Linux Audio

Check our new training course

Loading...
v5.4
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
  15#include <linux/types.h>
  16#include <linux/string.h>
  17#include <linux/kernel.h>
  18#include <linux/kmsg_dump.h>
  19#include <linux/reboot.h>
  20#include <linux/sched.h>
  21#include <linux/sched/loadavg.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/debug.h>
  24#include <linux/sysrq.h>
  25#include <linux/smp.h>
  26#include <linux/utsname.h>
  27#include <linux/vmalloc.h>
  28#include <linux/atomic.h>
  29#include <linux/module.h>
  30#include <linux/moduleparam.h>
  31#include <linux/mm.h>
  32#include <linux/init.h>
  33#include <linux/kallsyms.h>
  34#include <linux/kgdb.h>
  35#include <linux/kdb.h>
  36#include <linux/notifier.h>
  37#include <linux/interrupt.h>
  38#include <linux/delay.h>
  39#include <linux/nmi.h>
  40#include <linux/time.h>
  41#include <linux/ptrace.h>
  42#include <linux/sysctl.h>
  43#include <linux/cpu.h>
  44#include <linux/kdebug.h>
  45#include <linux/proc_fs.h>
  46#include <linux/uaccess.h>
  47#include <linux/slab.h>
  48#include "kdb_private.h"
  49
  50#undef	MODULE_PARAM_PREFIX
  51#define	MODULE_PARAM_PREFIX "kdb."
  52
  53static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
  54module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
  55
  56char kdb_grep_string[KDB_GREP_STRLEN];
  57int kdb_grepping_flag;
  58EXPORT_SYMBOL(kdb_grepping_flag);
  59int kdb_grep_leading;
  60int kdb_grep_trailing;
  61
  62/*
  63 * Kernel debugger state flags
  64 */
  65int kdb_flags;
 
  66
  67/*
  68 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  69 * single thread processors through the kernel debugger.
  70 */
  71int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
  72int kdb_nextline = 1;
  73int kdb_state;			/* General KDB state */
  74
  75struct task_struct *kdb_current_task;
  76EXPORT_SYMBOL(kdb_current_task);
  77struct pt_regs *kdb_current_regs;
  78
  79const char *kdb_diemsg;
  80static int kdb_go_count;
  81#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  82static unsigned int kdb_continue_catastrophic =
  83	CONFIG_KDB_CONTINUE_CATASTROPHIC;
  84#else
  85static unsigned int kdb_continue_catastrophic;
  86#endif
  87
  88/* kdb_commands describes the available commands. */
  89static kdbtab_t *kdb_commands;
  90#define KDB_BASE_CMD_MAX 50
  91static int kdb_max_commands = KDB_BASE_CMD_MAX;
  92static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
  93#define for_each_kdbcmd(cmd, num)					\
  94	for ((cmd) = kdb_base_commands, (num) = 0;			\
  95	     num < kdb_max_commands;					\
  96	     num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
  97
  98typedef struct _kdbmsg {
  99	int	km_diag;	/* kdb diagnostic */
 100	char	*km_msg;	/* Corresponding message text */
 101} kdbmsg_t;
 102
 103#define KDBMSG(msgnum, text) \
 104	{ KDB_##msgnum, text }
 105
 106static kdbmsg_t kdbmsgs[] = {
 107	KDBMSG(NOTFOUND, "Command Not Found"),
 108	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
 109	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
 110	       "8 is only allowed on 64 bit systems"),
 111	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 112	KDBMSG(NOTENV, "Cannot find environment variable"),
 113	KDBMSG(NOENVVALUE, "Environment variable should have value"),
 114	KDBMSG(NOTIMP, "Command not implemented"),
 115	KDBMSG(ENVFULL, "Environment full"),
 116	KDBMSG(ENVBUFFULL, "Environment buffer full"),
 117	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 118#ifdef CONFIG_CPU_XSCALE
 119	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 120#else
 121	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 122#endif
 123	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 124	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 125	KDBMSG(BADMODE, "Invalid IDMODE"),
 126	KDBMSG(BADINT, "Illegal numeric value"),
 127	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 128	KDBMSG(BADREG, "Invalid register name"),
 129	KDBMSG(BADCPUNUM, "Invalid cpu number"),
 130	KDBMSG(BADLENGTH, "Invalid length field"),
 131	KDBMSG(NOBP, "No Breakpoint exists"),
 132	KDBMSG(BADADDR, "Invalid address"),
 133	KDBMSG(NOPERM, "Permission denied"),
 134};
 135#undef KDBMSG
 136
 137static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
 138
 139
 140/*
 141 * Initial environment.   This is all kept static and local to
 142 * this file.   We don't want to rely on the memory allocation
 143 * mechanisms in the kernel, so we use a very limited allocate-only
 144 * heap for new and altered environment variables.  The entire
 145 * environment is limited to a fixed number of entries (add more
 146 * to __env[] if required) and a fixed amount of heap (add more to
 147 * KDB_ENVBUFSIZE if required).
 148 */
 149
 150static char *__env[] = {
 151#if defined(CONFIG_SMP)
 152 "PROMPT=[%d]kdb> ",
 153#else
 154 "PROMPT=kdb> ",
 155#endif
 156 "MOREPROMPT=more> ",
 157 "RADIX=16",
 158 "MDCOUNT=8",			/* lines of md output */
 159 KDB_PLATFORM_ENV,
 160 "DTABCOUNT=30",
 161 "NOSECT=1",
 162 (char *)0,
 163 (char *)0,
 164 (char *)0,
 165 (char *)0,
 166 (char *)0,
 167 (char *)0,
 168 (char *)0,
 169 (char *)0,
 170 (char *)0,
 171 (char *)0,
 172 (char *)0,
 173 (char *)0,
 174 (char *)0,
 175 (char *)0,
 176 (char *)0,
 177 (char *)0,
 178 (char *)0,
 179 (char *)0,
 180 (char *)0,
 181 (char *)0,
 182 (char *)0,
 183 (char *)0,
 184 (char *)0,
 185 (char *)0,
 186};
 187
 188static const int __nenv = ARRAY_SIZE(__env);
 189
 190struct task_struct *kdb_curr_task(int cpu)
 191{
 192	struct task_struct *p = curr_task(cpu);
 193#ifdef	_TIF_MCA_INIT
 194	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
 195		p = krp->p;
 196#endif
 197	return p;
 198}
 199
 200/*
 201 * Check whether the flags of the current command and the permissions
 202 * of the kdb console has allow a command to be run.
 203 */
 204static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
 205				   bool no_args)
 206{
 207	/* permissions comes from userspace so needs massaging slightly */
 208	permissions &= KDB_ENABLE_MASK;
 209	permissions |= KDB_ENABLE_ALWAYS_SAFE;
 210
 211	/* some commands change group when launched with no arguments */
 212	if (no_args)
 213		permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
 214
 215	flags |= KDB_ENABLE_ALL;
 216
 217	return permissions & flags;
 218}
 219
 220/*
 221 * kdbgetenv - This function will return the character string value of
 222 *	an environment variable.
 223 * Parameters:
 224 *	match	A character string representing an environment variable.
 225 * Returns:
 226 *	NULL	No environment variable matches 'match'
 227 *	char*	Pointer to string value of environment variable.
 228 */
 229char *kdbgetenv(const char *match)
 230{
 231	char **ep = __env;
 232	int matchlen = strlen(match);
 233	int i;
 234
 235	for (i = 0; i < __nenv; i++) {
 236		char *e = *ep++;
 237
 238		if (!e)
 239			continue;
 240
 241		if ((strncmp(match, e, matchlen) == 0)
 242		 && ((e[matchlen] == '\0')
 243		   || (e[matchlen] == '='))) {
 244			char *cp = strchr(e, '=');
 245			return cp ? ++cp : "";
 246		}
 247	}
 248	return NULL;
 249}
 250
 251/*
 252 * kdballocenv - This function is used to allocate bytes for
 253 *	environment entries.
 254 * Parameters:
 255 *	match	A character string representing a numeric value
 256 * Outputs:
 257 *	*value  the unsigned long representation of the env variable 'match'
 258 * Returns:
 259 *	Zero on success, a kdb diagnostic on failure.
 260 * Remarks:
 261 *	We use a static environment buffer (envbuffer) to hold the values
 262 *	of dynamically generated environment variables (see kdb_set).  Buffer
 263 *	space once allocated is never free'd, so over time, the amount of space
 264 *	(currently 512 bytes) will be exhausted if env variables are changed
 265 *	frequently.
 266 */
 267static char *kdballocenv(size_t bytes)
 268{
 269#define	KDB_ENVBUFSIZE	512
 270	static char envbuffer[KDB_ENVBUFSIZE];
 271	static int envbufsize;
 272	char *ep = NULL;
 273
 274	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 275		ep = &envbuffer[envbufsize];
 276		envbufsize += bytes;
 277	}
 278	return ep;
 279}
 280
 281/*
 282 * kdbgetulenv - This function will return the value of an unsigned
 283 *	long-valued environment variable.
 284 * Parameters:
 285 *	match	A character string representing a numeric value
 286 * Outputs:
 287 *	*value  the unsigned long represntation of the env variable 'match'
 288 * Returns:
 289 *	Zero on success, a kdb diagnostic on failure.
 290 */
 291static int kdbgetulenv(const char *match, unsigned long *value)
 292{
 293	char *ep;
 294
 295	ep = kdbgetenv(match);
 296	if (!ep)
 297		return KDB_NOTENV;
 298	if (strlen(ep) == 0)
 299		return KDB_NOENVVALUE;
 300
 301	*value = simple_strtoul(ep, NULL, 0);
 302
 303	return 0;
 304}
 305
 306/*
 307 * kdbgetintenv - This function will return the value of an
 308 *	integer-valued environment variable.
 309 * Parameters:
 310 *	match	A character string representing an integer-valued env variable
 311 * Outputs:
 312 *	*value  the integer representation of the environment variable 'match'
 313 * Returns:
 314 *	Zero on success, a kdb diagnostic on failure.
 315 */
 316int kdbgetintenv(const char *match, int *value)
 317{
 318	unsigned long val;
 319	int diag;
 320
 321	diag = kdbgetulenv(match, &val);
 322	if (!diag)
 323		*value = (int) val;
 324	return diag;
 325}
 326
 327/*
 328 * kdbgetularg - This function will convert a numeric string into an
 329 *	unsigned long value.
 330 * Parameters:
 331 *	arg	A character string representing a numeric value
 332 * Outputs:
 333 *	*value  the unsigned long represntation of arg.
 334 * Returns:
 335 *	Zero on success, a kdb diagnostic on failure.
 336 */
 337int kdbgetularg(const char *arg, unsigned long *value)
 338{
 339	char *endp;
 340	unsigned long val;
 341
 342	val = simple_strtoul(arg, &endp, 0);
 343
 344	if (endp == arg) {
 345		/*
 346		 * Also try base 16, for us folks too lazy to type the
 347		 * leading 0x...
 348		 */
 349		val = simple_strtoul(arg, &endp, 16);
 350		if (endp == arg)
 351			return KDB_BADINT;
 352	}
 353
 354	*value = val;
 355
 356	return 0;
 357}
 358
 359int kdbgetu64arg(const char *arg, u64 *value)
 360{
 361	char *endp;
 362	u64 val;
 363
 364	val = simple_strtoull(arg, &endp, 0);
 365
 366	if (endp == arg) {
 367
 368		val = simple_strtoull(arg, &endp, 16);
 369		if (endp == arg)
 370			return KDB_BADINT;
 371	}
 372
 373	*value = val;
 374
 375	return 0;
 376}
 377
 378/*
 379 * kdb_set - This function implements the 'set' command.  Alter an
 380 *	existing environment variable or create a new one.
 381 */
 382int kdb_set(int argc, const char **argv)
 383{
 384	int i;
 385	char *ep;
 386	size_t varlen, vallen;
 387
 388	/*
 389	 * we can be invoked two ways:
 390	 *   set var=value    argv[1]="var", argv[2]="value"
 391	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 392	 * - if the latter, shift 'em down.
 393	 */
 394	if (argc == 3) {
 395		argv[2] = argv[3];
 396		argc--;
 397	}
 398
 399	if (argc != 2)
 400		return KDB_ARGCOUNT;
 401
 402	/*
 403	 * Check for internal variables
 404	 */
 405	if (strcmp(argv[1], "KDBDEBUG") == 0) {
 406		unsigned int debugflags;
 407		char *cp;
 408
 409		debugflags = simple_strtoul(argv[2], &cp, 0);
 410		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 411			kdb_printf("kdb: illegal debug flags '%s'\n",
 412				    argv[2]);
 413			return 0;
 414		}
 415		kdb_flags = (kdb_flags &
 416			     ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
 417			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
 418
 419		return 0;
 420	}
 421
 422	/*
 423	 * Tokenizer squashed the '=' sign.  argv[1] is variable
 424	 * name, argv[2] = value.
 425	 */
 426	varlen = strlen(argv[1]);
 427	vallen = strlen(argv[2]);
 428	ep = kdballocenv(varlen + vallen + 2);
 429	if (ep == (char *)0)
 430		return KDB_ENVBUFFULL;
 431
 432	sprintf(ep, "%s=%s", argv[1], argv[2]);
 433
 434	ep[varlen+vallen+1] = '\0';
 435
 436	for (i = 0; i < __nenv; i++) {
 437		if (__env[i]
 438		 && ((strncmp(__env[i], argv[1], varlen) == 0)
 439		   && ((__env[i][varlen] == '\0')
 440		    || (__env[i][varlen] == '=')))) {
 441			__env[i] = ep;
 442			return 0;
 443		}
 444	}
 445
 446	/*
 447	 * Wasn't existing variable.  Fit into slot.
 448	 */
 449	for (i = 0; i < __nenv-1; i++) {
 450		if (__env[i] == (char *)0) {
 451			__env[i] = ep;
 452			return 0;
 453		}
 454	}
 455
 456	return KDB_ENVFULL;
 457}
 458
 459static int kdb_check_regs(void)
 460{
 461	if (!kdb_current_regs) {
 462		kdb_printf("No current kdb registers."
 463			   "  You may need to select another task\n");
 464		return KDB_BADREG;
 465	}
 466	return 0;
 467}
 468
 469/*
 470 * kdbgetaddrarg - This function is responsible for parsing an
 471 *	address-expression and returning the value of the expression,
 472 *	symbol name, and offset to the caller.
 473 *
 474 *	The argument may consist of a numeric value (decimal or
 475 *	hexidecimal), a symbol name, a register name (preceded by the
 476 *	percent sign), an environment variable with a numeric value
 477 *	(preceded by a dollar sign) or a simple arithmetic expression
 478 *	consisting of a symbol name, +/-, and a numeric constant value
 479 *	(offset).
 480 * Parameters:
 481 *	argc	- count of arguments in argv
 482 *	argv	- argument vector
 483 *	*nextarg - index to next unparsed argument in argv[]
 484 *	regs	- Register state at time of KDB entry
 485 * Outputs:
 486 *	*value	- receives the value of the address-expression
 487 *	*offset - receives the offset specified, if any
 488 *	*name   - receives the symbol name, if any
 489 *	*nextarg - index to next unparsed argument in argv[]
 490 * Returns:
 491 *	zero is returned on success, a kdb diagnostic code is
 492 *      returned on error.
 493 */
 494int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 495		  unsigned long *value,  long *offset,
 496		  char **name)
 497{
 498	unsigned long addr;
 499	unsigned long off = 0;
 500	int positive;
 501	int diag;
 502	int found = 0;
 503	char *symname;
 504	char symbol = '\0';
 505	char *cp;
 506	kdb_symtab_t symtab;
 507
 508	/*
 509	 * If the enable flags prohibit both arbitrary memory access
 510	 * and flow control then there are no reasonable grounds to
 511	 * provide symbol lookup.
 512	 */
 513	if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
 514			     kdb_cmd_enabled, false))
 515		return KDB_NOPERM;
 516
 517	/*
 518	 * Process arguments which follow the following syntax:
 519	 *
 520	 *  symbol | numeric-address [+/- numeric-offset]
 521	 *  %register
 522	 *  $environment-variable
 523	 */
 524
 525	if (*nextarg > argc)
 526		return KDB_ARGCOUNT;
 527
 528	symname = (char *)argv[*nextarg];
 529
 530	/*
 531	 * If there is no whitespace between the symbol
 532	 * or address and the '+' or '-' symbols, we
 533	 * remember the character and replace it with a
 534	 * null so the symbol/value can be properly parsed
 535	 */
 536	cp = strpbrk(symname, "+-");
 537	if (cp != NULL) {
 538		symbol = *cp;
 539		*cp++ = '\0';
 540	}
 541
 542	if (symname[0] == '$') {
 543		diag = kdbgetulenv(&symname[1], &addr);
 544		if (diag)
 545			return diag;
 546	} else if (symname[0] == '%') {
 547		diag = kdb_check_regs();
 548		if (diag)
 549			return diag;
 550		/* Implement register values with % at a later time as it is
 551		 * arch optional.
 552		 */
 553		return KDB_NOTIMP;
 554	} else {
 555		found = kdbgetsymval(symname, &symtab);
 556		if (found) {
 557			addr = symtab.sym_start;
 558		} else {
 559			diag = kdbgetularg(argv[*nextarg], &addr);
 560			if (diag)
 561				return diag;
 562		}
 563	}
 564
 565	if (!found)
 566		found = kdbnearsym(addr, &symtab);
 567
 568	(*nextarg)++;
 569
 570	if (name)
 571		*name = symname;
 572	if (value)
 573		*value = addr;
 574	if (offset && name && *name)
 575		*offset = addr - symtab.sym_start;
 576
 577	if ((*nextarg > argc)
 578	 && (symbol == '\0'))
 579		return 0;
 580
 581	/*
 582	 * check for +/- and offset
 583	 */
 584
 585	if (symbol == '\0') {
 586		if ((argv[*nextarg][0] != '+')
 587		 && (argv[*nextarg][0] != '-')) {
 588			/*
 589			 * Not our argument.  Return.
 590			 */
 591			return 0;
 592		} else {
 593			positive = (argv[*nextarg][0] == '+');
 594			(*nextarg)++;
 595		}
 596	} else
 597		positive = (symbol == '+');
 598
 599	/*
 600	 * Now there must be an offset!
 601	 */
 602	if ((*nextarg > argc)
 603	 && (symbol == '\0')) {
 604		return KDB_INVADDRFMT;
 605	}
 606
 607	if (!symbol) {
 608		cp = (char *)argv[*nextarg];
 609		(*nextarg)++;
 610	}
 611
 612	diag = kdbgetularg(cp, &off);
 613	if (diag)
 614		return diag;
 615
 616	if (!positive)
 617		off = -off;
 618
 619	if (offset)
 620		*offset += off;
 621
 622	if (value)
 623		*value += off;
 624
 625	return 0;
 626}
 627
 628static void kdb_cmderror(int diag)
 629{
 630	int i;
 631
 632	if (diag >= 0) {
 633		kdb_printf("no error detected (diagnostic is %d)\n", diag);
 634		return;
 635	}
 636
 637	for (i = 0; i < __nkdb_err; i++) {
 638		if (kdbmsgs[i].km_diag == diag) {
 639			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 640			return;
 641		}
 642	}
 643
 644	kdb_printf("Unknown diag %d\n", -diag);
 645}
 646
 647/*
 648 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 649 *	command which defines one command as a set of other commands,
 650 *	terminated by endefcmd.  kdb_defcmd processes the initial
 651 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 652 *	the following commands until 'endefcmd'.
 653 * Inputs:
 654 *	argc	argument count
 655 *	argv	argument vector
 656 * Returns:
 657 *	zero for success, a kdb diagnostic if error
 658 */
 659struct defcmd_set {
 660	int count;
 661	bool usable;
 662	char *name;
 663	char *usage;
 664	char *help;
 665	char **command;
 666};
 667static struct defcmd_set *defcmd_set;
 668static int defcmd_set_count;
 669static bool defcmd_in_progress;
 670
 671/* Forward references */
 672static int kdb_exec_defcmd(int argc, const char **argv);
 673
 674static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 675{
 676	struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
 677	char **save_command = s->command;
 678	if (strcmp(argv0, "endefcmd") == 0) {
 679		defcmd_in_progress = false;
 680		if (!s->count)
 681			s->usable = false;
 682		if (s->usable)
 683			/* macros are always safe because when executed each
 684			 * internal command re-enters kdb_parse() and is
 685			 * safety checked individually.
 686			 */
 687			kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
 688					   s->help, 0,
 689					   KDB_ENABLE_ALWAYS_SAFE);
 690		return 0;
 691	}
 692	if (!s->usable)
 693		return KDB_NOTIMP;
 694	s->command = kcalloc(s->count + 1, sizeof(*(s->command)), GFP_KDB);
 695	if (!s->command) {
 696		kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
 697			   cmdstr);
 698		s->usable = false;
 699		return KDB_NOTIMP;
 700	}
 701	memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
 702	s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
 703	kfree(save_command);
 704	return 0;
 705}
 706
 707static int kdb_defcmd(int argc, const char **argv)
 708{
 709	struct defcmd_set *save_defcmd_set = defcmd_set, *s;
 710	if (defcmd_in_progress) {
 711		kdb_printf("kdb: nested defcmd detected, assuming missing "
 712			   "endefcmd\n");
 713		kdb_defcmd2("endefcmd", "endefcmd");
 714	}
 715	if (argc == 0) {
 716		int i;
 717		for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
 718			kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
 719				   s->usage, s->help);
 720			for (i = 0; i < s->count; ++i)
 721				kdb_printf("%s", s->command[i]);
 722			kdb_printf("endefcmd\n");
 723		}
 724		return 0;
 725	}
 726	if (argc != 3)
 727		return KDB_ARGCOUNT;
 728	if (in_dbg_master()) {
 729		kdb_printf("Command only available during kdb_init()\n");
 730		return KDB_NOTIMP;
 731	}
 732	defcmd_set = kmalloc_array(defcmd_set_count + 1, sizeof(*defcmd_set),
 733				   GFP_KDB);
 734	if (!defcmd_set)
 735		goto fail_defcmd;
 736	memcpy(defcmd_set, save_defcmd_set,
 737	       defcmd_set_count * sizeof(*defcmd_set));
 738	s = defcmd_set + defcmd_set_count;
 739	memset(s, 0, sizeof(*s));
 740	s->usable = true;
 741	s->name = kdb_strdup(argv[1], GFP_KDB);
 742	if (!s->name)
 743		goto fail_name;
 744	s->usage = kdb_strdup(argv[2], GFP_KDB);
 745	if (!s->usage)
 746		goto fail_usage;
 747	s->help = kdb_strdup(argv[3], GFP_KDB);
 748	if (!s->help)
 749		goto fail_help;
 750	if (s->usage[0] == '"') {
 751		strcpy(s->usage, argv[2]+1);
 752		s->usage[strlen(s->usage)-1] = '\0';
 753	}
 754	if (s->help[0] == '"') {
 755		strcpy(s->help, argv[3]+1);
 756		s->help[strlen(s->help)-1] = '\0';
 757	}
 758	++defcmd_set_count;
 759	defcmd_in_progress = true;
 760	kfree(save_defcmd_set);
 761	return 0;
 762fail_help:
 763	kfree(s->usage);
 764fail_usage:
 765	kfree(s->name);
 766fail_name:
 767	kfree(defcmd_set);
 768fail_defcmd:
 769	kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
 770	defcmd_set = save_defcmd_set;
 771	return KDB_NOTIMP;
 772}
 773
 774/*
 775 * kdb_exec_defcmd - Execute the set of commands associated with this
 776 *	defcmd name.
 777 * Inputs:
 778 *	argc	argument count
 779 *	argv	argument vector
 780 * Returns:
 781 *	zero for success, a kdb diagnostic if error
 782 */
 783static int kdb_exec_defcmd(int argc, const char **argv)
 784{
 785	int i, ret;
 786	struct defcmd_set *s;
 787	if (argc != 0)
 788		return KDB_ARGCOUNT;
 789	for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
 790		if (strcmp(s->name, argv[0]) == 0)
 791			break;
 792	}
 793	if (i == defcmd_set_count) {
 794		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 795			   argv[0]);
 796		return KDB_NOTIMP;
 797	}
 798	for (i = 0; i < s->count; ++i) {
 799		/* Recursive use of kdb_parse, do not use argv after
 800		 * this point */
 801		argv = NULL;
 802		kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
 803		ret = kdb_parse(s->command[i]);
 804		if (ret)
 805			return ret;
 806	}
 807	return 0;
 808}
 809
 810/* Command history */
 811#define KDB_CMD_HISTORY_COUNT	32
 812#define CMD_BUFLEN		200	/* kdb_printf: max printline
 813					 * size == 256 */
 814static unsigned int cmd_head, cmd_tail;
 815static unsigned int cmdptr;
 816static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 817static char cmd_cur[CMD_BUFLEN];
 818
 819/*
 820 * The "str" argument may point to something like  | grep xyz
 821 */
 822static void parse_grep(const char *str)
 823{
 824	int	len;
 825	char	*cp = (char *)str, *cp2;
 826
 827	/* sanity check: we should have been called with the \ first */
 828	if (*cp != '|')
 829		return;
 830	cp++;
 831	while (isspace(*cp))
 832		cp++;
 833	if (!str_has_prefix(cp, "grep ")) {
 834		kdb_printf("invalid 'pipe', see grephelp\n");
 835		return;
 836	}
 837	cp += 5;
 838	while (isspace(*cp))
 839		cp++;
 840	cp2 = strchr(cp, '\n');
 841	if (cp2)
 842		*cp2 = '\0'; /* remove the trailing newline */
 843	len = strlen(cp);
 844	if (len == 0) {
 845		kdb_printf("invalid 'pipe', see grephelp\n");
 846		return;
 847	}
 848	/* now cp points to a nonzero length search string */
 849	if (*cp == '"') {
 850		/* allow it be "x y z" by removing the "'s - there must
 851		   be two of them */
 852		cp++;
 853		cp2 = strchr(cp, '"');
 854		if (!cp2) {
 855			kdb_printf("invalid quoted string, see grephelp\n");
 856			return;
 857		}
 858		*cp2 = '\0'; /* end the string where the 2nd " was */
 859	}
 860	kdb_grep_leading = 0;
 861	if (*cp == '^') {
 862		kdb_grep_leading = 1;
 863		cp++;
 864	}
 865	len = strlen(cp);
 866	kdb_grep_trailing = 0;
 867	if (*(cp+len-1) == '$') {
 868		kdb_grep_trailing = 1;
 869		*(cp+len-1) = '\0';
 870	}
 871	len = strlen(cp);
 872	if (!len)
 873		return;
 874	if (len >= KDB_GREP_STRLEN) {
 875		kdb_printf("search string too long\n");
 876		return;
 877	}
 878	strcpy(kdb_grep_string, cp);
 879	kdb_grepping_flag++;
 880	return;
 881}
 882
 883/*
 884 * kdb_parse - Parse the command line, search the command table for a
 885 *	matching command and invoke the command function.  This
 886 *	function may be called recursively, if it is, the second call
 887 *	will overwrite argv and cbuf.  It is the caller's
 888 *	responsibility to save their argv if they recursively call
 889 *	kdb_parse().
 890 * Parameters:
 891 *      cmdstr	The input command line to be parsed.
 892 *	regs	The registers at the time kdb was entered.
 893 * Returns:
 894 *	Zero for success, a kdb diagnostic if failure.
 895 * Remarks:
 896 *	Limited to 20 tokens.
 897 *
 898 *	Real rudimentary tokenization. Basically only whitespace
 899 *	is considered a token delimeter (but special consideration
 900 *	is taken of the '=' sign as used by the 'set' command).
 901 *
 902 *	The algorithm used to tokenize the input string relies on
 903 *	there being at least one whitespace (or otherwise useless)
 904 *	character between tokens as the character immediately following
 905 *	the token is altered in-place to a null-byte to terminate the
 906 *	token string.
 907 */
 908
 909#define MAXARGC	20
 910
 911int kdb_parse(const char *cmdstr)
 912{
 913	static char *argv[MAXARGC];
 914	static int argc;
 915	static char cbuf[CMD_BUFLEN+2];
 916	char *cp;
 917	char *cpp, quoted;
 918	kdbtab_t *tp;
 919	int i, escaped, ignore_errors = 0, check_grep = 0;
 920
 921	/*
 922	 * First tokenize the command string.
 923	 */
 924	cp = (char *)cmdstr;
 
