Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
v5.4
   1/*
   2 *	An async IO implementation for Linux
   3 *	Written by Benjamin LaHaise <bcrl@kvack.org>
   4 *
   5 *	Implements an efficient asynchronous io interface.
   6 *
   7 *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
   8 *	Copyright 2018 Christoph Hellwig.
   9 *
  10 *	See ../COPYING for licensing terms.
  11 */
  12#define pr_fmt(fmt) "%s: " fmt, __func__
  13
  14#include <linux/kernel.h>
  15#include <linux/init.h>
  16#include <linux/errno.h>
  17#include <linux/time.h>
  18#include <linux/aio_abi.h>
  19#include <linux/export.h>
  20#include <linux/syscalls.h>
  21#include <linux/backing-dev.h>
  22#include <linux/refcount.h>
  23#include <linux/uio.h>
  24
  25#include <linux/sched/signal.h>
 
 
  26#include <linux/fs.h>
  27#include <linux/file.h>
  28#include <linux/mm.h>
  29#include <linux/mman.h>
  30#include <linux/mmu_context.h>
  31#include <linux/percpu.h>
  32#include <linux/slab.h>
  33#include <linux/timer.h>
  34#include <linux/aio.h>
  35#include <linux/highmem.h>
  36#include <linux/workqueue.h>
  37#include <linux/security.h>
  38#include <linux/eventfd.h>
  39#include <linux/blkdev.h>
  40#include <linux/compat.h>
  41#include <linux/migrate.h>
  42#include <linux/ramfs.h>
  43#include <linux/percpu-refcount.h>
  44#include <linux/mount.h>
  45#include <linux/pseudo_fs.h>
  46
  47#include <asm/kmap_types.h>
  48#include <linux/uaccess.h>
  49#include <linux/nospec.h>
  50
  51#include "internal.h"
  52
  53#define KIOCB_KEY		0
  54
  55#define AIO_RING_MAGIC			0xa10a10a1
  56#define AIO_RING_COMPAT_FEATURES	1
  57#define AIO_RING_INCOMPAT_FEATURES	0
  58struct aio_ring {
  59	unsigned	id;	/* kernel internal index number */
  60	unsigned	nr;	/* number of io_events */
  61	unsigned	head;	/* Written to by userland or under ring_lock
  62				 * mutex by aio_read_events_ring(). */
  63	unsigned	tail;
  64
  65	unsigned	magic;
  66	unsigned	compat_features;
  67	unsigned	incompat_features;
  68	unsigned	header_length;	/* size of aio_ring */
  69
  70
  71	struct io_event		io_events[0];
  72}; /* 128 bytes + ring size */
  73
  74/*
  75 * Plugging is meant to work with larger batches of IOs. If we don't
  76 * have more than the below, then don't bother setting up a plug.
  77 */
  78#define AIO_PLUG_THRESHOLD	2
  79
  80#define AIO_RING_PAGES	8
  81
  82struct kioctx_table {
  83	struct rcu_head		rcu;
  84	unsigned		nr;
  85	struct kioctx __rcu	*table[];
  86};
  87
  88struct kioctx_cpu {
  89	unsigned		reqs_available;
  90};
  91
  92struct ctx_rq_wait {
  93	struct completion comp;
  94	atomic_t count;
  95};
  96
  97struct kioctx {
  98	struct percpu_ref	users;
  99	atomic_t		dead;
 100
 101	struct percpu_ref	reqs;
 102
 103	unsigned long		user_id;
 104
 105	struct __percpu kioctx_cpu *cpu;
 106
 107	/*
 108	 * For percpu reqs_available, number of slots we move to/from global
 109	 * counter at a time:
 110	 */
 111	unsigned		req_batch;
 112	/*
 113	 * This is what userspace passed to io_setup(), it's not used for
 114	 * anything but counting against the global max_reqs quota.
 115	 *
 116	 * The real limit is nr_events - 1, which will be larger (see
 117	 * aio_setup_ring())
 118	 */
 119	unsigned		max_reqs;
 120
 121	/* Size of ringbuffer, in units of struct io_event */
 122	unsigned		nr_events;
 123
 124	unsigned long		mmap_base;
 125	unsigned long		mmap_size;
 126
 127	struct page		**ring_pages;
 128	long			nr_pages;
 129
 130	struct rcu_work		free_rwork;	/* see free_ioctx() */
 131
 132	/*
 133	 * signals when all in-flight requests are done
 134	 */
 135	struct ctx_rq_wait	*rq_wait;
 136
 137	struct {
 138		/*
 139		 * This counts the number of available slots in the ringbuffer,
 140		 * so we avoid overflowing it: it's decremented (if positive)
 141		 * when allocating a kiocb and incremented when the resulting
 142		 * io_event is pulled off the ringbuffer.
 143		 *
 144		 * We batch accesses to it with a percpu version.
 145		 */
 146		atomic_t	reqs_available;
 147	} ____cacheline_aligned_in_smp;
 148
 149	struct {
 150		spinlock_t	ctx_lock;
 151		struct list_head active_reqs;	/* used for cancellation */
 152	} ____cacheline_aligned_in_smp;
 153
 154	struct {
 155		struct mutex	ring_lock;
 156		wait_queue_head_t wait;
 157	} ____cacheline_aligned_in_smp;
 158
 159	struct {
 160		unsigned	tail;
 161		unsigned	completed_events;
 162		spinlock_t	completion_lock;
 163	} ____cacheline_aligned_in_smp;
 164
 165	struct page		*internal_pages[AIO_RING_PAGES];
 166	struct file		*aio_ring_file;
 167
 168	unsigned		id;
 169};
 170
 171/*
 172 * First field must be the file pointer in all the
 173 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
 174 */
 175struct fsync_iocb {
 176	struct file		*file;
 177	struct work_struct	work;
 178	bool			datasync;
 179};
 180
 181struct poll_iocb {
 182	struct file		*file;
 183	struct wait_queue_head	*head;
 184	__poll_t		events;
 185	bool			done;
 186	bool			cancelled;
 187	struct wait_queue_entry	wait;
 188	struct work_struct	work;
 189};
 190
 191/*
 192 * NOTE! Each of the iocb union members has the file pointer
 193 * as the first entry in their struct definition. So you can
 194 * access the file pointer through any of the sub-structs,
 195 * or directly as just 'ki_filp' in this struct.
 196 */
 197struct aio_kiocb {
 198	union {
 199		struct file		*ki_filp;
 200		struct kiocb		rw;
 201		struct fsync_iocb	fsync;
 202		struct poll_iocb	poll;
 203	};
 204
 205	struct kioctx		*ki_ctx;
 206	kiocb_cancel_fn		*ki_cancel;
 207
 208	struct io_event		ki_res;
 209
 210	struct list_head	ki_list;	/* the aio core uses this
 211						 * for cancellation */
 212	refcount_t		ki_refcnt;
 213
 214	/*
 215	 * If the aio_resfd field of the userspace iocb is not zero,
 216	 * this is the underlying eventfd context to deliver events to.
 217	 */
 218	struct eventfd_ctx	*ki_eventfd;
 219};
 220
 221/*------ sysctl variables----*/
 222static DEFINE_SPINLOCK(aio_nr_lock);
 223unsigned long aio_nr;		/* current system wide number of aio requests */
 224unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
 225/*----end sysctl variables---*/
 226
 227static struct kmem_cache	*kiocb_cachep;
 228static struct kmem_cache	*kioctx_cachep;
 229
 230static struct vfsmount *aio_mnt;
 231
 232static const struct file_operations aio_ring_fops;
 233static const struct address_space_operations aio_ctx_aops;
 
 234
 235static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
 236{
 237	struct file *file;
 238	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
 239	if (IS_ERR(inode))
 240		return ERR_CAST(inode);
 241
 242	inode->i_mapping->a_ops = &aio_ctx_aops;
 243	inode->i_mapping->private_data = ctx;
 244	inode->i_size = PAGE_SIZE * nr_pages;
 245
 246	file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
 247				O_RDWR, &aio_ring_fops);
 248	if (IS_ERR(file))
 249		iput(inode);
 250	return file;
 251}
 252
 253static int aio_init_fs_context(struct fs_context *fc)
 254{
 255	if (!init_pseudo(fc, AIO_RING_MAGIC))
 256		return -ENOMEM;
 257	fc->s_iflags |= SB_I_NOEXEC;
 258	return 0;
 259}
 260
 261/* aio_setup
 262 *	Creates the slab caches used by the aio routines, panic on
 263 *	failure as this is done early during the boot sequence.
 264 */
 265static int __init aio_setup(void)
 266{
 267	static struct file_system_type aio_fs = {
 268		.name		= "aio",
 269		.init_fs_context = aio_init_fs_context,
 270		.kill_sb	= kill_anon_super,
 271	};
 272	aio_mnt = kern_mount(&aio_fs);
 273	if (IS_ERR(aio_mnt))
 274		panic("Failed to create aio fs mount.");
 275
 276	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
 277	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
 278	return 0;
 279}
 280__initcall(aio_setup);
 281
 282static void put_aio_ring_file(struct kioctx *ctx)
 283{
 284	struct file *aio_ring_file = ctx->aio_ring_file;
 285	struct address_space *i_mapping;
 286
 287	if (aio_ring_file) {
 288		truncate_setsize(file_inode(aio_ring_file), 0);
 289
 290		/* Prevent further access to the kioctx from migratepages */
 291		i_mapping = aio_ring_file->f_mapping;
 292		spin_lock(&i_mapping->private_lock);
 293		i_mapping->private_data = NULL;
 294		ctx->aio_ring_file = NULL;
 295		spin_unlock(&i_mapping->private_lock);
 296
 297		fput(aio_ring_file);
 298	}
 299}
 
 300
 301static void aio_free_ring(struct kioctx *ctx)
 302{
 303	int i;
 
 304
 305	/* Disconnect the kiotx from the ring file.  This prevents future
 306	 * accesses to the kioctx from page migration.
 307	 */
 308	put_aio_ring_file(ctx);
 309
 310	for (i = 0; i < ctx->nr_pages; i++) {
 311		struct page *page;
 312		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
 313				page_count(ctx->ring_pages[i]));
 314		page = ctx->ring_pages[i];
 315		if (!page)
 316			continue;
 317		ctx->ring_pages[i] = NULL;
 318		put_page(page);
 319	}
 320
 321	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
 322		kfree(ctx->ring_pages);
 323		ctx->ring_pages = NULL;
 324	}
 325}
 326
 327static int aio_ring_mremap(struct vm_area_struct *vma)
 328{
 329	struct file *file = vma->vm_file;
 330	struct mm_struct *mm = vma->vm_mm;
 331	struct kioctx_table *table;
 332	int i, res = -EINVAL;
 333
 334	spin_lock(&mm->ioctx_lock);
 335	rcu_read_lock();
 336	table = rcu_dereference(mm->ioctx_table);
 337	for (i = 0; i < table->nr; i++) {
 338		struct kioctx *ctx;
 339
 340		ctx = rcu_dereference(table->table[i]);
 341		if (ctx && ctx->aio_ring_file == file) {
 342			if (!atomic_read(&ctx->dead)) {
 343				ctx->user_id = ctx->mmap_base = vma->vm_start;
 344				res = 0;
 345			}
 346			break;
 347		}
 348	}
 349
 350	rcu_read_unlock();
 351	spin_unlock(&mm->ioctx_lock);
 352	return res;
 
 353}
 354
 355static const struct vm_operations_struct aio_ring_vm_ops = {
 356	.mremap		= aio_ring_mremap,
 357#if IS_ENABLED(CONFIG_MMU)
 358	.fault		= filemap_fault,
 359	.map_pages	= filemap_map_pages,
 360	.page_mkwrite	= filemap_page_mkwrite,
 361#endif
 362};
 363
 364static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
 365{
 366	vma->vm_flags |= VM_DONTEXPAND;
 367	vma->vm_ops = &aio_ring_vm_ops;
 368	return 0;
 369}
 370
 371static const struct file_operations aio_ring_fops = {
 372	.mmap = aio_ring_mmap,
 373};
 374
 375#if IS_ENABLED(CONFIG_MIGRATION)
 376static int aio_migratepage(struct address_space *mapping, struct page *new,
 377			struct page *old, enum migrate_mode mode)
 378{
 379	struct kioctx *ctx;
 380	unsigned long flags;
 381	pgoff_t idx;
 382	int rc;
 383
 384	/*
 385	 * We cannot support the _NO_COPY case here, because copy needs to
 386	 * happen under the ctx->completion_lock. That does not work with the
 387	 * migration workflow of MIGRATE_SYNC_NO_COPY.
 388	 */
 389	if (mode == MIGRATE_SYNC_NO_COPY)
 390		return -EINVAL;
 391
 392	rc = 0;
 393
 394	/* mapping->private_lock here protects against the kioctx teardown.  */
 395	spin_lock(&mapping->private_lock);
 396	ctx = mapping->private_data;
 397	if (!ctx) {
 398		rc = -EINVAL;
 399		goto out;
 400	}
 401
 402	/* The ring_lock mutex.  The prevents aio_read_events() from writing
 403	 * to the ring's head, and prevents page migration from mucking in
 404	 * a partially initialized kiotx.
 405	 */
 406	if (!mutex_trylock(&ctx->ring_lock)) {
 407		rc = -EAGAIN;
 408		goto out;
 409	}
 410
 411	idx = old->index;
 412	if (idx < (pgoff_t)ctx->nr_pages) {
 413		/* Make sure the old page hasn't already been changed */
 414		if (ctx->ring_pages[idx] != old)
 415			rc = -EAGAIN;
 416	} else
 417		rc = -EINVAL;
 418
 419	if (rc != 0)
 420		goto out_unlock;
 421
 422	/* Writeback must be complete */
 423	BUG_ON(PageWriteback(old));
 424	get_page(new);
 425
 426	rc = migrate_page_move_mapping(mapping, new, old, 1);
 427	if (rc != MIGRATEPAGE_SUCCESS) {
 428		put_page(new);
 429		goto out_unlock;
 430	}
 431
 432	/* Take completion_lock to prevent other writes to the ring buffer
 433	 * while the old page is copied to the new.  This prevents new
 434	 * events from being lost.
 435	 */
 436	spin_lock_irqsave(&ctx->completion_lock, flags);
 437	migrate_page_copy(new, old);
 438	BUG_ON(ctx->ring_pages[idx] != old);
 439	ctx->ring_pages[idx] = new;
 440	spin_unlock_irqrestore(&ctx->completion_lock, flags);
 441
 442	/* The old page is no longer accessible. */
 443	put_page(old);
 444
 445out_unlock:
 446	mutex_unlock(&ctx->ring_lock);
 447out:
 448	spin_unlock(&mapping->private_lock);
 449	return rc;
 450}
 451#endif
 452
 453static const struct address_space_operations aio_ctx_aops = {
 454	.set_page_dirty = __set_page_dirty_no_writeback,
 455#if IS_ENABLED(CONFIG_MIGRATION)
 456	.migratepage	= aio_migratepage,
 457#endif
 458};
 459
 460static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
 461{
 462	struct aio_ring *ring;
 463	struct mm_struct *mm = current->mm;
 464	unsigned long size, unused;
 
 465	int nr_pages;
 466	int i;
 467	struct file *file;
 468
 469	/* Compensate for the ring buffer's head/tail overlap entry */
 470	nr_events += 2;	/* 1 is required, 2 for good luck */
 471
 472	size = sizeof(struct aio_ring);
 473	size += sizeof(struct io_event) * nr_events;
 
 474
 475	nr_pages = PFN_UP(size);
 476	if (nr_pages < 0)
 477		return -EINVAL;
 478
 479	file = aio_private_file(ctx, nr_pages);
 480	if (IS_ERR(file)) {
 481		ctx->aio_ring_file = NULL;
 482		return -ENOMEM;
 483	}
 484
 485	ctx->aio_ring_file = file;
 486	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
 487			/ sizeof(struct io_event);
 488
 489	ctx->ring_pages = ctx->internal_pages;
 
 490	if (nr_pages > AIO_RING_PAGES) {
 491		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
 492					  GFP_KERNEL);
 493		if (!ctx->ring_pages) {
 494			put_aio_ring_file(ctx);
 495			return -ENOMEM;
 496		}
 497	}
 498
 499	for (i = 0; i < nr_pages; i++) {
 500		struct page *page;
 501		page = find_or_create_page(file->f_mapping,
 502					   i, GFP_HIGHUSER | __GFP_ZERO);
 503		if (!page)
 504			break;
 505		pr_debug("pid(%d) page[%d]->count=%d\n",
 506			 current->pid, i, page_count(page));
 507		SetPageUptodate(page);
 508		unlock_page(page);
 509
 510		ctx->ring_pages[i] = page;
 511	}
 512	ctx->nr_pages = i;
 513
 514	if (unlikely(i != nr_pages)) {
 515		aio_free_ring(ctx);
 516		return -ENOMEM;
 517	}
 518
 519	ctx->mmap_size = nr_pages * PAGE_SIZE;
 520	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
 521
 522	if (down_write_killable(&mm->mmap_sem)) {
 523		ctx->mmap_size = 0;
 524		aio_free_ring(ctx);
 525		return -EINTR;
 526	}
 527
 528	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
 529				       PROT_READ | PROT_WRITE,
 530				       MAP_SHARED, 0, &unused, NULL);
 531	up_write(&mm->mmap_sem);
 532	if (IS_ERR((void *)ctx->mmap_base)) {
 533		ctx->mmap_size = 0;
 534		aio_free_ring(ctx);
 535		return -ENOMEM;
 536	}
 537
 538	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
 539
 540	ctx->user_id = ctx->mmap_base;
 541	ctx->nr_events = nr_events; /* trusted copy */
 542
 543	ring = kmap_atomic(ctx->ring_pages[0]);
 544	ring->nr = nr_events;	/* user copy */
 545	ring->id = ~0U;
 546	ring->head = ring->tail = 0;
 547	ring->magic = AIO_RING_MAGIC;
 548	ring->compat_features = AIO_RING_COMPAT_FEATURES;
 549	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
 550	ring->header_length = sizeof(struct aio_ring);
 551	kunmap_atomic(ring);
 552	flush_dcache_page(ctx->ring_pages[0]);
 553
 554	return 0;
 555}
 556
 
