Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/arch/parisc/mm/init.c
  4 *
  5 *  Copyright (C) 1995	Linus Torvalds
  6 *  Copyright 1999 SuSE GmbH
  7 *    changed by Philipp Rumpf
  8 *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
  9 *  Copyright 2004 Randolph Chung (tausq@debian.org)
 10 *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
 11 *
 12 */
 13
 14
 15#include <linux/module.h>
 16#include <linux/mm.h>
 17#include <linux/memblock.h>
 18#include <linux/gfp.h>
 19#include <linux/delay.h>
 20#include <linux/init.h>
 
 21#include <linux/initrd.h>
 22#include <linux/swap.h>
 23#include <linux/unistd.h>
 24#include <linux/nodemask.h>	/* for node_online_map */
 25#include <linux/pagemap.h>	/* for release_pages */
 26#include <linux/compat.h>
 27
 28#include <asm/pgalloc.h>
 29#include <asm/pgtable.h>
 30#include <asm/tlb.h>
 31#include <asm/pdc_chassis.h>
 32#include <asm/mmzone.h>
 33#include <asm/sections.h>
 34#include <asm/msgbuf.h>
 35#include <asm/sparsemem.h>
 36
 37extern int  data_start;
 38extern void parisc_kernel_start(void);	/* Kernel entry point in head.S */
 39
 40#if CONFIG_PGTABLE_LEVELS == 3
 41/* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
 42 * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
 43 * guarantee that global objects will be laid out in memory in the same order
 44 * as the order of declaration, so put these in different sections and use
 45 * the linker script to order them. */
 46pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE)));
 47#endif
 48
 49pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE)));
 50pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE)));
 51
 52static struct resource data_resource = {
 53	.name	= "Kernel data",
 54	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
 55};
 56
 57static struct resource code_resource = {
 58	.name	= "Kernel code",
 59	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
 60};
 61
 62static struct resource pdcdata_resource = {
 63	.name	= "PDC data (Page Zero)",
 64	.start	= 0,
 65	.end	= 0x9ff,
 66	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
 67};
 68
 69static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __ro_after_init;
 70
 71/* The following array is initialized from the firmware specific
 72 * information retrieved in kernel/inventory.c.
 73 */
 74
 75physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __initdata;
 76int npmem_ranges __initdata;
 77
 78#ifdef CONFIG_64BIT
 79#define MAX_MEM         (1UL << MAX_PHYSMEM_BITS)
 80#else /* !CONFIG_64BIT */
 81#define MAX_MEM         (3584U*1024U*1024U)
 82#endif /* !CONFIG_64BIT */
 83
 84static unsigned long mem_limit __read_mostly = MAX_MEM;
 85
 86static void __init mem_limit_func(void)
 87{
 88	char *cp, *end;
 89	unsigned long limit;
 90
 91	/* We need this before __setup() functions are called */
 92
 93	limit = MAX_MEM;
 94	for (cp = boot_command_line; *cp; ) {
 95		if (memcmp(cp, "mem=", 4) == 0) {
 96			cp += 4;
 97			limit = memparse(cp, &end);
 98			if (end != cp)
 99				break;
100			cp = end;
101		} else {
102			while (*cp != ' ' && *cp)
103				++cp;
104			while (*cp == ' ')
105				++cp;
106		}
107	}
108
109	if (limit < mem_limit)
110		mem_limit = limit;
111}
112
113#define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
114
115static void __init setup_bootmem(void)
116{
 
117	unsigned long mem_max;
118#ifndef CONFIG_SPARSEMEM
 
 
 
119	physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
120	int npmem_holes;
121#endif
122	int i, sysram_resource_count;
123
124	disable_sr_hashing(); /* Turn off space register hashing */
125
126	/*
127	 * Sort the ranges. Since the number of ranges is typically
128	 * small, and performance is not an issue here, just do
129	 * a simple insertion sort.
130	 */
131
132	for (i = 1; i < npmem_ranges; i++) {
133		int j;
134
135		for (j = i; j > 0; j--) {
136			physmem_range_t tmp;
137
138			if (pmem_ranges[j-1].start_pfn <
139			    pmem_ranges[j].start_pfn) {
140
141				break;
142			}
143			tmp = pmem_ranges[j-1];
144			pmem_ranges[j-1] = pmem_ranges[j];
145			pmem_ranges[j] = tmp;
 
 
 
146		}
147	}
148
149#ifndef CONFIG_SPARSEMEM
150	/*
151	 * Throw out ranges that are too far apart (controlled by
152	 * MAX_GAP).
153	 */
154
155	for (i = 1; i < npmem_ranges; i++) {
156		if (pmem_ranges[i].start_pfn -
157			(pmem_ranges[i-1].start_pfn +
158			 pmem_ranges[i-1].pages) > MAX_GAP) {
159			npmem_ranges = i;
160			printk("Large gap in memory detected (%ld pages). "
161			       "Consider turning on CONFIG_SPARSEMEM\n",
162			       pmem_ranges[i].start_pfn -
163			       (pmem_ranges[i-1].start_pfn +
164			        pmem_ranges[i-1].pages));
165			break;
166		}
167	}
168#endif
169
170	/* Print the memory ranges */
171	pr_info("Memory Ranges:\n");
172
173	for (i = 0; i < npmem_ranges; i++) {
174		struct resource *res = &sysram_resources[i];
175		unsigned long start;
176		unsigned long size;
177
178		size = (pmem_ranges[i].pages << PAGE_SHIFT);
179		start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
180		pr_info("%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
181			i, start, start + (size - 1), size >> 20);
182
183		/* request memory resource */
184		res->name = "System RAM";
185		res->start = start;
186		res->end = start + size - 1;
187		res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
188		request_resource(&iomem_resource, res);
 
 
 
189	}
190
191	sysram_resource_count = npmem_ranges;
 
 
 
 
 
 
 
 
192
193	/*
194	 * For 32 bit kernels we limit the amount of memory we can
195	 * support, in order to preserve enough kernel address space
196	 * for other purposes. For 64 bit kernels we don't normally
197	 * limit the memory, but this mechanism can be used to
198	 * artificially limit the amount of memory (and it is written
199	 * to work with multiple memory ranges).
200	 */
201
202	mem_limit_func();       /* check for "mem=" argument */
203
204	mem_max = 0;
 
205	for (i = 0; i < npmem_ranges; i++) {
206		unsigned long rsize;
207
208		rsize = pmem_ranges[i].pages << PAGE_SHIFT;
209		if ((mem_max + rsize) > mem_limit) {
210			printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
211			if (mem_max == mem_limit)
212				npmem_ranges = i;
213			else {
214				pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
215						       - (mem_max >> PAGE_SHIFT);
216				npmem_ranges = i + 1;
217				mem_max = mem_limit;
218			}
 
219			break;
220		}
 
221		mem_max += rsize;
222	}
223
224	printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
225
226#ifndef CONFIG_SPARSEMEM
227	/* Merge the ranges, keeping track of the holes */
 
228	{
229		unsigned long end_pfn;
230		unsigned long hole_pages;
231
232		npmem_holes = 0;
233		end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
234		for (i = 1; i < npmem_ranges; i++) {
235
236			hole_pages = pmem_ranges[i].start_pfn - end_pfn;
237			if (hole_pages) {
238				pmem_holes[npmem_holes].start_pfn = end_pfn;
239				pmem_holes[npmem_holes++].pages = hole_pages;
240				end_pfn += hole_pages;
241			}
242			end_pfn += pmem_ranges[i].pages;
243		}
244
245		pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
246		npmem_ranges = 1;
247	}
248#endif
249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
250	/*
251	 * Initialize and free the full range of memory in each range.
 
