Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/net/sunrpc/sched.c
4 *
5 * Scheduling for synchronous and asynchronous RPC requests.
6 *
7 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8 *
9 * TCP NFS related read + write fixes
10 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
11 */
12
13#include <linux/module.h>
14
15#include <linux/sched.h>
16#include <linux/interrupt.h>
17#include <linux/slab.h>
18#include <linux/mempool.h>
19#include <linux/smp.h>
20#include <linux/spinlock.h>
21#include <linux/mutex.h>
22#include <linux/freezer.h>
23#include <linux/sched/mm.h>
24
25#include <linux/sunrpc/clnt.h>
26#include <linux/sunrpc/metrics.h>
27
28#include "sunrpc.h"
29
30#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
31#define RPCDBG_FACILITY RPCDBG_SCHED
32#endif
33
34#define CREATE_TRACE_POINTS
35#include <trace/events/sunrpc.h>
36
37/*
38 * RPC slabs and memory pools
39 */
40#define RPC_BUFFER_MAXSIZE (2048)
41#define RPC_BUFFER_POOLSIZE (8)
42#define RPC_TASK_POOLSIZE (8)
43static struct kmem_cache *rpc_task_slabp __read_mostly;
44static struct kmem_cache *rpc_buffer_slabp __read_mostly;
45static mempool_t *rpc_task_mempool __read_mostly;
46static mempool_t *rpc_buffer_mempool __read_mostly;
47
48static void rpc_async_schedule(struct work_struct *);
49static void rpc_release_task(struct rpc_task *task);
50static void __rpc_queue_timer_fn(struct work_struct *);
51
52/*
53 * RPC tasks sit here while waiting for conditions to improve.
54 */
55static struct rpc_wait_queue delay_queue;
56
57/*
58 * rpciod-related stuff
59 */
60struct workqueue_struct *rpciod_workqueue __read_mostly;
61struct workqueue_struct *xprtiod_workqueue __read_mostly;
62EXPORT_SYMBOL_GPL(xprtiod_workqueue);
63
64unsigned long
65rpc_task_timeout(const struct rpc_task *task)
66{
67 unsigned long timeout = READ_ONCE(task->tk_timeout);
68
69 if (timeout != 0) {
70 unsigned long now = jiffies;
71 if (time_before(now, timeout))
72 return timeout - now;
73 }
74 return 0;
75}
76EXPORT_SYMBOL_GPL(rpc_task_timeout);
77
78/*
79 * Disable the timer for a given RPC task. Should be called with
80 * queue->lock and bh_disabled in order to avoid races within
81 * rpc_run_timer().
82 */
83static void
84__rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
85{
86 if (list_empty(&task->u.tk_wait.timer_list))
87 return;
88 dprintk("RPC: %5u disabling timer\n", task->tk_pid);
89 task->tk_timeout = 0;
90 list_del(&task->u.tk_wait.timer_list);
91 if (list_empty(&queue->timer_list.list))
92 cancel_delayed_work(&queue->timer_list.dwork);
93}
94
95static void
96rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
97{
98 unsigned long now = jiffies;
99 queue->timer_list.expires = expires;
100 if (time_before_eq(expires, now))
101 expires = 0;
102 else
103 expires -= now;
104 mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
105}
106
107/*
108 * Set up a timer for the current task.
109 */
110static void
111__rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
112 unsigned long timeout)
113{
114 dprintk("RPC: %5u setting alarm for %u ms\n",
115 task->tk_pid, jiffies_to_msecs(timeout - jiffies));
116
117 task->tk_timeout = timeout;
118 if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
119 rpc_set_queue_timer(queue, timeout);
120 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
121}
122
123static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
124{
125 if (queue->priority != priority) {
126 queue->priority = priority;
127 queue->nr = 1U << priority;
128 }
129}
130
131static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
132{
133 rpc_set_waitqueue_priority(queue, queue->maxpriority);
134}
135
136/*
137 * Add a request to a queue list
138 */
139static void
140__rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
141{
142 struct rpc_task *t;
143
144 list_for_each_entry(t, q, u.tk_wait.list) {
145 if (t->tk_owner == task->tk_owner) {
146 list_add_tail(&task->u.tk_wait.links,
147 &t->u.tk_wait.links);
148 /* Cache the queue head in task->u.tk_wait.list */
149 task->u.tk_wait.list.next = q;
150 task->u.tk_wait.list.prev = NULL;
151 return;
152 }
153 }
154 INIT_LIST_HEAD(&task->u.tk_wait.links);
155 list_add_tail(&task->u.tk_wait.list, q);
156}
157
158/*
159 * Remove request from a queue list
160 */
161static void
162__rpc_list_dequeue_task(struct rpc_task *task)
163{
164 struct list_head *q;
165 struct rpc_task *t;
166
167 if (task->u.tk_wait.list.prev == NULL) {
168 list_del(&task->u.tk_wait.links);
169 return;
170 }
171 if (!list_empty(&task->u.tk_wait.links)) {
172 t = list_first_entry(&task->u.tk_wait.links,
173 struct rpc_task,
174 u.tk_wait.links);
175 /* Assume __rpc_list_enqueue_task() cached the queue head */
176 q = t->u.tk_wait.list.next;
177 list_add_tail(&t->u.tk_wait.list, q);
178 list_del(&task->u.tk_wait.links);
179 }
180 list_del(&task->u.tk_wait.list);
181}
182
183/*
184 * Add new request to a priority queue.
185 */
186static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
187 struct rpc_task *task,
188 unsigned char queue_priority)
189{
190 if (unlikely(queue_priority > queue->maxpriority))
191 queue_priority = queue->maxpriority;
192 __rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
193}
194
195/*
196 * Add new request to wait queue.
197 *
198 * Swapper tasks always get inserted at the head of the queue.
199 * This should avoid many nasty memory deadlocks and hopefully
200 * improve overall performance.
201 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
202 */
203static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
204 struct rpc_task *task,
205 unsigned char queue_priority)
206{
207 WARN_ON_ONCE(RPC_IS_QUEUED(task));
208 if (RPC_IS_QUEUED(task))
209 return;
210
211 INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
212 if (RPC_IS_PRIORITY(queue))
213 __rpc_add_wait_queue_priority(queue, task, queue_priority);
214 else if (RPC_IS_SWAPPER(task))
215 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
216 else
217 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
218 task->tk_waitqueue = queue;
219 queue->qlen++;
220 /* barrier matches the read in rpc_wake_up_task_queue_locked() */
221 smp_wmb();
222 rpc_set_queued(task);
223
224 dprintk("RPC: %5u added to queue %p \"%s\"\n",
225 task->tk_pid, queue, rpc_qname(queue));
226}
227
228/*
229 * Remove request from a priority queue.
230 */
231static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
232{
233 __rpc_list_dequeue_task(task);
234}
235
236/*
237 * Remove request from queue.
238 * Note: must be called with spin lock held.
239 */
240static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
241{
242 __rpc_disable_timer(queue, task);
243 if (RPC_IS_PRIORITY(queue))
244 __rpc_remove_wait_queue_priority(task);
245 else
246 list_del(&task->u.tk_wait.list);
247 queue->qlen--;
248 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
249 task->tk_pid, queue, rpc_qname(queue));
250}
251
252static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
253{
254 int i;
255
256 spin_lock_init(&queue->lock);
257 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
258 INIT_LIST_HEAD(&queue->tasks[i]);
259 queue->maxpriority = nr_queues - 1;
260 rpc_reset_waitqueue_priority(queue);
261 queue->qlen = 0;
262 queue->timer_list.expires = 0;
263 INIT_DEFERRABLE_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
264 INIT_LIST_HEAD(&queue->timer_list.list);
265 rpc_assign_waitqueue_name(queue, qname);
266}
267
268void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
269{
270 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
271}
272EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
273
274void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
275{
276 __rpc_init_priority_wait_queue(queue, qname, 1);
277}
278EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
279
280void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
281{
282 cancel_delayed_work_sync(&queue->timer_list.dwork);
283}
284EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
285
286static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
287{
288 freezable_schedule_unsafe();
289 if (signal_pending_state(mode, current))
290 return -ERESTARTSYS;
291 return 0;
292}
293
294#if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
295static void rpc_task_set_debuginfo(struct rpc_task *task)
296{
297 static atomic_t rpc_pid;
298
299 task->tk_pid = atomic_inc_return(&rpc_pid);
300}
301#else
302static inline void rpc_task_set_debuginfo(struct rpc_task *task)
303{
304}
305#endif
306
307static void rpc_set_active(struct rpc_task *task)
308{
309 rpc_task_set_debuginfo(task);
310 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
311 trace_rpc_task_begin(task, NULL);
312}
313
314/*
315 * Mark an RPC call as having completed by clearing the 'active' bit
316 * and then waking up all tasks that were sleeping.
