel virtual addresses */
429
430			pg_table = (pte_t *) __va(pg_table) + start_pte;
431			for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
432				pte_t pte;
433				pgprot_t prot;
434				bool huge = false;
435
436				if (force) {
437					prot = pgprot;
438				} else if (address < kernel_start || address >= kernel_end) {
439					/* outside kernel memory */
440					prot = PAGE_KERNEL;
441				} else if (!kernel_set_to_readonly) {
442					/* still initializing, allow writing to RO memory */
443					prot = PAGE_KERNEL_RWX;
444					huge = true;
445				} else if (address >= ro_start) {
446					/* Code (ro) and Data areas */
447					prot = (address < ro_end) ?
448						PAGE_KERNEL_EXEC : PAGE_KERNEL;
449					huge = true;
450				} else {
451					prot = PAGE_KERNEL;
452				}
453
454				pte = __mk_pte(address, prot);
455				if (huge)
456					pte = pte_mkhuge(pte);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
457
458				if (address >= end_paddr)
459					break;
 
 
 
 
460
461				set_pte(pg_table, pte);
462
463				address += PAGE_SIZE;
464				vaddr += PAGE_SIZE;
465			}
466			start_pte = 0;
467
468			if (address >= end_paddr)
469			    break;
470		}
471		start_pmd = 0;
472	}
473}
474
475void __init set_kernel_text_rw(int enable_read_write)
476{
477	unsigned long start = (unsigned long) __init_begin;
478	unsigned long end   = (unsigned long) &data_start;
479
480	map_pages(start, __pa(start), end-start,
481		PAGE_KERNEL_RWX, enable_read_write ? 1:0);
482
483	/* force the kernel to see the new page table entries */
484	flush_cache_all();
485	flush_tlb_all();
486}
487
488void __ref free_initmem(void)
489{
 
490	unsigned long init_begin = (unsigned long)__init_begin;
491	unsigned long init_end = (unsigned long)__init_end;
492	unsigned long kernel_end  = (unsigned long)&_end;
493
494	/* Remap kernel text and data, but do not touch init section yet. */
495	kernel_set_to_readonly = true;
496	map_pages(init_end, __pa(init_end), kernel_end - init_end,
497		  PAGE_KERNEL, 0);
498
499	/* The init text pages are marked R-X.  We have to
500	 * flush the icache and mark them RW-
501	 *
502	 * This is tricky, because map_pages is in the init section.
503	 * Do a dummy remap of the data section first (the data
504	 * section is already PAGE_KERNEL) to pull in the TLB entries
505	 * for map_kernel */
506	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
507		  PAGE_KERNEL_RWX, 1);
508	/* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
509	 * map_pages */
510	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
511		  PAGE_KERNEL, 1);
512
513	/* force the kernel to see the new TLB entries */
514	__flush_tlb_range(0, init_begin, kernel_end);
515
 
 
 
516	/* finally dump all the instructions which were cached, since the
517	 * pages are no-longer executable */
518	flush_icache_range(init_begin, init_end);
519	
520	free_initmem_default(POISON_FREE_INITMEM);
 
 
 
 
 
 
521
522	/* set up a new led state on systems shipped LED State panel */
523	pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
 
 
 
524}
525
526
527#ifdef CONFIG_STRICT_KERNEL_RWX
528void mark_rodata_ro(void)
529{
530	/* rodata memory was already mapped with KERNEL_RO access rights by
531           pagetable_init() and map_pages(). No need to do additional stuff here */
532	unsigned long roai_size = __end_ro_after_init - __start_ro_after_init;
533
534	pr_info("Write protected read-only-after-init data: %luk\n", roai_size >> 10);
535}
536#endif
537
538
539/*
540 * Just an arbitrary offset to serve as a "hole" between mapping areas
541 * (between top of physical memory and a potential pcxl dma mapping
542 * area, and below the vmalloc mapping area).
543 *
544 * The current 32K value just means that there will be a 32K "hole"
545 * between mapping areas. That means that  any out-of-bounds memory
546 * accesses will hopefully be caught. The vmalloc() routines leaves
547 * a hole of 4kB between each vmalloced area for the same reason.
548 */
549
550 /* Leave room for gateway page expansion */
551#if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
552#error KERNEL_MAP_START is in gateway reserved region
553#endif
554#define MAP_START (KERNEL_MAP_START)
555
556#define VM_MAP_OFFSET  (32*1024)
557#define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
558				     & ~(VM_MAP_OFFSET-1)))
559
560void *parisc_vmalloc_start __ro_after_init;
561EXPORT_SYMBOL(parisc_vmalloc_start);
562
563#ifdef CONFIG_PA11
564unsigned long pcxl_dma_start __ro_after_init;
565#endif
566
567void __init mem_init(void)
568{
569	/* Do sanity checks on IPC (compat) structures */
570	BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48);
571#ifndef CONFIG_64BIT
572	BUILD_BUG_ON(sizeof(struct semid64_ds) != 80);
573	BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104);
574	BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104);
575#endif
576#ifdef CONFIG_COMPAT
577	BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm));
578	BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80);
579	BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104);
580	BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104);
581#endif
582
583	/* Do sanity checks on page table constants */
584	BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
585	BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
586	BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
587	BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
588			> BITS_PER_LONG);
589
590	high_memory = __va((max_pfn << PAGE_SHIFT));
591	set_max_mapnr(page_to_pfn(virt_to_page(high_memory - 1)) + 1);
592	memblock_free_all();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
593
594#ifdef CONFIG_PA11
595	if (boot_cpu_data.cpu_type == pcxl2 || boot_cpu_data.cpu_type == pcxl) {
596		pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
597		parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
598						+ PCXL_DMA_MAP_SIZE);
599	} else
600#endif
601		parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
 
 
 
 
602
603	mem_init_print_info(NULL);
 
 
 
 
 
 
 