 925
 926	if (KDB_FLAG(CMD_INTERRUPT)) {
 927		/* Previous command was interrupted, newline must not
 928		 * repeat the command */
 929		KDB_FLAG_CLEAR(CMD_INTERRUPT);
 930		KDB_STATE_SET(PAGER);
 931		argc = 0;	/* no repeat */
 932	}
 933
 934	if (*cp != '\n' && *cp != '\0') {
 935		argc = 0;
 936		cpp = cbuf;
 937		while (*cp) {
 938			/* skip whitespace */
 939			while (isspace(*cp))
 940				cp++;
 941			if ((*cp == '\0') || (*cp == '\n') ||
 942			    (*cp == '#' && !defcmd_in_progress))
 943				break;
 944			/* special case: check for | grep pattern */
 945			if (*cp == '|') {
 946				check_grep++;
 947				break;
 948			}
 949			if (cpp >= cbuf + CMD_BUFLEN) {
 950				kdb_printf("kdb_parse: command buffer "
 951					   "overflow, command ignored\n%s\n",
 952					   cmdstr);
 953				return KDB_NOTFOUND;
 954			}
 955			if (argc >= MAXARGC - 1) {
 956				kdb_printf("kdb_parse: too many arguments, "
 957					   "command ignored\n%s\n", cmdstr);
 958				return KDB_NOTFOUND;
 959			}
 960			argv[argc++] = cpp;
 961			escaped = 0;
 962			quoted = '\0';
 963			/* Copy to next unquoted and unescaped
 964			 * whitespace or '=' */
 965			while (*cp && *cp != '\n' &&
 966			       (escaped || quoted || !isspace(*cp))) {
 967				if (cpp >= cbuf + CMD_BUFLEN)
 968					break;
 969				if (escaped) {
 970					escaped = 0;
 971					*cpp++ = *cp++;
 972					continue;
 973				}
 974				if (*cp == '\\') {
 975					escaped = 1;
 976					++cp;
 977					continue;
 978				}
 979				if (*cp == quoted)
 980					quoted = '\0';
 981				else if (*cp == '\'' || *cp == '"')
 982					quoted = *cp;
 983				*cpp = *cp++;
 984				if (*cpp == '=' && !quoted)
 985					break;
 986				++cpp;
 987			}
 988			*cpp++ = '\0';	/* Squash a ws or '=' character */
 989		}
 990	}
 991	if (!argc)
 992		return 0;
 993	if (check_grep)
 994		parse_grep(cp);
 995	if (defcmd_in_progress) {
 996		int result = kdb_defcmd2(cmdstr, argv[0]);
 997		if (!defcmd_in_progress) {
 998			argc = 0;	/* avoid repeat on endefcmd */
 999			*(argv[0]) = '\0';
1000		}
1001		return result;
1002	}
1003	if (argv[0][0] == '-' && argv[0][1] &&
1004	    (argv[0][1] < '0' || argv[0][1] > '9')) {
1005		ignore_errors = 1;
1006		++argv[0];
1007	}
1008
1009	for_each_kdbcmd(tp, i) {
1010		if (tp->cmd_name) {
1011			/*
1012			 * If this command is allowed to be abbreviated,
1013			 * check to see if this is it.
1014			 */
1015
1016			if (tp->cmd_minlen
1017			 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1018				if (strncmp(argv[0],
1019					    tp->cmd_name,
1020					    tp->cmd_minlen) == 0) {
1021					break;
1022				}
1023			}
1024
1025			if (strcmp(argv[0], tp->cmd_name) == 0)
1026				break;
1027		}
1028	}
1029
1030	/*
1031	 * If we don't find a command by this name, see if the first
1032	 * few characters of this match any of the known commands.
1033	 * e.g., md1c20 should match md.
1034	 */
1035	if (i == kdb_max_commands) {
1036		for_each_kdbcmd(tp, i) {
1037			if (tp->cmd_name) {
1038				if (strncmp(argv[0],
1039					    tp->cmd_name,
1040					    strlen(tp->cmd_name)) == 0) {
1041					break;
1042				}
1043			}
1044		}
1045	}
1046
1047	if (i < kdb_max_commands) {
1048		int result;
1049
1050		if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1051			return KDB_NOPERM;
1052
1053		KDB_STATE_SET(CMD);
1054		result = (*tp->cmd_func)(argc-1, (const char **)argv);
1055		if (result && ignore_errors && result > KDB_CMD_GO)
1056			result = 0;
1057		KDB_STATE_CLEAR(CMD);
1058
1059		if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1060			return result;
1061
1062		argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1063		if (argv[argc])
1064			*(argv[argc]) = '\0';
 
 
 
 
 
 
 
1065		return result;
1066	}
1067
1068	/*
1069	 * If the input with which we were presented does not
1070	 * map to an existing command, attempt to parse it as an
1071	 * address argument and display the result.   Useful for
1072	 * obtaining the address of a variable, or the nearest symbol
1073	 * to an address contained in a register.
1074	 */
1075	{
1076		unsigned long value;
1077		char *name = NULL;
1078		long offset;
1079		int nextarg = 0;
1080
1081		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1082				  &value, &offset, &name)) {
1083			return KDB_NOTFOUND;
1084		}
1085
1086		kdb_printf("%s = ", argv[0]);
1087		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1088		kdb_printf("\n");
1089		return 0;
1090	}
1091}
1092
1093
1094static int handle_ctrl_cmd(char *cmd)
1095{
1096#define CTRL_P	16
1097#define CTRL_N	14
1098
1099	/* initial situation */
1100	if (cmd_head == cmd_tail)
1101		return 0;
1102	switch (*cmd) {
1103	case CTRL_P:
1104		if (cmdptr != cmd_tail)
1105			cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1106		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1107		return 1;
1108	case CTRL_N:
1109		if (cmdptr != cmd_head)
1110			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1111		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1112		return 1;
1113	}
1114	return 0;
1115}
1116
1117/*
1118 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1119 *	the system immediately, or loop for ever on failure.
1120 */
1121static int kdb_reboot(int argc, const char **argv)
1122{
1123	emergency_restart();
1124	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1125	while (1)
1126		cpu_relax();
1127	/* NOTREACHED */
1128	return 0;
1129}
1130
1131static void kdb_dumpregs(struct pt_regs *regs)
1132{
1133	int old_lvl = console_loglevel;
1134	console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1135	kdb_trap_printk++;
1136	show_regs(regs);
1137	kdb_trap_printk--;
1138	kdb_printf("\n");
1139	console_loglevel = old_lvl;
1140}
1141
1142void kdb_set_current_task(struct task_struct *p)
1143{
1144	kdb_current_task = p;
1145
1146	if (kdb_task_has_cpu(p)) {
1147		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1148		return;
1149	}
1150	kdb_current_regs = NULL;
1151}
1152
1153static void drop_newline(char *buf)
1154{
1155	size_t len = strlen(buf);
1156
1157	if (len == 0)
1158		return;
1159	if (*(buf + len - 1) == '\n')
1160		*(buf + len - 1) = '\0';
1161}
1162
1163/*
1164 * kdb_local - The main code for kdb.  This routine is invoked on a
1165 *	specific processor, it is not global.  The main kdb() routine
1166 *	ensures that only one processor at a time is in this routine.
1167 *	This code is called with the real reason code on the first
1168 *	entry to a kdb session, thereafter it is called with reason
1169 *	SWITCH, even if the user goes back to the original cpu.
1170 * Inputs:
1171 *	reason		The reason KDB was invoked
1172 *	error		The hardware-defined error code
1173 *	regs		The exception frame at time of fault/breakpoint.
1174 *	db_result	Result code from the break or debug point.
1175 * Returns:
1176 *	0	KDB was invoked for an event which it wasn't responsible
1177 *	1	KDB handled the event for which it was invoked.
1178 *	KDB_CMD_GO	User typed 'go'.
1179 *	KDB_CMD_CPU	User switched to another cpu.
1180 *	KDB_CMD_SS	Single step.
1181 */
1182static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1183		     kdb_dbtrap_t db_result)
1184{
1185	char *cmdbuf;
1186	int diag;
1187	struct task_struct *kdb_current =
1188		kdb_curr_task(raw_smp_processor_id());
1189
1190	KDB_DEBUG_STATE("kdb_local 1", reason);
1191	kdb_go_count = 0;
1192	if (reason == KDB_REASON_DEBUG) {
1193		/* special case below */
1194	} else {
1195		kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
1196			   kdb_current, kdb_current ? kdb_current->pid : 0);
1197#if defined(CONFIG_SMP)
1198		kdb_printf("on processor %d ", raw_smp_processor_id());
1199#endif
1200	}
1201
1202	switch (reason) {
1203	case KDB_REASON_DEBUG:
1204	{
1205		/*
1206		 * If re-entering kdb after a single step
1207		 * command, don't print the message.
1208		 */
1209		switch (db_result) {
1210		case KDB_DB_BPT:
1211			kdb_printf("\nEntering kdb (0x%px, pid %d) ",
1212				   kdb_current, kdb_current->pid);
1213#if defined(CONFIG_SMP)
1214			kdb_printf("on processor %d ", raw_smp_processor_id());
1215#endif
1216			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1217				   instruction_pointer(regs));
1218			break;
1219		case KDB_DB_SS:
1220			break;
1221		case KDB_DB_SSBPT:
1222			KDB_DEBUG_STATE("kdb_local 4", reason);
1223			return 1;	/* kdba_db_trap did the work */
1224		default:
1225			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1226				   db_result);
1227			break;
1228		}
1229
1230	}
1231		break;
1232	case KDB_REASON_ENTER:
1233		if (KDB_STATE(KEYBOARD))
1234			kdb_printf("due to Keyboard Entry\n");
1235		else
1236			kdb_printf("due to KDB_ENTER()\n");
1237		break;
1238	case KDB_REASON_KEYBOARD:
1239		KDB_STATE_SET(KEYBOARD);
1240		kdb_printf("due to Keyboard Entry\n");
1241		break;
1242	case KDB_REASON_ENTER_SLAVE:
1243		/* drop through, slaves only get released via cpu switch */
1244	case KDB_REASON_SWITCH:
1245		kdb_printf("due to cpu switch\n");
1246		break;
1247	case KDB_REASON_OOPS:
1248		kdb_printf("Oops: %s\n", kdb_diemsg);
1249		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1250			   instruction_pointer(regs));
1251		kdb_dumpregs(regs);
1252		break;
1253	case KDB_REASON_SYSTEM_NMI:
1254		kdb_printf("due to System NonMaskable Interrupt\n");
1255		break;
1256	case KDB_REASON_NMI:
1257		kdb_printf("due to NonMaskable Interrupt @ "
1258			   kdb_machreg_fmt "\n",
1259			   instruction_pointer(regs));
 
1260		break;
1261	case KDB_REASON_SSTEP:
1262	case KDB_REASON_BREAK:
1263		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1264			   reason == KDB_REASON_BREAK ?
1265			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1266		/*
1267		 * Determine if this breakpoint is one that we
1268		 * are interested in.
1269		 */
1270		if (db_result != KDB_DB_BPT) {
1271			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1272				   db_result);
1273			KDB_DEBUG_STATE("kdb_local 6", reason);
1274			return 0;	/* Not for us, dismiss it */
1275		}
1276		break;
1277	case KDB_REASON_RECURSE:
1278		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1279			   instruction_pointer(regs));
1280		break;
1281	default:
1282		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1283		KDB_DEBUG_STATE("kdb_local 8", reason);
1284		return 0;	/* Not for us, dismiss it */
1285	}
1286
1287	while (1) {
1288		/*
1289		 * Initialize pager context.
1290		 */
1291		kdb_nextline = 1;
1292		KDB_STATE_CLEAR(SUPPRESS);
1293		kdb_grepping_flag = 0;
1294		/* ensure the old search does not leak into '/' commands */
1295		kdb_grep_string[0] = '\0';
1296
1297		cmdbuf = cmd_cur;
1298		*cmdbuf = '\0';
1299		*(cmd_hist[cmd_head]) = '\0';
1300
1301do_full_getstr:
1302#if defined(CONFIG_SMP)
1303		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1304			 raw_smp_processor_id());
1305#else
1306		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1307#endif
1308		if (defcmd_in_progress)
1309			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1310
1311		/*
1312		 * Fetch command from keyboard
1313		 */
1314		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1315		if (*cmdbuf != '\n') {
1316			if (*cmdbuf < 32) {
1317				if (cmdptr == cmd_head) {
1318					strncpy(cmd_hist[cmd_head], cmd_cur,
1319						CMD_BUFLEN);
1320					*(cmd_hist[cmd_head] +
1321					  strlen(cmd_hist[cmd_head])-1) = '\0';
1322				}
1323				if (!handle_ctrl_cmd(cmdbuf))
1324					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1325				cmdbuf = cmd_cur;
1326				goto do_full_getstr;
1327			} else {
1328				strncpy(cmd_hist[cmd_head], cmd_cur,
1329					CMD_BUFLEN);
1330			}
1331
1332			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1333			if (cmd_head == cmd_tail)
1334				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1335		}
1336
1337		cmdptr = cmd_head;
1338		diag = kdb_parse(cmdbuf);
1339		if (diag == KDB_NOTFOUND) {
1340			drop_newline(cmdbuf);
1341			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1342			diag = 0;
1343		}
1344		if (diag == KDB_CMD_GO
1345		 || diag == KDB_CMD_CPU
1346		 || diag == KDB_CMD_SS
1347		 || diag == KDB_CMD_KGDB)
1348			break;
1349
1350		if (diag)
1351			kdb_cmderror(diag);
1352	}
1353	KDB_DEBUG_STATE("kdb_local 9", diag);
1354	return diag;
1355}
1356
1357
1358/*
1359 * kdb_print_state - Print the state data for the current processor
1360 *	for debugging.
1361 * Inputs:
1362 *	text		Identifies the debug point
1363 *	value		Any integer value to be printed, e.g. reason code.
1364 */
1365void kdb_print_state(const char *text, int value)
1366{
1367	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1368		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1369		   kdb_state);
1370}
1371
1372/*
1373 * kdb_main_loop - After initial setup and assignment of the
1374 *	controlling cpu, all cpus are in this loop.  One cpu is in
1375 *	control and will issue the kdb prompt, the others will spin
1376 *	until 'go' or cpu switch.
1377 *
1378 *	To get a consistent view of the kernel stacks for all
1379 *	processes, this routine is invoked from the main kdb code via
1380 *	an architecture specific routine.  kdba_main_loop is
1381 *	responsible for making the kernel stacks consistent for all
1382 *	processes, there should be no difference between a blocked
1383 *	process and a running process as far as kdb is concerned.
1384 * Inputs:
1385 *	reason		The reason KDB was invoked
1386 *	error		The hardware-defined error code
1387 *	reason2		kdb's current reason code.
1388 *			Initially error but can change
1389 *			according to kdb state.
1390 *	db_result	Result code from break or debug point.
1391 *	regs		The exception frame at time of fault/breakpoint.
1392 *			should always be valid.
1393 * Returns:
1394 *	0	KDB was invoked for an event which it wasn't responsible
1395 *	1	KDB handled the event for which it was invoked.
1396 */
1397int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1398	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1399{
1400	int result = 1;
1401	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1402	while (1) {
1403		/*
1404		 * All processors except the one that is in control
1405		 * will spin here.
1406		 */
1407		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1408		while (KDB_STATE(HOLD_CPU)) {
1409			/* state KDB is turned off by kdb_cpu to see if the
1410			 * other cpus are still live, each cpu in this loop
1411			 * turns it back on.
1412			 */
1413			if (!KDB_STATE(KDB))
1414				KDB_STATE_SET(KDB);
1415		}
1416
1417		KDB_STATE_CLEAR(SUPPRESS);
1418		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1419		if (KDB_STATE(LEAVING))
1420			break;	/* Another cpu said 'go' */
1421		/* Still using kdb, this processor is in control */
1422		result = kdb_local(reason2, error, regs, db_result);
1423		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1424
1425		if (result == KDB_CMD_CPU)
1426			break;
1427
1428		if (result == KDB_CMD_SS) {
1429			KDB_STATE_SET(DOING_SS);
1430			break;
1431		}
1432
1433		if (result == KDB_CMD_KGDB) {
1434			if (!KDB_STATE(DOING_KGDB))
1435				kdb_printf("Entering please attach debugger "
1436					   "or use $D#44+ or $3#33\n");
1437			break;
1438		}
1439		if (result && result != 1 && result != KDB_CMD_GO)
1440			kdb_printf("\nUnexpected kdb_local return code %d\n",
1441				   result);
1442		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1443		break;
1444	}
1445	if (KDB_STATE(DOING_SS))
1446		KDB_STATE_CLEAR(SSBPT);
1447
1448	/* Clean up any keyboard devices before leaving */
1449	kdb_kbd_cleanup_state();
1450
1451	return result;
1452}
1453
1454/*
1455 * kdb_mdr - This function implements the guts of the 'mdr', memory
1456 * read command.
1457 *	mdr  <addr arg>,<byte count>
1458 * Inputs:
1459 *	addr	Start address
1460 *	count	Number of bytes
1461 * Returns:
1462 *	Always 0.  Any errors are detected and printed by kdb_getarea.
1463 */
1464static int kdb_mdr(unsigned long addr, unsigned int count)
1465{
1466	unsigned char c;
1467	while (count--) {
1468		if (kdb_getarea(c, addr))
1469			return 0;
1470		kdb_printf("%02x", c);
1471		addr++;
1472	}
1473	kdb_printf("\n");
1474	return 0;
1475}
1476
1477/*
1478 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1479 *	'md8' 'mdr' and 'mds' commands.
1480 *
1481 *	md|mds  [<addr arg> [<line count> [<radix>]]]
1482 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1483 *		where W = is the width (1, 2, 4 or 8) and N is the count.
1484 *		for eg., md1c20 reads 20 bytes, 1 at a time.
1485 *	mdr  <addr arg>,<byte count>
1486 */
1487static void kdb_md_line(const char *fmtstr, unsigned long addr,
1488			int symbolic, int nosect, int bytesperword,
1489			int num, int repeat, int phys)
1490{
1491	/* print just one line of data */
1492	kdb_symtab_t symtab;
1493	char cbuf[32];
1494	char *c = cbuf;
1495	int i;
1496	int j;
1497	unsigned long word;
1498
1499	memset(cbuf, '\0', sizeof(cbuf));
1500	if (phys)
1501		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1502	else
1503		kdb_printf(kdb_machreg_fmt0 " ", addr);
1504
1505	for (i = 0; i < num && repeat--; i++) {
1506		if (phys) {
1507			if (kdb_getphysword(&word, addr, bytesperword))
1508				break;
1509		} else if (kdb_getword(&word, addr, bytesperword))
1510			break;
1511		kdb_printf(fmtstr, word);
1512		if (symbolic)
1513			kdbnearsym(word, &symtab);
1514		else
1515			memset(&symtab, 0, sizeof(symtab));
1516		if (symtab.sym_name) {
1517			kdb_symbol_print(word, &symtab, 0);
1518			if (!nosect) {
1519				kdb_printf("\n");
1520				kdb_printf("                       %s %s "
1521					   kdb_machreg_fmt " "
1522					   kdb_machreg_fmt " "
1523					   kdb_machreg_fmt, symtab.mod_name,
1524					   symtab.sec_name, symtab.sec_start,
1525					   symtab.sym_start, symtab.sym_end);
1526			}
1527			addr += bytesperword;
1528		} else {
1529			union {
1530				u64 word;
1531				unsigned char c[8];
1532			} wc;
1533			unsigned char *cp;
1534#ifdef	__BIG_ENDIAN
1535			cp = wc.c + 8 - bytesperword;
1536#else
1537			cp = wc.c;
1538#endif
1539			wc.word = word;
1540#define printable_char(c) \
1541	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1542			for (j = 0; j < bytesperword; j++)
 