317 */
318static int rpc_complete_task(struct rpc_task *task)
319{
320 void *m = &task->tk_runstate;
321 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
322 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
323 unsigned long flags;
324 int ret;
325
326 trace_rpc_task_complete(task, NULL);
327
328 spin_lock_irqsave(&wq->lock, flags);
329 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
330 ret = atomic_dec_and_test(&task->tk_count);
331 if (waitqueue_active(wq))
332 __wake_up_locked_key(wq, TASK_NORMAL, &k);
333 spin_unlock_irqrestore(&wq->lock, flags);
334 return ret;
335}
336
337/*
338 * Allow callers to wait for completion of an RPC call
339 *
340 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
341 * to enforce taking of the wq->lock and hence avoid races with
342 * rpc_complete_task().
343 */
344int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
345{
346 if (action == NULL)
347 action = rpc_wait_bit_killable;
348 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
349 action, TASK_KILLABLE);
350}
351EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
352
353/*
354 * Make an RPC task runnable.
355 *
356 * Note: If the task is ASYNC, and is being made runnable after sitting on an
357 * rpc_wait_queue, this must be called with the queue spinlock held to protect
358 * the wait queue operation.
359 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
360 * which is needed to ensure that __rpc_execute() doesn't loop (due to the
361 * lockless RPC_IS_QUEUED() test) before we've had a chance to test
362 * the RPC_TASK_RUNNING flag.
363 */
364static void rpc_make_runnable(struct workqueue_struct *wq,
365 struct rpc_task *task)
366{
367 bool need_wakeup = !rpc_test_and_set_running(task);
368
369 rpc_clear_queued(task);
370 if (!need_wakeup)
371 return;
372 if (RPC_IS_ASYNC(task)) {
373 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
374 queue_work(wq, &task->u.tk_work);
375 } else
376 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
377}
378
379/*
380 * Prepare for sleeping on a wait queue.
381 * By always appending tasks to the list we ensure FIFO behavior.
382 * NB: An RPC task will only receive interrupt-driven events as long
383 * as it's on a wait queue.
384 */
385static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
386 struct rpc_task *task,
387 unsigned char queue_priority)
388{
389 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
390 task->tk_pid, rpc_qname(q), jiffies);
391
392 trace_rpc_task_sleep(task, q);
393
394 __rpc_add_wait_queue(q, task, queue_priority);
395
396}
397
398static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
399 struct rpc_task *task, unsigned long timeout,
400 unsigned char queue_priority)
401{
402 if (time_is_after_jiffies(timeout)) {
403 __rpc_sleep_on_priority(q, task, queue_priority);
404 __rpc_add_timer(q, task, timeout);
405 } else
406 task->tk_status = -ETIMEDOUT;
407}
408
409static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
410{
411 if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
412 task->tk_callback = action;
413}
414
415static bool rpc_sleep_check_activated(struct rpc_task *task)
416{
417 /* We shouldn't ever put an inactive task to sleep */
418 if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
419 task->tk_status = -EIO;
420 rpc_put_task_async(task);
421 return false;
422 }
423 return true;
424}
425
426void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
427 rpc_action action, unsigned long timeout)
428{
429 if (!rpc_sleep_check_activated(task))
430 return;
431
432 rpc_set_tk_callback(task, action);
433
434 /*
435 * Protect the queue operations.
436 */
437 spin_lock(&q->lock);
438 __rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
439 spin_unlock(&q->lock);
440}
441EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
442
443void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
444 rpc_action action)
445{
446 if (!rpc_sleep_check_activated(task))
447 return;
448
449 rpc_set_tk_callback(task, action);
450
451 WARN_ON_ONCE(task->tk_timeout != 0);
452 /*
453 * Protect the queue operations.
454 */
455 spin_lock(&q->lock);
456 __rpc_sleep_on_priority(q, task, task->tk_priority);
457 spin_unlock(&q->lock);
458}
459EXPORT_SYMBOL_GPL(rpc_sleep_on);
460
461void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
462 struct rpc_task *task, unsigned long timeout, int priority)
463{
464 if (!rpc_sleep_check_activated(task))
465 return;
466
467 priority -= RPC_PRIORITY_LOW;
468 /*
469 * Protect the queue operations.
470 */
471 spin_lock(&q->lock);
472 __rpc_sleep_on_priority_timeout(q, task, timeout, priority);
473 spin_unlock(&q->lock);
474}
475EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
476
477void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
478 int priority)
479{
480 if (!rpc_sleep_check_activated(task))
481 return;
482
483 WARN_ON_ONCE(task->tk_timeout != 0);
484 priority -= RPC_PRIORITY_LOW;
485 /*
486 * Protect the queue operations.
487 */
488 spin_lock(&q->lock);
489 __rpc_sleep_on_priority(q, task, priority);
490 spin_unlock(&q->lock);
491}
492EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
493
494/**
495 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
496 * @wq: workqueue on which to run task
497 * @queue: wait queue
498 * @task: task to be woken up
499 *
500 * Caller must hold queue->lock, and have cleared the task queued flag.
501 */
502static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
503 struct rpc_wait_queue *queue,
504 struct rpc_task *task)
505{
506 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
507 task->tk_pid, jiffies);
508
509 /* Has the task been executed yet? If not, we cannot wake it up! */
510 if (!RPC_IS_ACTIVATED(task)) {
511 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
512 return;
513 }
514
515 trace_rpc_task_wakeup(task, queue);
516
517 __rpc_remove_wait_queue(queue, task);
518
519 rpc_make_runnable(wq, task);
520
521 dprintk("RPC: __rpc_wake_up_task done\n");
522}
523
524/*
525 * Wake up a queued task while the queue lock is being held
526 */
527static struct rpc_task *
528rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
529 struct rpc_wait_queue *queue, struct rpc_task *task,
530 bool (*action)(struct rpc_task *, void *), void *data)
531{
532 if (RPC_IS_QUEUED(task)) {
533 smp_rmb();
534 if (task->tk_waitqueue == queue) {
535 if (action == NULL || action(task, data)) {
536 __rpc_do_wake_up_task_on_wq(wq, queue, task);
537 return task;
538 }
539 }
540 }
541 return NULL;
542}
543
544/*
545 * Wake up a queued task while the queue lock is being held
546 */
547static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue,
548 struct rpc_task *task)
549{
550 rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
551 task, NULL, NULL);
552}
553
554/*
555 * Wake up a task on a specific queue
556 */
557void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
558{
559 if (!RPC_IS_QUEUED(task))
560 return;
561 spin_lock(&queue->lock);
562 rpc_wake_up_task_queue_locked(queue, task);
563 spin_unlock(&queue->lock);
564}
565EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
566
567static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
568{
569 task->tk_status = *(int *)status;
570 return true;
571}
572
573static void
574rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
575 struct rpc_task *task, int status)
576{
577 rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
578 task, rpc_task_action_set_status, &status);
579}
580
581/**
582 * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
583 * @queue: pointer to rpc_wait_queue
584 * @task: pointer to rpc_task
585 * @status: integer error value
586 *
587 * If @task is queued on @queue, then it is woken up, and @task->tk_status is
588 * set to the value of @status.
589 */
590void
591rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
592 struct rpc_task *task, int status)
593{
594 if (!RPC_IS_QUEUED(task))
595 return;
596 spin_lock(&queue->lock);
597 rpc_wake_up_task_queue_set_status_locked(queue, task, status);
598 spin_unlock(&queue->lock);
599}
600
601/*
602 * Wake up the next task on a priority queue.
603 */
604static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
605{
606 struct list_head *q;
607 struct rpc_task *task;
608
609 /*
610 * Service a batch of tasks from a single owner.
611 */
612 q = &queue->tasks[queue->priority];
613 if (!list_empty(q) && --queue->nr) {
614 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
615 goto out;
616 }
617
618 /*
619 * Service the next queue.
620 */
621 do {
622 if (q == &queue->tasks[0])
623 q = &queue->tasks[queue->maxpriority];
624 else
625 q = q - 1;
626 if (!list_empty(q)) {
627 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
628 goto new_queue;
629 }
630 } while (q != &queue->tasks[queue->priority]);
631
632 rpc_reset_waitqueue_priority(queue);
633 return NULL;
634
635new_queue:
636 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
637out:
638 return task;
639}
640
641static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
642{
643 if (RPC_IS_PRIORITY(queue))
644 return __rpc_find_next_queued_priority(queue);
645 if (!list_empty(&queue->tasks[0]))
646 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
647 return NULL;
648}
649
650/*
651 * Wake up the first task on the wait queue.
