Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  Copyright (C) 1991, 1992  Linus Torvalds
  4 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  5 *  Copyright (C) 2011	Don Zickus Red Hat, Inc.
  6 *
  7 *  Pentium III FXSR, SSE support
  8 *	Gareth Hughes <gareth@valinux.com>, May 2000
  9 */
 10
 11/*
 12 * Handle hardware traps and faults.
 13 */
 14#include <linux/spinlock.h>
 15#include <linux/kprobes.h>
 16#include <linux/kdebug.h>
 17#include <linux/sched/debug.h>
 18#include <linux/nmi.h>
 19#include <linux/debugfs.h>
 20#include <linux/delay.h>
 21#include <linux/hardirq.h>
 22#include <linux/ratelimit.h>
 23#include <linux/slab.h>
 24#include <linux/export.h>
 25#include <linux/atomic.h>
 26#include <linux/sched/clock.h>
 27
 28#if defined(CONFIG_EDAC)
 29#include <linux/edac.h>
 30#endif
 31
 32#include <asm/cpu_entry_area.h>
 33#include <asm/traps.h>
 34#include <asm/mach_traps.h>
 35#include <asm/nmi.h>
 36#include <asm/x86_init.h>
 37#include <asm/reboot.h>
 38#include <asm/cache.h>
 39#include <asm/nospec-branch.h>
 40
 41#define CREATE_TRACE_POINTS
 42#include <trace/events/nmi.h>
 43
 44struct nmi_desc {
 45	raw_spinlock_t lock;
 46	struct list_head head;
 47};
 48
 49static struct nmi_desc nmi_desc[NMI_MAX] = 
 50{
 51	{
 52		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
 53		.head = LIST_HEAD_INIT(nmi_desc[0].head),
 54	},
 55	{
 56		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
 57		.head = LIST_HEAD_INIT(nmi_desc[1].head),
 58	},
 59	{
 60		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
 61		.head = LIST_HEAD_INIT(nmi_desc[2].head),
 62	},
 63	{
 64		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
 65		.head = LIST_HEAD_INIT(nmi_desc[3].head),
 66	},
 67
 68};
 69
 70struct nmi_stats {
 71	unsigned int normal;
 72	unsigned int unknown;
 73	unsigned int external;
 74	unsigned int swallow;
 75};
 76
 77static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
 78
 79static int ignore_nmis __read_mostly;
 80
 81int unknown_nmi_panic;
 82/*
 83 * Prevent NMI reason port (0x61) being accessed simultaneously, can
 84 * only be used in NMI handler.
 85 */
 86static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
 87
 88static int __init setup_unknown_nmi_panic(char *str)
 89{
 90	unknown_nmi_panic = 1;
 91	return 1;
 92}
 93__setup("unknown_nmi_panic", setup_unknown_nmi_panic);
 94
 95#define nmi_to_desc(type) (&nmi_desc[type])
 96
 97static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
 98
 99static int __init nmi_warning_debugfs(void)
100{
101	debugfs_create_u64("nmi_longest_ns", 0644,
102			arch_debugfs_dir, &nmi_longest_ns);
103	return 0;
104}
105fs_initcall(nmi_warning_debugfs);
106
107static void nmi_max_handler(struct irq_work *w)
108{
109	struct nmiaction *a = container_of(w, struct nmiaction, irq_work);
110	int remainder_ns, decimal_msecs;
111	u64 whole_msecs = READ_ONCE(a->max_duration);
112
113	remainder_ns = do_div(whole_msecs, (1000 * 1000));
114	decimal_msecs = remainder_ns / 1000;
115
116	printk_ratelimited(KERN_INFO
117		"INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
118		a->handler, whole_msecs, decimal_msecs);
119}
120
121static int nmi_handle(unsigned int type, struct pt_regs *regs)
122{
123	struct nmi_desc *desc = nmi_to_desc(type);
124	struct nmiaction *a;
125	int handled=0;
126
127	rcu_read_lock();
128
129	/*
130	 * NMIs are edge-triggered, which means if you have enough
131	 * of them concurrently, you can lose some because only one
132	 * can be latched at any given time.  Walk the whole list
133	 * to handle those situations.
134	 */
135	list_for_each_entry_rcu(a, &desc->head, list) {
136		int thishandled;
137		u64 delta;
138
139		delta = sched_clock();
140		thishandled = a->handler(type, regs);
141		handled += thishandled;
142		delta = sched_clock() - delta;
143		trace_nmi_handler(a->handler, (int)delta, thishandled);
144
145		if (delta < nmi_longest_ns || delta < a->max_duration)
146			continue;
147
148		a->max_duration = delta;
149		irq_work_queue(&a->irq_work);
150	}
151
152	rcu_read_unlock();
153
154	/* return total number of NMI events handled */
155	return handled;
156}
157NOKPROBE_SYMBOL(nmi_handle);
158
159int __register_nmi_handler(unsigned int type, struct nmiaction *action)
160{
161	struct nmi_desc *desc = nmi_to_desc(type);
162	unsigned long flags;
163
164	if (!action->handler)
165		return -EINVAL;
166
167	init_irq_work(&action->irq_work, nmi_max_handler);
168
169	raw_spin_lock_irqsave(&desc->lock, flags);
170
171	/*
172	 * Indicate if there are multiple registrations on the
173	 * internal NMI handler call chains (SERR and IO_CHECK).
 