1543				*c++ = printable_char(*cp++);
1544			addr += bytesperword;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1545#undef printable_char
1546		}
1547	}
1548	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1549		   " ", cbuf);
1550}
1551
1552static int kdb_md(int argc, const char **argv)
1553{
1554	static unsigned long last_addr;
1555	static int last_radix, last_bytesperword, last_repeat;
1556	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1557	int nosect = 0;
1558	char fmtchar, fmtstr[64];
1559	unsigned long addr;
1560	unsigned long word;
1561	long offset = 0;
1562	int symbolic = 0;
1563	int valid = 0;
1564	int phys = 0;
1565	int raw = 0;
1566
1567	kdbgetintenv("MDCOUNT", &mdcount);
1568	kdbgetintenv("RADIX", &radix);
1569	kdbgetintenv("BYTESPERWORD", &bytesperword);
1570
1571	/* Assume 'md <addr>' and start with environment values */
1572	repeat = mdcount * 16 / bytesperword;
1573
1574	if (strcmp(argv[0], "mdr") == 0) {
1575		if (argc == 2 || (argc == 0 && last_addr != 0))
1576			valid = raw = 1;
1577		else
1578			return KDB_ARGCOUNT;
 
1579	} else if (isdigit(argv[0][2])) {
1580		bytesperword = (int)(argv[0][2] - '0');
1581		if (bytesperword == 0) {
1582			bytesperword = last_bytesperword;
1583			if (bytesperword == 0)
1584				bytesperword = 4;
1585		}
1586		last_bytesperword = bytesperword;
1587		repeat = mdcount * 16 / bytesperword;
1588		if (!argv[0][3])
1589			valid = 1;
1590		else if (argv[0][3] == 'c' && argv[0][4]) {
1591			char *p;
1592			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1593			mdcount = ((repeat * bytesperword) + 15) / 16;
1594			valid = !*p;
1595		}
1596		last_repeat = repeat;
1597	} else if (strcmp(argv[0], "md") == 0)
1598		valid = 1;
1599	else if (strcmp(argv[0], "mds") == 0)
1600		valid = 1;
1601	else if (strcmp(argv[0], "mdp") == 0) {
1602		phys = valid = 1;
1603	}
1604	if (!valid)
1605		return KDB_NOTFOUND;
1606
1607	if (argc == 0) {
1608		if (last_addr == 0)
1609			return KDB_ARGCOUNT;
1610		addr = last_addr;
1611		radix = last_radix;
1612		bytesperword = last_bytesperword;
1613		repeat = last_repeat;
1614		if (raw)
1615			mdcount = repeat;
1616		else
1617			mdcount = ((repeat * bytesperword) + 15) / 16;
1618	}
1619
1620	if (argc) {
1621		unsigned long val;
1622		int diag, nextarg = 1;
1623		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1624				     &offset, NULL);
1625		if (diag)
1626			return diag;
1627		if (argc > nextarg+2)
1628			return KDB_ARGCOUNT;
1629
1630		if (argc >= nextarg) {
1631			diag = kdbgetularg(argv[nextarg], &val);
1632			if (!diag) {
1633				mdcount = (int) val;
1634				if (raw)
1635					repeat = mdcount;
1636				else
1637					repeat = mdcount * 16 / bytesperword;
1638			}
1639		}
1640		if (argc >= nextarg+1) {
1641			diag = kdbgetularg(argv[nextarg+1], &val);
1642			if (!diag)
1643				radix = (int) val;
1644		}
1645	}
1646
1647	if (strcmp(argv[0], "mdr") == 0) {
1648		int ret;
1649		last_addr = addr;
1650		ret = kdb_mdr(addr, mdcount);
1651		last_addr += mdcount;
1652		last_repeat = mdcount;
1653		last_bytesperword = bytesperword; // to make REPEAT happy
1654		return ret;
1655	}
1656
1657	switch (radix) {
1658	case 10:
1659		fmtchar = 'd';
1660		break;
1661	case 16:
1662		fmtchar = 'x';
1663		break;
1664	case 8:
1665		fmtchar = 'o';
1666		break;
1667	default:
1668		return KDB_BADRADIX;
1669	}
1670
1671	last_radix = radix;
1672
1673	if (bytesperword > KDB_WORD_SIZE)
1674		return KDB_BADWIDTH;
1675
1676	switch (bytesperword) {
1677	case 8:
1678		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1679		break;
1680	case 4:
1681		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1682		break;
1683	case 2:
1684		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1685		break;
1686	case 1:
1687		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1688		break;
1689	default:
1690		return KDB_BADWIDTH;
1691	}
1692
1693	last_repeat = repeat;
1694	last_bytesperword = bytesperword;
1695
1696	if (strcmp(argv[0], "mds") == 0) {
1697		symbolic = 1;
1698		/* Do not save these changes as last_*, they are temporary mds
1699		 * overrides.
1700		 */
1701		bytesperword = KDB_WORD_SIZE;
1702		repeat = mdcount;
1703		kdbgetintenv("NOSECT", &nosect);
1704	}
1705
1706	/* Round address down modulo BYTESPERWORD */
1707
1708	addr &= ~(bytesperword-1);
1709
1710	while (repeat > 0) {
1711		unsigned long a;
1712		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1713
1714		if (KDB_FLAG(CMD_INTERRUPT))
1715			return 0;
1716		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1717			if (phys) {
1718				if (kdb_getphysword(&word, a, bytesperword)
1719						|| word)
1720					break;
1721			} else if (kdb_getword(&word, a, bytesperword) || word)
1722				break;
1723		}
1724		n = min(num, repeat);
1725		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1726			    num, repeat, phys);
1727		addr += bytesperword * n;
1728		repeat -= n;
1729		z = (z + num - 1) / num;
1730		if (z > 2) {
1731			int s = num * (z-2);
1732			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1733				   " zero suppressed\n",
1734				addr, addr + bytesperword * s - 1);
1735			addr += bytesperword * s;
1736			repeat -= s;
1737		}
1738	}
1739	last_addr = addr;
1740
1741	return 0;
1742}
1743
1744/*
1745 * kdb_mm - This function implements the 'mm' command.
1746 *	mm address-expression new-value
1747 * Remarks:
1748 *	mm works on machine words, mmW works on bytes.
1749 */
1750static int kdb_mm(int argc, const char **argv)
1751{
1752	int diag;
1753	unsigned long addr;
1754	long offset = 0;
1755	unsigned long contents;
1756	int nextarg;
1757	int width;
1758
1759	if (argv[0][2] && !isdigit(argv[0][2]))
1760		return KDB_NOTFOUND;
1761
1762	if (argc < 2)
1763		return KDB_ARGCOUNT;
1764
1765	nextarg = 1;
1766	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1767	if (diag)
1768		return diag;
1769
1770	if (nextarg > argc)
1771		return KDB_ARGCOUNT;
1772	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1773	if (diag)
1774		return diag;
1775
1776	if (nextarg != argc + 1)
1777		return KDB_ARGCOUNT;
1778
1779	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1780	diag = kdb_putword(addr, contents, width);
1781	if (diag)
1782		return diag;
1783
1784	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1785
1786	return 0;
1787}
1788
1789/*
1790 * kdb_go - This function implements the 'go' command.
1791 *	go [address-expression]
1792 */
1793static int kdb_go(int argc, const char **argv)
1794{
1795	unsigned long addr;
1796	int diag;
1797	int nextarg;
1798	long offset;
1799
1800	if (raw_smp_processor_id() != kdb_initial_cpu) {
1801		kdb_printf("go must execute on the entry cpu, "
1802			   "please use \"cpu %d\" and then execute go\n",
1803			   kdb_initial_cpu);
1804		return KDB_BADCPUNUM;
1805	}
1806	if (argc == 1) {
1807		nextarg = 1;
1808		diag = kdbgetaddrarg(argc, argv, &nextarg,
1809				     &addr, &offset, NULL);
1810		if (diag)
1811			return diag;
1812	} else if (argc) {
1813		return KDB_ARGCOUNT;
1814	}
1815
1816	diag = KDB_CMD_GO;
1817	if (KDB_FLAG(CATASTROPHIC)) {
1818		kdb_printf("Catastrophic error detected\n");
1819		kdb_printf("kdb_continue_catastrophic=%d, ",
1820			kdb_continue_catastrophic);
1821		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1822			kdb_printf("type go a second time if you really want "
1823				   "to continue\n");
1824			return 0;
1825		}
1826		if (kdb_continue_catastrophic == 2) {
1827			kdb_printf("forcing reboot\n");
1828			kdb_reboot(0, NULL);
1829		}
1830		kdb_printf("attempting to continue\n");
1831	}
1832	return diag;
1833}
1834
1835/*
1836 * kdb_rd - This function implements the 'rd' command.
1837 */
1838static int kdb_rd(int argc, const char **argv)
1839{
1840	int len = kdb_check_regs();
1841#if DBG_MAX_REG_NUM > 0
1842	int i;
1843	char *rname;
1844	int rsize;
1845	u64 reg64;
1846	u32 reg32;
1847	u16 reg16;
1848	u8 reg8;
1849
1850	if (len)
1851		return len;
1852
1853	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1854		rsize = dbg_reg_def[i].size * 2;
1855		if (rsize > 16)
1856			rsize = 2;
1857		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1858			len = 0;
1859			kdb_printf("\n");
1860		}
1861		if (len)
1862			len += kdb_printf("  ");
1863		switch(dbg_reg_def[i].size * 8) {
1864		case 8:
1865			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1866			if (!rname)
1867				break;
1868			len += kdb_printf("%s: %02x", rname, reg8);
1869			break;
1870		case 16:
1871			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1872			if (!rname)
1873				break;
1874			len += kdb_printf("%s: %04x", rname, reg16);
1875			break;
1876		case 32:
1877			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1878			if (!rname)
1879				break;
1880			len += kdb_printf("%s: %08x", rname, reg32);
1881			break;
1882		case 64:
1883			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1884			if (!rname)
1885				break;
1886			len += kdb_printf("%s: %016llx", rname, reg64);
1887			break;
1888		default:
1889			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1890		}
1891	}
1892	kdb_printf("\n");
1893#else
1894	if (len)
1895		return len;
1896
1897	kdb_dumpregs(kdb_current_regs);
1898#endif
1899	return 0;
1900}
1901
1902/*
1903 * kdb_rm - This function implements the 'rm' (register modify)  command.
1904 *	rm register-name new-contents
1905 * Remarks:
1906 *	Allows register modification with the same restrictions as gdb
1907 */
1908static int kdb_rm(int argc, const char **argv)
1909{
1910#if DBG_MAX_REG_NUM > 0
1911	int diag;
1912	const char *rname;
1913	int i;
1914	u64 reg64;
1915	u32 reg32;
1916	u16 reg16;
1917	u8 reg8;
1918
1919	if (argc != 2)
1920		return KDB_ARGCOUNT;
1921	/*
1922	 * Allow presence or absence of leading '%' symbol.
1923	 */
1924	rname = argv[1];
1925	if (*rname == '%')
1926		rname++;
1927
1928	diag = kdbgetu64arg(argv[2], &reg64);
1929	if (diag)
1930		return diag;
1931
1932	diag = kdb_check_regs();
1933	if (diag)
1934		return diag;
1935
1936	diag = KDB_BADREG;
1937	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1938		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1939			diag = 0;
1940			break;
1941		}
1942	}
1943	if (!diag) {
1944		switch(dbg_reg_def[i].size * 8) {
1945		case 8:
1946			reg8 = reg64;
1947			dbg_set_reg(i, &reg8, kdb_current_regs);
1948			break;
1949		case 16:
1950			reg16 = reg64;
1951			dbg_set_reg(i, &reg16, kdb_current_regs);
1952			break;
1953		case 32:
1954			reg32 = reg64;
1955			dbg_set_reg(i, &reg32, kdb_current_regs);
1956			break;
1957		case 64:
1958			dbg_set_reg(i, &reg64, kdb_current_regs);
1959			break;
1960		}
1961	}
1962	return diag;
1963#else
1964	kdb_printf("ERROR: Register set currently not implemented\n");
1965    return 0;
1966#endif
1967}
1968
1969#if defined(CONFIG_MAGIC_SYSRQ)
1970/*
1971 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1972 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
1973 *		sr <magic-sysrq-code>
1974 */
1975static int kdb_sr(int argc, const char **argv)
1976{
1977	bool check_mask =
1978	    !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1979
1980	if (argc != 1)
1981		return KDB_ARGCOUNT;
1982
1983	kdb_trap_printk++;
1984	__handle_sysrq(*argv[1], check_mask);
1985	kdb_trap_printk--;
1986
1987	return 0;
1988}
1989#endif	/* CONFIG_MAGIC_SYSRQ */
1990
1991/*
1992 * kdb_ef - This function implements the 'regs' (display exception
1993 *	frame) command.  This command takes an address and expects to
1994 *	find an exception frame at that address, formats and prints
1995 *	it.
1996 *		regs address-expression
1997 * Remarks:
1998 *	Not done yet.
1999 */
2000static int kdb_ef(int argc, const char **argv)
2001{
2002	int diag;
2003	unsigned long addr;
2004	long offset;
2005	int nextarg;
2006
2007	if (argc != 1)
2008		return KDB_ARGCOUNT;
2009
2010	nextarg = 1;
2011	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2012	if (diag)
2013		return diag;
2014	show_regs((struct pt_regs *)addr);
2015	return 0;
2016}
2017
2018#if defined(CONFIG_MODULES)
2019/*
2020 * kdb_lsmod - This function implements the 'lsmod' command.  Lists
2021 *	currently loaded kernel modules.
2022 *	Mostly taken from userland lsmod.
2023 */
2024static int kdb_lsmod(int argc, const char **argv)
2025{
2026	struct module *mod;
2027
2028	if (argc != 0)
2029		return KDB_ARGCOUNT;
2030
2031	kdb_printf("Module                  Size  modstruct     Used by\n");
2032	list_for_each_entry(mod, kdb_modules, list) {
2033		if (mod->state == MODULE_STATE_UNFORMED)
2034			continue;
2035
2036		kdb_printf("%-20s%8u  0x%px ", mod->name,
2037			   mod->core_layout.size, (void *)mod);
2038#ifdef CONFIG_MODULE_UNLOAD
2039		kdb_printf("%4d ", module_refcount(mod));
2040#endif
2041		if (mod->state == MODULE_STATE_GOING)
2042			kdb_printf(" (Unloading)");
2043		else if (mod->state == MODULE_STATE_COMING)
2044			kdb_printf(" (Loading)");
2045		else
2046			kdb_printf(" (Live)");
2047		kdb_printf(" 0x%px", mod->core_layout.base);
2048
2049#ifdef CONFIG_MODULE_UNLOAD
2050		{
2051			struct module_use *use;
2052			kdb_printf(" [ ");
2053			list_for_each_entry(use, &mod->source_list,
2054					    source_list)
2055				kdb_printf("%s ", use->target->name);
2056			kdb_printf("]\n");
2057		}
2058#endif
2059	}
2060
2061	return 0;
2062}
2063
2064#endif	/* CONFIG_MODULES */
2065
2066/*
2067 * kdb_env - This function implements the 'env' command.  Display the
2068 *	current environment variables.
2069 */
2070
2071static int kdb_env(int argc, const char **argv)
2072{
2073	int i;
2074
2075	for (i = 0; i < __nenv; i++) {
2076		if (__env[i])
2077			kdb_printf("%s\n", __env[i]);
2078	}
2079
2080	if (KDB_DEBUG(MASK))
2081		kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2082
2083	return 0;
2084}
2085
2086#ifdef CONFIG_PRINTK
2087/*
2088 * kdb_dmesg - This function implements the 'dmesg' command to display
2089 *	the contents of the syslog buffer.
2090 *		dmesg [lines] [adjust]
2091 */
2092static int kdb_dmesg(int argc, const char **argv)
2093{
2094	int diag;
2095	int logging;
2096	int lines = 0;
2097	int adjust = 0;
2098	int n = 0;
2099	int skip = 0;
2100	struct kmsg_dumper dumper = { .active = 1 };
2101	size_t len;
2102	char buf[201];
2103
2104	if (argc > 2)
2105		return KDB_ARGCOUNT;
2106	if (argc) {
2107		char *cp;
2108		lines = simple_strtol(argv[1], &cp, 0);
2109		if (*cp)
2110			lines = 0;
2111		if (argc > 1) {
2112			adjust = simple_strtoul(argv[2], &cp, 0);
2113			if (*cp || adjust < 0)
2114				adjust = 0;
2115		}
2116	}
2117
2118	/* disable LOGGING if set */
2119	diag = kdbgetintenv("LOGGING", &logging);
2120	if (!diag && logging) {
2121		const char *setargs[] = { "set", "LOGGING", "0" };
2122		kdb_set(2, setargs);
2123	}
2124
2125	kmsg_dump_rewind_nolock(&dumper);
2126	while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2127		n++;
2128
2129	if (lines < 0) {
2130		if (adjust >= n)
2131			kdb_printf("buffer only contains %d lines, nothing "
2132				   "printed\n", n);
2133		else if (adjust - lines >= n)
2134			kdb_printf("buffer only contains %d lines, last %d "
2135				   "lines printed\n", n, n - adjust);
2136		skip = adjust;
2137		lines = abs(lines);
2138	} else if (lines > 0) {
2139		skip = n - lines - adjust;
2140		lines = abs(lines);
2141		if (adjust >= n) {
2142			kdb_printf("buffer only contains %d lines, "
2143				   "nothing printed\n", n);
2144			skip = n;
2145		} else if (skip < 0) {
2146			lines += skip;
2147			skip = 0;
2148			kdb_printf("buffer only contains %d lines, first "
2149				   "%d lines printed\n", n, lines);
2150		}
2151	} else {
2152		lines = n;
2153	}
2154
2155	if (skip >= n || skip < 0)
2156		return 0;
2157
2158	kmsg_dump_rewind_nolock(&dumper);
2159	while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2160		if (skip) {
2161			skip--;
2162			continue;
2163		}
2164		if (!lines--)
2165			break;
2166		if (KDB_FLAG(CMD_INTERRUPT))
2167			return 0;
2168
2169		kdb_printf("%.*s\n", (int)len - 1, buf);
2170	}
2171
2172	return 0;
2173}
2174#endif /* CONFIG_PRINTK */
2175
2176/* Make sure we balance enable/disable calls, must disable first. */
2177static atomic_t kdb_nmi_disabled;
2178
2179static int kdb_disable_nmi(int argc, const char *argv[])
2180{
2181	if (atomic_read(&kdb_nmi_disabled))
2182		return 0;
2183	atomic_set(&kdb_nmi_disabled, 1);
2184	arch_kgdb_ops.enable_nmi(0);
2185	return 0;
2186}
2187
2188static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2189{
2190	if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2191		return -EINVAL;
2192	arch_kgdb_ops.enable_nmi(1);
2193	return 0;
2194}
2195
2196static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2197	.set = kdb_param_enable_nmi,
2198};
2199module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2200
2201/*
2202 * kdb_cpu - This function implements the 'cpu' command.
2203 *	cpu	[<cpunum>]
2204 * Returns:
2205 *	KDB_CMD_CPU for success, a kdb diagnostic if error
2206 */
2207static void kdb_cpu_status(void)
2208{
2209	int i, start_cpu, first_print = 1;
2210	char state, prev_state = '?';
2211
2212	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2213	kdb_printf("Available cpus: ");
2214	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2215		if (!cpu_online(i)) {
2216			state = 'F';	/* cpu is offline */
2217		} else if (!kgdb_info[i].enter_kgdb) {
2218			state = 'D';	/* cpu is online but unresponsive */
2219		} else {
2220			state = ' ';	/* cpu is responding to kdb */
2221			if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2222				state = 'I';	/* idle task */
2223		}
2224		if (state != prev_state) {
2225			if (prev_state != '?') {
2226				if (!first_print)
2227					kdb_printf(", ");
2228				first_print = 0;
2229				kdb_printf("%d", start_cpu);
2230				if (start_cpu < i-1)
2231					kdb_printf("-%d", i-1);
2232				if (prev_state != ' ')
2233					kdb_printf("(%c)", prev_state);
2234			}
2235			prev_state = state;
2236			start_cpu = i;
2237		}
2238	}
2239	/* print the trailing cpus, ignoring them if they are all offline */
2240	if (prev_state != 'F') {
2241		if (!first_print)
2242			kdb_printf(", ");
2243		kdb_printf("%d", start_cpu);
2244		if (start_cpu < i-1)
2245			kdb_printf("-%d", i-1);
2246		if (prev_state != ' ')
2247			kdb_printf("(%c)", prev_state);
2248	}
2249	kdb_printf("\n");
2250}
2251
2252static int kdb_cpu(int argc, const char **argv)
2253{
2254	unsigned long cpunum;
2255	int diag;
2256
2257	if (argc == 0) {
2258		kdb_cpu_status();
2259		return 0;
2260	}
2261
2262	if (argc != 1)
2263		return KDB_ARGCOUNT;
2264
2265	diag = kdbgetularg(argv[1], &cpunum);
2266	if (diag)
2267		return diag;
2268
2269	/*
2270	 * Validate cpunum
2271	 */
2272	if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2273		return KDB_BADCPUNUM;
2274
2275	dbg_switch_cpu = cpunum;
2276
2277	/*
2278	 * Switch to other cpu
2279	 */
2280	return KDB_CMD_CPU;
2281}
2282
2283/* The user may not realize that ps/bta with no parameters does not print idle
2284 * or sleeping system daemon processes, so tell them how many were suppressed.
2285 */
2286void kdb_ps_suppressed(void)
2287{
2288	int idle = 0, daemon = 0;
2289	unsigned long mask_I = kdb_task_state_string("I"),
2290		      mask_M = kdb_task_state_string("M");
2291	unsigned long cpu;
2292	const struct task_struct *p, *g;
2293	for_each_online_cpu(cpu) {
2294		p = kdb_curr_task(cpu);
2295		if (kdb_task_state(p, mask_I))
2296			++idle;
2297	}
2298	kdb_do_each_thread(g, p) {
2299		if (kdb_task_state(p, mask_M))
2300			++daemon;
2301	} kdb_while_each_thread(g, p);
2302	if (idle || daemon) {
2303		if (idle)
2304			kdb_printf("%d idle process%s (state I)%s\n",
2305				   idle, idle == 1 ? "" : "es",
2306				   daemon ? " and " : "");
2307		if (daemon)
2308			kdb_printf("%d sleeping system daemon (state M) "
2309				   "process%s", daemon,
2310				   daemon == 1 ? "" : "es");
2311		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2312	}
2313}
2314
2315/*
2316 * kdb_ps - This function implements the 'ps' command which shows a
2317 *	list of the active processes.
2318 *		ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2319 */
2320void kdb_ps1(const struct task_struct *p)
2321{
2322	int cpu;
2323	unsigned long tmp;
2324
2325	if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2326		return;
2327
2328	cpu = kdb_process_cpu(p);
2329	kdb_printf("0x%px %8d %8d  %d %4d   %c  0x%px %c%s\n",
2330		   (void *)p, p->pid, p->parent->pid,
2331		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2332		   kdb_task_state_char(p),
2333		   (void *)(&p->thread),
2334		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2335		   p->comm);
2336	if (kdb_task_has_cpu(p)) {
2337		if (!KDB_TSK(cpu)) {
2338			kdb_printf("  Error: no saved data for this cpu\n");
2339		} else {
2340			if (KDB_TSK(cpu) != p)
2341				kdb_printf("  Error: does not match running "
2342				   "process table (0x%px)\n", KDB_TSK(cpu));
2343		}
2344	}
2345}
2346
2347static int kdb_ps(int argc, const char **argv)
2348{
2349	struct task_struct *g, *p;
2350	unsigned long mask, cpu;
2351
2352	if (argc == 0)
2353		kdb_ps_suppressed();
2354	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2355		(int)(2*sizeof(void *))+2, "Task Addr",
2356		(int)(2*sizeof(void *))+2, "Thread");
2357	mask = kdb_task_state_string(argc ? argv[1] : NULL);
2358	/* Run the active tasks first */
2359	for_each_online_cpu(cpu) {
2360		if (KDB_FLAG(CMD_INTERRUPT))
2361			return 0;
2362		p = kdb_curr_task(cpu);
2363		if (kdb_task_state(p, mask))
2364			kdb_ps1(p);
2365	}
2366	kdb_printf("\n");
2367	/* Now the real tasks */
2368	kdb_do_each_thread(g, p) {
2369		if (KDB_FLAG(CMD_INTERRUPT))
2370			return 0;
2371		if (kdb_task_state(p, mask))
2372			kdb_ps1(p);
2373	} kdb_while_each_thread(g, p);
2374
2375	return 0;
2376}
2377
2378/*
2379 * kdb_pid - This function implements the 'pid' command which switches
2380 *	the currently active process.
2381 *		pid [<pid> | R]
2382 */
2383static int kdb_pid(int argc, const char **argv)
2384{
2385	struct task_struct *p;
2386	unsigned long val;
2387	int diag;
2388
2389	if (argc > 1)
2390		return KDB_ARGCOUNT;
2391
2392	if (argc) {
2393		if (strcmp(argv[1], "R") == 0) {
2394			p = KDB_TSK(kdb_initial_cpu);
2395		} else {
2396			diag = kdbgetularg(argv[1], &val);
2397			if (diag)
2398				return KDB_BADINT;
2399
2400			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2401			if (!p) {
2402				kdb_printf("No task with pid=%d\n", (pid_t)val);
2403				return 0;
2404			}
2405		}
2406		kdb_set_current_task(p);
2407	}
2408	kdb_printf("KDB current process is %s(pid=%d)\n",
2409		   kdb_current_task->comm,
2410		   kdb_current_task->pid);
2411
2412	return 0;
2413}
2414
2415static int kdb_kgdb(int argc, const char **argv)
2416{
2417	return KDB_CMD_KGDB;
2418}
2419
2420/*
2421 * kdb_help - This function implements the 'help' and '?' commands.
2422 */
2423static int kdb_help(int argc, const char **argv)
2424{
2425	kdbtab_t *kt;
2426	int i;
2427
2428	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2429	kdb_printf("-----------------------------"
2430		   "-----------------------------\n");
2431	for_each_kdbcmd(kt, i) {
2432		char *space = "";
2433		if (KDB_FLAG(CMD_INTERRUPT))
2434			return 0;
2435		if (!kt->cmd_name)
2436			continue;
2437		if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2438			continue;
2439		if (strlen(kt->cmd_usage) > 20)
2440			space = "\n                                    ";
2441		kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2442			   kt->cmd_usage, space, kt->cmd_help);
2443	}
2444	return 0;
2445}
2446
2447/*
2448 * kdb_kill - This function implements the 'kill' commands.
2449 */
2450static int kdb_kill(int argc, const char **argv)
2451{
2452	long sig, pid;
2453	char *endp;
2454	struct task_struct *p;
 