652 */
653struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
654 struct rpc_wait_queue *queue,
655 bool (*func)(struct rpc_task *, void *), void *data)
656{
657 struct rpc_task *task = NULL;
658
659 dprintk("RPC: wake_up_first(%p \"%s\")\n",
660 queue, rpc_qname(queue));
661 spin_lock(&queue->lock);
662 task = __rpc_find_next_queued(queue);
663 if (task != NULL)
664 task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
665 task, func, data);
666 spin_unlock(&queue->lock);
667
668 return task;
669}
670
671/*
672 * Wake up the first task on the wait queue.
673 */
674struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
675 bool (*func)(struct rpc_task *, void *), void *data)
676{
677 return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
678}
679EXPORT_SYMBOL_GPL(rpc_wake_up_first);
680
681static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
682{
683 return true;
684}
685
686/*
687 * Wake up the next task on the wait queue.
688*/
689struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
690{
691 return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
692}
693EXPORT_SYMBOL_GPL(rpc_wake_up_next);
694
695/**
696 * rpc_wake_up - wake up all rpc_tasks
697 * @queue: rpc_wait_queue on which the tasks are sleeping
698 *
699 * Grabs queue->lock
700 */
701void rpc_wake_up(struct rpc_wait_queue *queue)
702{
703 struct list_head *head;
704
705 spin_lock(&queue->lock);
706 head = &queue->tasks[queue->maxpriority];
707 for (;;) {
708 while (!list_empty(head)) {
709 struct rpc_task *task;
710 task = list_first_entry(head,
711 struct rpc_task,
712 u.tk_wait.list);
713 rpc_wake_up_task_queue_locked(queue, task);
714 }
715 if (head == &queue->tasks[0])
716 break;
717 head--;
718 }
719 spin_unlock(&queue->lock);
720}
721EXPORT_SYMBOL_GPL(rpc_wake_up);
722
723/**
724 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
725 * @queue: rpc_wait_queue on which the tasks are sleeping
726 * @status: status value to set
727 *
728 * Grabs queue->lock
729 */
730void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
731{
732 struct list_head *head;
733
734 spin_lock(&queue->lock);
735 head = &queue->tasks[queue->maxpriority];
736 for (;;) {
737 while (!list_empty(head)) {
738 struct rpc_task *task;
739 task = list_first_entry(head,
740 struct rpc_task,
741 u.tk_wait.list);
742 task->tk_status = status;
743 rpc_wake_up_task_queue_locked(queue, task);
744 }
745 if (head == &queue->tasks[0])
746 break;
747 head--;
748 }
749 spin_unlock(&queue->lock);
750}
751EXPORT_SYMBOL_GPL(rpc_wake_up_status);
752
753static void __rpc_queue_timer_fn(struct work_struct *work)
754{
755 struct rpc_wait_queue *queue = container_of(work,
756 struct rpc_wait_queue,
757 timer_list.dwork.work);
758 struct rpc_task *task, *n;
759 unsigned long expires, now, timeo;
760
761 spin_lock(&queue->lock);
762 expires = now = jiffies;
763 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
764 timeo = task->tk_timeout;
765 if (time_after_eq(now, timeo)) {
766 dprintk("RPC: %5u timeout\n", task->tk_pid);
767 task->tk_status = -ETIMEDOUT;
768 rpc_wake_up_task_queue_locked(queue, task);
769 continue;
770 }
771 if (expires == now || time_after(expires, timeo))
772 expires = timeo;
773 }
774 if (!list_empty(&queue->timer_list.list))
775 rpc_set_queue_timer(queue, expires);
776 spin_unlock(&queue->lock);
777}
778
779static void __rpc_atrun(struct rpc_task *task)
780{
781 if (task->tk_status == -ETIMEDOUT)
782 task->tk_status = 0;
783}
784
785/*
786 * Run a task at a later time
787 */
788void rpc_delay(struct rpc_task *task, unsigned long delay)
789{
790 rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
791}
792EXPORT_SYMBOL_GPL(rpc_delay);
793
794/*
795 * Helper to call task->tk_ops->rpc_call_prepare
796 */
797void rpc_prepare_task(struct rpc_task *task)
798{
799 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
800}
801
802static void
803rpc_init_task_statistics(struct rpc_task *task)
804{
805 /* Initialize retry counters */
806 task->tk_garb_retry = 2;
807 task->tk_cred_retry = 2;
808 task->tk_rebind_retry = 2;
809
810 /* starting timestamp */
811 task->tk_start = ktime_get();
812}
813
814static void
815rpc_reset_task_statistics(struct rpc_task *task)
816{
817 task->tk_timeouts = 0;
818 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
819 rpc_init_task_statistics(task);
820}
821
822/*
823 * Helper that calls task->tk_ops->rpc_call_done if it exists
824 */
825void rpc_exit_task(struct rpc_task *task)
826{
827 task->tk_action = NULL;
828 if (task->tk_ops->rpc_count_stats)
829 task->tk_ops->rpc_count_stats(task, task->tk_calldata);
830 else if (task->tk_client)
831 rpc_count_iostats(task, task->tk_client->cl_metrics);
832 if (task->tk_ops->rpc_call_done != NULL) {
833 task->tk_ops->rpc_call_done(task, task->tk_calldata);
834 if (task->tk_action != NULL) {
835 /* Always release the RPC slot and buffer memory */
836 xprt_release(task);
837 rpc_reset_task_statistics(task);
838 }
839 }
840}
841
842void rpc_signal_task(struct rpc_task *task)
843{
844 struct rpc_wait_queue *queue;
845
846 if (!RPC_IS_ACTIVATED(task))
847 return;
848 set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
849 smp_mb__after_atomic();
850 queue = READ_ONCE(task->tk_waitqueue);
851 if (queue)
852 rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
853}
854
855void rpc_exit(struct rpc_task *task, int status)
856{
857 task->tk_status = status;
858 task->tk_action = rpc_exit_task;
859 rpc_wake_up_queued_task(task->tk_waitqueue, task);
860}
861EXPORT_SYMBOL_GPL(rpc_exit);
862
863void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
864{
865 if (ops->rpc_release != NULL)
866 ops->rpc_release(calldata);
867}
868
869/*
870 * This is the RPC `scheduler' (or rather, the finite state machine).
871 */
872static void __rpc_execute(struct rpc_task *task)
873{
874 struct rpc_wait_queue *queue;
875 int task_is_async = RPC_IS_ASYNC(task);
876 int status = 0;
877
878 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
879 task->tk_pid, task->tk_flags);
880
881 WARN_ON_ONCE(RPC_IS_QUEUED(task));
882 if (RPC_IS_QUEUED(task))
883 return;
884
885 for (;;) {
886 void (*do_action)(struct rpc_task *);
887
888 /*
889 * Perform the next FSM step or a pending callback.
890 *
891 * tk_action may be NULL if the task has been killed.
892 * In particular, note that rpc_killall_tasks may
893 * do this at any time, so beware when dereferencing.
894 */
895 do_action = task->tk_action;
896 if (task->tk_callback) {
897 do_action = task->tk_callback;
898 task->tk_callback = NULL;
899 }
900 if (!do_action)
901 break;
902 trace_rpc_task_run_action(task, do_action);
903 do_action(task);
904
905 /*
906 * Lockless check for whether task is sleeping or not.
907 */
908 if (!RPC_IS_QUEUED(task))
909 continue;
910
911 /*
912 * Signalled tasks should exit rather than sleep.
913 */
914 if (RPC_SIGNALLED(task)) {
915 task->tk_rpc_status = -ERESTARTSYS;
916 rpc_exit(task, -ERESTARTSYS);
917 }
918
919 /*
920 * The queue->lock protects against races with
921 * rpc_make_runnable().
922 *
923 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
924 * rpc_task, rpc_make_runnable() can assign it to a
925 * different workqueue. We therefore cannot assume that the
926 * rpc_task pointer may still be dereferenced.
927 */
928 queue = task->tk_waitqueue;
929 spin_lock(&queue->lock);
930 if (!RPC_IS_QUEUED(task)) {
931 spin_unlock(&queue->lock);
932 continue;
933 }
934 rpc_clear_running(task);
935 spin_unlock(&queue->lock);
936 if (task_is_async)
937 return;
938
939 /* sync task: sleep here */
940 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
941 status = out_of_line_wait_on_bit(&task->tk_runstate,
942 RPC_TASK_QUEUED, rpc_wait_bit_killable,
943 TASK_KILLABLE);
944 if (status < 0) {
945 /*
946 * When a sync task receives a signal, it exits with
947 * -ERESTARTSYS. In order to catch any callbacks that
948 * clean up after sleeping on some queue, we don't
949 * break the loop here, but go around once more.
