Loading...
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/types.h>
16#include <linux/string.h>
17#include <linux/kernel.h>
18#include <linux/kmsg_dump.h>
19#include <linux/reboot.h>
20#include <linux/sched.h>
21#include <linux/sched/loadavg.h>
22#include <linux/sched/stat.h>
23#include <linux/sched/debug.h>
24#include <linux/sysrq.h>
25#include <linux/smp.h>
26#include <linux/utsname.h>
27#include <linux/vmalloc.h>
28#include <linux/atomic.h>
29#include <linux/module.h>
30#include <linux/moduleparam.h>
31#include <linux/mm.h>
32#include <linux/init.h>
33#include <linux/kallsyms.h>
34#include <linux/kgdb.h>
35#include <linux/kdb.h>
36#include <linux/notifier.h>
37#include <linux/interrupt.h>
38#include <linux/delay.h>
39#include <linux/nmi.h>
40#include <linux/time.h>
41#include <linux/ptrace.h>
42#include <linux/sysctl.h>
43#include <linux/cpu.h>
44#include <linux/kdebug.h>
45#include <linux/proc_fs.h>
46#include <linux/uaccess.h>
47#include <linux/slab.h>
48#include "kdb_private.h"
49
50#undef MODULE_PARAM_PREFIX
51#define MODULE_PARAM_PREFIX "kdb."
52
53static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
54module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
55
56char kdb_grep_string[KDB_GREP_STRLEN];
57int kdb_grepping_flag;
58EXPORT_SYMBOL(kdb_grepping_flag);
59int kdb_grep_leading;
60int kdb_grep_trailing;
61
62/*
63 * Kernel debugger state flags
64 */
65int kdb_flags;
66
67/*
68 * kdb_lock protects updates to kdb_initial_cpu. Used to
69 * single thread processors through the kernel debugger.
70 */
71int kdb_initial_cpu = -1; /* cpu number that owns kdb */
72int kdb_nextline = 1;
73int kdb_state; /* General KDB state */
74
75struct task_struct *kdb_current_task;
76EXPORT_SYMBOL(kdb_current_task);
77struct pt_regs *kdb_current_regs;
78
79const char *kdb_diemsg;
80static int kdb_go_count;
81#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
82static unsigned int kdb_continue_catastrophic =
83 CONFIG_KDB_CONTINUE_CATASTROPHIC;
84#else
85static unsigned int kdb_continue_catastrophic;
86#endif
87
88/* kdb_commands describes the available commands. */
89static kdbtab_t *kdb_commands;
90#define KDB_BASE_CMD_MAX 50
91static int kdb_max_commands = KDB_BASE_CMD_MAX;
92static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
93#define for_each_kdbcmd(cmd, num) \
94 for ((cmd) = kdb_base_commands, (num) = 0; \
95 num < kdb_max_commands; \
96 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
97
98typedef struct _kdbmsg {
99 int km_diag; /* kdb diagnostic */
100 char *km_msg; /* Corresponding message text */
101} kdbmsg_t;
102
103#define KDBMSG(msgnum, text) \
104 { KDB_##msgnum, text }
105
106static kdbmsg_t kdbmsgs[] = {
107 KDBMSG(NOTFOUND, "Command Not Found"),
108 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
109 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
110 "8 is only allowed on 64 bit systems"),
111 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
112 KDBMSG(NOTENV, "Cannot find environment variable"),
113 KDBMSG(NOENVVALUE, "Environment variable should have value"),
114 KDBMSG(NOTIMP, "Command not implemented"),
115 KDBMSG(ENVFULL, "Environment full"),
116 KDBMSG(ENVBUFFULL, "Environment buffer full"),
117 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
118#ifdef CONFIG_CPU_XSCALE
119 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
120#else
121 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
122#endif
123 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
124 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
125 KDBMSG(BADMODE, "Invalid IDMODE"),
126 KDBMSG(BADINT, "Illegal numeric value"),
127 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
128 KDBMSG(BADREG, "Invalid register name"),
129 KDBMSG(BADCPUNUM, "Invalid cpu number"),
130 KDBMSG(BADLENGTH, "Invalid length field"),
131 KDBMSG(NOBP, "No Breakpoint exists"),
132 KDBMSG(BADADDR, "Invalid address"),
133 KDBMSG(NOPERM, "Permission denied"),
134};
135#undef KDBMSG
136
137static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
138
139
140/*
141 * Initial environment. This is all kept static and local to
142 * this file. We don't want to rely on the memory allocation
143 * mechanisms in the kernel, so we use a very limited allocate-only
144 * heap for new and altered environment variables. The entire
145 * environment is limited to a fixed number of entries (add more
146 * to __env[] if required) and a fixed amount of heap (add more to
147 * KDB_ENVBUFSIZE if required).
148 */
149
150static char *__env[] = {
151#if defined(CONFIG_SMP)
152 "PROMPT=[%d]kdb> ",
153#else
154 "PROMPT=kdb> ",
155#endif
156 "MOREPROMPT=more> ",
157 "RADIX=16",
158 "MDCOUNT=8", /* lines of md output */
159 KDB_PLATFORM_ENV,
160 "DTABCOUNT=30",
161 "NOSECT=1",
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175 (char *)0,
176 (char *)0,
177 (char *)0,
178 (char *)0,
179 (char *)0,
180 (char *)0,
181 (char *)0,
182 (char *)0,
183 (char *)0,
184 (char *)0,
185 (char *)0,
186};
187
188static const int __nenv = ARRAY_SIZE(__env);
189
190struct task_struct *kdb_curr_task(int cpu)
191{
192 struct task_struct *p = curr_task(cpu);
193#ifdef _TIF_MCA_INIT
194 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
195 p = krp->p;
196#endif
197 return p;
198}
199
200/*
201 * Check whether the flags of the current command and the permissions
202 * of the kdb console has allow a command to be run.
203 */
204static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
205 bool no_args)
206{
207 /* permissions comes from userspace so needs massaging slightly */
208 permissions &= KDB_ENABLE_MASK;
209 permissions |= KDB_ENABLE_ALWAYS_SAFE;
210
211 /* some commands change group when launched with no arguments */
212 if (no_args)
213 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
214
215 flags |= KDB_ENABLE_ALL;
216
217 return permissions & flags;
218}
219
220/*
221 * kdbgetenv - This function will return the character string value of
222 * an environment variable.
223 * Parameters:
224 * match A character string representing an environment variable.
225 * Returns:
226 * NULL No environment variable matches 'match'
227 * char* Pointer to string value of environment variable.
228 */
229char *kdbgetenv(const char *match)
230{
231 char **ep = __env;
232 int matchlen = strlen(match);
233 int i;
234
235 for (i = 0; i < __nenv; i++) {
236 char *e = *ep++;
237
238 if (!e)
239 continue;
240
241 if ((strncmp(match, e, matchlen) == 0)
242 && ((e[matchlen] == '\0')
243 || (e[matchlen] == '='))) {
244 char *cp = strchr(e, '=');
245 return cp ? ++cp : "";
246 }
247 }
248 return NULL;
249}
250
251/*
252 * kdballocenv - This function is used to allocate bytes for
253 * environment entries.
254 * Parameters:
255 * match A character string representing a numeric value
256 * Outputs:
257 * *value the unsigned long representation of the env variable 'match'
258 * Returns:
259 * Zero on success, a kdb diagnostic on failure.
260 * Remarks:
261 * We use a static environment buffer (envbuffer) to hold the values
262 * of dynamically generated environment variables (see kdb_set). Buffer
263 * space once allocated is never free'd, so over time, the amount of space
264 * (currently 512 bytes) will be exhausted if env variables are changed
265 * frequently.
266 */
267static char *kdballocenv(size_t bytes)
268{
269#define KDB_ENVBUFSIZE 512
270 static char envbuffer[KDB_ENVBUFSIZE];
271 static int envbufsize;
272 char *ep = NULL;
273
274 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
275 ep = &envbuffer[envbufsize];
276 envbufsize += bytes;
277 }
278 return ep;
279}
280
281/*
282 * kdbgetulenv - This function will return the value of an unsigned
283 * long-valued environment variable.
284 * Parameters:
285 * match A character string representing a numeric value
286 * Outputs:
287 * *value the unsigned long represntation of the env variable 'match'
288 * Returns:
289 * Zero on success, a kdb diagnostic on failure.
290 */
291static int kdbgetulenv(const char *match, unsigned long *value)
292{
293 char *ep;
294
295 ep = kdbgetenv(match);
296 if (!ep)
297 return KDB_NOTENV;
298 if (strlen(ep) == 0)
299 return KDB_NOENVVALUE;
300
301 *value = simple_strtoul(ep, NULL, 0);
302
303 return 0;
304}
305
306/*
307 * kdbgetintenv - This function will return the value of an
308 * integer-valued environment variable.
309 * Parameters:
310 * match A character string representing an integer-valued env variable
311 * Outputs:
312 * *value the integer representation of the environment variable 'match'
313 * Returns:
314 * Zero on success, a kdb diagnostic on failure.
315 */
316int kdbgetintenv(const char *match, int *value)
317{
318 unsigned long val;
319 int diag;
320
321 diag = kdbgetulenv(match, &val);
322 if (!diag)
323 *value = (int) val;
324 return diag;
325}
326
327/*
328 * kdbgetularg - This function will convert a numeric string into an
329 * unsigned long value.
330 * Parameters:
331 * arg A character string representing a numeric value
332 * Outputs:
333 * *value the unsigned long represntation of arg.
334 * Returns:
335 * Zero on success, a kdb diagnostic on failure.
336 */
337int kdbgetularg(const char *arg, unsigned long *value)
338{
339 char *endp;
340 unsigned long val;
341
342 val = simple_strtoul(arg, &endp, 0);
343
344 if (endp == arg) {
345 /*
346 * Also try base 16, for us folks too lazy to type the
347 * leading 0x...
348 */
349 val = simple_strtoul(arg, &endp, 16);
350 if (endp == arg)
351 return KDB_BADINT;
352 }
353
354 *value = val;
355
356 return 0;
357}
358
359int kdbgetu64arg(const char *arg, u64 *value)
360{
361 char *endp;
362 u64 val;
363
364 val = simple_strtoull(arg, &endp, 0);
365
366 if (endp == arg) {
367
368 val = simple_strtoull(arg, &endp, 16);
369 if (endp == arg)
370 return KDB_BADINT;
371 }
372
373 *value = val;
374
375 return 0;
376}
377
378/*
379 * kdb_set - This function implements the 'set' command. Alter an
380 * existing environment variable or create a new one.
381 */
382int kdb_set(int argc, const char **argv)
383{
384 int i;
385 char *ep;
386 size_t varlen, vallen;
387
388 /*
389 * we can be invoked two ways:
390 * set var=value argv[1]="var", argv[2]="value"
391 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
392 * - if the latter, shift 'em down.
393 */
394 if (argc == 3) {
395 argv[2] = argv[3];
396 argc--;
397 }
398
399 if (argc != 2)
400 return KDB_ARGCOUNT;
401
402 /*
403 * Check for internal variables
404 */
405 if (strcmp(argv[1], "KDBDEBUG") == 0) {
406 unsigned int debugflags;
407 char *cp;
408
409 debugflags = simple_strtoul(argv[2], &cp, 0);
410 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
411 kdb_printf("kdb: illegal debug flags '%s'\n",
412 argv[2]);
413 return 0;
414 }
415 kdb_flags = (kdb_flags &
416 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
417 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
418
419 return 0;
420 }
421
422 /*
423 * Tokenizer squashed the '=' sign. argv[1] is variable
424 * name, argv[2] = value.
425 */
426 varlen = strlen(argv[1]);
427 vallen = strlen(argv[2]);
428 ep = kdballocenv(varlen + vallen + 2);
429 if (ep == (char *)0)
430 return KDB_ENVBUFFULL;
431
432 sprintf(ep, "%s=%s", argv[1], argv[2]);
433
434 ep[varlen+vallen+1] = '\0';
435
436 for (i = 0; i < __nenv; i++) {
437 if (__env[i]
438 && ((strncmp(__env[i], argv[1], varlen) == 0)
439 && ((__env[i][varlen] == '\0')
440 || (__env[i][varlen] == '=')))) {
441 __env[i] = ep;
442 return 0;
443 }
444 }
445
446 /*
447 * Wasn't existing variable. Fit into slot.
448 */
449 for (i = 0; i < __nenv-1; i++) {
450 if (__env[i] == (char *)0) {
451 __env[i] = ep;
452 return 0;
453 }
454 }
455
456 return KDB_ENVFULL;
457}
458
459static int kdb_check_regs(void)
460{
461 if (!kdb_current_regs) {
462 kdb_printf("No current kdb registers."
463 " You may need to select another task\n");
464 return KDB_BADREG;
465 }
466 return 0;
467}
468
469/*
470 * kdbgetaddrarg - This function is responsible for parsing an
471 * address-expression and returning the value of the expression,
472 * symbol name, and offset to the caller.
473 *
474 * The argument may consist of a numeric value (decimal or
475 * hexidecimal), a symbol name, a register name (preceded by the
476 * percent sign), an environment variable with a numeric value
477 * (preceded by a dollar sign) or a simple arithmetic expression
478 * consisting of a symbol name, +/-, and a numeric constant value
479 * (offset).
480 * Parameters:
481 * argc - count of arguments in argv
482 * argv - argument vector
483 * *nextarg - index to next unparsed argument in argv[]
484 * regs - Register state at time of KDB entry
485 * Outputs:
486 * *value - receives the value of the address-expression
487 * *offset - receives the offset specified, if any
488 * *name - receives the symbol name, if any
489 * *nextarg - index to next unparsed argument in argv[]
490 * Returns:
491 * zero is returned on success, a kdb diagnostic code is
492 * returned on error.
493 */
494int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
495 unsigned long *value, long *offset,
496 char **name)
497{
498 unsigned long addr;
499 unsigned long off = 0;
500 int positive;
501 int diag;
502 int found = 0;
503 char *symname;
504 char symbol = '\0';
505 char *cp;
506 kdb_symtab_t symtab;
507
508 /*
509 * If the enable flags prohibit both arbitrary memory access
510 * and flow control then there are no reasonable grounds to
511 * provide symbol lookup.
512 */
513 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
514 kdb_cmd_enabled, false))
515 return KDB_NOPERM;
516
517 /*
518 * Process arguments which follow the following syntax:
519 *
520 * symbol | numeric-address [+/- numeric-offset]
521 * %register
522 * $environment-variable
523 */
524
525 if (*nextarg > argc)
526 return KDB_ARGCOUNT;
527
528 symname = (char *)argv[*nextarg];
529
530 /*
531 * If there is no whitespace between the symbol
532 * or address and the '+' or '-' symbols, we
533 * remember the character and replace it with a
534 * null so the symbol/value can be properly parsed
535 */
536 cp = strpbrk(symname, "+-");
537 if (cp != NULL) {
538 symbol = *cp;
539 *cp++ = '\0';
540 }
541
542 if (symname[0] == '$') {
543 diag = kdbgetulenv(&symname[1], &addr);
544 if (diag)
545 return diag;
546 } else if (symname[0] == '%') {
547 diag = kdb_check_regs();
548 if (diag)
549 return diag;
550 /* Implement register values with % at a later time as it is
551 * arch optional.
552 */
553 return KDB_NOTIMP;
554 } else {
555 found = kdbgetsymval(symname, &symtab);
556 if (found) {
557 addr = symtab.sym_start;
558 } else {
559 diag = kdbgetularg(argv[*nextarg], &addr);
560 if (diag)
561 return diag;
562 }
563 }
564
565 if (!found)
566 found = kdbnearsym(addr, &symtab);
567
568 (*nextarg)++;
569
570 if (name)
571 *name = symname;
572 if (value)
573 *value = addr;
574 if (offset && name && *name)
575 *offset = addr - symtab.sym_start;
576
577 if ((*nextarg > argc)
578 && (symbol == '\0'))
579 return 0;
580
581 /*
582 * check for +/- and offset
583 */
584
585 if (symbol == '\0') {
586 if ((argv[*nextarg][0] != '+')
587 && (argv[*nextarg][0] != '-')) {
588 /*
589 * Not our argument. Return.
590 */
591 return 0;
592 } else {
593 positive = (argv[*nextarg][0] == '+');
594 (*nextarg)++;
595 }
596 } else
597 positive = (symbol == '+');
598
599 /*
600 * Now there must be an offset!
601 */
602 if ((*nextarg > argc)
603 && (symbol == '\0')) {
604 return KDB_INVADDRFMT;
605 }
606
607 if (!symbol) {
608 cp = (char *)argv[*nextarg];
609 (*nextarg)++;
610 }
611
612 diag = kdbgetularg(cp, &off);
613 if (diag)
614 return diag;
615
616 if (!positive)
617 off = -off;
618
619 if (offset)
620 *offset += off;
621
622 if (value)
623 *value += off;
624
625 return 0;
626}
627
628static void kdb_cmderror(int diag)
629{
630 int i;
631
632 if (diag >= 0) {
633 kdb_printf("no error detected (diagnostic is %d)\n", diag);
634 return;
635 }
636
637 for (i = 0; i < __nkdb_err; i++) {
638 if (kdbmsgs[i].km_diag == diag) {
639 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
640 return;
641 }
642 }
643
644 kdb_printf("Unknown diag %d\n", -diag);
645}
646
647/*
648 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
649 * command which defines one command as a set of other commands,
650 * terminated by endefcmd. kdb_defcmd processes the initial
651 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
652 * the following commands until 'endefcmd'.
653 * Inputs:
654 * argc argument count
655 * argv argument vector
656 * Returns:
657 * zero for success, a kdb diagnostic if error
658 */
659struct defcmd_set {
660 int count;
661 bool usable;
662 char *name;
663 char *usage;
664 char *help;
665 char **command;
666};
667static struct defcmd_set *defcmd_set;
668static int defcmd_set_count;
669static bool defcmd_in_progress;
670
671/* Forward references */
672static int kdb_exec_defcmd(int argc, const char **argv);
673
674static int kdb_defcmd2(const char *cmdstr, const char *argv0)
675{
676 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
677 char **save_command = s->command;
678 if (strcmp(argv0, "endefcmd") == 0) {
679 defcmd_in_progress = false;
680 if (!s->count)
681 s->usable = false;
682 if (s->usable)
683 /* macros are always safe because when executed each
684 * internal command re-enters kdb_parse() and is
685 * safety checked individually.
686 */
687 kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
688 s->help, 0,
689 KDB_ENABLE_ALWAYS_SAFE);
690 return 0;
691 }
692 if (!s->usable)
693 return KDB_NOTIMP;
694 s->command = kcalloc(s->count + 1, sizeof(*(s->command)), GFP_KDB);
695 if (!s->command) {
696 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
697 cmdstr);
698 s->usable = false;
699 return KDB_NOTIMP;
700 }
701 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
702 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
703 kfree(save_command);
704 return 0;
705}
706
707static int kdb_defcmd(int argc, const char **argv)
708{
709 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
710 if (defcmd_in_progress) {
711 kdb_printf("kdb: nested defcmd detected, assuming missing "
712 "endefcmd\n");
713 kdb_defcmd2("endefcmd", "endefcmd");
714 }
715 if (argc == 0) {
716 int i;
717 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
718 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
719 s->usage, s->help);
720 for (i = 0; i < s->count; ++i)
721 kdb_printf("%s", s->command[i]);
722 kdb_printf("endefcmd\n");
723 }
724 return 0;
725 }
726 if (argc != 3)
727 return KDB_ARGCOUNT;
728 if (in_dbg_master()) {
729 kdb_printf("Command only available during kdb_init()\n");
730 return KDB_NOTIMP;
731 }
732 defcmd_set = kmalloc_array(defcmd_set_count + 1, sizeof(*defcmd_set),
733 GFP_KDB);
734 if (!defcmd_set)
735 goto fail_defcmd;
736 memcpy(defcmd_set, save_defcmd_set,
737 defcmd_set_count * sizeof(*defcmd_set));
738 s = defcmd_set + defcmd_set_count;
739 memset(s, 0, sizeof(*s));
740 s->usable = true;
741 s->name = kdb_strdup(argv[1], GFP_KDB);
742 if (!s->name)
743 goto fail_name;
744 s->usage = kdb_strdup(argv[2], GFP_KDB);
745 if (!s->usage)
746 goto fail_usage;
747 s->help = kdb_strdup(argv[3], GFP_KDB);
748 if (!s->help)
749 goto fail_help;
750 if (s->usage[0] == '"') {
751 strcpy(s->usage, argv[2]+1);
752 s->usage[strlen(s->usage)-1] = '\0';
753 }
754 if (s->help[0] == '"') {
755 strcpy(s->help, argv[3]+1);
756 s->help[strlen(s->help)-1] = '\0';
757 }
758 ++defcmd_set_count;
759 defcmd_in_progress = true;
760 kfree(save_defcmd_set);
761 return 0;
762fail_help:
763 kfree(s->usage);
764fail_usage:
765 kfree(s->name);
766fail_name:
767 kfree(defcmd_set);
768fail_defcmd:
769 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
770 defcmd_set = save_defcmd_set;
771 return KDB_NOTIMP;
772}
773
774/*
775 * kdb_exec_defcmd - Execute the set of commands associated with this
776 * defcmd name.