 
 
 
 557#define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
 558#define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
 559#define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
 560
 561void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
 562{
 563	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
 564	struct kioctx *ctx = req->ki_ctx;
 565	unsigned long flags;
 
 
 
 
 
 
 
 
 
 566
 567	if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
 568		return;
 569
 570	spin_lock_irqsave(&ctx->ctx_lock, flags);
 571	list_add_tail(&req->ki_list, &ctx->active_reqs);
 572	req->ki_cancel = cancel;
 573	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
 574}
 575EXPORT_SYMBOL(kiocb_set_cancel_fn);
 576
 577/*
 578 * free_ioctx() should be RCU delayed to synchronize against the RCU
 579 * protected lookup_ioctx() and also needs process context to call
 580 * aio_free_ring().  Use rcu_work.
 581 */
 582static void free_ioctx(struct work_struct *work)
 583{
 584	struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
 585					  free_rwork);
 586	pr_debug("freeing %p\n", ctx);
 587
 588	aio_free_ring(ctx);
 589	free_percpu(ctx->cpu);
 590	percpu_ref_exit(&ctx->reqs);
 591	percpu_ref_exit(&ctx->users);
 592	kmem_cache_free(kioctx_cachep, ctx);
 593}
 594
 595static void free_ioctx_reqs(struct percpu_ref *ref)
 596{
 597	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
 598
 599	/* At this point we know that there are no any in-flight requests */
 600	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
 601		complete(&ctx->rq_wait->comp);
 602
 603	/* Synchronize against RCU protected table->table[] dereferences */
 604	INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
 605	queue_rcu_work(system_wq, &ctx->free_rwork);
 606}
 607
 608/*
 609 * When this function runs, the kioctx has been removed from the "hash table"
 610 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
 611 * now it's safe to cancel any that need to be.
 612 */
 613static void free_ioctx_users(struct percpu_ref *ref)
 614{
 615	struct kioctx *ctx = container_of(ref, struct kioctx, users);
 616	struct aio_kiocb *req;
 617
 618	spin_lock_irq(&ctx->ctx_lock);
 619
 620	while (!list_empty(&ctx->active_reqs)) {
 621		req = list_first_entry(&ctx->active_reqs,
 622				       struct aio_kiocb, ki_list);
 623		req->ki_cancel(&req->rw);
 624		list_del_init(&req->ki_list);
 
 
 
 
 625	}
 626
 627	spin_unlock_irq(&ctx->ctx_lock);
 628
 629	percpu_ref_kill(&ctx->reqs);
 630	percpu_ref_put(&ctx->reqs);
 631}
 632
 633static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
 634{
 635	unsigned i, new_nr;
 636	struct kioctx_table *table, *old;
 637	struct aio_ring *ring;
 638
 639	spin_lock(&mm->ioctx_lock);
 640	table = rcu_dereference_raw(mm->ioctx_table);
 641
 642	while (1) {
 643		if (table)
 644			for (i = 0; i < table->nr; i++)
 645				if (!rcu_access_pointer(table->table[i])) {
 646					ctx->id = i;
 647					rcu_assign_pointer(table->table[i], ctx);
 648					spin_unlock(&mm->ioctx_lock);
 649
 650					/* While kioctx setup is in progress,
 651					 * we are protected from page migration
 652					 * changes ring_pages by ->ring_lock.
 653					 */
 654					ring = kmap_atomic(ctx->ring_pages[0]);
 655					ring->id = ctx->id;
 656					kunmap_atomic(ring);
 657					return 0;
 658				}
 659
 660		new_nr = (table ? table->nr : 1) * 4;
 661		spin_unlock(&mm->ioctx_lock);
 662
 663		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
 664				new_nr, GFP_KERNEL);
 665		if (!table)
 666			return -ENOMEM;
 667
 668		table->nr = new_nr;
 669
 670		spin_lock(&mm->ioctx_lock);
 671		old = rcu_dereference_raw(mm->ioctx_table);
 672
 673		if (!old) {
 674			rcu_assign_pointer(mm->ioctx_table, table);
 675		} else if (table->nr > old->nr) {
 676			memcpy(table->table, old->table,
 677			       old->nr * sizeof(struct kioctx *));
 678
 679			rcu_assign_pointer(mm->ioctx_table, table);
 680			kfree_rcu(old, rcu);
 681		} else {
 682			kfree(table);
 683			table = old;
 684		}
 685	}
 686}
 687
 688static void aio_nr_sub(unsigned nr)
 689{
 690	spin_lock(&aio_nr_lock);
 691	if (WARN_ON(aio_nr - nr > aio_nr))
 692		aio_nr = 0;
 693	else
 694		aio_nr -= nr;
 695	spin_unlock(&aio_nr_lock);
 696}
 697
 698/* ioctx_alloc
 699 *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
 700 */
 701static struct kioctx *ioctx_alloc(unsigned nr_events)
 702{
 703	struct mm_struct *mm = current->mm;
 704	struct kioctx *ctx;
 705	int err = -ENOMEM;
 706
 707	/*
 708	 * Store the original nr_events -- what userspace passed to io_setup(),
 709	 * for counting against the global limit -- before it changes.
 710	 */
 711	unsigned int max_reqs = nr_events;
 712
 713	/*
 714	 * We keep track of the number of available ringbuffer slots, to prevent
 715	 * overflow (reqs_available), and we also use percpu counters for this.
 716	 *
 717	 * So since up to half the slots might be on other cpu's percpu counters
 718	 * and unavailable, double nr_events so userspace sees what they
 719	 * expected: additionally, we move req_batch slots to/from percpu
 720	 * counters at a time, so make sure that isn't 0:
 721	 */
 722	nr_events = max(nr_events, num_possible_cpus() * 4);
 723	nr_events *= 2;
 724
 725	/* Prevent overflows */
 726	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
 
 727		pr_debug("ENOMEM: nr_events too high\n");
 728		return ERR_PTR(-EINVAL);
 729	}
 730
 731	if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
 732		return ERR_PTR(-EAGAIN);
 733
 734	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
 735	if (!ctx)
 736		return ERR_PTR(-ENOMEM);
 737
 738	ctx->max_reqs = max_reqs;
 
 
 739
 
 740	spin_lock_init(&ctx->ctx_lock);
 741	spin_lock_init(&ctx->completion_lock);
 742	mutex_init(&ctx->ring_lock);
 743	/* Protect against page migration throughout kiotx setup by keeping
 744	 * the ring_lock mutex held until setup is complete. */
 745	mutex_lock(&ctx->ring_lock);
 746	init_waitqueue_head(&ctx->wait);
 747
 748	INIT_LIST_HEAD(&ctx->active_reqs);
 
 
 749
 750	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
 751		goto err;
 752
 753	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
 754		goto err;
 755
 756	ctx->cpu = alloc_percpu(struct kioctx_cpu);
 757	if (!ctx->cpu)
 758		goto err;
 759
 760	err = aio_setup_ring(ctx, nr_events);
 761	if (err < 0)
 762		goto err;
 763
 764	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
 765	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
 766	if (ctx->req_batch < 1)
 767		ctx->req_batch = 1;
 768
 769	/* limit the number of system wide aios */
 770	spin_lock(&aio_nr_lock);
 771	if (aio_nr + ctx->max_reqs > aio_max_nr ||
 772	    aio_nr + ctx->max_reqs < aio_nr) {
 773		spin_unlock(&aio_nr_lock);
 774		err = -EAGAIN;
 775		goto err_ctx;
 776	}
 777	aio_nr += ctx->max_reqs;
 778	spin_unlock(&aio_nr_lock);
 779
 780	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
 781	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
 782
 783	err = ioctx_add_table(ctx, mm);
 784	if (err)
 785		goto err_cleanup;
 786
 787	/* Release the ring_lock mutex now that all setup is complete. */
 788	mutex_unlock(&ctx->ring_lock);
 789
 790	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
 791		 ctx, ctx->user_id, mm, ctx->nr_events);
 792	return ctx;
 793
 794err_cleanup:
 795	aio_nr_sub(ctx->max_reqs);
 796err_ctx:
 797	atomic_set(&ctx->dead, 1);
 798	if (ctx->mmap_size)
 799		vm_munmap(ctx->mmap_base, ctx->mmap_size);
 800	aio_free_ring(ctx);
 801err:
 802	mutex_unlock(&ctx->ring_lock);
 803	free_percpu(ctx->cpu);
 804	percpu_ref_exit(&ctx->reqs);
 805	percpu_ref_exit(&ctx->users);
 806	kmem_cache_free(kioctx_cachep, ctx);
 807	pr_debug("error allocating ioctx %d\n", err);
 808	return ERR_PTR(err);
 809}
 810
 811/* kill_ioctx
 812 *	Cancels all outstanding aio requests on an aio context.  Used
 813 *	when the processes owning a context have all exited to encourage
 814 *	the rapid destruction of the kioctx.
 815 */
 816static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
 817		      struct ctx_rq_wait *wait)
 818{
 819	struct kioctx_table *table;
 
 
 
 820
 821	spin_lock(&mm->ioctx_lock);
 822	if (atomic_xchg(&ctx->dead, 1)) {
 823		spin_unlock(&mm->ioctx_lock);
 824		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 825	}
 826
 827	table = rcu_dereference_raw(mm->ioctx_table);
 828	WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
 829	RCU_INIT_POINTER(table->table[ctx->id], NULL);
 830	spin_unlock(&mm->ioctx_lock);
 831
 832	/* free_ioctx_reqs() will do the necessary RCU synchronization */
 833	wake_up_all(&ctx->wait);
 
 
 
 
 
 
 
 
 834
 835	/*
 836	 * It'd be more correct to do this in free_ioctx(), after all
 837	 * the outstanding kiocbs have finished - but by then io_destroy
 838	 * has already returned, so io_setup() could potentially return
 839	 * -EAGAIN with no ioctxs actually in use (as far as userspace
 840	 *  could tell).
 841	 */
 842	aio_nr_sub(ctx->max_reqs);
 843
 844	if (ctx->mmap_size)
 845		vm_munmap(ctx->mmap_base, ctx->mmap_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 846
 847	ctx->rq_wait = wait;
 848	percpu_ref_kill(&ctx->users);
 849	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 850}
 851
 852/*
 853 * exit_aio: called when the last user of mm goes away.  At this point, there is
 854 * no way for any new requests to be submited or any of the io_* syscalls to be
 855 * called on the context.
 856 *
 857 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
 858 * them.
 
 
 859 */
 860void exit_aio(struct mm_struct *mm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 861{
 862	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
 863	struct ctx_rq_wait wait;
 864	int i, skipped;
 
 
 
 
 865
 866	if (!table)
 867		return;
 868
 869	atomic_set(&wait.count, table->nr);
 870	init_completion(&wait.comp);
 
 
 
 
 
 
 
 
 
 871
 872	skipped = 0;
 873	for (i = 0; i < table->nr; ++i) {
 874		struct kioctx *ctx =
 875			rcu_dereference_protected(table->table[i], true);
 876
 877		if (!ctx) {
 878			skipped++;
 879			continue;
 880		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 881
 
 
 
 
 
 
 
 882		/*
 883		 * We don't need to bother with munmap() here - exit_mmap(mm)
 884		 * is coming and it'll unmap everything. And we simply can't,
 885		 * this is not necessarily our ->mm.
 886		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
 887		 * that it needs to unmap the area, just set it to 0.
 
 888		 */
 889		ctx->mmap_size = 0;
 890		kill_ioctx(mm, ctx, &wait);
 
 
 
 891	}
 892
 893	if (!atomic_sub_and_test(skipped, &wait.count)) {
 894		/* Wait until all IO for the context are done. */
 895		wait_for_completion(&wait.comp);
 
 
 
 
 
 896	}
 897
 898	RCU_INIT_POINTER(mm->ioctx_table, NULL);
 899	kfree(table);
 
 
 
 
 
 
 
 
 
 900}
 901
 902static void put_reqs_available(struct kioctx *ctx, unsigned nr)
 
 903{
 904	struct kioctx_cpu *kcpu;
 905	unsigned long flags;
 906
 907	local_irq_save(flags);
 908	kcpu = this_cpu_ptr(ctx->cpu);
 909	kcpu->reqs_available += nr;
 
 
 
 
 910
 911	while (kcpu->reqs_available >= ctx->req_batch * 2) {
 912		kcpu->reqs_available -= ctx->req_batch;
 913		atomic_add(ctx->req_batch, &ctx->reqs_available);
 914	}
 915
 916	local_irq_restore(flags);
 
 
 
 
 
 
 
 
 
 
 917}
 918
 919static bool __get_reqs_available(struct kioctx *ctx)
 920{
 921	struct kioctx_cpu *kcpu;
 922	bool ret = false;
 923	unsigned long flags;
 
 924
 925	local_irq_save(flags);
 926	kcpu = this_cpu_ptr(ctx->cpu);
 927	if (!kcpu->reqs_available) {
 928		int old, avail = atomic_read(&ctx->reqs_available);
 929
 930		do {
 931			if (avail < ctx->req_batch)
 932				goto out;
 933
 934			old = avail;
 935			avail = atomic_cmpxchg(&ctx->reqs_available,
 936					       avail, avail - ctx->req_batch);
 937		} while (avail != old);
 
 
 
 
 
 
 938
 939		kcpu->reqs_available += ctx->req_batch;
 940	}
 941
 942	ret = true;
 943	kcpu->reqs_available--;
 944out:
 945	local_irq_restore(flags);
 946	return ret;
 947}
 948
 949/* refill_reqs_available
 950 *	Updates the reqs_available reference counts used for tracking the
 951 *	number of free slots in the completion ring.  This can be called
 952 *	from aio_complete() (to optimistically update reqs_available) or
 953 *	from aio_get_req() (the we're out of events case).  It must be
 954 *	called holding ctx->completion_lock.
 955 */
 956static void refill_reqs_available(struct kioctx *ctx, unsigned head,
 957                                  unsigned tail)
 958{
 959	unsigned events_in_ring, completed;
 960
 961	/* Clamp head since userland can write to it. */
 962	head %= ctx->nr_events;
 963	if (head <= tail)
 964		events_in_ring = tail - head;
 965	else
 966		events_in_ring = ctx->nr_events - (head - tail);
 967
 968	completed = ctx->completed_events;
 969	if (events_in_ring < completed)
 970		completed -= events_in_ring;
 971	else
 972		completed = 0;
 973
 974	if (!completed)
 975		return;
 
 
 
 
 
 976
 977	ctx->completed_events -= completed;
 978	put_reqs_available(ctx, completed);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 979}
 980
 981/* user_refill_reqs_available
 982 *	Called to refill reqs_available when aio_get_req() encounters an
 983 *	out of space in the completion ring.
 984 */
 985static void user_refill_reqs_available(struct kioctx *ctx)
 986{
 987	spin_lock_irq(&ctx->completion_lock);
 988	if (ctx->completed_events) {
 989		struct aio_ring *ring;
 990		unsigned head;
 991
 992		/* Access of ring->head may race with aio_read_events_ring()
 993		 * here, but that's okay since whether we read the old version
 994		 * or the new version, and either will be valid.  The important
 995		 * part is that head cannot pass tail since we prevent
 996		 * aio_complete() from updating tail by holding
 997		 * ctx->completion_lock.  Even if head is invalid, the check
 998		 * against ctx->completed_events below will make sure we do the
 999		 * safe/right thing.
1000		 */
1001		ring = kmap_atomic(ctx->ring_pages[0]);
1002		head = ring->head;
1003		kunmap_atomic(ring);
1004
1005		refill_reqs_available(ctx, head, ctx->tail);
 
 
 
 
 
 
 
 
 
 
1006	}
1007
1008	spin_unlock_irq(&ctx->completion_lock);
 
1009}
1010
1011static bool get_reqs_available(struct kioctx *ctx)
 
 
 
 
 
 
 
 
 
1012{
1013	if (__get_reqs_available(ctx))
1014		return true;
1015	user_refill_reqs_available(ctx);
1016	return __get_reqs_available(ctx);
 
 
 
 
 
 
1017}
1018
1019/* aio_get_req
1020 *	Allocate a slot for an aio request.
1021 * Returns NULL if no requests are free.
 