950 */
951 dprintk("RPC: %5u got signal\n", task->tk_pid);
952 set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
953 task->tk_rpc_status = -ERESTARTSYS;
954 rpc_exit(task, -ERESTARTSYS);
955 }
956 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
957 }
958
959 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
960 task->tk_status);
961 /* Release all resources associated with the task */
962 rpc_release_task(task);
963}
964
965/*
966 * User-visible entry point to the scheduler.
967 *
968 * This may be called recursively if e.g. an async NFS task updates
969 * the attributes and finds that dirty pages must be flushed.
970 * NOTE: Upon exit of this function the task is guaranteed to be
971 * released. In particular note that tk_release() will have
972 * been called, so your task memory may have been freed.
973 */
974void rpc_execute(struct rpc_task *task)
975{
976 bool is_async = RPC_IS_ASYNC(task);
977
978 rpc_set_active(task);
979 rpc_make_runnable(rpciod_workqueue, task);
980 if (!is_async)
981 __rpc_execute(task);
982}
983
984static void rpc_async_schedule(struct work_struct *work)
985{
986 unsigned int pflags = memalloc_nofs_save();
987
988 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
989 memalloc_nofs_restore(pflags);
990}
991
992/**
993 * rpc_malloc - allocate RPC buffer resources
994 * @task: RPC task
995 *
996 * A single memory region is allocated, which is split between the
997 * RPC call and RPC reply that this task is being used for. When
998 * this RPC is retired, the memory is released by calling rpc_free.
999 *
1000 * To prevent rpciod from hanging, this allocator never sleeps,
1001 * returning -ENOMEM and suppressing warning if the request cannot
1002 * be serviced immediately. The caller can arrange to sleep in a
1003 * way that is safe for rpciod.
1004 *
1005 * Most requests are 'small' (under 2KiB) and can be serviced from a
1006 * mempool, ensuring that NFS reads and writes can always proceed,
1007 * and that there is good locality of reference for these buffers.
1008 */
1009int rpc_malloc(struct rpc_task *task)
1010{
1011 struct rpc_rqst *rqst = task->tk_rqstp;
1012 size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1013 struct rpc_buffer *buf;
1014 gfp_t gfp = GFP_NOFS;
1015
1016 if (RPC_IS_SWAPPER(task))
1017 gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
1018
1019 size += sizeof(struct rpc_buffer);
1020 if (size <= RPC_BUFFER_MAXSIZE)
1021 buf = mempool_alloc(rpc_buffer_mempool, gfp);
1022 else
1023 buf = kmalloc(size, gfp);
1024
1025 if (!buf)
1026 return -ENOMEM;
1027
1028 buf->len = size;
1029 dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
1030 task->tk_pid, size, buf);
1031 rqst->rq_buffer = buf->data;
1032 rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1033 return 0;
1034}
1035EXPORT_SYMBOL_GPL(rpc_malloc);
1036
1037/**
1038 * rpc_free - free RPC buffer resources allocated via rpc_malloc
1039 * @task: RPC task
1040 *
1041 */
1042void rpc_free(struct rpc_task *task)
1043{
1044 void *buffer = task->tk_rqstp->rq_buffer;
1045 size_t size;
1046 struct rpc_buffer *buf;
1047
1048 buf = container_of(buffer, struct rpc_buffer, data);
1049 size = buf->len;
1050
1051 dprintk("RPC: freeing buffer of size %zu at %p\n",
1052 size, buf);
1053
1054 if (size <= RPC_BUFFER_MAXSIZE)
1055 mempool_free(buf, rpc_buffer_mempool);
1056 else
1057 kfree(buf);
1058}
1059EXPORT_SYMBOL_GPL(rpc_free);
1060
1061/*
1062 * Creation and deletion of RPC task structures
1063 */
1064static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1065{
1066 memset(task, 0, sizeof(*task));
1067 atomic_set(&task->tk_count, 1);
1068 task->tk_flags = task_setup_data->flags;
1069 task->tk_ops = task_setup_data->callback_ops;
1070 task->tk_calldata = task_setup_data->callback_data;
1071 INIT_LIST_HEAD(&task->tk_task);
1072
1073 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1074 task->tk_owner = current->tgid;
1075
1076 /* Initialize workqueue for async tasks */
1077 task->tk_workqueue = task_setup_data->workqueue;
1078
1079 task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client,
1080 xprt_get(task_setup_data->rpc_xprt));
1081
1082 task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1083
1084 if (task->tk_ops->rpc_call_prepare != NULL)
1085 task->tk_action = rpc_prepare_task;
1086
1087 rpc_init_task_statistics(task);
1088
1089 dprintk("RPC: new task initialized, procpid %u\n",
1090 task_pid_nr(current));
1091}
1092
1093static struct rpc_task *
1094rpc_alloc_task(void)
1095{
1096 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
1097}
1098
1099/*
1100 * Create a new task for the specified client.
1101 */
1102struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1103{
1104 struct rpc_task *task = setup_data->task;
1105 unsigned short flags = 0;
1106
1107 if (task == NULL) {
1108 task = rpc_alloc_task();
1109 flags = RPC_TASK_DYNAMIC;
1110 }
1111
1112 rpc_init_task(task, setup_data);
1113 task->tk_flags |= flags;
1114 dprintk("RPC: allocated task %p\n", task);
1115 return task;
1116}
1117
1118/*
1119 * rpc_free_task - release rpc task and perform cleanups
1120 *
1121 * Note that we free up the rpc_task _after_ rpc_release_calldata()
1122 * in order to work around a workqueue dependency issue.
1123 *
1124 * Tejun Heo states:
1125 * "Workqueue currently considers two work items to be the same if they're
1126 * on the same address and won't execute them concurrently - ie. it
1127 * makes a work item which is queued again while being executed wait
1128 * for the previous execution to complete.
1129 *
1130 * If a work function frees the work item, and then waits for an event
1131 * which should be performed by another work item and *that* work item
1132 * recycles the freed work item, it can create a false dependency loop.
1133 * There really is no reliable way to detect this short of verifying
1134 * every memory free."
1135 *
1136 */
1137static void rpc_free_task(struct rpc_task *task)
1138{
1139 unsigned short tk_flags = task->tk_flags;
1140
1141 put_rpccred(task->tk_op_cred);
1142 rpc_release_calldata(task->tk_ops, task->tk_calldata);
1143
1144 if (tk_flags & RPC_TASK_DYNAMIC) {
1145 dprintk("RPC: %5u freeing task\n", task->tk_pid);
1146 mempool_free(task, rpc_task_mempool);
1147 }
1148}
1149
1150static void rpc_async_release(struct work_struct *work)
1151{
1152 unsigned int pflags = memalloc_nofs_save();
1153
1154 rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1155 memalloc_nofs_restore(pflags);
1156}
1157
1158static void rpc_release_resources_task(struct rpc_task *task)
1159{
1160 xprt_release(task);
1161 if (task->tk_msg.rpc_cred) {
1162 put_cred(task->tk_msg.rpc_cred);
1163 task->tk_msg.rpc_cred = NULL;
1164 }
1165 rpc_task_release_client(task);
1166}
1167
1168static void rpc_final_put_task(struct rpc_task *task,
1169 struct workqueue_struct *q)
1170{
1171 if (q != NULL) {
1172 INIT_WORK(&task->u.tk_work, rpc_async_release);
1173 queue_work(q, &task->u.tk_work);
1174 } else
1175 rpc_free_task(task);
1176}
1177
1178static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1179{
1180 if (atomic_dec_and_test(&task->tk_count)) {
1181 rpc_release_resources_task(task);
1182 rpc_final_put_task(task, q);
1183 }
1184}
1185
1186void rpc_put_task(struct rpc_task *task)
1187{
1188 rpc_do_put_task(task, NULL);
1189}
1190EXPORT_SYMBOL_GPL(rpc_put_task);
1191
1192void rpc_put_task_async(struct rpc_task *task)
1193{
1194 rpc_do_put_task(task, task->tk_workqueue);
1195}
1196EXPORT_SYMBOL_GPL(rpc_put_task_async);
1197
1198static void rpc_release_task(struct rpc_task *task)
1199{
1200 dprintk("RPC: %5u release task\n", task->tk_pid);
1201
1202 WARN_ON_ONCE(RPC_IS_QUEUED(task));
1203
1204 rpc_release_resources_task(task);
1205
1206 /*
1207 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1208 * so it should be safe to use task->tk_count as a test for whether
1209 * or not any other processes still hold references to our rpc_task.