777 * Inputs:
778 * argc argument count
779 * argv argument vector
780 * Returns:
781 * zero for success, a kdb diagnostic if error
782 */
783static int kdb_exec_defcmd(int argc, const char **argv)
784{
785 int i, ret;
786 struct defcmd_set *s;
787 if (argc != 0)
788 return KDB_ARGCOUNT;
789 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
790 if (strcmp(s->name, argv[0]) == 0)
791 break;
792 }
793 if (i == defcmd_set_count) {
794 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
795 argv[0]);
796 return KDB_NOTIMP;
797 }
798 for (i = 0; i < s->count; ++i) {
799 /* Recursive use of kdb_parse, do not use argv after
800 * this point */
801 argv = NULL;
802 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
803 ret = kdb_parse(s->command[i]);
804 if (ret)
805 return ret;
806 }
807 return 0;
808}
809
810/* Command history */
811#define KDB_CMD_HISTORY_COUNT 32
812#define CMD_BUFLEN 200 /* kdb_printf: max printline
813 * size == 256 */
814static unsigned int cmd_head, cmd_tail;
815static unsigned int cmdptr;
816static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
817static char cmd_cur[CMD_BUFLEN];
818
819/*
820 * The "str" argument may point to something like | grep xyz
821 */
822static void parse_grep(const char *str)
823{
824 int len;
825 char *cp = (char *)str, *cp2;
826
827 /* sanity check: we should have been called with the \ first */
828 if (*cp != '|')
829 return;
830 cp++;
831 while (isspace(*cp))
832 cp++;
833 if (!str_has_prefix(cp, "grep ")) {
834 kdb_printf("invalid 'pipe', see grephelp\n");
835 return;
836 }
837 cp += 5;
838 while (isspace(*cp))
839 cp++;
840 cp2 = strchr(cp, '\n');
841 if (cp2)
842 *cp2 = '\0'; /* remove the trailing newline */
843 len = strlen(cp);
844 if (len == 0) {
845 kdb_printf("invalid 'pipe', see grephelp\n");
846 return;
847 }
848 /* now cp points to a nonzero length search string */
849 if (*cp == '"') {
850 /* allow it be "x y z" by removing the "'s - there must
851 be two of them */
852 cp++;
853 cp2 = strchr(cp, '"');
854 if (!cp2) {
855 kdb_printf("invalid quoted string, see grephelp\n");
856 return;
857 }
858 *cp2 = '\0'; /* end the string where the 2nd " was */
859 }
860 kdb_grep_leading = 0;
861 if (*cp == '^') {
862 kdb_grep_leading = 1;
863 cp++;
864 }
865 len = strlen(cp);
866 kdb_grep_trailing = 0;
867 if (*(cp+len-1) == '$') {
868 kdb_grep_trailing = 1;
869 *(cp+len-1) = '\0';
870 }
871 len = strlen(cp);
872 if (!len)
873 return;
874 if (len >= KDB_GREP_STRLEN) {
875 kdb_printf("search string too long\n");
876 return;
877 }
878 strcpy(kdb_grep_string, cp);
879 kdb_grepping_flag++;
880 return;
881}
882
883/*
884 * kdb_parse - Parse the command line, search the command table for a
885 * matching command and invoke the command function. This
886 * function may be called recursively, if it is, the second call
887 * will overwrite argv and cbuf. It is the caller's
888 * responsibility to save their argv if they recursively call
889 * kdb_parse().
890 * Parameters:
891 * cmdstr The input command line to be parsed.
892 * regs The registers at the time kdb was entered.
893 * Returns:
894 * Zero for success, a kdb diagnostic if failure.
895 * Remarks:
896 * Limited to 20 tokens.
897 *
898 * Real rudimentary tokenization. Basically only whitespace
899 * is considered a token delimeter (but special consideration
900 * is taken of the '=' sign as used by the 'set' command).
901 *
902 * The algorithm used to tokenize the input string relies on
903 * there being at least one whitespace (or otherwise useless)
904 * character between tokens as the character immediately following
905 * the token is altered in-place to a null-byte to terminate the
906 * token string.
907 */
908
909#define MAXARGC 20
910
911int kdb_parse(const char *cmdstr)
912{
913 static char *argv[MAXARGC];
914 static int argc;
915 static char cbuf[CMD_BUFLEN+2];
916 char *cp;
917 char *cpp, quoted;
918 kdbtab_t *tp;
919 int i, escaped, ignore_errors = 0, check_grep = 0;
920
921 /*
922 * First tokenize the command string.
923 */
924 cp = (char *)cmdstr;
925
926 if (KDB_FLAG(CMD_INTERRUPT)) {
927 /* Previous command was interrupted, newline must not
928 * repeat the command */
929 KDB_FLAG_CLEAR(CMD_INTERRUPT);
930 KDB_STATE_SET(PAGER);
931 argc = 0; /* no repeat */
932 }
933
934 if (*cp != '\n' && *cp != '\0') {
935 argc = 0;
936 cpp = cbuf;
937 while (*cp) {
938 /* skip whitespace */
939 while (isspace(*cp))
940 cp++;
941 if ((*cp == '\0') || (*cp == '\n') ||
942 (*cp == '#' && !defcmd_in_progress))
943 break;
944 /* special case: check for | grep pattern */
945 if (*cp == '|') {
946 check_grep++;
947 break;
948 }
949 if (cpp >= cbuf + CMD_BUFLEN) {
950 kdb_printf("kdb_parse: command buffer "
951 "overflow, command ignored\n%s\n",
952 cmdstr);
953 return KDB_NOTFOUND;
954 }
955 if (argc >= MAXARGC - 1) {
956 kdb_printf("kdb_parse: too many arguments, "
957 "command ignored\n%s\n", cmdstr);
958 return KDB_NOTFOUND;
959 }
960 argv[argc++] = cpp;
961 escaped = 0;
962 quoted = '\0';
963 /* Copy to next unquoted and unescaped
964 * whitespace or '=' */
965 while (*cp && *cp != '\n' &&
966 (escaped || quoted || !isspace(*cp))) {
967 if (cpp >= cbuf + CMD_BUFLEN)
968 break;
969 if (escaped) {
970 escaped = 0;
971 *cpp++ = *cp++;
972 continue;
973 }
974 if (*cp == '\\') {
975 escaped = 1;
976 ++cp;
977 continue;
978 }
979 if (*cp == quoted)
980 quoted = '\0';
981 else if (*cp == '\'' || *cp == '"')
982 quoted = *cp;
983 *cpp = *cp++;
984 if (*cpp == '=' && !quoted)
985 break;
986 ++cpp;
987 }
988 *cpp++ = '\0'; /* Squash a ws or '=' character */
989 }
990 }
991 if (!argc)
992 return 0;
993 if (check_grep)
994 parse_grep(cp);
995 if (defcmd_in_progress) {
996 int result = kdb_defcmd2(cmdstr, argv[0]);
997 if (!defcmd_in_progress) {
998 argc = 0; /* avoid repeat on endefcmd */
999 *(argv[0]) = '\0';
1000 }
1001 return result;
1002 }
1003 if (argv[0][0] == '-' && argv[0][1] &&
1004 (argv[0][1] < '0' || argv[0][1] > '9')) {
1005 ignore_errors = 1;
1006 ++argv[0];
1007 }
1008
1009 for_each_kdbcmd(tp, i) {
1010 if (tp->cmd_name) {
1011 /*
1012 * If this command is allowed to be abbreviated,
1013 * check to see if this is it.
1014 */
1015
1016 if (tp->cmd_minlen
1017 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1018 if (strncmp(argv[0],
1019 tp->cmd_name,
1020 tp->cmd_minlen) == 0) {
1021 break;
1022 }
1023 }
1024
1025 if (strcmp(argv[0], tp->cmd_name) == 0)
1026 break;
1027 }
1028 }
1029
1030 /*
1031 * If we don't find a command by this name, see if the first
1032 * few characters of this match any of the known commands.
1033 * e.g., md1c20 should match md.
1034 */
1035 if (i == kdb_max_commands) {
1036 for_each_kdbcmd(tp, i) {
1037 if (tp->cmd_name) {
1038 if (strncmp(argv[0],
1039 tp->cmd_name,
1040 strlen(tp->cmd_name)) == 0) {
1041 break;
1042 }
1043 }
1044 }
1045 }
1046
1047 if (i < kdb_max_commands) {
1048 int result;
1049
1050 if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1051 return KDB_NOPERM;
1052
1053 KDB_STATE_SET(CMD);
1054 result = (*tp->cmd_func)(argc-1, (const char **)argv);
1055 if (result && ignore_errors && result > KDB_CMD_GO)
1056 result = 0;
1057 KDB_STATE_CLEAR(CMD);
1058
1059 if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1060 return result;
1061
1062 argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1063 if (argv[argc])
1064 *(argv[argc]) = '\0';
1065 return result;
1066 }
1067
1068 /*
1069 * If the input with which we were presented does not
1070 * map to an existing command, attempt to parse it as an
1071 * address argument and display the result. Useful for
1072 * obtaining the address of a variable, or the nearest symbol
1073 * to an address contained in a register.
1074 */
1075 {
1076 unsigned long value;
1077 char *name = NULL;
1078 long offset;
1079 int nextarg = 0;
1080
1081 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1082 &value, &offset, &name)) {
1083 return KDB_NOTFOUND;
1084 }
1085
1086 kdb_printf("%s = ", argv[0]);
1087 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1088 kdb_printf("\n");
1089 return 0;
1090 }
1091}
1092
1093
1094static int handle_ctrl_cmd(char *cmd)
1095{
1096#define CTRL_P 16
1097#define CTRL_N 14
1098
1099 /* initial situation */
1100 if (cmd_head == cmd_tail)
1101 return 0;
1102 switch (*cmd) {
1103 case CTRL_P:
1104 if (cmdptr != cmd_tail)
1105 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1106 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1107 return 1;
1108 case CTRL_N:
1109 if (cmdptr != cmd_head)
1110 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1111 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1112 return 1;
1113 }
1114 return 0;
1115}
1116
1117/*
1118 * kdb_reboot - This function implements the 'reboot' command. Reboot
1119 * the system immediately, or loop for ever on failure.
1120 */
1121static int kdb_reboot(int argc, const char **argv)
1122{
1123 emergency_restart();
1124 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1125 while (1)
1126 cpu_relax();
1127 /* NOTREACHED */
1128 return 0;
1129}
1130
1131static void kdb_dumpregs(struct pt_regs *regs)
1132{
1133 int old_lvl = console_loglevel;
1134 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1135 kdb_trap_printk++;
1136 show_regs(regs);
1137 kdb_trap_printk--;
1138 kdb_printf("\n");
1139 console_loglevel = old_lvl;
1140}
1141
1142void kdb_set_current_task(struct task_struct *p)
1143{
1144 kdb_current_task = p;
1145
1146 if (kdb_task_has_cpu(p)) {
1147 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1148 return;
1149 }
1150 kdb_current_regs = NULL;
1151}
1152
1153static void drop_newline(char *buf)
1154{
1155 size_t len = strlen(buf);
1156
1157 if (len == 0)
1158 return;
1159 if (*(buf + len - 1) == '\n')
1160 *(buf + len - 1) = '\0';
1161}
1162
1163/*
1164 * kdb_local - The main code for kdb. This routine is invoked on a
1165 * specific processor, it is not global. The main kdb() routine
1166 * ensures that only one processor at a time is in this routine.
1167 * This code is called with the real reason code on the first
1168 * entry to a kdb session, thereafter it is called with reason
1169 * SWITCH, even if the user goes back to the original cpu.
1170 * Inputs:
1171 * reason The reason KDB was invoked
1172 * error The hardware-defined error code
1173 * regs The exception frame at time of fault/breakpoint.
1174 * db_result Result code from the break or debug point.
1175 * Returns:
1176 * 0 KDB was invoked for an event which it wasn't responsible
1177 * 1 KDB handled the event for which it was invoked.
1178 * KDB_CMD_GO User typed 'go'.
1179 * KDB_CMD_CPU User switched to another cpu.
1180 * KDB_CMD_SS Single step.
1181 */
1182static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1183 kdb_dbtrap_t db_result)
1184{
1185 char *cmdbuf;
1186 int diag;
1187 struct task_struct *kdb_current =
1188 kdb_curr_task(raw_smp_processor_id());
1189
1190 KDB_DEBUG_STATE("kdb_local 1", reason);
1191 kdb_go_count = 0;
1192 if (reason == KDB_REASON_DEBUG) {
1193 /* special case below */
1194 } else {
1195 kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
1196 kdb_current, kdb_current ? kdb_current->pid : 0);
1197#if defined(CONFIG_SMP)
1198 kdb_printf("on processor %d ", raw_smp_processor_id());
1199#endif
1200 }
1201
1202 switch (reason) {
1203 case KDB_REASON_DEBUG:
1204 {
1205 /*
1206 * If re-entering kdb after a single step
1207 * command, don't print the message.
1208 */
1209 switch (db_result) {
1210 case KDB_DB_BPT:
1211 kdb_printf("\nEntering kdb (0x%px, pid %d) ",
1212 kdb_current, kdb_current->pid);
1213#if defined(CONFIG_SMP)
1214 kdb_printf("on processor %d ", raw_smp_processor_id());
1215#endif
1216 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1217 instruction_pointer(regs));
1218 break;
1219 case KDB_DB_SS:
1220 break;
1221 case KDB_DB_SSBPT:
1222 KDB_DEBUG_STATE("kdb_local 4", reason);
1223 return 1; /* kdba_db_trap did the work */
1224 default:
1225 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1226 db_result);
1227 break;
1228 }
1229
1230 }
1231 break;
1232 case KDB_REASON_ENTER:
1233 if (KDB_STATE(KEYBOARD))
1234 kdb_printf("due to Keyboard Entry\n");
1235 else
1236 kdb_printf("due to KDB_ENTER()\n");
1237 break;
1238 case KDB_REASON_KEYBOARD:
1239 KDB_STATE_SET(KEYBOARD);
1240 kdb_printf("due to Keyboard Entry\n");
1241 break;
1242 case KDB_REASON_ENTER_SLAVE:
1243 /* drop through, slaves only get released via cpu switch */
1244 case KDB_REASON_SWITCH:
1245 kdb_printf("due to cpu switch\n");
1246 break;
1247 case KDB_REASON_OOPS:
1248 kdb_printf("Oops: %s\n", kdb_diemsg);
1249 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1250 instruction_pointer(regs));
1251 kdb_dumpregs(regs);
1252 break;
1253 case KDB_REASON_SYSTEM_NMI:
1254 kdb_printf("due to System NonMaskable Interrupt\n");
1255 break;
1256 case KDB_REASON_NMI:
1257 kdb_printf("due to NonMaskable Interrupt @ "
1258 kdb_machreg_fmt "\n",
1259 instruction_pointer(regs));
1260 break;
1261 case KDB_REASON_SSTEP:
1262 case KDB_REASON_BREAK:
1263 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1264 reason == KDB_REASON_BREAK ?
1265 "Breakpoint" : "SS trap", instruction_pointer(regs));
1266 /*
1267 * Determine if this breakpoint is one that we
1268 * are interested in.
1269 */
1270 if (db_result != KDB_DB_BPT) {
1271 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1272 db_result);
1273 KDB_DEBUG_STATE("kdb_local 6", reason);
1274 return 0; /* Not for us, dismiss it */
1275 }
1276 break;
1277 case KDB_REASON_RECURSE:
1278 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1279 instruction_pointer(regs));
1280 break;
1281 default:
1282 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1283 KDB_DEBUG_STATE("kdb_local 8", reason);
1284 return 0; /* Not for us, dismiss it */
1285 }
1286
1287 while (1) {
1288 /*
1289 * Initialize pager context.
1290 */
1291 kdb_nextline = 1;
1292 KDB_STATE_CLEAR(SUPPRESS);
1293 kdb_grepping_flag = 0;
1294 /* ensure the old search does not leak into '/' commands */
1295 kdb_grep_string[0] = '\0';
1296
1297 cmdbuf = cmd_cur;
1298 *cmdbuf = '\0';
1299 *(cmd_hist[cmd_head]) = '\0';
1300
1301do_full_getstr:
1302#if defined(CONFIG_SMP)
1303 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1304 raw_smp_processor_id());
1305#else
1306 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1307#endif
1308 if (defcmd_in_progress)
1309 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1310
1311 /*
1312 * Fetch command from keyboard
1313 */
1314 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1315 if (*cmdbuf != '\n') {
1316 if (*cmdbuf < 32) {
1317 if (cmdptr == cmd_head) {
1318 strncpy(cmd_hist[cmd_head], cmd_cur,
1319 CMD_BUFLEN);
1320 *(cmd_hist[cmd_head] +
1321 strlen(cmd_hist[cmd_head])-1) = '\0';
1322 }
1323 if (!handle_ctrl_cmd(cmdbuf))
1324 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1325 cmdbuf = cmd_cur;
1326 goto do_full_getstr;
1327 } else {
1328 strncpy(cmd_hist[cmd_head], cmd_cur,
1329 CMD_BUFLEN);
1330 }
1331
1332 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1333 if (cmd_head == cmd_tail)
1334 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1335 }
1336
1337 cmdptr = cmd_head;
1338 diag = kdb_parse(cmdbuf);
1339 if (diag == KDB_NOTFOUND) {
1340 drop_newline(cmdbuf);
1341 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1342 diag = 0;
1343 }
1344 if (diag == KDB_CMD_GO
1345 || diag == KDB_CMD_CPU
1346 || diag == KDB_CMD_SS
1347 || diag == KDB_CMD_KGDB)
1348 break;
1349
1350 if (diag)
1351 kdb_cmderror(diag);
1352 }
1353 KDB_DEBUG_STATE("kdb_local 9", diag);
1354 return diag;
1355}
1356
1357
1358/*
1359 * kdb_print_state - Print the state data for the current processor
1360 * for debugging.
1361 * Inputs:
1362 * text Identifies the debug point
1363 * value Any integer value to be printed, e.g. reason code.
1364 */
1365void kdb_print_state(const char *text, int value)
1366{
1367 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1368 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1369 kdb_state);
1370}
1371
1372/*
1373 * kdb_main_loop - After initial setup and assignment of the
1374 * controlling cpu, all cpus are in this loop. One cpu is in
1375 * control and will issue the kdb prompt, the others will spin
1376 * until 'go' or cpu switch.
1377 *
1378 * To get a consistent view of the kernel stacks for all
1379 * processes, this routine is invoked from the main kdb code via
1380 * an architecture specific routine. kdba_main_loop is
1381 * responsible for making the kernel stacks consistent for all
1382 * processes, there should be no difference between a blocked
1383 * process and a running process as far as kdb is concerned.
1384 * Inputs:
1385 * reason The reason KDB was invoked
1386 * error The hardware-defined error code
1387 * reason2 kdb's current reason code.
1388 * Initially error but can change
1389 * according to kdb state.
1390 * db_result Result code from break or debug point.
1391 * regs The exception frame at time of fault/breakpoint.
1392 * should always be valid.
1393 * Returns:
1394 * 0 KDB was invoked for an event which it wasn't responsible
1395 * 1 KDB handled the event for which it was invoked.
1396 */
1397int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1398 kdb_dbtrap_t db_result, struct pt_regs *regs)
1399{
1400 int result = 1;
1401 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1402 while (1) {
1403 /*
1404 * All processors except the one that is in control
1405 * will spin here.
1406 */
1407 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1408 while (KDB_STATE(HOLD_CPU)) {
1409 /* state KDB is turned off by kdb_cpu to see if the
1410 * other cpus are still live, each cpu in this loop
1411 * turns it back on.
1412 */
1413 if (!KDB_STATE(KDB))
1414 KDB_STATE_SET(KDB);
1415 }
1416
1417 KDB_STATE_CLEAR(SUPPRESS);
1418 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1419 if (KDB_STATE(LEAVING))
1420 break; /* Another cpu said 'go' */
1421 /* Still using kdb, this processor is in control */
1422 result = kdb_local(reason2, error, regs, db_result);
1423 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1424
1425 if (result == KDB_CMD_CPU)
1426 break;
1427
1428 if (result == KDB_CMD_SS) {
1429 KDB_STATE_SET(DOING_SS);
1430 break;
1431 }
1432
1433 if (result == KDB_CMD_KGDB) {
1434 if (!KDB_STATE(DOING_KGDB))
1435 kdb_printf("Entering please attach debugger "
1436 "or use $D#44+ or $3#33\n");
1437 break;
1438 }
1439 if (result && result != 1 && result != KDB_CMD_GO)
1440 kdb_printf("\nUnexpected kdb_local return code %d\n",
1441 result);
1442 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1443 break;
1444 }
1445 if (KDB_STATE(DOING_SS))
1446 KDB_STATE_CLEAR(SSBPT);
1447
1448 /* Clean up any keyboard devices before leaving */
1449 kdb_kbd_cleanup_state();
1450
1451 return result;
1452}
1453
1454/*
1455 * kdb_mdr - This function implements the guts of the 'mdr', memory
1456 * read command.
1457 * mdr <addr arg>,<byte count>
1458 * Inputs:
1459 * addr Start address
1460 * count Number of bytes
1461 * Returns:
1462 * Always 0. Any errors are detected and printed by kdb_getarea.
1463 */
1464static int kdb_mdr(unsigned long addr, unsigned int count)
1465{
1466 unsigned char c;
1467 while (count--) {
1468 if (kdb_getarea(c, addr))
1469 return 0;
1470 kdb_printf("%02x", c);
1471 addr++;
1472 }
1473 kdb_printf("\n");
1474 return 0;
1475}
1476
1477/*
1478 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1479 * 'md8' 'mdr' and 'mds' commands.
1480 *
1481 * md|mds [<addr arg> [<line count> [<radix>]]]
1482 * mdWcN [<addr arg> [<line count> [<radix>]]]
1483 * where W = is the width (1, 2, 4 or 8) and N is the count.
1484 * for eg., md1c20 reads 20 bytes, 1 at a time.