174	 */
 
175	WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
176	WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
177
178	/*
179	 * some handlers need to be executed first otherwise a fake
180	 * event confuses some handlers (kdump uses this flag)
181	 */
182	if (action->flags & NMI_FLAG_FIRST)
183		list_add_rcu(&action->list, &desc->head);
184	else
185		list_add_tail_rcu(&action->list, &desc->head);
186	
187	raw_spin_unlock_irqrestore(&desc->lock, flags);
188	return 0;
189}
190EXPORT_SYMBOL(__register_nmi_handler);
191
192void unregister_nmi_handler(unsigned int type, const char *name)
193{
194	struct nmi_desc *desc = nmi_to_desc(type);
195	struct nmiaction *n;
196	unsigned long flags;
197
198	raw_spin_lock_irqsave(&desc->lock, flags);
199
200	list_for_each_entry_rcu(n, &desc->head, list) {
201		/*
202		 * the name passed in to describe the nmi handler
203		 * is used as the lookup key
204		 */
205		if (!strcmp(n->name, name)) {
206			WARN(in_nmi(),
207				"Trying to free NMI (%s) from NMI context!\n", n->name);
208			list_del_rcu(&n->list);
209			break;
210		}
211	}
212
213	raw_spin_unlock_irqrestore(&desc->lock, flags);
214	synchronize_rcu();
215}
216EXPORT_SYMBOL_GPL(unregister_nmi_handler);
217
218static void
219pci_serr_error(unsigned char reason, struct pt_regs *regs)
220{
221	/* check to see if anyone registered against these types of errors */
222	if (nmi_handle(NMI_SERR, regs))
223		return;
224
225	pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
226		 reason, smp_processor_id());
227
 
 
 
 
 
 
 
 
 
 
 