1210 */
1211 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1212 /* Wake up anyone who may be waiting for task completion */
1213 if (!rpc_complete_task(task))
1214 return;
1215 } else {
1216 if (!atomic_dec_and_test(&task->tk_count))
1217 return;
1218 }
1219 rpc_final_put_task(task, task->tk_workqueue);
1220}
1221
1222int rpciod_up(void)
1223{
1224 return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1225}
1226
1227void rpciod_down(void)
1228{
1229 module_put(THIS_MODULE);
1230}
1231
1232/*
1233 * Start up the rpciod workqueue.
1234 */
1235static int rpciod_start(void)
1236{
1237 struct workqueue_struct *wq;
1238
1239 /*
1240 * Create the rpciod thread and wait for it to start.
1241 */
1242 dprintk("RPC: creating workqueue rpciod\n");
1243 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1244 if (!wq)
1245 goto out_failed;
1246 rpciod_workqueue = wq;
1247 /* Note: highpri because network receive is latency sensitive */
1248 wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0);
1249 if (!wq)
1250 goto free_rpciod;
1251 xprtiod_workqueue = wq;
1252 return 1;
1253free_rpciod:
1254 wq = rpciod_workqueue;
1255 rpciod_workqueue = NULL;
1256 destroy_workqueue(wq);
1257out_failed:
1258 return 0;
1259}
1260
1261static void rpciod_stop(void)
1262{
1263 struct workqueue_struct *wq = NULL;
1264
1265 if (rpciod_workqueue == NULL)
1266 return;
1267 dprintk("RPC: destroying workqueue rpciod\n");
1268
1269 wq = rpciod_workqueue;
1270 rpciod_workqueue = NULL;
1271 destroy_workqueue(wq);
1272 wq = xprtiod_workqueue;
1273 xprtiod_workqueue = NULL;
1274 destroy_workqueue(wq);
1275}
1276
1277void
1278rpc_destroy_mempool(void)
1279{
1280 rpciod_stop();
1281 mempool_destroy(rpc_buffer_mempool);
1282 mempool_destroy(rpc_task_mempool);
1283 kmem_cache_destroy(rpc_task_slabp);
1284 kmem_cache_destroy(rpc_buffer_slabp);
1285 rpc_destroy_wait_queue(&delay_queue);
1286}
1287
1288int
1289rpc_init_mempool(void)
1290{
1291 /*
1292 * The following is not strictly a mempool initialisation,
1293 * but there is no harm in doing it here
1294 */
1295 rpc_init_wait_queue(&delay_queue, "delayq");
1296 if (!rpciod_start())
1297 goto err_nomem;
1298
1299 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1300 sizeof(struct rpc_task),
1301 0, SLAB_HWCACHE_ALIGN,
1302 NULL);
1303 if (!rpc_task_slabp)
1304 goto err_nomem;
1305 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1306 RPC_BUFFER_MAXSIZE,
1307 0, SLAB_HWCACHE_ALIGN,
1308 NULL);
1309 if (!rpc_buffer_slabp)
1310 goto err_nomem;
1311 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1312 rpc_task_slabp);
1313 if (!rpc_task_mempool)
1314 goto err_nomem;
1315 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1316 rpc_buffer_slabp);
1317 if (!rpc_buffer_mempool)
1318 goto err_nomem;
1319 return 0;
1320err_nomem:
1321 rpc_destroy_mempool();
1322 return -ENOMEM;
1323}
1/*
2 * linux/net/sunrpc/sched.c
3 *
4 * Scheduling for synchronous and asynchronous RPC requests.
5 *
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7 *
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10 */
11
12#include <linux/module.h>
13
14#include <linux/sched.h>
15#include <linux/interrupt.h>
16#include <linux/slab.h>
17#include <linux/mempool.h>
18#include <linux/smp.h>
19#include <linux/spinlock.h>
20#include <linux/mutex.h>
21#include <linux/freezer.h>
22
23#include <linux/sunrpc/clnt.h>
24
25#include "sunrpc.h"
26
27#ifdef RPC_DEBUG
28#define RPCDBG_FACILITY RPCDBG_SCHED
29#endif
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/sunrpc.h>
33
34/*
35 * RPC slabs and memory pools
36 */
37#define RPC_BUFFER_MAXSIZE (2048)
38#define RPC_BUFFER_POOLSIZE (8)
39#define RPC_TASK_POOLSIZE (8)
40static struct kmem_cache *rpc_task_slabp __read_mostly;
41static struct kmem_cache *rpc_buffer_slabp __read_mostly;
42static mempool_t *rpc_task_mempool __read_mostly;
43static mempool_t *rpc_buffer_mempool __read_mostly;
44
45static void rpc_async_schedule(struct work_struct *);
46static void rpc_release_task(struct rpc_task *task);
47static void __rpc_queue_timer_fn(unsigned long ptr);
48
49/*
50 * RPC tasks sit here while waiting for conditions to improve.
51 */
52static struct rpc_wait_queue delay_queue;
53
54/*
55 * rpciod-related stuff
56 */
57struct workqueue_struct *rpciod_workqueue;
58
59/*
60 * Disable the timer for a given RPC task. Should be called with
61 * queue->lock and bh_disabled in order to avoid races within
62 * rpc_run_timer().
63 */
64static void
65__rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
66{
67 if (task->tk_timeout == 0)
68 return;
69 dprintk("RPC: %5u disabling timer\n", task->tk_pid);
70 task->tk_timeout = 0;
71 list_del(&task->u.tk_wait.timer_list);
72 if (list_empty(&queue->timer_list.list))
73 del_timer(&queue->timer_list.timer);
74}
75
76static void
77rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
78{
79 queue->timer_list.expires = expires;
80 mod_timer(&queue->timer_list.timer, expires);
81}
82
83/*
84 * Set up a timer for the current task.
85 */
86static void
87__rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
88{
89 if (!task->tk_timeout)
90 return;
91
92 dprintk("RPC: %5u setting alarm for %lu ms\n",
93 task->tk_pid, task->tk_timeout * 1000 / HZ);
94
95 task->u.tk_wait.expires = jiffies + task->tk_timeout;
96 if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
97 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
98 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
99}
100
101/*
102 * Add new request to a priority queue.
103 */
104static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
105 struct rpc_task *task,
106 unsigned char queue_priority)
107{
108 struct list_head *q;
109 struct rpc_task *t;
110
111 INIT_LIST_HEAD(&task->u.tk_wait.links);
112 q = &queue->tasks[queue_priority];
113 if (unlikely(queue_priority > queue->maxpriority))
114 q = &queue->tasks[queue->maxpriority];
115 list_for_each_entry(t, q, u.tk_wait.list) {
116 if (t->tk_owner == task->tk_owner) {
117 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
118 return;
119 }
120 }
121 list_add_tail(&task->u.tk_wait.list, q);
122}
123
124/*
125 * Add new request to wait queue.
126 *
127 * Swapper tasks always get inserted at the head of the queue.
128 * This should avoid many nasty memory deadlocks and hopefully
129 * improve overall performance.
130 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
131 */
132static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
133 struct rpc_task *task,
134 unsigned char queue_priority)
135{
136 BUG_ON (RPC_IS_QUEUED(task));
137
138 if (RPC_IS_PRIORITY(queue))
139 __rpc_add_wait_queue_priority(queue, task, queue_priority);
140 else if (RPC_IS_SWAPPER(task))
141 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
142 else
143 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
144 task->tk_waitqueue = queue;
145 queue->qlen++;
146 rpc_set_queued(task);
147
148 dprintk("RPC: %5u added to queue %p \"%s\"\n",
149 task->tk_pid, queue, rpc_qname(queue));
150}
151
152/*
153 * Remove request from a priority queue.
154 */
155static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
156{
157 struct rpc_task *t;
158
159 if (!list_empty(&task->u.tk_wait.links)) {
160 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
161 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
162 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
163 }
164}
165
166/*
167 * Remove request from queue.
168 * Note: must be called with spin lock held.