2455
2456	if (argc != 2)
2457		return KDB_ARGCOUNT;
2458
2459	sig = simple_strtol(argv[1], &endp, 0);
2460	if (*endp)
2461		return KDB_BADINT;
2462	if ((sig >= 0) || !valid_signal(-sig)) {
2463		kdb_printf("Invalid signal parameter.<-signal>\n");
2464		return 0;
2465	}
2466	sig = -sig;
2467
2468	pid = simple_strtol(argv[2], &endp, 0);
2469	if (*endp)
2470		return KDB_BADINT;
2471	if (pid <= 0) {
2472		kdb_printf("Process ID must be large than 0.\n");
2473		return 0;
2474	}
2475
2476	/* Find the process. */
2477	p = find_task_by_pid_ns(pid, &init_pid_ns);
2478	if (!p) {
2479		kdb_printf("The specified process isn't found.\n");
2480		return 0;
2481	}
2482	p = p->group_leader;
2483	kdb_send_sig(p, sig);
 
 
 
 
 
2484	return 0;
2485}
2486
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2487/*
2488 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2489 * I cannot call that code directly from kdb, it has an unconditional
2490 * cli()/sti() and calls routines that take locks which can stop the debugger.
2491 */
2492static void kdb_sysinfo(struct sysinfo *val)
2493{
2494	u64 uptime = ktime_get_mono_fast_ns();
2495
2496	memset(val, 0, sizeof(*val));
2497	val->uptime = div_u64(uptime, NSEC_PER_SEC);
2498	val->loads[0] = avenrun[0];
2499	val->loads[1] = avenrun[1];
2500	val->loads[2] = avenrun[2];
2501	val->procs = nr_threads-1;
2502	si_meminfo(val);
2503
2504	return;
2505}
2506
2507/*
2508 * kdb_summary - This function implements the 'summary' command.
2509 */
2510static int kdb_summary(int argc, const char **argv)
2511{
2512	time64_t now;
2513	struct tm tm;
2514	struct sysinfo val;
2515
2516	if (argc)
2517		return KDB_ARGCOUNT;
2518
2519	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2520	kdb_printf("release    %s\n", init_uts_ns.name.release);
2521	kdb_printf("version    %s\n", init_uts_ns.name.version);
2522	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2523	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2524	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
 
2525
2526	now = __ktime_get_real_seconds();
2527	time64_to_tm(now, 0, &tm);
2528	kdb_printf("date       %04ld-%02d-%02d %02d:%02d:%02d "
2529		   "tz_minuteswest %d\n",
2530		1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2531		tm.tm_hour, tm.tm_min, tm.tm_sec,
2532		sys_tz.tz_minuteswest);
2533
2534	kdb_sysinfo(&val);
2535	kdb_printf("uptime     ");
2536	if (val.uptime > (24*60*60)) {
2537		int days = val.uptime / (24*60*60);
2538		val.uptime %= (24*60*60);
2539		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2540	}
2541	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2542
 
 
 
 
2543	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2544		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2545		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2546		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2547
 
2548	/* Display in kilobytes */
2549#define K(x) ((x) << (PAGE_SHIFT - 10))
2550	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2551		   "Buffers:        %8lu kB\n",
2552		   K(val.totalram), K(val.freeram), K(val.bufferram));
2553	return 0;
2554}
2555
2556/*
2557 * kdb_per_cpu - This function implements the 'per_cpu' command.
2558 */
2559static int kdb_per_cpu(int argc, const char **argv)
2560{
2561	char fmtstr[64];
2562	int cpu, diag, nextarg = 1;
2563	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2564
2565	if (argc < 1 || argc > 3)
2566		return KDB_ARGCOUNT;
2567
2568	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2569	if (diag)
2570		return diag;
2571
2572	if (argc >= 2) {
2573		diag = kdbgetularg(argv[2], &bytesperword);
2574		if (diag)
2575			return diag;
2576	}
2577	if (!bytesperword)
2578		bytesperword = KDB_WORD_SIZE;
2579	else if (bytesperword > KDB_WORD_SIZE)
2580		return KDB_BADWIDTH;
2581	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2582	if (argc >= 3) {
2583		diag = kdbgetularg(argv[3], &whichcpu);
2584		if (diag)
2585			return diag;
2586		if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
2587			kdb_printf("cpu %ld is not online\n", whichcpu);
2588			return KDB_BADCPUNUM;
2589		}
2590	}
2591
2592	/* Most architectures use __per_cpu_offset[cpu], some use
2593	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2594	 */
2595#ifdef	__per_cpu_offset
2596#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2597#else
2598#ifdef	CONFIG_SMP
2599#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2600#else
2601#define KDB_PCU(cpu) 0
2602#endif
2603#endif
2604	for_each_online_cpu(cpu) {
2605		if (KDB_FLAG(CMD_INTERRUPT))
2606			return 0;
2607
2608		if (whichcpu != ~0UL && whichcpu != cpu)
2609			continue;
2610		addr = symaddr + KDB_PCU(cpu);
2611		diag = kdb_getword(&val, addr, bytesperword);
2612		if (diag) {
2613			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2614				   "read, diag=%d\n", cpu, addr, diag);
2615			continue;
2616		}
2617		kdb_printf("%5d ", cpu);
2618		kdb_md_line(fmtstr, addr,
2619			bytesperword == KDB_WORD_SIZE,
2620			1, bytesperword, 1, 1, 0);
2621	}
2622#undef KDB_PCU
2623	return 0;
2624}
2625
2626/*
2627 * display help for the use of cmd | grep pattern
2628 */
2629static int kdb_grep_help(int argc, const char **argv)
2630{
2631	kdb_printf("Usage of  cmd args | grep pattern:\n");
2632	kdb_printf("  Any command's output may be filtered through an ");
2633	kdb_printf("emulated 'pipe'.\n");
2634	kdb_printf("  'grep' is just a key word.\n");
2635	kdb_printf("  The pattern may include a very limited set of "
2636		   "metacharacters:\n");
2637	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2638	kdb_printf("  And if there are spaces in the pattern, you may "
2639		   "quote it:\n");
2640	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2641		   " or \"^pat tern$\"\n");
2642	return 0;
2643}
2644
2645/*
2646 * kdb_register_flags - This function is used to register a kernel
2647 * 	debugger command.
2648 * Inputs:
2649 *	cmd	Command name
2650 *	func	Function to execute the command
2651 *	usage	A simple usage string showing arguments
2652 *	help	A simple help string describing command
2653 *	repeat	Does the command auto repeat on enter?
2654 * Returns:
2655 *	zero for success, one if a duplicate command.
2656 */
2657#define kdb_command_extend 50	/* arbitrary */
2658int kdb_register_flags(char *cmd,
2659		       kdb_func_t func,
2660		       char *usage,
2661		       char *help,
2662		       short minlen,
2663		       kdb_cmdflags_t flags)
2664{
2665	int i;
2666	kdbtab_t *kp;
2667
2668	/*
2669	 *  Brute force method to determine duplicates
2670	 */
2671	for_each_kdbcmd(kp, i) {
2672		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2673			kdb_printf("Duplicate kdb command registered: "
2674				"%s, func %px help %s\n", cmd, func, help);
2675			return 1;
2676		}
2677	}
2678
2679	/*
2680	 * Insert command into first available location in table
2681	 */
2682	for_each_kdbcmd(kp, i) {
2683		if (kp->cmd_name == NULL)
2684			break;
2685	}
2686
2687	if (i >= kdb_max_commands) {
2688		kdbtab_t *new = kmalloc_array(kdb_max_commands -
2689						KDB_BASE_CMD_MAX +
2690						kdb_command_extend,
2691					      sizeof(*new),
2692					      GFP_KDB);
2693		if (!new) {
2694			kdb_printf("Could not allocate new kdb_command "
2695				   "table\n");
2696			return 1;
2697		}
2698		if (kdb_commands) {
2699			memcpy(new, kdb_commands,
2700			  (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2701			kfree(kdb_commands);
2702		}
2703		memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2704		       kdb_command_extend * sizeof(*new));
2705		kdb_commands = new;
2706		kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2707		kdb_max_commands += kdb_command_extend;
2708	}
2709
2710	kp->cmd_name   = cmd;
2711	kp->cmd_func   = func;
2712	kp->cmd_usage  = usage;
2713	kp->cmd_help   = help;
 
2714	kp->cmd_minlen = minlen;
2715	kp->cmd_flags  = flags;
2716
2717	return 0;
2718}
2719EXPORT_SYMBOL_GPL(kdb_register_flags);
2720
2721
2722/*
2723 * kdb_register - Compatibility register function for commands that do
2724 *	not need to specify a repeat state.  Equivalent to
2725 *	kdb_register_flags with flags set to 0.
2726 * Inputs:
2727 *	cmd	Command name
2728 *	func	Function to execute the command
2729 *	usage	A simple usage string showing arguments
2730 *	help	A simple help string describing command
2731 * Returns:
2732 *	zero for success, one if a duplicate command.
2733 */
2734int kdb_register(char *cmd,
2735	     kdb_func_t func,
2736	     char *usage,
2737	     char *help,
2738	     short minlen)
2739{
2740	return kdb_register_flags(cmd, func, usage, help, minlen, 0);
 
2741}
2742EXPORT_SYMBOL_GPL(kdb_register);
2743
2744/*
2745 * kdb_unregister - This function is used to unregister a kernel
2746 *	debugger command.  It is generally called when a module which
2747 *	implements kdb commands is unloaded.
2748 * Inputs:
2749 *	cmd	Command name
2750 * Returns:
2751 *	zero for success, one command not registered.
2752 */
2753int kdb_unregister(char *cmd)
2754{
2755	int i;
2756	kdbtab_t *kp;
2757
2758	/*
2759	 *  find the command.
2760	 */
2761	for_each_kdbcmd(kp, i) {
2762		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2763			kp->cmd_name = NULL;
2764			return 0;
2765		}
2766	}
2767
2768	/* Couldn't find it.  */
2769	return 1;
2770}
2771EXPORT_SYMBOL_GPL(kdb_unregister);
2772
2773/* Initialize the kdb command table. */
2774static void __init kdb_inittab(void)
2775{
2776	int i;
2777	kdbtab_t *kp;
2778
2779	for_each_kdbcmd(kp, i)
2780		kp->cmd_name = NULL;
2781
2782	kdb_register_flags("md", kdb_md, "<vaddr>",
2783	  "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2784	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2785	kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2786	  "Display Raw Memory", 0,
2787	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2788	kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2789	  "Display Physical Memory", 0,
2790	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2791	kdb_register_flags("mds", kdb_md, "<vaddr>",
2792	  "Display Memory Symbolically", 0,
2793	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2794	kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2795	  "Modify Memory Contents", 0,
2796	  KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2797	kdb_register_flags("go", kdb_go, "[<vaddr>]",
2798	  "Continue Execution", 1,
2799	  KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2800	kdb_register_flags("rd", kdb_rd, "",
2801	  "Display Registers", 0,
2802	  KDB_ENABLE_REG_READ);
2803	kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2804	  "Modify Registers", 0,
2805	  KDB_ENABLE_REG_WRITE);
2806	kdb_register_flags("ef", kdb_ef, "<vaddr>",
2807	  "Display exception frame", 0,
2808	  KDB_ENABLE_MEM_READ);
2809	kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2810	  "Stack traceback", 1,
2811	  KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2812	kdb_register_flags("btp", kdb_bt, "<pid>",
2813	  "Display stack for process <pid>", 0,
2814	  KDB_ENABLE_INSPECT);
2815	kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2816	  "Backtrace all processes matching state flag", 0,
2817	  KDB_ENABLE_INSPECT);
2818	kdb_register_flags("btc", kdb_bt, "",
2819	  "Backtrace current process on each cpu", 0,
2820	  KDB_ENABLE_INSPECT);
2821	kdb_register_flags("btt", kdb_bt, "<vaddr>",
2822	  "Backtrace process given its struct task address", 0,
2823	  KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2824	kdb_register_flags("env", kdb_env, "",
2825	  "Show environment variables", 0,
2826	  KDB_ENABLE_ALWAYS_SAFE);
2827	kdb_register_flags("set", kdb_set, "",
2828	  "Set environment variables", 0,
2829	  KDB_ENABLE_ALWAYS_SAFE);
2830	kdb_register_flags("help", kdb_help, "",
2831	  "Display Help Message", 1,
2832	  KDB_ENABLE_ALWAYS_SAFE);
2833	kdb_register_flags("?", kdb_help, "",
2834	  "Display Help Message", 0,
2835	  KDB_ENABLE_ALWAYS_SAFE);
2836	kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2837	  "Switch to new cpu", 0,
2838	  KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2839	kdb_register_flags("kgdb", kdb_kgdb, "",
2840	  "Enter kgdb mode", 0, 0);
2841	kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2842	  "Display active task list", 0,
2843	  KDB_ENABLE_INSPECT);
2844	kdb_register_flags("pid", kdb_pid, "<pidnum>",
2845	  "Switch to another task", 0,
2846	  KDB_ENABLE_INSPECT);
2847	kdb_register_flags("reboot", kdb_reboot, "",
2848	  "Reboot the machine immediately", 0,
2849	  KDB_ENABLE_REBOOT);
2850#if defined(CONFIG_MODULES)
2851	kdb_register_flags("lsmod", kdb_lsmod, "",
2852	  "List loaded kernel modules", 0,
2853	  KDB_ENABLE_INSPECT);
2854#endif
2855#if defined(CONFIG_MAGIC_SYSRQ)
2856	kdb_register_flags("sr", kdb_sr, "<key>",
2857	  "Magic SysRq key", 0,
2858	  KDB_ENABLE_ALWAYS_SAFE);
2859#endif
2860#if defined(CONFIG_PRINTK)
2861	kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2862	  "Display syslog buffer", 0,
2863	  KDB_ENABLE_ALWAYS_SAFE);
2864#endif
2865	if (arch_kgdb_ops.enable_nmi) {
2866		kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2867		  "Disable NMI entry to KDB", 0,
2868		  KDB_ENABLE_ALWAYS_SAFE);
2869	}
2870	kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2871	  "Define a set of commands, down to endefcmd", 0,
2872	  KDB_ENABLE_ALWAYS_SAFE);
2873	kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2874	  "Send a signal to a process", 0,
2875	  KDB_ENABLE_SIGNAL);
2876	kdb_register_flags("summary", kdb_summary, "",
2877	  "Summarize the system", 4,
2878	  KDB_ENABLE_ALWAYS_SAFE);
2879	kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2880	  "Display per_cpu variables", 3,
2881	  KDB_ENABLE_MEM_READ);
2882	kdb_register_flags("grephelp", kdb_grep_help, "",
2883	  "Display help on | grep", 0,
2884	  KDB_ENABLE_ALWAYS_SAFE);
2885}
2886
2887/* Execute any commands defined in kdb_cmds.  */
2888static void __init kdb_cmd_init(void)
2889{
2890	int i, diag;
2891	for (i = 0; kdb_cmds[i]; ++i) {
2892		diag = kdb_parse(kdb_cmds[i]);
2893		if (diag)
2894			kdb_printf("kdb command %s failed, kdb diag %d\n",
2895				kdb_cmds[i], diag);
2896	}
2897	if (defcmd_in_progress) {
2898		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2899		kdb_parse("endefcmd");
2900	}
2901}
2902
2903/* Initialize kdb_printf, breakpoint tables and kdb state */
2904void __init kdb_init(int lvl)
2905{
2906	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2907	int i;
2908
2909	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2910		return;
2911	for (i = kdb_init_lvl; i < lvl; i++) {
2912		switch (i) {
2913		case KDB_NOT_INITIALIZED:
2914			kdb_inittab();		/* Initialize Command Table */
2915			kdb_initbptab();	/* Initialize Breakpoints */
2916			break;
2917		case KDB_INIT_EARLY:
2918			kdb_cmd_init();		/* Build kdb_cmds tables */
2919			break;
2920		}
2921	}
2922	kdb_init_lvl = lvl;
2923}
v3.15
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
 