 
 
 
1022 *
1023 * The refcount is initialized to 2 - one for the async op completion,
1024 * one for the synchronous code that does this.
 
 
 
 
 
 
 
 
 
 
 
1025 */
1026static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1027{
1028	struct aio_kiocb *req;
1029
1030	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1031	if (unlikely(!req))
1032		return NULL;
1033
1034	if (unlikely(!get_reqs_available(ctx))) {
1035		kmem_cache_free(kiocb_cachep, req);
1036		return NULL;
1037	}
1038
1039	percpu_ref_get(&ctx->reqs);
1040	req->ki_ctx = ctx;
1041	INIT_LIST_HEAD(&req->ki_list);
1042	refcount_set(&req->ki_refcnt, 2);
1043	req->ki_eventfd = NULL;
1044	return req;
1045}
1046
1047static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1048{
1049	struct aio_ring __user *ring  = (void __user *)ctx_id;
1050	struct mm_struct *mm = current->mm;
1051	struct kioctx *ctx, *ret = NULL;
1052	struct kioctx_table *table;
1053	unsigned id;
 
 
 
1054
1055	if (get_user(id, &ring->id))
1056		return NULL;
1057
1058	rcu_read_lock();
1059	table = rcu_dereference(mm->ioctx_table);
 
 
 
 
 
 
1060
1061	if (!table || id >= table->nr)
 
 
 
 
1062		goto out;
 
1063
1064	id = array_index_nospec(id, table->nr);
1065	ctx = rcu_dereference(table->table[id]);
1066	if (ctx && ctx->user_id == ctx_id) {
1067		if (percpu_ref_tryget_live(&ctx->users))
1068			ret = ctx;
 
 
 
 
 
 
 
 
 
 
1069	}
1070out:
1071	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072	return ret;
1073}
1074
1075static inline void iocb_destroy(struct aio_kiocb *iocb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1076{
1077	if (iocb->ki_eventfd)
1078		eventfd_ctx_put(iocb->ki_eventfd);
1079	if (iocb->ki_filp)
1080		fput(iocb->ki_filp);
1081	percpu_ref_put(&iocb->ki_ctx->reqs);
1082	kmem_cache_free(kiocb_cachep, iocb);
 
 
 
1083}
 
1084
1085/* aio_complete
1086 *	Called when the io request on the given iocb is complete.
 
 
1087 */
1088static void aio_complete(struct aio_kiocb *iocb)
1089{
1090	struct kioctx	*ctx = iocb->ki_ctx;
 
1091	struct aio_ring	*ring;
1092	struct io_event	*ev_page, *event;
1093	unsigned tail, pos, head;
1094	unsigned long	flags;
 
 
1095
1096	/*
1097	 * Add a completion event to the ring buffer. Must be done holding
1098	 * ctx->completion_lock to prevent other code from messing with the tail
1099	 * pointer since we might be called from irq context.
 
 
1100	 */
1101	spin_lock_irqsave(&ctx->completion_lock, flags);
 
 
 
 
 
 
1102
1103	tail = ctx->tail;
1104	pos = tail + AIO_EVENTS_OFFSET;
 
 
 
 
 
 
 
1105
1106	if (++tail >= ctx->nr_events)
1107		tail = 0;
1108
1109	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1110	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
 
 
 
 
1111
1112	*event = iocb->ki_res;
1113
1114	kunmap_atomic(ev_page);
1115	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
 
 
1116
1117	pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1118		 (void __user *)(unsigned long)iocb->ki_res.obj,
1119		 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
 
 
 
 
 
1120
1121	/* after flagging the request as done, we
1122	 * must never even look at it again
1123	 */
1124	smp_wmb();	/* make event visible before updating tail */
1125
1126	ctx->tail = tail;
1127
1128	ring = kmap_atomic(ctx->ring_pages[0]);
1129	head = ring->head;
1130	ring->tail = tail;
1131	kunmap_atomic(ring);
1132	flush_dcache_page(ctx->ring_pages[0]);
1133
1134	ctx->completed_events++;
1135	if (ctx->completed_events > 1)
1136		refill_reqs_available(ctx, head, tail);
1137	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1138
1139	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1140
1141	/*
1142	 * Check if the user asked us to deliver the result through an
1143	 * eventfd. The eventfd_signal() function is safe to be called
1144	 * from IRQ context.
1145	 */
1146	if (iocb->ki_eventfd)
1147		eventfd_signal(iocb->ki_eventfd, 1);
1148
 
 
 
 
1149	/*
1150	 * We have to order our ring_info tail store above and test
1151	 * of the wait list below outside the wait lock.  This is
1152	 * like in wake_up_bit() where clearing a bit has to be
1153	 * ordered with the unlocked test.
1154	 */
1155	smp_mb();
1156
1157	if (waitqueue_active(&ctx->wait))
1158		wake_up(&ctx->wait);
1159}
1160
1161static inline void iocb_put(struct aio_kiocb *iocb)
1162{
1163	if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1164		aio_complete(iocb);
1165		iocb_destroy(iocb);
1166	}
1167}
 
1168
1169/* aio_read_events_ring
1170 *	Pull an event off of the ioctx's event ring.  Returns the number of
1171 *	events fetched
 
 
1172 */
1173static long aio_read_events_ring(struct kioctx *ctx,
1174				 struct io_event __user *event, long nr)
1175{
 
1176	struct aio_ring *ring;
1177	unsigned head, tail, pos;
1178	long ret = 0;
1179	int copy_ret;
1180
1181	/*
1182	 * The mutex can block and wake us up and that will cause
1183	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1184	 * and repeat. This should be rare enough that it doesn't cause
1185	 * peformance issues. See the comment in read_events() for more detail.
1186	 */
1187	sched_annotate_sleep();
1188	mutex_lock(&ctx->ring_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
1189
1190	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1191	ring = kmap_atomic(ctx->ring_pages[0]);
1192	head = ring->head;
1193	tail = ring->tail;
1194	kunmap_atomic(ring);
 
 
 
 
1195
1196	/*
1197	 * Ensure that once we've read the current tail pointer, that
1198	 * we also see the events that were stored up to the tail.
1199	 */
1200	smp_rmb();
1201
1202	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
 
 
1203
1204	if (head == tail)
1205		goto out;
 
1206
1207	head %= ctx->nr_events;
1208	tail %= ctx->nr_events;
 
 
 
 
1209
1210	while (ret < nr) {
1211		long avail;
1212		struct io_event *ev;
1213		struct page *page;
 
 
 
 
 
1214
1215		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1216		if (head == tail)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1217			break;
1218
1219		pos = head + AIO_EVENTS_OFFSET;
1220		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1221		pos %= AIO_EVENTS_PER_PAGE;
1222
1223		avail = min(avail, nr - ret);
1224		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1225
1226		ev = kmap(page);
1227		copy_ret = copy_to_user(event + ret, ev + pos,
1228					sizeof(*ev) * avail);
1229		kunmap(page);
1230
1231		if (unlikely(copy_ret)) {
1232			ret = -EFAULT;
1233			goto out;
 
 
1234		}
 
1235
1236		ret += avail;
1237		head += avail;
1238		head %= ctx->nr_events;
1239	}
1240
1241	ring = kmap_atomic(ctx->ring_pages[0]);
1242	ring->head = head;
1243	kunmap_atomic(ring);
1244	flush_dcache_page(ctx->ring_pages[0]);
1245
1246	pr_debug("%li  h%u t%u\n", ret, head, tail);
1247out:
1248	mutex_unlock(&ctx->ring_lock);
1249
1250	return ret;
1251}
 
 
 
 
1252
1253static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1254			    struct io_event __user *event, long *i)
1255{
1256	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
 
 
1257
1258	if (ret > 0)
1259		*i += ret;
1260
1261	if (unlikely(atomic_read(&ctx->dead)))
1262		ret = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1263
1264	if (!*i)
1265		*i = ret;
 
 
1266
1267	return ret < 0 || *i >= min_nr;
 
 
 
 
1268}
1269
1270static long read_events(struct kioctx *ctx, long min_nr, long nr,
1271			struct io_event __user *event,
1272			ktime_t until)
 
1273{
1274	long ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1275
1276	/*
1277	 * Note that aio_read_events() is being called as the conditional - i.e.
1278	 * we're calling it after prepare_to_wait() has set task state to
1279	 * TASK_INTERRUPTIBLE.
1280	 *
1281	 * But aio_read_events() can block, and if it blocks it's going to flip
1282	 * the task state back to TASK_RUNNING.
1283	 *
1284	 * This should be ok, provided it doesn't flip the state back to
1285	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1286	 * will only happen if the mutex_lock() call blocks, and we then find
1287	 * the ringbuffer empty. So in practice we should be ok, but it's
1288	 * something to be aware of when touching this code.
1289	 */
1290	if (until == 0)
1291		aio_read_events(ctx, min_nr, nr, event, &ret);
1292	else
1293		wait_event_interruptible_hrtimeout(ctx->wait,
1294				aio_read_events(ctx, min_nr, nr, event, &ret),
1295				until);
1296	return ret;
1297}
1298
1299/* sys_io_setup:
1300 *	Create an aio_context capable of receiving at least nr_events.
1301 *	ctxp must not point to an aio_context that already exists, and
1302 *	must be initialized to 0 prior to the call.  On successful
1303 *	creation of the aio_context, *ctxp is filled in with the resulting 
1304 *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1305 *	if the specified nr_events exceeds internal limits.  May fail 
1306 *	with -EAGAIN if the specified nr_events exceeds the user's limit 
1307 *	of available events.  May fail with -ENOMEM if insufficient kernel
1308 *	resources are available.  May fail with -EFAULT if an invalid
1309 *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1310 *	implemented.
1311 */
1312SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1313{
1314	struct kioctx *ioctx = NULL;
1315	unsigned long ctx;
1316	long ret;
1317
1318	ret = get_user(ctx, ctxp);
1319	if (unlikely(ret))
1320		goto out;
1321
1322	ret = -EINVAL;
1323	if (unlikely(ctx || nr_events == 0)) {
1324		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1325		         ctx, nr_events);
1326		goto out;
1327	}
1328
1329	ioctx = ioctx_alloc(nr_events);
1330	ret = PTR_ERR(ioctx);
1331	if (!IS_ERR(ioctx)) {
1332		ret = put_user(ioctx->user_id, ctxp);
1333		if (ret)
1334			kill_ioctx(current->mm, ioctx, NULL);
1335		percpu_ref_put(&ioctx->users);
1336	}
1337
1338out:
1339	return ret;
1340}
1341
1342#ifdef CONFIG_COMPAT
1343COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1344{
1345	struct kioctx *ioctx = NULL;
1346	unsigned long ctx;
1347	long ret;
1348
1349	ret = get_user(ctx, ctx32p);
1350	if (unlikely(ret))
1351		goto out;
1352
1353	ret = -EINVAL;
1354	if (unlikely(ctx || nr_events == 0)) {
1355		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1356		         ctx, nr_events);
1357		goto out;
1358	}
1359
1360	ioctx = ioctx_alloc(nr_events);
1361	ret = PTR_ERR(ioctx);
1362	if (!IS_ERR(ioctx)) {
1363		/* truncating is ok because it's a user address */
1364		ret = put_user((u32)ioctx->user_id, ctx32p);
1365		if (ret)
1366			kill_ioctx(current->mm, ioctx, NULL);
1367		percpu_ref_put(&ioctx->users);
1368	}
1369
1370out:
1371	return ret;
1372}
1373#endif
1374
1375/* sys_io_destroy:
1376 *	Destroy the aio_context specified.  May cancel any outstanding 
1377 *	AIOs and block on completion.  Will fail with -ENOSYS if not
1378 *	implemented.  May fail with -EINVAL if the context pointed to
1379 *	is invalid.
1380 */
1381SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1382{
1383	struct kioctx *ioctx = lookup_ioctx(ctx);
1384	if (likely(NULL != ioctx)) {
1385		struct ctx_rq_wait wait;
1386		int ret;
1387
1388		init_completion(&wait.comp);
1389		atomic_set(&wait.count, 1);
1390
1391		/* Pass requests_done to kill_ioctx() where it can be set
1392		 * in a thread-safe way. If we try to set it here then we have
1393		 * a race condition if two io_destroy() called simultaneously.
1394		 */
1395		ret = kill_ioctx(current->mm, ioctx, &wait);
1396		percpu_ref_put(&ioctx->users);
1397
1398		/* Wait until all IO for the context are done. Otherwise kernel
1399		 * keep using user-space buffers even if user thinks the context
1400		 * is destroyed.
1401		 */
1402		if (!ret)
1403			wait_for_completion(&wait.comp);
1404
1405		return ret;
1406	}
1407	pr_debug("EINVAL: invalid context id\n");
1408	return -EINVAL;
1409}
1410
1411static void aio_remove_iocb(struct aio_kiocb *iocb)
1412{
1413	struct kioctx *ctx = iocb->ki_ctx;
1414	unsigned long flags;
1415
1416	spin_lock_irqsave(&ctx->ctx_lock, flags);
1417	list_del(&iocb->ki_list);
1418	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1419}
1420
1421static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1422{
1423	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1424
1425	if (!list_empty_careful(&iocb->ki_list))
1426		aio_remove_iocb(iocb);
1427
1428	if (kiocb->ki_flags & IOCB_WRITE) {
1429		struct inode *inode = file_inode(kiocb->ki_filp);
1430
1431		/*
1432		 * Tell lockdep we inherited freeze protection from submission
1433		 * thread.
1434		 */
1435		if (S_ISREG(inode->i_mode))
1436			__sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1437		file_end_write(kiocb->ki_filp);
1438	}
1439
1440	iocb->ki_res.res = res;
1441	iocb->ki_res.res2 = res2;
1442	iocb_put(iocb);
1443}
1444
1445static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1446{
1447	int ret;
1448
1449	req->ki_complete = aio_complete_rw;
1450	req->private = NULL;
1451	req->ki_pos = iocb->aio_offset;
1452	req->ki_flags = iocb_flags(req->ki_filp);
1453	if (iocb->aio_flags & IOCB_FLAG_RESFD)
1454		req->ki_flags |= IOCB_EVENTFD;
1455	req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1456	if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1457		/*
1458		 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1459		 * aio_reqprio is interpreted as an I/O scheduling
1460		 * class and priority.
1461		 */
1462		ret = ioprio_check_cap(iocb->aio_reqprio);
1463		if (ret) {
1464			pr_debug("aio ioprio check cap error: %d\n", ret);
1465			return ret;
1466		}
1467
1468		req->ki_ioprio = iocb->aio_reqprio;
1469	} else
1470		req->ki_ioprio = get_current_ioprio();
1471
1472	ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1473	if (unlikely(ret))
1474		return ret;
1475
1476	req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1477	return 0;
1478}
1479
1480static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1481		struct iovec **iovec, bool vectored, bool compat,
1482		struct iov_iter *iter)
1483{
1484	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1485	size_t len = iocb->aio_nbytes;
1486
1487	if (!vectored) {
1488		ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1489		*iovec = NULL;
1490		return ret;
1491	}
1492#ifdef CONFIG_COMPAT
1493	if (compat)
1494		return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1495				iter);
1496#endif
1497	return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1498}
1499
1500static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1501{
1502	switch (ret) {
1503	case -EIOCBQUEUED:
1504		break;
1505	case -ERESTARTSYS:
1506	case -ERESTARTNOINTR:
1507	case -ERESTARTNOHAND:
1508	case -ERESTART_RESTARTBLOCK:
1509		/*
1510		 * There's no easy way to restart the syscall since other AIO's
1511		 * may be already running. Just fail this IO with EINTR.
1512		 */
1513		ret = -EINTR;
1514		/*FALLTHRU*/
1515	default:
1516		req->ki_complete(req, ret, 0);
 
 
 
 
 
1517	}
1518}
1519
1520static int aio_read(struct kiocb *req, const struct iocb *iocb,
1521			bool vectored, bool compat)
1522{
1523	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1524	struct iov_iter iter;
1525	struct file *file;
1526	int ret;
1527
1528	ret = aio_prep_rw(req, iocb);
1529	if (ret)
1530		return ret;
1531	file = req->ki_filp;
1532	if (unlikely(!(file->f_mode & FMODE_READ)))
1533		return -EBADF;
1534	ret = -EINVAL;
1535	if (unlikely(!file->f_op->read_iter))
1536		return -EINVAL;
1537
1538	ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1539	if (ret < 0)
1540		return ret;
1541	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1542	if (!ret)
1543		aio_rw_done(req, call_read_iter(file, req, &iter));
1544	kfree(iovec);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1545	return ret;
1546}
1547
1548static int aio_write(struct kiocb *req, const struct iocb *iocb,
1549			 bool vectored, bool compat)
1550{
1551	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1552	struct iov_iter iter;
1553	struct file *file;
1554	int ret;
1555
1556	ret = aio_prep_rw(req, iocb);
1557	if (ret)
1558		return ret;
1559	file = req->ki_filp;
1560
1561	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1562		return -EBADF;
1563	if (unlikely(!file->f_op->write_iter))
1564		return -EINVAL;
1565
1566	ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1567	if (ret < 0)
1568		return ret;
1569	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1570	if (!ret) {
1571		/*
1572		 * Open-code file_start_write here to grab freeze protection,
1573		 * which will be released by another thread in
1574		 * aio_complete_rw().  Fool lockdep by telling it the lock got
1575		 * released so that it doesn't complain about the held lock when
1576		 * we return to userspace.
1577		 */
1578		if (S_ISREG(file_inode(file)->i_mode)) {
1579			__sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
1580			__sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1581		}
1582		req->ki_flags |= IOCB_WRITE;
1583		aio_rw_done(req, call_write_iter(file, req, &iter));
1584	}
1585	kfree(iovec);
1586	return ret;
1587}
1588
1589static void aio_fsync_work(struct work_struct *work)
1590{
1591	struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
 