 
 
252	 */
253
 
254	max_pfn = 0;
255	for (i = 0; i < npmem_ranges; i++) {
256		unsigned long start_pfn;
257		unsigned long npages;
258		unsigned long start;
259		unsigned long size;
260
261		start_pfn = pmem_ranges[i].start_pfn;
262		npages = pmem_ranges[i].pages;
263
264		start = start_pfn << PAGE_SHIFT;
265		size = npages << PAGE_SHIFT;
266
267		/* add system RAM memblock */
268		memblock_add(start, size);
269
 
 
270		if ((start_pfn + npages) > max_pfn)
271			max_pfn = start_pfn + npages;
272	}
273
274	/*
275	 * We can't use memblock top-down allocations because we only
276	 * created the initial mapping up to KERNEL_INITIAL_SIZE in
277	 * the assembly bootup code.
278	 */
279	memblock_set_bottom_up(true);
280
281	/* IOMMU is always used to access "high mem" on those boxes
282	 * that can support enough mem that a PCI device couldn't
283	 * directly DMA to any physical addresses.
284	 * ISA DMA support will need to revisit this.
285	 */
286	max_low_pfn = max_pfn;
287
 
 
 
288	/* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
289
290#define PDC_CONSOLE_IO_IODC_SIZE 32768
291
292	memblock_reserve(0UL, (unsigned long)(PAGE0->mem_free +
293				PDC_CONSOLE_IO_IODC_SIZE));
294	memblock_reserve(__pa(KERNEL_BINARY_TEXT_START),
295			(unsigned long)(_end - KERNEL_BINARY_TEXT_START));
 
 
 
 
296
297#ifndef CONFIG_SPARSEMEM
298
299	/* reserve the holes */
300
301	for (i = 0; i < npmem_holes; i++) {
302		memblock_reserve((pmem_holes[i].start_pfn << PAGE_SHIFT),
303				(pmem_holes[i].pages << PAGE_SHIFT));
 
 
304	}
305#endif
306
307#ifdef CONFIG_BLK_DEV_INITRD
308	if (initrd_start) {
309		printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
310		if (__pa(initrd_start) < mem_max) {
311			unsigned long initrd_reserve;
312
313			if (__pa(initrd_end) > mem_max) {
314				initrd_reserve = mem_max - __pa(initrd_start);
315			} else {
316				initrd_reserve = initrd_end - initrd_start;
317			}
318			initrd_below_start_ok = 1;
319			printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
320
321			memblock_reserve(__pa(initrd_start), initrd_reserve);
 
322		}
323	}
324#endif
325
326	data_resource.start =  virt_to_phys(&data_start);
327	data_resource.end = virt_to_phys(_end) - 1;
328	code_resource.start = virt_to_phys(_text);
329	code_resource.end = virt_to_phys(&data_start)-1;
330
331	/* We don't know which region the kernel will be in, so try
332	 * all of them.
333	 */
334	for (i = 0; i < sysram_resource_count; i++) {
335		struct resource *res = &sysram_resources[i];
336		request_resource(res, &code_resource);
337		request_resource(res, &data_resource);
338	}
339	request_resource(&sysram_resources[0], &pdcdata_resource);
340
341	/* Initialize Page Deallocation Table (PDT) and check for bad memory. */
342	pdc_pdt_init();
343
344	memblock_allow_resize();
345	memblock_dump_all();
346}
347
348static bool kernel_set_to_readonly;
349
350static void __init map_pages(unsigned long start_vaddr,
351			     unsigned long start_paddr, unsigned long size,
352			     pgprot_t pgprot, int force)
353{
354	pgd_t *pg_dir;
355	pmd_t *pmd;
356	pte_t *pg_table;
357	unsigned long end_paddr;
358	unsigned long start_pmd;
359	unsigned long start_pte;
360	unsigned long tmp1;
361	unsigned long tmp2;
362	unsigned long address;
363	unsigned long vaddr;
364	unsigned long ro_start;
365	unsigned long ro_end;
366	unsigned long kernel_start, kernel_end;
 
 
 
367
368	ro_start = __pa((unsigned long)_text);
369	ro_end   = __pa((unsigned long)&data_start);
370	kernel_start = __pa((unsigned long)&__init_begin);
371	kernel_end  = __pa((unsigned long)&_end);
372
373	end_paddr = start_paddr + size;
374
375	pg_dir = pgd_offset_k(start_vaddr);
376
377#if PTRS_PER_PMD == 1
378	start_pmd = 0;
379#else
380	start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
381#endif
382	start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
383
384	address = start_paddr;
385	vaddr = start_vaddr;
386	while (address < end_paddr) {
387#if PTRS_PER_PMD == 1
388		pmd = (pmd_t *)__pa(pg_dir);
389#else
390		pmd = (pmd_t *)pgd_address(*pg_dir);
391
392		/*
393		 * pmd is physical at this point
394		 */
395
396		if (!pmd) {
397			pmd = memblock_alloc(PAGE_SIZE << PMD_ORDER,
398					     PAGE_SIZE << PMD_ORDER);
399			if (!pmd)
400				panic("pmd allocation failed.\n");
401			pmd = (pmd_t *) __pa(pmd);
402		}
403
404		pgd_populate(NULL, pg_dir, __va(pmd));
405#endif
406		pg_dir++;
407
408		/* now change pmd to kernel virtual addresses */
409
410		pmd = (pmd_t *)__va(pmd) + start_pmd;
411		for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
412
413			/*
414			 * pg_table is physical at this point
415			 */
416
417			pg_table = (pte_t *)pmd_address(*pmd);
418			if (!pg_table) {
419				pg_table = memblock_alloc(PAGE_SIZE,
420							  PAGE_SIZE);
421				if (!pg_table)
422					panic("page table allocation failed\n");
423				pg_table = (pte_t *) __pa(pg_table);
424			}
425
426			pmd_populate_kernel(NULL, pmd, __va(pg_table));
427
428			/* now change pg_table to kernel virtual addresses */
429
430			pg_table = (pte_t *) __va(pg_table) + start_pte;
431			for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
432				pte_t pte;
433				pgprot_t prot;
434				bool huge = false;
435
436				if (force) {
437					prot = pgprot;
438				} else if (address < kernel_start || address >= kernel_end) {
439					/* outside kernel memory */
440					prot = PAGE_KERNEL;
441				} else if (!kernel_set_to_readonly) {
442					/* still initializing, allow writing to RO memory */
443					prot = PAGE_KERNEL_RWX;
444					huge = true;
445				} else if (address >= ro_start) {
446					/* Code (ro) and Data areas */
447					prot = (address < ro_end) ?
448						PAGE_KERNEL_EXEC : PAGE_KERNEL;
449					huge = true;
450				} else {
451					prot = PAGE_KERNEL;
452				}
453
454				pte = __mk_pte(address, prot);
455				if (huge)
456					pte = pte_mkhuge(pte);
457
458				if (address >= end_paddr)
459					break;
 
 
 
 
460
461				set_pte(pg_table, pte);
462
463				address += PAGE_SIZE;
464				vaddr += PAGE_SIZE;
465			}
466			start_pte = 0;
467
468			if (address >= end_paddr)
469			    break;
470		}
471		start_pmd = 0;
472	}
473}
474
475void __init set_kernel_text_rw(int enable_read_write)
476{
477	unsigned long start = (unsigned long) __init_begin;
478	unsigned long end   = (unsigned long) &data_start;
479
480	map_pages(start, __pa(start), end-start,
481		PAGE_KERNEL_RWX, enable_read_write ? 1:0);
482
483	/* force the kernel to see the new page table entries */
484	flush_cache_all();
485	flush_tlb_all();
486}
487
488void __ref free_initmem(void)
489{
 
490	unsigned long init_begin = (unsigned long)__init_begin;
491	unsigned long init_end = (unsigned long)__init_end;
492	unsigned long kernel_end  = (unsigned long)&_end;
493
494	/* Remap kernel text and data, but do not touch init section yet. */
495	kernel_set_to_readonly = true;
496	map_pages(init_end, __pa(init_end), kernel_end - init_end,
497		  PAGE_KERNEL, 0);
498
499	/* The init text pages are marked R-X.  We have to
500	 * flush the icache and mark them RW-
501	 *
502	 * This is tricky, because map_pages is in the init section.
503	 * Do a dummy remap of the data section first (the data
504	 * section is already PAGE_KERNEL) to pull in the TLB entries
505	 * for map_kernel */
506	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
507		  PAGE_KERNEL_RWX, 1);
508	/* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
509	 * map_pages */
510	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
511		  PAGE_KERNEL, 1);
512
513	/* force the kernel to see the new TLB entries */
514	__flush_tlb_range(0, init_begin, kernel_end);
515
 
