Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
   1/*
   2 * Netburst Performance Events (P4, old Xeon)
   3 *
   4 *  Copyright (C) 2010 Parallels, Inc., Cyrill Gorcunov <gorcunov@openvz.org>
   5 *  Copyright (C) 2010 Intel Corporation, Lin Ming <ming.m.lin@intel.com>
   6 *
   7 *  For licencing details see kernel-base/COPYING
   8 */
   9
  10#include <linux/perf_event.h>
  11
  12#include <asm/perf_event_p4.h>
  13#include <asm/hardirq.h>
  14#include <asm/apic.h>
  15
  16#include "perf_event.h"
  17
  18#define P4_CNTR_LIMIT 3
  19/*
  20 * array indices: 0,1 - HT threads, used with HT enabled cpu
  21 */
  22struct p4_event_bind {
  23	unsigned int opcode;			/* Event code and ESCR selector */
  24	unsigned int escr_msr[2];		/* ESCR MSR for this event */
  25	unsigned int escr_emask;		/* valid ESCR EventMask bits */
  26	unsigned int shared;			/* event is shared across threads */
  27	char cntr[2][P4_CNTR_LIMIT];		/* counter index (offset), -1 on abscence */
  28};
  29
  30struct p4_pebs_bind {
  31	unsigned int metric_pebs;
  32	unsigned int metric_vert;
  33};
  34
  35/* it sets P4_PEBS_ENABLE_UOP_TAG as well */
  36#define P4_GEN_PEBS_BIND(name, pebs, vert)			\
  37	[P4_PEBS_METRIC__##name] = {				\
  38		.metric_pebs = pebs | P4_PEBS_ENABLE_UOP_TAG,	\
  39		.metric_vert = vert,				\
  40	}
  41
  42/*
  43 * note we have P4_PEBS_ENABLE_UOP_TAG always set here
  44 *
  45 * it's needed for mapping P4_PEBS_CONFIG_METRIC_MASK bits of
  46 * event configuration to find out which values are to be
  47 * written into MSR_IA32_PEBS_ENABLE and MSR_P4_PEBS_MATRIX_VERT
  48 * resgisters
  49 */
  50static struct p4_pebs_bind p4_pebs_bind_map[] = {
  51	P4_GEN_PEBS_BIND(1stl_cache_load_miss_retired,	0x0000001, 0x0000001),
  52	P4_GEN_PEBS_BIND(2ndl_cache_load_miss_retired,	0x0000002, 0x0000001),
  53	P4_GEN_PEBS_BIND(dtlb_load_miss_retired,	0x0000004, 0x0000001),
  54	P4_GEN_PEBS_BIND(dtlb_store_miss_retired,	0x0000004, 0x0000002),
  55	P4_GEN_PEBS_BIND(dtlb_all_miss_retired,		0x0000004, 0x0000003),
  56	P4_GEN_PEBS_BIND(tagged_mispred_branch,		0x0018000, 0x0000010),
  57	P4_GEN_PEBS_BIND(mob_load_replay_retired,	0x0000200, 0x0000001),
  58	P4_GEN_PEBS_BIND(split_load_retired,		0x0000400, 0x0000001),
  59	P4_GEN_PEBS_BIND(split_store_retired,		0x0000400, 0x0000002),
  60};
  61
  62/*
  63 * Note that we don't use CCCR1 here, there is an
  64 * exception for P4_BSQ_ALLOCATION but we just have
  65 * no workaround
  66 *
  67 * consider this binding as resources which particular
  68 * event may borrow, it doesn't contain EventMask,
  69 * Tags and friends -- they are left to a caller
  70 */
  71static struct p4_event_bind p4_event_bind_map[] = {
  72	[P4_EVENT_TC_DELIVER_MODE] = {
  73		.opcode		= P4_OPCODE(P4_EVENT_TC_DELIVER_MODE),
  74		.escr_msr	= { MSR_P4_TC_ESCR0, MSR_P4_TC_ESCR1 },
  75		.escr_emask	=
  76			P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, DD)			|
  77			P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, DB)			|
  78			P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, DI)			|
  79			P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, BD)			|
  80			P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, BB)			|
  81			P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, BI)			|
  82			P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, ID),
  83		.shared		= 1,
  84		.cntr		= { {4, 5, -1}, {6, 7, -1} },
  85	},
  86	[P4_EVENT_BPU_FETCH_REQUEST] = {
  87		.opcode		= P4_OPCODE(P4_EVENT_BPU_FETCH_REQUEST),
  88		.escr_msr	= { MSR_P4_BPU_ESCR0, MSR_P4_BPU_ESCR1 },
  89		.escr_emask	=
  90			P4_ESCR_EMASK_BIT(P4_EVENT_BPU_FETCH_REQUEST, TCMISS),
  91		.cntr		= { {0, -1, -1}, {2, -1, -1} },
  92	},
  93	[P4_EVENT_ITLB_REFERENCE] = {
  94		.opcode		= P4_OPCODE(P4_EVENT_ITLB_REFERENCE),
  95		.escr_msr	= { MSR_P4_ITLB_ESCR0, MSR_P4_ITLB_ESCR1 },
  96		.escr_emask	=
  97			P4_ESCR_EMASK_BIT(P4_EVENT_ITLB_REFERENCE, HIT)			|
  98			P4_ESCR_EMASK_BIT(P4_EVENT_ITLB_REFERENCE, MISS)		|
  99			P4_ESCR_EMASK_BIT(P4_EVENT_ITLB_REFERENCE, HIT_UK),
 100		.cntr		= { {0, -1, -1}, {2, -1, -1} },
 101	},
 102	[P4_EVENT_MEMORY_CANCEL] = {
 103		.opcode		= P4_OPCODE(P4_EVENT_MEMORY_CANCEL),
 104		.escr_msr	= { MSR_P4_DAC_ESCR0, MSR_P4_DAC_ESCR1 },
 105		.escr_emask	=
 106			P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_CANCEL, ST_RB_FULL)		|
 107			P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_CANCEL, 64K_CONF),
 108		.cntr		= { {8, 9, -1}, {10, 11, -1} },
 109	},
 110	[P4_EVENT_MEMORY_COMPLETE] = {
 111		.opcode		= P4_OPCODE(P4_EVENT_MEMORY_COMPLETE),
 112		.escr_msr	= { MSR_P4_SAAT_ESCR0 , MSR_P4_SAAT_ESCR1 },
 113		.escr_emask	=
 114			P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_COMPLETE, LSC)		|
 115			P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_COMPLETE, SSC),
 116		.cntr		= { {8, 9, -1}, {10, 11, -1} },
 117	},
 118	[P4_EVENT_LOAD_PORT_REPLAY] = {
 119		.opcode		= P4_OPCODE(P4_EVENT_LOAD_PORT_REPLAY),
 120		.escr_msr	= { MSR_P4_SAAT_ESCR0, MSR_P4_SAAT_ESCR1 },
 121		.escr_emask	=
 122			P4_ESCR_EMASK_BIT(P4_EVENT_LOAD_PORT_REPLAY, SPLIT_LD),
 123		.cntr		= { {8, 9, -1}, {10, 11, -1} },
 124	},
 125	[P4_EVENT_STORE_PORT_REPLAY] = {