1592
1593	iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1594	iocb_put(iocb);
 
1595}
1596
1597static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1598		     bool datasync)
1599{
1600	if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1601			iocb->aio_rw_flags))
1602		return -EINVAL;
1603
1604	if (unlikely(!req->file->f_op->fsync))
1605		return -EINVAL;
1606
1607	req->datasync = datasync;
1608	INIT_WORK(&req->work, aio_fsync_work);
1609	schedule_work(&req->work);
1610	return 0;
1611}
1612
1613static void aio_poll_complete_work(struct work_struct *work)
1614{
1615	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1616	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1617	struct poll_table_struct pt = { ._key = req->events };
1618	struct kioctx *ctx = iocb->ki_ctx;
1619	__poll_t mask = 0;
 
1620
1621	if (!READ_ONCE(req->cancelled))
1622		mask = vfs_poll(req->file, &pt) & req->events;
 
1623
1624	/*
1625	 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1626	 * calling ->ki_cancel.  We need the ctx_lock roundtrip here to
1627	 * synchronize with them.  In the cancellation case the list_del_init
1628	 * itself is not actually needed, but harmless so we keep it in to
1629	 * avoid further branches in the fast path.
1630	 */
1631	spin_lock_irq(&ctx->ctx_lock);
1632	if (!mask && !READ_ONCE(req->cancelled)) {
1633		add_wait_queue(req->head, &req->wait);
1634		spin_unlock_irq(&ctx->ctx_lock);
1635		return;
1636	}
1637	list_del_init(&iocb->ki_list);
1638	iocb->ki_res.res = mangle_poll(mask);
1639	req->done = true;
1640	spin_unlock_irq(&ctx->ctx_lock);
1641
1642	iocb_put(iocb);
 
 
1643}
1644
1645/* assumes we are called with irqs disabled */
1646static int aio_poll_cancel(struct kiocb *iocb)
1647{
1648	struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1649	struct poll_iocb *req = &aiocb->poll;
1650
1651	spin_lock(&req->head->lock);
1652	WRITE_ONCE(req->cancelled, true);
1653	if (!list_empty(&req->wait.entry)) {
1654		list_del_init(&req->wait.entry);
1655		schedule_work(&aiocb->poll.work);
1656	}
1657	spin_unlock(&req->head->lock);
1658
 
 
 
 
 
 
 
 
 
1659	return 0;
1660}
1661
1662static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1663		void *key)
 
 
 
 
1664{
1665	struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1666	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1667	__poll_t mask = key_to_poll(key);
1668	unsigned long flags;
1669
1670	/* for instances that support it check for an event match first: */
1671	if (mask && !(mask & req->events))
1672		return 0;
1673
1674	list_del_init(&req->wait.entry);
1675
1676	if (mask && spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1677		/*
1678		 * Try to complete the iocb inline if we can. Use
1679		 * irqsave/irqrestore because not all filesystems (e.g. fuse)
1680		 * call this function with IRQs disabled and because IRQs
1681		 * have to be disabled before ctx_lock is obtained.
1682		 */
1683		list_del(&iocb->ki_list);
1684		iocb->ki_res.res = mangle_poll(mask);
1685		req->done = true;
1686		spin_unlock_irqrestore(&iocb->ki_ctx->ctx_lock, flags);
1687		iocb_put(iocb);
1688	} else {
1689		schedule_work(&req->work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1690	}
1691	return 1;
1692}
1693
1694struct aio_poll_table {
1695	struct poll_table_struct	pt;
1696	struct aio_kiocb		*iocb;
1697	int				error;
1698};
1699
1700static void
1701aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1702		struct poll_table_struct *p)
1703{
1704	struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1705
1706	/* multiple wait queues per file are not supported */
1707	if (unlikely(pt->iocb->poll.head)) {
1708		pt->error = -EINVAL;
1709		return;
1710	}
1711
1712	pt->error = 0;
1713	pt->iocb->poll.head = head;
1714	add_wait_queue(head, &pt->iocb->poll.wait);
1715}
1716
1717static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
 
 
1718{
1719	struct kioctx *ctx = aiocb->ki_ctx;
1720	struct poll_iocb *req = &aiocb->poll;
1721	struct aio_poll_table apt;
1722	bool cancel = false;
1723	__poll_t mask;
1724
1725	/* reject any unknown events outside the normal event mask. */
1726	if ((u16)iocb->aio_buf != iocb->aio_buf)
1727		return -EINVAL;
1728	/* reject fields that are not defined for poll */
1729	if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1730		return -EINVAL;
1731
1732	INIT_WORK(&req->work, aio_poll_complete_work);
1733	req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1734
1735	req->head = NULL;
1736	req->done = false;
1737	req->cancelled = false;
1738
1739	apt.pt._qproc = aio_poll_queue_proc;
1740	apt.pt._key = req->events;
1741	apt.iocb = aiocb;
1742	apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1743
1744	/* initialized the list so that we can do list_empty checks */
1745	INIT_LIST_HEAD(&req->wait.entry);
1746	init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1747
1748	mask = vfs_poll(req->file, &apt.pt) & req->events;
1749	spin_lock_irq(&ctx->ctx_lock);
1750	if (likely(req->head)) {
1751		spin_lock(&req->head->lock);
1752		if (unlikely(list_empty(&req->wait.entry))) {
1753			if (apt.error)
1754				cancel = true;
1755			apt.error = 0;
1756			mask = 0;
1757		}
1758		if (mask || apt.error) {
1759			list_del_init(&req->wait.entry);
1760		} else if (cancel) {
1761			WRITE_ONCE(req->cancelled, true);
1762		} else if (!req->done) { /* actually waiting for an event */
1763			list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1764			aiocb->ki_cancel = aio_poll_cancel;
1765		}
1766		spin_unlock(&req->head->lock);
1767	}
1768	if (mask) { /* no async, we'd stolen it */
1769		aiocb->ki_res.res = mangle_poll(mask);
1770		apt.error = 0;
 
 
 
 
 
 
1771	}
1772	spin_unlock_irq(&ctx->ctx_lock);
1773	if (mask)
1774		iocb_put(aiocb);
1775	return apt.error;
1776}
1777
1778static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1779			   struct iocb __user *user_iocb, struct aio_kiocb *req,
1780			   bool compat)
1781{
1782	req->ki_filp = fget(iocb->aio_fildes);
1783	if (unlikely(!req->ki_filp))
1784		return -EBADF;
1785
 
 
 
 
 
 
1786	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1787		struct eventfd_ctx *eventfd;
1788		/*
1789		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1790		 * instance of the file* now. The file descriptor must be
1791		 * an eventfd() fd, and will be signaled for each completed
1792		 * event using the eventfd_signal() function.
1793		 */
1794		eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1795		if (IS_ERR(eventfd))
1796			return PTR_ERR(eventfd);
1797
1798		req->ki_eventfd = eventfd;
 
1799	}
1800
1801	if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1802		pr_debug("EFAULT: aio_key\n");
1803		return -EFAULT;
 
1804	}
1805
1806	req->ki_res.obj = (u64)(unsigned long)user_iocb;
1807	req->ki_res.data = iocb->aio_data;
1808	req->ki_res.res = 0;
1809	req->ki_res.res2 = 0;
1810
1811	switch (iocb->aio_lio_opcode) {
1812	case IOCB_CMD_PREAD:
1813		return aio_read(&req->rw, iocb, false, compat);
1814	case IOCB_CMD_PWRITE:
1815		return aio_write(&req->rw, iocb, false, compat);
1816	case IOCB_CMD_PREADV:
1817		return aio_read(&req->rw, iocb, true, compat);
1818	case IOCB_CMD_PWRITEV:
1819		return aio_write(&req->rw, iocb, true, compat);
1820	case IOCB_CMD_FSYNC:
1821		return aio_fsync(&req->fsync, iocb, false);
1822	case IOCB_CMD_FDSYNC:
1823		return aio_fsync(&req->fsync, iocb, true);
1824	case IOCB_CMD_POLL:
1825		return aio_poll(req, iocb);
1826	default:
1827		pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1828		return -EINVAL;
1829	}
1830}
1831
1832static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1833			 bool compat)
1834{
1835	struct aio_kiocb *req;
1836	struct iocb iocb;
1837	int err;
1838
1839	if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1840		return -EFAULT;
1841
1842	/* enforce forwards compatibility on users */
1843	if (unlikely(iocb.aio_reserved2)) {
1844		pr_debug("EINVAL: reserve field set\n");
1845		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
1846	}
1847
1848	/* prevent overflows */
1849	if (unlikely(
1850	    (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1851	    (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1852	    ((ssize_t)iocb.aio_nbytes < 0)
1853	   )) {
1854		pr_debug("EINVAL: overflow check\n");
1855		return -EINVAL;
1856	}
 
1857
1858	req = aio_get_req(ctx);
1859	if (unlikely(!req))
1860		return -EAGAIN;
1861
1862	err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
1863
1864	/* Done with the synchronous reference */
1865	iocb_put(req);
1866
1867	/*
1868	 * If err is 0, we'd either done aio_complete() ourselves or have
1869	 * arranged for that to be done asynchronously.  Anything non-zero
1870	 * means that we need to destroy req ourselves.
1871	 */
1872	if (unlikely(err)) {
1873		iocb_destroy(req);
1874		put_reqs_available(ctx, 1);
1875	}
1876	return err;
1877}
1878
1879/* sys_io_submit:
1880 *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1881 *	the number of iocbs queued.  May return -EINVAL if the aio_context
1882 *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1883 *	*iocbpp[0] is not properly initialized, if the operation specified
1884 *	is invalid for the file descriptor in the iocb.  May fail with
1885 *	-EFAULT if any of the data structures point to invalid data.  May
1886 *	fail with -EBADF if the file descriptor specified in the first
1887 *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1888 *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1889 *	fail with -ENOSYS if not implemented.
1890 */
1891SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1892		struct iocb __user * __user *, iocbpp)
1893{
1894	struct kioctx *ctx;
1895	long ret = 0;
1896	int i = 0;
1897	struct blk_plug plug;
 
1898
1899	if (unlikely(nr < 0))
1900		return -EINVAL;
1901
 
 
 
 
 
 
1902	ctx = lookup_ioctx(ctx_id);
1903	if (unlikely(!ctx)) {
1904		pr_debug("EINVAL: invalid context id\n");
1905		return -EINVAL;
1906	}
1907
1908	if (nr > ctx->nr_events)
1909		nr = ctx->nr_events;
 
1910
1911	if (nr > AIO_PLUG_THRESHOLD)
1912		blk_start_plug(&plug);
1913	for (i = 0; i < nr; i++) {
 
 
1914		struct iocb __user *user_iocb;
 
 
 
 
 
 
1915
1916		if (unlikely(get_user(user_iocb, iocbpp + i))) {
1917			ret = -EFAULT;
1918			break;
1919		}
1920
1921		ret = io_submit_one(ctx, user_iocb, false);
1922		if (ret)
1923			break;
1924	}
1925	if (nr > AIO_PLUG_THRESHOLD)
1926		blk_finish_plug(&plug);
1927
1928	percpu_ref_put(&ctx->users);
 
1929	return i ? i : ret;
1930}
1931
1932#ifdef CONFIG_COMPAT
1933COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1934		       int, nr, compat_uptr_t __user *, iocbpp)
 
 
 
 
 
 
 
 
 
 
 
1935{
1936	struct kioctx *ctx;
1937	long ret = 0;
1938	int i = 0;
1939	struct blk_plug plug;
1940
1941	if (unlikely(nr < 0))
1942		return -EINVAL;
1943
1944	ctx = lookup_ioctx(ctx_id);
1945	if (unlikely(!ctx)) {
1946		pr_debug("EINVAL: invalid context id\n");
1947		return -EINVAL;
1948	}
1949
1950	if (nr > ctx->nr_events)
1951		nr = ctx->nr_events;
 
 
 
 
 
1952
1953	if (nr > AIO_PLUG_THRESHOLD)
1954		blk_start_plug(&plug);
1955	for (i = 0; i < nr; i++) {
1956		compat_uptr_t user_iocb;
1957
1958		if (unlikely(get_user(user_iocb, iocbpp + i))) {
1959			ret = -EFAULT;
1960			break;
1961		}
1962
1963		ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1964		if (ret)
1965			break;
1966	}
1967	if (nr > AIO_PLUG_THRESHOLD)
1968		blk_finish_plug(&plug);
1969
1970	percpu_ref_put(&ctx->users);
1971	return i ? i : ret;
1972}
1973#endif
1974
1975/* sys_io_cancel:
1976 *	Attempts to cancel an iocb previously passed to io_submit.  If
1977 *	the operation is successfully cancelled, the resulting event is
1978 *	copied into the memory pointed to by result without being placed
1979 *	into the completion queue and 0 is returned.  May fail with
1980 *	-EFAULT if any of the data structures pointed to are invalid.
1981 *	May fail with -EINVAL if aio_context specified by ctx_id is
1982 *	invalid.  May fail with -EAGAIN if the iocb specified was not
1983 *	cancelled.  Will fail with -ENOSYS if not implemented.
1984 */
1985SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1986		struct io_event __user *, result)
1987{
 
1988	struct kioctx *ctx;
1989	struct aio_kiocb *kiocb;
1990	int ret = -EINVAL;
1991	u32 key;
1992	u64 obj = (u64)(unsigned long)iocb;
1993
1994	if (unlikely(get_user(key, &iocb->aio_key)))
 
1995		return -EFAULT;
1996	if (unlikely(key != KIOCB_KEY))
1997		return -EINVAL;
1998
1999	ctx = lookup_ioctx(ctx_id);
2000	if (unlikely(!ctx))
2001		return -EINVAL;
2002
2003	spin_lock_irq(&ctx->ctx_lock);
2004	/* TODO: use a hash or array, this sucks. */
2005	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2006		if (kiocb->ki_res.obj == obj) {
2007			ret = kiocb->ki_cancel(&kiocb->rw);
2008			list_del_init(&kiocb->ki_list);
2009			break;
2010		}
2011	}
2012	spin_unlock_irq(&ctx->ctx_lock);
2013
2014	if (!ret) {
2015		/*
2016		 * The result argument is no longer used - the io_event is
2017		 * always delivered via the ring buffer. -EINPROGRESS indicates
2018		 * cancellation is progress:
2019		 */
2020		ret = -EINPROGRESS;
2021	}
2022
2023	percpu_ref_put(&ctx->users);
2024
2025	return ret;
2026}
2027
2028static long do_io_getevents(aio_context_t ctx_id,
2029		long min_nr,
2030		long nr,
2031		struct io_event __user *events,
2032		struct timespec64 *ts)
2033{
2034	ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2035	struct kioctx *ioctx = lookup_ioctx(ctx_id);
2036	long ret = -EINVAL;
2037
2038	if (likely(ioctx)) {
2039		if (likely(min_nr <= nr && min_nr >= 0))
2040			ret = read_events(ioctx, min_nr, nr, events, until);
2041		percpu_ref_put(&ioctx->users);
2042	}
2043
2044	return ret;
2045}
2046
2047/* io_getevents:
2048 *	Attempts to read at least min_nr events and up to nr events from
2049 *	the completion queue for the aio_context specified by ctx_id. If
2050 *	it succeeds, the number of read events is returned. May fail with
2051 *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2052 *	out of range, if timeout is out of range.  May fail with -EFAULT
2053 *	if any of the memory specified is invalid.  May return 0 or
2054 *	< min_nr if the timeout specified by timeout has elapsed
2055 *	before sufficient events are available, where timeout == NULL
2056 *	specifies an infinite timeout. Note that the timeout pointed to by
2057 *	timeout is relative.  Will fail with -ENOSYS if not implemented.
 