 
 
516	/* finally dump all the instructions which were cached, since the
517	 * pages are no-longer executable */
518	flush_icache_range(init_begin, init_end);
519	
520	free_initmem_default(POISON_FREE_INITMEM);
 
 
 
 
 
 
521
522	/* set up a new led state on systems shipped LED State panel */
523	pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
 
 
 
524}
525
526
527#ifdef CONFIG_STRICT_KERNEL_RWX
528void mark_rodata_ro(void)
529{
530	/* rodata memory was already mapped with KERNEL_RO access rights by
531           pagetable_init() and map_pages(). No need to do additional stuff here */
532	unsigned long roai_size = __end_ro_after_init - __start_ro_after_init;
533
534	pr_info("Write protected read-only-after-init data: %luk\n", roai_size >> 10);
535}
536#endif
537
538
539/*
540 * Just an arbitrary offset to serve as a "hole" between mapping areas
541 * (between top of physical memory and a potential pcxl dma mapping
542 * area, and below the vmalloc mapping area).
543 *
544 * The current 32K value just means that there will be a 32K "hole"
545 * between mapping areas. That means that  any out-of-bounds memory
546 * accesses will hopefully be caught. The vmalloc() routines leaves
547 * a hole of 4kB between each vmalloced area for the same reason.
548 */
549
550 /* Leave room for gateway page expansion */
551#if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
552#error KERNEL_MAP_START is in gateway reserved region
553#endif
554#define MAP_START (KERNEL_MAP_START)
555
556#define VM_MAP_OFFSET  (32*1024)
557#define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
558				     & ~(VM_MAP_OFFSET-1)))
559
560void *parisc_vmalloc_start __ro_after_init;
561EXPORT_SYMBOL(parisc_vmalloc_start);
562
563#ifdef CONFIG_PA11
564unsigned long pcxl_dma_start __ro_after_init;
565#endif
566
567void __init mem_init(void)
568{
569	/* Do sanity checks on IPC (compat) structures */
570	BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48);
571#ifndef CONFIG_64BIT
572	BUILD_BUG_ON(sizeof(struct semid64_ds) != 80);
573	BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104);
574	BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104);
575#endif
576#ifdef CONFIG_COMPAT
577	BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm));
578	BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80);
579	BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104);
580	BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104);
581#endif
582
583	/* Do sanity checks on page table constants */
584	BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
585	BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
586	BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
587	BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
588			> BITS_PER_LONG);
589
590	high_memory = __va((max_pfn << PAGE_SHIFT));
591	set_max_mapnr(page_to_pfn(virt_to_page(high_memory - 1)) + 1);
592	memblock_free_all();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
593
594#ifdef CONFIG_PA11
595	if (boot_cpu_data.cpu_type == pcxl2 || boot_cpu_data.cpu_type == pcxl) {
596		pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
597		parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
598						+ PCXL_DMA_MAP_SIZE);
599	} else
600#endif
601		parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
 
 
 
 
602
603	mem_init_print_info(NULL);
 
 
 
 
 
 
 
604
605#if 0
606	/*
607	 * Do not expose the virtual kernel memory layout to userspace.
608	 * But keep code for debugging purposes.
609	 */
610	printk("virtual kernel memory layout:\n"
611	       "     vmalloc : 0x%px - 0x%px   (%4ld MB)\n"
612	       "     fixmap  : 0x%px - 0x%px   (%4ld kB)\n"
613	       "     memory  : 0x%px - 0x%px   (%4ld MB)\n"
614	       "       .init : 0x%px - 0x%px   (%4ld kB)\n"
615	       "       .data : 0x%px - 0x%px   (%4ld kB)\n"
616	       "       .text : 0x%px - 0x%px   (%4ld kB)\n",
617
618	       (void*)VMALLOC_START, (void*)VMALLOC_END,
619	       (VMALLOC_END - VMALLOC_START) >> 20,
620
621	       (void *)FIXMAP_START, (void *)(FIXMAP_START + FIXMAP_SIZE),
622	       (unsigned long)(FIXMAP_SIZE / 1024),
623
624	       __va(0), high_memory,
625	       ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
626
627	       __init_begin, __init_end,
628	       ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
629
630	       _etext, _edata,
631	       ((unsigned long)_edata - (unsigned long)_etext) >> 10,
632
633	       _text, _etext,
634	       ((unsigned long)_etext - (unsigned long)_text) >> 10);
635#endif
636}
637
638unsigned long *empty_zero_page __ro_after_init;
639EXPORT_SYMBOL(empty_zero_page);
640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
641/*
642 * pagetable_init() sets up the page tables
643 *
644 * Note that gateway_init() places the Linux gateway page at page 0.
645 * Since gateway pages cannot be dereferenced this has the desirable
646 * side effect of trapping those pesky NULL-reference errors in the
647 * kernel.
648 */
649static void __init pagetable_init(void)
650{
651	int range;
652
653	/* Map each physical memory range to its kernel vaddr */
654
655	for (range = 0; range < npmem_ranges; range++) {
656		unsigned long start_paddr;
657		unsigned long end_paddr;
658		unsigned long size;
659
660		start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
 
661		size = pmem_ranges[range].pages << PAGE_SHIFT;
662		end_paddr = start_paddr + size;
663
664		map_pages((unsigned long)__va(start_paddr), start_paddr,
665			  size, PAGE_KERNEL, 0);
666	}
667
668#ifdef CONFIG_BLK_DEV_INITRD
669	if (initrd_end && initrd_end > mem_limit) {
670		printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
671		map_pages(initrd_start, __pa(initrd_start),
672			  initrd_end - initrd_start, PAGE_KERNEL, 0);
673	}
674#endif
675
676	empty_zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
677	if (!empty_zero_page)
678		panic("zero page allocation failed.\n");
679
680}
681
682static void __init gateway_init(void)
683{
684	unsigned long linux_gateway_page_addr;
685	/* FIXME: This is 'const' in order to trick the compiler
686	   into not treating it as DP-relative data. */
687	extern void * const linux_gateway_page;
688
689	linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
690
691	/*
692	 * Setup Linux Gateway page.
693	 *
694	 * The Linux gateway page will reside in kernel space (on virtual
695	 * page 0), so it doesn't need to be aliased into user space.
696	 */
697
698	map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
699		  PAGE_SIZE, PAGE_GATEWAY, 1);
700}
701
702static void __init parisc_bootmem_free(void)
 
 
703{
704	unsigned long zones_size[MAX_NR_ZONES] = { 0, };
705	unsigned long holes_size[MAX_NR_ZONES] = { 0, };
706	unsigned long mem_start_pfn = ~0UL, mem_end_pfn = 0, mem_size_pfn = 0;
707	int i;
 
 
 
 
 
 
708
709	for (i = 0; i < npmem_ranges; i++) {
710		unsigned long start = pmem_ranges[i].start_pfn;
711		unsigned long size = pmem_ranges[i].pages;
712		unsigned long end = start + size;
713
714		if (mem_start_pfn > start)
715			mem_start_pfn = start;
716		if (mem_end_pfn < end)
717			mem_end_pfn = end;
718		mem_size_pfn += size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
719	}
720
721	zones_size[0] = mem_end_pfn - mem_start_pfn;
722	holes_size[0] = zones_size[0] - mem_size_pfn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
723
724	free_area_init_node(0, zones_size, mem_start_pfn, holes_size);
 