604
605#if 0
606	/*
607	 * Do not expose the virtual kernel memory layout to userspace.
608	 * But keep code for debugging purposes.
609	 */
610	printk("virtual kernel memory layout:\n"
611	       "     vmalloc : 0x%px - 0x%px   (%4ld MB)\n"
612	       "     fixmap  : 0x%px - 0x%px   (%4ld kB)\n"
613	       "     memory  : 0x%px - 0x%px   (%4ld MB)\n"
614	       "       .init : 0x%px - 0x%px   (%4ld kB)\n"
615	       "       .data : 0x%px - 0x%px   (%4ld kB)\n"
616	       "       .text : 0x%px - 0x%px   (%4ld kB)\n",
617
618	       (void*)VMALLOC_START, (void*)VMALLOC_END,
619	       (VMALLOC_END - VMALLOC_START) >> 20,
620
621	       (void *)FIXMAP_START, (void *)(FIXMAP_START + FIXMAP_SIZE),
622	       (unsigned long)(FIXMAP_SIZE / 1024),
623
624	       __va(0), high_memory,
625	       ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
626
627	       __init_begin, __init_end,
628	       ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
629
630	       _etext, _edata,
631	       ((unsigned long)_edata - (unsigned long)_etext) >> 10,
632
633	       _text, _etext,
634	       ((unsigned long)_etext - (unsigned long)_text) >> 10);
635#endif
636}
637
638unsigned long *empty_zero_page __ro_after_init;
639EXPORT_SYMBOL(empty_zero_page);
640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
641/*
642 * pagetable_init() sets up the page tables
643 *
644 * Note that gateway_init() places the Linux gateway page at page 0.
645 * Since gateway pages cannot be dereferenced this has the desirable
646 * side effect of trapping those pesky NULL-reference errors in the
647 * kernel.
648 */
649static void __init pagetable_init(void)
650{
651	int range;
652
653	/* Map each physical memory range to its kernel vaddr */
654
655	for (range = 0; range < npmem_ranges; range++) {
656		unsigned long start_paddr;
657		unsigned long end_paddr;
658		unsigned long size;
659
660		start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
 
661		size = pmem_ranges[range].pages << PAGE_SHIFT;
662		end_paddr = start_paddr + size;
663
664		map_pages((unsigned long)__va(start_paddr), start_paddr,
665			  size, PAGE_KERNEL, 0);
666	}
667
668#ifdef CONFIG_BLK_DEV_INITRD
669	if (initrd_end && initrd_end > mem_limit) {
670		printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
671		map_pages(initrd_start, __pa(initrd_start),
672			  initrd_end - initrd_start, PAGE_KERNEL, 0);
673	}
674#endif
675
676	empty_zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
677	if (!empty_zero_page)
678		panic("zero page allocation failed.\n");
679
680}
681
682static void __init gateway_init(void)
683{
684	unsigned long linux_gateway_page_addr;
685	/* FIXME: This is 'const' in order to trick the compiler
686	   into not treating it as DP-relative data. */
687	extern void * const linux_gateway_page;
688
689	linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
690
691	/*
692	 * Setup Linux Gateway page.
693	 *
694	 * The Linux gateway page will reside in kernel space (on virtual
695	 * page 0), so it doesn't need to be aliased into user space.
696	 */
697
698	map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
699		  PAGE_SIZE, PAGE_GATEWAY, 1);
700}
701
702static void __init parisc_bootmem_free(void)
 
 
703{
704	unsigned long zones_size[MAX_NR_ZONES] = { 0, };
705	unsigned long holes_size[MAX_NR_ZONES] = { 0, };
706	unsigned long mem_start_pfn = ~0UL, mem_end_pfn = 0, mem_size_pfn = 0;
707	int i;
 
 
 
 
 
 
708
709	for (i = 0; i < npmem_ranges; i++) {
710		unsigned long start = pmem_ranges[i].start_pfn;
711		unsigned long size = pmem_ranges[i].pages;
712		unsigned long end = start + size;
 
 
 
 
 
 
713
714		if (mem_start_pfn > start)
715			mem_start_pfn = start;
716		if (mem_end_pfn < end)
717			mem_end_pfn = end;
718		mem_size_pfn += size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
719	}
720
721	zones_size[0] = mem_end_pfn - mem_start_pfn;
722	holes_size[0] = zones_size[0] - mem_size_pfn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
723
724	free_area_init_node(0, zones_size, mem_start_pfn, holes_size);
 
725}
 
 
726
727void __init paging_init(void)
728{
 
 
729	setup_bootmem();
730	pagetable_init();
731	gateway_init();
732	flush_cache_all_local(); /* start with known state */
733	flush_tlb_all_local(NULL);
734
735	/*
736	 * Mark all memblocks as present for sparsemem using
737	 * memory_present() and then initialize sparsemem.
738	 */
739	memblocks_present();
740	sparse_init();
741	parisc_bootmem_free();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
742}
743
744#ifdef CONFIG_PA20
745
746/*
747 * Currently, all PA20 chips have 18 bit protection IDs, which is the
748 * limiting factor (space ids are 32 bits).
749 */
750
751#define NR_SPACE_IDS 262144
752
753#else
754
755/*
756 * Currently we have a one-to-one relationship between space IDs and
757 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
758 * support 15 bit protection IDs, so that is the limiting factor.
759 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
760 * probably not worth the effort for a special case here.
761 */
762
763#define NR_SPACE_IDS 32768
764
765#endif  /* !CONFIG_PA20 */
766
767#define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
768#define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
769
770static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
771static unsigned long dirty_space_id[SID_ARRAY_SIZE];
772static unsigned long space_id_index;
773static unsigned long free_space_ids = NR_SPACE_IDS - 1;
774static unsigned long dirty_space_ids = 0;
775
776static DEFINE_SPINLOCK(sid_lock);
777
778unsigned long alloc_sid(void)
779{
780	unsigned long index;
781
782	spin_lock(&sid_lock);
783
784	if (free_space_ids == 0) {
785		if (dirty_space_ids != 0) {
786			spin_unlock(&sid_lock);
787			flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
788			spin_lock(&sid_lock);
789		}
790		BUG_ON(free_space_ids == 0);
791	}
792
793	free_space_ids--;
794
795	index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
796	space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
797	space_id_index = index;
798
799	spin_unlock(&sid_lock);
800
801	return index << SPACEID_SHIFT;
802}
803
804void free_sid(unsigned long spaceid)
805{
806	unsigned long index = spaceid >> SPACEID_SHIFT;
807	unsigned long *dirty_space_offset;
808
809	dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
810	index &= (BITS_PER_LONG - 1);
811
812	spin_lock(&sid_lock);
813
814	BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
815
816	*dirty_space_offset |= (1L << index);
817	dirty_space_ids++;
818
819	spin_unlock(&sid_lock);
820}
821
822
823#ifdef CONFIG_SMP
824static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
825{
826	int i;
827
828	/* NOTE: sid_lock must be held upon entry */
829
830	*ndirtyptr = dirty_space_ids;
831	if (dirty_space_ids != 0) {
832	    for (i = 0; i < SID_ARRAY_SIZE; i++) {
833		dirty_array[i] = dirty_space_id[i];
834		dirty_space_id[i] = 0;
835	    }
836	    dirty_space_ids = 0;
837	}
838
839	return;
840}
841
842static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
843{
844	int i;
845
846	/* NOTE: sid_lock must be held upon entry */
847
848	if (ndirty != 0) {
849		for (i = 0; i < SID_ARRAY_SIZE; i++) {
850			space_id[i] ^= dirty_array[i];
851		}
852
853		free_space_ids += ndirty;
854		space_id_index = 0;
855	}
856}
857
858#else /* CONFIG_SMP */
859
860static void recycle_sids(void)
861{
862	int i;
863
864	/* NOTE: sid_lock must be held upon entry */
865
866	if (dirty_space_ids != 0) {
867		for (i = 0; i < SID_ARRAY_SIZE; i++) {
868			space_id[i] ^= dirty_space_id[i];
869			dirty_space_id[i] = 0;
870		}
871
872		free_space_ids += dirty_space_ids;
873		dirty_space_ids = 0;
874		space_id_index = 0;
875	}
876}
877#endif
878
879/*
880 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
881 * purged, we can safely reuse the space ids that were released but
882 * not flushed from the tlb.
883 */
884
885#ifdef CONFIG_SMP
886
887static unsigned long recycle_ndirty;
888static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
889static unsigned int recycle_inuse;
890
891void flush_tlb_all(void)
892{
893	int do_recycle;
894
895	__inc_irq_stat(irq_tlb_count);
896	do_recycle = 0;
897	spin_lock(&sid_lock);
898	if (dirty_space_ids > RECYCLE_THRESHOLD) {
899	    BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
900	    get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
901	    recycle_inuse++;
902	    do_recycle++;
903	}
904	spin_unlock(&sid_lock);
905	on_each_cpu(flush_tlb_all_local, NULL, 1);
906	if (do_recycle) {
907	    spin_lock(&sid_lock);
908	    recycle_sids(recycle_ndirty,recycle_dirty_array);
909	    recycle_inuse = 0;
910	    spin_unlock(&sid_lock);
911	}
912}
913#else
914void flush_tlb_all(void)
915{
916	__inc_irq_stat(irq_tlb_count);
917	spin_lock(&sid_lock);
918	flush_tlb_all_local(NULL);
919	recycle_sids();
920	spin_unlock(&sid_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
921}
922#endif
v3.5.6
 