2058 */
2059#if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
2060
2061SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2062		long, min_nr,
2063		long, nr,
2064		struct io_event __user *, events,
2065		struct __kernel_timespec __user *, timeout)
2066{
2067	struct timespec64	ts;
2068	int			ret;
2069
2070	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2071		return -EFAULT;
2072
2073	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2074	if (!ret && signal_pending(current))
2075		ret = -EINTR;
2076	return ret;
2077}
2078
2079#endif
2080
2081struct __aio_sigset {
2082	const sigset_t __user	*sigmask;
2083	size_t		sigsetsize;
2084};
2085
2086SYSCALL_DEFINE6(io_pgetevents,
2087		aio_context_t, ctx_id,
2088		long, min_nr,
2089		long, nr,
2090		struct io_event __user *, events,
2091		struct __kernel_timespec __user *, timeout,
2092		const struct __aio_sigset __user *, usig)
2093{
2094	struct __aio_sigset	ksig = { NULL, };
2095	struct timespec64	ts;
2096	bool interrupted;
2097	int ret;
2098
2099	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2100		return -EFAULT;
2101
2102	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2103		return -EFAULT;
2104
2105	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2106	if (ret)
2107		return ret;
2108
2109	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2110
2111	interrupted = signal_pending(current);
2112	restore_saved_sigmask_unless(interrupted);
2113	if (interrupted && !ret)
2114		ret = -ERESTARTNOHAND;
2115
2116	return ret;
2117}
2118
2119#if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2120
2121SYSCALL_DEFINE6(io_pgetevents_time32,
2122		aio_context_t, ctx_id,
2123		long, min_nr,
2124		long, nr,
2125		struct io_event __user *, events,
2126		struct old_timespec32 __user *, timeout,
2127		const struct __aio_sigset __user *, usig)
2128{
2129	struct __aio_sigset	ksig = { NULL, };
2130	struct timespec64	ts;
2131	bool interrupted;
2132	int ret;
2133
2134	if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2135		return -EFAULT;
2136
2137	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2138		return -EFAULT;
2139
2140
2141	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2142	if (ret)
2143		return ret;
2144
2145	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2146
2147	interrupted = signal_pending(current);
2148	restore_saved_sigmask_unless(interrupted);
2149	if (interrupted && !ret)
2150		ret = -ERESTARTNOHAND;
2151
2152	return ret;
2153}
2154
2155#endif
2156
2157#if defined(CONFIG_COMPAT_32BIT_TIME)
2158
2159SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2160		__s32, min_nr,
2161		__s32, nr,
2162		struct io_event __user *, events,
2163		struct old_timespec32 __user *, timeout)
2164{
2165	struct timespec64 t;
2166	int ret;
2167
2168	if (timeout && get_old_timespec32(&t, timeout))
2169		return -EFAULT;
2170
2171	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2172	if (!ret && signal_pending(current))
2173		ret = -EINTR;
2174	return ret;
2175}
2176
2177#endif
2178
2179#ifdef CONFIG_COMPAT
2180
2181struct __compat_aio_sigset {
2182	compat_uptr_t		sigmask;
2183	compat_size_t		sigsetsize;
2184};
2185
2186#if defined(CONFIG_COMPAT_32BIT_TIME)
2187
2188COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2189		compat_aio_context_t, ctx_id,
2190		compat_long_t, min_nr,
2191		compat_long_t, nr,
2192		struct io_event __user *, events,
2193		struct old_timespec32 __user *, timeout,
2194		const struct __compat_aio_sigset __user *, usig)
2195{
2196	struct __compat_aio_sigset ksig = { 0, };
2197	struct timespec64 t;
2198	bool interrupted;
2199	int ret;
2200
2201	if (timeout && get_old_timespec32(&t, timeout))
2202		return -EFAULT;
2203
2204	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2205		return -EFAULT;
2206
2207	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2208	if (ret)
2209		return ret;
2210
2211	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2212
2213	interrupted = signal_pending(current);
2214	restore_saved_sigmask_unless(interrupted);
2215	if (interrupted && !ret)
2216		ret = -ERESTARTNOHAND;
2217
2218	return ret;
2219}
2220
2221#endif
2222
2223COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2224		compat_aio_context_t, ctx_id,
2225		compat_long_t, min_nr,
2226		compat_long_t, nr,
2227		struct io_event __user *, events,
2228		struct __kernel_timespec __user *, timeout,
2229		const struct __compat_aio_sigset __user *, usig)
2230{
2231	struct __compat_aio_sigset ksig = { 0, };
2232	struct timespec64 t;
2233	bool interrupted;
2234	int ret;
2235
2236	if (timeout && get_timespec64(&t, timeout))
2237		return -EFAULT;
2238
2239	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2240		return -EFAULT;
2241
2242	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2243	if (ret)
2244		return ret;
2245
2246	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2247
2248	interrupted = signal_pending(current);
2249	restore_saved_sigmask_unless(interrupted);
2250	if (interrupted && !ret)
2251		ret = -ERESTARTNOHAND;
 
2252
 
2253	return ret;
2254}
2255#endif
v3.5.6
   1/*
   2 *	An async IO implementation for Linux
   3 *	Written by Benjamin LaHaise <bcrl@kvack.org>
   4 *
   5 *	Implements an efficient asynchronous io interface.
   6 *
   7 *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
 
   8 *
   9 *	See ../COPYING for licensing terms.
  10 */
 
 
  11#include <linux/kernel.h>
  12#include <linux/init.h>
  13#include <linux/errno.h>
  14#include <linux/time.h>
  15#include <linux/aio_abi.h>
  16#include <linux/export.h>
  17#include <linux/syscalls.h>
  18#include <linux/backing-dev.h>
 
  19#include <linux/uio.h>
  20
  21#define DEBUG 0
  22
  23#include <linux/sched.h>
  24#include <linux/fs.h>
  25#include <linux/file.h>
  26#include <linux/mm.h>
  27#include <linux/mman.h>
  28#include <linux/mmu_context.h>
 
  29#include <linux/slab.h>
  30#include <linux/timer.h>
  31#include <linux/aio.h>
  32#include <linux/highmem.h>
  33#include <linux/workqueue.h>
  34#include <linux/security.h>
  35#include <linux/eventfd.h>
  36#include <linux/blkdev.h>
  37#include <linux/compat.h>
 
 
 
 
 
  38
  39#include <asm/kmap_types.h>
  40#include <asm/uaccess.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  41
  42#if DEBUG > 1
  43#define dprintk		printk
  44#else
  45#define dprintk(x...)	do { ; } while (0)
  46#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  47
  48/*------ sysctl variables----*/
  49static DEFINE_SPINLOCK(aio_nr_lock);
  50unsigned long aio_nr;		/* current system wide number of aio requests */
  51unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
  52/*----end sysctl variables---*/
  53
  54static struct kmem_cache	*kiocb_cachep;
  55static struct kmem_cache	*kioctx_cachep;
  56
  57static struct workqueue_struct *aio_wq;
  58
  59/* Used for rare fput completion. */
  60static void aio_fput_routine(struct work_struct *);
  61static DECLARE_WORK(fput_work, aio_fput_routine);
  62
  63static DEFINE_SPINLOCK(fput_lock);
  64static LIST_HEAD(fput_head);
  65
  66static void aio_kick_handler(struct work_struct *);
  67static void aio_queue_work(struct kioctx *);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  68
  69/* aio_setup
  70 *	Creates the slab caches used by the aio routines, panic on
  71 *	failure as this is done early during the boot sequence.
  72 */
  73static int __init aio_setup(void)
  74{
  75	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
 
 
 
 
 
 
 
 
 
  76	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
 
 
 
 
 
 
 
 
  77
  78	aio_wq = alloc_workqueue("aio", 0, 1);	/* used to limit concurrency */
  79	BUG_ON(!aio_wq);
  80
  81	pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
 
 
 
 
 
  82
  83	return 0;
 
  84}
  85__initcall(aio_setup);
  86
  87static void aio_free_ring(struct kioctx *ctx)
  88{
  89	struct aio_ring_info *info = &ctx->ring_info;
  90	long i;
  91
  92	for (i=0; i<info->nr_pages; i++)
  93		put_page(info->ring_pages[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  94
  95	if (info->mmap_size) {
  96		BUG_ON(ctx->mm != current->mm);
  97		vm_munmap(info->mmap_base, info->mmap_size);
 
 
 
 
 
 
 
 
 
 
 
  98	}
  99
 100	if (info->ring_pages && info->ring_pages != info->internal_pages)
 101		kfree(info->ring_pages);
 102	info->ring_pages = NULL;
 103	info->nr = 0;
 104}
 105
 106static int aio_setup_ring(struct kioctx *ctx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 107{
 108	struct aio_ring *ring;
 109	struct aio_ring_info *info = &ctx->ring_info;
 110	unsigned nr_events = ctx->max_reqs;
 111	unsigned long size;
 112	int nr_pages;
 
 
 113
 114	/* Compensate for the ring buffer's head/tail overlap entry */
 115	nr_events += 2;	/* 1 is required, 2 for good luck */
 116
 117	size = sizeof(struct aio_ring);
 118	size += sizeof(struct io_event) * nr_events;
 119	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
 120
 
 121	if (nr_pages < 0)
 122		return -EINVAL;
 123
 124	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
 
 
 
 
 
 
 
 
 125
 126	info->nr = 0;
 127	info->ring_pages = info->internal_pages;
 128	if (nr_pages > AIO_RING_PAGES) {
 129		info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
 130		if (!info->ring_pages)
 
 
 131			return -ENOMEM;
 
 132	}
 133
 134	info->mmap_size = nr_pages * PAGE_SIZE;
 135	dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
 136	down_write(&ctx->mm->mmap_sem);
 137	info->mmap_base = do_mmap_pgoff(NULL, 0, info->mmap_size, 
 138					PROT_READ|PROT_WRITE,
 139					MAP_ANONYMOUS|MAP_PRIVATE, 0);
 140	if (IS_ERR((void *)info->mmap_base)) {
 141		up_write(&ctx->mm->mmap_sem);
 142		info->mmap_size = 0;
 
 
 
 
 
 
 
 143		aio_free_ring(ctx);
 144		return -EAGAIN;
 145	}
 146
 147	dprintk("mmap address: 0x%08lx\n", info->mmap_base);
 148	info->nr_pages = get_user_pages(current, ctx->mm,
 149					info->mmap_base, nr_pages, 
 150					1, 0, info->ring_pages, NULL);
 151	up_write(&ctx->mm->mmap_sem);
 
 
 
 152
 153	if (unlikely(info->nr_pages != nr_pages)) {
 
 
 
 
 
 154		aio_free_ring(ctx);
 155		return -EAGAIN;
 156	}
 157
 158	ctx->user_id = info->mmap_base;
 159
 160	info->nr = nr_events;		/* trusted copy */
 
 161
 162	ring = kmap_atomic(info->ring_pages[0]);
 163	ring->nr = nr_events;	/* user copy */
 164	ring->id = ctx->user_id;
 165	ring->head = ring->tail = 0;
 166	ring->magic = AIO_RING_MAGIC;
 167	ring->compat_features = AIO_RING_COMPAT_FEATURES;
 168	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
 169	ring->header_length = sizeof(struct aio_ring);
 170	kunmap_atomic(ring);
 
 171
 172	return 0;
 173}
 174
 175
 176/* aio_ring_event: returns a pointer to the event at the given index from
 177 * kmap_atomic().  Release the pointer with put_aio_ring_event();
 178 */
 179#define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
 180#define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
 181#define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
 182
 183#define aio_ring_event(info, nr) ({					\
 184	unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\
 185	struct io_event *__event;					\
 186	__event = kmap_atomic(						\
 187			(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE]); \
 188	__event += pos % AIO_EVENTS_PER_PAGE;				\
 189	__event;							\
 190})
 191
 192#define put_aio_ring_event(event) do {		\
 193	struct io_event *__event = (event);	\
 194	(void)__event;				\
 195	kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK)); \
 196} while(0)
 197
 198static void ctx_rcu_free(struct rcu_head *head)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 199{
 200	struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
 201	kmem_cache_free(kioctx_cachep, ctx);
 
 
 
 
 
 
 
 202}
 203
 204/* __put_ioctx
 205 *	Called when the last user of an aio context has gone away,
 206 *	and the struct needs to be freed.
 
 207 */
 208static void __put_ioctx(struct kioctx *ctx)
 209{
 210	unsigned nr_events = ctx->max_reqs;
 211	BUG_ON(ctx->reqs_active);
 
 
 212
 213	cancel_delayed_work_sync(&ctx->wq);
 214	aio_free_ring(ctx);
 215	mmdrop(ctx->mm);
 216	ctx->mm = NULL;
 217	if (nr_events) {
 218		spin_lock(&aio_nr_lock);
 219		BUG_ON(aio_nr - nr_events > aio_nr);
 220		aio_nr -= nr_events;
 221		spin_unlock(&aio_nr_lock);
 222	}
 223	pr_debug("__put_ioctx: freeing %p\n", ctx);
 224	call_rcu(&ctx->rcu_head, ctx_rcu_free);
 
 
 
 225}
 226
 227static inline int try_get_ioctx(struct kioctx *kioctx)
 228{
 229	return atomic_inc_not_zero(&kioctx->users);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 230}
 231
 232static inline void put_ioctx(struct kioctx *kioctx)
 233{
 234	BUG_ON(atomic_read(&kioctx->users) <= 0);
 235	if (unlikely(atomic_dec_and_test(&kioctx->users)))
 236		__put_ioctx(kioctx);
 
 
 
 237}
 238
 239/* ioctx_alloc
 240 *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
 241 */
 242static struct kioctx *ioctx_alloc(unsigned nr_events)
 243{
 244	struct mm_struct *mm;
 245	struct kioctx *ctx;
 246	int err = -ENOMEM;
 247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 248	/* Prevent overflows */
 249	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
 250	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
 251		pr_debug("ENOMEM: nr_events too high\n");
 252		return ERR_PTR(-EINVAL);
 253	}
 254
 255	if (!nr_events || (unsigned long)nr_events > aio_max_nr)
 256		return ERR_PTR(-EAGAIN);
 257
 258	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
 259	if (!ctx)
 260		return ERR_PTR(-ENOMEM);
 261
 262	ctx->max_reqs = nr_events;
 263	mm = ctx->mm = current->mm;
 264	atomic_inc(&mm->mm_count);
 265
 266	atomic_set(&ctx->users, 2);
 267	spin_lock_init(&ctx->ctx_lock);
 268	spin_lock_init(&ctx->ring_info.ring_lock);
 
 
 
 
 269	init_waitqueue_head(&ctx->wait);
 270
 271	INIT_LIST_HEAD(&ctx->active_reqs);
 272	INIT_LIST_HEAD(&ctx->run_list);
 273	INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
 274
 275	if (aio_setup_ring(ctx) < 0)
 276		goto out_freectx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 277
 278	/* limit the number of system wide aios */
 279	spin_lock(&aio_nr_lock);
 280	if (aio_nr + nr_events > aio_max_nr ||
 281	    aio_nr + nr_events < aio_nr) {
 282		spin_unlock(&aio_nr_lock);
 283		goto out_cleanup;
 
 284	}
 285	aio_nr += ctx->max_reqs;
 286	spin_unlock(&aio_nr_lock);
 287
 288	/* now link into global list. */
 289	spin_lock(&mm->ioctx_lock);
 290	hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
 291	spin_unlock(&mm->ioctx_lock);
 
 
 
 
 
 292
 293	dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
 294		ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
 295	return ctx;
 296
 297out_cleanup:
 298	err = -EAGAIN;
 
 
 
 
 299	aio_free_ring(ctx);
 300out_freectx:
 301	mmdrop(mm);
 
 
 
 302	kmem_cache_free(kioctx_cachep, ctx);
 303	dprintk("aio: error allocating ioctx %d\n", err);
 304	return ERR_PTR(err);
 305}
 306
 307/* kill_ctx
 308 *	Cancels all outstanding aio requests on an aio context.  Used 
 309 *	when the processes owning a context have all exited to encourage 
 310 *	the rapid destruction of the kioctx.
 311 */
 312static void kill_ctx(struct kioctx *ctx)
 
 313{
 314	int (*cancel)(struct kiocb *, struct io_event *);
 315	struct task_struct *tsk = current;
 316	DECLARE_WAITQUEUE(wait, tsk);
 317	struct io_event res;
 318
 319	spin_lock_irq(&ctx->ctx_lock);
 320	ctx->dead = 1;
 321	while (!list_empty(&ctx->active_reqs)) {
 322		struct list_head *pos = ctx->active_reqs.next;
 323		struct kiocb *iocb = list_kiocb(pos);
 324		list_del_init(&iocb->ki_list);
 325		cancel = iocb->ki_cancel;
 326		kiocbSetCancelled(iocb);
 327		if (cancel) {
 328			iocb->ki_users++;
 329			spin_unlock_irq(&ctx->ctx_lock);
 330			cancel(iocb, &res);
 331			spin_lock_irq(&ctx->ctx_lock);
 332		}
 333	}
 334
 335	if (!ctx->reqs_active)
 336		goto out;
 
 
 337
 338	add_wait_queue(&ctx->wait, &wait);
 339	set_task_state(tsk, TASK_UNINTERRUPTIBLE);
 340	while (ctx->reqs_active) {
 341		spin_unlock_irq(&ctx->ctx_lock);
 342		io_schedule();
 343		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
 344		spin_lock_irq(&ctx->ctx_lock);
 345	}
 346	__set_task_state(tsk, TASK_RUNNING);
 347	remove_wait_queue(&ctx->wait, &wait);
 348
 349out:
 350	spin_unlock_irq(&ctx->ctx_lock);
 351}
 
 
 
 
 