228	if (panic_on_unrecovered_nmi)
229		nmi_panic(regs, "NMI: Not continuing");
230
231	pr_emerg("Dazed and confused, but trying to continue\n");
232
233	/* Clear and disable the PCI SERR error line. */
234	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
235	outb(reason, NMI_REASON_PORT);
236}
237NOKPROBE_SYMBOL(pci_serr_error);
238
239static void
240io_check_error(unsigned char reason, struct pt_regs *regs)
241{
242	unsigned long i;
243
244	/* check to see if anyone registered against these types of errors */
245	if (nmi_handle(NMI_IO_CHECK, regs))
246		return;
247
248	pr_emerg(
249	"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
250		 reason, smp_processor_id());
251	show_regs(regs);
252
253	if (panic_on_io_nmi) {
254		nmi_panic(regs, "NMI IOCK error: Not continuing");
255
256		/*
257		 * If we end up here, it means we have received an NMI while
258		 * processing panic(). Simply return without delaying and
259		 * re-enabling NMIs.
260		 */
261		return;
262	}
263
264	/* Re-enable the IOCK line, wait for a few seconds */
265	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
266	outb(reason, NMI_REASON_PORT);
267
268	i = 20000;
269	while (--i) {
270		touch_nmi_watchdog();
271		udelay(100);
272	}
273
274	reason &= ~NMI_REASON_CLEAR_IOCHK;
275	outb(reason, NMI_REASON_PORT);
276}
277NOKPROBE_SYMBOL(io_check_error);
278
279static void
280unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
281{
282	int handled;
283
284	/*
285	 * Use 'false' as back-to-back NMIs are dealt with one level up.
286	 * Of course this makes having multiple 'unknown' handlers useless
287	 * as only the first one is ever run (unless it can actually determine
288	 * if it caused the NMI)
289	 */
290	handled = nmi_handle(NMI_UNKNOWN, regs);
291	if (handled) {
292		__this_cpu_add(nmi_stats.unknown, handled);
293		return;
294	}
295
296	__this_cpu_add(nmi_stats.unknown, 1);
297
298	pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
299		 reason, smp_processor_id());
300
301	pr_emerg("Do you have a strange power saving mode enabled?\n");
302	if (unknown_nmi_panic || panic_on_unrecovered_nmi)
303		nmi_panic(regs, "NMI: Not continuing");
304
305	pr_emerg("Dazed and confused, but trying to continue\n");
306}
307NOKPROBE_SYMBOL(unknown_nmi_error);
308
309static DEFINE_PER_CPU(bool, swallow_nmi);
310static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
311
312static void default_do_nmi(struct pt_regs *regs)
313{
314	unsigned char reason = 0;
315	int handled;
316	bool b2b = false;
317
318	/*
319	 * CPU-specific NMI must be processed before non-CPU-specific
320	 * NMI, otherwise we may lose it, because the CPU-specific
321	 * NMI can not be detected/processed on other CPUs.
322	 */
323
324	/*
325	 * Back-to-back NMIs are interesting because they can either
326	 * be two NMI or more than two NMIs (any thing over two is dropped
327	 * due to NMI being edge-triggered).  If this is the second half
328	 * of the back-to-back NMI, assume we dropped things and process
329	 * more handlers.  Otherwise reset the 'swallow' NMI behaviour
330	 */
331	if (regs->ip == __this_cpu_read(last_nmi_rip))
332		b2b = true;
333	else
334		__this_cpu_write(swallow_nmi, false);
335
336	__this_cpu_write(last_nmi_rip, regs->ip);
337
338	handled = nmi_handle(NMI_LOCAL, regs);
339	__this_cpu_add(nmi_stats.normal, handled);
340	if (handled) {
341		/*
342		 * There are cases when a NMI handler handles multiple
343		 * events in the current NMI.  One of these events may
344		 * be queued for in the next NMI.  Because the event is
345		 * already handled, the next NMI will result in an unknown
346		 * NMI.  Instead lets flag this for a potential NMI to
347		 * swallow.
348		 */
349		if (handled > 1)
350			__this_cpu_write(swallow_nmi, true);
351		return;
352	}
353
354	/*
355	 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
356	 *
357	 * Another CPU may be processing panic routines while holding
358	 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
359	 * and if so, call its callback directly.  If there is no CPU preparing
360	 * crash dump, we simply loop here.
361	 */
362	while (!raw_spin_trylock(&nmi_reason_lock)) {
363		run_crash_ipi_callback(regs);
364		cpu_relax();
365	}
366
367	reason = x86_platform.get_nmi_reason();
368
369	if (reason & NMI_REASON_MASK) {
370		if (reason & NMI_REASON_SERR)
371			pci_serr_error(reason, regs);
372		else if (reason & NMI_REASON_IOCHK)
373			io_check_error(reason, regs);
374#ifdef CONFIG_X86_32
375		/*
376		 * Reassert NMI in case it became active
377		 * meanwhile as it's edge-triggered:
378		 */
379		reassert_nmi();
380#endif
381		__this_cpu_add(nmi_stats.external, 1);
382		raw_spin_unlock(&nmi_reason_lock);
383		return;
384	}
385	raw_spin_unlock(&nmi_reason_lock);
386
387	/*
388	 * Only one NMI can be latched at a time.  To handle
389	 * this we may process multiple nmi handlers at once to
390	 * cover the case where an NMI is dropped.  The downside
391	 * to this approach is we may process an NMI prematurely,
392	 * while its real NMI is sitting latched.  This will cause
393	 * an unknown NMI on the next run of the NMI processing.
394	 *
395	 * We tried to flag that condition above, by setting the
396	 * swallow_nmi flag when we process more than one event.
397	 * This condition is also only present on the second half
398	 * of a back-to-back NMI, so we flag that condition too.
399	 *
400	 * If both are true, we assume we already processed this
401	 * NMI previously and we swallow it.  Otherwise we reset
402	 * the logic.
403	 *
404	 * There are scenarios where we may accidentally swallow
405	 * a 'real' unknown NMI.  For example, while processing
406	 * a perf NMI another perf NMI comes in along with a
407	 * 'real' unknown NMI.  These two NMIs get combined into
408	 * one (as descibed above).  When the next NMI gets
409	 * processed, it will be flagged by perf as handled, but
410	 * noone will know that there was a 'real' unknown NMI sent
411	 * also.  As a result it gets swallowed.  Or if the first
412	 * perf NMI returns two events handled then the second
413	 * NMI will get eaten by the logic below, again losing a
414	 * 'real' unknown NMI.  But this is the best we can do
415	 * for now.
416	 */
417	if (b2b && __this_cpu_read(swallow_nmi))
418		__this_cpu_add(nmi_stats.swallow, 1);
419	else
420		unknown_nmi_error(reason, regs);
421}
422NOKPROBE_SYMBOL(default_do_nmi);
423
424/*
425 * NMIs can page fault or hit breakpoints which will cause it to lose
426 * its NMI context with the CPU when the breakpoint or page fault does an IRET.
427 *
428 * As a result, NMIs can nest if NMIs get unmasked due an IRET during
429 * NMI processing.  On x86_64, the asm glue protects us from nested NMIs
430 * if the outer NMI came from kernel mode, but we can still nest if the
431 * outer NMI came from user mode.
432 *
433 * To handle these nested NMIs, we have three states:
434 *
435 *  1) not running
436 *  2) executing
437 *  3) latched
438 *
439 * When no NMI is in progress, it is in the "not running" state.
440 * When an NMI comes in, it goes into the "executing" state.
441 * Normally, if another NMI is triggered, it does not interrupt
442 * the running NMI and the HW will simply latch it so that when
443 * the first NMI finishes, it will restart the second NMI.
444 * (Note, the latch is binary, thus multiple NMIs triggering,
445 *  when one is running, are ignored. Only one NMI is restarted.)
446 *
447 * If an NMI executes an iret, another NMI can preempt it. We do not
448 * want to allow this new NMI to run, but we want to execute it when the
449 * first one finishes.  We set the state to "latched", and the exit of
450 * the first NMI will perform a dec_return, if the result is zero
451 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
452 * dec_return would have set the state to NMI_EXECUTING (what we want it
453 * to be when we are running). In this case, we simply jump back to
454 * rerun the NMI handler again, and restart the 'latched' NMI.
455 *
456 * No trap (breakpoint or page fault) should be hit before nmi_restart,
457 * thus there is no race between the first check of state for NOT_RUNNING
458 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
459 * at this point.
460 *
461 * In case the NMI takes a page fault, we need to save off the CR2
462 * because the NMI could have preempted another page fault and corrupt
463 * the CR2 that is about to be read. As nested NMIs must be restarted
464 * and they can not take breakpoints or page faults, the update of the
465 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
466 * Otherwise, there would be a race of another nested NMI coming in
467 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
468 */
469enum nmi_states {
470	NMI_NOT_RUNNING = 0,
471	NMI_EXECUTING,
472	NMI_LATCHED,
473};
474static DEFINE_PER_CPU(enum nmi_states, nmi_state);
475static DEFINE_PER_CPU(unsigned long, nmi_cr2);
476
477#ifdef CONFIG_X86_64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
478/*
479 * In x86_64, we need to handle breakpoint -> NMI -> breakpoint.  Without
480 * some care, the inner breakpoint will clobber the outer breakpoint's
481 * stack.
 