   1/*
   2 *  linux/arch/parisc/mm/init.c
   3 *
   4 *  Copyright (C) 1995	Linus Torvalds
   5 *  Copyright 1999 SuSE GmbH
   6 *    changed by Philipp Rumpf
   7 *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
   8 *  Copyright 2004 Randolph Chung (tausq@debian.org)
   9 *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
  10 *
  11 */
  12
  13
  14#include <linux/module.h>
  15#include <linux/mm.h>
  16#include <linux/bootmem.h>
  17#include <linux/gfp.h>
  18#include <linux/delay.h>
  19#include <linux/init.h>
  20#include <linux/pci.h>		/* for hppa_dma_ops and pcxl_dma_ops */
  21#include <linux/initrd.h>
  22#include <linux/swap.h>
  23#include <linux/unistd.h>
  24#include <linux/nodemask.h>	/* for node_online_map */
  25#include <linux/pagemap.h>	/* for release_pages and page_cache_release */
 
  26
  27#include <asm/pgalloc.h>
  28#include <asm/pgtable.h>
  29#include <asm/tlb.h>
  30#include <asm/pdc_chassis.h>
  31#include <asm/mmzone.h>
  32#include <asm/sections.h>
 
 
  33
  34extern int  data_start;
 
  35
  36#if PT_NLEVELS == 3
  37/* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
  38 * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
  39 * guarantee that global objects will be laid out in memory in the same order
  40 * as the order of declaration, so put these in different sections and use
  41 * the linker script to order them. */
  42pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE)));
  43#endif
  44
  45pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE)));
  46pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE)));
  47
  48#ifdef CONFIG_DISCONTIGMEM
  49struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
  50unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
  51#endif
  52
  53static struct resource data_resource = {
  54	.name	= "Kernel data",
  55	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
  56};
  57
  58static struct resource code_resource = {
  59	.name	= "Kernel code",
  60	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
  61};
  62
  63static struct resource pdcdata_resource = {
  64	.name	= "PDC data (Page Zero)",
  65	.start	= 0,
  66	.end	= 0x9ff,
  67	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
  68};
  69
  70static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
  71
  72/* The following array is initialized from the firmware specific
  73 * information retrieved in kernel/inventory.c.
  74 */
  75
  76physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
  77int npmem_ranges __read_mostly;
  78
  79#ifdef CONFIG_64BIT
  80#define MAX_MEM         (~0UL)
  81#else /* !CONFIG_64BIT */
  82#define MAX_MEM         (3584U*1024U*1024U)
  83#endif /* !CONFIG_64BIT */
  84
  85static unsigned long mem_limit __read_mostly = MAX_MEM;
  86
  87static void __init mem_limit_func(void)
  88{
  89	char *cp, *end;
  90	unsigned long limit;
  91
  92	/* We need this before __setup() functions are called */
  93
  94	limit = MAX_MEM;
  95	for (cp = boot_command_line; *cp; ) {
  96		if (memcmp(cp, "mem=", 4) == 0) {
  97			cp += 4;
  98			limit = memparse(cp, &end);
  99			if (end != cp)
 100				break;
 101			cp = end;
 102		} else {
 103			while (*cp != ' ' && *cp)
 104				++cp;
 105			while (*cp == ' ')
 106				++cp;
 107		}
 108	}
 109
 110	if (limit < mem_limit)
 111		mem_limit = limit;
 112}
 113
 114#define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
 115
 116static void __init setup_bootmem(void)
 117{
 118	unsigned long bootmap_size;
 119	unsigned long mem_max;
 120	unsigned long bootmap_pages;
 121	unsigned long bootmap_start_pfn;
 122	unsigned long bootmap_pfn;
 123#ifndef CONFIG_DISCONTIGMEM
 124	physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
 125	int npmem_holes;
 126#endif
 127	int i, sysram_resource_count;
 128
 129	disable_sr_hashing(); /* Turn off space register hashing */
 130
 131	/*
 132	 * Sort the ranges. Since the number of ranges is typically
 133	 * small, and performance is not an issue here, just do
 134	 * a simple insertion sort.
 135	 */
 136
 137	for (i = 1; i < npmem_ranges; i++) {
 138		int j;
 139
 140		for (j = i; j > 0; j--) {
 141			unsigned long tmp;
 142
 143			if (pmem_ranges[j-1].start_pfn <
 144			    pmem_ranges[j].start_pfn) {
 145
 146				break;
 147			}
 148			tmp = pmem_ranges[j-1].start_pfn;
 149			pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
 150			pmem_ranges[j].start_pfn = tmp;
 151			tmp = pmem_ranges[j-1].pages;
 152			pmem_ranges[j-1].pages = pmem_ranges[j].pages;
 153			pmem_ranges[j].pages = tmp;
 154		}
 155	}
 156
 157#ifndef CONFIG_DISCONTIGMEM
 158	/*
 159	 * Throw out ranges that are too far apart (controlled by
 160	 * MAX_GAP).
 161	 */
 162
 163	for (i = 1; i < npmem_ranges; i++) {
 164		if (pmem_ranges[i].start_pfn -
 165			(pmem_ranges[i-1].start_pfn +
 166			 pmem_ranges[i-1].pages) > MAX_GAP) {
 167			npmem_ranges = i;
 168			printk("Large gap in memory detected (%ld pages). "
 169			       "Consider turning on CONFIG_DISCONTIGMEM\n",
 170			       pmem_ranges[i].start_pfn -
 171			       (pmem_ranges[i-1].start_pfn +
 172			        pmem_ranges[i-1].pages));
 173			break;
 174		}
 175	}
 176#endif
 177
 178	if (npmem_ranges > 1) {
 