 352
 353/* wait_on_sync_kiocb:
 354 *	Waits on the given sync kiocb to complete.
 355 */
 356ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
 357{
 358	while (iocb->ki_users) {
 359		set_current_state(TASK_UNINTERRUPTIBLE);
 360		if (!iocb->ki_users)
 361			break;
 362		io_schedule();
 363	}
 364	__set_current_state(TASK_RUNNING);
 365	return iocb->ki_user_data;
 366}
 367EXPORT_SYMBOL(wait_on_sync_kiocb);
 368
 369/* exit_aio: called when the last user of mm goes away.  At this point, 
 370 * there is no way for any new requests to be submited or any of the 
 371 * io_* syscalls to be called on the context.  However, there may be 
 372 * outstanding requests which hold references to the context; as they 
 373 * go away, they will call put_ioctx and release any pinned memory
 374 * associated with the request (held via struct page * references).
 375 */
 376void exit_aio(struct mm_struct *mm)
 377{
 378	struct kioctx *ctx;
 379
 380	while (!hlist_empty(&mm->ioctx_list)) {
 381		ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list);
 382		hlist_del_rcu(&ctx->list);
 383
 384		kill_ctx(ctx);
 385
 386		if (1 != atomic_read(&ctx->users))
 387			printk(KERN_DEBUG
 388				"exit_aio:ioctx still alive: %d %d %d\n",
 389				atomic_read(&ctx->users), ctx->dead,
 390				ctx->reqs_active);
 391		/*
 392		 * We don't need to bother with munmap() here -
 393		 * exit_mmap(mm) is coming and it'll unmap everything.
 394		 * Since aio_free_ring() uses non-zero ->mmap_size
 395		 * as indicator that it needs to unmap the area,
 396		 * just set it to 0; aio_free_ring() is the only
 397		 * place that uses ->mmap_size, so it's safe.
 398		 * That way we get all munmap done to current->mm -
 399		 * all other callers have ctx->mm == current->mm.
 400		 */
 401		ctx->ring_info.mmap_size = 0;
 402		put_ioctx(ctx);
 403	}
 404}
 405
 406/* aio_get_req
 407 *	Allocate a slot for an aio request.  Increments the users count
 408 * of the kioctx so that the kioctx stays around until all requests are
 409 * complete.  Returns NULL if no requests are free.
 410 *
 411 * Returns with kiocb->users set to 2.  The io submit code path holds
 412 * an extra reference while submitting the i/o.
 413 * This prevents races between the aio code path referencing the
 414 * req (after submitting it) and aio_complete() freeing the req.
 415 */
 416static struct kiocb *__aio_get_req(struct kioctx *ctx)
 417{
 418	struct kiocb *req = NULL;
 419
 420	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
 421	if (unlikely(!req))
 422		return NULL;
 423
 424	req->ki_flags = 0;
 425	req->ki_users = 2;
 426	req->ki_key = 0;
 427	req->ki_ctx = ctx;
 428	req->ki_cancel = NULL;
 429	req->ki_retry = NULL;
 430	req->ki_dtor = NULL;
 431	req->private = NULL;
 432	req->ki_iovec = NULL;
 433	INIT_LIST_HEAD(&req->ki_run_list);
 434	req->ki_eventfd = NULL;
 435
 436	return req;
 437}
 438
 439/*
 440 * struct kiocb's are allocated in batches to reduce the number of
 441 * times the ctx lock is acquired and released.
 442 */
 443#define KIOCB_BATCH_SIZE	32L
 444struct kiocb_batch {
 445	struct list_head head;
 446	long count; /* number of requests left to allocate */
 447};
 448
 449static void kiocb_batch_init(struct kiocb_batch *batch, long total)
 450{
 451	INIT_LIST_HEAD(&batch->head);
 452	batch->count = total;
 453}
 454
 455static void kiocb_batch_free(struct kioctx *ctx, struct kiocb_batch *batch)
 456{
 457	struct kiocb *req, *n;
 458
 459	if (list_empty(&batch->head))
 460		return;
 461
 462	spin_lock_irq(&ctx->ctx_lock);
 463	list_for_each_entry_safe(req, n, &batch->head, ki_batch) {
 464		list_del(&req->ki_batch);
 465		list_del(&req->ki_list);
 466		kmem_cache_free(kiocb_cachep, req);
 467		ctx->reqs_active--;
 468	}
 469	if (unlikely(!ctx->reqs_active && ctx->dead))
 470		wake_up_all(&ctx->wait);
 471	spin_unlock_irq(&ctx->ctx_lock);
 472}
 473
 474/*
 475 * Allocate a batch of kiocbs.  This avoids taking and dropping the
 476 * context lock a lot during setup.
 477 */
 478static int kiocb_batch_refill(struct kioctx *ctx, struct kiocb_batch *batch)
 479{
 480	unsigned short allocated, to_alloc;
 481	long avail;
 482	bool called_fput = false;
 483	struct kiocb *req, *n;
 484	struct aio_ring *ring;
 485
 486	to_alloc = min(batch->count, KIOCB_BATCH_SIZE);
 487	for (allocated = 0; allocated < to_alloc; allocated++) {
 488		req = __aio_get_req(ctx);
 489		if (!req)
 490			/* allocation failed, go with what we've got */
 491			break;
 492		list_add(&req->ki_batch, &batch->head);
 493	}
 494
 495	if (allocated == 0)
 496		goto out;
 497
 498retry:
 499	spin_lock_irq(&ctx->ctx_lock);
 500	ring = kmap_atomic(ctx->ring_info.ring_pages[0]);
 501
 502	avail = aio_ring_avail(&ctx->ring_info, ring) - ctx->reqs_active;
 503	BUG_ON(avail < 0);
 504	if (avail == 0 && !called_fput) {
 505		/*
 506		 * Handle a potential starvation case.  It is possible that
 507		 * we hold the last reference on a struct file, causing us
 508		 * to delay the final fput to non-irq context.  In this case,
 509		 * ctx->reqs_active is artificially high.  Calling the fput
 510		 * routine here may free up a slot in the event completion
 511		 * ring, allowing this allocation to succeed.
 512		 */
 513		kunmap_atomic(ring);
 514		spin_unlock_irq(&ctx->ctx_lock);
 515		aio_fput_routine(NULL);
 516		called_fput = true;
 517		goto retry;
 518	}
 519
 520	if (avail < allocated) {
 521		/* Trim back the number of requests. */
 522		list_for_each_entry_safe(req, n, &batch->head, ki_batch) {
 523			list_del(&req->ki_batch);
 524			kmem_cache_free(kiocb_cachep, req);
 525			if (--allocated <= avail)
 526				break;
 527		}
 528	}
 529
 530	batch->count -= allocated;
 531	list_for_each_entry(req, &batch->head, ki_batch) {
 532		list_add(&req->ki_list, &ctx->active_reqs);
 533		ctx->reqs_active++;
 534	}
 535
 536	kunmap_atomic(ring);
 537	spin_unlock_irq(&ctx->ctx_lock);
 538
 539out:
 540	return allocated;
 541}
 542
 543static inline struct kiocb *aio_get_req(struct kioctx *ctx,
 544					struct kiocb_batch *batch)
 545{
 546	struct kiocb *req;
 
 547
 548	if (list_empty(&batch->head))
 549		if (kiocb_batch_refill(ctx, batch) == 0)
 550			return NULL;
 551	req = list_first_entry(&batch->head, struct kiocb, ki_batch);
 552	list_del(&req->ki_batch);
 553	return req;
 554}
 555
 556static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
 557{
 558	assert_spin_locked(&ctx->ctx_lock);
 
 559
 560	if (req->ki_eventfd != NULL)
 561		eventfd_ctx_put(req->ki_eventfd);
 562	if (req->ki_dtor)
 563		req->ki_dtor(req);
 564	if (req->ki_iovec != &req->ki_inline_vec)
 565		kfree(req->ki_iovec);
 566	kmem_cache_free(kiocb_cachep, req);
 567	ctx->reqs_active--;
 568
 569	if (unlikely(!ctx->reqs_active && ctx->dead))
 570		wake_up_all(&ctx->wait);
 571}
 572
 573static void aio_fput_routine(struct work_struct *data)
 574{
 575	spin_lock_irq(&fput_lock);
 576	while (likely(!list_empty(&fput_head))) {
 577		struct kiocb *req = list_kiocb(fput_head.next);
 578		struct kioctx *ctx = req->ki_ctx;
 579
 580		list_del(&req->ki_list);
 581		spin_unlock_irq(&fput_lock);
 
 
 582
 583		/* Complete the fput(s) */
 584		if (req->ki_filp != NULL)
 585			fput(req->ki_filp);
 586
 587		/* Link the iocb into the context's free list */
 588		rcu_read_lock();
 589		spin_lock_irq(&ctx->ctx_lock);
 590		really_put_req(ctx, req);
 591		/*
 592		 * at that point ctx might've been killed, but actual
 593		 * freeing is RCU'd
 594		 */
 595		spin_unlock_irq(&ctx->ctx_lock);
 596		rcu_read_unlock();
 597
 598		spin_lock_irq(&fput_lock);
 599	}
 600	spin_unlock_irq(&fput_lock);
 
 
 
 
 
 601}
 602
 603/* __aio_put_req
 604 *	Returns true if this put was the last user of the request.
 605 */
 606static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
 607{
 608	dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n",
 609		req, atomic_long_read(&req->ki_filp->f_count));
 
 
 
 
 
 
 
 
 
 
 
 610
 611	assert_spin_locked(&ctx->ctx_lock);
 
 
 
 
 612
 613	req->ki_users--;
 614	BUG_ON(req->ki_users < 0);
 615	if (likely(req->ki_users))
 616		return 0;
 617	list_del(&req->ki_list);		/* remove from active_reqs */
 618	req->ki_cancel = NULL;
 619	req->ki_retry = NULL;
 620
 621	/*
 622	 * Try to optimize the aio and eventfd file* puts, by avoiding to
 623	 * schedule work in case it is not final fput() time. In normal cases,
 624	 * we would not be holding the last reference to the file*, so
 625	 * this function will be executed w/out any aio kthread wakeup.
 626	 */
 627	if (unlikely(!fput_atomic(req->ki_filp))) {
 628		spin_lock(&fput_lock);
 629		list_add(&req->ki_list, &fput_head);
 630		spin_unlock(&fput_lock);
 631		schedule_work(&fput_work);
 632	} else {
 633		req->ki_filp = NULL;
 634		really_put_req(ctx, req);
 635	}
 636	return 1;
 637}
 638
 639/* aio_put_req
 640 *	Returns true if this put was the last user of the kiocb,
 641 *	false if the request is still in use.
 642 */
 643int aio_put_req(struct kiocb *req)
 644{
 645	struct kioctx *ctx = req->ki_ctx;
 646	int ret;
 647	spin_lock_irq(&ctx->ctx_lock);
 648	ret = __aio_put_req(ctx, req);
 649	spin_unlock_irq(&ctx->ctx_lock);
 650	return ret;
 651}
 652EXPORT_SYMBOL(aio_put_req);
 653
 654static struct kioctx *lookup_ioctx(unsigned long ctx_id)
 655{
 656	struct mm_struct *mm = current->mm;
 657	struct kioctx *ctx, *ret = NULL;
 658	struct hlist_node *n;
 659
 660	rcu_read_lock();
 
 661
 662	hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) {
 663		/*
 664		 * RCU protects us against accessing freed memory but
 665		 * we have to be careful not to get a reference when the
 666		 * reference count already dropped to 0 (ctx->dead test
 667		 * is unreliable because of races).
 668		 */
 669		if (ctx->user_id == ctx_id && !ctx->dead && try_get_ioctx(ctx)){
 670			ret = ctx;
 671			break;
 672		}
 673	}
 674
 675	rcu_read_unlock();
 676	return ret;
 677}
 678
 679/*
 680 * Queue up a kiocb to be retried. Assumes that the kiocb
 681 * has already been marked as kicked, and places it on
 682 * the retry run list for the corresponding ioctx, if it
 683 * isn't already queued. Returns 1 if it actually queued
 684 * the kiocb (to tell the caller to activate the work
 685 * queue to process it), or 0, if it found that it was
 686 * already queued.
 687 */
 688static inline int __queue_kicked_iocb(struct kiocb *iocb)
 689{
 690	struct kioctx *ctx = iocb->ki_ctx;
 691
 692	assert_spin_locked(&ctx->ctx_lock);
 693
 694	if (list_empty(&iocb->ki_run_list)) {
 695		list_add_tail(&iocb->ki_run_list,
 696			&ctx->run_list);
 697		return 1;
 698	}
 699	return 0;
 700}
 701
 702/* aio_run_iocb
 703 *	This is the core aio execution routine. It is
 704 *	invoked both for initial i/o submission and
 705 *	subsequent retries via the aio_kick_handler.
 706 *	Expects to be invoked with iocb->ki_ctx->lock
 707 *	already held. The lock is released and reacquired
 708 *	as needed during processing.
 709 *
 710 * Calls the iocb retry method (already setup for the
 711 * iocb on initial submission) for operation specific
 712 * handling, but takes care of most of common retry
 713 * execution details for a given iocb. The retry method
 714 * needs to be non-blocking as far as possible, to avoid
 715 * holding up other iocbs waiting to be serviced by the
 716 * retry kernel thread.
 717 *
 718 * The trickier parts in this code have to do with
 719 * ensuring that only one retry instance is in progress
 720 * for a given iocb at any time. Providing that guarantee
 721 * simplifies the coding of individual aio operations as
 722 * it avoids various potential races.
 723 */
 724static ssize_t aio_run_iocb(struct kiocb *iocb)
 725{
 726	struct kioctx	*ctx = iocb->ki_ctx;
 727	ssize_t (*retry)(struct kiocb *);
 728	ssize_t ret;
 
 
 729
 730	if (!(retry = iocb->ki_retry)) {
 731		printk("aio_run_iocb: iocb->ki_retry = NULL\n");
 732		return 0;
 733	}
 734
 735	/*
 736	 * We don't want the next retry iteration for this
 737	 * operation to start until this one has returned and
 738	 * updated the iocb state. However, wait_queue functions
 739	 * can trigger a kick_iocb from interrupt context in the
 740	 * meantime, indicating that data is available for the next
 741	 * iteration. We want to remember that and enable the
 742	 * next retry iteration _after_ we are through with
 743	 * this one.
 744	 *
 745	 * So, in order to be able to register a "kick", but
 746	 * prevent it from being queued now, we clear the kick
 747	 * flag, but make the kick code *think* that the iocb is
 748	 * still on the run list until we are actually done.
 749	 * When we are done with this iteration, we check if
 750	 * the iocb was kicked in the meantime and if so, queue
 751	 * it up afresh.
 752	 */
 753
 754	kiocbClearKicked(iocb);
 