 126		.opcode		= P4_OPCODE(P4_EVENT_STORE_PORT_REPLAY),
 127		.escr_msr	= { MSR_P4_SAAT_ESCR0 ,  MSR_P4_SAAT_ESCR1 },
 128		.escr_emask	=
 129			P4_ESCR_EMASK_BIT(P4_EVENT_STORE_PORT_REPLAY, SPLIT_ST),
 130		.cntr		= { {8, 9, -1}, {10, 11, -1} },
 131	},
 132	[P4_EVENT_MOB_LOAD_REPLAY] = {
 133		.opcode		= P4_OPCODE(P4_EVENT_MOB_LOAD_REPLAY),
 134		.escr_msr	= { MSR_P4_MOB_ESCR0, MSR_P4_MOB_ESCR1 },
 135		.escr_emask	=
 136			P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, NO_STA)		|
 137			P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, NO_STD)		|
 138			P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, PARTIAL_DATA)	|
 139			P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, UNALGN_ADDR),
 140		.cntr		= { {0, -1, -1}, {2, -1, -1} },
 141	},
 142	[P4_EVENT_PAGE_WALK_TYPE] = {
 143		.opcode		= P4_OPCODE(P4_EVENT_PAGE_WALK_TYPE),
 144		.escr_msr	= { MSR_P4_PMH_ESCR0, MSR_P4_PMH_ESCR1 },
 145		.escr_emask	=
 146			P4_ESCR_EMASK_BIT(P4_EVENT_PAGE_WALK_TYPE, DTMISS)		|
 147			P4_ESCR_EMASK_BIT(P4_EVENT_PAGE_WALK_TYPE, ITMISS),
 148		.shared		= 1,
 149		.cntr		= { {0, -1, -1}, {2, -1, -1} },
 150	},
 151	[P4_EVENT_BSQ_CACHE_REFERENCE] = {
 152		.opcode		= P4_OPCODE(P4_EVENT_BSQ_CACHE_REFERENCE),
 153		.escr_msr	= { MSR_P4_BSU_ESCR0, MSR_P4_BSU_ESCR1 },
 154		.escr_emask	=
 155			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITS)	|
 156			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITE)	|
 157			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITM)	|
 158			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITS)	|
 159			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITE)	|
 160			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITM)	|
 161			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_MISS)	|
 162			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_MISS)	|
 163			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, WR_2ndL_MISS),
 164		.cntr		= { {0, -1, -1}, {2, -1, -1} },
 165	},
 166	[P4_EVENT_IOQ_ALLOCATION] = {
 167		.opcode		= P4_OPCODE(P4_EVENT_IOQ_ALLOCATION),
 168		.escr_msr	= { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
 169		.escr_emask	=
 170			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, DEFAULT)		|
 171			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, ALL_READ)		|
 172			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, ALL_WRITE)		|
 173			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_UC)		|
 174			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WC)		|
 175			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WT)		|
 176			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WP)		|
 177			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WB)		|
 178			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, OWN)			|
 179			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, OTHER)		|
 180			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, PREFETCH),
 181		.cntr		= { {0, -1, -1}, {2, -1, -1} },
 182	},
 183	[P4_EVENT_IOQ_ACTIVE_ENTRIES] = {	/* shared ESCR */
 184		.opcode		= P4_OPCODE(P4_EVENT_IOQ_ACTIVE_ENTRIES),
 185		.escr_msr	= { MSR_P4_FSB_ESCR1,  MSR_P4_FSB_ESCR1 },
 186		.escr_emask	=
 187			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, DEFAULT)		|
 188			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, ALL_READ)	|
 189			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, ALL_WRITE)	|
 190			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_UC)		|
 191			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WC)		|
 192			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WT)		|
 193			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WP)		|
 194			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WB)		|
 195			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, OWN)		|
 196			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, OTHER)		|
 197			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, PREFETCH),
 198		.cntr		= { {2, -1, -1}, {3, -1, -1} },
 199	},
 200	[P4_EVENT_FSB_DATA_ACTIVITY] = {
 201		.opcode		= P4_OPCODE(P4_EVENT_FSB_DATA_ACTIVITY),
 202		.escr_msr	= { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
 203		.escr_emask	=
 204			P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_DRV)		|
 205			P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_OWN)		|
 206			P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_OTHER)	|
 207			P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DBSY_DRV)		|
 208			P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DBSY_OWN)		|
 209			P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DBSY_OTHER),
 210		.shared		= 1,
 211		.cntr		= { {0, -1, -1}, {2, -1, -1} },
 212	},
 213	[P4_EVENT_BSQ_ALLOCATION] = {		/* shared ESCR, broken CCCR1 */
 214		.opcode		= P4_OPCODE(P4_EVENT_BSQ_ALLOCATION),
 215		.escr_msr	= { MSR_P4_BSU_ESCR0, MSR_P4_BSU_ESCR0 },
 216		.escr_emask	=
 217			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_TYPE0)		|
 218			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_TYPE1)		|
 219			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_LEN0)		|
 220			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_LEN1)		|
 221			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_IO_TYPE)		|