1485 * mdr <addr arg>,<byte count>
1486 */
1487static void kdb_md_line(const char *fmtstr, unsigned long addr,
1488 int symbolic, int nosect, int bytesperword,
1489 int num, int repeat, int phys)
1490{
1491 /* print just one line of data */
1492 kdb_symtab_t symtab;
1493 char cbuf[32];
1494 char *c = cbuf;
1495 int i;
1496 int j;
1497 unsigned long word;
1498
1499 memset(cbuf, '\0', sizeof(cbuf));
1500 if (phys)
1501 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1502 else
1503 kdb_printf(kdb_machreg_fmt0 " ", addr);
1504
1505 for (i = 0; i < num && repeat--; i++) {
1506 if (phys) {
1507 if (kdb_getphysword(&word, addr, bytesperword))
1508 break;
1509 } else if (kdb_getword(&word, addr, bytesperword))
1510 break;
1511 kdb_printf(fmtstr, word);
1512 if (symbolic)
1513 kdbnearsym(word, &symtab);
1514 else
1515 memset(&symtab, 0, sizeof(symtab));
1516 if (symtab.sym_name) {
1517 kdb_symbol_print(word, &symtab, 0);
1518 if (!nosect) {
1519 kdb_printf("\n");
1520 kdb_printf(" %s %s "
1521 kdb_machreg_fmt " "
1522 kdb_machreg_fmt " "
1523 kdb_machreg_fmt, symtab.mod_name,
1524 symtab.sec_name, symtab.sec_start,
1525 symtab.sym_start, symtab.sym_end);
1526 }
1527 addr += bytesperword;
1528 } else {
1529 union {
1530 u64 word;
1531 unsigned char c[8];
1532 } wc;
1533 unsigned char *cp;
1534#ifdef __BIG_ENDIAN
1535 cp = wc.c + 8 - bytesperword;
1536#else
1537 cp = wc.c;
1538#endif
1539 wc.word = word;
1540#define printable_char(c) \
1541 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1542 for (j = 0; j < bytesperword; j++)
1543 *c++ = printable_char(*cp++);
1544 addr += bytesperword;
1545#undef printable_char
1546 }
1547 }
1548 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1549 " ", cbuf);
1550}
1551
1552static int kdb_md(int argc, const char **argv)
1553{
1554 static unsigned long last_addr;
1555 static int last_radix, last_bytesperword, last_repeat;
1556 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1557 int nosect = 0;
1558 char fmtchar, fmtstr[64];
1559 unsigned long addr;
1560 unsigned long word;
1561 long offset = 0;
1562 int symbolic = 0;
1563 int valid = 0;
1564 int phys = 0;
1565 int raw = 0;
1566
1567 kdbgetintenv("MDCOUNT", &mdcount);
1568 kdbgetintenv("RADIX", &radix);
1569 kdbgetintenv("BYTESPERWORD", &bytesperword);
1570
1571 /* Assume 'md <addr>' and start with environment values */
1572 repeat = mdcount * 16 / bytesperword;
1573
1574 if (strcmp(argv[0], "mdr") == 0) {
1575 if (argc == 2 || (argc == 0 && last_addr != 0))
1576 valid = raw = 1;
1577 else
1578 return KDB_ARGCOUNT;
1579 } else if (isdigit(argv[0][2])) {
1580 bytesperword = (int)(argv[0][2] - '0');
1581 if (bytesperword == 0) {
1582 bytesperword = last_bytesperword;
1583 if (bytesperword == 0)
1584 bytesperword = 4;
1585 }
1586 last_bytesperword = bytesperword;
1587 repeat = mdcount * 16 / bytesperword;
1588 if (!argv[0][3])
1589 valid = 1;
1590 else if (argv[0][3] == 'c' && argv[0][4]) {
1591 char *p;
1592 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1593 mdcount = ((repeat * bytesperword) + 15) / 16;
1594 valid = !*p;
1595 }
1596 last_repeat = repeat;
1597 } else if (strcmp(argv[0], "md") == 0)
1598 valid = 1;
1599 else if (strcmp(argv[0], "mds") == 0)
1600 valid = 1;
1601 else if (strcmp(argv[0], "mdp") == 0) {
1602 phys = valid = 1;
1603 }
1604 if (!valid)
1605 return KDB_NOTFOUND;
1606
1607 if (argc == 0) {
1608 if (last_addr == 0)
1609 return KDB_ARGCOUNT;
1610 addr = last_addr;
1611 radix = last_radix;
1612 bytesperword = last_bytesperword;
1613 repeat = last_repeat;
1614 if (raw)
1615 mdcount = repeat;
1616 else
1617 mdcount = ((repeat * bytesperword) + 15) / 16;
1618 }
1619
1620 if (argc) {
1621 unsigned long val;
1622 int diag, nextarg = 1;
1623 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1624 &offset, NULL);
1625 if (diag)
1626 return diag;
1627 if (argc > nextarg+2)
1628 return KDB_ARGCOUNT;
1629
1630 if (argc >= nextarg) {
1631 diag = kdbgetularg(argv[nextarg], &val);
1632 if (!diag) {
1633 mdcount = (int) val;
1634 if (raw)
1635 repeat = mdcount;
1636 else
1637 repeat = mdcount * 16 / bytesperword;
1638 }
1639 }
1640 if (argc >= nextarg+1) {
1641 diag = kdbgetularg(argv[nextarg+1], &val);
1642 if (!diag)
1643 radix = (int) val;
1644 }
1645 }
1646
1647 if (strcmp(argv[0], "mdr") == 0) {
1648 int ret;
1649 last_addr = addr;
1650 ret = kdb_mdr(addr, mdcount);
1651 last_addr += mdcount;
1652 last_repeat = mdcount;
1653 last_bytesperword = bytesperword; // to make REPEAT happy
1654 return ret;
1655 }
1656
1657 switch (radix) {
1658 case 10:
1659 fmtchar = 'd';
1660 break;
1661 case 16:
1662 fmtchar = 'x';
1663 break;
1664 case 8:
1665 fmtchar = 'o';
1666 break;
1667 default:
1668 return KDB_BADRADIX;
1669 }
1670
1671 last_radix = radix;
1672
1673 if (bytesperword > KDB_WORD_SIZE)
1674 return KDB_BADWIDTH;
1675
1676 switch (bytesperword) {
1677 case 8:
1678 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1679 break;
1680 case 4:
1681 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1682 break;
1683 case 2:
1684 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1685 break;
1686 case 1:
1687 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1688 break;
1689 default:
1690 return KDB_BADWIDTH;
1691 }
1692
1693 last_repeat = repeat;
1694 last_bytesperword = bytesperword;
1695
1696 if (strcmp(argv[0], "mds") == 0) {
1697 symbolic = 1;
1698 /* Do not save these changes as last_*, they are temporary mds
1699 * overrides.
1700 */
1701 bytesperword = KDB_WORD_SIZE;
1702 repeat = mdcount;
1703 kdbgetintenv("NOSECT", &nosect);
1704 }
1705
1706 /* Round address down modulo BYTESPERWORD */
1707
1708 addr &= ~(bytesperword-1);
1709
1710 while (repeat > 0) {
1711 unsigned long a;
1712 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1713
1714 if (KDB_FLAG(CMD_INTERRUPT))
1715 return 0;
1716 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1717 if (phys) {
1718 if (kdb_getphysword(&word, a, bytesperword)
1719 || word)
1720 break;
1721 } else if (kdb_getword(&word, a, bytesperword) || word)
1722 break;
1723 }
1724 n = min(num, repeat);
1725 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1726 num, repeat, phys);
1727 addr += bytesperword * n;
1728 repeat -= n;
1729 z = (z + num - 1) / num;
1730 if (z > 2) {
1731 int s = num * (z-2);
1732 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1733 " zero suppressed\n",
1734 addr, addr + bytesperword * s - 1);
1735 addr += bytesperword * s;
1736 repeat -= s;
1737 }
1738 }
1739 last_addr = addr;
1740
1741 return 0;
1742}
1743
1744/*
1745 * kdb_mm - This function implements the 'mm' command.
1746 * mm address-expression new-value
1747 * Remarks:
1748 * mm works on machine words, mmW works on bytes.
1749 */
1750static int kdb_mm(int argc, const char **argv)
1751{
1752 int diag;
1753 unsigned long addr;
1754 long offset = 0;
1755 unsigned long contents;
1756 int nextarg;
1757 int width;
1758
1759 if (argv[0][2] && !isdigit(argv[0][2]))
1760 return KDB_NOTFOUND;
1761
1762 if (argc < 2)
1763 return KDB_ARGCOUNT;
1764
1765 nextarg = 1;
1766 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1767 if (diag)
1768 return diag;
1769
1770 if (nextarg > argc)
1771 return KDB_ARGCOUNT;
1772 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1773 if (diag)
1774 return diag;
1775
1776 if (nextarg != argc + 1)
1777 return KDB_ARGCOUNT;
1778
1779 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1780 diag = kdb_putword(addr, contents, width);
1781 if (diag)
1782 return diag;
1783
1784 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1785
1786 return 0;
1787}
1788
1789/*
1790 * kdb_go - This function implements the 'go' command.
1791 * go [address-expression]
1792 */
1793static int kdb_go(int argc, const char **argv)
1794{
1795 unsigned long addr;
1796 int diag;
1797 int nextarg;
1798 long offset;
1799
1800 if (raw_smp_processor_id() != kdb_initial_cpu) {
1801 kdb_printf("go must execute on the entry cpu, "
1802 "please use \"cpu %d\" and then execute go\n",
1803 kdb_initial_cpu);
1804 return KDB_BADCPUNUM;
1805 }
1806 if (argc == 1) {
1807 nextarg = 1;
1808 diag = kdbgetaddrarg(argc, argv, &nextarg,
1809 &addr, &offset, NULL);
1810 if (diag)
1811 return diag;
1812 } else if (argc) {
1813 return KDB_ARGCOUNT;
1814 }
1815
1816 diag = KDB_CMD_GO;
1817 if (KDB_FLAG(CATASTROPHIC)) {
1818 kdb_printf("Catastrophic error detected\n");
1819 kdb_printf("kdb_continue_catastrophic=%d, ",
1820 kdb_continue_catastrophic);
1821 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1822 kdb_printf("type go a second time if you really want "
1823 "to continue\n");
1824 return 0;
1825 }
1826 if (kdb_continue_catastrophic == 2) {
1827 kdb_printf("forcing reboot\n");
1828 kdb_reboot(0, NULL);
1829 }
1830 kdb_printf("attempting to continue\n");
1831 }
1832 return diag;
1833}
1834
1835/*
1836 * kdb_rd - This function implements the 'rd' command.
1837 */
1838static int kdb_rd(int argc, const char **argv)
1839{
1840 int len = kdb_check_regs();
1841#if DBG_MAX_REG_NUM > 0
1842 int i;
1843 char *rname;
1844 int rsize;
1845 u64 reg64;
1846 u32 reg32;
1847 u16 reg16;
1848 u8 reg8;
1849
1850 if (len)
1851 return len;
1852
1853 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1854 rsize = dbg_reg_def[i].size * 2;
1855 if (rsize > 16)
1856 rsize = 2;
1857 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1858 len = 0;
1859 kdb_printf("\n");
1860 }
1861 if (len)
1862 len += kdb_printf(" ");
1863 switch(dbg_reg_def[i].size * 8) {
1864 case 8:
1865 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1866 if (!rname)
1867 break;
1868 len += kdb_printf("%s: %02x", rname, reg8);
1869 break;
1870 case 16:
1871 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1872 if (!rname)
1873 break;
1874 len += kdb_printf("%s: %04x", rname, reg16);
1875 break;
1876 case 32:
1877 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1878 if (!rname)
1879 break;
1880 len += kdb_printf("%s: %08x", rname, reg32);
1881 break;
1882 case 64:
1883 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1884 if (!rname)
1885 break;
1886 len += kdb_printf("%s: %016llx", rname, reg64);
1887 break;
1888 default:
1889 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1890 }
1891 }
1892 kdb_printf("\n");
1893#else
1894 if (len)
1895 return len;
1896
1897 kdb_dumpregs(kdb_current_regs);
1898#endif
1899 return 0;
1900}
1901
1902/*
1903 * kdb_rm - This function implements the 'rm' (register modify) command.
1904 * rm register-name new-contents
1905 * Remarks:
1906 * Allows register modification with the same restrictions as gdb
1907 */
1908static int kdb_rm(int argc, const char **argv)
1909{
1910#if DBG_MAX_REG_NUM > 0
1911 int diag;
1912 const char *rname;
1913 int i;
1914 u64 reg64;
1915 u32 reg32;
1916 u16 reg16;
1917 u8 reg8;
1918
1919 if (argc != 2)
1920 return KDB_ARGCOUNT;
1921 /*
1922 * Allow presence or absence of leading '%' symbol.
1923 */
1924 rname = argv[1];
1925 if (*rname == '%')
1926 rname++;
1927
1928 diag = kdbgetu64arg(argv[2], ®64);
1929 if (diag)
1930 return diag;
1931
1932 diag = kdb_check_regs();
1933 if (diag)
1934 return diag;
1935
1936 diag = KDB_BADREG;
1937 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1938 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1939 diag = 0;
1940 break;
1941 }
1942 }
1943 if (!diag) {
1944 switch(dbg_reg_def[i].size * 8) {
1945 case 8:
1946 reg8 = reg64;
1947 dbg_set_reg(i, ®8, kdb_current_regs);
1948 break;
1949 case 16:
1950 reg16 = reg64;
1951 dbg_set_reg(i, ®16, kdb_current_regs);
1952 break;
1953 case 32:
1954 reg32 = reg64;
1955 dbg_set_reg(i, ®32, kdb_current_regs);
1956 break;
1957 case 64:
1958 dbg_set_reg(i, ®64, kdb_current_regs);
1959 break;
1960 }
1961 }
1962 return diag;
1963#else
1964 kdb_printf("ERROR: Register set currently not implemented\n");
1965 return 0;
1966#endif
1967}
1968
1969#if defined(CONFIG_MAGIC_SYSRQ)
1970/*
1971 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1972 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1973 * sr <magic-sysrq-code>
1974 */
1975static int kdb_sr(int argc, const char **argv)
1976{
1977 bool check_mask =
1978 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1979
1980 if (argc != 1)
1981 return KDB_ARGCOUNT;
1982
1983 kdb_trap_printk++;
1984 __handle_sysrq(*argv[1], check_mask);
1985 kdb_trap_printk--;
1986
1987 return 0;
1988}
1989#endif /* CONFIG_MAGIC_SYSRQ */
1990
1991/*
1992 * kdb_ef - This function implements the 'regs' (display exception
1993 * frame) command. This command takes an address and expects to
1994 * find an exception frame at that address, formats and prints
1995 * it.
1996 * regs address-expression
1997 * Remarks:
1998 * Not done yet.
1999 */
2000static int kdb_ef(int argc, const char **argv)
2001{
2002 int diag;
2003 unsigned long addr;
2004 long offset;
2005 int nextarg;
2006
2007 if (argc != 1)
2008 return KDB_ARGCOUNT;
2009
2010 nextarg = 1;
2011 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2012 if (diag)
2013 return diag;
2014 show_regs((struct pt_regs *)addr);
2015 return 0;
2016}
2017
2018#if defined(CONFIG_MODULES)
2019/*
2020 * kdb_lsmod - This function implements the 'lsmod' command. Lists
2021 * currently loaded kernel modules.
2022 * Mostly taken from userland lsmod.
2023 */
2024static int kdb_lsmod(int argc, const char **argv)
2025{
2026 struct module *mod;
2027
2028 if (argc != 0)
2029 return KDB_ARGCOUNT;
2030
2031 kdb_printf("Module Size modstruct Used by\n");
2032 list_for_each_entry(mod, kdb_modules, list) {
2033 if (mod->state == MODULE_STATE_UNFORMED)
2034 continue;
2035
2036 kdb_printf("%-20s%8u 0x%px ", mod->name,
2037 mod->core_layout.size, (void *)mod);
2038#ifdef CONFIG_MODULE_UNLOAD
2039 kdb_printf("%4d ", module_refcount(mod));
2040#endif
2041 if (mod->state == MODULE_STATE_GOING)
2042 kdb_printf(" (Unloading)");
2043 else if (mod->state == MODULE_STATE_COMING)
2044 kdb_printf(" (Loading)");
2045 else
2046 kdb_printf(" (Live)");
2047 kdb_printf(" 0x%px", mod->core_layout.base);
2048
2049#ifdef CONFIG_MODULE_UNLOAD
2050 {
2051 struct module_use *use;
2052 kdb_printf(" [ ");
2053 list_for_each_entry(use, &mod->source_list,
2054 source_list)
2055 kdb_printf("%s ", use->target->name);
2056 kdb_printf("]\n");
2057 }
2058#endif
2059 }
2060
2061 return 0;
2062}
2063
2064#endif /* CONFIG_MODULES */
2065
2066/*
2067 * kdb_env - This function implements the 'env' command. Display the
2068 * current environment variables.
2069 */
2070
2071static int kdb_env(int argc, const char **argv)
2072{
2073 int i;
2074
2075 for (i = 0; i < __nenv; i++) {
2076 if (__env[i])
2077 kdb_printf("%s\n", __env[i]);
2078 }
2079
2080 if (KDB_DEBUG(MASK))
2081 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2082
2083 return 0;
2084}
2085
2086#ifdef CONFIG_PRINTK
2087/*
2088 * kdb_dmesg - This function implements the 'dmesg' command to display
2089 * the contents of the syslog buffer.
2090 * dmesg [lines] [adjust]
2091 */
2092static int kdb_dmesg(int argc, const char **argv)
2093{
2094 int diag;
2095 int logging;
2096 int lines = 0;
2097 int adjust = 0;
2098 int n = 0;
2099 int skip = 0;
2100 struct kmsg_dumper dumper = { .active = 1 };
2101 size_t len;
2102 char buf[201];
2103
2104 if (argc > 2)
2105 return KDB_ARGCOUNT;
2106 if (argc) {
2107 char *cp;
2108 lines = simple_strtol(argv[1], &cp, 0);
2109 if (*cp)
2110 lines = 0;
2111 if (argc > 1) {
2112 adjust = simple_strtoul(argv[2], &cp, 0);
2113 if (*cp || adjust < 0)
2114 adjust = 0;
2115 }
2116 }
2117
2118 /* disable LOGGING if set */
2119 diag = kdbgetintenv("LOGGING", &logging);
2120 if (!diag && logging) {
2121 const char *setargs[] = { "set", "LOGGING", "0" };
2122 kdb_set(2, setargs);
2123 }
2124
2125 kmsg_dump_rewind_nolock(&dumper);
2126 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2127 n++;
2128
2129 if (lines < 0) {
2130 if (adjust >= n)
2131 kdb_printf("buffer only contains %d lines, nothing "
2132 "printed\n", n);
2133 else if (adjust - lines >= n)
2134 kdb_printf("buffer only contains %d lines, last %d "
2135 "lines printed\n", n, n - adjust);
2136 skip = adjust;
2137 lines = abs(lines);
2138 } else if (lines > 0) {
2139 skip = n - lines - adjust;
2140 lines = abs(lines);
2141 if (adjust >= n) {
2142 kdb_printf("buffer only contains %d lines, "
2143 "nothing printed\n", n);
2144 skip = n;
2145 } else if (skip < 0) {
2146 lines += skip;
2147 skip = 0;
2148 kdb_printf("buffer only contains %d lines, first "
2149 "%d lines printed\n", n, lines);
2150 }
2151 } else {
2152 lines = n;
2153 }
2154
2155 if (skip >= n || skip < 0)
2156 return 0;
2157
2158 kmsg_dump_rewind_nolock(&dumper);
2159 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2160 if (skip) {
2161 skip--;
2162 continue;
2163 }
2164 if (!lines--)
2165 break;
2166 if (KDB_FLAG(CMD_INTERRUPT))
2167 return 0;
2168
2169 kdb_printf("%.*s\n", (int)len - 1, buf);
2170 }
2171
2172 return 0;
2173}
2174#endif /* CONFIG_PRINTK */
2175
2176/* Make sure we balance enable/disable calls, must disable first. */
2177static atomic_t kdb_nmi_disabled;
2178
2179static int kdb_disable_nmi(int argc, const char *argv[])
2180{
2181 if (atomic_read(&kdb_nmi_disabled))
2182 return 0;
2183 atomic_set(&kdb_nmi_disabled, 1);
2184 arch_kgdb_ops.enable_nmi(0);
2185 return 0;
2186}
2187
2188static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2189{
2190 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2191 return -EINVAL;
2192 arch_kgdb_ops.enable_nmi(1);
2193 return 0;
2194}
2195
2196static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2197 .set = kdb_param_enable_nmi,
2198};
2199module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2200
2201/*
2202 * kdb_cpu - This function implements the 'cpu' command.
2203 * cpu [<cpunum>]
2204 * Returns:
2205 * KDB_CMD_CPU for success, a kdb diagnostic if error
2206 */
2207static void kdb_cpu_status(void)
2208{
2209 int i, start_cpu, first_print = 1;
2210 char state, prev_state = '?';
2211
2212 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2213 kdb_printf("Available cpus: ");
2214 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2215 if (!cpu_online(i)) {
2216 state = 'F'; /* cpu is offline */
2217 } else if (!kgdb_info[i].enter_kgdb) {
2218 state = 'D'; /* cpu is online but unresponsive */
2219 } else {
2220 state = ' '; /* cpu is responding to kdb */
2221 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2222 state = 'I'; /* idle task */
2223 }
2224 if (state != prev_state) {
2225 if (prev_state != '?') {
2226 if (!first_print)
2227 kdb_printf(", ");
2228 first_print = 0;
2229 kdb_printf("%d", start_cpu);
2230 if (start_cpu < i-1)
2231 kdb_printf("-%d", i-1);
2232 if (prev_state != ' ')
2233 kdb_printf("(%c)", prev_state);
2234 }
2235 prev_state = state;
2236 start_cpu = i;
2237 }
2238 }
2239 /* print the trailing cpus, ignoring them if they are all offline */
2240 if (prev_state != 'F') {
2241 if (!first_print)
2242 kdb_printf(", ");
2243 kdb_printf("%d", start_cpu);
2244 if (start_cpu < i-1)
2245 kdb_printf("-%d", i-1);
2246 if (prev_state != ' ')
2247 kdb_printf("(%c)", prev_state);
2248 }
2249 kdb_printf("\n");
2250}
2251
2252static int kdb_cpu(int argc, const char **argv)
2253{
2254 unsigned long cpunum;
2255 int diag;
2256
2257 if (argc == 0) {
2258 kdb_cpu_status();
2259 return 0;
2260 }
2261
2262 if (argc != 1)
2263 return KDB_ARGCOUNT;
2264
2265 diag = kdbgetularg(argv[1], &cpunum);
2266 if (diag)
2267 return diag;
2268
2269 /*
2270 * Validate cpunum
2271 */
2272 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2273 return KDB_BADCPUNUM;
2274
2275 dbg_switch_cpu = cpunum;
2276
2277 /*
2278 * Switch to other cpu
2279 */
2280 return KDB_CMD_CPU;
2281}
2282
2283/* The user may not realize that ps/bta with no parameters does not print idle
2284 * or sleeping system daemon processes, so tell them how many were suppressed.