 179
 180		/* Print the memory ranges */
 
 
 
 181
 182		printk(KERN_INFO "Memory Ranges:\n");
 
 
 
 183
 184		for (i = 0; i < npmem_ranges; i++) {
 185			unsigned long start;
 186			unsigned long size;
 187
 188			size = (pmem_ranges[i].pages << PAGE_SHIFT);
 189			start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
 190			printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
 191				i,start, start + (size - 1), size >> 20);
 192		}
 193	}
 194
 195	sysram_resource_count = npmem_ranges;
 196	for (i = 0; i < sysram_resource_count; i++) {
 197		struct resource *res = &sysram_resources[i];
 198		res->name = "System RAM";
 199		res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
 200		res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
 201		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 202		request_resource(&iomem_resource, res);
 203	}
 204
 205	/*
 206	 * For 32 bit kernels we limit the amount of memory we can
 207	 * support, in order to preserve enough kernel address space
 208	 * for other purposes. For 64 bit kernels we don't normally
 209	 * limit the memory, but this mechanism can be used to
 210	 * artificially limit the amount of memory (and it is written
 211	 * to work with multiple memory ranges).
 212	 */
 213
 214	mem_limit_func();       /* check for "mem=" argument */
 215
 216	mem_max = 0;
 217	num_physpages = 0;
 218	for (i = 0; i < npmem_ranges; i++) {
 219		unsigned long rsize;
 220
 221		rsize = pmem_ranges[i].pages << PAGE_SHIFT;
 222		if ((mem_max + rsize) > mem_limit) {
 223			printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
 224			if (mem_max == mem_limit)
 225				npmem_ranges = i;
 226			else {
 227				pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
 228						       - (mem_max >> PAGE_SHIFT);
 229				npmem_ranges = i + 1;
 230				mem_max = mem_limit;
 231			}
 232	        num_physpages += pmem_ranges[i].pages;
 233			break;
 234		}
 235	    num_physpages += pmem_ranges[i].pages;
 236		mem_max += rsize;
 237	}
 238
 239	printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
 240
 241#ifndef CONFIG_DISCONTIGMEM
 242	/* Merge the ranges, keeping track of the holes */
 243
 244	{
 245		unsigned long end_pfn;
 246		unsigned long hole_pages;
 247
 248		npmem_holes = 0;
 249		end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
 250		for (i = 1; i < npmem_ranges; i++) {
 251
 252			hole_pages = pmem_ranges[i].start_pfn - end_pfn;
 253			if (hole_pages) {
 254				pmem_holes[npmem_holes].start_pfn = end_pfn;
 255				pmem_holes[npmem_holes++].pages = hole_pages;
 256				end_pfn += hole_pages;
 257			}
 258			end_pfn += pmem_ranges[i].pages;
 259		}
 260
 261		pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
 262		npmem_ranges = 1;
 263	}
 264#endif
 265
 266	bootmap_pages = 0;
 267	for (i = 0; i < npmem_ranges; i++)
 268		bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
 269
 270	bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
 271
 272#ifdef CONFIG_DISCONTIGMEM
 273	for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
 274		memset(NODE_DATA(i), 0, sizeof(pg_data_t));
 275		NODE_DATA(i)->bdata = &bootmem_node_data[i];
 276	}
 277	memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
 278
 279	for (i = 0; i < npmem_ranges; i++) {
 280		node_set_state(i, N_NORMAL_MEMORY);
 281		node_set_online(i);
 282	}
 283#endif
 284
 285	/*
 286	 * Initialize and free the full range of memory in each range.
 287	 * Note that the only writing these routines do are to the bootmap,
 288	 * and we've made sure to locate the bootmap properly so that they
 289	 * won't be writing over anything important.
 290	 */
 291
 292	bootmap_pfn = bootmap_start_pfn;
 293	max_pfn = 0;
 294	for (i = 0; i < npmem_ranges; i++) {
 295		unsigned long start_pfn;
 296		unsigned long npages;
 
 
 297
 298		start_pfn = pmem_ranges[i].start_pfn;
 299		npages = pmem_ranges[i].pages;
 300
 301		bootmap_size = init_bootmem_node(NODE_DATA(i),
 302						bootmap_pfn,
 303						start_pfn,
 304						(start_pfn + npages) );
 305		free_bootmem_node(NODE_DATA(i),
 306				  (start_pfn << PAGE_SHIFT),
 307				  (npages << PAGE_SHIFT) );
 308		bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 309		if ((start_pfn + npages) > max_pfn)
 310			max_pfn = start_pfn + npages;
 311	}
 312
 
 
 
 
 
 
 