 222			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_LOCK_TYPE)	|
 223			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_CACHE_TYPE)	|
 224			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_SPLIT_TYPE)	|
 225			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_DEM_TYPE)	|
 226			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_ORD_TYPE)	|
 227			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, MEM_TYPE0)		|
 228			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, MEM_TYPE1)		|
 229			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, MEM_TYPE2),
 230		.cntr		= { {0, -1, -1}, {1, -1, -1} },
 231	},
 232	[P4_EVENT_BSQ_ACTIVE_ENTRIES] = {	/* shared ESCR */
 233		.opcode		= P4_OPCODE(P4_EVENT_BSQ_ACTIVE_ENTRIES),
 234		.escr_msr	= { MSR_P4_BSU_ESCR1 , MSR_P4_BSU_ESCR1 },
 235		.escr_emask	=
 236			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_TYPE0)	|
 237			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_TYPE1)	|
 238			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_LEN0)	|
 239			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_LEN1)	|
 240			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_IO_TYPE)	|
 241			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_LOCK_TYPE)	|
 242			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_CACHE_TYPE)	|
 243			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_SPLIT_TYPE)	|
 244			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_DEM_TYPE)	|
 245			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_ORD_TYPE)	|
 246			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, MEM_TYPE0)	|
 247			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, MEM_TYPE1)	|
 248			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, MEM_TYPE2),
 249		.cntr		= { {2, -1, -1}, {3, -1, -1} },
 250	},
 251	[P4_EVENT_SSE_INPUT_ASSIST] = {
 252		.opcode		= P4_OPCODE(P4_EVENT_SSE_INPUT_ASSIST),
 253		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
 254		.escr_emask	=
 255			P4_ESCR_EMASK_BIT(P4_EVENT_SSE_INPUT_ASSIST, ALL),
 256		.shared		= 1,
 257		.cntr		= { {8, 9, -1}, {10, 11, -1} },
 258	},
 259	[P4_EVENT_PACKED_SP_UOP] = {
 260		.opcode		= P4_OPCODE(P4_EVENT_PACKED_SP_UOP),
 261		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
 262		.escr_emask	=
 263			P4_ESCR_EMASK_BIT(P4_EVENT_PACKED_SP_UOP, ALL),
 264		.shared		= 1,
 265		.cntr		= { {8, 9, -1}, {10, 11, -1} },
 266	},
 267	[P4_EVENT_PACKED_DP_UOP] = {
 268		.opcode		= P4_OPCODE(P4_EVENT_PACKED_DP_UOP),
 269		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
 270		.escr_emask	=
 271			P4_ESCR_EMASK_BIT(P4_EVENT_PACKED_DP_UOP, ALL),
 272		.shared		= 1,
 273		.cntr		= { {8, 9, -1}, {10, 11, -1} },
 274	},
 275	[P4_EVENT_SCALAR_SP_UOP] = {
 276		.opcode		= P4_OPCODE(P4_EVENT_SCALAR_SP_UOP),
 277		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
 278		.escr_emask	=
 279			P4_ESCR_EMASK_BIT(P4_EVENT_SCALAR_SP_UOP, ALL),
 280		.shared		= 1,
 281		.cntr		= { {8, 9, -1}, {10, 11, -1} },
 282	},
 283	[P4_EVENT_SCALAR_DP_UOP] = {
 284		.opcode		= P4_OPCODE(P4_EVENT_SCALAR_DP_UOP),
 285		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
 286		.escr_emask	=
 287			P4_ESCR_EMASK_BIT(P4_EVENT_SCALAR_DP_UOP, ALL),
 288		.shared		= 1,
 289		.cntr		= { {8, 9, -1}, {10, 11, -1} },
 290	},
 291	[P4_EVENT_64BIT_MMX_UOP] = {
 292		.opcode		= P4_OPCODE(P4_EVENT_64BIT_MMX_UOP),
 293		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
 294		.escr_emask	=
 295			P4_ESCR_EMASK_BIT(P4_EVENT_64BIT_MMX_UOP, ALL),
 296		.shared		= 1,
 297		.cntr		= { {8, 9, -1}, {10, 11, -1} },
 298	},
 299	[P4_EVENT_128BIT_MMX_UOP] = {
 300		.opcode		= P4_OPCODE(P4_EVENT_128BIT_MMX_UOP),
 301		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
 302		.escr_emask	=
 303			P4_ESCR_EMASK_BIT(P4_EVENT_128BIT_MMX_UOP, ALL),
 304		.shared		= 1,
 305		.cntr		= { {8, 9, -1}, {10, 11, -1} },
 306	},
 307	[P4_EVENT_X87_FP_UOP] = {
 308		.opcode		= P4_OPCODE(P4_EVENT_X87_FP_UOP),
 309		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
 310		.escr_emask	=
 311			P4_ESCR_EMASK_BIT(P4_EVENT_X87_FP_UOP, ALL),
 312		.shared		= 1,
 313		.cntr		= { {8, 9, -1}, {10, 11, -1} },
 314	},
 315	[P4_EVENT_TC_MISC] = {
 316		.opcode		= P4_OPCODE(P4_EVENT_TC_MISC),
 317		.escr_msr	= { MSR_P4_TC_ESCR0, MSR_P4_TC_ESCR1 },
 318		.escr_emask	=
 319			P4_ESCR_EMASK_BIT(P4_EVENT_TC_MISC, FLUSH),
 320		.cntr		= { {4, 5, -1}, {6, 7, -1} },
 321	},
 322	[P4_EVENT_GLOBAL_POWER_EVENTS] = {
 323		.opcode		= P4_OPCODE(P4_EVENT_GLOBAL_POWER_EVENTS),
 324		.escr_msr	= { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
 325		.escr_emask	=
 326			P4_ESCR_EMASK_BIT(P4_EVENT_GLOBAL_POWER_EVENTS, RUNNING),
 327		.cntr		= { {0, -1, -1}, {2, -1, -1} },
 328	},
 329	[P4_EVENT_TC_MS_XFER] = {
 330		.opcode		= P4_OPCODE(P4_EVENT_TC_MS_XFER),
 331		.escr_msr	= { MSR_P4_MS_ESCR0, MSR_P4_MS_ESCR1 },
 332		.escr_emask	=
 333			P4_ESCR_EMASK_BIT(P4_EVENT_TC_MS_XFER, CISC),
 334		.cntr		= { {4, 5, -1}, {6, 7, -1} },
 335	},
 336	[P4_EVENT_UOP_QUEUE_WRITES] = {
 337		.opcode		= P4_OPCODE(P4_EVENT_UOP_QUEUE_WRITES),
 338		.escr_msr	= { MSR_P4_MS_ESCR0, MSR_P4_MS_ESCR1 },
 339		.escr_emask	=
 340			P4_ESCR_EMASK_BIT(P4_EVENT_UOP_QUEUE_WRITES, FROM_TC_BUILD)	|