2285 */
2286void kdb_ps_suppressed(void)
2287{
2288 int idle = 0, daemon = 0;
2289 unsigned long mask_I = kdb_task_state_string("I"),
2290 mask_M = kdb_task_state_string("M");
2291 unsigned long cpu;
2292 const struct task_struct *p, *g;
2293 for_each_online_cpu(cpu) {
2294 p = kdb_curr_task(cpu);
2295 if (kdb_task_state(p, mask_I))
2296 ++idle;
2297 }
2298 kdb_do_each_thread(g, p) {
2299 if (kdb_task_state(p, mask_M))
2300 ++daemon;
2301 } kdb_while_each_thread(g, p);
2302 if (idle || daemon) {
2303 if (idle)
2304 kdb_printf("%d idle process%s (state I)%s\n",
2305 idle, idle == 1 ? "" : "es",
2306 daemon ? " and " : "");
2307 if (daemon)
2308 kdb_printf("%d sleeping system daemon (state M) "
2309 "process%s", daemon,
2310 daemon == 1 ? "" : "es");
2311 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2312 }
2313}
2314
2315/*
2316 * kdb_ps - This function implements the 'ps' command which shows a
2317 * list of the active processes.
2318 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2319 */
2320void kdb_ps1(const struct task_struct *p)
2321{
2322 int cpu;
2323 unsigned long tmp;
2324
2325 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2326 return;
2327
2328 cpu = kdb_process_cpu(p);
2329 kdb_printf("0x%px %8d %8d %d %4d %c 0x%px %c%s\n",
2330 (void *)p, p->pid, p->parent->pid,
2331 kdb_task_has_cpu(p), kdb_process_cpu(p),
2332 kdb_task_state_char(p),
2333 (void *)(&p->thread),
2334 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2335 p->comm);
2336 if (kdb_task_has_cpu(p)) {
2337 if (!KDB_TSK(cpu)) {
2338 kdb_printf(" Error: no saved data for this cpu\n");
2339 } else {
2340 if (KDB_TSK(cpu) != p)
2341 kdb_printf(" Error: does not match running "
2342 "process table (0x%px)\n", KDB_TSK(cpu));
2343 }
2344 }
2345}
2346
2347static int kdb_ps(int argc, const char **argv)
2348{
2349 struct task_struct *g, *p;
2350 unsigned long mask, cpu;
2351
2352 if (argc == 0)
2353 kdb_ps_suppressed();
2354 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2355 (int)(2*sizeof(void *))+2, "Task Addr",
2356 (int)(2*sizeof(void *))+2, "Thread");
2357 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2358 /* Run the active tasks first */
2359 for_each_online_cpu(cpu) {
2360 if (KDB_FLAG(CMD_INTERRUPT))
2361 return 0;
2362 p = kdb_curr_task(cpu);
2363 if (kdb_task_state(p, mask))
2364 kdb_ps1(p);
2365 }
2366 kdb_printf("\n");
2367 /* Now the real tasks */
2368 kdb_do_each_thread(g, p) {
2369 if (KDB_FLAG(CMD_INTERRUPT))
2370 return 0;
2371 if (kdb_task_state(p, mask))
2372 kdb_ps1(p);
2373 } kdb_while_each_thread(g, p);
2374
2375 return 0;
2376}
2377
2378/*
2379 * kdb_pid - This function implements the 'pid' command which switches
2380 * the currently active process.
2381 * pid [<pid> | R]
2382 */
2383static int kdb_pid(int argc, const char **argv)
2384{
2385 struct task_struct *p;
2386 unsigned long val;
2387 int diag;
2388
2389 if (argc > 1)
2390 return KDB_ARGCOUNT;
2391
2392 if (argc) {
2393 if (strcmp(argv[1], "R") == 0) {
2394 p = KDB_TSK(kdb_initial_cpu);
2395 } else {
2396 diag = kdbgetularg(argv[1], &val);
2397 if (diag)
2398 return KDB_BADINT;
2399
2400 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2401 if (!p) {
2402 kdb_printf("No task with pid=%d\n", (pid_t)val);
2403 return 0;
2404 }
2405 }
2406 kdb_set_current_task(p);
2407 }
2408 kdb_printf("KDB current process is %s(pid=%d)\n",
2409 kdb_current_task->comm,
2410 kdb_current_task->pid);
2411
2412 return 0;
2413}
2414
2415static int kdb_kgdb(int argc, const char **argv)
2416{
2417 return KDB_CMD_KGDB;
2418}
2419
2420/*
2421 * kdb_help - This function implements the 'help' and '?' commands.
2422 */
2423static int kdb_help(int argc, const char **argv)
2424{
2425 kdbtab_t *kt;
2426 int i;
2427
2428 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2429 kdb_printf("-----------------------------"
2430 "-----------------------------\n");
2431 for_each_kdbcmd(kt, i) {
2432 char *space = "";
2433 if (KDB_FLAG(CMD_INTERRUPT))
2434 return 0;
2435 if (!kt->cmd_name)
2436 continue;
2437 if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2438 continue;
2439 if (strlen(kt->cmd_usage) > 20)
2440 space = "\n ";
2441 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2442 kt->cmd_usage, space, kt->cmd_help);
2443 }
2444 return 0;
2445}
2446
2447/*
2448 * kdb_kill - This function implements the 'kill' commands.
2449 */
2450static int kdb_kill(int argc, const char **argv)
2451{
2452 long sig, pid;
2453 char *endp;
2454 struct task_struct *p;
2455
2456 if (argc != 2)
2457 return KDB_ARGCOUNT;
2458
2459 sig = simple_strtol(argv[1], &endp, 0);
2460 if (*endp)
2461 return KDB_BADINT;
2462 if ((sig >= 0) || !valid_signal(-sig)) {
2463 kdb_printf("Invalid signal parameter.<-signal>\n");
2464 return 0;
2465 }
2466 sig = -sig;
2467
2468 pid = simple_strtol(argv[2], &endp, 0);
2469 if (*endp)
2470 return KDB_BADINT;
2471 if (pid <= 0) {
2472 kdb_printf("Process ID must be large than 0.\n");
2473 return 0;
2474 }
2475
2476 /* Find the process. */
2477 p = find_task_by_pid_ns(pid, &init_pid_ns);
2478 if (!p) {
2479 kdb_printf("The specified process isn't found.\n");
2480 return 0;
2481 }
2482 p = p->group_leader;
2483 kdb_send_sig(p, sig);
2484 return 0;
2485}
2486
2487/*
2488 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2489 * I cannot call that code directly from kdb, it has an unconditional
2490 * cli()/sti() and calls routines that take locks which can stop the debugger.
2491 */
2492static void kdb_sysinfo(struct sysinfo *val)
2493{
2494 u64 uptime = ktime_get_mono_fast_ns();
2495
2496 memset(val, 0, sizeof(*val));
2497 val->uptime = div_u64(uptime, NSEC_PER_SEC);
2498 val->loads[0] = avenrun[0];
2499 val->loads[1] = avenrun[1];
2500 val->loads[2] = avenrun[2];
2501 val->procs = nr_threads-1;
2502 si_meminfo(val);
2503
2504 return;
2505}
2506
2507/*
2508 * kdb_summary - This function implements the 'summary' command.
2509 */
2510static int kdb_summary(int argc, const char **argv)
2511{
2512 time64_t now;
2513 struct tm tm;
2514 struct sysinfo val;
2515
2516 if (argc)
2517 return KDB_ARGCOUNT;
2518
2519 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2520 kdb_printf("release %s\n", init_uts_ns.name.release);
2521 kdb_printf("version %s\n", init_uts_ns.name.version);
2522 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2523 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2524 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2525
2526 now = __ktime_get_real_seconds();
2527 time64_to_tm(now, 0, &tm);
2528 kdb_printf("date %04ld-%02d-%02d %02d:%02d:%02d "
2529 "tz_minuteswest %d\n",
2530 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2531 tm.tm_hour, tm.tm_min, tm.tm_sec,
2532 sys_tz.tz_minuteswest);
2533
2534 kdb_sysinfo(&val);
2535 kdb_printf("uptime ");
2536 if (val.uptime > (24*60*60)) {
2537 int days = val.uptime / (24*60*60);
2538 val.uptime %= (24*60*60);
2539 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2540 }
2541 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2542
2543 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2544 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2545 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2546 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2547
2548 /* Display in kilobytes */
2549#define K(x) ((x) << (PAGE_SHIFT - 10))
2550 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2551 "Buffers: %8lu kB\n",
2552 K(val.totalram), K(val.freeram), K(val.bufferram));
2553 return 0;
2554}
2555
2556/*
2557 * kdb_per_cpu - This function implements the 'per_cpu' command.
2558 */
2559static int kdb_per_cpu(int argc, const char **argv)
2560{
2561 char fmtstr[64];
2562 int cpu, diag, nextarg = 1;
2563 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2564
2565 if (argc < 1 || argc > 3)
2566 return KDB_ARGCOUNT;
2567
2568 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2569 if (diag)
2570 return diag;
2571
2572 if (argc >= 2) {
2573 diag = kdbgetularg(argv[2], &bytesperword);
2574 if (diag)
2575 return diag;
2576 }
2577 if (!bytesperword)
2578 bytesperword = KDB_WORD_SIZE;
2579 else if (bytesperword > KDB_WORD_SIZE)
2580 return KDB_BADWIDTH;
2581 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2582 if (argc >= 3) {
2583 diag = kdbgetularg(argv[3], &whichcpu);
2584 if (diag)
2585 return diag;
2586 if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
2587 kdb_printf("cpu %ld is not online\n", whichcpu);
2588 return KDB_BADCPUNUM;
2589 }
2590 }
2591
2592 /* Most architectures use __per_cpu_offset[cpu], some use
2593 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2594 */
2595#ifdef __per_cpu_offset
2596#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2597#else
2598#ifdef CONFIG_SMP
2599#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2600#else
2601#define KDB_PCU(cpu) 0
2602#endif
2603#endif
2604 for_each_online_cpu(cpu) {
2605 if (KDB_FLAG(CMD_INTERRUPT))
2606 return 0;
2607
2608 if (whichcpu != ~0UL && whichcpu != cpu)
2609 continue;
2610 addr = symaddr + KDB_PCU(cpu);
2611 diag = kdb_getword(&val, addr, bytesperword);
2612 if (diag) {
2613 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2614 "read, diag=%d\n", cpu, addr, diag);
2615 continue;
2616 }
2617 kdb_printf("%5d ", cpu);
2618 kdb_md_line(fmtstr, addr,
2619 bytesperword == KDB_WORD_SIZE,
2620 1, bytesperword, 1, 1, 0);
2621 }
2622#undef KDB_PCU
2623 return 0;
2624}
2625
2626/*
2627 * display help for the use of cmd | grep pattern
2628 */
2629static int kdb_grep_help(int argc, const char **argv)
2630{
2631 kdb_printf("Usage of cmd args | grep pattern:\n");
2632 kdb_printf(" Any command's output may be filtered through an ");
2633 kdb_printf("emulated 'pipe'.\n");
2634 kdb_printf(" 'grep' is just a key word.\n");
2635 kdb_printf(" The pattern may include a very limited set of "
2636 "metacharacters:\n");
2637 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2638 kdb_printf(" And if there are spaces in the pattern, you may "
2639 "quote it:\n");
2640 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2641 " or \"^pat tern$\"\n");
2642 return 0;
2643}
2644
2645/*
2646 * kdb_register_flags - This function is used to register a kernel
2647 * debugger command.
2648 * Inputs:
2649 * cmd Command name
2650 * func Function to execute the command
2651 * usage A simple usage string showing arguments
2652 * help A simple help string describing command
2653 * repeat Does the command auto repeat on enter?
2654 * Returns:
2655 * zero for success, one if a duplicate command.
2656 */
2657#define kdb_command_extend 50 /* arbitrary */
2658int kdb_register_flags(char *cmd,
2659 kdb_func_t func,
2660 char *usage,
2661 char *help,
2662 short minlen,
2663 kdb_cmdflags_t flags)
2664{
2665 int i;
2666 kdbtab_t *kp;
2667
2668 /*
2669 * Brute force method to determine duplicates
2670 */
2671 for_each_kdbcmd(kp, i) {
2672 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2673 kdb_printf("Duplicate kdb command registered: "
2674 "%s, func %px help %s\n", cmd, func, help);
2675 return 1;
2676 }
2677 }
2678
2679 /*
2680 * Insert command into first available location in table
2681 */
2682 for_each_kdbcmd(kp, i) {
2683 if (kp->cmd_name == NULL)
2684 break;
2685 }
2686
2687 if (i >= kdb_max_commands) {
2688 kdbtab_t *new = kmalloc_array(kdb_max_commands -
2689 KDB_BASE_CMD_MAX +
2690 kdb_command_extend,
2691 sizeof(*new),
2692 GFP_KDB);
2693 if (!new) {
2694 kdb_printf("Could not allocate new kdb_command "
2695 "table\n");
2696 return 1;
2697 }
2698 if (kdb_commands) {
2699 memcpy(new, kdb_commands,
2700 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2701 kfree(kdb_commands);
2702 }
2703 memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2704 kdb_command_extend * sizeof(*new));
2705 kdb_commands = new;
2706 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2707 kdb_max_commands += kdb_command_extend;
2708 }
2709
2710 kp->cmd_name = cmd;
2711 kp->cmd_func = func;
2712 kp->cmd_usage = usage;
2713 kp->cmd_help = help;
2714 kp->cmd_minlen = minlen;
2715 kp->cmd_flags = flags;
2716
2717 return 0;
2718}
2719EXPORT_SYMBOL_GPL(kdb_register_flags);
2720
2721
2722/*
2723 * kdb_register - Compatibility register function for commands that do
2724 * not need to specify a repeat state. Equivalent to
2725 * kdb_register_flags with flags set to 0.
2726 * Inputs:
2727 * cmd Command name
2728 * func Function to execute the command
2729 * usage A simple usage string showing arguments
2730 * help A simple help string describing command
2731 * Returns:
2732 * zero for success, one if a duplicate command.
2733 */
2734int kdb_register(char *cmd,
2735 kdb_func_t func,
2736 char *usage,
2737 char *help,
2738 short minlen)
2739{
2740 return kdb_register_flags(cmd, func, usage, help, minlen, 0);
2741}
2742EXPORT_SYMBOL_GPL(kdb_register);
2743
2744/*
2745 * kdb_unregister - This function is used to unregister a kernel
2746 * debugger command. It is generally called when a module which
2747 * implements kdb commands is unloaded.
2748 * Inputs:
2749 * cmd Command name
2750 * Returns:
2751 * zero for success, one command not registered.
2752 */
2753int kdb_unregister(char *cmd)
2754{
2755 int i;
2756 kdbtab_t *kp;
2757
2758 /*
2759 * find the command.
2760 */
2761 for_each_kdbcmd(kp, i) {
2762 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2763 kp->cmd_name = NULL;
2764 return 0;
2765 }
2766 }
2767
2768 /* Couldn't find it. */
2769 return 1;
2770}
2771EXPORT_SYMBOL_GPL(kdb_unregister);
2772
2773/* Initialize the kdb command table. */
2774static void __init kdb_inittab(void)
2775{
2776 int i;
2777 kdbtab_t *kp;
2778
2779 for_each_kdbcmd(kp, i)
2780 kp->cmd_name = NULL;
2781
2782 kdb_register_flags("md", kdb_md, "<vaddr>",
2783 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2784 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2785 kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2786 "Display Raw Memory", 0,
2787 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2788 kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2789 "Display Physical Memory", 0,
2790 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2791 kdb_register_flags("mds", kdb_md, "<vaddr>",
2792 "Display Memory Symbolically", 0,
2793 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2794 kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2795 "Modify Memory Contents", 0,
2796 KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2797 kdb_register_flags("go", kdb_go, "[<vaddr>]",
2798 "Continue Execution", 1,
2799 KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2800 kdb_register_flags("rd", kdb_rd, "",
2801 "Display Registers", 0,
2802 KDB_ENABLE_REG_READ);
2803 kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2804 "Modify Registers", 0,
2805 KDB_ENABLE_REG_WRITE);
2806 kdb_register_flags("ef", kdb_ef, "<vaddr>",
2807 "Display exception frame", 0,
2808 KDB_ENABLE_MEM_READ);
2809 kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2810 "Stack traceback", 1,
2811 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2812 kdb_register_flags("btp", kdb_bt, "<pid>",
2813 "Display stack for process <pid>", 0,
2814 KDB_ENABLE_INSPECT);
2815 kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2816 "Backtrace all processes matching state flag", 0,
2817 KDB_ENABLE_INSPECT);
2818 kdb_register_flags("btc", kdb_bt, "",
2819 "Backtrace current process on each cpu", 0,
2820 KDB_ENABLE_INSPECT);
2821 kdb_register_flags("btt", kdb_bt, "<vaddr>",
2822 "Backtrace process given its struct task address", 0,
2823 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2824 kdb_register_flags("env", kdb_env, "",
2825 "Show environment variables", 0,
2826 KDB_ENABLE_ALWAYS_SAFE);
2827 kdb_register_flags("set", kdb_set, "",
2828 "Set environment variables", 0,
2829 KDB_ENABLE_ALWAYS_SAFE);
2830 kdb_register_flags("help", kdb_help, "",
2831 "Display Help Message", 1,
2832 KDB_ENABLE_ALWAYS_SAFE);
2833 kdb_register_flags("?", kdb_help, "",
2834 "Display Help Message", 0,
2835 KDB_ENABLE_ALWAYS_SAFE);
2836 kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2837 "Switch to new cpu", 0,
2838 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2839 kdb_register_flags("kgdb", kdb_kgdb, "",
2840 "Enter kgdb mode", 0, 0);
2841 kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2842 "Display active task list", 0,
2843 KDB_ENABLE_INSPECT);
2844 kdb_register_flags("pid", kdb_pid, "<pidnum>",
2845 "Switch to another task", 0,
2846 KDB_ENABLE_INSPECT);
2847 kdb_register_flags("reboot", kdb_reboot, "",
2848 "Reboot the machine immediately", 0,
2849 KDB_ENABLE_REBOOT);
2850#if defined(CONFIG_MODULES)
2851 kdb_register_flags("lsmod", kdb_lsmod, "",
2852 "List loaded kernel modules", 0,
2853 KDB_ENABLE_INSPECT);
2854#endif
2855#if defined(CONFIG_MAGIC_SYSRQ)
2856 kdb_register_flags("sr", kdb_sr, "<key>",
2857 "Magic SysRq key", 0,
2858 KDB_ENABLE_ALWAYS_SAFE);
2859#endif
2860#if defined(CONFIG_PRINTK)
2861 kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2862 "Display syslog buffer", 0,
2863 KDB_ENABLE_ALWAYS_SAFE);
2864#endif
2865 if (arch_kgdb_ops.enable_nmi) {
2866 kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2867 "Disable NMI entry to KDB", 0,
2868 KDB_ENABLE_ALWAYS_SAFE);
2869 }
2870 kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2871 "Define a set of commands, down to endefcmd", 0,
2872 KDB_ENABLE_ALWAYS_SAFE);
2873 kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2874 "Send a signal to a process", 0,
2875 KDB_ENABLE_SIGNAL);
2876 kdb_register_flags("summary", kdb_summary, "",
2877 "Summarize the system", 4,
2878 KDB_ENABLE_ALWAYS_SAFE);
2879 kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2880 "Display per_cpu variables", 3,
2881 KDB_ENABLE_MEM_READ);
2882 kdb_register_flags("grephelp", kdb_grep_help, "",
2883 "Display help on | grep", 0,
2884 KDB_ENABLE_ALWAYS_SAFE);
2885}
2886
2887/* Execute any commands defined in kdb_cmds. */
2888static void __init kdb_cmd_init(void)
2889{
2890 int i, diag;
2891 for (i = 0; kdb_cmds[i]; ++i) {
2892 diag = kdb_parse(kdb_cmds[i]);
2893 if (diag)
2894 kdb_printf("kdb command %s failed, kdb diag %d\n",
2895 kdb_cmds[i], diag);
2896 }
2897 if (defcmd_in_progress) {
2898 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2899 kdb_parse("endefcmd");
2900 }
2901}
2902
2903/* Initialize kdb_printf, breakpoint tables and kdb state */
2904void __init kdb_init(int lvl)
2905{
2906 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2907 int i;
2908
2909 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2910 return;
2911 for (i = kdb_init_lvl; i < lvl; i++) {
2912 switch (i) {
2913 case KDB_NOT_INITIALIZED:
2914 kdb_inittab(); /* Initialize Command Table */
2915 kdb_initbptab(); /* Initialize Breakpoints */
2916 break;
2917 case KDB_INIT_EARLY:
2918 kdb_cmd_init(); /* Build kdb_cmds tables */
2919 break;
2920 }
2921 }
2922 kdb_init_lvl = lvl;
2923}
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/kernel.h>
17#include <linux/kmsg_dump.h>
18#include <linux/reboot.h>
19#include <linux/sched.h>
20#include <linux/sysrq.h>
21#include <linux/smp.h>
22#include <linux/utsname.h>
23#include <linux/vmalloc.h>
24#include <linux/module.h>
25#include <linux/mm.h>
26#include <linux/init.h>
27#include <linux/kallsyms.h>
28#include <linux/kgdb.h>
29#include <linux/kdb.h>
30#include <linux/notifier.h>
31#include <linux/interrupt.h>
32#include <linux/delay.h>
33#include <linux/nmi.h>
34#include <linux/time.h>
35#include <linux/ptrace.h>
36#include <linux/sysctl.h>
37#include <linux/cpu.h>
38#include <linux/kdebug.h>
39#include <linux/proc_fs.h>
40#include <linux/uaccess.h>
41#include <linux/slab.h>
42#include "kdb_private.h"
43
44#define GREP_LEN 256
45char kdb_grep_string[GREP_LEN];
46int kdb_grepping_flag;
47EXPORT_SYMBOL(kdb_grepping_flag);
48int kdb_grep_leading;
49int kdb_grep_trailing;
50
51/*
52 * Kernel debugger state flags
53 */
54int kdb_flags;
55atomic_t kdb_event;
56
57/*
58 * kdb_lock protects updates to kdb_initial_cpu. Used to
59 * single thread processors through the kernel debugger.