 
 
 
 
 
482 *
483 * If a breakpoint is being processed, and the debug stack is being
484 * used, if an NMI comes in and also hits a breakpoint, the stack
485 * pointer will be set to the same fixed address as the breakpoint that
486 * was interrupted, causing that stack to be corrupted. To handle this
487 * case, check if the stack that was interrupted is the debug stack, and
488 * if so, change the IDT so that new breakpoints will use the current
489 * stack and not switch to the fixed address. On return of the NMI,
490 * switch back to the original IDT.
491 */
492static DEFINE_PER_CPU(int, update_debug_stack);
493
494static bool notrace is_debug_stack(unsigned long addr)
495{
496	struct cea_exception_stacks *cs = __this_cpu_read(cea_exception_stacks);
497	unsigned long top = CEA_ESTACK_TOP(cs, DB);
498	unsigned long bot = CEA_ESTACK_BOT(cs, DB1);
499
500	if (__this_cpu_read(debug_stack_usage))
501		return true;
502	/*
503	 * Note, this covers the guard page between DB and DB1 as well to
504	 * avoid two checks. But by all means @addr can never point into
505	 * the guard page.
506	 */
507	return addr >= bot && addr < top;
508}
509NOKPROBE_SYMBOL(is_debug_stack);
510#endif
511
512dotraplinkage notrace void
513do_nmi(struct pt_regs *regs, long error_code)
514{
515	if (IS_ENABLED(CONFIG_SMP) && cpu_is_offline(smp_processor_id()))
516		return;
517
518	if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
519		this_cpu_write(nmi_state, NMI_LATCHED);
520		return;
521	}
522	this_cpu_write(nmi_state, NMI_EXECUTING);
523	this_cpu_write(nmi_cr2, read_cr2());
524nmi_restart:
525
526#ifdef CONFIG_X86_64
527	/*
528	 * If we interrupted a breakpoint, it is possible that
529	 * the nmi handler will have breakpoints too. We need to
530	 * change the IDT such that breakpoints that happen here
531	 * continue to use the NMI stack.
532	 */
533	if (unlikely(is_debug_stack(regs->sp))) {
534		debug_stack_set_zero();
535		this_cpu_write(update_debug_stack, 1);
536	}
 