 341			P4_ESCR_EMASK_BIT(P4_EVENT_UOP_QUEUE_WRITES, FROM_TC_DELIVER)	|
 342			P4_ESCR_EMASK_BIT(P4_EVENT_UOP_QUEUE_WRITES, FROM_ROM),
 343		.cntr		= { {4, 5, -1}, {6, 7, -1} },
 344	},
 345	[P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE] = {
 346		.opcode		= P4_OPCODE(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE),
 347		.escr_msr	= { MSR_P4_TBPU_ESCR0 , MSR_P4_TBPU_ESCR0 },
 348		.escr_emask	=
 349			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, CONDITIONAL)	|
 350			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, CALL)		|
 351			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, RETURN)		|
 352			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, INDIRECT),
 353		.cntr		= { {4, 5, -1}, {6, 7, -1} },
 354	},
 355	[P4_EVENT_RETIRED_BRANCH_TYPE] = {
 356		.opcode		= P4_OPCODE(P4_EVENT_RETIRED_BRANCH_TYPE),
 357		.escr_msr	= { MSR_P4_TBPU_ESCR0 , MSR_P4_TBPU_ESCR1 },
 358		.escr_emask	=
 359			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CONDITIONAL)	|
 360			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CALL)		|
 361			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, RETURN)		|
 362			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, INDIRECT),
 363		.cntr		= { {4, 5, -1}, {6, 7, -1} },
 364	},
 365	[P4_EVENT_RESOURCE_STALL] = {
 366		.opcode		= P4_OPCODE(P4_EVENT_RESOURCE_STALL),
 367		.escr_msr	= { MSR_P4_ALF_ESCR0, MSR_P4_ALF_ESCR1 },
 368		.escr_emask	=
 369			P4_ESCR_EMASK_BIT(P4_EVENT_RESOURCE_STALL, SBFULL),
 370		.cntr		= { {12, 13, 16}, {14, 15, 17} },
 371	},
 372	[P4_EVENT_WC_BUFFER] = {
 373		.opcode		= P4_OPCODE(P4_EVENT_WC_BUFFER),
 374		.escr_msr	= { MSR_P4_DAC_ESCR0, MSR_P4_DAC_ESCR1 },
 375		.escr_emask	=
 376			P4_ESCR_EMASK_BIT(P4_EVENT_WC_BUFFER, WCB_EVICTS)		|
 377			P4_ESCR_EMASK_BIT(P4_EVENT_WC_BUFFER, WCB_FULL_EVICTS),
 378		.shared		= 1,
 379		.cntr		= { {8, 9, -1}, {10, 11, -1} },
 380	},
 381	[P4_EVENT_B2B_CYCLES] = {
 382		.opcode		= P4_OPCODE(P4_EVENT_B2B_CYCLES),
 383		.escr_msr	= { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
 384		.escr_emask	= 0,
 385		.cntr		= { {0, -1, -1}, {2, -1, -1} },
 386	},
 387	[P4_EVENT_BNR] = {
 388		.opcode		= P4_OPCODE(P4_EVENT_BNR),
 389		.escr_msr	= { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
 390		.escr_emask	= 0,
 391		.cntr		= { {0, -1, -1}, {2, -1, -1} },
 392	},
 393	[P4_EVENT_SNOOP] = {
 394		.opcode		= P4_OPCODE(P4_EVENT_SNOOP),
 395		.escr_msr	= { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
 396		.escr_emask	= 0,
 397		.cntr		= { {0, -1, -1}, {2, -1, -1} },
 398	},
 399	[P4_EVENT_RESPONSE] = {
 400		.opcode		= P4_OPCODE(P4_EVENT_RESPONSE),
 401		.escr_msr	= { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
 402		.escr_emask	= 0,
 403		.cntr		= { {0, -1, -1}, {2, -1, -1} },
 404	},
 405	[P4_EVENT_FRONT_END_EVENT] = {
 406		.opcode		= P4_OPCODE(P4_EVENT_FRONT_END_EVENT),
 407		.escr_msr	= { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
 408		.escr_emask	=
 409			P4_ESCR_EMASK_BIT(P4_EVENT_FRONT_END_EVENT, NBOGUS)		|
 410			P4_ESCR_EMASK_BIT(P4_EVENT_FRONT_END_EVENT, BOGUS),
 411		.cntr		= { {12, 13, 16}, {14, 15, 17} },
 412	},
 413	[P4_EVENT_EXECUTION_EVENT] = {
 414		.opcode		= P4_OPCODE(P4_EVENT_EXECUTION_EVENT),
 415		.escr_msr	= { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
 416		.escr_emask	=
 417			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS0)		|
 418			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS1)		|
 419			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS2)		|
 420			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS3)		|
 421			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS0)		|
 422			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS1)		|
 423			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS2)		|
 424			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS3),
 425		.cntr		= { {12, 13, 16}, {14, 15, 17} },
 426	},
 427	[P4_EVENT_REPLAY_EVENT] = {
 428		.opcode		= P4_OPCODE(P4_EVENT_REPLAY_EVENT),
 429		.escr_msr	= { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
 430		.escr_emask	=
 431			P4_ESCR_EMASK_BIT(P4_EVENT_REPLAY_EVENT, NBOGUS)		|
 432			P4_ESCR_EMASK_BIT(P4_EVENT_REPLAY_EVENT, BOGUS),
 433		.cntr		= { {12, 13, 16}, {14, 15, 17} },
 434	},
 435	[P4_EVENT_INSTR_RETIRED] = {
 436		.opcode		= P4_OPCODE(P4_EVENT_INSTR_RETIRED),
 437		.escr_msr	= { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 },
 438		.escr_emask	=
 439			P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, NBOGUSNTAG)		|
 440			P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, NBOGUSTAG)		|
 441			P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, BOGUSNTAG)		|
 442			P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, BOGUSTAG),
 443		.cntr		= { {12, 13, 16}, {14, 15, 17} },
 444	},
 445	[P4_EVENT_UOPS_RETIRED] = {
 446		.opcode		= P4_OPCODE(P4_EVENT_UOPS_RETIRED),
 447		.escr_msr	= { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 },
 448		.escr_emask	=
 449			P4_ESCR_EMASK_BIT(P4_EVENT_UOPS_RETIRED, NBOGUS)		|
 450			P4_ESCR_EMASK_BIT(P4_EVENT_UOPS_RETIRED, BOGUS),
 451		.cntr		= { {12, 13, 16}, {14, 15, 17} },
 452	},
 453	[P4_EVENT_UOP_TYPE] = {