60 */
61int kdb_initial_cpu = -1; /* cpu number that owns kdb */
62int kdb_nextline = 1;
63int kdb_state; /* General KDB state */
64
65struct task_struct *kdb_current_task;
66EXPORT_SYMBOL(kdb_current_task);
67struct pt_regs *kdb_current_regs;
68
69const char *kdb_diemsg;
70static int kdb_go_count;
71#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
72static unsigned int kdb_continue_catastrophic =
73 CONFIG_KDB_CONTINUE_CATASTROPHIC;
74#else
75static unsigned int kdb_continue_catastrophic;
76#endif
77
78/* kdb_commands describes the available commands. */
79static kdbtab_t *kdb_commands;
80#define KDB_BASE_CMD_MAX 50
81static int kdb_max_commands = KDB_BASE_CMD_MAX;
82static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
83#define for_each_kdbcmd(cmd, num) \
84 for ((cmd) = kdb_base_commands, (num) = 0; \
85 num < kdb_max_commands; \
86 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
87
88typedef struct _kdbmsg {
89 int km_diag; /* kdb diagnostic */
90 char *km_msg; /* Corresponding message text */
91} kdbmsg_t;
92
93#define KDBMSG(msgnum, text) \
94 { KDB_##msgnum, text }
95
96static kdbmsg_t kdbmsgs[] = {
97 KDBMSG(NOTFOUND, "Command Not Found"),
98 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
99 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
100 "8 is only allowed on 64 bit systems"),
101 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
102 KDBMSG(NOTENV, "Cannot find environment variable"),
103 KDBMSG(NOENVVALUE, "Environment variable should have value"),
104 KDBMSG(NOTIMP, "Command not implemented"),
105 KDBMSG(ENVFULL, "Environment full"),
106 KDBMSG(ENVBUFFULL, "Environment buffer full"),
107 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
108#ifdef CONFIG_CPU_XSCALE
109 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
110#else
111 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
112#endif
113 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
114 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
115 KDBMSG(BADMODE, "Invalid IDMODE"),
116 KDBMSG(BADINT, "Illegal numeric value"),
117 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
118 KDBMSG(BADREG, "Invalid register name"),
119 KDBMSG(BADCPUNUM, "Invalid cpu number"),
120 KDBMSG(BADLENGTH, "Invalid length field"),
121 KDBMSG(NOBP, "No Breakpoint exists"),
122 KDBMSG(BADADDR, "Invalid address"),
123};
124#undef KDBMSG
125
126static const int __nkdb_err = sizeof(kdbmsgs) / sizeof(kdbmsg_t);
127
128
129/*
130 * Initial environment. This is all kept static and local to
131 * this file. We don't want to rely on the memory allocation
132 * mechanisms in the kernel, so we use a very limited allocate-only
133 * heap for new and altered environment variables. The entire
134 * environment is limited to a fixed number of entries (add more
135 * to __env[] if required) and a fixed amount of heap (add more to
136 * KDB_ENVBUFSIZE if required).
137 */
138
139static char *__env[] = {
140#if defined(CONFIG_SMP)
141 "PROMPT=[%d]kdb> ",
142 "MOREPROMPT=[%d]more> ",
143#else
144 "PROMPT=kdb> ",
145 "MOREPROMPT=more> ",
146#endif
147 "RADIX=16",
148 "MDCOUNT=8", /* lines of md output */
149 KDB_PLATFORM_ENV,
150 "DTABCOUNT=30",
151 "NOSECT=1",
152 (char *)0,
153 (char *)0,
154 (char *)0,
155 (char *)0,
156 (char *)0,
157 (char *)0,
158 (char *)0,
159 (char *)0,
160 (char *)0,
161 (char *)0,
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175 (char *)0,
176};
177
178static const int __nenv = (sizeof(__env) / sizeof(char *));
179
180struct task_struct *kdb_curr_task(int cpu)
181{
182 struct task_struct *p = curr_task(cpu);
183#ifdef _TIF_MCA_INIT
184 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
185 p = krp->p;
186#endif
187 return p;
188}
189
190/*
191 * kdbgetenv - This function will return the character string value of
192 * an environment variable.
193 * Parameters:
194 * match A character string representing an environment variable.
195 * Returns:
196 * NULL No environment variable matches 'match'
197 * char* Pointer to string value of environment variable.
198 */
199char *kdbgetenv(const char *match)
200{
201 char **ep = __env;
202 int matchlen = strlen(match);
203 int i;
204
205 for (i = 0; i < __nenv; i++) {
206 char *e = *ep++;
207
208 if (!e)
209 continue;
210
211 if ((strncmp(match, e, matchlen) == 0)
212 && ((e[matchlen] == '\0')
213 || (e[matchlen] == '='))) {
214 char *cp = strchr(e, '=');
215 return cp ? ++cp : "";
216 }
217 }
218 return NULL;
219}
220
221/*
222 * kdballocenv - This function is used to allocate bytes for
223 * environment entries.
224 * Parameters:
225 * match A character string representing a numeric value
226 * Outputs:
227 * *value the unsigned long representation of the env variable 'match'
228 * Returns:
229 * Zero on success, a kdb diagnostic on failure.
230 * Remarks:
231 * We use a static environment buffer (envbuffer) to hold the values
232 * of dynamically generated environment variables (see kdb_set). Buffer
233 * space once allocated is never free'd, so over time, the amount of space
234 * (currently 512 bytes) will be exhausted if env variables are changed
235 * frequently.
236 */
237static char *kdballocenv(size_t bytes)
238{
239#define KDB_ENVBUFSIZE 512
240 static char envbuffer[KDB_ENVBUFSIZE];
241 static int envbufsize;
242 char *ep = NULL;
243
244 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
245 ep = &envbuffer[envbufsize];
246 envbufsize += bytes;
247 }
248 return ep;
249}
250
251/*
252 * kdbgetulenv - This function will return the value of an unsigned
253 * long-valued environment variable.
254 * Parameters:
255 * match A character string representing a numeric value
256 * Outputs:
257 * *value the unsigned long represntation of the env variable 'match'
258 * Returns:
259 * Zero on success, a kdb diagnostic on failure.
260 */
261static int kdbgetulenv(const char *match, unsigned long *value)
262{
263 char *ep;
264
265 ep = kdbgetenv(match);
266 if (!ep)
267 return KDB_NOTENV;
268 if (strlen(ep) == 0)
269 return KDB_NOENVVALUE;
270
271 *value = simple_strtoul(ep, NULL, 0);
272
273 return 0;
274}
275
276/*
277 * kdbgetintenv - This function will return the value of an
278 * integer-valued environment variable.
279 * Parameters:
280 * match A character string representing an integer-valued env variable
281 * Outputs:
282 * *value the integer representation of the environment variable 'match'
283 * Returns:
284 * Zero on success, a kdb diagnostic on failure.
285 */
286int kdbgetintenv(const char *match, int *value)
287{
288 unsigned long val;
289 int diag;
290
291 diag = kdbgetulenv(match, &val);
292 if (!diag)
293 *value = (int) val;
294 return diag;
295}
296
297/*
298 * kdbgetularg - This function will convert a numeric string into an
299 * unsigned long value.
300 * Parameters:
301 * arg A character string representing a numeric value
302 * Outputs:
303 * *value the unsigned long represntation of arg.
304 * Returns:
305 * Zero on success, a kdb diagnostic on failure.
306 */
307int kdbgetularg(const char *arg, unsigned long *value)
308{
309 char *endp;
310 unsigned long val;
311
312 val = simple_strtoul(arg, &endp, 0);
313
314 if (endp == arg) {
315 /*
316 * Also try base 16, for us folks too lazy to type the
317 * leading 0x...
318 */
319 val = simple_strtoul(arg, &endp, 16);
320 if (endp == arg)
321 return KDB_BADINT;
322 }
323
324 *value = val;
325
326 return 0;
327}
328
329int kdbgetu64arg(const char *arg, u64 *value)
330{
331 char *endp;
332 u64 val;
333
334 val = simple_strtoull(arg, &endp, 0);
335
336 if (endp == arg) {
337
338 val = simple_strtoull(arg, &endp, 16);
339 if (endp == arg)
340 return KDB_BADINT;
341 }
342
343 *value = val;
344
345 return 0;
346}
347
348/*
349 * kdb_set - This function implements the 'set' command. Alter an
350 * existing environment variable or create a new one.
351 */
352int kdb_set(int argc, const char **argv)
353{
354 int i;
355 char *ep;
356 size_t varlen, vallen;
357
358 /*
359 * we can be invoked two ways:
360 * set var=value argv[1]="var", argv[2]="value"
361 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
362 * - if the latter, shift 'em down.
363 */
364 if (argc == 3) {
365 argv[2] = argv[3];
366 argc--;
367 }
368
369 if (argc != 2)
370 return KDB_ARGCOUNT;
371
372 /*
373 * Check for internal variables
374 */
375 if (strcmp(argv[1], "KDBDEBUG") == 0) {
376 unsigned int debugflags;
377 char *cp;
378
379 debugflags = simple_strtoul(argv[2], &cp, 0);
380 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
381 kdb_printf("kdb: illegal debug flags '%s'\n",
382 argv[2]);
383 return 0;
384 }
385 kdb_flags = (kdb_flags &
386 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
387 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
388
389 return 0;
390 }
391
392 /*
393 * Tokenizer squashed the '=' sign. argv[1] is variable
394 * name, argv[2] = value.
395 */
396 varlen = strlen(argv[1]);
397 vallen = strlen(argv[2]);
398 ep = kdballocenv(varlen + vallen + 2);
399 if (ep == (char *)0)
400 return KDB_ENVBUFFULL;
401
402 sprintf(ep, "%s=%s", argv[1], argv[2]);
403
404 ep[varlen+vallen+1] = '\0';
405
406 for (i = 0; i < __nenv; i++) {
407 if (__env[i]
408 && ((strncmp(__env[i], argv[1], varlen) == 0)
409 && ((__env[i][varlen] == '\0')
410 || (__env[i][varlen] == '=')))) {
411 __env[i] = ep;
412 return 0;
413 }
414 }
415
416 /*
417 * Wasn't existing variable. Fit into slot.
418 */
419 for (i = 0; i < __nenv-1; i++) {
420 if (__env[i] == (char *)0) {
421 __env[i] = ep;
422 return 0;
423 }
424 }
425
426 return KDB_ENVFULL;
427}
428
429static int kdb_check_regs(void)
430{
431 if (!kdb_current_regs) {
432 kdb_printf("No current kdb registers."
433 " You may need to select another task\n");
434 return KDB_BADREG;
435 }
436 return 0;
437}
438
439/*
440 * kdbgetaddrarg - This function is responsible for parsing an
441 * address-expression and returning the value of the expression,
442 * symbol name, and offset to the caller.
443 *
444 * The argument may consist of a numeric value (decimal or
445 * hexidecimal), a symbol name, a register name (preceded by the
446 * percent sign), an environment variable with a numeric value
447 * (preceded by a dollar sign) or a simple arithmetic expression
448 * consisting of a symbol name, +/-, and a numeric constant value
449 * (offset).
450 * Parameters:
451 * argc - count of arguments in argv
452 * argv - argument vector
453 * *nextarg - index to next unparsed argument in argv[]
454 * regs - Register state at time of KDB entry
455 * Outputs:
456 * *value - receives the value of the address-expression
457 * *offset - receives the offset specified, if any
458 * *name - receives the symbol name, if any
459 * *nextarg - index to next unparsed argument in argv[]
460 * Returns:
461 * zero is returned on success, a kdb diagnostic code is
462 * returned on error.
463 */
464int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
465 unsigned long *value, long *offset,
466 char **name)
467{
468 unsigned long addr;
469 unsigned long off = 0;
470 int positive;
471 int diag;
472 int found = 0;
473 char *symname;
474 char symbol = '\0';
475 char *cp;
476 kdb_symtab_t symtab;
477
478 /*
479 * Process arguments which follow the following syntax:
480 *
481 * symbol | numeric-address [+/- numeric-offset]
482 * %register
483 * $environment-variable
484 */
485
486 if (*nextarg > argc)
487 return KDB_ARGCOUNT;
488
489 symname = (char *)argv[*nextarg];
490
491 /*
492 * If there is no whitespace between the symbol
493 * or address and the '+' or '-' symbols, we
494 * remember the character and replace it with a
495 * null so the symbol/value can be properly parsed
496 */
497 cp = strpbrk(symname, "+-");
498 if (cp != NULL) {
499 symbol = *cp;
500 *cp++ = '\0';
501 }
502
503 if (symname[0] == '$') {
504 diag = kdbgetulenv(&symname[1], &addr);
505 if (diag)
506 return diag;
507 } else if (symname[0] == '%') {
508 diag = kdb_check_regs();
509 if (diag)
510 return diag;
511 /* Implement register values with % at a later time as it is
512 * arch optional.
513 */
514 return KDB_NOTIMP;
515 } else {
516 found = kdbgetsymval(symname, &symtab);
517 if (found) {
518 addr = symtab.sym_start;
519 } else {
520 diag = kdbgetularg(argv[*nextarg], &addr);
521 if (diag)
522 return diag;
523 }
524 }
525
526 if (!found)
527 found = kdbnearsym(addr, &symtab);
528
529 (*nextarg)++;
530
531 if (name)
532 *name = symname;
533 if (value)
534 *value = addr;
535 if (offset && name && *name)
536 *offset = addr - symtab.sym_start;
537
538 if ((*nextarg > argc)
539 && (symbol == '\0'))
540 return 0;
541
542 /*
543 * check for +/- and offset
544 */
545
546 if (symbol == '\0') {
547 if ((argv[*nextarg][0] != '+')
548 && (argv[*nextarg][0] != '-')) {
549 /*
550 * Not our argument. Return.
551 */
552 return 0;
553 } else {
554 positive = (argv[*nextarg][0] == '+');
555 (*nextarg)++;
556 }
557 } else
558 positive = (symbol == '+');
559
560 /*
561 * Now there must be an offset!
562 */
563 if ((*nextarg > argc)
564 && (symbol == '\0')) {
565 return KDB_INVADDRFMT;
566 }
567
568 if (!symbol) {
569 cp = (char *)argv[*nextarg];
570 (*nextarg)++;
571 }
572
573 diag = kdbgetularg(cp, &off);
574 if (diag)
575 return diag;
576
577 if (!positive)
578 off = -off;
579
580 if (offset)
581 *offset += off;
582
583 if (value)
584 *value += off;
585
586 return 0;
587}
588
589static void kdb_cmderror(int diag)
590{
591 int i;
592
593 if (diag >= 0) {
594 kdb_printf("no error detected (diagnostic is %d)\n", diag);
595 return;
596 }
597
598 for (i = 0; i < __nkdb_err; i++) {
599 if (kdbmsgs[i].km_diag == diag) {
600 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
601 return;
602 }
603 }
604
605 kdb_printf("Unknown diag %d\n", -diag);
606}
607
608/*
609 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
610 * command which defines one command as a set of other commands,
611 * terminated by endefcmd. kdb_defcmd processes the initial
612 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
613 * the following commands until 'endefcmd'.
614 * Inputs:
615 * argc argument count
616 * argv argument vector
617 * Returns:
618 * zero for success, a kdb diagnostic if error
619 */
620struct defcmd_set {
621 int count;
622 int usable;
623 char *name;
624 char *usage;
625 char *help;
626 char **command;
627};
628static struct defcmd_set *defcmd_set;
629static int defcmd_set_count;
630static int defcmd_in_progress;
631
632/* Forward references */
633static int kdb_exec_defcmd(int argc, const char **argv);
634
635static int kdb_defcmd2(const char *cmdstr, const char *argv0)
636{
637 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
638 char **save_command = s->command;
639 if (strcmp(argv0, "endefcmd") == 0) {
640 defcmd_in_progress = 0;
641 if (!s->count)
642 s->usable = 0;
643 if (s->usable)
644 kdb_register(s->name, kdb_exec_defcmd,
645 s->usage, s->help, 0);
646 return 0;
647 }
648 if (!s->usable)
649 return KDB_NOTIMP;
650 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
651 if (!s->command) {
652 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
653 cmdstr);
654 s->usable = 0;
655 return KDB_NOTIMP;
656 }
657 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
658 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
659 kfree(save_command);
660 return 0;
661}
662
663static int kdb_defcmd(int argc, const char **argv)
664{
665 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
666 if (defcmd_in_progress) {
667 kdb_printf("kdb: nested defcmd detected, assuming missing "
668 "endefcmd\n");
669 kdb_defcmd2("endefcmd", "endefcmd");
670 }
671 if (argc == 0) {
672 int i;
673 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
674 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
675 s->usage, s->help);
676 for (i = 0; i < s->count; ++i)
677 kdb_printf("%s", s->command[i]);
678 kdb_printf("endefcmd\n");
679 }
680 return 0;
681 }
682 if (argc != 3)
683 return KDB_ARGCOUNT;
684 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
685 GFP_KDB);
686 if (!defcmd_set) {
687 kdb_printf("Could not allocate new defcmd_set entry for %s\n",
688 argv[1]);
689 defcmd_set = save_defcmd_set;
690 return KDB_NOTIMP;
691 }
692 memcpy(defcmd_set, save_defcmd_set,
693 defcmd_set_count * sizeof(*defcmd_set));
694 kfree(save_defcmd_set);
695 s = defcmd_set + defcmd_set_count;
696 memset(s, 0, sizeof(*s));
697 s->usable = 1;
698 s->name = kdb_strdup(argv[1], GFP_KDB);
699 s->usage = kdb_strdup(argv[2], GFP_KDB);
700 s->help = kdb_strdup(argv[3], GFP_KDB);
701 if (s->usage[0] == '"') {
702 strcpy(s->usage, s->usage+1);
703 s->usage[strlen(s->usage)-1] = '\0';
704 }
705 if (s->help[0] == '"') {
706 strcpy(s->help, s->help+1);
707 s->help[strlen(s->help)-1] = '\0';
708 }
709 ++defcmd_set_count;
710 defcmd_in_progress = 1;
711 return 0;
712}
713
714/*
715 * kdb_exec_defcmd - Execute the set of commands associated with this
716 * defcmd name.
717 * Inputs:
718 * argc argument count
719 * argv argument vector
720 * Returns:
721 * zero for success, a kdb diagnostic if error
722 */
723static int kdb_exec_defcmd(int argc, const char **argv)
724{
725 int i, ret;
726 struct defcmd_set *s;
727 if (argc != 0)
728 return KDB_ARGCOUNT;
729 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
730 if (strcmp(s->name, argv[0]) == 0)
731 break;
732 }
733 if (i == defcmd_set_count) {
734 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
735 argv[0]);
736 return KDB_NOTIMP;
737 }
738 for (i = 0; i < s->count; ++i) {
739 /* Recursive use of kdb_parse, do not use argv after
740 * this point */
741 argv = NULL;
742 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
743 ret = kdb_parse(s->command[i]);
744 if (ret)
745 return ret;
746 }
747 return 0;
748}
749
750/* Command history */
751#define KDB_CMD_HISTORY_COUNT 32
752#define CMD_BUFLEN 200 /* kdb_printf: max printline
753 * size == 256 */
754static unsigned int cmd_head, cmd_tail;
755static unsigned int cmdptr;
756static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
757static char cmd_cur[CMD_BUFLEN];
758
759/*
760 * The "str" argument may point to something like | grep xyz
761 */
762static void parse_grep(const char *str)
763{
764 int len;
765 char *cp = (char *)str, *cp2;
766
767 /* sanity check: we should have been called with the \ first */
768 if (*cp != '|')
769 return;
770 cp++;
771 while (isspace(*cp))
772 cp++;
773 if (strncmp(cp, "grep ", 5)) {
774 kdb_printf("invalid 'pipe', see grephelp\n");
775 return;
776 }
777 cp += 5;
778 while (isspace(*cp))
779 cp++;
780 cp2 = strchr(cp, '\n');
781 if (cp2)
782 *cp2 = '\0'; /* remove the trailing newline */
783 len = strlen(cp);
784 if (len == 0) {
785 kdb_printf("invalid 'pipe', see grephelp\n");
786 return;
787 }
788 /* now cp points to a nonzero length search string */
789 if (*cp == '"') {
790 /* allow it be "x y z" by removing the "'s - there must
791 be two of them */
792 cp++;
793 cp2 = strchr(cp, '"');
794 if (!cp2) {
795 kdb_printf("invalid quoted string, see grephelp\n");
796 return;
797 }
798 *cp2 = '\0'; /* end the string where the 2nd " was */
799 }
800 kdb_grep_leading = 0;
801 if (*cp == '^') {
802 kdb_grep_leading = 1;
803 cp++;
804 }
805 len = strlen(cp);
806 kdb_grep_trailing = 0;
807 if (*(cp+len-1) == '$') {
808 kdb_grep_trailing = 1;
809 *(cp+len-1) = '\0';
810 }
811 len = strlen(cp);
812 if (!len)
813 return;
814 if (len >= GREP_LEN) {
815 kdb_printf("search string too long\n");
816 return;
817 }
818 strcpy(kdb_grep_string, cp);
819 kdb_grepping_flag++;
820 return;
821}
822
823/*
824 * kdb_parse - Parse the command line, search the command table for a
825 * matching command and invoke the command function. This
826 * function may be called recursively, if it is, the second call
827 * will overwrite argv and cbuf. It is the caller's
828 * responsibility to save their argv if they recursively call
829 * kdb_parse().