725}
 
 
726
727void __init paging_init(void)
728{
 
 
729	setup_bootmem();
730	pagetable_init();
731	gateway_init();
732	flush_cache_all_local(); /* start with known state */
733	flush_tlb_all_local(NULL);
734
735	/*
736	 * Mark all memblocks as present for sparsemem using
737	 * memory_present() and then initialize sparsemem.
738	 */
739	memblocks_present();
740	sparse_init();
741	parisc_bootmem_free();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
742}
743
744#ifdef CONFIG_PA20
745
746/*
747 * Currently, all PA20 chips have 18 bit protection IDs, which is the
748 * limiting factor (space ids are 32 bits).
749 */
750
751#define NR_SPACE_IDS 262144
752
753#else
754
755/*
756 * Currently we have a one-to-one relationship between space IDs and
757 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
758 * support 15 bit protection IDs, so that is the limiting factor.
759 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
760 * probably not worth the effort for a special case here.
761 */
762
763#define NR_SPACE_IDS 32768
764
765#endif  /* !CONFIG_PA20 */
766
767#define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
768#define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
769
770static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
771static unsigned long dirty_space_id[SID_ARRAY_SIZE];
772static unsigned long space_id_index;
773static unsigned long free_space_ids = NR_SPACE_IDS - 1;
774static unsigned long dirty_space_ids = 0;
775
776static DEFINE_SPINLOCK(sid_lock);
777
778unsigned long alloc_sid(void)
779{
780	unsigned long index;
781
782	spin_lock(&sid_lock);
783
784	if (free_space_ids == 0) {
785		if (dirty_space_ids != 0) {
786			spin_unlock(&sid_lock);
787			flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
788			spin_lock(&sid_lock);
789		}
790		BUG_ON(free_space_ids == 0);
791	}
792
793	free_space_ids--;
794
795	index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
796	space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
797	space_id_index = index;
798
799	spin_unlock(&sid_lock);
800
801	return index << SPACEID_SHIFT;
802}
803
804void free_sid(unsigned long spaceid)
805{
806	unsigned long index = spaceid >> SPACEID_SHIFT;
807	unsigned long *dirty_space_offset;
808
809	dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
810	index &= (BITS_PER_LONG - 1);
811
812	spin_lock(&sid_lock);
813
814	BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
815
816	*dirty_space_offset |= (1L << index);
817	dirty_space_ids++;
818
819	spin_unlock(&sid_lock);
820}
821
822
823#ifdef CONFIG_SMP
824static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
825{
826	int i;
827
828	/* NOTE: sid_lock must be held upon entry */
829
830	*ndirtyptr = dirty_space_ids;
831	if (dirty_space_ids != 0) {
832	    for (i = 0; i < SID_ARRAY_SIZE; i++) {
833		dirty_array[i] = dirty_space_id[i];
834		dirty_space_id[i] = 0;
835	    }
836	    dirty_space_ids = 0;
837	}
838
839	return;
840}
841
842static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
843{
844	int i;
845
846	/* NOTE: sid_lock must be held upon entry */
847
848	if (ndirty != 0) {
849		for (i = 0; i < SID_ARRAY_SIZE; i++) {
850			space_id[i] ^= dirty_array[i];
851		}
852
853		free_space_ids += ndirty;
854		space_id_index = 0;
855	}
856}
857
858#else /* CONFIG_SMP */
859
860static void recycle_sids(void)
861{
862	int i;
863
864	/* NOTE: sid_lock must be held upon entry */
865
866	if (dirty_space_ids != 0) {
867		for (i = 0; i < SID_ARRAY_SIZE; i++) {
868			space_id[i] ^= dirty_space_id[i];
869			dirty_space_id[i] = 0;
870		}
871
872		free_space_ids += dirty_space_ids;
873		dirty_space_ids = 0;
874		space_id_index = 0;
875	}
876}
877#endif
878
879/*
880 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
881 * purged, we can safely reuse the space ids that were released but
882 * not flushed from the tlb.
883 */
884
885#ifdef CONFIG_SMP
886
887static unsigned long recycle_ndirty;
888static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
889static unsigned int recycle_inuse;
890
891void flush_tlb_all(void)
892{
893	int do_recycle;
894
895	__inc_irq_stat(irq_tlb_count);
896	do_recycle = 0;
897	spin_lock(&sid_lock);
898	if (dirty_space_ids > RECYCLE_THRESHOLD) {
899	    BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
900	    get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
901	    recycle_inuse++;
902	    do_recycle++;
903	}
904	spin_unlock(&sid_lock);
905	on_each_cpu(flush_tlb_all_local, NULL, 1);
906	if (do_recycle) {
907	    spin_lock(&sid_lock);
908	    recycle_sids(recycle_ndirty,recycle_dirty_array);
909	    recycle_inuse = 0;
910	    spin_unlock(&sid_lock);
911	}
912}
913#else
914void flush_tlb_all(void)
915{
916	__inc_irq_stat(irq_tlb_count);
917	spin_lock(&sid_lock);
918	flush_tlb_all_local(NULL);
919	recycle_sids();
920	spin_unlock(&sid_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
921}
922#endif
v3.1
 
   1/*
   2 *  linux/arch/parisc/mm/init.c
   3 *
   4 *  Copyright (C) 1995	Linus Torvalds
   5 *  Copyright 1999 SuSE GmbH
   6 *    changed by Philipp Rumpf
   7 *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
   8 *  Copyright 2004 Randolph Chung (tausq@debian.org)
   9 *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
  10 *
  11 */
  12
  13
  14#include <linux/module.h>
  15#include <linux/mm.h>
  16#include <linux/bootmem.h>
  17#include <linux/gfp.h>
  18#include <linux/delay.h>
  19#include <linux/init.h>
  20#include <linux/pci.h>		/* for hppa_dma_ops and pcxl_dma_ops */
  21#include <linux/initrd.h>
  22#include <linux/swap.h>
  23#include <linux/unistd.h>
  24#include <linux/nodemask.h>	/* for node_online_map */
  25#include <linux/pagemap.h>	/* for release_pages and page_cache_release */
 
  26
  27#include <asm/pgalloc.h>
  28#include <asm/pgtable.h>
  29#include <asm/tlb.h>
  30#include <asm/pdc_chassis.h>
  31#include <asm/mmzone.h>
  32#include <asm/sections.h>
 
 
  33
  34extern int  data_start;
 
  35
  36#ifdef CONFIG_DISCONTIGMEM
  37struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
  38unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
 
 
 
 
  39#endif
  40
 
 
 
  41static struct resource data_resource = {
  42	.name	= "Kernel data",
  43	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
  44};
  45
  46static struct resource code_resource = {
  47	.name	= "Kernel code",
  48	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
  49};
  50
  51static struct resource pdcdata_resource = {
  52	.name	= "PDC data (Page Zero)",
  53	.start	= 0,
  54	.end	= 0x9ff,
  55	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
  56};
  57
  58static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
  59
  60/* The following array is initialized from the firmware specific
  61 * information retrieved in kernel/inventory.c.
  62 */
  63
  64physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
  65int npmem_ranges __read_mostly;
  66
  67#ifdef CONFIG_64BIT
  68#define MAX_MEM         (~0UL)
  69#else /* !CONFIG_64BIT */
  70#define MAX_MEM         (3584U*1024U*1024U)
  71#endif /* !CONFIG_64BIT */
  72
  73static unsigned long mem_limit __read_mostly = MAX_MEM;
  74
  75static void __init mem_limit_func(void)
  76{
  77	char *cp, *end;
  78	unsigned long limit;
  79
  80	/* We need this before __setup() functions are called */
  81
  82	limit = MAX_MEM;
  83	for (cp = boot_command_line; *cp; ) {
  84		if (memcmp(cp, "mem=", 4) == 0) {
  85			cp += 4;
  86			limit = memparse(cp, &end);
  87			if (end != cp)
  88				break;
  89			cp = end;
  90		} else {
  91			while (*cp != ' ' && *cp)
  92				++cp;
  93			while (*cp == ' ')
  94				++cp;
  95		}
  96	}
  97
  98	if (limit < mem_limit)
  99		mem_limit = limit;
 100}
 101
 102#define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
 103
 104static void __init setup_bootmem(void)
 105{
 106	unsigned long bootmap_size;
 107	unsigned long mem_max;
 108	unsigned long bootmap_pages;
 109	unsigned long bootmap_start_pfn;
 110	unsigned long bootmap_pfn;
 111#ifndef CONFIG_DISCONTIGMEM
 112	physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
 113	int npmem_holes;
 114#endif
 115	int i, sysram_resource_count;
 116
 117	disable_sr_hashing(); /* Turn off space register hashing */
 118
 119	/*
 120	 * Sort the ranges. Since the number of ranges is typically
 121	 * small, and performance is not an issue here, just do
 122	 * a simple insertion sort.
 123	 */
 124
 125	for (i = 1; i < npmem_ranges; i++) {
 126		int j;
 127
 128		for (j = i; j > 0; j--) {
 129			unsigned long tmp;
 130
 131			if (pmem_ranges[j-1].start_pfn <
 132			    pmem_ranges[j].start_pfn) {
 133
 134				break;
 135			}
 136			tmp = pmem_ranges[j-1].start_pfn;
 137			pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
 138			pmem_ranges[j].start_pfn = tmp;
 139			tmp = pmem_ranges[j-1].pages;
 140			pmem_ranges[j-1].pages = pmem_ranges[j].pages;
 141			pmem_ranges[j].pages = tmp;
 142		}
 143	}
 144
 145#ifndef CONFIG_DISCONTIGMEM
 146	/*
 147	 * Throw out ranges that are too far apart (controlled by
 148	 * MAX_GAP).
 149	 */
 150
 151	for (i = 1; i < npmem_ranges; i++) {
 152		if (pmem_ranges[i].start_pfn -
 153			(pmem_ranges[i-1].start_pfn +
 154			 pmem_ranges[i-1].pages) > MAX_GAP) {
 155			npmem_ranges = i;
 156			printk("Large gap in memory detected (%ld pages). "
 157			       "Consider turning on CONFIG_DISCONTIGMEM\n",
 158			       pmem_ranges[i].start_pfn -
 159			       (pmem_ranges[i-1].start_pfn +
 160			        pmem_ranges[i-1].pages));
 161			break;
 162		}
 163	}
 164#endif
 165
 166	if (npmem_ranges > 1) {
 