 313	/* IOMMU is always used to access "high mem" on those boxes
 314	 * that can support enough mem that a PCI device couldn't
 315	 * directly DMA to any physical addresses.
 316	 * ISA DMA support will need to revisit this.
 317	 */
 318	max_low_pfn = max_pfn;
 319
 320	/* bootmap sizing messed up? */
 321	BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages);
 322
 323	/* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
 324
 325#define PDC_CONSOLE_IO_IODC_SIZE 32768
 326
 327	reserve_bootmem_node(NODE_DATA(0), 0UL,
 328			(unsigned long)(PAGE0->mem_free +
 329				PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT);
 330	reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text),
 331			(unsigned long)(_end - _text), BOOTMEM_DEFAULT);
 332	reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
 333			((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT),
 334			BOOTMEM_DEFAULT);
 335
 336#ifndef CONFIG_DISCONTIGMEM
 337
 338	/* reserve the holes */
 339
 340	for (i = 0; i < npmem_holes; i++) {
 341		reserve_bootmem_node(NODE_DATA(0),
 342				(pmem_holes[i].start_pfn << PAGE_SHIFT),
 343				(pmem_holes[i].pages << PAGE_SHIFT),
 344				BOOTMEM_DEFAULT);
 345	}
 346#endif
 347
 348#ifdef CONFIG_BLK_DEV_INITRD
 349	if (initrd_start) {
 350		printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
 351		if (__pa(initrd_start) < mem_max) {
 352			unsigned long initrd_reserve;
 353
 354			if (__pa(initrd_end) > mem_max) {
 355				initrd_reserve = mem_max - __pa(initrd_start);
 356			} else {
 357				initrd_reserve = initrd_end - initrd_start;
 358			}
 359			initrd_below_start_ok = 1;
 360			printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
 361
 362			reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start),
 363					initrd_reserve, BOOTMEM_DEFAULT);
 364		}
 365	}
 366#endif
 367
 368	data_resource.start =  virt_to_phys(&data_start);
 369	data_resource.end = virt_to_phys(_end) - 1;
 370	code_resource.start = virt_to_phys(_text);
 371	code_resource.end = virt_to_phys(&data_start)-1;
 372
 373	/* We don't know which region the kernel will be in, so try
 374	 * all of them.
 375	 */
 376	for (i = 0; i < sysram_resource_count; i++) {
 377		struct resource *res = &sysram_resources[i];
 378		request_resource(res, &code_resource);
 379		request_resource(res, &data_resource);
 380	}
 381	request_resource(&sysram_resources[0], &pdcdata_resource);
 
 
 
 
 
 
 382}
 383
 
 
 384static void __init map_pages(unsigned long start_vaddr,
 385			     unsigned long start_paddr, unsigned long size,
 386			     pgprot_t pgprot, int force)
 387{
 388	pgd_t *pg_dir;
 389	pmd_t *pmd;
 390	pte_t *pg_table;
 391	unsigned long end_paddr;
 392	unsigned long start_pmd;
 393	unsigned long start_pte;
 394	unsigned long tmp1;
 395	unsigned long tmp2;
 396	unsigned long address;
 397	unsigned long vaddr;
 398	unsigned long ro_start;
 399	unsigned long ro_end;
 400	unsigned long fv_addr;
 401	unsigned long gw_addr;
 402	extern const unsigned long fault_vector_20;
 403	extern void * const linux_gateway_page;
 404
 405	ro_start = __pa((unsigned long)_text);
 406	ro_end   = __pa((unsigned long)&data_start);
 407	fv_addr  = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
 408	gw_addr  = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
 409
 410	end_paddr = start_paddr + size;
 411
 412	pg_dir = pgd_offset_k(start_vaddr);
 413
 414#if PTRS_PER_PMD == 1
 415	start_pmd = 0;
 416#else
 417	start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
 418#endif
 419	start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 420
 421	address = start_paddr;
 422	vaddr = start_vaddr;
 423	while (address < end_paddr) {
 424#if PTRS_PER_PMD == 1
 425		pmd = (pmd_t *)__pa(pg_dir);
 426#else
 427		pmd = (pmd_t *)pgd_address(*pg_dir);
 428
 429		/*
 430		 * pmd is physical at this point
 431		 */
 432
 433		if (!pmd) {
 434			pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE << PMD_ORDER);
 
 
 
 435			pmd = (pmd_t *) __pa(pmd);
 436		}
 437
 438		pgd_populate(NULL, pg_dir, __va(pmd));
 439#endif
 440		pg_dir++;
 441
 442		/* now change pmd to kernel virtual addresses */
 443
 444		pmd = (pmd_t *)__va(pmd) + start_pmd;
 445		for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
 446
 447			/*
 448			 * pg_table is physical at this point
 449			 */
 450
 451			pg_table = (pte_t *)pmd_address(*pmd);
 452			if (!pg_table) {
 453				pg_table = (pte_t *)
 454					alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE);
 
 
 455				pg_table = (pte_t *) __pa(pg_table);
 456			}
 457
 458			pmd_populate_kernel(NULL, pmd, __va(pg_table));
 459
 460			/* now change pg_table to kernel virtual addresses */
 461
 462			pg_table = (pte_t *) __va(pg_table) + start_pte;
 463			for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
 464				pte_t pte;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 465
 466				/*
 467				 * Map the fault vector writable so we can
 468				 * write the HPMC checksum.
 469				 */
 470				if (force)
 471					pte =  __mk_pte(address, pgprot);
 472				else if (core_kernel_text(vaddr) &&
 473					 address != fv_addr)
 474					pte = __mk_pte(address, PAGE_KERNEL_EXEC);
 475				else
 476#if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
 477				if (address >= ro_start && address < ro_end
 478							&& address != fv_addr
 479							&& address != gw_addr)
 480					pte = __mk_pte(address, PAGE_KERNEL_RO);
 481				else
 482#endif
 483					pte = __mk_pte(address, pgprot);
 484
 485				if (address >= end_paddr) {
 486					if (force)
 487						break;
 488					else
 489						pte_val(pte) = 0;
 490				}
 491
 492				set_pte(pg_table, pte);
 493
 494				address += PAGE_SIZE;
 495				vaddr += PAGE_SIZE;
 496			}
 497			start_pte = 0;
 498
 499			if (address >= end_paddr)
 500			    break;
 501		}
 502		start_pmd = 0;
 503	}
 504}
 505
 506void free_initmem(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 507{
 508	unsigned long addr;
 509	unsigned long init_begin = (unsigned long)__init_begin;
 510	unsigned long init_end = (unsigned long)__init_end;
 
 
 
 
 