830 * Parameters:
831 * cmdstr The input command line to be parsed.
832 * regs The registers at the time kdb was entered.
833 * Returns:
834 * Zero for success, a kdb diagnostic if failure.
835 * Remarks:
836 * Limited to 20 tokens.
837 *
838 * Real rudimentary tokenization. Basically only whitespace
839 * is considered a token delimeter (but special consideration
840 * is taken of the '=' sign as used by the 'set' command).
841 *
842 * The algorithm used to tokenize the input string relies on
843 * there being at least one whitespace (or otherwise useless)
844 * character between tokens as the character immediately following
845 * the token is altered in-place to a null-byte to terminate the
846 * token string.
847 */
848
849#define MAXARGC 20
850
851int kdb_parse(const char *cmdstr)
852{
853 static char *argv[MAXARGC];
854 static int argc;
855 static char cbuf[CMD_BUFLEN+2];
856 char *cp;
857 char *cpp, quoted;
858 kdbtab_t *tp;
859 int i, escaped, ignore_errors = 0, check_grep;
860
861 /*
862 * First tokenize the command string.
863 */
864 cp = (char *)cmdstr;
865 kdb_grepping_flag = check_grep = 0;
866
867 if (KDB_FLAG(CMD_INTERRUPT)) {
868 /* Previous command was interrupted, newline must not
869 * repeat the command */
870 KDB_FLAG_CLEAR(CMD_INTERRUPT);
871 KDB_STATE_SET(PAGER);
872 argc = 0; /* no repeat */
873 }
874
875 if (*cp != '\n' && *cp != '\0') {
876 argc = 0;
877 cpp = cbuf;
878 while (*cp) {
879 /* skip whitespace */
880 while (isspace(*cp))
881 cp++;
882 if ((*cp == '\0') || (*cp == '\n') ||
883 (*cp == '#' && !defcmd_in_progress))
884 break;
885 /* special case: check for | grep pattern */
886 if (*cp == '|') {
887 check_grep++;
888 break;
889 }
890 if (cpp >= cbuf + CMD_BUFLEN) {
891 kdb_printf("kdb_parse: command buffer "
892 "overflow, command ignored\n%s\n",
893 cmdstr);
894 return KDB_NOTFOUND;
895 }
896 if (argc >= MAXARGC - 1) {
897 kdb_printf("kdb_parse: too many arguments, "
898 "command ignored\n%s\n", cmdstr);
899 return KDB_NOTFOUND;
900 }
901 argv[argc++] = cpp;
902 escaped = 0;
903 quoted = '\0';
904 /* Copy to next unquoted and unescaped
905 * whitespace or '=' */
906 while (*cp && *cp != '\n' &&
907 (escaped || quoted || !isspace(*cp))) {
908 if (cpp >= cbuf + CMD_BUFLEN)
909 break;
910 if (escaped) {
911 escaped = 0;
912 *cpp++ = *cp++;
913 continue;
914 }
915 if (*cp == '\\') {
916 escaped = 1;
917 ++cp;
918 continue;
919 }
920 if (*cp == quoted)
921 quoted = '\0';
922 else if (*cp == '\'' || *cp == '"')
923 quoted = *cp;
924 *cpp = *cp++;
925 if (*cpp == '=' && !quoted)
926 break;
927 ++cpp;
928 }
929 *cpp++ = '\0'; /* Squash a ws or '=' character */
930 }
931 }
932 if (!argc)
933 return 0;
934 if (check_grep)
935 parse_grep(cp);
936 if (defcmd_in_progress) {
937 int result = kdb_defcmd2(cmdstr, argv[0]);
938 if (!defcmd_in_progress) {
939 argc = 0; /* avoid repeat on endefcmd */
940 *(argv[0]) = '\0';
941 }
942 return result;
943 }
944 if (argv[0][0] == '-' && argv[0][1] &&
945 (argv[0][1] < '0' || argv[0][1] > '9')) {
946 ignore_errors = 1;
947 ++argv[0];
948 }
949
950 for_each_kdbcmd(tp, i) {
951 if (tp->cmd_name) {
952 /*
953 * If this command is allowed to be abbreviated,
954 * check to see if this is it.
955 */
956
957 if (tp->cmd_minlen
958 && (strlen(argv[0]) <= tp->cmd_minlen)) {
959 if (strncmp(argv[0],
960 tp->cmd_name,
961 tp->cmd_minlen) == 0) {
962 break;
963 }
964 }
965
966 if (strcmp(argv[0], tp->cmd_name) == 0)
967 break;
968 }
969 }
970
971 /*
972 * If we don't find a command by this name, see if the first
973 * few characters of this match any of the known commands.
974 * e.g., md1c20 should match md.
975 */
976 if (i == kdb_max_commands) {
977 for_each_kdbcmd(tp, i) {
978 if (tp->cmd_name) {
979 if (strncmp(argv[0],
980 tp->cmd_name,
981 strlen(tp->cmd_name)) == 0) {
982 break;
983 }
984 }
985 }
986 }
987
988 if (i < kdb_max_commands) {
989 int result;
990 KDB_STATE_SET(CMD);
991 result = (*tp->cmd_func)(argc-1, (const char **)argv);
992 if (result && ignore_errors && result > KDB_CMD_GO)
993 result = 0;
994 KDB_STATE_CLEAR(CMD);
995 switch (tp->cmd_repeat) {
996 case KDB_REPEAT_NONE:
997 argc = 0;
998 if (argv[0])
999 *(argv[0]) = '\0';
1000 break;
1001 case KDB_REPEAT_NO_ARGS:
1002 argc = 1;
1003 if (argv[1])
1004 *(argv[1]) = '\0';
1005 break;
1006 case KDB_REPEAT_WITH_ARGS:
1007 break;
1008 }
1009 return result;
1010 }
1011
1012 /*
1013 * If the input with which we were presented does not
1014 * map to an existing command, attempt to parse it as an
1015 * address argument and display the result. Useful for
1016 * obtaining the address of a variable, or the nearest symbol
1017 * to an address contained in a register.
1018 */
1019 {
1020 unsigned long value;
1021 char *name = NULL;
1022 long offset;
1023 int nextarg = 0;
1024
1025 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1026 &value, &offset, &name)) {
1027 return KDB_NOTFOUND;
1028 }
1029
1030 kdb_printf("%s = ", argv[0]);
1031 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1032 kdb_printf("\n");
1033 return 0;
1034 }
1035}
1036
1037
1038static int handle_ctrl_cmd(char *cmd)
1039{
1040#define CTRL_P 16
1041#define CTRL_N 14
1042
1043 /* initial situation */
1044 if (cmd_head == cmd_tail)
1045 return 0;
1046 switch (*cmd) {
1047 case CTRL_P:
1048 if (cmdptr != cmd_tail)
1049 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1050 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1051 return 1;
1052 case CTRL_N:
1053 if (cmdptr != cmd_head)
1054 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1055 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1056 return 1;
1057 }
1058 return 0;
1059}
1060
1061/*
1062 * kdb_reboot - This function implements the 'reboot' command. Reboot
1063 * the system immediately, or loop for ever on failure.
1064 */
1065static int kdb_reboot(int argc, const char **argv)
1066{
1067 emergency_restart();
1068 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1069 while (1)
1070 cpu_relax();
1071 /* NOTREACHED */
1072 return 0;
1073}
1074
1075static void kdb_dumpregs(struct pt_regs *regs)
1076{
1077 int old_lvl = console_loglevel;
1078 console_loglevel = 15;
1079 kdb_trap_printk++;
1080 show_regs(regs);
1081 kdb_trap_printk--;
1082 kdb_printf("\n");
1083 console_loglevel = old_lvl;
1084}
1085
1086void kdb_set_current_task(struct task_struct *p)
1087{
1088 kdb_current_task = p;
1089
1090 if (kdb_task_has_cpu(p)) {
1091 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1092 return;
1093 }
1094 kdb_current_regs = NULL;
1095}
1096
1097/*
1098 * kdb_local - The main code for kdb. This routine is invoked on a
1099 * specific processor, it is not global. The main kdb() routine
1100 * ensures that only one processor at a time is in this routine.
1101 * This code is called with the real reason code on the first
1102 * entry to a kdb session, thereafter it is called with reason
1103 * SWITCH, even if the user goes back to the original cpu.
1104 * Inputs:
1105 * reason The reason KDB was invoked
1106 * error The hardware-defined error code
1107 * regs The exception frame at time of fault/breakpoint.
1108 * db_result Result code from the break or debug point.
1109 * Returns:
1110 * 0 KDB was invoked for an event which it wasn't responsible
1111 * 1 KDB handled the event for which it was invoked.
1112 * KDB_CMD_GO User typed 'go'.
1113 * KDB_CMD_CPU User switched to another cpu.
1114 * KDB_CMD_SS Single step.
1115 * KDB_CMD_SSB Single step until branch.
1116 */
1117static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1118 kdb_dbtrap_t db_result)
1119{
1120 char *cmdbuf;
1121 int diag;
1122 struct task_struct *kdb_current =
1123 kdb_curr_task(raw_smp_processor_id());
1124
1125 KDB_DEBUG_STATE("kdb_local 1", reason);
1126 kdb_go_count = 0;
1127 if (reason == KDB_REASON_DEBUG) {
1128 /* special case below */
1129 } else {
1130 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1131 kdb_current, kdb_current ? kdb_current->pid : 0);
1132#if defined(CONFIG_SMP)
1133 kdb_printf("on processor %d ", raw_smp_processor_id());
1134#endif
1135 }
1136
1137 switch (reason) {
1138 case KDB_REASON_DEBUG:
1139 {
1140 /*
1141 * If re-entering kdb after a single step
1142 * command, don't print the message.
1143 */
1144 switch (db_result) {
1145 case KDB_DB_BPT:
1146 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1147 kdb_current, kdb_current->pid);
1148#if defined(CONFIG_SMP)
1149 kdb_printf("on processor %d ", raw_smp_processor_id());
1150#endif
1151 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1152 instruction_pointer(regs));
1153 break;
1154 case KDB_DB_SSB:
1155 /*
1156 * In the midst of ssb command. Just return.
1157 */
1158 KDB_DEBUG_STATE("kdb_local 3", reason);
1159 return KDB_CMD_SSB; /* Continue with SSB command */
1160
1161 break;
1162 case KDB_DB_SS:
1163 break;
1164 case KDB_DB_SSBPT:
1165 KDB_DEBUG_STATE("kdb_local 4", reason);
1166 return 1; /* kdba_db_trap did the work */
1167 default:
1168 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1169 db_result);
1170 break;
1171 }
1172
1173 }
1174 break;
1175 case KDB_REASON_ENTER:
1176 if (KDB_STATE(KEYBOARD))
1177 kdb_printf("due to Keyboard Entry\n");
1178 else
1179 kdb_printf("due to KDB_ENTER()\n");
1180 break;
1181 case KDB_REASON_KEYBOARD:
1182 KDB_STATE_SET(KEYBOARD);
1183 kdb_printf("due to Keyboard Entry\n");
1184 break;
1185 case KDB_REASON_ENTER_SLAVE:
1186 /* drop through, slaves only get released via cpu switch */
1187 case KDB_REASON_SWITCH:
1188 kdb_printf("due to cpu switch\n");
1189 break;
1190 case KDB_REASON_OOPS:
1191 kdb_printf("Oops: %s\n", kdb_diemsg);
1192 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1193 instruction_pointer(regs));
1194 kdb_dumpregs(regs);
1195 break;
1196 case KDB_REASON_NMI:
1197 kdb_printf("due to NonMaskable Interrupt @ "
1198 kdb_machreg_fmt "\n",
1199 instruction_pointer(regs));
1200 kdb_dumpregs(regs);
1201 break;
1202 case KDB_REASON_SSTEP:
1203 case KDB_REASON_BREAK:
1204 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1205 reason == KDB_REASON_BREAK ?
1206 "Breakpoint" : "SS trap", instruction_pointer(regs));
1207 /*
1208 * Determine if this breakpoint is one that we
1209 * are interested in.
1210 */
1211 if (db_result != KDB_DB_BPT) {
1212 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1213 db_result);
1214 KDB_DEBUG_STATE("kdb_local 6", reason);
1215 return 0; /* Not for us, dismiss it */
1216 }
1217 break;
1218 case KDB_REASON_RECURSE:
1219 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1220 instruction_pointer(regs));
1221 break;
1222 default:
1223 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1224 KDB_DEBUG_STATE("kdb_local 8", reason);
1225 return 0; /* Not for us, dismiss it */
1226 }
1227
1228 while (1) {
1229 /*
1230 * Initialize pager context.
1231 */
1232 kdb_nextline = 1;
1233 KDB_STATE_CLEAR(SUPPRESS);
1234
1235 cmdbuf = cmd_cur;
1236 *cmdbuf = '\0';
1237 *(cmd_hist[cmd_head]) = '\0';
1238
1239 if (KDB_FLAG(ONLY_DO_DUMP)) {
1240 /* kdb is off but a catastrophic error requires a dump.
1241 * Take the dump and reboot.
1242 * Turn on logging so the kdb output appears in the log
1243 * buffer in the dump.
1244 */
1245 const char *setargs[] = { "set", "LOGGING", "1" };
1246 kdb_set(2, setargs);
1247 kdb_reboot(0, NULL);
1248 /*NOTREACHED*/
1249 }
1250
1251do_full_getstr:
1252#if defined(CONFIG_SMP)
1253 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1254 raw_smp_processor_id());
1255#else
1256 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1257#endif
1258 if (defcmd_in_progress)
1259 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1260
1261 /*
1262 * Fetch command from keyboard
1263 */
1264 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1265 if (*cmdbuf != '\n') {
1266 if (*cmdbuf < 32) {
1267 if (cmdptr == cmd_head) {
1268 strncpy(cmd_hist[cmd_head], cmd_cur,
1269 CMD_BUFLEN);
1270 *(cmd_hist[cmd_head] +
1271 strlen(cmd_hist[cmd_head])-1) = '\0';
1272 }
1273 if (!handle_ctrl_cmd(cmdbuf))
1274 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1275 cmdbuf = cmd_cur;
1276 goto do_full_getstr;
1277 } else {
1278 strncpy(cmd_hist[cmd_head], cmd_cur,
1279 CMD_BUFLEN);
1280 }
1281
1282 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1283 if (cmd_head == cmd_tail)
1284 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1285 }
1286
1287 cmdptr = cmd_head;
1288 diag = kdb_parse(cmdbuf);
1289 if (diag == KDB_NOTFOUND) {
1290 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1291 diag = 0;
1292 }
1293 if (diag == KDB_CMD_GO
1294 || diag == KDB_CMD_CPU
1295 || diag == KDB_CMD_SS
1296 || diag == KDB_CMD_SSB
1297 || diag == KDB_CMD_KGDB)
1298 break;
1299
1300 if (diag)
1301 kdb_cmderror(diag);
1302 }
1303 KDB_DEBUG_STATE("kdb_local 9", diag);
1304 return diag;
1305}
1306
1307
1308/*
1309 * kdb_print_state - Print the state data for the current processor
1310 * for debugging.
1311 * Inputs:
1312 * text Identifies the debug point
1313 * value Any integer value to be printed, e.g. reason code.
1314 */
1315void kdb_print_state(const char *text, int value)
1316{
1317 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1318 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1319 kdb_state);
1320}
1321
1322/*
1323 * kdb_main_loop - After initial setup and assignment of the
1324 * controlling cpu, all cpus are in this loop. One cpu is in
1325 * control and will issue the kdb prompt, the others will spin
1326 * until 'go' or cpu switch.
1327 *
1328 * To get a consistent view of the kernel stacks for all
1329 * processes, this routine is invoked from the main kdb code via
1330 * an architecture specific routine. kdba_main_loop is
1331 * responsible for making the kernel stacks consistent for all
1332 * processes, there should be no difference between a blocked
1333 * process and a running process as far as kdb is concerned.
1334 * Inputs:
1335 * reason The reason KDB was invoked
1336 * error The hardware-defined error code
1337 * reason2 kdb's current reason code.
1338 * Initially error but can change
1339 * according to kdb state.
1340 * db_result Result code from break or debug point.
1341 * regs The exception frame at time of fault/breakpoint.
1342 * should always be valid.
1343 * Returns:
1344 * 0 KDB was invoked for an event which it wasn't responsible
1345 * 1 KDB handled the event for which it was invoked.
1346 */
1347int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1348 kdb_dbtrap_t db_result, struct pt_regs *regs)
1349{
1350 int result = 1;
1351 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1352 while (1) {
1353 /*
1354 * All processors except the one that is in control
1355 * will spin here.
1356 */
1357 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1358 while (KDB_STATE(HOLD_CPU)) {
1359 /* state KDB is turned off by kdb_cpu to see if the
1360 * other cpus are still live, each cpu in this loop
1361 * turns it back on.
1362 */
1363 if (!KDB_STATE(KDB))
1364 KDB_STATE_SET(KDB);
1365 }
1366
1367 KDB_STATE_CLEAR(SUPPRESS);
1368 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1369 if (KDB_STATE(LEAVING))
1370 break; /* Another cpu said 'go' */
1371 /* Still using kdb, this processor is in control */
1372 result = kdb_local(reason2, error, regs, db_result);
1373 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1374
1375 if (result == KDB_CMD_CPU)
1376 break;
1377
1378 if (result == KDB_CMD_SS) {
1379 KDB_STATE_SET(DOING_SS);
1380 break;
1381 }
1382
1383 if (result == KDB_CMD_SSB) {
1384 KDB_STATE_SET(DOING_SS);
1385 KDB_STATE_SET(DOING_SSB);
1386 break;
1387 }
1388
1389 if (result == KDB_CMD_KGDB) {
1390 if (!KDB_STATE(DOING_KGDB))
1391 kdb_printf("Entering please attach debugger "
1392 "or use $D#44+ or $3#33\n");
1393 break;
1394 }
1395 if (result && result != 1 && result != KDB_CMD_GO)
1396 kdb_printf("\nUnexpected kdb_local return code %d\n",
1397 result);
1398 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1399 break;
1400 }
1401 if (KDB_STATE(DOING_SS))
1402 KDB_STATE_CLEAR(SSBPT);
1403
1404 /* Clean up any keyboard devices before leaving */
1405 kdb_kbd_cleanup_state();
1406
1407 return result;
1408}
1409
1410/*
1411 * kdb_mdr - This function implements the guts of the 'mdr', memory
1412 * read command.
1413 * mdr <addr arg>,<byte count>
1414 * Inputs:
1415 * addr Start address
1416 * count Number of bytes
1417 * Returns:
1418 * Always 0. Any errors are detected and printed by kdb_getarea.
1419 */
1420static int kdb_mdr(unsigned long addr, unsigned int count)
1421{
1422 unsigned char c;
1423 while (count--) {
1424 if (kdb_getarea(c, addr))
1425 return 0;
1426 kdb_printf("%02x", c);
1427 addr++;
1428 }
1429 kdb_printf("\n");
1430 return 0;
1431}
1432
1433/*
1434 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1435 * 'md8' 'mdr' and 'mds' commands.
1436 *
1437 * md|mds [<addr arg> [<line count> [<radix>]]]
1438 * mdWcN [<addr arg> [<line count> [<radix>]]]
1439 * where W = is the width (1, 2, 4 or 8) and N is the count.
1440 * for eg., md1c20 reads 20 bytes, 1 at a time.