 167
 168		/* Print the memory ranges */
 
 
 
 169
 170		printk(KERN_INFO "Memory Ranges:\n");
 
 
 
 171
 172		for (i = 0; i < npmem_ranges; i++) {
 173			unsigned long start;
 174			unsigned long size;
 175
 176			size = (pmem_ranges[i].pages << PAGE_SHIFT);
 177			start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
 178			printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
 179				i,start, start + (size - 1), size >> 20);
 180		}
 181	}
 182
 183	sysram_resource_count = npmem_ranges;
 184	for (i = 0; i < sysram_resource_count; i++) {
 185		struct resource *res = &sysram_resources[i];
 186		res->name = "System RAM";
 187		res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
 188		res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
 189		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 190		request_resource(&iomem_resource, res);
 191	}
 192
 193	/*
 194	 * For 32 bit kernels we limit the amount of memory we can
 195	 * support, in order to preserve enough kernel address space
 196	 * for other purposes. For 64 bit kernels we don't normally
 197	 * limit the memory, but this mechanism can be used to
 198	 * artificially limit the amount of memory (and it is written
 199	 * to work with multiple memory ranges).
 200	 */
 201
 202	mem_limit_func();       /* check for "mem=" argument */
 203
 204	mem_max = 0;
 205	num_physpages = 0;
 206	for (i = 0; i < npmem_ranges; i++) {
 207		unsigned long rsize;
 208
 209		rsize = pmem_ranges[i].pages << PAGE_SHIFT;
 210		if ((mem_max + rsize) > mem_limit) {
 211			printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
 212			if (mem_max == mem_limit)
 213				npmem_ranges = i;
 214			else {
 215				pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
 216						       - (mem_max >> PAGE_SHIFT);
 217				npmem_ranges = i + 1;
 218				mem_max = mem_limit;
 219			}
 220	        num_physpages += pmem_ranges[i].pages;
 221			break;
 222		}
 223	    num_physpages += pmem_ranges[i].pages;
 224		mem_max += rsize;
 225	}
 226
 227	printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
 228
 229#ifndef CONFIG_DISCONTIGMEM
 230	/* Merge the ranges, keeping track of the holes */
 231
 232	{
 233		unsigned long end_pfn;
 234		unsigned long hole_pages;
 235
 236		npmem_holes = 0;
 237		end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
 238		for (i = 1; i < npmem_ranges; i++) {
 239
 240			hole_pages = pmem_ranges[i].start_pfn - end_pfn;
 241			if (hole_pages) {
 242				pmem_holes[npmem_holes].start_pfn = end_pfn;
 243				pmem_holes[npmem_holes++].pages = hole_pages;
 244				end_pfn += hole_pages;
 245			}
 246			end_pfn += pmem_ranges[i].pages;
 247		}
 248
 249		pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
 250		npmem_ranges = 1;
 251	}
 252#endif
 253
 254	bootmap_pages = 0;
 255	for (i = 0; i < npmem_ranges; i++)
 256		bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
 257
 258	bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
 259
 260#ifdef CONFIG_DISCONTIGMEM
 261	for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
 262		memset(NODE_DATA(i), 0, sizeof(pg_data_t));
 263		NODE_DATA(i)->bdata = &bootmem_node_data[i];
 264	}
 265	memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
 266
 267	for (i = 0; i < npmem_ranges; i++) {
 268		node_set_state(i, N_NORMAL_MEMORY);
 269		node_set_online(i);
 270	}
 271#endif
 272
 273	/*
 274	 * Initialize and free the full range of memory in each range.
 275	 * Note that the only writing these routines do are to the bootmap,
 276	 * and we've made sure to locate the bootmap properly so that they
 277	 * won't be writing over anything important.
 278	 */
 279
 280	bootmap_pfn = bootmap_start_pfn;
 281	max_pfn = 0;
 282	for (i = 0; i < npmem_ranges; i++) {
 283		unsigned long start_pfn;
 284		unsigned long npages;
 
 
 285
 286		start_pfn = pmem_ranges[i].start_pfn;
 287		npages = pmem_ranges[i].pages;
 288
 289		bootmap_size = init_bootmem_node(NODE_DATA(i),
 290						bootmap_pfn,
 291						start_pfn,
 292						(start_pfn + npages) );
 293		free_bootmem_node(NODE_DATA(i),
 294				  (start_pfn << PAGE_SHIFT),
 295				  (npages << PAGE_SHIFT) );
 296		bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 297		if ((start_pfn + npages) > max_pfn)
 298			max_pfn = start_pfn + npages;
 299	}
 300
 
 
 
 
 
 
 
 301	/* IOMMU is always used to access "high mem" on those boxes
 302	 * that can support enough mem that a PCI device couldn't
 303	 * directly DMA to any physical addresses.
 304	 * ISA DMA support will need to revisit this.
 305	 */
 306	max_low_pfn = max_pfn;
 307
 308	/* bootmap sizing messed up? */
 309	BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages);
 310
 311	/* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
 312
 313#define PDC_CONSOLE_IO_IODC_SIZE 32768
 314
 315	reserve_bootmem_node(NODE_DATA(0), 0UL,
 316			(unsigned long)(PAGE0->mem_free +
 317				PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT);
 318	reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text),
 319			(unsigned long)(_end - _text), BOOTMEM_DEFAULT);
 320	reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
 321			((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT),
 322			BOOTMEM_DEFAULT);
 323
 324#ifndef CONFIG_DISCONTIGMEM
 325
 326	/* reserve the holes */
 327
 328	for (i = 0; i < npmem_holes; i++) {
 329		reserve_bootmem_node(NODE_DATA(0),
 330				(pmem_holes[i].start_pfn << PAGE_SHIFT),
 331				(pmem_holes[i].pages << PAGE_SHIFT),
 332				BOOTMEM_DEFAULT);
 333	}
 334#endif
 335
 336#ifdef CONFIG_BLK_DEV_INITRD
 337	if (initrd_start) {
 338		printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
 339		if (__pa(initrd_start) < mem_max) {
 340			unsigned long initrd_reserve;
 341
 342			if (__pa(initrd_end) > mem_max) {
 343				initrd_reserve = mem_max - __pa(initrd_start);
 344			} else {
 345				initrd_reserve = initrd_end - initrd_start;
 346			}
 347			initrd_below_start_ok = 1;
 348			printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
 349
 350			reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start),
 351					initrd_reserve, BOOTMEM_DEFAULT);
 352		}
 353	}
 354#endif
 355
 356	data_resource.start =  virt_to_phys(&data_start);
 357	data_resource.end = virt_to_phys(_end) - 1;
 358	code_resource.start = virt_to_phys(_text);
 359	code_resource.end = virt_to_phys(&data_start)-1;
 360
 361	/* We don't know which region the kernel will be in, so try
 362	 * all of them.
 363	 */
 364	for (i = 0; i < sysram_resource_count; i++) {
 365		struct resource *res = &sysram_resources[i];
 366		request_resource(res, &code_resource);
 367		request_resource(res, &data_resource);
 368	}
 369	request_resource(&sysram_resources[0], &pdcdata_resource);
 