 454		.opcode		= P4_OPCODE(P4_EVENT_UOP_TYPE),
 455		.escr_msr	= { MSR_P4_RAT_ESCR0, MSR_P4_RAT_ESCR1 },
 456		.escr_emask	=
 457			P4_ESCR_EMASK_BIT(P4_EVENT_UOP_TYPE, TAGLOADS)			|
 458			P4_ESCR_EMASK_BIT(P4_EVENT_UOP_TYPE, TAGSTORES),
 459		.cntr		= { {12, 13, 16}, {14, 15, 17} },
 460	},
 461	[P4_EVENT_BRANCH_RETIRED] = {
 462		.opcode		= P4_OPCODE(P4_EVENT_BRANCH_RETIRED),
 463		.escr_msr	= { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
 464		.escr_emask	=
 465			P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMNP)		|
 466			P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMNM)		|
 467			P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMTP)		|
 468			P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMTM),
 469		.cntr		= { {12, 13, 16}, {14, 15, 17} },
 470	},
 471	[P4_EVENT_MISPRED_BRANCH_RETIRED] = {
 472		.opcode		= P4_OPCODE(P4_EVENT_MISPRED_BRANCH_RETIRED),
 473		.escr_msr	= { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 },
 474		.escr_emask	=
 475			P4_ESCR_EMASK_BIT(P4_EVENT_MISPRED_BRANCH_RETIRED, NBOGUS),
 476		.cntr		= { {12, 13, 16}, {14, 15, 17} },
 477	},
 478	[P4_EVENT_X87_ASSIST] = {
 479		.opcode		= P4_OPCODE(P4_EVENT_X87_ASSIST),
 480		.escr_msr	= { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
 481		.escr_emask	=
 482			P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, FPSU)			|
 483			P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, FPSO)			|
 484			P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, POAO)			|
 485			P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, POAU)			|
 486			P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, PREA),
 487		.cntr		= { {12, 13, 16}, {14, 15, 17} },
 488	},
 489	[P4_EVENT_MACHINE_CLEAR] = {
 490		.opcode		= P4_OPCODE(P4_EVENT_MACHINE_CLEAR),
 491		.escr_msr	= { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
 492		.escr_emask	=
 493			P4_ESCR_EMASK_BIT(P4_EVENT_MACHINE_CLEAR, CLEAR)		|
 494			P4_ESCR_EMASK_BIT(P4_EVENT_MACHINE_CLEAR, MOCLEAR)		|
 495			P4_ESCR_EMASK_BIT(P4_EVENT_MACHINE_CLEAR, SMCLEAR),
 496		.cntr		= { {12, 13, 16}, {14, 15, 17} },
 497	},
 498	[P4_EVENT_INSTR_COMPLETED] = {
 499		.opcode		= P4_OPCODE(P4_EVENT_INSTR_COMPLETED),
 500		.escr_msr	= { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 },
 501		.escr_emask	=
 502			P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_COMPLETED, NBOGUS)		|
 503			P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_COMPLETED, BOGUS),
 504		.cntr		= { {12, 13, 16}, {14, 15, 17} },
 505	},
 506};
 507
 508#define P4_GEN_CACHE_EVENT(event, bit, metric)				  \
 509	p4_config_pack_escr(P4_ESCR_EVENT(event)			| \
 510			    P4_ESCR_EMASK_BIT(event, bit))		| \
 511	p4_config_pack_cccr(metric					| \
 512			    P4_CCCR_ESEL(P4_OPCODE_ESEL(P4_OPCODE(event))))
 513
 514static __initconst const u64 p4_hw_cache_event_ids
 515				[PERF_COUNT_HW_CACHE_MAX]
 516				[PERF_COUNT_HW_CACHE_OP_MAX]
 517				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
 518{
 519 [ C(L1D ) ] = {
 520	[ C(OP_READ) ] = {
 521		[ C(RESULT_ACCESS) ] = 0x0,
 522		[ C(RESULT_MISS)   ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS,
 523						P4_PEBS_METRIC__1stl_cache_load_miss_retired),
 524	},
 525 },
 526 [ C(LL  ) ] = {
 527	[ C(OP_READ) ] = {
 528		[ C(RESULT_ACCESS) ] = 0x0,
 529		[ C(RESULT_MISS)   ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS,
 530						P4_PEBS_METRIC__2ndl_cache_load_miss_retired),
 531	},
 532},
 533 [ C(DTLB) ] = {
 534	[ C(OP_READ) ] = {
 535		[ C(RESULT_ACCESS) ] = 0x0,
 536		[ C(RESULT_MISS)   ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS,
 537						P4_PEBS_METRIC__dtlb_load_miss_retired),
 538	},
 539	[ C(OP_WRITE) ] = {
 540		[ C(RESULT_ACCESS) ] = 0x0,
 541		[ C(RESULT_MISS)   ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS,
 542						P4_PEBS_METRIC__dtlb_store_miss_retired),
 543	},
 544 },
 545 [ C(ITLB) ] = {
 546	[ C(OP_READ) ] = {
 547		[ C(RESULT_ACCESS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_ITLB_REFERENCE, HIT,
 548						P4_PEBS_METRIC__none),
 549		[ C(RESULT_MISS)   ] = P4_GEN_CACHE_EVENT(P4_EVENT_ITLB_REFERENCE, MISS,
 550						P4_PEBS_METRIC__none),
 551	},
 552	[ C(OP_WRITE) ] = {
 553		[ C(RESULT_ACCESS) ] = -1,
 554		[ C(RESULT_MISS)   ] = -1,
 555	},
 556	[ C(OP_PREFETCH) ] = {
 557		[ C(RESULT_ACCESS) ] = -1,
 558		[ C(RESULT_MISS)   ] = -1,
 559	},
 560 },
 561 [ C(NODE) ] = {
 562	[ C(OP_READ) ] = {
 563		[ C(RESULT_ACCESS) ] = -1,
 564		[ C(RESULT_MISS)   ] = -1,
 565	},
 566	[ C(OP_WRITE) ] = {
 567		[ C(RESULT_ACCESS) ] = -1,
 568		[ C(RESULT_MISS)   ] = -1,
 569	},
 570	[ C(OP_PREFETCH) ] = {
 571		[ C(RESULT_ACCESS) ] = -1,
 572		[ C(RESULT_MISS)   ] = -1,
 573	},
 574 },
 575};
 576
 577/*
 578 * Because of Netburst being quite restricted in how many
 579 * identical events may run simultaneously, we introduce event aliases,
 580 * ie the different events which have the same functionality but
 581 * utilize non-intersected resources (ESCR/CCCR/counter registers).
 582 *
 583 * This allow us to relax restrictions a bit and run two or more
 584 * identical events together.
 585 *
 586 * Never set any custom internal bits such as P4_CONFIG_HT,
 587 * P4_CONFIG_ALIASABLE or bits for P4_PEBS_METRIC, they are