169 */
170static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
171{
172 __rpc_disable_timer(queue, task);
173 if (RPC_IS_PRIORITY(queue))
174 __rpc_remove_wait_queue_priority(task);
175 list_del(&task->u.tk_wait.list);
176 queue->qlen--;
177 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
178 task->tk_pid, queue, rpc_qname(queue));
179}
180
181static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
182{
183 queue->priority = priority;
184 queue->count = 1 << (priority * 2);
185}
186
187static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
188{
189 queue->owner = pid;
190 queue->nr = RPC_BATCH_COUNT;
191}
192
193static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
194{
195 rpc_set_waitqueue_priority(queue, queue->maxpriority);
196 rpc_set_waitqueue_owner(queue, 0);
197}
198
199static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
200{
201 int i;
202
203 spin_lock_init(&queue->lock);
204 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
205 INIT_LIST_HEAD(&queue->tasks[i]);
206 queue->maxpriority = nr_queues - 1;
207 rpc_reset_waitqueue_priority(queue);
208 queue->qlen = 0;
209 setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
210 INIT_LIST_HEAD(&queue->timer_list.list);
211 rpc_assign_waitqueue_name(queue, qname);
212}
213
214void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
215{
216 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
217}
218EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
219
220void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
221{
222 __rpc_init_priority_wait_queue(queue, qname, 1);
223}
224EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
225
226void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
227{
228 del_timer_sync(&queue->timer_list.timer);
229}
230EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
231
232static int rpc_wait_bit_killable(void *word)
233{
234 if (fatal_signal_pending(current))
235 return -ERESTARTSYS;
236 freezable_schedule();
237 return 0;
238}
239
240#ifdef RPC_DEBUG
241static void rpc_task_set_debuginfo(struct rpc_task *task)
242{
243 static atomic_t rpc_pid;
244
245 task->tk_pid = atomic_inc_return(&rpc_pid);
246}
247#else
248static inline void rpc_task_set_debuginfo(struct rpc_task *task)
249{
250}
251#endif
252
253static void rpc_set_active(struct rpc_task *task)
254{
255 trace_rpc_task_begin(task->tk_client, task, NULL);
256
257 rpc_task_set_debuginfo(task);
258 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
259}
260
261/*
262 * Mark an RPC call as having completed by clearing the 'active' bit
263 * and then waking up all tasks that were sleeping.
264 */
265static int rpc_complete_task(struct rpc_task *task)
266{
267 void *m = &task->tk_runstate;
268 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
269 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
270 unsigned long flags;
271 int ret;
272
273 trace_rpc_task_complete(task->tk_client, task, NULL);
274
275 spin_lock_irqsave(&wq->lock, flags);
276 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
277 ret = atomic_dec_and_test(&task->tk_count);
278 if (waitqueue_active(wq))
279 __wake_up_locked_key(wq, TASK_NORMAL, &k);
280 spin_unlock_irqrestore(&wq->lock, flags);
281 return ret;
282}
283
284/*
285 * Allow callers to wait for completion of an RPC call
286 *
287 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
288 * to enforce taking of the wq->lock and hence avoid races with
289 * rpc_complete_task().
290 */
291int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
292{
293 if (action == NULL)
294 action = rpc_wait_bit_killable;
295 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
296 action, TASK_KILLABLE);
297}
298EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
299
300/*
301 * Make an RPC task runnable.
302 *
303 * Note: If the task is ASYNC, this must be called with
304 * the spinlock held to protect the wait queue operation.
305 */
306static void rpc_make_runnable(struct rpc_task *task)
307{
308 rpc_clear_queued(task);
309 if (rpc_test_and_set_running(task))
310 return;
311 if (RPC_IS_ASYNC(task)) {
312 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
313 queue_work(rpciod_workqueue, &task->u.tk_work);
314 } else
315 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
316}
317
318/*
319 * Prepare for sleeping on a wait queue.
320 * By always appending tasks to the list we ensure FIFO behavior.
321 * NB: An RPC task will only receive interrupt-driven events as long
322 * as it's on a wait queue.
323 */
324static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
325 struct rpc_task *task,
326 rpc_action action,
327 unsigned char queue_priority)
328{
329 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
330 task->tk_pid, rpc_qname(q), jiffies);
331
332 trace_rpc_task_sleep(task->tk_client, task, q);
333
334 __rpc_add_wait_queue(q, task, queue_priority);
335
336 BUG_ON(task->tk_callback != NULL);
337 task->tk_callback = action;
338 __rpc_add_timer(q, task);
339}
340
341void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
342 rpc_action action)
343{
344 /* We shouldn't ever put an inactive task to sleep */
345 BUG_ON(!RPC_IS_ACTIVATED(task));
346
347 /*
348 * Protect the queue operations.
349 */
350 spin_lock_bh(&q->lock);
351 __rpc_sleep_on_priority(q, task, action, task->tk_priority);
352 spin_unlock_bh(&q->lock);
353}
354EXPORT_SYMBOL_GPL(rpc_sleep_on);
355
356void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
357 rpc_action action, int priority)
358{
359 /* We shouldn't ever put an inactive task to sleep */
360 BUG_ON(!RPC_IS_ACTIVATED(task));
361
362 /*
363 * Protect the queue operations.
364 */
365 spin_lock_bh(&q->lock);
366 __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
367 spin_unlock_bh(&q->lock);
368}
369
370/**
371 * __rpc_do_wake_up_task - wake up a single rpc_task
372 * @queue: wait queue
373 * @task: task to be woken up
374 *
375 * Caller must hold queue->lock, and have cleared the task queued flag.
376 */
377static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
378{
379 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
380 task->tk_pid, jiffies);
381
382 /* Has the task been executed yet? If not, we cannot wake it up! */
383 if (!RPC_IS_ACTIVATED(task)) {
384 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
385 return;
386 }
387
388 trace_rpc_task_wakeup(task->tk_client, task, queue);
389
390 __rpc_remove_wait_queue(queue, task);
391
392 rpc_make_runnable(task);
393
394 dprintk("RPC: __rpc_wake_up_task done\n");
395}
396
397/*
398 * Wake up a queued task while the queue lock is being held
399 */
400static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
401{
402 if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
403 __rpc_do_wake_up_task(queue, task);
404}
405
406/*
407 * Tests whether rpc queue is empty
408 */
409int rpc_queue_empty(struct rpc_wait_queue *queue)
410{
411 int res;
412
413 spin_lock_bh(&queue->lock);
414 res = queue->qlen;
415 spin_unlock_bh(&queue->lock);
416 return res == 0;
417}
418EXPORT_SYMBOL_GPL(rpc_queue_empty);
419
420/*
421 * Wake up a task on a specific queue
422 */
423void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
424{
425 spin_lock_bh(&queue->lock);
426 rpc_wake_up_task_queue_locked(queue, task);
427 spin_unlock_bh(&queue->lock);
428}
429EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
430
431/*
432 * Wake up the next task on a priority queue.
433 */
434static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
435{
436 struct list_head *q;
437 struct rpc_task *task;
438
439 /*
440 * Service a batch of tasks from a single owner.
441 */
442 q = &queue->tasks[queue->priority];
443 if (!list_empty(q)) {
444 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
445 if (queue->owner == task->tk_owner) {
446 if (--queue->nr)
447 goto out;
448 list_move_tail(&task->u.tk_wait.list, q);
449 }
450 /*
451 * Check if we need to switch queues.
452 */
453 if (--queue->count)
454 goto new_owner;
455 }
456
457 /*
458 * Service the next queue.
459 */
460 do {
461 if (q == &queue->tasks[0])
462 q = &queue->tasks[queue->maxpriority];
463 else
464 q = q - 1;
465 if (!list_empty(q)) {
466 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
467 goto new_queue;
468 }
469 } while (q != &queue->tasks[queue->priority]);
470
471 rpc_reset_waitqueue_priority(queue);
472 return NULL;
473
474new_queue:
475 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
476new_owner:
477 rpc_set_waitqueue_owner(queue, task->tk_owner);
478out:
479 return task;
480}
481
482static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
483{
484 if (RPC_IS_PRIORITY(queue))
485 return __rpc_find_next_queued_priority(queue);
486 if (!list_empty(&queue->tasks[0]))
487 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
488 return NULL;
489}
490
491/*
492 * Wake up the first task on the wait queue.
493 */
494struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
495 bool (*func)(struct rpc_task *, void *), void *data)
496{
497 struct rpc_task *task = NULL;
498
499 dprintk("RPC: wake_up_first(%p \"%s\")\n",
500 queue, rpc_qname(queue));
501 spin_lock_bh(&queue->lock);
502 task = __rpc_find_next_queued(queue);
503 if (task != NULL) {
504 if (func(task, data))
505 rpc_wake_up_task_queue_locked(queue, task);
506 else
507 task = NULL;
508 }
509 spin_unlock_bh(&queue->lock);
510
511 return task;
512}
513EXPORT_SYMBOL_GPL(rpc_wake_up_first);
514
515static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
516{
517 return true;
518}
519
520/*
521 * Wake up the next task on the wait queue.