 
 
 
 
 
 370}
 371
 
 
 372static void __init map_pages(unsigned long start_vaddr,
 373			     unsigned long start_paddr, unsigned long size,
 374			     pgprot_t pgprot, int force)
 375{
 376	pgd_t *pg_dir;
 377	pmd_t *pmd;
 378	pte_t *pg_table;
 379	unsigned long end_paddr;
 380	unsigned long start_pmd;
 381	unsigned long start_pte;
 382	unsigned long tmp1;
 383	unsigned long tmp2;
 384	unsigned long address;
 385	unsigned long vaddr;
 386	unsigned long ro_start;
 387	unsigned long ro_end;
 388	unsigned long fv_addr;
 389	unsigned long gw_addr;
 390	extern const unsigned long fault_vector_20;
 391	extern void * const linux_gateway_page;
 392
 393	ro_start = __pa((unsigned long)_text);
 394	ro_end   = __pa((unsigned long)&data_start);
 395	fv_addr  = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
 396	gw_addr  = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
 397
 398	end_paddr = start_paddr + size;
 399
 400	pg_dir = pgd_offset_k(start_vaddr);
 401
 402#if PTRS_PER_PMD == 1
 403	start_pmd = 0;
 404#else
 405	start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
 406#endif
 407	start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 408
 409	address = start_paddr;
 410	vaddr = start_vaddr;
 411	while (address < end_paddr) {
 412#if PTRS_PER_PMD == 1
 413		pmd = (pmd_t *)__pa(pg_dir);
 414#else
 415		pmd = (pmd_t *)pgd_address(*pg_dir);
 416
 417		/*
 418		 * pmd is physical at this point
 419		 */
 420
 421		if (!pmd) {
 422			pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE << PMD_ORDER);
 
 
 
 423			pmd = (pmd_t *) __pa(pmd);
 424		}
 425
 426		pgd_populate(NULL, pg_dir, __va(pmd));
 427#endif
 428		pg_dir++;
 429
 430		/* now change pmd to kernel virtual addresses */
 431
 432		pmd = (pmd_t *)__va(pmd) + start_pmd;
 433		for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
 434
 435			/*
 436			 * pg_table is physical at this point
 437			 */
 438
 439			pg_table = (pte_t *)pmd_address(*pmd);
 440			if (!pg_table) {
 441				pg_table = (pte_t *)
 442					alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE);
 
 
 443				pg_table = (pte_t *) __pa(pg_table);
 444			}
 445
 446			pmd_populate_kernel(NULL, pmd, __va(pg_table));
 447
 448			/* now change pg_table to kernel virtual addresses */
 449
 450			pg_table = (pte_t *) __va(pg_table) + start_pte;
 451			for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
 452				pte_t pte;
 
 
 453
 454				/*
 455				 * Map the fault vector writable so we can
 456				 * write the HPMC checksum.
 457				 */
 458				if (force)
 459					pte =  __mk_pte(address, pgprot);
 460				else if (core_kernel_text(vaddr) &&
 461					 address != fv_addr)
 462					pte = __mk_pte(address, PAGE_KERNEL_EXEC);
 463				else
 464#if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
 465				if (address >= ro_start && address < ro_end
 466							&& address != fv_addr
 467							&& address != gw_addr)
 468					pte = __mk_pte(address, PAGE_KERNEL_RO);
 469				else
 470#endif
 471					pte = __mk_pte(address, pgprot);
 
 
 
 472
 473				if (address >= end_paddr) {
 474					if (force)
 475						break;
 476					else
 477						pte_val(pte) = 0;
 478				}
 479
 480				set_pte(pg_table, pte);
 481
 482				address += PAGE_SIZE;
 483				vaddr += PAGE_SIZE;
 484			}
 485			start_pte = 0;
 486
 487			if (address >= end_paddr)
 488			    break;
 489		}
 490		start_pmd = 0;
 491	}
 492}
 493
 494void free_initmem(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 495{
 496	unsigned long addr;
 497	unsigned long init_begin = (unsigned long)__init_begin;
 498	unsigned long init_end = (unsigned long)__init_end;
 
 
 
 
 
 
 499
 500	/* The init text pages are marked R-X.  We have to
 501	 * flush the icache and mark them RW-
 502	 *
 503	 * This is tricky, because map_pages is in the init section.
 504	 * Do a dummy remap of the data section first (the data
 505	 * section is already PAGE_KERNEL) to pull in the TLB entries
 506	 * for map_kernel */
 507	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
 508		  PAGE_KERNEL_RWX, 1);
 509	/* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
 510	 * map_pages */
 511	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
 512		  PAGE_KERNEL, 1);
 513
 514	/* force the kernel to see the new TLB entries */
 515	__flush_tlb_range(0, init_begin, init_end);
 516	/* Attempt to catch anyone trying to execute code here
 517	 * by filling the page with BRK insns.
 518	 */
 519	memset((void *)init_begin, 0x00, init_end - init_begin);
 520	/* finally dump all the instructions which were cached, since the
 521	 * pages are no-longer executable */
 522	flush_icache_range(init_begin, init_end);
 523	
 524	for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) {
 525		ClearPageReserved(virt_to_page(addr));
 526		init_page_count(virt_to_page(addr));
 527		free_page(addr);
 528		num_physpages++;
 529		totalram_pages++;
 530	}
 531
 532	/* set up a new led state on systems shipped LED State panel */
 533	pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
 534	
 535	printk(KERN_INFO "Freeing unused kernel memory: %luk freed\n",
 536		(init_end - init_begin) >> 10);
 537}
 538
 539
 540#ifdef CONFIG_DEBUG_RODATA
 541void mark_rodata_ro(void)
 542{
 543	/* rodata memory was already mapped with KERNEL_RO access rights by
 544           pagetable_init() and map_pages(). No need to do additional stuff here */
 545	printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
 546		(unsigned long)(__end_rodata - __start_rodata) >> 10);
 
 547}
 548#endif
 549
 550
 551/*
 552 * Just an arbitrary offset to serve as a "hole" between mapping areas
 553 * (between top of physical memory and a potential pcxl dma mapping
 554 * area, and below the vmalloc mapping area).
 555 *
 556 * The current 32K value just means that there will be a 32K "hole"
 557 * between mapping areas. That means that  any out-of-bounds memory
 558 * accesses will hopefully be caught. The vmalloc() routines leaves
 559 * a hole of 4kB between each vmalloced area for the same reason.
 560 */
 561
 562 /* Leave room for gateway page expansion */
 563#if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
 564#error KERNEL_MAP_START is in gateway reserved region
 565#endif
 566#define MAP_START (KERNEL_MAP_START)
 567
 568#define VM_MAP_OFFSET  (32*1024)
 569#define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
 570				     & ~(VM_MAP_OFFSET-1)))
 571
 572void *parisc_vmalloc_start __read_mostly;
 573EXPORT_SYMBOL(parisc_vmalloc_start);
 574
 575#ifdef CONFIG_PA11
 576unsigned long pcxl_dma_start __read_mostly;
 577#endif
 578
 579void __init mem_init(void)
 580{
 581	int codesize, reservedpages, datasize, initsize;
 
 
 
 
 
 
 
 
 
 
 