 588 * either up to date automatically or not applicable at all.
 589 */
 590struct p4_event_alias {
 591	u64 original;
 592	u64 alternative;
 593} p4_event_aliases[] = {
 594	{
 595		/*
 596		 * Non-halted cycles can be substituted with non-sleeping cycles (see
 597		 * Intel SDM Vol3b for details). We need this alias to be able
 598		 * to run nmi-watchdog and 'perf top' (or any other user space tool
 599		 * which is interested in running PERF_COUNT_HW_CPU_CYCLES)
 600		 * simultaneously.
 601		 */
 602	.original	=
 603		p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_GLOBAL_POWER_EVENTS)		|
 604				    P4_ESCR_EMASK_BIT(P4_EVENT_GLOBAL_POWER_EVENTS, RUNNING)),
 605	.alternative	=
 606		p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_EXECUTION_EVENT)		|
 607				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS0)|
 608				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS1)|
 609				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS2)|
 610				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS3)|
 611				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS0)	|
 612				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS1)	|
 613				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS2)	|
 614				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS3))|
 615		p4_config_pack_cccr(P4_CCCR_THRESHOLD(15) | P4_CCCR_COMPLEMENT		|
 616				    P4_CCCR_COMPARE),
 617	},
 618};
 619
 620static u64 p4_get_alias_event(u64 config)
 621{
 622	u64 config_match;
 623	int i;
 624
 625	/*
 626	 * Only event with special mark is allowed,
 627	 * we're to be sure it didn't come as malformed
 628	 * RAW event.
 629	 */
 630	if (!(config & P4_CONFIG_ALIASABLE))
 631		return 0;
 632
 633	config_match = config & P4_CONFIG_EVENT_ALIAS_MASK;
 634
 635	for (i = 0; i < ARRAY_SIZE(p4_event_aliases); i++) {
 636		if (config_match == p4_event_aliases[i].original) {
 637			config_match = p4_event_aliases[i].alternative;
 638			break;
 639		} else if (config_match == p4_event_aliases[i].alternative) {
 640			config_match = p4_event_aliases[i].original;
 641			break;
 642		}
 643	}
 644
 645	if (i >= ARRAY_SIZE(p4_event_aliases))
 646		return 0;
 647
 648	return config_match | (config & P4_CONFIG_EVENT_ALIAS_IMMUTABLE_BITS);
 649}
 650
 651static u64 p4_general_events[PERF_COUNT_HW_MAX] = {
 652  /* non-halted CPU clocks */
 653  [PERF_COUNT_HW_CPU_CYCLES] =
 654	p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_GLOBAL_POWER_EVENTS)		|
 655		P4_ESCR_EMASK_BIT(P4_EVENT_GLOBAL_POWER_EVENTS, RUNNING))	|
 656		P4_CONFIG_ALIASABLE,
 657
 658  /*
 659   * retired instructions
 660   * in a sake of simplicity we don't use the FSB tagging
 661   */
 662  [PERF_COUNT_HW_INSTRUCTIONS] =
 663	p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_INSTR_RETIRED)		|
 664		P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, NBOGUSNTAG)		|
 665		P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, BOGUSNTAG)),
 666
 667  /* cache hits */
 668  [PERF_COUNT_HW_CACHE_REFERENCES] =
 669	p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_BSQ_CACHE_REFERENCE)		|
 670		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITS)	|
 671		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITE)	|
 672		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITM)	|
 673		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITS)	|
 674		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITE)	|
 675		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITM)),
 676
 677  /* cache misses */
 678  [PERF_COUNT_HW_CACHE_MISSES] =
 679	p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_BSQ_CACHE_REFERENCE)		|
 680		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_MISS)	|
 681		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_MISS)	|
 682		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, WR_2ndL_MISS)),
 683
 684  /* branch instructions retired */
 685  [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] =
 686	p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_RETIRED_BRANCH_TYPE)		|
 687		P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CONDITIONAL)	|
 688		P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CALL)		|
 689		P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, RETURN)		|
 690		P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, INDIRECT)),
 691
 692  /* mispredicted branches retired */
 693  [PERF_COUNT_HW_BRANCH_MISSES]	=
 694	p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_MISPRED_BRANCH_RETIRED)	|
 695		P4_ESCR_EMASK_BIT(P4_EVENT_MISPRED_BRANCH_RETIRED, NBOGUS)),
 696
 697  /* bus ready clocks (cpu is driving #DRDY_DRV\#DRDY_OWN):  */
 698  [PERF_COUNT_HW_BUS_CYCLES] =
 699	p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_FSB_DATA_ACTIVITY)		|
 700		P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_DRV)		|
 701		P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_OWN))	|
 702	p4_config_pack_cccr(P4_CCCR_EDGE | P4_CCCR_COMPARE),
 703};
 704
 705static struct p4_event_bind *p4_config_get_bind(u64 config)
 706{
 707	unsigned int evnt = p4_config_unpack_event(config);
 708	struct p4_event_bind *bind = NULL;
 709
 710	if (evnt < ARRAY_SIZE(p4_event_bind_map))