 
 
 
 
 
 
 
 
537#endif
538
 
 
 
 
 
539	nmi_enter();
540
541	inc_irq_stat(__nmi_count);
542
543	if (!ignore_nmis)
544		default_do_nmi(regs);
545
546	nmi_exit();
547
548#ifdef CONFIG_X86_64
549	if (unlikely(this_cpu_read(update_debug_stack))) {
550		debug_stack_reset();
551		this_cpu_write(update_debug_stack, 0);
552	}
553#endif
554
555	if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
556		write_cr2(this_cpu_read(nmi_cr2));
557	if (this_cpu_dec_return(nmi_state))
558		goto nmi_restart;
559
560	if (user_mode(regs))
561		mds_user_clear_cpu_buffers();
562}
563NOKPROBE_SYMBOL(do_nmi);
564
565void stop_nmi(void)
566{
567	ignore_nmis++;
568}
569
570void restart_nmi(void)
571{
572	ignore_nmis--;
573}
574
575/* reset the back-to-back NMI logic */
576void local_touch_nmi(void)
577{
578	__this_cpu_write(last_nmi_rip, 0);
579}
580EXPORT_SYMBOL_GPL(local_touch_nmi);
v3.5.6
 
  1/*
  2 *  Copyright (C) 1991, 1992  Linus Torvalds
  3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4 *  Copyright (C) 2011	Don Zickus Red Hat, Inc.
  5 *
  6 *  Pentium III FXSR, SSE support
  7 *	Gareth Hughes <gareth@valinux.com>, May 2000
  8 */
  9
 10/*
 11 * Handle hardware traps and faults.
 12 */
 13#include <linux/spinlock.h>
 14#include <linux/kprobes.h>
 15#include <linux/kdebug.h>
 
 16#include <linux/nmi.h>
 
 17#include <linux/delay.h>
 18#include <linux/hardirq.h>
 
 19#include <linux/slab.h>
 20#include <linux/export.h>
 
 
 21
 22#if defined(CONFIG_EDAC)
 23#include <linux/edac.h>
 24#endif
 25
 26#include <linux/atomic.h>
 27#include <asm/traps.h>
 28#include <asm/mach_traps.h>
 29#include <asm/nmi.h>
 30#include <asm/x86_init.h>
 
 
 
 
 
 
 31
 32struct nmi_desc {
 33	spinlock_t lock;
 34	struct list_head head;
 35};
 36
 37static struct nmi_desc nmi_desc[NMI_MAX] = 
 38{
 39	{
 40		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
 41		.head = LIST_HEAD_INIT(nmi_desc[0].head),
 42	},
 43	{
 44		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
 45		.head = LIST_HEAD_INIT(nmi_desc[1].head),
 46	},
 47	{
 48		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
 49		.head = LIST_HEAD_INIT(nmi_desc[2].head),
 50	},
 51	{
 52		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
 53		.head = LIST_HEAD_INIT(nmi_desc[3].head),
 54	},
 55
 56};
 57
 58struct nmi_stats {
 59	unsigned int normal;
 60	unsigned int unknown;
 61	unsigned int external;
 62	unsigned int swallow;
 63};
 64
 65static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
 66
 67static int ignore_nmis;
 68
 69int unknown_nmi_panic;
 70/*
 71 * Prevent NMI reason port (0x61) being accessed simultaneously, can
 72 * only be used in NMI handler.
 73 */
 74static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
 75
 76static int __init setup_unknown_nmi_panic(char *str)
 77{
 78	unknown_nmi_panic = 1;
 79	return 1;
 80}
 81__setup("unknown_nmi_panic", setup_unknown_nmi_panic);
 82
 83#define nmi_to_desc(type) (&nmi_desc[type])
 84
 85static int __kprobes nmi_handle(unsigned int type, struct pt_regs *regs, bool b2b)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 86{
 87	struct nmi_desc *desc = nmi_to_desc(type);
 88	struct nmiaction *a;
 89	int handled=0;
 90
 91	rcu_read_lock();
 92
 93	/*
 94	 * NMIs are edge-triggered, which means if you have enough
 95	 * of them concurrently, you can lose some because only one
 96	 * can be latched at any given time.  Walk the whole list
 97	 * to handle those situations.
 98	 */
 99	list_for_each_entry_rcu(a, &desc->head, list)
100		handled += a->handler(type, regs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101
102	rcu_read_unlock();
103
104	/* return total number of NMI events handled */
105	return handled;
106}
 