 
 582
 583	/* Do sanity checks on page table constants */
 584	BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
 585	BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
 586	BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
 587	BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
 588			> BITS_PER_LONG);
 589
 590	high_memory = __va((max_pfn << PAGE_SHIFT));
 591
 592#ifndef CONFIG_DISCONTIGMEM
 593	max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1;
 594	totalram_pages += free_all_bootmem();
 595#else
 596	{
 597		int i;
 598
 599		for (i = 0; i < npmem_ranges; i++)
 600			totalram_pages += free_all_bootmem_node(NODE_DATA(i));
 601	}
 602#endif
 603
 604	codesize = (unsigned long)_etext - (unsigned long)_text;
 605	datasize = (unsigned long)_edata - (unsigned long)_etext;
 606	initsize = (unsigned long)__init_end - (unsigned long)__init_begin;
 607
 608	reservedpages = 0;
 609{
 610	unsigned long pfn;
 611#ifdef CONFIG_DISCONTIGMEM
 612	int i;
 613
 614	for (i = 0; i < npmem_ranges; i++) {
 615		for (pfn = node_start_pfn(i); pfn < node_end_pfn(i); pfn++) {
 616			if (PageReserved(pfn_to_page(pfn)))
 617				reservedpages++;
 618		}
 619	}
 620#else /* !CONFIG_DISCONTIGMEM */
 621	for (pfn = 0; pfn < max_pfn; pfn++) {
 622		/*
 623		 * Only count reserved RAM pages
 624		 */
 625		if (PageReserved(pfn_to_page(pfn)))
 626			reservedpages++;
 627	}
 628#endif
 629}
 630
 631#ifdef CONFIG_PA11
 632	if (hppa_dma_ops == &pcxl_dma_ops) {
 633		pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
 634		parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
 635						+ PCXL_DMA_MAP_SIZE);
 636	} else {
 637		pcxl_dma_start = 0;
 638		parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
 639	}
 640#else
 641	parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
 642#endif
 643
 644	printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init)\n",
 645		nr_free_pages() << (PAGE_SHIFT-10),
 646		num_physpages << (PAGE_SHIFT-10),
 647		codesize >> 10,
 648		reservedpages << (PAGE_SHIFT-10),
 649		datasize >> 10,
 650		initsize >> 10
 651	);
 652
 653#ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
 
 
 
 
 654	printk("virtual kernel memory layout:\n"
 655	       "    vmalloc : 0x%p - 0x%p   (%4ld MB)\n"
 656	       "    memory  : 0x%p - 0x%p   (%4ld MB)\n"
 657	       "      .init : 0x%p - 0x%p   (%4ld kB)\n"
 658	       "      .data : 0x%p - 0x%p   (%4ld kB)\n"
 659	       "      .text : 0x%p - 0x%p   (%4ld kB)\n",
 
 660
 661	       (void*)VMALLOC_START, (void*)VMALLOC_END,
 662	       (VMALLOC_END - VMALLOC_START) >> 20,
 663
 
 
 
 664	       __va(0), high_memory,
 665	       ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
 666
 667	       __init_begin, __init_end,
 668	       ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
 669
 670	       _etext, _edata,
 671	       ((unsigned long)_edata - (unsigned long)_etext) >> 10,
 672
 673	       _text, _etext,
 674	       ((unsigned long)_etext - (unsigned long)_text) >> 10);
 675#endif
 676}
 677
 678unsigned long *empty_zero_page __read_mostly;
 679EXPORT_SYMBOL(empty_zero_page);
 680
 681void show_mem(unsigned int filter)
 682{
 683	int i,free = 0,total = 0,reserved = 0;
 684	int shared = 0, cached = 0;
 685
 686	printk(KERN_INFO "Mem-info:\n");
 687	show_free_areas(filter);
 688#ifndef CONFIG_DISCONTIGMEM
 689	i = max_mapnr;
 690	while (i-- > 0) {
 691		total++;
 692		if (PageReserved(mem_map+i))
 693			reserved++;
 694		else if (PageSwapCache(mem_map+i))
 695			cached++;
 696		else if (!page_count(&mem_map[i]))
 697			free++;
 698		else
 699			shared += page_count(&mem_map[i]) - 1;
 700	}
 701#else
 702	for (i = 0; i < npmem_ranges; i++) {
 703		int j;
 704
 705		for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
 706			struct page *p;
 707			unsigned long flags;
 708
 709			pgdat_resize_lock(NODE_DATA(i), &flags);
 710			p = nid_page_nr(i, j) - node_start_pfn(i);
 711
 712			total++;
 713			if (PageReserved(p))
 714				reserved++;
 715			else if (PageSwapCache(p))
 716				cached++;
 717			else if (!page_count(p))
 718				free++;
 719			else
 720				shared += page_count(p) - 1;
 721			pgdat_resize_unlock(NODE_DATA(i), &flags);
 722        	}
 723	}
 724#endif
 725	printk(KERN_INFO "%d pages of RAM\n", total);
 726	printk(KERN_INFO "%d reserved pages\n", reserved);
 727	printk(KERN_INFO "%d pages shared\n", shared);
 728	printk(KERN_INFO "%d pages swap cached\n", cached);
 729
 730
 731#ifdef CONFIG_DISCONTIGMEM
 732	{
 733		struct zonelist *zl;
 734		int i, j;
 735
 736		for (i = 0; i < npmem_ranges; i++) {
 737			zl = node_zonelist(i, 0);
 738			for (j = 0; j < MAX_NR_ZONES; j++) {
 739				struct zoneref *z;
 740				struct zone *zone;
 741
 742				printk("Zone list for zone %d on node %d: ", j, i);
 743				for_each_zone_zonelist(zone, z, zl, j)
 744					printk("[%d/%s] ", zone_to_nid(zone),
 745								zone->name);
 746				printk("\n");
 747			}
 748		}
 749	}
 750#endif
 751}
 752
 753/*
 754 * pagetable_init() sets up the page tables
 755 *
 756 * Note that gateway_init() places the Linux gateway page at page 0.
 757 * Since gateway pages cannot be dereferenced this has the desirable
 758 * side effect of trapping those pesky NULL-reference errors in the
 759 * kernel.
 760 */
 761static void __init pagetable_init(void)
 762{
 763	int range;
 764
 765	/* Map each physical memory range to its kernel vaddr */
 766
 767	for (range = 0; range < npmem_ranges; range++) {
 768		unsigned long start_paddr;
 769		unsigned long end_paddr;
 770		unsigned long size;
 771
 772		start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
 773		end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
 774		size = pmem_ranges[range].pages << PAGE_SHIFT;
 
 775
 776		map_pages((unsigned long)__va(start_paddr), start_paddr,
 777			  size, PAGE_KERNEL, 0);
 778	}
 779
 780#ifdef CONFIG_BLK_DEV_INITRD
 781	if (initrd_end && initrd_end > mem_limit) {
 782		printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
 783		map_pages(initrd_start, __pa(initrd_start),
 784			  initrd_end - initrd_start, PAGE_KERNEL, 0);
 785	}
 786#endif
 787
 788	empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
 789	memset(empty_zero_page, 0, PAGE_SIZE);
 
 
 790}
 791
 792static void __init gateway_init(void)
 793{
 794	unsigned long linux_gateway_page_addr;
 795	/* FIXME: This is 'const' in order to trick the compiler
 796	   into not treating it as DP-relative data. */
 797	extern void * const linux_gateway_page;
 798
 799	linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
 800
 801	/*
 802	 * Setup Linux Gateway page.
 803	 *
 804	 * The Linux gateway page will reside in kernel space (on virtual
 805	 * page 0), so it doesn't need to be aliased into user space.
 806	 */
 807
 808	map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
 809		  PAGE_SIZE, PAGE_GATEWAY, 1);
 810}
 811
 812#ifdef CONFIG_HPUX
 813void
 814map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
 815{
 816	pgd_t *pg_dir;
 817	pmd_t *pmd;
 818	pte_t *pg_table;
 819	unsigned long start_pmd;
 820	unsigned long start_pte;
 821	unsigned long address;
 822	unsigned long hpux_gw_page_addr;
 823	/* FIXME: This is 'const' in order to trick the compiler
 824	   into not treating it as DP-relative data. */
 825	extern void * const hpux_gateway_page;
 826
 827	hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
 