 711		bind = &p4_event_bind_map[evnt];
 712
 713	return bind;
 714}
 715
 716static u64 p4_pmu_event_map(int hw_event)
 717{
 718	struct p4_event_bind *bind;
 719	unsigned int esel;
 720	u64 config;
 721
 722	config = p4_general_events[hw_event];
 723	bind = p4_config_get_bind(config);
 724	esel = P4_OPCODE_ESEL(bind->opcode);
 725	config |= p4_config_pack_cccr(P4_CCCR_ESEL(esel));
 726
 727	return config;
 728}
 729
 730/* check cpu model specifics */
 731static bool p4_event_match_cpu_model(unsigned int event_idx)
 732{
 733	/* INSTR_COMPLETED event only exist for model 3, 4, 6 (Prescott) */
 734	if (event_idx == P4_EVENT_INSTR_COMPLETED) {
 735		if (boot_cpu_data.x86_model != 3 &&
 736			boot_cpu_data.x86_model != 4 &&
 737			boot_cpu_data.x86_model != 6)
 738			return false;
 739	}
 740
 741	/*
 742	 * For info
 743	 * - IQ_ESCR0, IQ_ESCR1 only for models 1 and 2
 744	 */
 745
 746	return true;
 747}
 748
 749static int p4_validate_raw_event(struct perf_event *event)
 750{
 751	unsigned int v, emask;
 752
 753	/* User data may have out-of-bound event index */
 754	v = p4_config_unpack_event(event->attr.config);
 755	if (v >= ARRAY_SIZE(p4_event_bind_map))
 756		return -EINVAL;
 757
 758	/* It may be unsupported: */
 759	if (!p4_event_match_cpu_model(v))
 760		return -EINVAL;
 761
 762	/*
 763	 * NOTE: P4_CCCR_THREAD_ANY has not the same meaning as
 764	 * in Architectural Performance Monitoring, it means not
 765	 * on _which_ logical cpu to count but rather _when_, ie it
 766	 * depends on logical cpu state -- count event if one cpu active,
 767	 * none, both or any, so we just allow user to pass any value
 768	 * desired.
 769	 *
 770	 * In turn we always set Tx_OS/Tx_USR bits bound to logical
 771	 * cpu without their propagation to another cpu
 772	 */
 773
 774	/*
 775	 * if an event is shared across the logical threads
 776	 * the user needs special permissions to be able to use it
 777	 */
 778	if (p4_ht_active() && p4_event_bind_map[v].shared) {
 779		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
 780			return -EACCES;
 781	}
 782
 783	/* ESCR EventMask bits may be invalid */
 784	emask = p4_config_unpack_escr(event->attr.config) & P4_ESCR_EVENTMASK_MASK;
 785	if (emask & ~p4_event_bind_map[v].escr_emask)
 786		return -EINVAL;
 787
 788	/*
 789	 * it may have some invalid PEBS bits
 790	 */
 791	if (p4_config_pebs_has(event->attr.config, P4_PEBS_CONFIG_ENABLE))
 792		return -EINVAL;
 793
 794	v = p4_config_unpack_metric(event->attr.config);
 795	if (v >= ARRAY_SIZE(p4_pebs_bind_map))
 796		return -EINVAL;
 797
 798	return 0;
 799}
 800
 801static int p4_hw_config(struct perf_event *event)
 802{
 803	int cpu = get_cpu();
 804	int rc = 0;
 805	u32 escr, cccr;
 806
 807	/*
 808	 * the reason we use cpu that early is that: if we get scheduled
 809	 * first time on the same cpu -- we will not need swap thread
 810	 * specific flags in config (and will save some cpu cycles)
 811	 */
 812
 813	cccr = p4_default_cccr_conf(cpu);
 814	escr = p4_default_escr_conf(cpu, event->attr.exclude_kernel,
 815					 event->attr.exclude_user);
 816	event->hw.config = p4_config_pack_escr(escr) |
 817			   p4_config_pack_cccr(cccr);
 818
 819	if (p4_ht_active() && p4_ht_thread(cpu))
 820		event->hw.config = p4_set_ht_bit(event->hw.config);
 821
 822	if (event->attr.type == PERF_TYPE_RAW) {
 823		struct p4_event_bind *bind;
 824		unsigned int esel;
 825		/*
 826		 * Clear bits we reserve to be managed by kernel itself
 827		 * and never allowed from a user space
 828		 */
 829		 event->attr.config &= P4_CONFIG_MASK;
 830
 831		rc = p4_validate_raw_event(event);
 832		if (rc)
 833			goto out;
 834
 835		/*
 836		 * Note that for RAW events we allow user to use P4_CCCR_RESERVED
 837		 * bits since we keep additional info here (for cache events and etc)
 838		 */
 839		event->hw.config |= event->attr.config;
 840		bind = p4_config_get_bind(event->attr.config);
 841		if (!bind) {
 842			rc = -EINVAL;
 843			goto out;
 844		}
 845		esel = P4_OPCODE_ESEL(bind->opcode);
 846		event->hw.config |= p4_config_pack_cccr(P4_CCCR_ESEL(esel));
 847	}
 848
 849	rc = x86_setup_perfctr(event);
 850out:
 851	put_cpu();
 852	return rc;
 853}
 854
 855static inline int p4_pmu_clear_cccr_ovf(struct hw_perf_event *hwc)
 856{
 857	u64 v;
 858
 859	/* an official way for overflow indication */
 860	rdmsrl(hwc->config_base, v);
 861	if (v & P4_CCCR_OVF) {
 862		wrmsrl(hwc->config_base, v & ~P4_CCCR_OVF);
 863		return 1;
 864	}
 865
 866	/*
 867	 * In some circumstances the overflow might issue an NMI but did
 868	 * not set P4_CCCR_OVF bit. Because a counter holds a negative value
 869	 * we simply check for high bit being set, if it's cleared it means
 870	 * the counter has reached zero value and continued counting before
 871	 * real NMI signal was received:
 872	 */
 873	rdmsrl(hwc->event_base, v);
 874	if (!(v & ARCH_P4_UNFLAGGED_BIT))
 875		return 1;
 876
 877	return 0;
 878}
 879
 880static void p4_pmu_disable_pebs(void)
 881{
 882	/*
 883	 * FIXME
 884	 *
 885	 * It's still allowed that two threads setup same cache
 886	 * events so we can't simply clear metrics until we knew
 887	 * no one is depending on us, so we need kind of counter
 888	 * for "ReplayEvent" users.