  15#include <linux/string.h>
  16#include <linux/kernel.h>
  17#include <linux/kmsg_dump.h>
  18#include <linux/reboot.h>
  19#include <linux/sched.h>
 
 
 
  20#include <linux/sysrq.h>
  21#include <linux/smp.h>
  22#include <linux/utsname.h>
  23#include <linux/vmalloc.h>
  24#include <linux/atomic.h>
  25#include <linux/module.h>
 
  26#include <linux/mm.h>
  27#include <linux/init.h>
  28#include <linux/kallsyms.h>
  29#include <linux/kgdb.h>
  30#include <linux/kdb.h>
  31#include <linux/notifier.h>
  32#include <linux/interrupt.h>
  33#include <linux/delay.h>
  34#include <linux/nmi.h>
  35#include <linux/time.h>
  36#include <linux/ptrace.h>
  37#include <linux/sysctl.h>
  38#include <linux/cpu.h>
  39#include <linux/kdebug.h>
  40#include <linux/proc_fs.h>
  41#include <linux/uaccess.h>
  42#include <linux/slab.h>
  43#include "kdb_private.h"
  44
  45#define GREP_LEN 256
  46char kdb_grep_string[GREP_LEN];
 
 
 
 
 
  47int kdb_grepping_flag;
  48EXPORT_SYMBOL(kdb_grepping_flag);
  49int kdb_grep_leading;
  50int kdb_grep_trailing;
  51
  52/*
  53 * Kernel debugger state flags
  54 */
  55int kdb_flags;
  56atomic_t kdb_event;
  57
  58/*
  59 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  60 * single thread processors through the kernel debugger.
  61 */
  62int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
  63int kdb_nextline = 1;
  64int kdb_state;			/* General KDB state */
  65
  66struct task_struct *kdb_current_task;
  67EXPORT_SYMBOL(kdb_current_task);
  68struct pt_regs *kdb_current_regs;
  69
  70const char *kdb_diemsg;
  71static int kdb_go_count;
  72#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  73static unsigned int kdb_continue_catastrophic =
  74	CONFIG_KDB_CONTINUE_CATASTROPHIC;
  75#else
  76static unsigned int kdb_continue_catastrophic;
  77#endif
  78
  79/* kdb_commands describes the available commands. */
  80static kdbtab_t *kdb_commands;
  81#define KDB_BASE_CMD_MAX 50
  82static int kdb_max_commands = KDB_BASE_CMD_MAX;
  83static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
  84#define for_each_kdbcmd(cmd, num)					\
  85	for ((cmd) = kdb_base_commands, (num) = 0;			\
  86	     num < kdb_max_commands;					\
  87	     num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
  88
  89typedef struct _kdbmsg {
  90	int	km_diag;	/* kdb diagnostic */
  91	char	*km_msg;	/* Corresponding message text */
  92} kdbmsg_t;
  93
  94#define KDBMSG(msgnum, text) \
  95	{ KDB_##msgnum, text }
  96
  97static kdbmsg_t kdbmsgs[] = {
  98	KDBMSG(NOTFOUND, "Command Not Found"),
  99	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
 100	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
 101	       "8 is only allowed on 64 bit systems"),
 102	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 103	KDBMSG(NOTENV, "Cannot find environment variable"),
 104	KDBMSG(NOENVVALUE, "Environment variable should have value"),
 105	KDBMSG(NOTIMP, "Command not implemented"),
 106	KDBMSG(ENVFULL, "Environment full"),
 107	KDBMSG(ENVBUFFULL, "Environment buffer full"),
 108	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 109#ifdef CONFIG_CPU_XSCALE
 110	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 111#else
 112	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 113#endif
 114	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 115	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 116	KDBMSG(BADMODE, "Invalid IDMODE"),
 117	KDBMSG(BADINT, "Illegal numeric value"),
 118	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 119	KDBMSG(BADREG, "Invalid register name"),
 120	KDBMSG(BADCPUNUM, "Invalid cpu number"),
 121	KDBMSG(BADLENGTH, "Invalid length field"),
 122	KDBMSG(NOBP, "No Breakpoint exists"),
 123	KDBMSG(BADADDR, "Invalid address"),
 
 124};
 125#undef KDBMSG
 126
 127static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
 128
 129
 130/*
 131 * Initial environment.   This is all kept static and local to
 132 * this file.   We don't want to rely on the memory allocation
 133 * mechanisms in the kernel, so we use a very limited allocate-only
 134 * heap for new and altered environment variables.  The entire
 135 * environment is limited to a fixed number of entries (add more
 136 * to __env[] if required) and a fixed amount of heap (add more to
 137 * KDB_ENVBUFSIZE if required).
 138 */
 139
 140static char *__env[] = {
 141#if defined(CONFIG_SMP)
 142 "PROMPT=[%d]kdb> ",
 143#else
 144 "PROMPT=kdb> ",
 145#endif
 146 "MOREPROMPT=more> ",
 147 "RADIX=16",
 148 "MDCOUNT=8",			/* lines of md output */
 149 KDB_PLATFORM_ENV,
 150 "DTABCOUNT=30",
 151 "NOSECT=1",
 152 (char *)0,
 153 (char *)0,
 154 (char *)0,
 155 (char *)0,
 156 (char *)0,
 157 (char *)0,
 158 (char *)0,
 159 (char *)0,
 160 (char *)0,
 161 (char *)0,
 162 (char *)0,
 163 (char *)0,
 164 (char *)0,
 165 (char *)0,
 166 (char *)0,
 167 (char *)0,
 168 (char *)0,
 169 (char *)0,
 170 (char *)0,
 171 (char *)0,
 172 (char *)0,
 173 (char *)0,
 174 (char *)0,
 175 (char *)0,
 176};
 177
 178static const int __nenv = ARRAY_SIZE(__env);
 179
 180struct task_struct *kdb_curr_task(int cpu)
 181{
 182	struct task_struct *p = curr_task(cpu);
 183#ifdef	_TIF_MCA_INIT
 184	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
 185		p = krp->p;
 186#endif
 187	return p;
 188}
 189
 190/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 191 * kdbgetenv - This function will return the character string value of
 192 *	an environment variable.
 193 * Parameters:
 194 *	match	A character string representing an environment variable.
 195 * Returns:
 196 *	NULL	No environment variable matches 'match'
 197 *	char*	Pointer to string value of environment variable.
 198 */
 199char *kdbgetenv(const char *match)
 200{
 201	char **ep = __env;
 202	int matchlen = strlen(match);
 203	int i;
 204
 205	for (i = 0; i < __nenv; i++) {
 206		char *e = *ep++;
 207
 208		if (!e)
 209			continue;
 210
 211		if ((strncmp(match, e, matchlen) == 0)
 212		 && ((e[matchlen] == '\0')
 213		   || (e[matchlen] == '='))) {
 214			char *cp = strchr(e, '=');
 215			return cp ? ++cp : "";
 216		}
 217	}
 218	return NULL;
 219}
 220
 221/*
 222 * kdballocenv - This function is used to allocate bytes for
 223 *	environment entries.
 224 * Parameters:
 225 *	match	A character string representing a numeric value
 226 * Outputs:
 227 *	*value  the unsigned long representation of the env variable 'match'
 228 * Returns:
 229 *	Zero on success, a kdb diagnostic on failure.
 230 * Remarks:
 231 *	We use a static environment buffer (envbuffer) to hold the values
 232 *	of dynamically generated environment variables (see kdb_set).  Buffer
 233 *	space once allocated is never free'd, so over time, the amount of space
 234 *	(currently 512 bytes) will be exhausted if env variables are changed
 235 *	frequently.
 236 */
 237static char *kdballocenv(size_t bytes)
 238{
 239#define	KDB_ENVBUFSIZE	512
 240	static char envbuffer[KDB_ENVBUFSIZE];
 241	static int envbufsize;
 242	char *ep = NULL;
 243
 244	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 245		ep = &envbuffer[envbufsize];
 246		envbufsize += bytes;
 247	}
 248	return ep;
 249}
 250
 251/*
 252 * kdbgetulenv - This function will return the value of an unsigned
 253 *	long-valued environment variable.
 254 * Parameters:
 255 *	match	A character string representing a numeric value
 256 * Outputs:
 257 *	*value  the unsigned long represntation of the env variable 'match'
 258 * Returns:
 259 *	Zero on success, a kdb diagnostic on failure.
 260 */
 261static int kdbgetulenv(const char *match, unsigned long *value)
 262{
 263	char *ep;
 264
 265	ep = kdbgetenv(match);
 266	if (!ep)
 267		return KDB_NOTENV;
 268	if (strlen(ep) == 0)
 269		return KDB_NOENVVALUE;
 270
 271	*value = simple_strtoul(ep, NULL, 0);
 272
 273	return 0;
 274}
 275
 276/*
 277 * kdbgetintenv - This function will return the value of an
 278 *	integer-valued environment variable.
 279 * Parameters:
 280 *	match	A character string representing an integer-valued env variable
 281 * Outputs:
 282 *	*value  the integer representation of the environment variable 'match'
 283 * Returns:
 284 *	Zero on success, a kdb diagnostic on failure.
 285 */
 286int kdbgetintenv(const char *match, int *value)
 287{
 288	unsigned long val;
 289	int diag;
 290
 291	diag = kdbgetulenv(match, &val);
 292	if (!diag)
 293		*value = (int) val;
 294	return diag;
 295}
 296
 297/*
 298 * kdbgetularg - This function will convert a numeric string into an
 299 *	unsigned long value.
 300 * Parameters:
 301 *	arg	A character string representing a numeric value
 302 * Outputs:
 303 *	*value  the unsigned long represntation of arg.
 304 * Returns:
 305 *	Zero on success, a kdb diagnostic on failure.
 306 */
 307int kdbgetularg(const char *arg, unsigned long *value)
 308{
 309	char *endp;
 310	unsigned long val;
 311
 312	val = simple_strtoul(arg, &endp, 0);
 313
 314	if (endp == arg) {
 315		/*
 316		 * Also try base 16, for us folks too lazy to type the
 317		 * leading 0x...
 318		 */
 319		val = simple_strtoul(arg, &endp, 16);
 320		if (endp == arg)
 321			return KDB_BADINT;
 322	}
 323
 324	*value = val;
 325
 326	return 0;
 327}
 328
 329int kdbgetu64arg(const char *arg, u64 *value)
 330{
 331	char *endp;
 332	u64 val;
 333
 334	val = simple_strtoull(arg, &endp, 0);
 335
 336	if (endp == arg) {
 337
 338		val = simple_strtoull(arg, &endp, 16);
 339		if (endp == arg)
 340			return KDB_BADINT;
 341	}
 342
 343	*value = val;
 344
 345	return 0;
 346}
 347
 348/*
 349 * kdb_set - This function implements the 'set' command.  Alter an
 350 *	existing environment variable or create a new one.
 351 */
 352int kdb_set(int argc, const char **argv)
 353{
 354	int i;
 355	char *ep;
 356	size_t varlen, vallen;
 357
 358	/*
 359	 * we can be invoked two ways:
 360	 *   set var=value    argv[1]="var", argv[2]="value"
 361	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 362	 * - if the latter, shift 'em down.
 363	 */
 364	if (argc == 3) {
 365		argv[2] = argv[3];
 366		argc--;
 367	}
 368
 369	if (argc != 2)
 370		return KDB_ARGCOUNT;
 371
 372	/*
 373	 * Check for internal variables
 374	 */
 375	if (strcmp(argv[1], "KDBDEBUG") == 0) {
 376		unsigned int debugflags;
 377		char *cp;
 378
 379		debugflags = simple_strtoul(argv[2], &cp, 0);
 380		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 381			kdb_printf("kdb: illegal debug flags '%s'\n",
 382				    argv[2]);
 383			return 0;
 384		}
 385		kdb_flags = (kdb_flags &
 386			     ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
 387			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
 388
 389		return 0;
 390	}
 391
 392	/*
 393	 * Tokenizer squashed the '=' sign.  argv[1] is variable
 394	 * name, argv[2] = value.
 395	 */
 396	varlen = strlen(argv[1]);
 397	vallen = strlen(argv[2]);
 398	ep = kdballocenv(varlen + vallen + 2);
 399	if (ep == (char *)0)
 400		return KDB_ENVBUFFULL;
 401
 402	sprintf(ep, "%s=%s", argv[1], argv[2]);
 403
 404	ep[varlen+vallen+1] = '\0';
 405
 406	for (i = 0; i < __nenv; i++) {
 407		if (__env[i]
 408		 && ((strncmp(__env[i], argv[1], varlen) == 0)
 409		   && ((__env[i][varlen] == '\0')
 410		    || (__env[i][varlen] == '=')))) {
 411			__env[i] = ep;
 412			return 0;
 413		}
 414	}
 415
 416	/*
 417	 * Wasn't existing variable.  Fit into slot.
 418	 */
 419	for (i = 0; i < __nenv-1; i++) {
 420		if (__env[i] == (char *)0) {
 421			__env[i] = ep;
 422			return 0;
 423		}
 424	}
 425
 426	return KDB_ENVFULL;
 427}
 428
 429static int kdb_check_regs(void)
 430{
 431	if (!kdb_current_regs) {
 432		kdb_printf("No current kdb registers."
 433			   "  You may need to select another task\n");
 434		return KDB_BADREG;
 435	}
 436	return 0;
 437}
 438
 439/*
 440 * kdbgetaddrarg - This function is responsible for parsing an
 441 *	address-expression and returning the value of the expression,
 442 *	symbol name, and offset to the caller.
 443 *
 444 *	The argument may consist of a numeric value (decimal or
 445 *	hexidecimal), a symbol name, a register name (preceded by the
 446 *	percent sign), an environment variable with a numeric value
 447 *	(preceded by a dollar sign) or a simple arithmetic expression
 448 *	consisting of a symbol name, +/-, and a numeric constant value
 449 *	(offset).
 450 * Parameters:
 451 *	argc	- count of arguments in argv
 452 *	argv	- argument vector
 453 *	*nextarg - index to next unparsed argument in argv[]
 454 *	regs	- Register state at time of KDB entry
 455 * Outputs:
 456 *	*value	- receives the value of the address-expression
 457 *	*offset - receives the offset specified, if any
 458 *	*name   - receives the symbol name, if any
 459 *	*nextarg - index to next unparsed argument in argv[]
 460 * Returns:
 461 *	zero is returned on success, a kdb diagnostic code is
 462 *      returned on error.
 463 */
 464int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 465		  unsigned long *value,  long *offset,
 466		  char **name)
 467{
 468	unsigned long addr;
 469	unsigned long off = 0;
 470	int positive;
 471	int diag;
 472	int found = 0;
 473	char *symname;
 474	char symbol = '\0';
 475	char *cp;
 476	kdb_symtab_t symtab;
 477
 478	/*
 
 
 
 
 
 
 
 
 
 479	 * Process arguments which follow the following syntax:
 480	 *
 481	 *  symbol | numeric-address [+/- numeric-offset]
 482	 *  %register
 483	 *  $environment-variable
 484	 */
 485
 486	if (*nextarg > argc)
 487		return KDB_ARGCOUNT;
 488
 489	symname = (char *)argv[*nextarg];
 490
 491	/*
 492	 * If there is no whitespace between the symbol
 493	 * or address and the '+' or '-' symbols, we
 494	 * remember the character and replace it with a
 495	 * null so the symbol/value can be properly parsed
 496	 */
 497	cp = strpbrk(symname, "+-");
 498	if (cp != NULL) {
 499		symbol = *cp;
 500		*cp++ = '\0';
 501	}
 502
 503	if (symname[0] == '$') {
 504		diag = kdbgetulenv(&symname[1], &addr);
 505		if (diag)
 506			return diag;
 507	} else if (symname[0] == '%') {
 508		diag = kdb_check_regs();
 509		if (diag)
 510			return diag;
 511		/* Implement register values with % at a later time as it is
 512		 * arch optional.
 513		 */
 514		return KDB_NOTIMP;
 515	} else {
 516		found = kdbgetsymval(symname, &symtab);
 517		if (found) {
 518			addr = symtab.sym_start;
 519		} else {
 520			diag = kdbgetularg(argv[*nextarg], &addr);
 521			if (diag)
 522				return diag;
 523		}
 524	}
 525
 526	if (!found)
 527		found = kdbnearsym(addr, &symtab);
 528
 529	(*nextarg)++;
 530
 531	if (name)
 532		*name = symname;
 533	if (value)
 534		*value = addr;
 535	if (offset && name && *name)
 536		*offset = addr - symtab.sym_start;
 537
 538	if ((*nextarg > argc)
 539	 && (symbol == '\0'))
 540		return 0;
 541
 542	/*
 543	 * check for +/- and offset
 544	 */
 545
 546	if (symbol == '\0') {
 547		if ((argv[*nextarg][0] != '+')
 548		 && (argv[*nextarg][0] != '-')) {
 549			/*
 550			 * Not our argument.  Return.
 551			 */
 552			return 0;
 553		} else {
 554			positive = (argv[*nextarg][0] == '+');
 555			(*nextarg)++;
 556		}
 557	} else
 558		positive = (symbol == '+');
 559
 560	/*
 561	 * Now there must be an offset!
 562	 */
 563	if ((*nextarg > argc)
 564	 && (symbol == '\0')) {
 565		return KDB_INVADDRFMT;
 566	}
 567
 568	if (!symbol) {
 569		cp = (char *)argv[*nextarg];
 570		(*nextarg)++;
 571	}
 572
 573	diag = kdbgetularg(cp, &off);
 574	if (diag)
 575		return diag;
 576
 577	if (!positive)
 578		off = -off;
 579
 580	if (offset)
 581		*offset += off;
 582
 583	if (value)
 584		*value += off;
 585
 586	return 0;
 587}
 588
 589static void kdb_cmderror(int diag)
 590{
 591	int i;
 592
 593	if (diag >= 0) {
 594		kdb_printf("no error detected (diagnostic is %d)\n", diag);
 595		return;
 596	}
 597
 598	for (i = 0; i < __nkdb_err; i++) {
 599		if (kdbmsgs[i].km_diag == diag) {
 600			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 601			return;
 602		}
 603	}
 604
 605	kdb_printf("Unknown diag %d\n", -diag);
 606}
 607
 608/*
 609 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 610 *	command which defines one command as a set of other commands,
 611 *	terminated by endefcmd.  kdb_defcmd processes the initial
 612 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 613 *	the following commands until 'endefcmd'.
 614 * Inputs:
 615 *	argc	argument count
 616 *	argv	argument vector
 617 * Returns:
 618 *	zero for success, a kdb diagnostic if error
 619 */
 620struct defcmd_set {
 621	int count;
 622	int usable;
 623	char *name;
 624	char *usage;
 625	char *help;
 626	char **command;
 627};
 628static struct defcmd_set *defcmd_set;
 629static int defcmd_set_count;
 630static int defcmd_in_progress;
 631
 632/* Forward references */
 633static int kdb_exec_defcmd(int argc, const char **argv);
 634
 635static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 636{
 637	struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
 638	char **save_command = s->command;
 639	if (strcmp(argv0, "endefcmd") == 0) {
 640		defcmd_in_progress = 0;
 641		if (!s->count)
 642			s->usable = 0;
 643		if (s->usable)
 644			kdb_register(s->name, kdb_exec_defcmd,
 645				     s->usage, s->help, 0);
 
 
 
 
 