107
108int __register_nmi_handler(unsigned int type, struct nmiaction *action)
109{
110	struct nmi_desc *desc = nmi_to_desc(type);
111	unsigned long flags;
112
113	if (!action->handler)
114		return -EINVAL;
115
116	spin_lock_irqsave(&desc->lock, flags);
 
 
117
118	/*
119	 * most handlers of type NMI_UNKNOWN never return because
120	 * they just assume the NMI is theirs.  Just a sanity check
121	 * to manage expectations
122	 */
123	WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
124	WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
125	WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
126
127	/*
128	 * some handlers need to be executed first otherwise a fake
129	 * event confuses some handlers (kdump uses this flag)
130	 */
131	if (action->flags & NMI_FLAG_FIRST)
132		list_add_rcu(&action->list, &desc->head);
133	else
134		list_add_tail_rcu(&action->list, &desc->head);
135	
136	spin_unlock_irqrestore(&desc->lock, flags);
137	return 0;
138}
139EXPORT_SYMBOL(__register_nmi_handler);
140
141void unregister_nmi_handler(unsigned int type, const char *name)
142{
143	struct nmi_desc *desc = nmi_to_desc(type);
144	struct nmiaction *n;
145	unsigned long flags;
146
147	spin_lock_irqsave(&desc->lock, flags);
148
149	list_for_each_entry_rcu(n, &desc->head, list) {
150		/*
151		 * the name passed in to describe the nmi handler
152		 * is used as the lookup key
153		 */
154		if (!strcmp(n->name, name)) {
155			WARN(in_nmi(),
156				"Trying to free NMI (%s) from NMI context!\n", n->name);
157			list_del_rcu(&n->list);
158			break;
159		}
160	}
161
162	spin_unlock_irqrestore(&desc->lock, flags);
163	synchronize_rcu();
164}
165EXPORT_SYMBOL_GPL(unregister_nmi_handler);
166
167static __kprobes void
168pci_serr_error(unsigned char reason, struct pt_regs *regs)
169{
170	/* check to see if anyone registered against these types of errors */
171	if (nmi_handle(NMI_SERR, regs, false))
172		return;
173
174	pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
175		 reason, smp_processor_id());
176
177	/*
178	 * On some machines, PCI SERR line is used to report memory
179	 * errors. EDAC makes use of it.
180	 */
181#if defined(CONFIG_EDAC)
182	if (edac_handler_set()) {
183		edac_atomic_assert_error();
184		return;
185	}
186#endif
187
188	if (panic_on_unrecovered_nmi)
189		panic("NMI: Not continuing");
190
191	pr_emerg("Dazed and confused, but trying to continue\n");
192
193	/* Clear and disable the PCI SERR error line. */
194	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
195	outb(reason, NMI_REASON_PORT);
196}
 
197
198static __kprobes void
199io_check_error(unsigned char reason, struct pt_regs *regs)
200{
201	unsigned long i;
202
203	/* check to see if anyone registered against these types of errors */
204	if (nmi_handle(NMI_IO_CHECK, regs, false))
205		return;
206
207	pr_emerg(
208	"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
209		 reason, smp_processor_id());
210	show_regs(regs);
211
212	if (panic_on_io_nmi)
213		panic("NMI IOCK error: Not continuing");
 
 
 
 
 
 
 
 
214
215	/* Re-enable the IOCK line, wait for a few seconds */
216	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
217	outb(reason, NMI_REASON_PORT);
218
219	i = 20000;
220	while (--i) {
221		touch_nmi_watchdog();
222		udelay(100);
223	}
224
225	reason &= ~NMI_REASON_CLEAR_IOCHK;
226	outb(reason, NMI_REASON_PORT);
227}
 
228
229static __kprobes void
230unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
231{
232	int handled;
233
234	/*
235	 * Use 'false' as back-to-back NMIs are dealt with one level up.
236	 * Of course this makes having multiple 'unknown' handlers useless
237	 * as only the first one is ever run (unless it can actually determine
238	 * if it caused the NMI)
239	 */
240	handled = nmi_handle(NMI_UNKNOWN, regs, false);
241	if (handled) {
242		__this_cpu_add(nmi_stats.unknown, handled);
243		return;
244	}
245
246	__this_cpu_add(nmi_stats.unknown, 1);
247
248	pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
249		 reason, smp_processor_id());
250
251	pr_emerg("Do you have a strange power saving mode enabled?\n");
252	if (unknown_nmi_panic || panic_on_unrecovered_nmi)
253		panic("NMI: Not continuing");
254
255	pr_emerg("Dazed and confused, but trying to continue\n");
256}
 