1441 * mdr <addr arg>,<byte count>
1442 */
1443static void kdb_md_line(const char *fmtstr, unsigned long addr,
1444 int symbolic, int nosect, int bytesperword,
1445 int num, int repeat, int phys)
1446{
1447 /* print just one line of data */
1448 kdb_symtab_t symtab;
1449 char cbuf[32];
1450 char *c = cbuf;
1451 int i;
1452 unsigned long word;
1453
1454 memset(cbuf, '\0', sizeof(cbuf));
1455 if (phys)
1456 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1457 else
1458 kdb_printf(kdb_machreg_fmt0 " ", addr);
1459
1460 for (i = 0; i < num && repeat--; i++) {
1461 if (phys) {
1462 if (kdb_getphysword(&word, addr, bytesperword))
1463 break;
1464 } else if (kdb_getword(&word, addr, bytesperword))
1465 break;
1466 kdb_printf(fmtstr, word);
1467 if (symbolic)
1468 kdbnearsym(word, &symtab);
1469 else
1470 memset(&symtab, 0, sizeof(symtab));
1471 if (symtab.sym_name) {
1472 kdb_symbol_print(word, &symtab, 0);
1473 if (!nosect) {
1474 kdb_printf("\n");
1475 kdb_printf(" %s %s "
1476 kdb_machreg_fmt " "
1477 kdb_machreg_fmt " "
1478 kdb_machreg_fmt, symtab.mod_name,
1479 symtab.sec_name, symtab.sec_start,
1480 symtab.sym_start, symtab.sym_end);
1481 }
1482 addr += bytesperword;
1483 } else {
1484 union {
1485 u64 word;
1486 unsigned char c[8];
1487 } wc;
1488 unsigned char *cp;
1489#ifdef __BIG_ENDIAN
1490 cp = wc.c + 8 - bytesperword;
1491#else
1492 cp = wc.c;
1493#endif
1494 wc.word = word;
1495#define printable_char(c) \
1496 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1497 switch (bytesperword) {
1498 case 8:
1499 *c++ = printable_char(*cp++);
1500 *c++ = printable_char(*cp++);
1501 *c++ = printable_char(*cp++);
1502 *c++ = printable_char(*cp++);
1503 addr += 4;
1504 case 4:
1505 *c++ = printable_char(*cp++);
1506 *c++ = printable_char(*cp++);
1507 addr += 2;
1508 case 2:
1509 *c++ = printable_char(*cp++);
1510 addr++;
1511 case 1:
1512 *c++ = printable_char(*cp++);
1513 addr++;
1514 break;
1515 }
1516#undef printable_char
1517 }
1518 }
1519 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1520 " ", cbuf);
1521}
1522
1523static int kdb_md(int argc, const char **argv)
1524{
1525 static unsigned long last_addr;
1526 static int last_radix, last_bytesperword, last_repeat;
1527 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1528 int nosect = 0;
1529 char fmtchar, fmtstr[64];
1530 unsigned long addr;
1531 unsigned long word;
1532 long offset = 0;
1533 int symbolic = 0;
1534 int valid = 0;
1535 int phys = 0;
1536
1537 kdbgetintenv("MDCOUNT", &mdcount);
1538 kdbgetintenv("RADIX", &radix);
1539 kdbgetintenv("BYTESPERWORD", &bytesperword);
1540
1541 /* Assume 'md <addr>' and start with environment values */
1542 repeat = mdcount * 16 / bytesperword;
1543
1544 if (strcmp(argv[0], "mdr") == 0) {
1545 if (argc != 2)
1546 return KDB_ARGCOUNT;
1547 valid = 1;
1548 } else if (isdigit(argv[0][2])) {
1549 bytesperword = (int)(argv[0][2] - '0');
1550 if (bytesperword == 0) {
1551 bytesperword = last_bytesperword;
1552 if (bytesperword == 0)
1553 bytesperword = 4;
1554 }
1555 last_bytesperword = bytesperword;
1556 repeat = mdcount * 16 / bytesperword;
1557 if (!argv[0][3])
1558 valid = 1;
1559 else if (argv[0][3] == 'c' && argv[0][4]) {
1560 char *p;
1561 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1562 mdcount = ((repeat * bytesperword) + 15) / 16;
1563 valid = !*p;
1564 }
1565 last_repeat = repeat;
1566 } else if (strcmp(argv[0], "md") == 0)
1567 valid = 1;
1568 else if (strcmp(argv[0], "mds") == 0)
1569 valid = 1;
1570 else if (strcmp(argv[0], "mdp") == 0) {
1571 phys = valid = 1;
1572 }
1573 if (!valid)
1574 return KDB_NOTFOUND;
1575
1576 if (argc == 0) {
1577 if (last_addr == 0)
1578 return KDB_ARGCOUNT;
1579 addr = last_addr;
1580 radix = last_radix;
1581 bytesperword = last_bytesperword;
1582 repeat = last_repeat;
1583 mdcount = ((repeat * bytesperword) + 15) / 16;
1584 }
1585
1586 if (argc) {
1587 unsigned long val;
1588 int diag, nextarg = 1;
1589 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1590 &offset, NULL);
1591 if (diag)
1592 return diag;
1593 if (argc > nextarg+2)
1594 return KDB_ARGCOUNT;
1595
1596 if (argc >= nextarg) {
1597 diag = kdbgetularg(argv[nextarg], &val);
1598 if (!diag) {
1599 mdcount = (int) val;
1600 repeat = mdcount * 16 / bytesperword;
1601 }
1602 }
1603 if (argc >= nextarg+1) {
1604 diag = kdbgetularg(argv[nextarg+1], &val);
1605 if (!diag)
1606 radix = (int) val;
1607 }
1608 }
1609
1610 if (strcmp(argv[0], "mdr") == 0)
1611 return kdb_mdr(addr, mdcount);
1612
1613 switch (radix) {
1614 case 10:
1615 fmtchar = 'd';
1616 break;
1617 case 16:
1618 fmtchar = 'x';
1619 break;
1620 case 8:
1621 fmtchar = 'o';
1622 break;
1623 default:
1624 return KDB_BADRADIX;
1625 }
1626
1627 last_radix = radix;
1628
1629 if (bytesperword > KDB_WORD_SIZE)
1630 return KDB_BADWIDTH;
1631
1632 switch (bytesperword) {
1633 case 8:
1634 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1635 break;
1636 case 4:
1637 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1638 break;
1639 case 2:
1640 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1641 break;
1642 case 1:
1643 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1644 break;
1645 default:
1646 return KDB_BADWIDTH;
1647 }
1648
1649 last_repeat = repeat;
1650 last_bytesperword = bytesperword;
1651
1652 if (strcmp(argv[0], "mds") == 0) {
1653 symbolic = 1;
1654 /* Do not save these changes as last_*, they are temporary mds
1655 * overrides.
1656 */
1657 bytesperword = KDB_WORD_SIZE;
1658 repeat = mdcount;
1659 kdbgetintenv("NOSECT", &nosect);
1660 }
1661
1662 /* Round address down modulo BYTESPERWORD */
1663
1664 addr &= ~(bytesperword-1);
1665
1666 while (repeat > 0) {
1667 unsigned long a;
1668 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1669
1670 if (KDB_FLAG(CMD_INTERRUPT))
1671 return 0;
1672 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1673 if (phys) {
1674 if (kdb_getphysword(&word, a, bytesperword)
1675 || word)
1676 break;
1677 } else if (kdb_getword(&word, a, bytesperword) || word)
1678 break;
1679 }
1680 n = min(num, repeat);
1681 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1682 num, repeat, phys);
1683 addr += bytesperword * n;
1684 repeat -= n;
1685 z = (z + num - 1) / num;
1686 if (z > 2) {
1687 int s = num * (z-2);
1688 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1689 " zero suppressed\n",
1690 addr, addr + bytesperword * s - 1);
1691 addr += bytesperword * s;
1692 repeat -= s;
1693 }
1694 }
1695 last_addr = addr;
1696
1697 return 0;
1698}
1699
1700/*
1701 * kdb_mm - This function implements the 'mm' command.
1702 * mm address-expression new-value
1703 * Remarks:
1704 * mm works on machine words, mmW works on bytes.
1705 */
1706static int kdb_mm(int argc, const char **argv)
1707{
1708 int diag;
1709 unsigned long addr;
1710 long offset = 0;
1711 unsigned long contents;
1712 int nextarg;
1713 int width;
1714
1715 if (argv[0][2] && !isdigit(argv[0][2]))
1716 return KDB_NOTFOUND;
1717
1718 if (argc < 2)
1719 return KDB_ARGCOUNT;
1720
1721 nextarg = 1;
1722 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1723 if (diag)
1724 return diag;
1725
1726 if (nextarg > argc)
1727 return KDB_ARGCOUNT;
1728 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1729 if (diag)
1730 return diag;
1731
1732 if (nextarg != argc + 1)
1733 return KDB_ARGCOUNT;
1734
1735 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1736 diag = kdb_putword(addr, contents, width);
1737 if (diag)
1738 return diag;
1739
1740 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1741
1742 return 0;
1743}
1744
1745/*
1746 * kdb_go - This function implements the 'go' command.
1747 * go [address-expression]
1748 */
1749static int kdb_go(int argc, const char **argv)
1750{
1751 unsigned long addr;
1752 int diag;
1753 int nextarg;
1754 long offset;
1755
1756 if (raw_smp_processor_id() != kdb_initial_cpu) {
1757 kdb_printf("go must execute on the entry cpu, "
1758 "please use \"cpu %d\" and then execute go\n",
1759 kdb_initial_cpu);
1760 return KDB_BADCPUNUM;
1761 }
1762 if (argc == 1) {
1763 nextarg = 1;
1764 diag = kdbgetaddrarg(argc, argv, &nextarg,
1765 &addr, &offset, NULL);
1766 if (diag)
1767 return diag;
1768 } else if (argc) {
1769 return KDB_ARGCOUNT;
1770 }
1771
1772 diag = KDB_CMD_GO;
1773 if (KDB_FLAG(CATASTROPHIC)) {
1774 kdb_printf("Catastrophic error detected\n");
1775 kdb_printf("kdb_continue_catastrophic=%d, ",
1776 kdb_continue_catastrophic);
1777 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1778 kdb_printf("type go a second time if you really want "
1779 "to continue\n");
1780 return 0;
1781 }
1782 if (kdb_continue_catastrophic == 2) {
1783 kdb_printf("forcing reboot\n");
1784 kdb_reboot(0, NULL);
1785 }
1786 kdb_printf("attempting to continue\n");
1787 }
1788 return diag;
1789}
1790
1791/*
1792 * kdb_rd - This function implements the 'rd' command.
1793 */
1794static int kdb_rd(int argc, const char **argv)
1795{
1796 int len = kdb_check_regs();
1797#if DBG_MAX_REG_NUM > 0
1798 int i;
1799 char *rname;
1800 int rsize;
1801 u64 reg64;
1802 u32 reg32;
1803 u16 reg16;
1804 u8 reg8;
1805
1806 if (len)
1807 return len;
1808
1809 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1810 rsize = dbg_reg_def[i].size * 2;
1811 if (rsize > 16)
1812 rsize = 2;
1813 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1814 len = 0;
1815 kdb_printf("\n");
1816 }
1817 if (len)
1818 len += kdb_printf(" ");
1819 switch(dbg_reg_def[i].size * 8) {
1820 case 8:
1821 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1822 if (!rname)
1823 break;
1824 len += kdb_printf("%s: %02x", rname, reg8);
1825 break;
1826 case 16:
1827 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1828 if (!rname)
1829 break;
1830 len += kdb_printf("%s: %04x", rname, reg16);
1831 break;
1832 case 32:
1833 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1834 if (!rname)
1835 break;
1836 len += kdb_printf("%s: %08x", rname, reg32);
1837 break;
1838 case 64:
1839 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1840 if (!rname)
1841 break;
1842 len += kdb_printf("%s: %016llx", rname, reg64);
1843 break;
1844 default:
1845 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1846 }
1847 }
1848 kdb_printf("\n");
1849#else
1850 if (len)
1851 return len;
1852
1853 kdb_dumpregs(kdb_current_regs);
1854#endif
1855 return 0;
1856}
1857
1858/*
1859 * kdb_rm - This function implements the 'rm' (register modify) command.
1860 * rm register-name new-contents
1861 * Remarks:
1862 * Allows register modification with the same restrictions as gdb
1863 */
1864static int kdb_rm(int argc, const char **argv)
1865{
1866#if DBG_MAX_REG_NUM > 0
1867 int diag;
1868 const char *rname;
1869 int i;
1870 u64 reg64;
1871 u32 reg32;
1872 u16 reg16;
1873 u8 reg8;
1874
1875 if (argc != 2)
1876 return KDB_ARGCOUNT;
1877 /*
1878 * Allow presence or absence of leading '%' symbol.
1879 */
1880 rname = argv[1];
1881 if (*rname == '%')
1882 rname++;
1883
1884 diag = kdbgetu64arg(argv[2], ®64);
1885 if (diag)
1886 return diag;
1887
1888 diag = kdb_check_regs();
1889 if (diag)
1890 return diag;
1891
1892 diag = KDB_BADREG;
1893 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1894 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1895 diag = 0;
1896 break;
1897 }
1898 }
1899 if (!diag) {
1900 switch(dbg_reg_def[i].size * 8) {
1901 case 8:
1902 reg8 = reg64;
1903 dbg_set_reg(i, ®8, kdb_current_regs);
1904 break;
1905 case 16:
1906 reg16 = reg64;
1907 dbg_set_reg(i, ®16, kdb_current_regs);
1908 break;
1909 case 32:
1910 reg32 = reg64;
1911 dbg_set_reg(i, ®32, kdb_current_regs);
1912 break;
1913 case 64:
1914 dbg_set_reg(i, ®64, kdb_current_regs);
1915 break;
1916 }
1917 }
1918 return diag;
1919#else
1920 kdb_printf("ERROR: Register set currently not implemented\n");
1921 return 0;
1922#endif
1923}
1924
1925#if defined(CONFIG_MAGIC_SYSRQ)
1926/*
1927 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1928 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1929 * sr <magic-sysrq-code>
1930 */
1931static int kdb_sr(int argc, const char **argv)
1932{
1933 if (argc != 1)
1934 return KDB_ARGCOUNT;
1935 kdb_trap_printk++;
1936 __handle_sysrq(*argv[1], false);
1937 kdb_trap_printk--;
1938
1939 return 0;
1940}
1941#endif /* CONFIG_MAGIC_SYSRQ */
1942
1943/*
1944 * kdb_ef - This function implements the 'regs' (display exception
1945 * frame) command. This command takes an address and expects to
1946 * find an exception frame at that address, formats and prints
1947 * it.
1948 * regs address-expression
1949 * Remarks:
1950 * Not done yet.
1951 */
1952static int kdb_ef(int argc, const char **argv)
1953{
1954 int diag;
1955 unsigned long addr;
1956 long offset;
1957 int nextarg;
1958
1959 if (argc != 1)
1960 return KDB_ARGCOUNT;
1961
1962 nextarg = 1;
1963 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1964 if (diag)
1965 return diag;
1966 show_regs((struct pt_regs *)addr);
1967 return 0;
1968}
1969
1970#if defined(CONFIG_MODULES)
1971/*
1972 * kdb_lsmod - This function implements the 'lsmod' command. Lists
1973 * currently loaded kernel modules.
1974 * Mostly taken from userland lsmod.
1975 */
1976static int kdb_lsmod(int argc, const char **argv)
1977{
1978 struct module *mod;
1979
1980 if (argc != 0)
1981 return KDB_ARGCOUNT;
1982
1983 kdb_printf("Module Size modstruct Used by\n");
1984 list_for_each_entry(mod, kdb_modules, list) {
1985
1986 kdb_printf("%-20s%8u 0x%p ", mod->name,
1987 mod->core_size, (void *)mod);
1988#ifdef CONFIG_MODULE_UNLOAD
1989 kdb_printf("%4ld ", module_refcount(mod));
1990#endif
1991 if (mod->state == MODULE_STATE_GOING)
1992 kdb_printf(" (Unloading)");
1993 else if (mod->state == MODULE_STATE_COMING)
1994 kdb_printf(" (Loading)");
1995 else
1996 kdb_printf(" (Live)");
1997 kdb_printf(" 0x%p", mod->module_core);
1998
1999#ifdef CONFIG_MODULE_UNLOAD
2000 {
2001 struct module_use *use;
2002 kdb_printf(" [ ");
2003 list_for_each_entry(use, &mod->source_list,
2004 source_list)
2005 kdb_printf("%s ", use->target->name);
2006 kdb_printf("]\n");
2007 }
2008#endif
2009 }
2010
2011 return 0;
2012}
2013
2014#endif /* CONFIG_MODULES */
2015
2016/*
2017 * kdb_env - This function implements the 'env' command. Display the
2018 * current environment variables.
2019 */
2020
2021static int kdb_env(int argc, const char **argv)
2022{
2023 int i;
2024
2025 for (i = 0; i < __nenv; i++) {
2026 if (__env[i])
2027 kdb_printf("%s\n", __env[i]);
2028 }
2029
2030 if (KDB_DEBUG(MASK))
2031 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2032
2033 return 0;
2034}
2035
2036#ifdef CONFIG_PRINTK
2037/*
2038 * kdb_dmesg - This function implements the 'dmesg' command to display
2039 * the contents of the syslog buffer.
2040 * dmesg [lines] [adjust]
2041 */
2042static int kdb_dmesg(int argc, const char **argv)
2043{
2044 int diag;
2045 int logging;
2046 int lines = 0;
2047 int adjust = 0;
2048 int n = 0;
2049 int skip = 0;
2050 struct kmsg_dumper dumper = { .active = 1 };
2051 size_t len;
2052 char buf[201];
2053
2054 if (argc > 2)
2055 return KDB_ARGCOUNT;
2056 if (argc) {
2057 char *cp;
2058 lines = simple_strtol(argv[1], &cp, 0);
2059 if (*cp)
2060 lines = 0;
2061 if (argc > 1) {
2062 adjust = simple_strtoul(argv[2], &cp, 0);
2063 if (*cp || adjust < 0)
2064 adjust = 0;
2065 }
2066 }
2067
2068 /* disable LOGGING if set */
2069 diag = kdbgetintenv("LOGGING", &logging);
2070 if (!diag && logging) {
2071 const char *setargs[] = { "set", "LOGGING", "0" };
2072 kdb_set(2, setargs);
2073 }
2074
2075 kmsg_dump_rewind_nolock(&dumper);
2076 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2077 n++;
2078
2079 if (lines < 0) {
2080 if (adjust >= n)
2081 kdb_printf("buffer only contains %d lines, nothing "
2082 "printed\n", n);
2083 else if (adjust - lines >= n)
2084 kdb_printf("buffer only contains %d lines, last %d "
2085 "lines printed\n", n, n - adjust);
2086 skip = adjust;
2087 lines = abs(lines);
2088 } else if (lines > 0) {
2089 skip = n - lines - adjust;
2090 lines = abs(lines);
2091 if (adjust >= n) {
2092 kdb_printf("buffer only contains %d lines, "
2093 "nothing printed\n", n);
2094 skip = n;
2095 } else if (skip < 0) {
2096 lines += skip;
2097 skip = 0;
2098 kdb_printf("buffer only contains %d lines, first "
2099 "%d lines printed\n", n, lines);
2100 }
2101 } else {
2102 lines = n;
2103 }
2104
2105 if (skip >= n || skip < 0)
2106 return 0;
2107
2108 kmsg_dump_rewind_nolock(&dumper);
2109 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2110 if (skip) {
2111 skip--;
2112 continue;
2113 }
2114 if (!lines--)
2115 break;
2116
2117 kdb_printf("%.*s\n", (int)len - 1, buf);
2118 }
2119
2120 return 0;
2121}
2122#endif /* CONFIG_PRINTK */
2123/*
2124 * kdb_cpu - This function implements the 'cpu' command.
2125 * cpu [<cpunum>]
2126 * Returns:
2127 * KDB_CMD_CPU for success, a kdb diagnostic if error
2128 */
2129static void kdb_cpu_status(void)
2130{
2131 int i, start_cpu, first_print = 1;
2132 char state, prev_state = '?';
2133
2134 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2135 kdb_printf("Available cpus: ");
2136 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2137 if (!cpu_online(i)) {
2138 state = 'F'; /* cpu is offline */
2139 } else {
2140 state = ' '; /* cpu is responding to kdb */
2141 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2142 state = 'I'; /* idle task */
2143 }
2144 if (state != prev_state) {
2145 if (prev_state != '?') {
2146 if (!first_print)
2147 kdb_printf(", ");
2148 first_print = 0;
2149 kdb_printf("%d", start_cpu);
2150 if (start_cpu < i-1)
2151 kdb_printf("-%d", i-1);
2152 if (prev_state != ' ')
2153 kdb_printf("(%c)", prev_state);
2154 }
2155 prev_state = state;
2156 start_cpu = i;
2157 }
2158 }
2159 /* print the trailing cpus, ignoring them if they are all offline */
2160 if (prev_state != 'F') {
2161 if (!first_print)
2162 kdb_printf(", ");
2163 kdb_printf("%d", start_cpu);
2164 if (start_cpu < i-1)
2165 kdb_printf("-%d", i-1);
2166 if (prev_state != ' ')
2167 kdb_printf("(%c)", prev_state);
2168 }
2169 kdb_printf("\n");
2170}
2171
2172static int kdb_cpu(int argc, const char **argv)
2173{
2174 unsigned long cpunum;
2175 int diag;
2176
2177 if (argc == 0) {
2178 kdb_cpu_status();
2179 return 0;
2180 }
2181
2182 if (argc != 1)
2183 return KDB_ARGCOUNT;
2184
2185 diag = kdbgetularg(argv[1], &cpunum);
2186 if (diag)
2187 return diag;
2188
2189 /*
2190 * Validate cpunum
2191 */
2192 if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2193 return KDB_BADCPUNUM;
2194
2195 dbg_switch_cpu = cpunum;
2196
2197 /*
2198 * Switch to other cpu
2199 */
2200 return KDB_CMD_CPU;
2201}
2202
2203/* The user may not realize that ps/bta with no parameters does not print idle
2204 * or sleeping system daemon processes, so tell them how many were suppressed.
2205 */
2206void kdb_ps_suppressed(void)
2207{
2208 int idle = 0, daemon = 0;
2209 unsigned long mask_I = kdb_task_state_string("I"),
2210 mask_M = kdb_task_state_string("M");
2211 unsigned long cpu;
2212 const struct task_struct *p, *g;
2213 for_each_online_cpu(cpu) {
2214 p = kdb_curr_task(cpu);
2215 if (kdb_task_state(p, mask_I))
2216 ++idle;
2217 }
2218 kdb_do_each_thread(g, p) {
2219 if (kdb_task_state(p, mask_M))
2220 ++daemon;
2221 } kdb_while_each_thread(g, p);
2222 if (idle || daemon) {
2223 if (idle)
2224 kdb_printf("%d idle process%s (state I)%s\n",
2225 idle, idle == 1 ? "" : "es",
2226 daemon ? " and " : "");
2227 if (daemon)
2228 kdb_printf("%d sleeping system daemon (state M) "
2229 "process%s", daemon,
2230 daemon == 1 ? "" : "es");
2231 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2232 }
2233}
2234
2235/*
2236 * kdb_ps - This function implements the 'ps' command which shows a
2237 * list of the active processes.