 646		return 0;
 647	}
 648	if (!s->usable)
 649		return KDB_NOTIMP;
 650	s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
 651	if (!s->command) {
 652		kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
 653			   cmdstr);
 654		s->usable = 0;
 655		return KDB_NOTIMP;
 656	}
 657	memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
 658	s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
 659	kfree(save_command);
 660	return 0;
 661}
 662
 663static int kdb_defcmd(int argc, const char **argv)
 664{
 665	struct defcmd_set *save_defcmd_set = defcmd_set, *s;
 666	if (defcmd_in_progress) {
 667		kdb_printf("kdb: nested defcmd detected, assuming missing "
 668			   "endefcmd\n");
 669		kdb_defcmd2("endefcmd", "endefcmd");
 670	}
 671	if (argc == 0) {
 672		int i;
 673		for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
 674			kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
 675				   s->usage, s->help);
 676			for (i = 0; i < s->count; ++i)
 677				kdb_printf("%s", s->command[i]);
 678			kdb_printf("endefcmd\n");
 679		}
 680		return 0;
 681	}
 682	if (argc != 3)
 683		return KDB_ARGCOUNT;
 684	if (in_dbg_master()) {
 685		kdb_printf("Command only available during kdb_init()\n");
 686		return KDB_NOTIMP;
 687	}
 688	defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
 689			     GFP_KDB);
 690	if (!defcmd_set)
 691		goto fail_defcmd;
 692	memcpy(defcmd_set, save_defcmd_set,
 693	       defcmd_set_count * sizeof(*defcmd_set));
 694	s = defcmd_set + defcmd_set_count;
 695	memset(s, 0, sizeof(*s));
 696	s->usable = 1;
 697	s->name = kdb_strdup(argv[1], GFP_KDB);
 698	if (!s->name)
 699		goto fail_name;
 700	s->usage = kdb_strdup(argv[2], GFP_KDB);
 701	if (!s->usage)
 702		goto fail_usage;
 703	s->help = kdb_strdup(argv[3], GFP_KDB);
 704	if (!s->help)
 705		goto fail_help;
 706	if (s->usage[0] == '"') {
 707		strcpy(s->usage, argv[2]+1);
 708		s->usage[strlen(s->usage)-1] = '\0';
 709	}
 710	if (s->help[0] == '"') {
 711		strcpy(s->help, argv[3]+1);
 712		s->help[strlen(s->help)-1] = '\0';
 713	}
 714	++defcmd_set_count;
 715	defcmd_in_progress = 1;
 716	kfree(save_defcmd_set);
 717	return 0;
 718fail_help:
 719	kfree(s->usage);
 720fail_usage:
 721	kfree(s->name);
 722fail_name:
 723	kfree(defcmd_set);
 724fail_defcmd:
 725	kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
 726	defcmd_set = save_defcmd_set;
 727	return KDB_NOTIMP;
 728}
 729
 730/*
 731 * kdb_exec_defcmd - Execute the set of commands associated with this
 732 *	defcmd name.
 733 * Inputs:
 734 *	argc	argument count
 735 *	argv	argument vector
 736 * Returns:
 737 *	zero for success, a kdb diagnostic if error
 738 */
 739static int kdb_exec_defcmd(int argc, const char **argv)
 740{
 741	int i, ret;
 742	struct defcmd_set *s;
 743	if (argc != 0)
 744		return KDB_ARGCOUNT;
 745	for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
 746		if (strcmp(s->name, argv[0]) == 0)
 747			break;
 748	}
 749	if (i == defcmd_set_count) {
 750		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 751			   argv[0]);
 752		return KDB_NOTIMP;
 753	}
 754	for (i = 0; i < s->count; ++i) {
 755		/* Recursive use of kdb_parse, do not use argv after
 756		 * this point */
 757		argv = NULL;
 758		kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
 759		ret = kdb_parse(s->command[i]);
 760		if (ret)
 761			return ret;
 762	}
 763	return 0;
 764}
 765
 766/* Command history */
 767#define KDB_CMD_HISTORY_COUNT	32
 768#define CMD_BUFLEN		200	/* kdb_printf: max printline
 769					 * size == 256 */
 770static unsigned int cmd_head, cmd_tail;
 771static unsigned int cmdptr;
 772static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 773static char cmd_cur[CMD_BUFLEN];
 774
 775/*
 776 * The "str" argument may point to something like  | grep xyz
 777 */
 778static void parse_grep(const char *str)
 779{
 780	int	len;
 781	char	*cp = (char *)str, *cp2;
 782
 783	/* sanity check: we should have been called with the \ first */
 784	if (*cp != '|')
 785		return;
 786	cp++;
 787	while (isspace(*cp))
 788		cp++;
 789	if (strncmp(cp, "grep ", 5)) {
 790		kdb_printf("invalid 'pipe', see grephelp\n");
 791		return;
 792	}
 793	cp += 5;
 794	while (isspace(*cp))
 795		cp++;
 796	cp2 = strchr(cp, '\n');
 797	if (cp2)
 798		*cp2 = '\0'; /* remove the trailing newline */
 799	len = strlen(cp);
 800	if (len == 0) {
 801		kdb_printf("invalid 'pipe', see grephelp\n");
 802		return;
 803	}
 804	/* now cp points to a nonzero length search string */
 805	if (*cp == '"') {
 806		/* allow it be "x y z" by removing the "'s - there must
 807		   be two of them */
 808		cp++;
 809		cp2 = strchr(cp, '"');
 810		if (!cp2) {
 811			kdb_printf("invalid quoted string, see grephelp\n");
 812			return;
 813		}
 814		*cp2 = '\0'; /* end the string where the 2nd " was */
 815	}
 816	kdb_grep_leading = 0;
 817	if (*cp == '^') {
 818		kdb_grep_leading = 1;
 819		cp++;
 820	}
 821	len = strlen(cp);
 822	kdb_grep_trailing = 0;
 823	if (*(cp+len-1) == '$') {
 824		kdb_grep_trailing = 1;
 825		*(cp+len-1) = '\0';
 826	}
 827	len = strlen(cp);
 828	if (!len)
 829		return;
 830	if (len >= GREP_LEN) {
 831		kdb_printf("search string too long\n");
 832		return;
 833	}
 834	strcpy(kdb_grep_string, cp);
 835	kdb_grepping_flag++;
 836	return;
 837}
 838
 839/*
 840 * kdb_parse - Parse the command line, search the command table for a
 841 *	matching command and invoke the command function.  This
 842 *	function may be called recursively, if it is, the second call
 843 *	will overwrite argv and cbuf.  It is the caller's
 844 *	responsibility to save their argv if they recursively call
 845 *	kdb_parse().
 846 * Parameters:
 847 *      cmdstr	The input command line to be parsed.
 848 *	regs	The registers at the time kdb was entered.
 849 * Returns:
 850 *	Zero for success, a kdb diagnostic if failure.
 851 * Remarks:
 852 *	Limited to 20 tokens.
 853 *
 854 *	Real rudimentary tokenization. Basically only whitespace
 855 *	is considered a token delimeter (but special consideration
 856 *	is taken of the '=' sign as used by the 'set' command).
 857 *
 858 *	The algorithm used to tokenize the input string relies on
 859 *	there being at least one whitespace (or otherwise useless)
 860 *	character between tokens as the character immediately following
 861 *	the token is altered in-place to a null-byte to terminate the
 862 *	token string.
 863 */
 864
 865#define MAXARGC	20
 866
 867int kdb_parse(const char *cmdstr)
 868{
 869	static char *argv[MAXARGC];
 870	static int argc;
 871	static char cbuf[CMD_BUFLEN+2];
 872	char *cp;
 873	char *cpp, quoted;
 874	kdbtab_t *tp;
 875	int i, escaped, ignore_errors = 0, check_grep;
 876
 877	/*
 878	 * First tokenize the command string.
 879	 */
 880	cp = (char *)cmdstr;
 881	kdb_grepping_flag = check_grep = 0;
 882
 883	if (KDB_FLAG(CMD_INTERRUPT)) {
 884		/* Previous command was interrupted, newline must not
 885		 * repeat the command */
 886		KDB_FLAG_CLEAR(CMD_INTERRUPT);
 887		KDB_STATE_SET(PAGER);
 888		argc = 0;	/* no repeat */
 889	}
 890
 891	if (*cp != '\n' && *cp != '\0') {
 892		argc = 0;
 893		cpp = cbuf;
 894		while (*cp) {
 895			/* skip whitespace */
 896			while (isspace(*cp))
 897				cp++;
 898			if ((*cp == '\0') || (*cp == '\n') ||
 899			    (*cp == '#' && !defcmd_in_progress))
 900				break;
 901			/* special case: check for | grep pattern */
 902			if (*cp == '|') {
 903				check_grep++;
 904				break;
 905			}
 906			if (cpp >= cbuf + CMD_BUFLEN) {
 907				kdb_printf("kdb_parse: command buffer "
 908					   "overflow, command ignored\n%s\n",
 909					   cmdstr);
 910				return KDB_NOTFOUND;
 911			}
 912			if (argc >= MAXARGC - 1) {
 913				kdb_printf("kdb_parse: too many arguments, "
 914					   "command ignored\n%s\n", cmdstr);
 915				return KDB_NOTFOUND;
 916			}
 917			argv[argc++] = cpp;
 918			escaped = 0;
 919			quoted = '\0';
 920			/* Copy to next unquoted and unescaped
 921			 * whitespace or '=' */
 922			while (*cp && *cp != '\n' &&
 923			       (escaped || quoted || !isspace(*cp))) {
 924				if (cpp >= cbuf + CMD_BUFLEN)
 925					break;
 926				if (escaped) {
 927					escaped = 0;
 928					*cpp++ = *cp++;
 929					continue;
 930				}
 931				if (*cp == '\\') {
 932					escaped = 1;
 933					++cp;
 934					continue;
 935				}
 936				if (*cp == quoted)
 937					quoted = '\0';
 938				else if (*cp == '\'' || *cp == '"')
 939					quoted = *cp;
 940				*cpp = *cp++;
 941				if (*cpp == '=' && !quoted)
 942					break;
 943				++cpp;
 944			}
 945			*cpp++ = '\0';	/* Squash a ws or '=' character */
 946		}
 947	}
 948	if (!argc)
 949		return 0;
 950	if (check_grep)
 951		parse_grep(cp);
 952	if (defcmd_in_progress) {
 953		int result = kdb_defcmd2(cmdstr, argv[0]);
 954		if (!defcmd_in_progress) {
 955			argc = 0;	/* avoid repeat on endefcmd */
 956			*(argv[0]) = '\0';
 957		}
 958		return result;
 959	}
 960	if (argv[0][0] == '-' && argv[0][1] &&
 961	    (argv[0][1] < '0' || argv[0][1] > '9')) {
 962		ignore_errors = 1;
 963		++argv[0];
 964	}
 965
 966	for_each_kdbcmd(tp, i) {
 967		if (tp->cmd_name) {
 968			/*
 969			 * If this command is allowed to be abbreviated,
 970			 * check to see if this is it.
 971			 */
 972
 973			if (tp->cmd_minlen
 974			 && (strlen(argv[0]) <= tp->cmd_minlen)) {
 975				if (strncmp(argv[0],
 976					    tp->cmd_name,
 977					    tp->cmd_minlen) == 0) {
 978					break;
 979				}
 980			}
 981
 982			if (strcmp(argv[0], tp->cmd_name) == 0)
 983				break;
 984		}
 985	}
 986
 987	/*
 988	 * If we don't find a command by this name, see if the first
 989	 * few characters of this match any of the known commands.
 990	 * e.g., md1c20 should match md.
 991	 */
 992	if (i == kdb_max_commands) {
 993		for_each_kdbcmd(tp, i) {
 994			if (tp->cmd_name) {
 995				if (strncmp(argv[0],
 996					    tp->cmd_name,
 997					    strlen(tp->cmd_name)) == 0) {
 998					break;
 999				}
1000			}
1001		}
1002	}
1003
1004	if (i < kdb_max_commands) {
1005		int result;
 
 
 
 
1006		KDB_STATE_SET(CMD);
1007		result = (*tp->cmd_func)(argc-1, (const char **)argv);
1008		if (result && ignore_errors && result > KDB_CMD_GO)
1009			result = 0;
1010		KDB_STATE_CLEAR(CMD);
1011		switch (tp->cmd_repeat) {
1012		case KDB_REPEAT_NONE:
1013			argc = 0;
1014			if (argv[0])
1015				*(argv[0]) = '\0';
1016			break;
1017		case KDB_REPEAT_NO_ARGS:
1018			argc = 1;
1019			if (argv[1])
1020				*(argv[1]) = '\0';
1021			break;
1022		case KDB_REPEAT_WITH_ARGS:
1023			break;
1024		}
1025		return result;
1026	}
1027
1028	/*
1029	 * If the input with which we were presented does not
1030	 * map to an existing command, attempt to parse it as an
1031	 * address argument and display the result.   Useful for
1032	 * obtaining the address of a variable, or the nearest symbol
1033	 * to an address contained in a register.
1034	 */
1035	{
1036		unsigned long value;
1037		char *name = NULL;
1038		long offset;
1039		int nextarg = 0;
1040
1041		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1042				  &value, &offset, &name)) {
1043			return KDB_NOTFOUND;
1044		}
1045
1046		kdb_printf("%s = ", argv[0]);
1047		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1048		kdb_printf("\n");
1049		return 0;
1050	}
1051}
1052
1053
1054static int handle_ctrl_cmd(char *cmd)
1055{
1056#define CTRL_P	16
1057#define CTRL_N	14
1058
1059	/* initial situation */
1060	if (cmd_head == cmd_tail)
1061		return 0;
1062	switch (*cmd) {
1063	case CTRL_P:
1064		if (cmdptr != cmd_tail)
1065			cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1066		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1067		return 1;
1068	case CTRL_N:
1069		if (cmdptr != cmd_head)
1070			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1071		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1072		return 1;
1073	}
1074	return 0;
1075}
1076
1077/*
1078 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1079 *	the system immediately, or loop for ever on failure.
1080 */
1081static int kdb_reboot(int argc, const char **argv)
1082{
1083	emergency_restart();
1084	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1085	while (1)
1086		cpu_relax();
1087	/* NOTREACHED */
1088	return 0;
1089}
1090
1091static void kdb_dumpregs(struct pt_regs *regs)
1092{
1093	int old_lvl = console_loglevel;
1094	console_loglevel = 15;
1095	kdb_trap_printk++;
1096	show_regs(regs);
1097	kdb_trap_printk--;
1098	kdb_printf("\n");
1099	console_loglevel = old_lvl;
1100}
1101
1102void kdb_set_current_task(struct task_struct *p)
1103{
1104	kdb_current_task = p;
1105
1106	if (kdb_task_has_cpu(p)) {
1107		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1108		return;
1109	}
1110	kdb_current_regs = NULL;
1111}
1112
 
 
 
 
 
 
 
 
 
 
1113/*
1114 * kdb_local - The main code for kdb.  This routine is invoked on a
1115 *	specific processor, it is not global.  The main kdb() routine
1116 *	ensures that only one processor at a time is in this routine.
1117 *	This code is called with the real reason code on the first
1118 *	entry to a kdb session, thereafter it is called with reason
1119 *	SWITCH, even if the user goes back to the original cpu.
1120 * Inputs:
1121 *	reason		The reason KDB was invoked
1122 *	error		The hardware-defined error code
1123 *	regs		The exception frame at time of fault/breakpoint.
1124 *	db_result	Result code from the break or debug point.
1125 * Returns:
1126 *	0	KDB was invoked for an event which it wasn't responsible
1127 *	1	KDB handled the event for which it was invoked.
1128 *	KDB_CMD_GO	User typed 'go'.
1129 *	KDB_CMD_CPU	User switched to another cpu.
1130 *	KDB_CMD_SS	Single step.
1131 */
1132static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1133		     kdb_dbtrap_t db_result)
1134{
1135	char *cmdbuf;
1136	int diag;
1137	struct task_struct *kdb_current =
1138		kdb_curr_task(raw_smp_processor_id());
1139
1140	KDB_DEBUG_STATE("kdb_local 1", reason);
1141	kdb_go_count = 0;
1142	if (reason == KDB_REASON_DEBUG) {
1143		/* special case below */
1144	} else {
1145		kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1146			   kdb_current, kdb_current ? kdb_current->pid : 0);
1147#if defined(CONFIG_SMP)
1148		kdb_printf("on processor %d ", raw_smp_processor_id());
1149#endif
1150	}
1151
1152	switch (reason) {
1153	case KDB_REASON_DEBUG:
1154	{
1155		/*
1156		 * If re-entering kdb after a single step
1157		 * command, don't print the message.
1158		 */
1159		switch (db_result) {
1160		case KDB_DB_BPT:
1161			kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1162				   kdb_current, kdb_current->pid);
1163#if defined(CONFIG_SMP)
1164			kdb_printf("on processor %d ", raw_smp_processor_id());
1165#endif
1166			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1167				   instruction_pointer(regs));
1168			break;
1169		case KDB_DB_SS:
1170			break;
1171		case KDB_DB_SSBPT:
1172			KDB_DEBUG_STATE("kdb_local 4", reason);
1173			return 1;	/* kdba_db_trap did the work */
1174		default:
1175			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1176				   db_result);
1177			break;
1178		}
1179
1180	}
1181		break;
1182	case KDB_REASON_ENTER:
1183		if (KDB_STATE(KEYBOARD))
1184			kdb_printf("due to Keyboard Entry\n");
1185		else
1186			kdb_printf("due to KDB_ENTER()\n");
1187		break;
1188	case KDB_REASON_KEYBOARD:
1189		KDB_STATE_SET(KEYBOARD);
1190		kdb_printf("due to Keyboard Entry\n");
1191		break;
1192	case KDB_REASON_ENTER_SLAVE:
1193		/* drop through, slaves only get released via cpu switch */
1194	case KDB_REASON_SWITCH:
1195		kdb_printf("due to cpu switch\n");
1196		break;
1197	case KDB_REASON_OOPS:
1198		kdb_printf("Oops: %s\n", kdb_diemsg);
1199		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1200			   instruction_pointer(regs));
1201		kdb_dumpregs(regs);
1202		break;
1203	case KDB_REASON_SYSTEM_NMI:
1204		kdb_printf("due to System NonMaskable Interrupt\n");
1205		break;
1206	case KDB_REASON_NMI:
1207		kdb_printf("due to NonMaskable Interrupt @ "
1208			   kdb_machreg_fmt "\n",
1209			   instruction_pointer(regs));
1210		kdb_dumpregs(regs);
1211		break;
1212	case KDB_REASON_SSTEP:
1213	case KDB_REASON_BREAK:
1214		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1215			   reason == KDB_REASON_BREAK ?
1216			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1217		/*
1218		 * Determine if this breakpoint is one that we
1219		 * are interested in.
1220		 */
1221		if (db_result != KDB_DB_BPT) {
1222			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1223				   db_result);
1224			KDB_DEBUG_STATE("kdb_local 6", reason);
1225			return 0;	/* Not for us, dismiss it */
1226		}
1227		break;
1228	case KDB_REASON_RECURSE:
1229		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1230			   instruction_pointer(regs));
1231		break;
1232	default:
1233		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1234		KDB_DEBUG_STATE("kdb_local 8", reason);
1235		return 0;	/* Not for us, dismiss it */
1236	}
1237
1238	while (1) {
1239		/*
1240		 * Initialize pager context.
1241		 */
1242		kdb_nextline = 1;
1243		KDB_STATE_CLEAR(SUPPRESS);
 
 
 
1244
1245		cmdbuf = cmd_cur;
1246		*cmdbuf = '\0';
1247		*(cmd_hist[cmd_head]) = '\0';
1248
1249do_full_getstr:
1250#if defined(CONFIG_SMP)
1251		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1252			 raw_smp_processor_id());
1253#else
1254		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1255#endif
1256		if (defcmd_in_progress)
1257			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1258
1259		/*
1260		 * Fetch command from keyboard
1261		 */
1262		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1263		if (*cmdbuf != '\n') {
1264			if (*cmdbuf < 32) {
1265				if (cmdptr == cmd_head) {
1266					strncpy(cmd_hist[cmd_head], cmd_cur,
1267						CMD_BUFLEN);
1268					*(cmd_hist[cmd_head] +
1269					  strlen(cmd_hist[cmd_head])-1) = '\0';
1270				}
1271				if (!handle_ctrl_cmd(cmdbuf))
1272					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1273				cmdbuf = cmd_cur;
1274				goto do_full_getstr;
1275			} else {
1276				strncpy(cmd_hist[cmd_head], cmd_cur,
1277					CMD_BUFLEN);
1278			}
1279
1280			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1281			if (cmd_head == cmd_tail)
1282				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1283		}
1284
1285		cmdptr = cmd_head;
1286		diag = kdb_parse(cmdbuf);
1287		if (diag == KDB_NOTFOUND) {
 
1288			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1289			diag = 0;
1290		}
1291		if (diag == KDB_CMD_GO
1292		 || diag == KDB_CMD_CPU
1293		 || diag == KDB_CMD_SS
1294		 || diag == KDB_CMD_KGDB)
1295			break;
1296
1297		if (diag)
1298			kdb_cmderror(diag);
1299	}
1300	KDB_DEBUG_STATE("kdb_local 9", diag);
1301	return diag;
1302}
1303
1304
1305/*
1306 * kdb_print_state - Print the state data for the current processor
1307 *	for debugging.
1308 * Inputs:
1309 *	text		Identifies the debug point
1310 *	value		Any integer value to be printed, e.g. reason code.
1311 */
1312void kdb_print_state(const char *text, int value)
1313{
1314	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1315		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1316		   kdb_state);
1317}
1318
1319/*
1320 * kdb_main_loop - After initial setup and assignment of the
1321 *	controlling cpu, all cpus are in this loop.  One cpu is in
1322 *	control and will issue the kdb prompt, the others will spin
1323 *	until 'go' or cpu switch.
1324 *
1325 *	To get a consistent view of the kernel stacks for all
1326 *	processes, this routine is invoked from the main kdb code via
1327 *	an architecture specific routine.  kdba_main_loop is
1328 *	responsible for making the kernel stacks consistent for all
1329 *	processes, there should be no difference between a blocked
1330 *	process and a running process as far as kdb is concerned.
1331 * Inputs:
1332 *	reason		The reason KDB was invoked
1333 *	error		The hardware-defined error code
1334 *	reason2		kdb's current reason code.
1335 *			Initially error but can change
1336 *			according to kdb state.
1337 *	db_result	Result code from break or debug point.
1338 *	regs		The exception frame at time of fault/breakpoint.
1339 *			should always be valid.
1340 * Returns:
1341 *	0	KDB was invoked for an event which it wasn't responsible
1342 *	1	KDB handled the event for which it was invoked.
1343 */
1344int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1345	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1346{
1347	int result = 1;
1348	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1349	while (1) {
1350		/*
1351		 * All processors except the one that is in control
1352		 * will spin here.
1353		 */
1354		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1355		while (KDB_STATE(HOLD_CPU)) {
1356			/* state KDB is turned off by kdb_cpu to see if the
1357			 * other cpus are still live, each cpu in this loop
1358			 * turns it back on.
1359			 */
1360			if (!KDB_STATE(KDB))
1361				KDB_STATE_SET(KDB);
1362		}
1363
1364		KDB_STATE_CLEAR(SUPPRESS);
1365		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1366		if (KDB_STATE(LEAVING))
1367			break;	/* Another cpu said 'go' */
1368		/* Still using kdb, this processor is in control */
1369		result = kdb_local(reason2, error, regs, db_result);
1370		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1371
1372		if (result == KDB_CMD_CPU)
1373			break;
1374
1375		if (result == KDB_CMD_SS) {
1376			KDB_STATE_SET(DOING_SS);
1377			break;
1378		}
1379
1380		if (result == KDB_CMD_KGDB) {
1381			if (!KDB_STATE(DOING_KGDB))
1382				kdb_printf("Entering please attach debugger "
1383					   "or use $D#44+ or $3#33\n");
1384			break;
1385		}
1386		if (result && result != 1 && result != KDB_CMD_GO)
1387			kdb_printf("\nUnexpected kdb_local return code %d\n",
1388				   result);
1389		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1390		break;
1391	}
1392	if (KDB_STATE(DOING_SS))
1393		KDB_STATE_CLEAR(SSBPT);
1394
1395	/* Clean up any keyboard devices before leaving */
1396	kdb_kbd_cleanup_state();
1397
1398	return result;
1399}
1400
1401/*
1402 * kdb_mdr - This function implements the guts of the 'mdr', memory
1403 * read command.
1404 *	mdr  <addr arg>,<byte count>
1405 * Inputs:
1406 *	addr	Start address
1407 *	count	Number of bytes
1408 * Returns:
1409 *	Always 0.  Any errors are detected and printed by kdb_getarea.
1410 */
1411static int kdb_mdr(unsigned long addr, unsigned int count)
1412{
1413	unsigned char c;
1414	while (count--) {
1415		if (kdb_getarea(c, addr))
1416			return 0;
1417		kdb_printf("%02x", c);
1418		addr++;
1419	}
1420	kdb_printf("\n");
1421	return 0;
1422}
1423
1424/*
1425 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1426 *	'md8' 'mdr' and 'mds' commands.
1427 *
1428 *	md|mds  [<addr arg> [<line count> [<radix>]]]
1429 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1430 *		where W = is the width (1, 2, 4 or 8) and N is the count.
1431 *		for eg., md1c20 reads 20 bytes, 1 at a time.
1432 *	mdr  <addr arg>,<byte count>
1433 */
1434static void kdb_md_line(const char *fmtstr, unsigned long addr,
1435			int symbolic, int nosect, int bytesperword,
1436			int num, int repeat, int phys)
1437{
1438	/* print just one line of data */
1439	kdb_symtab_t symtab;
1440	char cbuf[32];
1441	char *c = cbuf;
1442	int i;
 