257
258static DEFINE_PER_CPU(bool, swallow_nmi);
259static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
260
261static __kprobes void default_do_nmi(struct pt_regs *regs)
262{
263	unsigned char reason = 0;
264	int handled;
265	bool b2b = false;
266
267	/*
268	 * CPU-specific NMI must be processed before non-CPU-specific
269	 * NMI, otherwise we may lose it, because the CPU-specific
270	 * NMI can not be detected/processed on other CPUs.
271	 */
272
273	/*
274	 * Back-to-back NMIs are interesting because they can either
275	 * be two NMI or more than two NMIs (any thing over two is dropped
276	 * due to NMI being edge-triggered).  If this is the second half
277	 * of the back-to-back NMI, assume we dropped things and process
278	 * more handlers.  Otherwise reset the 'swallow' NMI behaviour
279	 */
280	if (regs->ip == __this_cpu_read(last_nmi_rip))
281		b2b = true;
282	else
283		__this_cpu_write(swallow_nmi, false);
284
285	__this_cpu_write(last_nmi_rip, regs->ip);
286
287	handled = nmi_handle(NMI_LOCAL, regs, b2b);
288	__this_cpu_add(nmi_stats.normal, handled);
289	if (handled) {
290		/*
291		 * There are cases when a NMI handler handles multiple
292		 * events in the current NMI.  One of these events may
293		 * be queued for in the next NMI.  Because the event is
294		 * already handled, the next NMI will result in an unknown
295		 * NMI.  Instead lets flag this for a potential NMI to
296		 * swallow.
297		 */
298		if (handled > 1)
299			__this_cpu_write(swallow_nmi, true);
300		return;
301	}
302
303	/* Non-CPU-specific NMI: NMI sources can be processed on any CPU */
304	raw_spin_lock(&nmi_reason_lock);
 
 
 
 
 
 
 
 
 
 
 
305	reason = x86_platform.get_nmi_reason();
306
307	if (reason & NMI_REASON_MASK) {
308		if (reason & NMI_REASON_SERR)
309			pci_serr_error(reason, regs);
310		else if (reason & NMI_REASON_IOCHK)
311			io_check_error(reason, regs);
312#ifdef CONFIG_X86_32
313		/*
314		 * Reassert NMI in case it became active
315		 * meanwhile as it's edge-triggered:
316		 */
317		reassert_nmi();
318#endif
319		__this_cpu_add(nmi_stats.external, 1);
320		raw_spin_unlock(&nmi_reason_lock);
321		return;
322	}
323	raw_spin_unlock(&nmi_reason_lock);
324
325	/*
326	 * Only one NMI can be latched at a time.  To handle
327	 * this we may process multiple nmi handlers at once to
328	 * cover the case where an NMI is dropped.  The downside
329	 * to this approach is we may process an NMI prematurely,
330	 * while its real NMI is sitting latched.  This will cause
331	 * an unknown NMI on the next run of the NMI processing.
332	 *
333	 * We tried to flag that condition above, by setting the
334	 * swallow_nmi flag when we process more than one event.
335	 * This condition is also only present on the second half
336	 * of a back-to-back NMI, so we flag that condition too.
337	 *
338	 * If both are true, we assume we already processed this
339	 * NMI previously and we swallow it.  Otherwise we reset
340	 * the logic.
341	 *
342	 * There are scenarios where we may accidentally swallow
343	 * a 'real' unknown NMI.  For example, while processing
344	 * a perf NMI another perf NMI comes in along with a
345	 * 'real' unknown NMI.  These two NMIs get combined into
346	 * one (as descibed above).  When the next NMI gets
347	 * processed, it will be flagged by perf as handled, but
348	 * noone will know that there was a 'real' unknown NMI sent
349	 * also.  As a result it gets swallowed.  Or if the first
350	 * perf NMI returns two events handled then the second
351	 * NMI will get eaten by the logic below, again losing a
352	 * 'real' unknown NMI.  But this is the best we can do
353	 * for now.
354	 */
355	if (b2b && __this_cpu_read(swallow_nmi))
356		__this_cpu_add(nmi_stats.swallow, 1);
357	else
358		unknown_nmi_error(reason, regs);
359}
 
360
361/*
362 * NMIs can hit breakpoints which will cause it to lose its
363 * NMI context with the CPU when the breakpoint does an iret.
364 */
365#ifdef CONFIG_X86_32
366/*
367 * For i386, NMIs use the same stack as the kernel, and we can
368 * add a workaround to the iret problem in C. Simply have 3 states
369 * the NMI can be in.
 