 
 511
 512	/* The init text pages are marked R-X.  We have to
 513	 * flush the icache and mark them RW-
 514	 *
 515	 * This is tricky, because map_pages is in the init section.
 516	 * Do a dummy remap of the data section first (the data
 517	 * section is already PAGE_KERNEL) to pull in the TLB entries
 518	 * for map_kernel */
 519	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
 520		  PAGE_KERNEL_RWX, 1);
 521	/* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
 522	 * map_pages */
 523	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
 524		  PAGE_KERNEL, 1);
 525
 526	/* force the kernel to see the new TLB entries */
 527	__flush_tlb_range(0, init_begin, init_end);
 528	/* Attempt to catch anyone trying to execute code here
 529	 * by filling the page with BRK insns.
 530	 */
 531	memset((void *)init_begin, 0x00, init_end - init_begin);
 532	/* finally dump all the instructions which were cached, since the
 533	 * pages are no-longer executable */
 534	flush_icache_range(init_begin, init_end);
 535	
 536	for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) {
 537		ClearPageReserved(virt_to_page(addr));
 538		init_page_count(virt_to_page(addr));
 539		free_page(addr);
 540		num_physpages++;
 541		totalram_pages++;
 542	}
 543
 544	/* set up a new led state on systems shipped LED State panel */
 545	pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
 546	
 547	printk(KERN_INFO "Freeing unused kernel memory: %luk freed\n",
 548		(init_end - init_begin) >> 10);
 549}
 550
 551
 552#ifdef CONFIG_DEBUG_RODATA
 553void mark_rodata_ro(void)
 554{
 555	/* rodata memory was already mapped with KERNEL_RO access rights by
 556           pagetable_init() and map_pages(). No need to do additional stuff here */
 557	printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
 558		(unsigned long)(__end_rodata - __start_rodata) >> 10);
 
 559}
 560#endif
 561
 562
 563/*
 564 * Just an arbitrary offset to serve as a "hole" between mapping areas
 565 * (between top of physical memory and a potential pcxl dma mapping
 566 * area, and below the vmalloc mapping area).
 567 *
 568 * The current 32K value just means that there will be a 32K "hole"
 569 * between mapping areas. That means that  any out-of-bounds memory
 570 * accesses will hopefully be caught. The vmalloc() routines leaves
 571 * a hole of 4kB between each vmalloced area for the same reason.
 572 */
 573
 574 /* Leave room for gateway page expansion */
 575#if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
 576#error KERNEL_MAP_START is in gateway reserved region
 577#endif
 578#define MAP_START (KERNEL_MAP_START)
 579
 580#define VM_MAP_OFFSET  (32*1024)
 581#define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
 582				     & ~(VM_MAP_OFFSET-1)))
 583
 584void *parisc_vmalloc_start __read_mostly;
 585EXPORT_SYMBOL(parisc_vmalloc_start);
 586
 587#ifdef CONFIG_PA11
 588unsigned long pcxl_dma_start __read_mostly;
 589#endif
 590
 591void __init mem_init(void)
 592{
 593	int codesize, reservedpages, datasize, initsize;
 
 
 
 
 
 
 
 
 
 
 
 
 594
 595	/* Do sanity checks on page table constants */
 596	BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
 597	BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
 598	BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
 599	BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
 600			> BITS_PER_LONG);
 601
 602	high_memory = __va((max_pfn << PAGE_SHIFT));
 603
 604#ifndef CONFIG_DISCONTIGMEM
 605	max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1;
 606	totalram_pages += free_all_bootmem();
 607#else
 608	{
 609		int i;
 610
 611		for (i = 0; i < npmem_ranges; i++)
 612			totalram_pages += free_all_bootmem_node(NODE_DATA(i));
 613	}
 614#endif
 615
 616	codesize = (unsigned long)_etext - (unsigned long)_text;
 617	datasize = (unsigned long)_edata - (unsigned long)_etext;
 618	initsize = (unsigned long)__init_end - (unsigned long)__init_begin;
 619
 620	reservedpages = 0;
 621{
 622	unsigned long pfn;
 623#ifdef CONFIG_DISCONTIGMEM
 624	int i;
 625
 626	for (i = 0; i < npmem_ranges; i++) {
 627		for (pfn = node_start_pfn(i); pfn < node_end_pfn(i); pfn++) {
 628			if (PageReserved(pfn_to_page(pfn)))
 629				reservedpages++;
 630		}
 631	}
 632#else /* !CONFIG_DISCONTIGMEM */
 633	for (pfn = 0; pfn < max_pfn; pfn++) {
 634		/*
 635		 * Only count reserved RAM pages
 636		 */
 637		if (PageReserved(pfn_to_page(pfn)))
 638			reservedpages++;
 639	}
 640#endif
 641}
 642
 643#ifdef CONFIG_PA11
 644	if (hppa_dma_ops == &pcxl_dma_ops) {
 645		pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
 646		parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
 647						+ PCXL_DMA_MAP_SIZE);
 648	} else {
 649		pcxl_dma_start = 0;
 650		parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
 651	}
 652#else
 653	parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
 654#endif
 655
 656	printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init)\n",
 657		nr_free_pages() << (PAGE_SHIFT-10),
 658		num_physpages << (PAGE_SHIFT-10),
 659		codesize >> 10,
 660		reservedpages << (PAGE_SHIFT-10),
 661		datasize >> 10,
 662		initsize >> 10
 663	);
 664
 665#ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
 
 
 
 
 666	printk("virtual kernel memory layout:\n"
 667	       "    vmalloc : 0x%p - 0x%p   (%4ld MB)\n"
 668	       "    memory  : 0x%p - 0x%p   (%4ld MB)\n"
 669	       "      .init : 0x%p - 0x%p   (%4ld kB)\n"
 670	       "      .data : 0x%p - 0x%p   (%4ld kB)\n"
 671	       "      .text : 0x%p - 0x%p   (%4ld kB)\n",
 
 672
 673	       (void*)VMALLOC_START, (void*)VMALLOC_END,
 674	       (VMALLOC_END - VMALLOC_START) >> 20,
 675
 
 
 