1443	unsigned long word;
1444
1445	memset(cbuf, '\0', sizeof(cbuf));
1446	if (phys)
1447		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1448	else
1449		kdb_printf(kdb_machreg_fmt0 " ", addr);
1450
1451	for (i = 0; i < num && repeat--; i++) {
1452		if (phys) {
1453			if (kdb_getphysword(&word, addr, bytesperword))
1454				break;
1455		} else if (kdb_getword(&word, addr, bytesperword))
1456			break;
1457		kdb_printf(fmtstr, word);
1458		if (symbolic)
1459			kdbnearsym(word, &symtab);
1460		else
1461			memset(&symtab, 0, sizeof(symtab));
1462		if (symtab.sym_name) {
1463			kdb_symbol_print(word, &symtab, 0);
1464			if (!nosect) {
1465				kdb_printf("\n");
1466				kdb_printf("                       %s %s "
1467					   kdb_machreg_fmt " "
1468					   kdb_machreg_fmt " "
1469					   kdb_machreg_fmt, symtab.mod_name,
1470					   symtab.sec_name, symtab.sec_start,
1471					   symtab.sym_start, symtab.sym_end);
1472			}
1473			addr += bytesperword;
1474		} else {
1475			union {
1476				u64 word;
1477				unsigned char c[8];
1478			} wc;
1479			unsigned char *cp;
1480#ifdef	__BIG_ENDIAN
1481			cp = wc.c + 8 - bytesperword;
1482#else
1483			cp = wc.c;
1484#endif
1485			wc.word = word;
1486#define printable_char(c) \
1487	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1488			switch (bytesperword) {
1489			case 8:
1490				*c++ = printable_char(*cp++);
1491				*c++ = printable_char(*cp++);
1492				*c++ = printable_char(*cp++);
1493				*c++ = printable_char(*cp++);
1494				addr += 4;
1495			case 4:
1496				*c++ = printable_char(*cp++);
1497				*c++ = printable_char(*cp++);
1498				addr += 2;
1499			case 2:
1500				*c++ = printable_char(*cp++);
1501				addr++;
1502			case 1:
1503				*c++ = printable_char(*cp++);
1504				addr++;
1505				break;
1506			}
1507#undef printable_char
1508		}
1509	}
1510	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1511		   " ", cbuf);
1512}
1513
1514static int kdb_md(int argc, const char **argv)
1515{
1516	static unsigned long last_addr;
1517	static int last_radix, last_bytesperword, last_repeat;
1518	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1519	int nosect = 0;
1520	char fmtchar, fmtstr[64];
1521	unsigned long addr;
1522	unsigned long word;
1523	long offset = 0;
1524	int symbolic = 0;
1525	int valid = 0;
1526	int phys = 0;
 
1527
1528	kdbgetintenv("MDCOUNT", &mdcount);
1529	kdbgetintenv("RADIX", &radix);
1530	kdbgetintenv("BYTESPERWORD", &bytesperword);
1531
1532	/* Assume 'md <addr>' and start with environment values */
1533	repeat = mdcount * 16 / bytesperword;
1534
1535	if (strcmp(argv[0], "mdr") == 0) {
1536		if (argc != 2)
 
 
1537			return KDB_ARGCOUNT;
1538		valid = 1;
1539	} else if (isdigit(argv[0][2])) {
1540		bytesperword = (int)(argv[0][2] - '0');
1541		if (bytesperword == 0) {
1542			bytesperword = last_bytesperword;
1543			if (bytesperword == 0)
1544				bytesperword = 4;
1545		}
1546		last_bytesperword = bytesperword;
1547		repeat = mdcount * 16 / bytesperword;
1548		if (!argv[0][3])
1549			valid = 1;
1550		else if (argv[0][3] == 'c' && argv[0][4]) {
1551			char *p;
1552			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1553			mdcount = ((repeat * bytesperword) + 15) / 16;
1554			valid = !*p;
1555		}
1556		last_repeat = repeat;
1557	} else if (strcmp(argv[0], "md") == 0)
1558		valid = 1;
1559	else if (strcmp(argv[0], "mds") == 0)
1560		valid = 1;
1561	else if (strcmp(argv[0], "mdp") == 0) {
1562		phys = valid = 1;
1563	}
1564	if (!valid)
1565		return KDB_NOTFOUND;
1566
1567	if (argc == 0) {
1568		if (last_addr == 0)
1569			return KDB_ARGCOUNT;
1570		addr = last_addr;
1571		radix = last_radix;
1572		bytesperword = last_bytesperword;
1573		repeat = last_repeat;
1574		mdcount = ((repeat * bytesperword) + 15) / 16;
 
 
 
1575	}
1576
1577	if (argc) {
1578		unsigned long val;
1579		int diag, nextarg = 1;
1580		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1581				     &offset, NULL);
1582		if (diag)
1583			return diag;
1584		if (argc > nextarg+2)
1585			return KDB_ARGCOUNT;
1586
1587		if (argc >= nextarg) {
1588			diag = kdbgetularg(argv[nextarg], &val);
1589			if (!diag) {
1590				mdcount = (int) val;
1591				repeat = mdcount * 16 / bytesperword;
 
 
 
1592			}
1593		}
1594		if (argc >= nextarg+1) {
1595			diag = kdbgetularg(argv[nextarg+1], &val);
1596			if (!diag)
1597				radix = (int) val;
1598		}
1599	}
1600
1601	if (strcmp(argv[0], "mdr") == 0)
1602		return kdb_mdr(addr, mdcount);
 
 
 
 
 
 
 
1603
1604	switch (radix) {
1605	case 10:
1606		fmtchar = 'd';
1607		break;
1608	case 16:
1609		fmtchar = 'x';
1610		break;
1611	case 8:
1612		fmtchar = 'o';
1613		break;
1614	default:
1615		return KDB_BADRADIX;
1616	}
1617
1618	last_radix = radix;
1619
1620	if (bytesperword > KDB_WORD_SIZE)
1621		return KDB_BADWIDTH;
1622
1623	switch (bytesperword) {
1624	case 8:
1625		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1626		break;
1627	case 4:
1628		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1629		break;
1630	case 2:
1631		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1632		break;
1633	case 1:
1634		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1635		break;
1636	default:
1637		return KDB_BADWIDTH;
1638	}
1639
1640	last_repeat = repeat;
1641	last_bytesperword = bytesperword;
1642
1643	if (strcmp(argv[0], "mds") == 0) {
1644		symbolic = 1;
1645		/* Do not save these changes as last_*, they are temporary mds
1646		 * overrides.
1647		 */
1648		bytesperword = KDB_WORD_SIZE;
1649		repeat = mdcount;
1650		kdbgetintenv("NOSECT", &nosect);
1651	}
1652
1653	/* Round address down modulo BYTESPERWORD */
1654
1655	addr &= ~(bytesperword-1);
1656
1657	while (repeat > 0) {
1658		unsigned long a;
1659		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1660
1661		if (KDB_FLAG(CMD_INTERRUPT))
1662			return 0;
1663		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1664			if (phys) {
1665				if (kdb_getphysword(&word, a, bytesperword)
1666						|| word)
1667					break;
1668			} else if (kdb_getword(&word, a, bytesperword) || word)
1669				break;
1670		}
1671		n = min(num, repeat);
1672		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1673			    num, repeat, phys);
1674		addr += bytesperword * n;
1675		repeat -= n;
1676		z = (z + num - 1) / num;
1677		if (z > 2) {
1678			int s = num * (z-2);
1679			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1680				   " zero suppressed\n",
1681				addr, addr + bytesperword * s - 1);
1682			addr += bytesperword * s;
1683			repeat -= s;
1684		}
1685	}
1686	last_addr = addr;
1687
1688	return 0;
1689}
1690
1691/*
1692 * kdb_mm - This function implements the 'mm' command.
1693 *	mm address-expression new-value
1694 * Remarks:
1695 *	mm works on machine words, mmW works on bytes.
1696 */
1697static int kdb_mm(int argc, const char **argv)
1698{
1699	int diag;
1700	unsigned long addr;
1701	long offset = 0;
1702	unsigned long contents;
1703	int nextarg;
1704	int width;
1705
1706	if (argv[0][2] && !isdigit(argv[0][2]))
1707		return KDB_NOTFOUND;
1708
1709	if (argc < 2)
1710		return KDB_ARGCOUNT;
1711
1712	nextarg = 1;
1713	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1714	if (diag)
1715		return diag;
1716
1717	if (nextarg > argc)
1718		return KDB_ARGCOUNT;
1719	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1720	if (diag)
1721		return diag;
1722
1723	if (nextarg != argc + 1)
1724		return KDB_ARGCOUNT;
1725
1726	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1727	diag = kdb_putword(addr, contents, width);
1728	if (diag)
1729		return diag;
1730
1731	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1732
1733	return 0;
1734}
1735
1736/*
1737 * kdb_go - This function implements the 'go' command.
1738 *	go [address-expression]
1739 */
1740static int kdb_go(int argc, const char **argv)
1741{
1742	unsigned long addr;
1743	int diag;
1744	int nextarg;
1745	long offset;
1746
1747	if (raw_smp_processor_id() != kdb_initial_cpu) {
1748		kdb_printf("go must execute on the entry cpu, "
1749			   "please use \"cpu %d\" and then execute go\n",
1750			   kdb_initial_cpu);
1751		return KDB_BADCPUNUM;
1752	}
1753	if (argc == 1) {
1754		nextarg = 1;
1755		diag = kdbgetaddrarg(argc, argv, &nextarg,
1756				     &addr, &offset, NULL);
1757		if (diag)
1758			return diag;
1759	} else if (argc) {
1760		return KDB_ARGCOUNT;
1761	}
1762
1763	diag = KDB_CMD_GO;
1764	if (KDB_FLAG(CATASTROPHIC)) {
1765		kdb_printf("Catastrophic error detected\n");
1766		kdb_printf("kdb_continue_catastrophic=%d, ",
1767			kdb_continue_catastrophic);
1768		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1769			kdb_printf("type go a second time if you really want "
1770				   "to continue\n");
1771			return 0;
1772		}
1773		if (kdb_continue_catastrophic == 2) {
1774			kdb_printf("forcing reboot\n");
1775			kdb_reboot(0, NULL);
1776		}
1777		kdb_printf("attempting to continue\n");
1778	}
1779	return diag;
1780}
1781
1782/*
1783 * kdb_rd - This function implements the 'rd' command.
1784 */
1785static int kdb_rd(int argc, const char **argv)
1786{
1787	int len = kdb_check_regs();
1788#if DBG_MAX_REG_NUM > 0
1789	int i;
1790	char *rname;
1791	int rsize;
1792	u64 reg64;
1793	u32 reg32;
1794	u16 reg16;
1795	u8 reg8;
1796
1797	if (len)
1798		return len;
1799
1800	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1801		rsize = dbg_reg_def[i].size * 2;
1802		if (rsize > 16)
1803			rsize = 2;
1804		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1805			len = 0;
1806			kdb_printf("\n");
1807		}
1808		if (len)
1809			len += kdb_printf("  ");
1810		switch(dbg_reg_def[i].size * 8) {
1811		case 8:
1812			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1813			if (!rname)
1814				break;
1815			len += kdb_printf("%s: %02x", rname, reg8);
1816			break;
1817		case 16:
1818			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1819			if (!rname)
1820				break;
1821			len += kdb_printf("%s: %04x", rname, reg16);
1822			break;
1823		case 32:
1824			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1825			if (!rname)
1826				break;
1827			len += kdb_printf("%s: %08x", rname, reg32);
1828			break;
1829		case 64:
1830			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1831			if (!rname)
1832				break;
1833			len += kdb_printf("%s: %016llx", rname, reg64);
1834			break;
1835		default:
1836			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1837		}
1838	}
1839	kdb_printf("\n");
1840#else
1841	if (len)
1842		return len;
1843
1844	kdb_dumpregs(kdb_current_regs);
1845#endif
1846	return 0;
1847}
1848
1849/*
1850 * kdb_rm - This function implements the 'rm' (register modify)  command.
1851 *	rm register-name new-contents
1852 * Remarks:
1853 *	Allows register modification with the same restrictions as gdb
1854 */
1855static int kdb_rm(int argc, const char **argv)
1856{
1857#if DBG_MAX_REG_NUM > 0
1858	int diag;
1859	const char *rname;
1860	int i;
1861	u64 reg64;
1862	u32 reg32;
1863	u16 reg16;
1864	u8 reg8;
1865
1866	if (argc != 2)
1867		return KDB_ARGCOUNT;
1868	/*
1869	 * Allow presence or absence of leading '%' symbol.
1870	 */
1871	rname = argv[1];
1872	if (*rname == '%')
1873		rname++;
1874
1875	diag = kdbgetu64arg(argv[2], &reg64);
1876	if (diag)
1877		return diag;
1878
1879	diag = kdb_check_regs();
1880	if (diag)
1881		return diag;
1882
1883	diag = KDB_BADREG;
1884	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1885		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1886			diag = 0;
1887			break;
1888		}
1889	}
1890	if (!diag) {
1891		switch(dbg_reg_def[i].size * 8) {
1892		case 8:
1893			reg8 = reg64;
1894			dbg_set_reg(i, &reg8, kdb_current_regs);
1895			break;
1896		case 16:
1897			reg16 = reg64;
1898			dbg_set_reg(i, &reg16, kdb_current_regs);
1899			break;
1900		case 32:
1901			reg32 = reg64;
1902			dbg_set_reg(i, &reg32, kdb_current_regs);
1903			break;
1904		case 64:
1905			dbg_set_reg(i, &reg64, kdb_current_regs);
1906			break;
1907		}
1908	}
1909	return diag;
1910#else
1911	kdb_printf("ERROR: Register set currently not implemented\n");
1912    return 0;
1913#endif
1914}
1915
1916#if defined(CONFIG_MAGIC_SYSRQ)
1917/*
1918 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1919 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
1920 *		sr <magic-sysrq-code>
1921 */
1922static int kdb_sr(int argc, const char **argv)
1923{
 
 
 
1924	if (argc != 1)
1925		return KDB_ARGCOUNT;
 
1926	kdb_trap_printk++;
1927	__handle_sysrq(*argv[1], false);
1928	kdb_trap_printk--;
1929
1930	return 0;
1931}
1932#endif	/* CONFIG_MAGIC_SYSRQ */
1933
1934/*
1935 * kdb_ef - This function implements the 'regs' (display exception
1936 *	frame) command.  This command takes an address and expects to
1937 *	find an exception frame at that address, formats and prints
1938 *	it.
1939 *		regs address-expression
1940 * Remarks:
1941 *	Not done yet.
1942 */
1943static int kdb_ef(int argc, const char **argv)
1944{
1945	int diag;
1946	unsigned long addr;
1947	long offset;
1948	int nextarg;
1949
1950	if (argc != 1)
1951		return KDB_ARGCOUNT;
1952
1953	nextarg = 1;
1954	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1955	if (diag)
1956		return diag;
1957	show_regs((struct pt_regs *)addr);
1958	return 0;
1959}
1960
1961#if defined(CONFIG_MODULES)
1962/*
1963 * kdb_lsmod - This function implements the 'lsmod' command.  Lists
1964 *	currently loaded kernel modules.
1965 *	Mostly taken from userland lsmod.
1966 */
1967static int kdb_lsmod(int argc, const char **argv)
1968{
1969	struct module *mod;
1970
1971	if (argc != 0)
1972		return KDB_ARGCOUNT;
1973
1974	kdb_printf("Module                  Size  modstruct     Used by\n");
1975	list_for_each_entry(mod, kdb_modules, list) {
1976		if (mod->state == MODULE_STATE_UNFORMED)
1977			continue;
1978
1979		kdb_printf("%-20s%8u  0x%p ", mod->name,
1980			   mod->core_size, (void *)mod);
1981#ifdef CONFIG_MODULE_UNLOAD
1982		kdb_printf("%4ld ", module_refcount(mod));
1983#endif
1984		if (mod->state == MODULE_STATE_GOING)
1985			kdb_printf(" (Unloading)");
1986		else if (mod->state == MODULE_STATE_COMING)
1987			kdb_printf(" (Loading)");
1988		else
1989			kdb_printf(" (Live)");
1990		kdb_printf(" 0x%p", mod->module_core);
1991
1992#ifdef CONFIG_MODULE_UNLOAD
1993		{
1994			struct module_use *use;
1995			kdb_printf(" [ ");
1996			list_for_each_entry(use, &mod->source_list,
1997					    source_list)
1998				kdb_printf("%s ", use->target->name);
1999			kdb_printf("]\n");
2000		}
2001#endif
2002	}
2003
2004	return 0;
2005}
2006
2007#endif	/* CONFIG_MODULES */
2008
2009/*
2010 * kdb_env - This function implements the 'env' command.  Display the
2011 *	current environment variables.
2012 */
2013
2014static int kdb_env(int argc, const char **argv)
2015{
2016	int i;
2017
2018	for (i = 0; i < __nenv; i++) {
2019		if (__env[i])
2020			kdb_printf("%s\n", __env[i]);
2021	}
2022
2023	if (KDB_DEBUG(MASK))
2024		kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2025
2026	return 0;
2027}
2028
2029#ifdef CONFIG_PRINTK
2030/*
2031 * kdb_dmesg - This function implements the 'dmesg' command to display
2032 *	the contents of the syslog buffer.
2033 *		dmesg [lines] [adjust]
2034 */
2035static int kdb_dmesg(int argc, const char **argv)
2036{
2037	int diag;
2038	int logging;
2039	int lines = 0;
2040	int adjust = 0;
2041	int n = 0;
2042	int skip = 0;
2043	struct kmsg_dumper dumper = { .active = 1 };
2044	size_t len;
2045	char buf[201];
2046
2047	if (argc > 2)
2048		return KDB_ARGCOUNT;
2049	if (argc) {
2050		char *cp;
2051		lines = simple_strtol(argv[1], &cp, 0);
2052		if (*cp)
2053			lines = 0;
2054		if (argc > 1) {
2055			adjust = simple_strtoul(argv[2], &cp, 0);
2056			if (*cp || adjust < 0)
2057				adjust = 0;
2058		}
2059	}
2060
2061	/* disable LOGGING if set */
2062	diag = kdbgetintenv("LOGGING", &logging);
2063	if (!diag && logging) {
2064		const char *setargs[] = { "set", "LOGGING", "0" };
2065		kdb_set(2, setargs);
2066	}
2067
2068	kmsg_dump_rewind_nolock(&dumper);
2069	while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2070		n++;
2071
2072	if (lines < 0) {
2073		if (adjust >= n)
2074			kdb_printf("buffer only contains %d lines, nothing "
2075				   "printed\n", n);
2076		else if (adjust - lines >= n)
2077			kdb_printf("buffer only contains %d lines, last %d "
2078				   "lines printed\n", n, n - adjust);
2079		skip = adjust;
2080		lines = abs(lines);
2081	} else if (lines > 0) {
2082		skip = n - lines - adjust;
2083		lines = abs(lines);
2084		if (adjust >= n) {
2085			kdb_printf("buffer only contains %d lines, "
2086				   "nothing printed\n", n);
2087			skip = n;
2088		} else if (skip < 0) {
2089			lines += skip;
2090			skip = 0;
2091			kdb_printf("buffer only contains %d lines, first "
2092				   "%d lines printed\n", n, lines);
2093		}
2094	} else {
2095		lines = n;
2096	}
2097
2098	if (skip >= n || skip < 0)
2099		return 0;
2100
2101	kmsg_dump_rewind_nolock(&dumper);
2102	while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2103		if (skip) {
2104			skip--;
2105			continue;
2106		}
2107		if (!lines--)
2108			break;
2109		if (KDB_FLAG(CMD_INTERRUPT))
2110			return 0;
2111
2112		kdb_printf("%.*s\n", (int)len - 1, buf);
2113	}
2114
2115	return 0;
2116}
2117#endif /* CONFIG_PRINTK */
2118
2119/* Make sure we balance enable/disable calls, must disable first. */
2120static atomic_t kdb_nmi_disabled;
2121
2122static int kdb_disable_nmi(int argc, const char *argv[])
2123{
2124	if (atomic_read(&kdb_nmi_disabled))
2125		return 0;
2126	atomic_set(&kdb_nmi_disabled, 1);
2127	arch_kgdb_ops.enable_nmi(0);
2128	return 0;
2129}
2130
2131static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2132{
2133	if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2134		return -EINVAL;
2135	arch_kgdb_ops.enable_nmi(1);
2136	return 0;
2137}
2138
2139static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2140	.set = kdb_param_enable_nmi,
2141};
2142module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2143
2144/*
2145 * kdb_cpu - This function implements the 'cpu' command.
2146 *	cpu	[<cpunum>]
2147 * Returns:
2148 *	KDB_CMD_CPU for success, a kdb diagnostic if error
2149 */
2150static void kdb_cpu_status(void)
2151{
2152	int i, start_cpu, first_print = 1;
2153	char state, prev_state = '?';
2154
2155	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2156	kdb_printf("Available cpus: ");
2157	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2158		if (!cpu_online(i)) {
2159			state = 'F';	/* cpu is offline */
 