522*/
523struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
524{
525 return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
526}
527EXPORT_SYMBOL_GPL(rpc_wake_up_next);
528
529/**
530 * rpc_wake_up - wake up all rpc_tasks
531 * @queue: rpc_wait_queue on which the tasks are sleeping
532 *
533 * Grabs queue->lock
534 */
535void rpc_wake_up(struct rpc_wait_queue *queue)
536{
537 struct list_head *head;
538
539 spin_lock_bh(&queue->lock);
540 head = &queue->tasks[queue->maxpriority];
541 for (;;) {
542 while (!list_empty(head)) {
543 struct rpc_task *task;
544 task = list_first_entry(head,
545 struct rpc_task,
546 u.tk_wait.list);
547 rpc_wake_up_task_queue_locked(queue, task);
548 }
549 if (head == &queue->tasks[0])
550 break;
551 head--;
552 }
553 spin_unlock_bh(&queue->lock);
554}
555EXPORT_SYMBOL_GPL(rpc_wake_up);
556
557/**
558 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
559 * @queue: rpc_wait_queue on which the tasks are sleeping
560 * @status: status value to set
561 *
562 * Grabs queue->lock
563 */
564void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
565{
566 struct list_head *head;
567
568 spin_lock_bh(&queue->lock);
569 head = &queue->tasks[queue->maxpriority];
570 for (;;) {
571 while (!list_empty(head)) {
572 struct rpc_task *task;
573 task = list_first_entry(head,
574 struct rpc_task,
575 u.tk_wait.list);
576 task->tk_status = status;
577 rpc_wake_up_task_queue_locked(queue, task);
578 }
579 if (head == &queue->tasks[0])
580 break;
581 head--;
582 }
583 spin_unlock_bh(&queue->lock);
584}
585EXPORT_SYMBOL_GPL(rpc_wake_up_status);
586
587static void __rpc_queue_timer_fn(unsigned long ptr)
588{
589 struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
590 struct rpc_task *task, *n;
591 unsigned long expires, now, timeo;
592
593 spin_lock(&queue->lock);
594 expires = now = jiffies;
595 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
596 timeo = task->u.tk_wait.expires;
597 if (time_after_eq(now, timeo)) {
598 dprintk("RPC: %5u timeout\n", task->tk_pid);
599 task->tk_status = -ETIMEDOUT;
600 rpc_wake_up_task_queue_locked(queue, task);
601 continue;
602 }
603 if (expires == now || time_after(expires, timeo))
604 expires = timeo;
605 }
606 if (!list_empty(&queue->timer_list.list))
607 rpc_set_queue_timer(queue, expires);
608 spin_unlock(&queue->lock);
609}
610
611static void __rpc_atrun(struct rpc_task *task)
612{
613 task->tk_status = 0;
614}
615
616/*
617 * Run a task at a later time
618 */
619void rpc_delay(struct rpc_task *task, unsigned long delay)
620{
621 task->tk_timeout = delay;
622 rpc_sleep_on(&delay_queue, task, __rpc_atrun);
623}
624EXPORT_SYMBOL_GPL(rpc_delay);
625
626/*
627 * Helper to call task->tk_ops->rpc_call_prepare
628 */
629void rpc_prepare_task(struct rpc_task *task)
630{
631 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
632}
633
634static void
635rpc_init_task_statistics(struct rpc_task *task)
636{
637 /* Initialize retry counters */
638 task->tk_garb_retry = 2;
639 task->tk_cred_retry = 2;
640 task->tk_rebind_retry = 2;
641
642 /* starting timestamp */
643 task->tk_start = ktime_get();
644}
645
646static void
647rpc_reset_task_statistics(struct rpc_task *task)
648{
649 task->tk_timeouts = 0;
650 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
651
652 rpc_init_task_statistics(task);
653}
654
655/*
656 * Helper that calls task->tk_ops->rpc_call_done if it exists
657 */
658void rpc_exit_task(struct rpc_task *task)
659{
660 task->tk_action = NULL;
661 if (task->tk_ops->rpc_call_done != NULL) {
662 task->tk_ops->rpc_call_done(task, task->tk_calldata);
663 if (task->tk_action != NULL) {
664 WARN_ON(RPC_ASSASSINATED(task));
665 /* Always release the RPC slot and buffer memory */
666 xprt_release(task);
667 rpc_reset_task_statistics(task);
668 }
669 }
670}
671
672void rpc_exit(struct rpc_task *task, int status)
673{
674 task->tk_status = status;
675 task->tk_action = rpc_exit_task;
676 if (RPC_IS_QUEUED(task))
677 rpc_wake_up_queued_task(task->tk_waitqueue, task);
678}
679EXPORT_SYMBOL_GPL(rpc_exit);
680
681void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
682{
683 if (ops->rpc_release != NULL)
684 ops->rpc_release(calldata);
685}
686
687/*
688 * This is the RPC `scheduler' (or rather, the finite state machine).
689 */
690static void __rpc_execute(struct rpc_task *task)
691{
692 struct rpc_wait_queue *queue;
693 int task_is_async = RPC_IS_ASYNC(task);
694 int status = 0;
695
696 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
697 task->tk_pid, task->tk_flags);
698
699 BUG_ON(RPC_IS_QUEUED(task));
700
701 for (;;) {
702 void (*do_action)(struct rpc_task *);
703
704 /*
705 * Execute any pending callback first.
706 */
707 do_action = task->tk_callback;
708 task->tk_callback = NULL;
709 if (do_action == NULL) {
710 /*
711 * Perform the next FSM step.
712 * tk_action may be NULL if the task has been killed.
713 * In particular, note that rpc_killall_tasks may
714 * do this at any time, so beware when dereferencing.
715 */
716 do_action = task->tk_action;
717 if (do_action == NULL)
718 break;
719 }
720 trace_rpc_task_run_action(task->tk_client, task, task->tk_action);
721 do_action(task);
722
723 /*
724 * Lockless check for whether task is sleeping or not.
725 */
726 if (!RPC_IS_QUEUED(task))
727 continue;
728 /*
729 * The queue->lock protects against races with
730 * rpc_make_runnable().
731 *
732 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
733 * rpc_task, rpc_make_runnable() can assign it to a
734 * different workqueue. We therefore cannot assume that the
735 * rpc_task pointer may still be dereferenced.
736 */
737 queue = task->tk_waitqueue;
738 spin_lock_bh(&queue->lock);
739 if (!RPC_IS_QUEUED(task)) {
740 spin_unlock_bh(&queue->lock);
741 continue;
742 }
743 rpc_clear_running(task);
744 spin_unlock_bh(&queue->lock);
745 if (task_is_async)
746 return;
747
748 /* sync task: sleep here */
749 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
750 status = out_of_line_wait_on_bit(&task->tk_runstate,
751 RPC_TASK_QUEUED, rpc_wait_bit_killable,
752 TASK_KILLABLE);
753 if (status == -ERESTARTSYS) {
754 /*
755 * When a sync task receives a signal, it exits with
756 * -ERESTARTSYS. In order to catch any callbacks that
757 * clean up after sleeping on some queue, we don't
758 * break the loop here, but go around once more.
759 */
760 dprintk("RPC: %5u got signal\n", task->tk_pid);
761 task->tk_flags |= RPC_TASK_KILLED;
762 rpc_exit(task, -ERESTARTSYS);
763 }
764 rpc_set_running(task);
765 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
766 }
767
768 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
769 task->tk_status);
770 /* Release all resources associated with the task */
771 rpc_release_task(task);
772}
773
774/*
775 * User-visible entry point to the scheduler.
776 *
777 * This may be called recursively if e.g. an async NFS task updates
778 * the attributes and finds that dirty pages must be flushed.
779 * NOTE: Upon exit of this function the task is guaranteed to be
780 * released. In particular note that tk_release() will have
781 * been called, so your task memory may have been freed.
782 */
783void rpc_execute(struct rpc_task *task)
784{
785 rpc_set_active(task);
786 rpc_make_runnable(task);
787 if (!RPC_IS_ASYNC(task))
788 __rpc_execute(task);
789}
790
791static void rpc_async_schedule(struct work_struct *work)
792{
793 current->flags |= PF_FSTRANS;
794 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
795 current->flags &= ~PF_FSTRANS;
796}
797
798/**
799 * rpc_malloc - allocate an RPC buffer
800 * @task: RPC task that will use this buffer
801 * @size: requested byte size
802 *
803 * To prevent rpciod from hanging, this allocator never sleeps,
804 * returning NULL if the request cannot be serviced immediately.