 676	       __va(0), high_memory,
 677	       ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
 678
 679	       __init_begin, __init_end,
 680	       ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
 681
 682	       _etext, _edata,
 683	       ((unsigned long)_edata - (unsigned long)_etext) >> 10,
 684
 685	       _text, _etext,
 686	       ((unsigned long)_etext - (unsigned long)_text) >> 10);
 687#endif
 688}
 689
 690unsigned long *empty_zero_page __read_mostly;
 691EXPORT_SYMBOL(empty_zero_page);
 692
 693void show_mem(unsigned int filter)
 694{
 695	int i,free = 0,total = 0,reserved = 0;
 696	int shared = 0, cached = 0;
 697
 698	printk(KERN_INFO "Mem-info:\n");
 699	show_free_areas(filter);
 700#ifndef CONFIG_DISCONTIGMEM
 701	i = max_mapnr;
 702	while (i-- > 0) {
 703		total++;
 704		if (PageReserved(mem_map+i))
 705			reserved++;
 706		else if (PageSwapCache(mem_map+i))
 707			cached++;
 708		else if (!page_count(&mem_map[i]))
 709			free++;
 710		else
 711			shared += page_count(&mem_map[i]) - 1;
 712	}
 713#else
 714	for (i = 0; i < npmem_ranges; i++) {
 715		int j;
 716
 717		for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
 718			struct page *p;
 719			unsigned long flags;
 720
 721			pgdat_resize_lock(NODE_DATA(i), &flags);
 722			p = nid_page_nr(i, j) - node_start_pfn(i);
 723
 724			total++;
 725			if (PageReserved(p))
 726				reserved++;
 727			else if (PageSwapCache(p))
 728				cached++;
 729			else if (!page_count(p))
 730				free++;
 731			else
 732				shared += page_count(p) - 1;
 733			pgdat_resize_unlock(NODE_DATA(i), &flags);
 734        	}
 735	}
 736#endif
 737	printk(KERN_INFO "%d pages of RAM\n", total);
 738	printk(KERN_INFO "%d reserved pages\n", reserved);
 739	printk(KERN_INFO "%d pages shared\n", shared);
 740	printk(KERN_INFO "%d pages swap cached\n", cached);
 741
 742
 743#ifdef CONFIG_DISCONTIGMEM
 744	{
 745		struct zonelist *zl;
 746		int i, j;
 747
 748		for (i = 0; i < npmem_ranges; i++) {
 749			zl = node_zonelist(i, 0);
 750			for (j = 0; j < MAX_NR_ZONES; j++) {
 751				struct zoneref *z;
 752				struct zone *zone;
 753
 754				printk("Zone list for zone %d on node %d: ", j, i);
 755				for_each_zone_zonelist(zone, z, zl, j)
 756					printk("[%d/%s] ", zone_to_nid(zone),
 757								zone->name);
 758				printk("\n");
 759			}
 760		}
 761	}
 762#endif
 763}
 764
 765/*
 766 * pagetable_init() sets up the page tables
 767 *
 768 * Note that gateway_init() places the Linux gateway page at page 0.
 769 * Since gateway pages cannot be dereferenced this has the desirable
 770 * side effect of trapping those pesky NULL-reference errors in the
 771 * kernel.
 772 */
 773static void __init pagetable_init(void)
 774{
 775	int range;
 776
 777	/* Map each physical memory range to its kernel vaddr */
 778
 779	for (range = 0; range < npmem_ranges; range++) {
 780		unsigned long start_paddr;
 781		unsigned long end_paddr;
 782		unsigned long size;
 783
 784		start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
 785		end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
 786		size = pmem_ranges[range].pages << PAGE_SHIFT;
 
 787
 788		map_pages((unsigned long)__va(start_paddr), start_paddr,
 789			  size, PAGE_KERNEL, 0);
 790	}
 791
 792#ifdef CONFIG_BLK_DEV_INITRD
 793	if (initrd_end && initrd_end > mem_limit) {
 794		printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
 795		map_pages(initrd_start, __pa(initrd_start),
 796			  initrd_end - initrd_start, PAGE_KERNEL, 0);
 797	}
 798#endif
 799
 800	empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
 801	memset(empty_zero_page, 0, PAGE_SIZE);
 