 
2160		} else {
2161			state = ' ';	/* cpu is responding to kdb */
2162			if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2163				state = 'I';	/* idle task */
2164		}
2165		if (state != prev_state) {
2166			if (prev_state != '?') {
2167				if (!first_print)
2168					kdb_printf(", ");
2169				first_print = 0;
2170				kdb_printf("%d", start_cpu);
2171				if (start_cpu < i-1)
2172					kdb_printf("-%d", i-1);
2173				if (prev_state != ' ')
2174					kdb_printf("(%c)", prev_state);
2175			}
2176			prev_state = state;
2177			start_cpu = i;
2178		}
2179	}
2180	/* print the trailing cpus, ignoring them if they are all offline */
2181	if (prev_state != 'F') {
2182		if (!first_print)
2183			kdb_printf(", ");
2184		kdb_printf("%d", start_cpu);
2185		if (start_cpu < i-1)
2186			kdb_printf("-%d", i-1);
2187		if (prev_state != ' ')
2188			kdb_printf("(%c)", prev_state);
2189	}
2190	kdb_printf("\n");
2191}
2192
2193static int kdb_cpu(int argc, const char **argv)
2194{
2195	unsigned long cpunum;
2196	int diag;
2197
2198	if (argc == 0) {
2199		kdb_cpu_status();
2200		return 0;
2201	}
2202
2203	if (argc != 1)
2204		return KDB_ARGCOUNT;
2205
2206	diag = kdbgetularg(argv[1], &cpunum);
2207	if (diag)
2208		return diag;
2209
2210	/*
2211	 * Validate cpunum
2212	 */
2213	if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2214		return KDB_BADCPUNUM;
2215
2216	dbg_switch_cpu = cpunum;
2217
2218	/*
2219	 * Switch to other cpu
2220	 */
2221	return KDB_CMD_CPU;
2222}
2223
2224/* The user may not realize that ps/bta with no parameters does not print idle
2225 * or sleeping system daemon processes, so tell them how many were suppressed.
2226 */
2227void kdb_ps_suppressed(void)
2228{
2229	int idle = 0, daemon = 0;
2230	unsigned long mask_I = kdb_task_state_string("I"),
2231		      mask_M = kdb_task_state_string("M");
2232	unsigned long cpu;
2233	const struct task_struct *p, *g;
2234	for_each_online_cpu(cpu) {
2235		p = kdb_curr_task(cpu);
2236		if (kdb_task_state(p, mask_I))
2237			++idle;
2238	}
2239	kdb_do_each_thread(g, p) {
2240		if (kdb_task_state(p, mask_M))
2241			++daemon;
2242	} kdb_while_each_thread(g, p);
2243	if (idle || daemon) {
2244		if (idle)
2245			kdb_printf("%d idle process%s (state I)%s\n",
2246				   idle, idle == 1 ? "" : "es",
2247				   daemon ? " and " : "");
2248		if (daemon)
2249			kdb_printf("%d sleeping system daemon (state M) "
2250				   "process%s", daemon,
2251				   daemon == 1 ? "" : "es");
2252		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2253	}
2254}
2255
2256/*
2257 * kdb_ps - This function implements the 'ps' command which shows a
2258 *	list of the active processes.
2259 *		ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2260 */
2261void kdb_ps1(const struct task_struct *p)
2262{
2263	int cpu;
2264	unsigned long tmp;
2265
2266	if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2267		return;
2268
2269	cpu = kdb_process_cpu(p);
2270	kdb_printf("0x%p %8d %8d  %d %4d   %c  0x%p %c%s\n",
2271		   (void *)p, p->pid, p->parent->pid,
2272		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2273		   kdb_task_state_char(p),
2274		   (void *)(&p->thread),
2275		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2276		   p->comm);
2277	if (kdb_task_has_cpu(p)) {
2278		if (!KDB_TSK(cpu)) {
2279			kdb_printf("  Error: no saved data for this cpu\n");
2280		} else {
2281			if (KDB_TSK(cpu) != p)
2282				kdb_printf("  Error: does not match running "
2283				   "process table (0x%p)\n", KDB_TSK(cpu));
2284		}
2285	}
2286}
2287
2288static int kdb_ps(int argc, const char **argv)
2289{
2290	struct task_struct *g, *p;
2291	unsigned long mask, cpu;
2292
2293	if (argc == 0)
2294		kdb_ps_suppressed();
2295	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2296		(int)(2*sizeof(void *))+2, "Task Addr",
2297		(int)(2*sizeof(void *))+2, "Thread");
2298	mask = kdb_task_state_string(argc ? argv[1] : NULL);
2299	/* Run the active tasks first */
2300	for_each_online_cpu(cpu) {
2301		if (KDB_FLAG(CMD_INTERRUPT))
2302			return 0;
2303		p = kdb_curr_task(cpu);
2304		if (kdb_task_state(p, mask))
2305			kdb_ps1(p);
2306	}
2307	kdb_printf("\n");
2308	/* Now the real tasks */
2309	kdb_do_each_thread(g, p) {
2310		if (KDB_FLAG(CMD_INTERRUPT))
2311			return 0;
2312		if (kdb_task_state(p, mask))
2313			kdb_ps1(p);
2314	} kdb_while_each_thread(g, p);
2315
2316	return 0;
2317}
2318
2319/*
2320 * kdb_pid - This function implements the 'pid' command which switches
2321 *	the currently active process.
2322 *		pid [<pid> | R]
2323 */
2324static int kdb_pid(int argc, const char **argv)
2325{
2326	struct task_struct *p;
2327	unsigned long val;
2328	int diag;
2329
2330	if (argc > 1)
2331		return KDB_ARGCOUNT;
2332
2333	if (argc) {
2334		if (strcmp(argv[1], "R") == 0) {
2335			p = KDB_TSK(kdb_initial_cpu);
2336		} else {
2337			diag = kdbgetularg(argv[1], &val);
2338			if (diag)
2339				return KDB_BADINT;
2340
2341			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2342			if (!p) {
2343				kdb_printf("No task with pid=%d\n", (pid_t)val);
2344				return 0;
2345			}
2346		}
2347		kdb_set_current_task(p);
2348	}
2349	kdb_printf("KDB current process is %s(pid=%d)\n",
2350		   kdb_current_task->comm,
2351		   kdb_current_task->pid);
2352
2353	return 0;
2354}
2355
2356static int kdb_kgdb(int argc, const char **argv)
2357{
2358	return KDB_CMD_KGDB;
2359}
2360
2361/*
2362 * kdb_help - This function implements the 'help' and '?' commands.
2363 */
2364static int kdb_help(int argc, const char **argv)
2365{
2366	kdbtab_t *kt;
2367	int i;
2368
2369	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2370	kdb_printf("-----------------------------"
2371		   "-----------------------------\n");
2372	for_each_kdbcmd(kt, i) {
2373		char *space = "";
2374		if (KDB_FLAG(CMD_INTERRUPT))
2375			return 0;
2376		if (!kt->cmd_name)
2377			continue;
 
 
2378		if (strlen(kt->cmd_usage) > 20)
2379			space = "\n                                    ";
2380		kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2381			   kt->cmd_usage, space, kt->cmd_help);
2382	}
2383	return 0;
2384}
2385
2386/*
2387 * kdb_kill - This function implements the 'kill' commands.
2388 */
2389static int kdb_kill(int argc, const char **argv)
2390{
2391	long sig, pid;
2392	char *endp;
2393	struct task_struct *p;
2394	struct siginfo info;
2395
2396	if (argc != 2)
2397		return KDB_ARGCOUNT;
2398
2399	sig = simple_strtol(argv[1], &endp, 0);
2400	if (*endp)
2401		return KDB_BADINT;
2402	if (sig >= 0) {
2403		kdb_printf("Invalid signal parameter.<-signal>\n");
2404		return 0;
2405	}
2406	sig = -sig;
2407
2408	pid = simple_strtol(argv[2], &endp, 0);
2409	if (*endp)
2410		return KDB_BADINT;
2411	if (pid <= 0) {
2412		kdb_printf("Process ID must be large than 0.\n");
2413		return 0;
2414	}
2415
2416	/* Find the process. */
2417	p = find_task_by_pid_ns(pid, &init_pid_ns);
2418	if (!p) {
2419		kdb_printf("The specified process isn't found.\n");
2420		return 0;
2421	}
2422	p = p->group_leader;
2423	info.si_signo = sig;
2424	info.si_errno = 0;
2425	info.si_code = SI_USER;
2426	info.si_pid = pid;  /* same capabilities as process being signalled */
2427	info.si_uid = 0;    /* kdb has root authority */
2428	kdb_send_sig_info(p, &info);
2429	return 0;
2430}
2431
2432struct kdb_tm {
2433	int tm_sec;	/* seconds */
2434	int tm_min;	/* minutes */
2435	int tm_hour;	/* hours */
2436	int tm_mday;	/* day of the month */
2437	int tm_mon;	/* month */
2438	int tm_year;	/* year */
2439};
2440
2441static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2442{
2443	/* This will work from 1970-2099, 2100 is not a leap year */
2444	static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2445				 31, 30, 31, 30, 31 };
2446	memset(tm, 0, sizeof(*tm));
2447	tm->tm_sec  = tv->tv_sec % (24 * 60 * 60);
2448	tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2449		(2 * 365 + 1); /* shift base from 1970 to 1968 */
2450	tm->tm_min =  tm->tm_sec / 60 % 60;
2451	tm->tm_hour = tm->tm_sec / 60 / 60;
2452	tm->tm_sec =  tm->tm_sec % 60;
2453	tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2454	tm->tm_mday %= (4*365+1);
2455	mon_day[1] = 29;
2456	while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2457		tm->tm_mday -= mon_day[tm->tm_mon];
2458		if (++tm->tm_mon == 12) {
2459			tm->tm_mon = 0;
2460			++tm->tm_year;
2461			mon_day[1] = 28;
2462		}
2463	}
2464	++tm->tm_mday;
2465}
2466
2467/*
2468 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2469 * I cannot call that code directly from kdb, it has an unconditional
2470 * cli()/sti() and calls routines that take locks which can stop the debugger.
2471 */
2472static void kdb_sysinfo(struct sysinfo *val)
2473{
2474	struct timespec uptime;
2475	do_posix_clock_monotonic_gettime(&uptime);
2476	memset(val, 0, sizeof(*val));
2477	val->uptime = uptime.tv_sec;
2478	val->loads[0] = avenrun[0];
2479	val->loads[1] = avenrun[1];
2480	val->loads[2] = avenrun[2];
2481	val->procs = nr_threads-1;
2482	si_meminfo(val);
2483
2484	return;
2485}
2486
2487/*
2488 * kdb_summary - This function implements the 'summary' command.
2489 */
2490static int kdb_summary(int argc, const char **argv)
2491{
2492	struct timespec now;
2493	struct kdb_tm tm;
2494	struct sysinfo val;
2495
2496	if (argc)
2497		return KDB_ARGCOUNT;
2498
2499	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2500	kdb_printf("release    %s\n", init_uts_ns.name.release);
2501	kdb_printf("version    %s\n", init_uts_ns.name.version);
2502	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2503	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2504	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2505	kdb_printf("ccversion  %s\n", __stringify(CCVERSION));
2506
2507	now = __current_kernel_time();
2508	kdb_gmtime(&now, &tm);
2509	kdb_printf("date       %04d-%02d-%02d %02d:%02d:%02d "
2510		   "tz_minuteswest %d\n",
2511		1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2512		tm.tm_hour, tm.tm_min, tm.tm_sec,
2513		sys_tz.tz_minuteswest);
2514
2515	kdb_sysinfo(&val);
2516	kdb_printf("uptime     ");
2517	if (val.uptime > (24*60*60)) {
2518		int days = val.uptime / (24*60*60);
2519		val.uptime %= (24*60*60);
2520		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2521	}
2522	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2523
2524	/* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2525
2526#define LOAD_INT(x) ((x) >> FSHIFT)
2527#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2528	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2529		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2530		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2531		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2532#undef LOAD_INT
2533#undef LOAD_FRAC
2534	/* Display in kilobytes */
2535#define K(x) ((x) << (PAGE_SHIFT - 10))
2536	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2537		   "Buffers:        %8lu kB\n",
2538		   val.totalram, val.freeram, val.bufferram);
2539	return 0;
2540}
2541
2542/*
2543 * kdb_per_cpu - This function implements the 'per_cpu' command.
2544 */
2545static int kdb_per_cpu(int argc, const char **argv)
2546{
2547	char fmtstr[64];
2548	int cpu, diag, nextarg = 1;
2549	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2550
2551	if (argc < 1 || argc > 3)
2552		return KDB_ARGCOUNT;
2553
2554	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2555	if (diag)
2556		return diag;
2557
2558	if (argc >= 2) {
2559		diag = kdbgetularg(argv[2], &bytesperword);
2560		if (diag)
2561			return diag;
2562	}
2563	if (!bytesperword)
2564		bytesperword = KDB_WORD_SIZE;
2565	else if (bytesperword > KDB_WORD_SIZE)
2566		return KDB_BADWIDTH;
2567	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2568	if (argc >= 3) {
2569		diag = kdbgetularg(argv[3], &whichcpu);
2570		if (diag)
2571			return diag;
2572		if (!cpu_online(whichcpu)) {
2573			kdb_printf("cpu %ld is not online\n", whichcpu);
2574			return KDB_BADCPUNUM;
2575		}
2576	}
2577
2578	/* Most architectures use __per_cpu_offset[cpu], some use
2579	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2580	 */
2581#ifdef	__per_cpu_offset
2582#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2583#else
2584#ifdef	CONFIG_SMP
2585#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2586#else
2587#define KDB_PCU(cpu) 0
2588#endif
2589#endif
2590	for_each_online_cpu(cpu) {
2591		if (KDB_FLAG(CMD_INTERRUPT))
2592			return 0;
2593
2594		if (whichcpu != ~0UL && whichcpu != cpu)
2595			continue;
2596		addr = symaddr + KDB_PCU(cpu);
2597		diag = kdb_getword(&val, addr, bytesperword);
2598		if (diag) {
2599			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2600				   "read, diag=%d\n", cpu, addr, diag);
2601			continue;
2602		}
2603		kdb_printf("%5d ", cpu);
2604		kdb_md_line(fmtstr, addr,
2605			bytesperword == KDB_WORD_SIZE,
2606			1, bytesperword, 1, 1, 0);
2607	}
2608#undef KDB_PCU
2609	return 0;
2610}
2611
2612/*
2613 * display help for the use of cmd | grep pattern
2614 */
2615static int kdb_grep_help(int argc, const char **argv)
2616{
2617	kdb_printf("Usage of  cmd args | grep pattern:\n");
2618	kdb_printf("  Any command's output may be filtered through an ");
2619	kdb_printf("emulated 'pipe'.\n");
2620	kdb_printf("  'grep' is just a key word.\n");
2621	kdb_printf("  The pattern may include a very limited set of "
2622		   "metacharacters:\n");
2623	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2624	kdb_printf("  And if there are spaces in the pattern, you may "
2625		   "quote it:\n");
2626	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2627		   " or \"^pat tern$\"\n");
2628	return 0;
2629}
2630
2631/*
2632 * kdb_register_repeat - This function is used to register a kernel
2633 * 	debugger command.
2634 * Inputs:
2635 *	cmd	Command name
2636 *	func	Function to execute the command
2637 *	usage	A simple usage string showing arguments
2638 *	help	A simple help string describing command
2639 *	repeat	Does the command auto repeat on enter?
2640 * Returns:
2641 *	zero for success, one if a duplicate command.
2642 */
2643#define kdb_command_extend 50	/* arbitrary */
2644int kdb_register_repeat(char *cmd,
2645			kdb_func_t func,
2646			char *usage,
2647			char *help,
2648			short minlen,
2649			kdb_repeat_t repeat)
2650{
2651	int i;
2652	kdbtab_t *kp;
2653
2654	/*
2655	 *  Brute force method to determine duplicates
2656	 */
2657	for_each_kdbcmd(kp, i) {
2658		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2659			kdb_printf("Duplicate kdb command registered: "
2660				"%s, func %p help %s\n", cmd, func, help);
2661			return 1;
2662		}
2663	}
2664
2665	/*
2666	 * Insert command into first available location in table
2667	 */
2668	for_each_kdbcmd(kp, i) {
2669		if (kp->cmd_name == NULL)
2670			break;
2671	}
2672
2673	if (i >= kdb_max_commands) {
2674		kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2675			 kdb_command_extend) * sizeof(*new), GFP_KDB);
 
 
 
2676		if (!new) {
2677			kdb_printf("Could not allocate new kdb_command "
2678				   "table\n");
2679			return 1;
2680		}
2681		if (kdb_commands) {
2682			memcpy(new, kdb_commands,
2683			  (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2684			kfree(kdb_commands);
2685		}
2686		memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2687		       kdb_command_extend * sizeof(*new));
2688		kdb_commands = new;
2689		kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2690		kdb_max_commands += kdb_command_extend;
2691	}
2692
2693	kp->cmd_name   = cmd;
2694	kp->cmd_func   = func;
2695	kp->cmd_usage  = usage;
2696	kp->cmd_help   = help;
2697	kp->cmd_flags  = 0;
2698	kp->cmd_minlen = minlen;
2699	kp->cmd_repeat = repeat;
2700
2701	return 0;
2702}
2703EXPORT_SYMBOL_GPL(kdb_register_repeat);
2704
2705
2706/*
2707 * kdb_register - Compatibility register function for commands that do
2708 *	not need to specify a repeat state.  Equivalent to
2709 *	kdb_register_repeat with KDB_REPEAT_NONE.
2710 * Inputs:
2711 *	cmd	Command name
2712 *	func	Function to execute the command
2713 *	usage	A simple usage string showing arguments
2714 *	help	A simple help string describing command
2715 * Returns:
2716 *	zero for success, one if a duplicate command.
2717 */
2718int kdb_register(char *cmd,
2719	     kdb_func_t func,
2720	     char *usage,
2721	     char *help,
2722	     short minlen)
2723{
2724	return kdb_register_repeat(cmd, func, usage, help, minlen,
2725				   KDB_REPEAT_NONE);
2726}
2727EXPORT_SYMBOL_GPL(kdb_register);
2728
2729/*
2730 * kdb_unregister - This function is used to unregister a kernel
2731 *	debugger command.  It is generally called when a module which
2732 *	implements kdb commands is unloaded.
2733 * Inputs:
2734 *	cmd	Command name
2735 * Returns:
2736 *	zero for success, one command not registered.
2737 */
2738int kdb_unregister(char *cmd)
2739{
2740	int i;
2741	kdbtab_t *kp;
2742
2743	/*
2744	 *  find the command.
2745	 */
2746	for_each_kdbcmd(kp, i) {
2747		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2748			kp->cmd_name = NULL;
2749			return 0;
2750		}
2751	}
2752
2753	/* Couldn't find it.  */
2754	return 1;
2755}
2756EXPORT_SYMBOL_GPL(kdb_unregister);
2757
2758/* Initialize the kdb command table. */
2759static void __init kdb_inittab(void)
2760{
2761	int i;
2762	kdbtab_t *kp;
2763
2764	for_each_kdbcmd(kp, i)
2765		kp->cmd_name = NULL;
2766
2767	kdb_register_repeat("md", kdb_md, "<vaddr>",
2768	  "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2769			    KDB_REPEAT_NO_ARGS);
2770	kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2771	  "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2772	kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2773	  "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2774	kdb_register_repeat("mds", kdb_md, "<vaddr>",
2775	  "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2776	kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2777	  "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2778	kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2779	  "Continue Execution", 1, KDB_REPEAT_NONE);
2780	kdb_register_repeat("rd", kdb_rd, "",
2781	  "Display Registers", 0, KDB_REPEAT_NONE);
2782	kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2783	  "Modify Registers", 0, KDB_REPEAT_NONE);
2784	kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2785	  "Display exception frame", 0, KDB_REPEAT_NONE);
2786	kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2787	  "Stack traceback", 1, KDB_REPEAT_NONE);
2788	kdb_register_repeat("btp", kdb_bt, "<pid>",
2789	  "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2790	kdb_register_repeat("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2791	  "Backtrace all processes matching state flag", 0, KDB_REPEAT_NONE);
2792	kdb_register_repeat("btc", kdb_bt, "",
2793	  "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2794	kdb_register_repeat("btt", kdb_bt, "<vaddr>",
 
 
 
 
 
 
 
 
 
 
 
 
2795	  "Backtrace process given its struct task address", 0,
2796			    KDB_REPEAT_NONE);
2797	kdb_register_repeat("env", kdb_env, "",
2798	  "Show environment variables", 0, KDB_REPEAT_NONE);
2799	kdb_register_repeat("set", kdb_set, "",
2800	  "Set environment variables", 0, KDB_REPEAT_NONE);
2801	kdb_register_repeat("help", kdb_help, "",
2802	  "Display Help Message", 1, KDB_REPEAT_NONE);
2803	kdb_register_repeat("?", kdb_help, "",
2804	  "Display Help Message", 0, KDB_REPEAT_NONE);
2805	kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2806	  "Switch to new cpu", 0, KDB_REPEAT_NONE);
2807	kdb_register_repeat("kgdb", kdb_kgdb, "",
2808	  "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2809	kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2810	  "Display active task list", 0, KDB_REPEAT_NONE);
2811	kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2812	  "Switch to another task", 0, KDB_REPEAT_NONE);
2813	kdb_register_repeat("reboot", kdb_reboot, "",
2814	  "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
 
 
 
 
 
 
 
 
2815#if defined(CONFIG_MODULES)
2816	kdb_register_repeat("lsmod", kdb_lsmod, "",
2817	  "List loaded kernel modules", 0, KDB_REPEAT_NONE);
 
2818#endif
2819#if defined(CONFIG_MAGIC_SYSRQ)
2820	kdb_register_repeat("sr", kdb_sr, "<key>",
2821	  "Magic SysRq key", 0, KDB_REPEAT_NONE);
 
2822#endif
2823#if defined(CONFIG_PRINTK)
2824	kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2825	  "Display syslog buffer", 0, KDB_REPEAT_NONE);
 
2826#endif
2827	if (arch_kgdb_ops.enable_nmi) {
2828		kdb_register_repeat("disable_nmi", kdb_disable_nmi, "",
2829		  "Disable NMI entry to KDB", 0, KDB_REPEAT_NONE);
2830	}
2831	kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2832	  "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2833	kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2834	  "Send a signal to a process", 0, KDB_REPEAT_NONE);
2835	kdb_register_repeat("summary", kdb_summary, "",
2836	  "Summarize the system", 4, KDB_REPEAT_NONE);
2837	kdb_register_repeat("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2838	  "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2839	kdb_register_repeat("grephelp", kdb_grep_help, "",
2840	  "Display help on | grep", 0, KDB_REPEAT_NONE);
 
 
 
 
 
 
2841}
2842
2843/* Execute any commands defined in kdb_cmds.  */
2844static void __init kdb_cmd_init(void)
2845{
2846	int i, diag;
2847	for (i = 0; kdb_cmds[i]; ++i) {
2848		diag = kdb_parse(kdb_cmds[i]);
2849		if (diag)
2850			kdb_printf("kdb command %s failed, kdb diag %d\n",
2851				kdb_cmds[i], diag);
2852	}
2853	if (defcmd_in_progress) {
2854		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2855		kdb_parse("endefcmd");
2856	}
2857}
2858
2859/* Initialize kdb_printf, breakpoint tables and kdb state */
2860void __init kdb_init(int lvl)
2861{
2862	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2863	int i;
2864
2865	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2866		return;
2867	for (i = kdb_init_lvl; i < lvl; i++) {
2868		switch (i) {
2869		case KDB_NOT_INITIALIZED:
2870			kdb_inittab();		/* Initialize Command Table */
2871			kdb_initbptab();	/* Initialize Breakpoints */
2872			break;
2873		case KDB_INIT_EARLY:
2874			kdb_cmd_init();		/* Build kdb_cmds tables */
2875			break;
2876		}
2877	}
2878	kdb_init_lvl = lvl;
2879}