2238 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2239 */
2240void kdb_ps1(const struct task_struct *p)
2241{
2242 int cpu;
2243 unsigned long tmp;
2244
2245 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2246 return;
2247
2248 cpu = kdb_process_cpu(p);
2249 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2250 (void *)p, p->pid, p->parent->pid,
2251 kdb_task_has_cpu(p), kdb_process_cpu(p),
2252 kdb_task_state_char(p),
2253 (void *)(&p->thread),
2254 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2255 p->comm);
2256 if (kdb_task_has_cpu(p)) {
2257 if (!KDB_TSK(cpu)) {
2258 kdb_printf(" Error: no saved data for this cpu\n");
2259 } else {
2260 if (KDB_TSK(cpu) != p)
2261 kdb_printf(" Error: does not match running "
2262 "process table (0x%p)\n", KDB_TSK(cpu));
2263 }
2264 }
2265}
2266
2267static int kdb_ps(int argc, const char **argv)
2268{
2269 struct task_struct *g, *p;
2270 unsigned long mask, cpu;
2271
2272 if (argc == 0)
2273 kdb_ps_suppressed();
2274 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2275 (int)(2*sizeof(void *))+2, "Task Addr",
2276 (int)(2*sizeof(void *))+2, "Thread");
2277 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2278 /* Run the active tasks first */
2279 for_each_online_cpu(cpu) {
2280 if (KDB_FLAG(CMD_INTERRUPT))
2281 return 0;
2282 p = kdb_curr_task(cpu);
2283 if (kdb_task_state(p, mask))
2284 kdb_ps1(p);
2285 }
2286 kdb_printf("\n");
2287 /* Now the real tasks */
2288 kdb_do_each_thread(g, p) {
2289 if (KDB_FLAG(CMD_INTERRUPT))
2290 return 0;
2291 if (kdb_task_state(p, mask))
2292 kdb_ps1(p);
2293 } kdb_while_each_thread(g, p);
2294
2295 return 0;
2296}
2297
2298/*
2299 * kdb_pid - This function implements the 'pid' command which switches
2300 * the currently active process.
2301 * pid [<pid> | R]
2302 */
2303static int kdb_pid(int argc, const char **argv)
2304{
2305 struct task_struct *p;
2306 unsigned long val;
2307 int diag;
2308
2309 if (argc > 1)
2310 return KDB_ARGCOUNT;
2311
2312 if (argc) {
2313 if (strcmp(argv[1], "R") == 0) {
2314 p = KDB_TSK(kdb_initial_cpu);
2315 } else {
2316 diag = kdbgetularg(argv[1], &val);
2317 if (diag)
2318 return KDB_BADINT;
2319
2320 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2321 if (!p) {
2322 kdb_printf("No task with pid=%d\n", (pid_t)val);
2323 return 0;
2324 }
2325 }
2326 kdb_set_current_task(p);
2327 }
2328 kdb_printf("KDB current process is %s(pid=%d)\n",
2329 kdb_current_task->comm,
2330 kdb_current_task->pid);
2331
2332 return 0;
2333}
2334
2335/*
2336 * kdb_ll - This function implements the 'll' command which follows a
2337 * linked list and executes an arbitrary command for each
2338 * element.
2339 */
2340static int kdb_ll(int argc, const char **argv)
2341{
2342 int diag = 0;
2343 unsigned long addr;
2344 long offset = 0;
2345 unsigned long va;
2346 unsigned long linkoffset;
2347 int nextarg;
2348 const char *command;
2349
2350 if (argc != 3)
2351 return KDB_ARGCOUNT;
2352
2353 nextarg = 1;
2354 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2355 if (diag)
2356 return diag;
2357
2358 diag = kdbgetularg(argv[2], &linkoffset);
2359 if (diag)
2360 return diag;
2361
2362 /*
2363 * Using the starting address as
2364 * the first element in the list, and assuming that
2365 * the list ends with a null pointer.
2366 */
2367
2368 va = addr;
2369 command = kdb_strdup(argv[3], GFP_KDB);
2370 if (!command) {
2371 kdb_printf("%s: cannot duplicate command\n", __func__);
2372 return 0;
2373 }
2374 /* Recursive use of kdb_parse, do not use argv after this point */
2375 argv = NULL;
2376
2377 while (va) {
2378 char buf[80];
2379
2380 if (KDB_FLAG(CMD_INTERRUPT))
2381 goto out;
2382
2383 sprintf(buf, "%s " kdb_machreg_fmt "\n", command, va);
2384 diag = kdb_parse(buf);
2385 if (diag)
2386 goto out;
2387
2388 addr = va + linkoffset;
2389 if (kdb_getword(&va, addr, sizeof(va)))
2390 goto out;
2391 }
2392
2393out:
2394 kfree(command);
2395 return diag;
2396}
2397
2398static int kdb_kgdb(int argc, const char **argv)
2399{
2400 return KDB_CMD_KGDB;
2401}
2402
2403/*
2404 * kdb_help - This function implements the 'help' and '?' commands.
2405 */
2406static int kdb_help(int argc, const char **argv)
2407{
2408 kdbtab_t *kt;
2409 int i;
2410
2411 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2412 kdb_printf("-----------------------------"
2413 "-----------------------------\n");
2414 for_each_kdbcmd(kt, i) {
2415 if (kt->cmd_name)
2416 kdb_printf("%-15.15s %-20.20s %s\n", kt->cmd_name,
2417 kt->cmd_usage, kt->cmd_help);
2418 if (KDB_FLAG(CMD_INTERRUPT))
2419 return 0;
2420 }
2421 return 0;
2422}
2423
2424/*
2425 * kdb_kill - This function implements the 'kill' commands.
2426 */
2427static int kdb_kill(int argc, const char **argv)
2428{
2429 long sig, pid;
2430 char *endp;
2431 struct task_struct *p;
2432 struct siginfo info;
2433
2434 if (argc != 2)
2435 return KDB_ARGCOUNT;
2436
2437 sig = simple_strtol(argv[1], &endp, 0);
2438 if (*endp)
2439 return KDB_BADINT;
2440 if (sig >= 0) {
2441 kdb_printf("Invalid signal parameter.<-signal>\n");
2442 return 0;
2443 }
2444 sig = -sig;
2445
2446 pid = simple_strtol(argv[2], &endp, 0);
2447 if (*endp)
2448 return KDB_BADINT;
2449 if (pid <= 0) {
2450 kdb_printf("Process ID must be large than 0.\n");
2451 return 0;
2452 }
2453
2454 /* Find the process. */
2455 p = find_task_by_pid_ns(pid, &init_pid_ns);
2456 if (!p) {
2457 kdb_printf("The specified process isn't found.\n");
2458 return 0;
2459 }
2460 p = p->group_leader;
2461 info.si_signo = sig;
2462 info.si_errno = 0;
2463 info.si_code = SI_USER;
2464 info.si_pid = pid; /* same capabilities as process being signalled */
2465 info.si_uid = 0; /* kdb has root authority */
2466 kdb_send_sig_info(p, &info);
2467 return 0;
2468}
2469
2470struct kdb_tm {
2471 int tm_sec; /* seconds */
2472 int tm_min; /* minutes */
2473 int tm_hour; /* hours */
2474 int tm_mday; /* day of the month */
2475 int tm_mon; /* month */
2476 int tm_year; /* year */
2477};
2478
2479static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2480{
2481 /* This will work from 1970-2099, 2100 is not a leap year */
2482 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2483 31, 30, 31, 30, 31 };
2484 memset(tm, 0, sizeof(*tm));
2485 tm->tm_sec = tv->tv_sec % (24 * 60 * 60);
2486 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2487 (2 * 365 + 1); /* shift base from 1970 to 1968 */
2488 tm->tm_min = tm->tm_sec / 60 % 60;
2489 tm->tm_hour = tm->tm_sec / 60 / 60;
2490 tm->tm_sec = tm->tm_sec % 60;
2491 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2492 tm->tm_mday %= (4*365+1);
2493 mon_day[1] = 29;
2494 while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2495 tm->tm_mday -= mon_day[tm->tm_mon];
2496 if (++tm->tm_mon == 12) {
2497 tm->tm_mon = 0;
2498 ++tm->tm_year;
2499 mon_day[1] = 28;
2500 }
2501 }
2502 ++tm->tm_mday;
2503}
2504
2505/*
2506 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2507 * I cannot call that code directly from kdb, it has an unconditional
2508 * cli()/sti() and calls routines that take locks which can stop the debugger.
2509 */
2510static void kdb_sysinfo(struct sysinfo *val)
2511{
2512 struct timespec uptime;
2513 do_posix_clock_monotonic_gettime(&uptime);
2514 memset(val, 0, sizeof(*val));
2515 val->uptime = uptime.tv_sec;
2516 val->loads[0] = avenrun[0];
2517 val->loads[1] = avenrun[1];
2518 val->loads[2] = avenrun[2];
2519 val->procs = nr_threads-1;
2520 si_meminfo(val);
2521
2522 return;
2523}
2524
2525/*
2526 * kdb_summary - This function implements the 'summary' command.
2527 */
2528static int kdb_summary(int argc, const char **argv)
2529{
2530 struct timespec now;
2531 struct kdb_tm tm;
2532 struct sysinfo val;
2533
2534 if (argc)
2535 return KDB_ARGCOUNT;
2536
2537 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2538 kdb_printf("release %s\n", init_uts_ns.name.release);
2539 kdb_printf("version %s\n", init_uts_ns.name.version);
2540 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2541 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2542 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2543 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2544
2545 now = __current_kernel_time();
2546 kdb_gmtime(&now, &tm);
2547 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d "
2548 "tz_minuteswest %d\n",
2549 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2550 tm.tm_hour, tm.tm_min, tm.tm_sec,
2551 sys_tz.tz_minuteswest);
2552
2553 kdb_sysinfo(&val);
2554 kdb_printf("uptime ");
2555 if (val.uptime > (24*60*60)) {
2556 int days = val.uptime / (24*60*60);
2557 val.uptime %= (24*60*60);
2558 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2559 }
2560 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2561
2562 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2563
2564#define LOAD_INT(x) ((x) >> FSHIFT)
2565#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2566 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2567 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2568 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2569 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2570#undef LOAD_INT
2571#undef LOAD_FRAC
2572 /* Display in kilobytes */
2573#define K(x) ((x) << (PAGE_SHIFT - 10))
2574 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2575 "Buffers: %8lu kB\n",
2576 val.totalram, val.freeram, val.bufferram);
2577 return 0;
2578}
2579
2580/*
2581 * kdb_per_cpu - This function implements the 'per_cpu' command.
2582 */
2583static int kdb_per_cpu(int argc, const char **argv)
2584{
2585 char fmtstr[64];
2586 int cpu, diag, nextarg = 1;
2587 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2588
2589 if (argc < 1 || argc > 3)
2590 return KDB_ARGCOUNT;
2591
2592 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2593 if (diag)
2594 return diag;
2595
2596 if (argc >= 2) {
2597 diag = kdbgetularg(argv[2], &bytesperword);
2598 if (diag)
2599 return diag;
2600 }
2601 if (!bytesperword)
2602 bytesperword = KDB_WORD_SIZE;
2603 else if (bytesperword > KDB_WORD_SIZE)
2604 return KDB_BADWIDTH;
2605 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2606 if (argc >= 3) {
2607 diag = kdbgetularg(argv[3], &whichcpu);
2608 if (diag)
2609 return diag;
2610 if (!cpu_online(whichcpu)) {
2611 kdb_printf("cpu %ld is not online\n", whichcpu);
2612 return KDB_BADCPUNUM;
2613 }
2614 }
2615
2616 /* Most architectures use __per_cpu_offset[cpu], some use
2617 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2618 */
2619#ifdef __per_cpu_offset
2620#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2621#else
2622#ifdef CONFIG_SMP
2623#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2624#else
2625#define KDB_PCU(cpu) 0
2626#endif
2627#endif
2628 for_each_online_cpu(cpu) {
2629 if (KDB_FLAG(CMD_INTERRUPT))
2630 return 0;
2631
2632 if (whichcpu != ~0UL && whichcpu != cpu)
2633 continue;
2634 addr = symaddr + KDB_PCU(cpu);
2635 diag = kdb_getword(&val, addr, bytesperword);
2636 if (diag) {
2637 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2638 "read, diag=%d\n", cpu, addr, diag);
2639 continue;
2640 }
2641 kdb_printf("%5d ", cpu);
2642 kdb_md_line(fmtstr, addr,
2643 bytesperword == KDB_WORD_SIZE,
2644 1, bytesperword, 1, 1, 0);
2645 }
2646#undef KDB_PCU
2647 return 0;
2648}
2649
2650/*
2651 * display help for the use of cmd | grep pattern
2652 */
2653static int kdb_grep_help(int argc, const char **argv)
2654{
2655 kdb_printf("Usage of cmd args | grep pattern:\n");
2656 kdb_printf(" Any command's output may be filtered through an ");
2657 kdb_printf("emulated 'pipe'.\n");
2658 kdb_printf(" 'grep' is just a key word.\n");
2659 kdb_printf(" The pattern may include a very limited set of "
2660 "metacharacters:\n");
2661 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2662 kdb_printf(" And if there are spaces in the pattern, you may "
2663 "quote it:\n");
2664 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2665 " or \"^pat tern$\"\n");
2666 return 0;
2667}
2668
2669/*
2670 * kdb_register_repeat - This function is used to register a kernel
2671 * debugger command.
2672 * Inputs:
2673 * cmd Command name
2674 * func Function to execute the command
2675 * usage A simple usage string showing arguments
2676 * help A simple help string describing command
2677 * repeat Does the command auto repeat on enter?
2678 * Returns:
2679 * zero for success, one if a duplicate command.
2680 */
2681#define kdb_command_extend 50 /* arbitrary */
2682int kdb_register_repeat(char *cmd,
2683 kdb_func_t func,
2684 char *usage,
2685 char *help,
2686 short minlen,
2687 kdb_repeat_t repeat)
2688{
2689 int i;
2690 kdbtab_t *kp;
2691
2692 /*
2693 * Brute force method to determine duplicates
2694 */
2695 for_each_kdbcmd(kp, i) {
2696 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2697 kdb_printf("Duplicate kdb command registered: "
2698 "%s, func %p help %s\n", cmd, func, help);
2699 return 1;
2700 }
2701 }
2702
2703 /*
2704 * Insert command into first available location in table
2705 */
2706 for_each_kdbcmd(kp, i) {
2707 if (kp->cmd_name == NULL)
2708 break;
2709 }
2710
2711 if (i >= kdb_max_commands) {
2712 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2713 kdb_command_extend) * sizeof(*new), GFP_KDB);
2714 if (!new) {
2715 kdb_printf("Could not allocate new kdb_command "
2716 "table\n");
2717 return 1;
2718 }
2719 if (kdb_commands) {
2720 memcpy(new, kdb_commands,
2721 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2722 kfree(kdb_commands);
2723 }
2724 memset(new + kdb_max_commands, 0,
2725 kdb_command_extend * sizeof(*new));
2726 kdb_commands = new;
2727 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2728 kdb_max_commands += kdb_command_extend;
2729 }
2730
2731 kp->cmd_name = cmd;
2732 kp->cmd_func = func;
2733 kp->cmd_usage = usage;
2734 kp->cmd_help = help;
2735 kp->cmd_flags = 0;
2736 kp->cmd_minlen = minlen;
2737 kp->cmd_repeat = repeat;
2738
2739 return 0;
2740}
2741EXPORT_SYMBOL_GPL(kdb_register_repeat);
2742
2743
2744/*
2745 * kdb_register - Compatibility register function for commands that do
2746 * not need to specify a repeat state. Equivalent to
2747 * kdb_register_repeat with KDB_REPEAT_NONE.
2748 * Inputs:
2749 * cmd Command name
2750 * func Function to execute the command
2751 * usage A simple usage string showing arguments
2752 * help A simple help string describing command
2753 * Returns:
2754 * zero for success, one if a duplicate command.
2755 */
2756int kdb_register(char *cmd,
2757 kdb_func_t func,
2758 char *usage,
2759 char *help,
2760 short minlen)
2761{
2762 return kdb_register_repeat(cmd, func, usage, help, minlen,
2763 KDB_REPEAT_NONE);
2764}
2765EXPORT_SYMBOL_GPL(kdb_register);
2766
2767/*
2768 * kdb_unregister - This function is used to unregister a kernel
2769 * debugger command. It is generally called when a module which
2770 * implements kdb commands is unloaded.
2771 * Inputs:
2772 * cmd Command name
2773 * Returns:
2774 * zero for success, one command not registered.
2775 */
2776int kdb_unregister(char *cmd)
2777{
2778 int i;
2779 kdbtab_t *kp;
2780
2781 /*
2782 * find the command.
2783 */
2784 for_each_kdbcmd(kp, i) {
2785 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2786 kp->cmd_name = NULL;
2787 return 0;
2788 }
2789 }
2790
2791 /* Couldn't find it. */
2792 return 1;
2793}
2794EXPORT_SYMBOL_GPL(kdb_unregister);
2795
2796/* Initialize the kdb command table. */
2797static void __init kdb_inittab(void)
2798{
2799 int i;
2800 kdbtab_t *kp;
2801
2802 for_each_kdbcmd(kp, i)
2803 kp->cmd_name = NULL;
2804
2805 kdb_register_repeat("md", kdb_md, "<vaddr>",
2806 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2807 KDB_REPEAT_NO_ARGS);
2808 kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2809 "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2810 kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2811 "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2812 kdb_register_repeat("mds", kdb_md, "<vaddr>",
2813 "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2814 kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2815 "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2816 kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2817 "Continue Execution", 1, KDB_REPEAT_NONE);
2818 kdb_register_repeat("rd", kdb_rd, "",
2819 "Display Registers", 0, KDB_REPEAT_NONE);
2820 kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2821 "Modify Registers", 0, KDB_REPEAT_NONE);
2822 kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2823 "Display exception frame", 0, KDB_REPEAT_NONE);
2824 kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2825 "Stack traceback", 1, KDB_REPEAT_NONE);
2826 kdb_register_repeat("btp", kdb_bt, "<pid>",
2827 "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2828 kdb_register_repeat("bta", kdb_bt, "[DRSTCZEUIMA]",
2829 "Display stack all processes", 0, KDB_REPEAT_NONE);
2830 kdb_register_repeat("btc", kdb_bt, "",
2831 "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2832 kdb_register_repeat("btt", kdb_bt, "<vaddr>",
2833 "Backtrace process given its struct task address", 0,
2834 KDB_REPEAT_NONE);
2835 kdb_register_repeat("ll", kdb_ll, "<first-element> <linkoffset> <cmd>",
2836 "Execute cmd for each element in linked list", 0, KDB_REPEAT_NONE);
2837 kdb_register_repeat("env", kdb_env, "",
2838 "Show environment variables", 0, KDB_REPEAT_NONE);
2839 kdb_register_repeat("set", kdb_set, "",
2840 "Set environment variables", 0, KDB_REPEAT_NONE);
2841 kdb_register_repeat("help", kdb_help, "",
2842 "Display Help Message", 1, KDB_REPEAT_NONE);
2843 kdb_register_repeat("?", kdb_help, "",
2844 "Display Help Message", 0, KDB_REPEAT_NONE);
2845 kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2846 "Switch to new cpu", 0, KDB_REPEAT_NONE);
2847 kdb_register_repeat("kgdb", kdb_kgdb, "",
2848 "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2849 kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2850 "Display active task list", 0, KDB_REPEAT_NONE);
2851 kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2852 "Switch to another task", 0, KDB_REPEAT_NONE);
2853 kdb_register_repeat("reboot", kdb_reboot, "",
2854 "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
2855#if defined(CONFIG_MODULES)
2856 kdb_register_repeat("lsmod", kdb_lsmod, "",
2857 "List loaded kernel modules", 0, KDB_REPEAT_NONE);
2858#endif
2859#if defined(CONFIG_MAGIC_SYSRQ)
2860 kdb_register_repeat("sr", kdb_sr, "<key>",
2861 "Magic SysRq key", 0, KDB_REPEAT_NONE);
2862#endif
2863#if defined(CONFIG_PRINTK)
2864 kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2865 "Display syslog buffer", 0, KDB_REPEAT_NONE);
2866#endif
2867 kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2868 "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2869 kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2870 "Send a signal to a process", 0, KDB_REPEAT_NONE);
2871 kdb_register_repeat("summary", kdb_summary, "",
2872 "Summarize the system", 4, KDB_REPEAT_NONE);
2873 kdb_register_repeat("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2874 "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2875 kdb_register_repeat("grephelp", kdb_grep_help, "",
2876 "Display help on | grep", 0, KDB_REPEAT_NONE);
2877}
2878
2879/* Execute any commands defined in kdb_cmds. */
2880static void __init kdb_cmd_init(void)
2881{
2882 int i, diag;
2883 for (i = 0; kdb_cmds[i]; ++i) {
2884 diag = kdb_parse(kdb_cmds[i]);
2885 if (diag)
2886 kdb_printf("kdb command %s failed, kdb diag %d\n",
2887 kdb_cmds[i], diag);
2888 }
2889 if (defcmd_in_progress) {
2890 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2891 kdb_parse("endefcmd");
2892 }
2893}
2894
2895/* Initialize kdb_printf, breakpoint tables and kdb state */
2896void __init kdb_init(int lvl)
2897{
2898 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2899 int i;
2900
2901 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2902 return;
2903 for (i = kdb_init_lvl; i < lvl; i++) {
2904 switch (i) {
2905 case KDB_NOT_INITIALIZED:
2906 kdb_inittab(); /* Initialize Command Table */
2907 kdb_initbptab(); /* Initialize Breakpoints */
2908 break;
2909 case KDB_INIT_EARLY:
2910 kdb_cmd_init(); /* Build kdb_cmds tables */
2911 break;
2912 }
2913 }
2914 kdb_init_lvl = lvl;
2915}