 
 802}
 803
 804static void __init gateway_init(void)
 805{
 806	unsigned long linux_gateway_page_addr;
 807	/* FIXME: This is 'const' in order to trick the compiler
 808	   into not treating it as DP-relative data. */
 809	extern void * const linux_gateway_page;
 810
 811	linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
 812
 813	/*
 814	 * Setup Linux Gateway page.
 815	 *
 816	 * The Linux gateway page will reside in kernel space (on virtual
 817	 * page 0), so it doesn't need to be aliased into user space.
 818	 */
 819
 820	map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
 821		  PAGE_SIZE, PAGE_GATEWAY, 1);
 822}
 823
 824#ifdef CONFIG_HPUX
 825void
 826map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
 827{
 828	pgd_t *pg_dir;
 829	pmd_t *pmd;
 830	pte_t *pg_table;
 831	unsigned long start_pmd;
 832	unsigned long start_pte;
 833	unsigned long address;
 834	unsigned long hpux_gw_page_addr;
 835	/* FIXME: This is 'const' in order to trick the compiler
 836	   into not treating it as DP-relative data. */
 837	extern void * const hpux_gateway_page;
 838
 839	hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
 840
 841	/*
 842	 * Setup HP-UX Gateway page.
 843	 *
 844	 * The HP-UX gateway page resides in the user address space,
 845	 * so it needs to be aliased into each process.
 846	 */
 847
 848	pg_dir = pgd_offset(mm,hpux_gw_page_addr);
 849
 850#if PTRS_PER_PMD == 1
 851	start_pmd = 0;
 852#else
 853	start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
 854#endif
 855	start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 856
 857	address = __pa(&hpux_gateway_page);
 858#if PTRS_PER_PMD == 1
 859	pmd = (pmd_t *)__pa(pg_dir);
 860#else
 861	pmd = (pmd_t *) pgd_address(*pg_dir);
 862
 863	/*
 864	 * pmd is physical at this point
 865	 */
 866
 867	if (!pmd) {
 868		pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
 869		pmd = (pmd_t *) __pa(pmd);
 870	}
 871
 872	__pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
 873#endif
 874	/* now change pmd to kernel virtual addresses */
 875
 876	pmd = (pmd_t *)__va(pmd) + start_pmd;
 877
 878	/*
 879	 * pg_table is physical at this point
 880	 */
 881
 882	pg_table = (pte_t *) pmd_address(*pmd);
 883	if (!pg_table)
 884		pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
 885
 886	__pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
 887
 888	/* now change pg_table to kernel virtual addresses */
 889
 890	pg_table = (pte_t *) __va(pg_table) + start_pte;
 891	set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
 892}
 893EXPORT_SYMBOL(map_hpux_gateway_page);
 894#endif
 895
 896void __init paging_init(void)
 897{
 898	int i;
 899
 900	setup_bootmem();
 901	pagetable_init();
 902	gateway_init();
 903	flush_cache_all_local(); /* start with known state */
 904	flush_tlb_all_local(NULL);
 905
 906	for (i = 0; i < npmem_ranges; i++) {
 907		unsigned long zones_size[MAX_NR_ZONES] = { 0, };
 908
 909		zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
 910
 911#ifdef CONFIG_DISCONTIGMEM
 912		/* Need to initialize the pfnnid_map before we can initialize
 913		   the zone */
 914		{
 915		    int j;
 916		    for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
 917			 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
 918			 j++) {
 919			pfnnid_map[j] = i;
 920		    }
 921		}
 922#endif
 923
 924		free_area_init_node(i, zones_size,
 925				pmem_ranges[i].start_pfn, NULL);
 926	}
 927}
 928
 929#ifdef CONFIG_PA20
 930
 931/*
 932 * Currently, all PA20 chips have 18 bit protection IDs, which is the
 933 * limiting factor (space ids are 32 bits).
 934 */
 935
 936#define NR_SPACE_IDS 262144
 937
 938#else
 939
 940/*
 941 * Currently we have a one-to-one relationship between space IDs and
 942 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
 943 * support 15 bit protection IDs, so that is the limiting factor.
 944 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
 945 * probably not worth the effort for a special case here.
 946 */
 947
 948#define NR_SPACE_IDS 32768
 949
 950#endif  /* !CONFIG_PA20 */
 951
 952#define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
 953#define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
 954
 955static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
 956static unsigned long dirty_space_id[SID_ARRAY_SIZE];
 957static unsigned long space_id_index;
 958static unsigned long free_space_ids = NR_SPACE_IDS - 1;
 959static unsigned long dirty_space_ids = 0;
 960
 961static DEFINE_SPINLOCK(sid_lock);
 962
 963unsigned long alloc_sid(void)
 964{
 965	unsigned long index;
 966
 967	spin_lock(&sid_lock);
 968
 969	if (free_space_ids == 0) {
 970		if (dirty_space_ids != 0) {
 971			spin_unlock(&sid_lock);
 972			flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
 973			spin_lock(&sid_lock);
 974		}
 975		BUG_ON(free_space_ids == 0);
 976	}
 977
 978	free_space_ids--;
 979
 980	index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
 981	space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
 982	space_id_index = index;
 983
 984	spin_unlock(&sid_lock);
 985
 986	return index << SPACEID_SHIFT;
 987}
 988
 989void free_sid(unsigned long spaceid)
 990{
 991	unsigned long index = spaceid >> SPACEID_SHIFT;
 992	unsigned long *dirty_space_offset;
 993
 994	dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
 995	index &= (BITS_PER_LONG - 1);
 996
 997	spin_lock(&sid_lock);
 998
 999	BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
1000
1001	*dirty_space_offset |= (1L << index);
1002	dirty_space_ids++;
1003
1004	spin_unlock(&sid_lock);
1005}
1006
1007
1008#ifdef CONFIG_SMP
1009static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
1010{
1011	int i;
1012
1013	/* NOTE: sid_lock must be held upon entry */
1014
1015	*ndirtyptr = dirty_space_ids;
1016	if (dirty_space_ids != 0) {
1017	    for (i = 0; i < SID_ARRAY_SIZE; i++) {
1018		dirty_array[i] = dirty_space_id[i];
1019		dirty_space_id[i] = 0;
1020	    }
1021	    dirty_space_ids = 0;
1022	}
1023
1024	return;
1025}
1026
1027static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
1028{
1029	int i;
1030
1031	/* NOTE: sid_lock must be held upon entry */
1032
1033	if (ndirty != 0) {
1034		for (i = 0; i < SID_ARRAY_SIZE; i++) {
1035			space_id[i] ^= dirty_array[i];
1036		}
1037
1038		free_space_ids += ndirty;
1039		space_id_index = 0;
1040	}
1041}
1042
1043#else /* CONFIG_SMP */
1044
1045static void recycle_sids(void)
1046{
1047	int i;
1048
1049	/* NOTE: sid_lock must be held upon entry */
1050
1051	if (dirty_space_ids != 0) {
1052		for (i = 0; i < SID_ARRAY_SIZE; i++) {
1053			space_id[i] ^= dirty_space_id[i];
1054			dirty_space_id[i] = 0;
1055		}
1056
1057		free_space_ids += dirty_space_ids;
1058		dirty_space_ids = 0;
1059		space_id_index = 0;
1060	}
1061}
1062#endif
1063
1064/*
1065 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
1066 * purged, we can safely reuse the space ids that were released but
1067 * not flushed from the tlb.
1068 */
1069
1070#ifdef CONFIG_SMP
1071
1072static unsigned long recycle_ndirty;
1073static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
1074static unsigned int recycle_inuse;
1075
1076void flush_tlb_all(void)
1077{
1078	int do_recycle;
1079
 
1080	do_recycle = 0;
1081	spin_lock(&sid_lock);
1082	if (dirty_space_ids > RECYCLE_THRESHOLD) {
1083	    BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
1084	    get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
1085	    recycle_inuse++;
1086	    do_recycle++;
1087	}
1088	spin_unlock(&sid_lock);
1089	on_each_cpu(flush_tlb_all_local, NULL, 1);
1090	if (do_recycle) {
1091	    spin_lock(&sid_lock);
1092	    recycle_sids(recycle_ndirty,recycle_dirty_array);
1093	    recycle_inuse = 0;
1094	    spin_unlock(&sid_lock);
1095	}
1096}
1097#else
1098void flush_tlb_all(void)
1099{
 
1100	spin_lock(&sid_lock);
1101	flush_tlb_all_local(NULL);
1102	recycle_sids();
1103	spin_unlock(&sid_lock);
1104}
1105#endif
1106
1107#ifdef CONFIG_BLK_DEV_INITRD
1108void free_initrd_mem(unsigned long start, unsigned long end)
1109{
1110	if (start >= end)
1111		return;
1112	printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1113	for (; start < end; start += PAGE_SIZE) {
1114		ClearPageReserved(virt_to_page(start));
1115		init_page_count(virt_to_page(start));
1116		free_page(start);
1117		num_physpages++;
1118		totalram_pages++;
1119	}
1120}
1121#endif