 755
 756	/*
 757	 * This is so that aio_complete knows it doesn't need to
 758	 * pull the iocb off the run list (We can't just call
 759	 * INIT_LIST_HEAD because we don't want a kick_iocb to
 760	 * queue this on the run list yet)
 761	 */
 762	iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
 763	spin_unlock_irq(&ctx->ctx_lock);
 764
 765	/* Quit retrying if the i/o has been cancelled */
 766	if (kiocbIsCancelled(iocb)) {
 767		ret = -EINTR;
 768		aio_complete(iocb, ret, 0);
 769		/* must not access the iocb after this */
 770		goto out;
 771	}
 772
 773	/*
 774	 * Now we are all set to call the retry method in async
 775	 * context.
 776	 */
 777	ret = retry(iocb);
 778
 779	if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
 780		/*
 781		 * There's no easy way to restart the syscall since other AIO's
 782		 * may be already running. Just fail this IO with EINTR.
 783		 */
 784		if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
 785			     ret == -ERESTARTNOHAND || ret == -ERESTART_RESTARTBLOCK))
 786			ret = -EINTR;
 787		aio_complete(iocb, ret, 0);
 788	}
 789out:
 790	spin_lock_irq(&ctx->ctx_lock);
 791
 792	if (-EIOCBRETRY == ret) {
 793		/*
 794		 * OK, now that we are done with this iteration
 795		 * and know that there is more left to go,
 796		 * this is where we let go so that a subsequent
 797		 * "kick" can start the next iteration
 798		 */
 799
 800		/* will make __queue_kicked_iocb succeed from here on */
 801		INIT_LIST_HEAD(&iocb->ki_run_list);
 802		/* we must queue the next iteration ourselves, if it
 803		 * has already been kicked */
 804		if (kiocbIsKicked(iocb)) {
 805			__queue_kicked_iocb(iocb);
 806
 807			/*
 808			 * __queue_kicked_iocb will always return 1 here, because
 809			 * iocb->ki_run_list is empty at this point so it should
 810			 * be safe to unconditionally queue the context into the
 811			 * work queue.
 812			 */
 813			aio_queue_work(ctx);
 814		}
 815	}
 816	return ret;
 817}
 818
 819/*
 820 * __aio_run_iocbs:
 821 * 	Process all pending retries queued on the ioctx
 822 * 	run list.
 823 * Assumes it is operating within the aio issuer's mm
 824 * context.
 825 */
 826static int __aio_run_iocbs(struct kioctx *ctx)
 827{
 828	struct kiocb *iocb;
 829	struct list_head run_list;
 830
 831	assert_spin_locked(&ctx->ctx_lock);
 832
 833	list_replace_init(&ctx->run_list, &run_list);
 834	while (!list_empty(&run_list)) {
 835		iocb = list_entry(run_list.next, struct kiocb,
 836			ki_run_list);
 837		list_del(&iocb->ki_run_list);
 838		/*
 839		 * Hold an extra reference while retrying i/o.
 840		 */
 841		iocb->ki_users++;       /* grab extra reference */
 842		aio_run_iocb(iocb);
 843		__aio_put_req(ctx, iocb);
 844 	}
 845	if (!list_empty(&ctx->run_list))
 846		return 1;
 847	return 0;
 848}
 849
 850static void aio_queue_work(struct kioctx * ctx)
 851{
 852	unsigned long timeout;
 853	/*
 854	 * if someone is waiting, get the work started right
 855	 * away, otherwise, use a longer delay
 856	 */
 857	smp_mb();
 858	if (waitqueue_active(&ctx->wait))
 859		timeout = 1;
 860	else
 861		timeout = HZ/10;
 862	queue_delayed_work(aio_wq, &ctx->wq, timeout);
 863}
 864
 865/*
 866 * aio_run_all_iocbs:
 867 *	Process all pending retries queued on the ioctx
 868 *	run list, and keep running them until the list
 869 *	stays empty.
 870 * Assumes it is operating within the aio issuer's mm context.
 871 */
 872static inline void aio_run_all_iocbs(struct kioctx *ctx)
 873{
 874	spin_lock_irq(&ctx->ctx_lock);
 875	while (__aio_run_iocbs(ctx))
 876		;
 877	spin_unlock_irq(&ctx->ctx_lock);
 878}
 879
 880/*
 881 * aio_kick_handler:
 882 * 	Work queue handler triggered to process pending
 883 * 	retries on an ioctx. Takes on the aio issuer's
 884 *	mm context before running the iocbs, so that
 885 *	copy_xxx_user operates on the issuer's address
 886 *      space.
 887 * Run on aiod's context.
 888 */
 889static void aio_kick_handler(struct work_struct *work)
 890{
 891	struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
 892	mm_segment_t oldfs = get_fs();
 893	struct mm_struct *mm;
 894	int requeue;
 895
 896	set_fs(USER_DS);
 897	use_mm(ctx->mm);
 898	spin_lock_irq(&ctx->ctx_lock);
 899	requeue =__aio_run_iocbs(ctx);
 900	mm = ctx->mm;
 901	spin_unlock_irq(&ctx->ctx_lock);
 902 	unuse_mm(mm);
 903	set_fs(oldfs);
 904	/*
 905	 * we're in a worker thread already; no point using non-zero delay
 906	 */
 907	if (requeue)
 908		queue_delayed_work(aio_wq, &ctx->wq, 0);
 909}
 910
 911
 912/*
 913 * Called by kick_iocb to queue the kiocb for retry
 914 * and if required activate the aio work queue to process
 915 * it
 916 */
 917static void try_queue_kicked_iocb(struct kiocb *iocb)
 918{
 919 	struct kioctx	*ctx = iocb->ki_ctx;
 920	unsigned long flags;
 921	int run = 0;
 922
 923	spin_lock_irqsave(&ctx->ctx_lock, flags);
 924	/* set this inside the lock so that we can't race with aio_run_iocb()
 925	 * testing it and putting the iocb on the run list under the lock */
 926	if (!kiocbTryKick(iocb))
 927		run = __queue_kicked_iocb(iocb);
 928	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
 929	if (run)
 930		aio_queue_work(ctx);
 931}
 932
 933/*
 934 * kick_iocb:
 935 *      Called typically from a wait queue callback context
 936 *      to trigger a retry of the iocb.
 937 *      The retry is usually executed by aio workqueue
 938 *      threads (See aio_kick_handler).
 939 */
 940void kick_iocb(struct kiocb *iocb)
 941{
 942	/* sync iocbs are easy: they can only ever be executing from a 
 943	 * single context. */
 944	if (is_sync_kiocb(iocb)) {
 945		kiocbSetKicked(iocb);
 946	        wake_up_process(iocb->ki_obj.tsk);
 947		return;
 948	}
 949
 950	try_queue_kicked_iocb(iocb);
 951}
 952EXPORT_SYMBOL(kick_iocb);
 953
 954/* aio_complete
 955 *	Called when the io request on the given iocb is complete.
 956 *	Returns true if this is the last user of the request.  The 
 957 *	only other user of the request can be the cancellation code.
 958 */
 959int aio_complete(struct kiocb *iocb, long res, long res2)
 960{
 961	struct kioctx	*ctx = iocb->ki_ctx;
 962	struct aio_ring_info	*info;
 963	struct aio_ring	*ring;
 964	struct io_event	*event;
 
 965	unsigned long	flags;
 966	unsigned long	tail;
 967	int		ret;
 968
 969	/*
 970	 * Special case handling for sync iocbs:
 971	 *  - events go directly into the iocb for fast handling
 972	 *  - the sync task with the iocb in its stack holds the single iocb
 973	 *    ref, no other paths have a way to get another ref
 974	 *  - the sync task helpfully left a reference to itself in the iocb
 975	 */
 976	if (is_sync_kiocb(iocb)) {
 977		BUG_ON(iocb->ki_users != 1);
 978		iocb->ki_user_data = res;
 979		iocb->ki_users = 0;
 980		wake_up_process(iocb->ki_obj.tsk);
 981		return 1;
 982	}
 983
 984	info = &ctx->ring_info;
 985
 986	/* add a completion event to the ring buffer.
 987	 * must be done holding ctx->ctx_lock to prevent
 988	 * other code from messing with the tail
 989	 * pointer since we might be called from irq
 990	 * context.
 991	 */
 992	spin_lock_irqsave(&ctx->ctx_lock, flags);
 993
 994	if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
 995		list_del_init(&iocb->ki_run_list);
 996
 997	/*
 998	 * cancelled requests don't get events, userland was given one
 999	 * when the event got cancelled.
1000	 */
1001	if (kiocbIsCancelled(iocb))
1002		goto put_rq;
1003
1004	ring = kmap_atomic(info->ring_pages[0]);
1005
1006	tail = info->tail;
1007	event = aio_ring_event(info, tail);
1008	if (++tail >= info->nr)
1009		tail = 0;
1010
1011	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
1012	event->data = iocb->ki_user_data;
1013	event->res = res;
1014	event->res2 = res2;
1015
1016	dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
1017		ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
1018		res, res2);
1019
1020	/* after flagging the request as done, we
1021	 * must never even look at it again
1022	 */
1023	smp_wmb();	/* make event visible before updating tail */
1024
1025	info->tail = tail;
 
 
 
1026	ring->tail = tail;
 
 
1027
1028	put_aio_ring_event(event);
1029	kunmap_atomic(ring);
 
 
1030
1031	pr_debug("added to ring %p at [%lu]\n", iocb, tail);
1032
1033	/*
1034	 * Check if the user asked us to deliver the result through an
1035	 * eventfd. The eventfd_signal() function is safe to be called
1036	 * from IRQ context.
1037	 */
1038	if (iocb->ki_eventfd != NULL)
1039		eventfd_signal(iocb->ki_eventfd, 1);
1040
1041put_rq:
1042	/* everything turned out well, dispose of the aiocb. */
1043	ret = __aio_put_req(ctx, iocb);
1044
1045	/*
1046	 * We have to order our ring_info tail store above and test
1047	 * of the wait list below outside the wait lock.  This is
1048	 * like in wake_up_bit() where clearing a bit has to be
1049	 * ordered with the unlocked test.
1050	 */
1051	smp_mb();
1052
1053	if (waitqueue_active(&ctx->wait))
1054		wake_up(&ctx->wait);
 
1055
1056	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1057	return ret;
 
 
 
 
1058}
1059EXPORT_SYMBOL(aio_complete);
1060
1061/* aio_read_evt
1062 *	Pull an event off of the ioctx's event ring.  Returns the number of 
1063 *	events fetched (0 or 1 ;-)
1064 *	FIXME: make this use cmpxchg.
1065 *	TODO: make the ringbuffer user mmap()able (requires FIXME).
1066 */
1067static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
 
1068{
1069	struct aio_ring_info *info = &ioctx->ring_info;
1070	struct aio_ring *ring;
1071	unsigned long head;
1072	int ret = 0;
 
1073
1074	ring = kmap_atomic(info->ring_pages[0]);
1075	dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1076		 (unsigned long)ring->head, (unsigned long)ring->tail,
1077		 (unsigned long)ring->nr);
1078
1079	if (ring->head == ring->tail)
1080		goto out;
1081
1082	spin_lock(&info->ring_lock);
1083
1084	head = ring->head % info->nr;
1085	if (head != ring->tail) {
1086		struct io_event *evp = aio_ring_event(info, head);
1087		*ent = *evp;
1088		head = (head + 1) % info->nr;
1089		smp_mb(); /* finish reading the event before updatng the head */
1090		ring->head = head;
1091		ret = 1;
1092		put_aio_ring_event(evp);
1093	}
1094	spin_unlock(&info->ring_lock);
1095
1096out:
 
 
 
1097	kunmap_atomic(ring);
1098	dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
1099		 (unsigned long)ring->head, (unsigned long)ring->tail);
1100	return ret;
1101}
1102
1103struct aio_timeout {
1104	struct timer_list	timer;
1105	int			timed_out;
1106	struct task_struct	*p;
1107};
1108
1109static void timeout_func(unsigned long data)
1110{
1111	struct aio_timeout *to = (struct aio_timeout *)data;
1112
1113	to->timed_out = 1;
1114	wake_up_process(to->p);
1115}
1116
1117static inline void init_timeout(struct aio_timeout *to)
1118{
1119	setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
1120	to->timed_out = 0;
1121	to->p = current;
1122}
1123
1124static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1125			       const struct timespec *ts)
1126{
1127	to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1128	if (time_after(to->timer.expires, jiffies))
1129		add_timer(&to->timer);
1130	else
1131		to->timed_out = 1;
1132}
1133
1134static inline void clear_timeout(struct aio_timeout *to)
1135{
1136	del_singleshot_timer_sync(&to->timer);
1137}
1138
1139static int read_events(struct kioctx *ctx,
1140			long min_nr, long nr,
1141			struct io_event __user *event,
1142			struct timespec __user *timeout)
1143{
1144	long			start_jiffies = jiffies;
1145	struct task_struct	*tsk = current;
1146	DECLARE_WAITQUEUE(wait, tsk);
1147	int			ret;
1148	int			i = 0;
1149	struct io_event		ent;
1150	struct aio_timeout	to;
1151	int			retry = 0;
1152
1153	/* needed to zero any padding within an entry (there shouldn't be 
1154	 * any, but C is fun!
1155	 */
1156	memset(&ent, 0, sizeof(ent));
1157retry:
1158	ret = 0;
1159	while (likely(i < nr)) {
1160		ret = aio_read_evt(ctx, &ent);
1161		if (unlikely(ret <= 0))
1162			break;
1163
1164		dprintk("read event: %Lx %Lx %Lx %Lx\n",
1165			ent.data, ent.obj, ent.res, ent.res2);
 
 
 
 
 
 
 
 
 
1166
1167		/* Could we split the check in two? */
1168		ret = -EFAULT;
1169		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1170			dprintk("aio: lost an event due to EFAULT.\n");
1171			break;
1172		}
1173		ret = 0;
1174
1175		/* Good, event copied to userland, update counts. */
1176		event ++;
1177		i ++;
1178	}
1179
1180	if (min_nr <= i)
1181		return i;
1182	if (ret)
1183		return ret;
1184
1185	/* End fast path */
 
 
1186
1187	/* racey check, but it gets redone */
1188	if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1189		retry = 1;
1190		aio_run_all_iocbs(ctx);
1191		goto retry;
1192	}
1193
1194	init_timeout(&to);
1195	if (timeout) {
1196		struct timespec	ts;
1197		ret = -EFAULT;
1198		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1199			goto out;
1200
1201		set_timeout(start_jiffies, &to, &ts);
1202	}
1203
1204	while (likely(i < nr)) {
1205		add_wait_queue_exclusive(&ctx->wait, &wait);
1206		do {
1207			set_task_state(tsk, TASK_INTERRUPTIBLE);
1208			ret = aio_read_evt(ctx, &ent);
1209			if (ret)
1210				break;
1211			if (min_nr <= i)
1212				break;
1213			if (unlikely(ctx->dead)) {
1214				ret = -EINVAL;
1215				break;
1216			}
1217			if (to.timed_out)	/* Only check after read evt */
1218				break;
1219			/* Try to only show up in io wait if there are ops
1220			 *  in flight */
1221			if (ctx->reqs_active)
1222				io_schedule();
1223			else
1224				schedule();
1225			if (signal_pending(tsk)) {
1226				ret = -EINTR;
1227				break;
1228			}
1229			/*ret = aio_read_evt(ctx, &ent);*/
1230		} while (1) ;
1231
1232		set_task_state(tsk, TASK_RUNNING);
1233		remove_wait_queue(&ctx->wait, &wait);
1234
1235		if (unlikely(ret <= 0))
1236			break;
1237
1238		ret = -EFAULT;
1239		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1240			dprintk("aio: lost an event due to EFAULT.\n");
1241			break;
1242		}
1243
1244		/* Good, event copied to userland, update counts. */
1245		event ++;
1246		i ++;
1247	}
1248
1249	if (timeout)
1250		clear_timeout(&to);
1251out:
1252	destroy_timer_on_stack(&to.timer);
1253	return i ? i : ret;
1254}
1255
1256/* Take an ioctx and remove it from the list of ioctx's.  Protects 
1257 * against races with itself via ->dead.
1258 */
1259static void io_destroy(struct kioctx *ioctx)
1260{
1261	struct mm_struct *mm = current->mm;
1262	int was_dead;
1263
1264	/* delete the entry from the list is someone else hasn't already */
1265	spin_lock(&mm->ioctx_lock);
1266	was_dead = ioctx->dead;
1267	ioctx->dead = 1;
1268	hlist_del_rcu(&ioctx->list);
1269	spin_unlock(&mm->ioctx_lock);
1270
1271	dprintk("aio_release(%p)\n", ioctx);
1272	if (likely(!was_dead))
1273		put_ioctx(ioctx);	/* twice for the list */
1274
1275	kill_ctx(ioctx);
1276
1277	/*
1278	 * Wake up any waiters.  The setting of ctx->dead must be seen
1279	 * by other CPUs at this point.  Right now, we rely on the
1280	 * locking done by the above calls to ensure this consistency.
 
 
 
 
 
 
 
 
 
1281	 */
1282	wake_up_all(&ioctx->wait);
 
 
 
 
 
 
1283}
1284
1285/* sys_io_setup:
1286 *	Create an aio_context capable of receiving at least nr_events.
1287 *	ctxp must not point to an aio_context that already exists, and
1288 *	must be initialized to 0 prior to the call.  On successful
1289 *	creation of the aio_context, *ctxp is filled in with the resulting 
1290 *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1291 *	if the specified nr_events exceeds internal limits.  May fail 
1292 *	with -EAGAIN if the specified nr_events exceeds the user's limit 
1293 *	of available events.  May fail with -ENOMEM if insufficient kernel
1294 *	resources are available.  May fail with -EFAULT if an invalid
1295 *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1296 *	implemented.
1297 */
1298SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1299{
1300	struct kioctx *ioctx = NULL;
1301	unsigned long ctx;
1302	long ret;
1303
1304	ret = get_user(ctx, ctxp);
1305	if (unlikely(ret))
1306		goto out;
1307
1308	ret = -EINVAL;
1309	if (unlikely(ctx || nr_events == 0)) {
1310		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1311		         ctx, nr_events);
1312		goto out;
1313	}
1314
1315	ioctx = ioctx_alloc(nr_events);
1316	ret = PTR_ERR(ioctx);
1317	if (!IS_ERR(ioctx)) {
1318		ret = put_user(ioctx->user_id, ctxp);
1319		if (ret)
1320			io_destroy(ioctx);
1321		put_ioctx(ioctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1322	}
1323
1324out:
1325	return ret;
1326}
 
1327
1328/* sys_io_destroy:
1329 *	Destroy the aio_context specified.  May cancel any outstanding 
1330 *	AIOs and block on completion.  Will fail with -ENOSYS if not
1331 *	implemented.  May fail with -EINVAL if the context pointed to
1332 *	is invalid.
1333 */
1334SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1335{
1336	struct kioctx *ioctx = lookup_ioctx(ctx);
1337	if (likely(NULL != ioctx)) {
1338		io_destroy(ioctx);
1339		put_ioctx(ioctx);
1340		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1341	}
1342	pr_debug("EINVAL: io_destroy: invalid context id\n");
1343	return -EINVAL;
1344}
1345
1346static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1347{
1348	struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
 
 
 
 
 
 
 
 
 
 
 
 
 
1349
1350	BUG_ON(ret <= 0);
 
1351
1352	while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1353		ssize_t this = min((ssize_t)iov->iov_len, ret);
1354		iov->iov_base += this;
1355		iov->iov_len -= this;
1356		iocb->ki_left -= this;
1357		ret -= this;
1358		if (iov->iov_len == 0) {
1359			iocb->ki_cur_seg++;
1360			iov++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1361		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1362	}
 
 
 
 
 
 
 