370 *
371 *  1) not running
372 *  2) executing
373 *  3) latched
374 *
375 * When no NMI is in progress, it is in the "not running" state.
376 * When an NMI comes in, it goes into the "executing" state.
377 * Normally, if another NMI is triggered, it does not interrupt
378 * the running NMI and the HW will simply latch it so that when
379 * the first NMI finishes, it will restart the second NMI.
380 * (Note, the latch is binary, thus multiple NMIs triggering,
381 *  when one is running, are ignored. Only one NMI is restarted.)
382 *
383 * If an NMI hits a breakpoint that executes an iret, another
384 * NMI can preempt it. We do not want to allow this new NMI
385 * to run, but we want to execute it when the first one finishes.
386 * We set the state to "latched", and the first NMI will perform
387 * an cmpxchg on the state, and if it doesn't successfully
388 * reset the state to "not running" it will restart the next
389 * NMI.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
390 */
391enum nmi_states {
392	NMI_NOT_RUNNING,
393	NMI_EXECUTING,
394	NMI_LATCHED,
395};
396static DEFINE_PER_CPU(enum nmi_states, nmi_state);
 
397
398#define nmi_nesting_preprocess(regs)					\
399	do {								\
400		if (__get_cpu_var(nmi_state) != NMI_NOT_RUNNING) {	\
401			__get_cpu_var(nmi_state) = NMI_LATCHED;		\
402			return;						\
403		}							\
404	nmi_restart:							\
405		__get_cpu_var(nmi_state) = NMI_EXECUTING;		\
406	} while (0)
407
408#define nmi_nesting_postprocess()					\
409	do {								\
410		if (cmpxchg(&__get_cpu_var(nmi_state),			\
411		    NMI_EXECUTING, NMI_NOT_RUNNING) != NMI_EXECUTING)	\
412			goto nmi_restart;				\
413	} while (0)
414#else /* x86_64 */
415/*
416 * In x86_64 things are a bit more difficult. This has the same problem
417 * where an NMI hitting a breakpoint that calls iret will remove the
418 * NMI context, allowing a nested NMI to enter. What makes this more
419 * difficult is that both NMIs and breakpoints have their own stack.
420 * When a new NMI or breakpoint is executed, the stack is set to a fixed
421 * point. If an NMI is nested, it will have its stack set at that same
422 * fixed address that the first NMI had, and will start corrupting the
423 * stack. This is handled in entry_64.S, but the same problem exists with
424 * the breakpoint stack.
425 *
426 * If a breakpoint is being processed, and the debug stack is being used,
427 * if an NMI comes in and also hits a breakpoint, the stack pointer
428 * will be set to the same fixed address as the breakpoint that was
429 * interrupted, causing that stack to be corrupted. To handle this case,
430 * check if the stack that was interrupted is the debug stack, and if
431 * so, change the IDT so that new breakpoints will use the current stack
432 * and not switch to the fixed address. On return of the NMI, switch back
433 * to the original IDT.
434 */
435static DEFINE_PER_CPU(int, update_debug_stack);
436
437static inline void nmi_nesting_preprocess(struct pt_regs *regs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
438{
 
 
 
 
 
 
 
 
 
 
 
 
439	/*
440	 * If we interrupted a breakpoint, it is possible that
441	 * the nmi handler will have breakpoints too. We need to
442	 * change the IDT such that breakpoints that happen here
443	 * continue to use the NMI stack.
444	 */
445	if (unlikely(is_debug_stack(regs->sp))) {
446		debug_stack_set_zero();
447		this_cpu_write(update_debug_stack, 1);
448	}
449}
450
451static inline void nmi_nesting_postprocess(void)
452{
453	if (unlikely(this_cpu_read(update_debug_stack))) {
454		debug_stack_reset();
455		this_cpu_write(update_debug_stack, 0);
456	}
457}
458#endif
459
460dotraplinkage notrace __kprobes void
461do_nmi(struct pt_regs *regs, long error_code)
462{
463	nmi_nesting_preprocess(regs);
464
465	nmi_enter();
466
467	inc_irq_stat(__nmi_count);
468
469	if (!ignore_nmis)
470		default_do_nmi(regs);
471
472	nmi_exit();
473
474	/* On i386, may loop back to preprocess */
475	nmi_nesting_postprocess();
 
 
 
 
 
 
 
 
 
 
 
 
476}
 
477
478void stop_nmi(void)
479{
480	ignore_nmis++;
481}
482
483void restart_nmi(void)
484{
485	ignore_nmis--;
486}
487
488/* reset the back-to-back NMI logic */
489void local_touch_nmi(void)
490{
491	__this_cpu_write(last_nmi_rip, 0);
492}