805 * The caller can arrange to sleep in a way that is safe for rpciod.
806 *
807 * Most requests are 'small' (under 2KiB) and can be serviced from a
808 * mempool, ensuring that NFS reads and writes can always proceed,
809 * and that there is good locality of reference for these buffers.
810 *
811 * In order to avoid memory starvation triggering more writebacks of
812 * NFS requests, we avoid using GFP_KERNEL.
813 */
814void *rpc_malloc(struct rpc_task *task, size_t size)
815{
816 struct rpc_buffer *buf;
817 gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
818
819 size += sizeof(struct rpc_buffer);
820 if (size <= RPC_BUFFER_MAXSIZE)
821 buf = mempool_alloc(rpc_buffer_mempool, gfp);
822 else
823 buf = kmalloc(size, gfp);
824
825 if (!buf)
826 return NULL;
827
828 buf->len = size;
829 dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
830 task->tk_pid, size, buf);
831 return &buf->data;
832}
833EXPORT_SYMBOL_GPL(rpc_malloc);
834
835/**
836 * rpc_free - free buffer allocated via rpc_malloc
837 * @buffer: buffer to free
838 *
839 */
840void rpc_free(void *buffer)
841{
842 size_t size;
843 struct rpc_buffer *buf;
844
845 if (!buffer)
846 return;
847
848 buf = container_of(buffer, struct rpc_buffer, data);
849 size = buf->len;
850
851 dprintk("RPC: freeing buffer of size %zu at %p\n",
852 size, buf);
853
854 if (size <= RPC_BUFFER_MAXSIZE)
855 mempool_free(buf, rpc_buffer_mempool);
856 else
857 kfree(buf);
858}
859EXPORT_SYMBOL_GPL(rpc_free);
860
861/*
862 * Creation and deletion of RPC task structures
863 */
864static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
865{
866 memset(task, 0, sizeof(*task));
867 atomic_set(&task->tk_count, 1);
868 task->tk_flags = task_setup_data->flags;
869 task->tk_ops = task_setup_data->callback_ops;
870 task->tk_calldata = task_setup_data->callback_data;
871 INIT_LIST_HEAD(&task->tk_task);
872
873 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
874 task->tk_owner = current->tgid;
875
876 /* Initialize workqueue for async tasks */
877 task->tk_workqueue = task_setup_data->workqueue;
878
879 if (task->tk_ops->rpc_call_prepare != NULL)
880 task->tk_action = rpc_prepare_task;
881
882 rpc_init_task_statistics(task);
883
884 dprintk("RPC: new task initialized, procpid %u\n",
885 task_pid_nr(current));
886}
887
888static struct rpc_task *
889rpc_alloc_task(void)
890{
891 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
892}
893
894/*
895 * Create a new task for the specified client.
896 */
897struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
898{
899 struct rpc_task *task = setup_data->task;
900 unsigned short flags = 0;
901
902 if (task == NULL) {
903 task = rpc_alloc_task();
904 if (task == NULL) {
905 rpc_release_calldata(setup_data->callback_ops,
906 setup_data->callback_data);
907 return ERR_PTR(-ENOMEM);
908 }
909 flags = RPC_TASK_DYNAMIC;
910 }
911
912 rpc_init_task(task, setup_data);
913 task->tk_flags |= flags;
914 dprintk("RPC: allocated task %p\n", task);
915 return task;
916}
917
918static void rpc_free_task(struct rpc_task *task)
919{
920 const struct rpc_call_ops *tk_ops = task->tk_ops;
921 void *calldata = task->tk_calldata;
922
923 if (task->tk_flags & RPC_TASK_DYNAMIC) {
924 dprintk("RPC: %5u freeing task\n", task->tk_pid);
925 mempool_free(task, rpc_task_mempool);
926 }
927 rpc_release_calldata(tk_ops, calldata);
928}
929
930static void rpc_async_release(struct work_struct *work)
931{
932 rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
933}
934
935static void rpc_release_resources_task(struct rpc_task *task)
936{
937 if (task->tk_rqstp)
938 xprt_release(task);
939 if (task->tk_msg.rpc_cred) {
940 put_rpccred(task->tk_msg.rpc_cred);
941 task->tk_msg.rpc_cred = NULL;
942 }
943 rpc_task_release_client(task);
944}
945
946static void rpc_final_put_task(struct rpc_task *task,
947 struct workqueue_struct *q)
948{
949 if (q != NULL) {
950 INIT_WORK(&task->u.tk_work, rpc_async_release);
951 queue_work(q, &task->u.tk_work);
952 } else
953 rpc_free_task(task);
954}
955
956static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
957{
958 if (atomic_dec_and_test(&task->tk_count)) {
959 rpc_release_resources_task(task);
960 rpc_final_put_task(task, q);
961 }
962}
963
964void rpc_put_task(struct rpc_task *task)
965{
966 rpc_do_put_task(task, NULL);
967}
968EXPORT_SYMBOL_GPL(rpc_put_task);
969
970void rpc_put_task_async(struct rpc_task *task)
971{
972 rpc_do_put_task(task, task->tk_workqueue);
973}
974EXPORT_SYMBOL_GPL(rpc_put_task_async);
975
976static void rpc_release_task(struct rpc_task *task)
977{
978 dprintk("RPC: %5u release task\n", task->tk_pid);
979
980 BUG_ON (RPC_IS_QUEUED(task));
981
982 rpc_release_resources_task(task);
983
984 /*
985 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
986 * so it should be safe to use task->tk_count as a test for whether
987 * or not any other processes still hold references to our rpc_task.
988 */
989 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
990 /* Wake up anyone who may be waiting for task completion */
991 if (!rpc_complete_task(task))
992 return;
993 } else {
994 if (!atomic_dec_and_test(&task->tk_count))
995 return;
996 }
997 rpc_final_put_task(task, task->tk_workqueue);
998}
999
1000int rpciod_up(void)
1001{
1002 return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1003}
1004
1005void rpciod_down(void)
1006{
1007 module_put(THIS_MODULE);
1008}
1009
1010/*
1011 * Start up the rpciod workqueue.
1012 */
1013static int rpciod_start(void)
1014{
1015 struct workqueue_struct *wq;
1016
1017 /*
1018 * Create the rpciod thread and wait for it to start.
1019 */
1020 dprintk("RPC: creating workqueue rpciod\n");
1021 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0);
1022 rpciod_workqueue = wq;
1023 return rpciod_workqueue != NULL;
1024}
1025
1026static void rpciod_stop(void)
1027{
1028 struct workqueue_struct *wq = NULL;
1029
1030 if (rpciod_workqueue == NULL)
1031 return;
1032 dprintk("RPC: destroying workqueue rpciod\n");
1033
1034 wq = rpciod_workqueue;
1035 rpciod_workqueue = NULL;
1036 destroy_workqueue(wq);
1037}
1038
1039void
1040rpc_destroy_mempool(void)
1041{
1042 rpciod_stop();
1043 if (rpc_buffer_mempool)
1044 mempool_destroy(rpc_buffer_mempool);
1045 if (rpc_task_mempool)
1046 mempool_destroy(rpc_task_mempool);
1047 if (rpc_task_slabp)
1048 kmem_cache_destroy(rpc_task_slabp);
1049 if (rpc_buffer_slabp)
1050 kmem_cache_destroy(rpc_buffer_slabp);
1051 rpc_destroy_wait_queue(&delay_queue);
1052}
1053
1054int
1055rpc_init_mempool(void)
1056{
1057 /*
1058 * The following is not strictly a mempool initialisation,
1059 * but there is no harm in doing it here
1060 */
1061 rpc_init_wait_queue(&delay_queue, "delayq");
1062 if (!rpciod_start())
1063 goto err_nomem;
1064
1065 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1066 sizeof(struct rpc_task),
1067 0, SLAB_HWCACHE_ALIGN,
1068 NULL);
1069 if (!rpc_task_slabp)
1070 goto err_nomem;
1071 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1072 RPC_BUFFER_MAXSIZE,
1073 0, SLAB_HWCACHE_ALIGN,
1074 NULL);
1075 if (!rpc_buffer_slabp)
1076 goto err_nomem;
1077 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1078 rpc_task_slabp);
1079 if (!rpc_task_mempool)
1080 goto err_nomem;
1081 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1082 rpc_buffer_slabp);
1083 if (!rpc_buffer_mempool)
1084 goto err_nomem;
1085 return 0;
1086err_nomem:
1087 rpc_destroy_mempool();
1088 return -ENOMEM;
1089}