 
 
 828
 829	/*
 830	 * Setup HP-UX Gateway page.
 831	 *
 832	 * The HP-UX gateway page resides in the user address space,
 833	 * so it needs to be aliased into each process.
 834	 */
 835
 836	pg_dir = pgd_offset(mm,hpux_gw_page_addr);
 837
 838#if PTRS_PER_PMD == 1
 839	start_pmd = 0;
 840#else
 841	start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
 842#endif
 843	start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 844
 845	address = __pa(&hpux_gateway_page);
 846#if PTRS_PER_PMD == 1
 847	pmd = (pmd_t *)__pa(pg_dir);
 848#else
 849	pmd = (pmd_t *) pgd_address(*pg_dir);
 850
 851	/*
 852	 * pmd is physical at this point
 853	 */
 854
 855	if (!pmd) {
 856		pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
 857		pmd = (pmd_t *) __pa(pmd);
 858	}
 859
 860	__pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
 861#endif
 862	/* now change pmd to kernel virtual addresses */
 863
 864	pmd = (pmd_t *)__va(pmd) + start_pmd;
 865
 866	/*
 867	 * pg_table is physical at this point
 868	 */
 869
 870	pg_table = (pte_t *) pmd_address(*pmd);
 871	if (!pg_table)
 872		pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
 873
 874	__pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
 875
 876	/* now change pg_table to kernel virtual addresses */
 877
 878	pg_table = (pte_t *) __va(pg_table) + start_pte;
 879	set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
 880}
 881EXPORT_SYMBOL(map_hpux_gateway_page);
 882#endif
 883
 884void __init paging_init(void)
 885{
 886	int i;
 887
 888	setup_bootmem();
 889	pagetable_init();
 890	gateway_init();
 891	flush_cache_all_local(); /* start with known state */
 892	flush_tlb_all_local(NULL);
 893
 894	for (i = 0; i < npmem_ranges; i++) {
 895		unsigned long zones_size[MAX_NR_ZONES] = { 0, };
 896
 897		zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
 898
 899#ifdef CONFIG_DISCONTIGMEM
 900		/* Need to initialize the pfnnid_map before we can initialize
 901		   the zone */
 902		{
 903		    int j;
 904		    for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
 905			 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
 906			 j++) {
 907			pfnnid_map[j] = i;
 908		    }
 909		}
 910#endif
 911
 912		free_area_init_node(i, zones_size,
 913				pmem_ranges[i].start_pfn, NULL);
 914	}
 915}
 916
 917#ifdef CONFIG_PA20
 918
 919/*
 920 * Currently, all PA20 chips have 18 bit protection IDs, which is the
 921 * limiting factor (space ids are 32 bits).
 922 */
 923
 924#define NR_SPACE_IDS 262144
 925
 926#else
 927
 928/*
 929 * Currently we have a one-to-one relationship between space IDs and
 930 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
 931 * support 15 bit protection IDs, so that is the limiting factor.
 932 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
 933 * probably not worth the effort for a special case here.
 934 */
 935
 936#define NR_SPACE_IDS 32768
 937
 938#endif  /* !CONFIG_PA20 */
 939
 940#define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
 941#define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
 942
 943static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
 944static unsigned long dirty_space_id[SID_ARRAY_SIZE];
 945static unsigned long space_id_index;
 946static unsigned long free_space_ids = NR_SPACE_IDS - 1;
 947static unsigned long dirty_space_ids = 0;
 948
 949static DEFINE_SPINLOCK(sid_lock);
 950
 951unsigned long alloc_sid(void)
 952{
 953	unsigned long index;
 954
 955	spin_lock(&sid_lock);
 956
 957	if (free_space_ids == 0) {
 958		if (dirty_space_ids != 0) {
 959			spin_unlock(&sid_lock);
 960			flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
 961			spin_lock(&sid_lock);
 962		}
 963		BUG_ON(free_space_ids == 0);
 964	}
 965
 966	free_space_ids--;
 967
 968	index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
 969	space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
 970	space_id_index = index;
 971
 972	spin_unlock(&sid_lock);
 973
 974	return index << SPACEID_SHIFT;
 975}
 976
 977void free_sid(unsigned long spaceid)
 978{
 979	unsigned long index = spaceid >> SPACEID_SHIFT;
 980	unsigned long *dirty_space_offset;
 981
 982	dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
 983	index &= (BITS_PER_LONG - 1);
 984
 985	spin_lock(&sid_lock);
 986
 987	BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
 988
 989	*dirty_space_offset |= (1L << index);
 990	dirty_space_ids++;
 991
 992	spin_unlock(&sid_lock);
 993}
 994
 995
 996#ifdef CONFIG_SMP
 997static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
 998{
 999	int i;
1000
1001	/* NOTE: sid_lock must be held upon entry */
1002
1003	*ndirtyptr = dirty_space_ids;
1004	if (dirty_space_ids != 0) {
1005	    for (i = 0; i < SID_ARRAY_SIZE; i++) {
1006		dirty_array[i] = dirty_space_id[i];
1007		dirty_space_id[i] = 0;
1008	    }
1009	    dirty_space_ids = 0;
1010	}
1011
1012	return;
1013}
1014
1015static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
1016{
1017	int i;
1018
1019	/* NOTE: sid_lock must be held upon entry */
1020
1021	if (ndirty != 0) {
1022		for (i = 0; i < SID_ARRAY_SIZE; i++) {
1023			space_id[i] ^= dirty_array[i];
1024		}
1025
1026		free_space_ids += ndirty;
1027		space_id_index = 0;
1028	}
1029}
1030
1031#else /* CONFIG_SMP */
1032
1033static void recycle_sids(void)
1034{
1035	int i;
1036
1037	/* NOTE: sid_lock must be held upon entry */
1038
1039	if (dirty_space_ids != 0) {
1040		for (i = 0; i < SID_ARRAY_SIZE; i++) {
1041			space_id[i] ^= dirty_space_id[i];
1042			dirty_space_id[i] = 0;
1043		}
1044
1045		free_space_ids += dirty_space_ids;
1046		dirty_space_ids = 0;
1047		space_id_index = 0;
1048	}
1049}
1050#endif
1051
1052/*
1053 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
1054 * purged, we can safely reuse the space ids that were released but
1055 * not flushed from the tlb.
1056 */
1057
1058#ifdef CONFIG_SMP
1059
1060static unsigned long recycle_ndirty;
1061static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
1062static unsigned int recycle_inuse;
1063
1064void flush_tlb_all(void)
1065{
1066	int do_recycle;
1067
 
1068	do_recycle = 0;
1069	spin_lock(&sid_lock);
1070	if (dirty_space_ids > RECYCLE_THRESHOLD) {
1071	    BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
1072	    get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
1073	    recycle_inuse++;
1074	    do_recycle++;
1075	}
1076	spin_unlock(&sid_lock);
1077	on_each_cpu(flush_tlb_all_local, NULL, 1);
1078	if (do_recycle) {
1079	    spin_lock(&sid_lock);
1080	    recycle_sids(recycle_ndirty,recycle_dirty_array);
1081	    recycle_inuse = 0;
1082	    spin_unlock(&sid_lock);
1083	}
1084}
1085#else
1086void flush_tlb_all(void)
1087{
 
1088	spin_lock(&sid_lock);
1089	flush_tlb_all_local(NULL);
1090	recycle_sids();
1091	spin_unlock(&sid_lock);
1092}
1093#endif
1094
1095#ifdef CONFIG_BLK_DEV_INITRD
1096void free_initrd_mem(unsigned long start, unsigned long end)
1097{
1098	if (start >= end)
1099		return;
1100	printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1101	for (; start < end; start += PAGE_SIZE) {
1102		ClearPageReserved(virt_to_page(start));
1103		init_page_count(virt_to_page(start));
1104		free_page(start);
1105		num_physpages++;
1106		totalram_pages++;
1107	}
1108}
1109#endif