1363
1364	/* the caller should not have done more io than what fit in
1365	 * the remaining iovecs */
1366	BUG_ON(ret > 0 && iocb->ki_left == 0);
1367}
1368
1369static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1370{
1371	struct file *file = iocb->ki_filp;
1372	struct address_space *mapping = file->f_mapping;
1373	struct inode *inode = mapping->host;
1374	ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1375			 unsigned long, loff_t);
1376	ssize_t ret = 0;
1377	unsigned short opcode;
1378
1379	if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1380		(iocb->ki_opcode == IOCB_CMD_PREAD)) {
1381		rw_op = file->f_op->aio_read;
1382		opcode = IOCB_CMD_PREADV;
1383	} else {
1384		rw_op = file->f_op->aio_write;
1385		opcode = IOCB_CMD_PWRITEV;
1386	}
 
1387
1388	/* This matches the pread()/pwrite() logic */
1389	if (iocb->ki_pos < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1390		return -EINVAL;
1391
1392	do {
1393		ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1394			    iocb->ki_nr_segs - iocb->ki_cur_seg,
1395			    iocb->ki_pos);
1396		if (ret > 0)
1397			aio_advance_iovec(iocb, ret);
1398
1399	/* retry all partial writes.  retry partial reads as long as its a
1400	 * regular file. */
1401	} while (ret > 0 && iocb->ki_left > 0 &&
1402		 (opcode == IOCB_CMD_PWRITEV ||
1403		  (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1404
1405	/* This means we must have transferred all that we could */
1406	/* No need to retry anymore */
1407	if ((ret == 0) || (iocb->ki_left == 0))
1408		ret = iocb->ki_nbytes - iocb->ki_left;
1409
1410	/* If we managed to write some out we return that, rather than
1411	 * the eventual error. */
1412	if (opcode == IOCB_CMD_PWRITEV
1413	    && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1414	    && iocb->ki_nbytes - iocb->ki_left)
1415		ret = iocb->ki_nbytes - iocb->ki_left;
1416
1417	return ret;
1418}
1419
1420static ssize_t aio_fdsync(struct kiocb *iocb)
 
1421{
1422	struct file *file = iocb->ki_filp;
1423	ssize_t ret = -EINVAL;
 
 
1424
1425	if (file->f_op->aio_fsync)
1426		ret = file->f_op->aio_fsync(iocb, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1427	return ret;
1428}
1429
1430static ssize_t aio_fsync(struct kiocb *iocb)
1431{
1432	struct file *file = iocb->ki_filp;
1433	ssize_t ret = -EINVAL;
1434
1435	if (file->f_op->aio_fsync)
1436		ret = file->f_op->aio_fsync(iocb, 0);
1437	return ret;
1438}
1439
1440static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb, bool compat)
 
1441{
1442	ssize_t ret;
 
 
 
 
 
1443
1444#ifdef CONFIG_COMPAT
1445	if (compat)
1446		ret = compat_rw_copy_check_uvector(type,
1447				(struct compat_iovec __user *)kiocb->ki_buf,
1448				kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1449				&kiocb->ki_iovec);
1450	else
1451#endif
1452		ret = rw_copy_check_uvector(type,
1453				(struct iovec __user *)kiocb->ki_buf,
1454				kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1455				&kiocb->ki_iovec);
1456	if (ret < 0)
1457		goto out;
1458
1459	ret = rw_verify_area(type, kiocb->ki_filp, &kiocb->ki_pos, ret);
1460	if (ret < 0)
1461		goto out;
1462
1463	kiocb->ki_nr_segs = kiocb->ki_nbytes;
1464	kiocb->ki_cur_seg = 0;
1465	/* ki_nbytes/left now reflect bytes instead of segs */
1466	kiocb->ki_nbytes = ret;
1467	kiocb->ki_left = ret;
 
 
 
 
 
 
 
 
 
 
 
 
1468
1469	ret = 0;
1470out:
1471	return ret;
1472}
1473
1474static ssize_t aio_setup_single_vector(int type, struct file * file, struct kiocb *kiocb)
 
1475{
1476	int bytes;
 
 
 
 
 
 
 
 
 
1477
1478	bytes = rw_verify_area(type, file, &kiocb->ki_pos, kiocb->ki_left);
1479	if (bytes < 0)
1480		return bytes;
1481
1482	kiocb->ki_iovec = &kiocb->ki_inline_vec;
1483	kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1484	kiocb->ki_iovec->iov_len = bytes;
1485	kiocb->ki_nr_segs = 1;
1486	kiocb->ki_cur_seg = 0;
1487	return 0;
1488}
1489
1490/*
1491 * aio_setup_iocb:
1492 *	Performs the initial checks and aio retry method
1493 *	setup for the kiocb at the time of io submission.
1494 */
1495static ssize_t aio_setup_iocb(struct kiocb *kiocb, bool compat)
1496{
1497	struct file *file = kiocb->ki_filp;
1498	ssize_t ret = 0;
 
 
 
 
 
 
 
 
1499
1500	switch (kiocb->ki_opcode) {
1501	case IOCB_CMD_PREAD:
1502		ret = -EBADF;
1503		if (unlikely(!(file->f_mode & FMODE_READ)))
1504			break;
1505		ret = -EFAULT;
1506		if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1507			kiocb->ki_left)))
1508			break;
1509		ret = aio_setup_single_vector(READ, file, kiocb);
1510		if (ret)
1511			break;
1512		ret = -EINVAL;
1513		if (file->f_op->aio_read)
1514			kiocb->ki_retry = aio_rw_vect_retry;
1515		break;
1516	case IOCB_CMD_PWRITE:
1517		ret = -EBADF;
1518		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1519			break;
1520		ret = -EFAULT;
1521		if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1522			kiocb->ki_left)))
1523			break;
1524		ret = aio_setup_single_vector(WRITE, file, kiocb);
1525		if (ret)
1526			break;
1527		ret = -EINVAL;
1528		if (file->f_op->aio_write)
1529			kiocb->ki_retry = aio_rw_vect_retry;
1530		break;
1531	case IOCB_CMD_PREADV:
1532		ret = -EBADF;
1533		if (unlikely(!(file->f_mode & FMODE_READ)))
1534			break;
1535		ret = aio_setup_vectored_rw(READ, kiocb, compat);
1536		if (ret)
1537			break;
1538		ret = -EINVAL;
1539		if (file->f_op->aio_read)
1540			kiocb->ki_retry = aio_rw_vect_retry;
1541		break;
1542	case IOCB_CMD_PWRITEV:
1543		ret = -EBADF;
1544		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1545			break;
1546		ret = aio_setup_vectored_rw(WRITE, kiocb, compat);
1547		if (ret)
1548			break;
1549		ret = -EINVAL;
1550		if (file->f_op->aio_write)
1551			kiocb->ki_retry = aio_rw_vect_retry;
1552		break;
1553	case IOCB_CMD_FDSYNC:
1554		ret = -EINVAL;
1555		if (file->f_op->aio_fsync)
1556			kiocb->ki_retry = aio_fdsync;
1557		break;
1558	case IOCB_CMD_FSYNC:
1559		ret = -EINVAL;
1560		if (file->f_op->aio_fsync)
1561			kiocb->ki_retry = aio_fsync;
1562		break;
1563	default:
1564		dprintk("EINVAL: io_submit: no operation provided\n");
1565		ret = -EINVAL;
1566	}
 
 
 
 
 
 
 
 
1567
1568	if (!kiocb->ki_retry)
1569		return ret;
 
 
 
 
 
 
 
 
 
1570
1571	return 0;
 
 
1572}
1573
1574static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1575			 struct iocb *iocb, struct kiocb_batch *batch,
1576			 bool compat)
1577{
1578	struct kiocb *req;
1579	struct file *file;
1580	ssize_t ret;
 
 
1581
1582	/* enforce forwards compatibility on users */
1583	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1584		pr_debug("EINVAL: io_submit: reserve field set\n");
 
 
1585		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1586	}
1587
1588	/* prevent overflows */
1589	if (unlikely(
1590	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1591	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1592	    ((ssize_t)iocb->aio_nbytes < 0)
1593	   )) {
1594		pr_debug("EINVAL: io_submit: overflow check\n");
1595		return -EINVAL;
1596	}
 
 
 
 
 
1597
1598	file = fget(iocb->aio_fildes);
1599	if (unlikely(!file))
 
 
 
 
1600		return -EBADF;
1601
1602	req = aio_get_req(ctx, batch);  /* returns with 2 references to req */
1603	if (unlikely(!req)) {
1604		fput(file);
1605		return -EAGAIN;
1606	}
1607	req->ki_filp = file;
1608	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
 
1609		/*
1610		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1611		 * instance of the file* now. The file descriptor must be
1612		 * an eventfd() fd, and will be signaled for each completed
1613		 * event using the eventfd_signal() function.
1614		 */
1615		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1616		if (IS_ERR(req->ki_eventfd)) {
1617			ret = PTR_ERR(req->ki_eventfd);
1618			req->ki_eventfd = NULL;
1619			goto out_put_req;
1620		}
1621	}
1622
1623	ret = put_user(req->ki_key, &user_iocb->aio_key);
1624	if (unlikely(ret)) {
1625		dprintk("EFAULT: aio_key\n");
1626		goto out_put_req;
1627	}
1628
1629	req->ki_obj.user = user_iocb;
1630	req->ki_user_data = iocb->aio_data;
1631	req->ki_pos = iocb->aio_offset;
 
1632
1633	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1634	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1635	req->ki_opcode = iocb->aio_lio_opcode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1636
1637	ret = aio_setup_iocb(req, compat);
 
 
 
 
 
1638
1639	if (ret)
1640		goto out_put_req;
1641
1642	spin_lock_irq(&ctx->ctx_lock);
1643	/*
1644	 * We could have raced with io_destroy() and are currently holding a
1645	 * reference to ctx which should be destroyed. We cannot submit IO
1646	 * since ctx gets freed as soon as io_submit() puts its reference.  The
1647	 * check here is reliable: io_destroy() sets ctx->dead before waiting
1648	 * for outstanding IO and the barrier between these two is realized by
1649	 * unlock of mm->ioctx_lock and lock of ctx->ctx_lock.  Analogously we
1650	 * increment ctx->reqs_active before checking for ctx->dead and the
1651	 * barrier is realized by unlock and lock of ctx->ctx_lock. Thus if we
1652	 * don't see ctx->dead set here, io_destroy() waits for our IO to
1653	 * finish.
1654	 */
1655	if (ctx->dead) {
1656		spin_unlock_irq(&ctx->ctx_lock);
1657		ret = -EINVAL;
1658		goto out_put_req;
1659	}
1660	aio_run_iocb(req);
1661	if (!list_empty(&ctx->run_list)) {
1662		/* drain the run list */
1663		while (__aio_run_iocbs(ctx))
1664			;
 
 
 
 
1665	}
1666	spin_unlock_irq(&ctx->ctx_lock);
1667
1668	aio_put_req(req);	/* drop extra ref to req */
1669	return 0;
 
 
 
 
 
 
1670
1671out_put_req:
1672	aio_put_req(req);	/* drop extra ref to req */
1673	aio_put_req(req);	/* drop i/o ref to req */
1674	return ret;
 
 
 
 
 
 
1675}
1676
1677long do_io_submit(aio_context_t ctx_id, long nr,
1678		  struct iocb __user *__user *iocbpp, bool compat)
 
 
 
 
 
 
 
 
 
 
 
 
1679{
1680	struct kioctx *ctx;
1681	long ret = 0;
1682	int i = 0;
1683	struct blk_plug plug;
1684	struct kiocb_batch batch;
1685
1686	if (unlikely(nr < 0))
1687		return -EINVAL;
1688
1689	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1690		nr = LONG_MAX/sizeof(*iocbpp);
1691
1692	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1693		return -EFAULT;
1694
1695	ctx = lookup_ioctx(ctx_id);
1696	if (unlikely(!ctx)) {
1697		pr_debug("EINVAL: io_submit: invalid context id\n");
1698		return -EINVAL;
1699	}
1700
1701	kiocb_batch_init(&batch, nr);
1702
1703	blk_start_plug(&plug);
1704
1705	/*
1706	 * AKPM: should this return a partial result if some of the IOs were
1707	 * successfully submitted?
1708	 */
1709	for (i=0; i<nr; i++) {
1710		struct iocb __user *user_iocb;
1711		struct iocb tmp;
1712
1713		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1714			ret = -EFAULT;
1715			break;
1716		}
1717
1718		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1719			ret = -EFAULT;
1720			break;
1721		}
1722
1723		ret = io_submit_one(ctx, user_iocb, &tmp, &batch, compat);
1724		if (ret)
1725			break;
1726	}
1727	blk_finish_plug(&plug);
 
1728
1729	kiocb_batch_free(ctx, &batch);
1730	put_ioctx(ctx);
1731	return i ? i : ret;
1732}
1733
1734/* sys_io_submit:
1735 *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1736 *	the number of iocbs queued.  May return -EINVAL if the aio_context
1737 *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1738 *	*iocbpp[0] is not properly initialized, if the operation specified
1739 *	is invalid for the file descriptor in the iocb.  May fail with
1740 *	-EFAULT if any of the data structures point to invalid data.  May
1741 *	fail with -EBADF if the file descriptor specified in the first
1742 *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1743 *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1744 *	fail with -ENOSYS if not implemented.
1745 */
1746SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1747		struct iocb __user * __user *, iocbpp)
1748{
1749	return do_io_submit(ctx_id, nr, iocbpp, 0);
1750}
 
 
 
 
 
 
 
 
 
 
 
1751
1752/* lookup_kiocb
1753 *	Finds a given iocb for cancellation.
1754 */
1755static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1756				  u32 key)
1757{
1758	struct list_head *pos;
1759
1760	assert_spin_locked(&ctx->ctx_lock);
 
 
 
1761
1762	/* TODO: use a hash or array, this sucks. */
1763	list_for_each(pos, &ctx->active_reqs) {
1764		struct kiocb *kiocb = list_kiocb(pos);
1765		if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1766			return kiocb;
 
 
 
1767	}
1768	return NULL;
 
 
 
 
1769}
 
1770
1771/* sys_io_cancel:
1772 *	Attempts to cancel an iocb previously passed to io_submit.  If
1773 *	the operation is successfully cancelled, the resulting event is
1774 *	copied into the memory pointed to by result without being placed
1775 *	into the completion queue and 0 is returned.  May fail with
1776 *	-EFAULT if any of the data structures pointed to are invalid.
1777 *	May fail with -EINVAL if aio_context specified by ctx_id is
1778 *	invalid.  May fail with -EAGAIN if the iocb specified was not
1779 *	cancelled.  Will fail with -ENOSYS if not implemented.
1780 */
1781SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1782		struct io_event __user *, result)
1783{
1784	int (*cancel)(struct kiocb *iocb, struct io_event *res);
1785	struct kioctx *ctx;
1786	struct kiocb *kiocb;
 
1787	u32 key;
1788	int ret;
1789
1790	ret = get_user(key, &iocb->aio_key);
1791	if (unlikely(ret))
1792		return -EFAULT;
 
 
1793
1794	ctx = lookup_ioctx(ctx_id);
1795	if (unlikely(!ctx))
1796		return -EINVAL;
1797
1798	spin_lock_irq(&ctx->ctx_lock);
1799	ret = -EAGAIN;
1800	kiocb = lookup_kiocb(ctx, iocb, key);
1801	if (kiocb && kiocb->ki_cancel) {
1802		cancel = kiocb->ki_cancel;
1803		kiocb->ki_users ++;
1804		kiocbSetCancelled(kiocb);
1805	} else
1806		cancel = NULL;
1807	spin_unlock_irq(&ctx->ctx_lock);
1808
1809	if (NULL != cancel) {
1810		struct io_event tmp;
1811		pr_debug("calling cancel\n");
1812		memset(&tmp, 0, sizeof(tmp));
1813		tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1814		tmp.data = kiocb->ki_user_data;
1815		ret = cancel(kiocb, &tmp);
1816		if (!ret) {
1817			/* Cancellation succeeded -- copy the result
1818			 * into the user's buffer.
1819			 */
1820			if (copy_to_user(result, &tmp, sizeof(tmp)))
1821				ret = -EFAULT;
1822		}
1823	} else
1824		ret = -EINVAL;
 
 
 
 
 
 
 
1825
1826	put_ioctx(ctx);
 
 
 
 
1827
1828	return ret;
1829}
1830
1831/* io_getevents:
1832 *	Attempts to read at least min_nr events and up to nr events from
1833 *	the completion queue for the aio_context specified by ctx_id. If
1834 *	it succeeds, the number of read events is returned. May fail with
1835 *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1836 *	out of range, if timeout is out of range.  May fail with -EFAULT
1837 *	if any of the memory specified is invalid.  May return 0 or
1838 *	< min_nr if the timeout specified by timeout has elapsed
1839 *	before sufficient events are available, where timeout == NULL
1840 *	specifies an infinite timeout. Note that the timeout pointed to by
1841 *	timeout is relative and will be updated if not NULL and the
1842 *	operation blocks. Will fail with -ENOSYS if not implemented.
1843 */
 
 
1844SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1845		long, min_nr,
1846		long, nr,
1847		struct io_event __user *, events,
1848		struct timespec __user *, timeout)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1849{
1850	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1851	long ret = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1852
1853	if (likely(ioctx)) {
1854		if (likely(min_nr <= nr && min_nr >= 0))
1855			ret = read_events(ioctx, min_nr, nr, events, timeout);
1856		put_ioctx(ioctx);
1857	}
1858
1859	asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1860	return ret;
1861}