 889	 *
 890	 * What is more complex -- RAW events, if user (for some
 891	 * reason) will pass some cache event metric with improper
 892	 * event opcode -- it's fine from hardware point of view
 893	 * but completely nonsense from "meaning" of such action.
 894	 *
 895	 * So at moment let leave metrics turned on forever -- it's
 896	 * ok for now but need to be revisited!
 897	 *
 898	 * (void)wrmsrl_safe(MSR_IA32_PEBS_ENABLE, 0);
 899	 * (void)wrmsrl_safe(MSR_P4_PEBS_MATRIX_VERT, 0);
 900	 */
 901}
 902
 903static inline void p4_pmu_disable_event(struct perf_event *event)
 904{
 905	struct hw_perf_event *hwc = &event->hw;
 906
 907	/*
 908	 * If event gets disabled while counter is in overflowed
 909	 * state we need to clear P4_CCCR_OVF, otherwise interrupt get
 910	 * asserted again and again
 911	 */
 912	(void)wrmsrl_safe(hwc->config_base,
 913		p4_config_unpack_cccr(hwc->config) & ~P4_CCCR_ENABLE & ~P4_CCCR_OVF & ~P4_CCCR_RESERVED);
 914}
 915
 916static void p4_pmu_disable_all(void)
 917{
 918	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 919	int idx;
 920
 921	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
 922		struct perf_event *event = cpuc->events[idx];
 923		if (!test_bit(idx, cpuc->active_mask))
 924			continue;
 925		p4_pmu_disable_event(event);
 926	}
 927
 928	p4_pmu_disable_pebs();
 929}
 930
 931/* configuration must be valid */
 932static void p4_pmu_enable_pebs(u64 config)
 933{
 934	struct p4_pebs_bind *bind;
 935	unsigned int idx;
 936
 937	BUILD_BUG_ON(P4_PEBS_METRIC__max > P4_PEBS_CONFIG_METRIC_MASK);
 938
 939	idx = p4_config_unpack_metric(config);
 940	if (idx == P4_PEBS_METRIC__none)
 941		return;
 942
 943	bind = &p4_pebs_bind_map[idx];
 944
 945	(void)wrmsrl_safe(MSR_IA32_PEBS_ENABLE,	(u64)bind->metric_pebs);
 946	(void)wrmsrl_safe(MSR_P4_PEBS_MATRIX_VERT,	(u64)bind->metric_vert);
 947}
 948
 949static void p4_pmu_enable_event(struct perf_event *event)
 950{
 951	struct hw_perf_event *hwc = &event->hw;
 952	int thread = p4_ht_config_thread(hwc->config);
 953	u64 escr_conf = p4_config_unpack_escr(p4_clear_ht_bit(hwc->config));
 954	unsigned int idx = p4_config_unpack_event(hwc->config);
 955	struct p4_event_bind *bind;
 956	u64 escr_addr, cccr;
 957
 958	bind = &p4_event_bind_map[idx];
 959	escr_addr = bind->escr_msr[thread];
 960
 961	/*
 962	 * - we dont support cascaded counters yet
 963	 * - and counter 1 is broken (erratum)
 964	 */
 965	WARN_ON_ONCE(p4_is_event_cascaded(hwc->config));
 966	WARN_ON_ONCE(hwc->idx == 1);
 967
 968	/* we need a real Event value */
 969	escr_conf &= ~P4_ESCR_EVENT_MASK;
 970	escr_conf |= P4_ESCR_EVENT(P4_OPCODE_EVNT(bind->opcode));
 971
 972	cccr = p4_config_unpack_cccr(hwc->config);
 973
 974	/*
 975	 * it could be Cache event so we need to write metrics
 976	 * into additional MSRs
 977	 */
 978	p4_pmu_enable_pebs(hwc->config);
 979
 980	(void)wrmsrl_safe(escr_addr, escr_conf);
 981	(void)wrmsrl_safe(hwc->config_base,
 982				(cccr & ~P4_CCCR_RESERVED) | P4_CCCR_ENABLE);
 983}
 984
 985static void p4_pmu_enable_all(int added)
 986{
 987	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 988	int idx;
 989
 990	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
 991		struct perf_event *event = cpuc->events[idx];
 992		if (!test_bit(idx, cpuc->active_mask))
 993			continue;
 994		p4_pmu_enable_event(event);
 995	}
 996}
 997
 998static int p4_pmu_handle_irq(struct pt_regs *regs)
 999{
1000	struct perf_sample_data data;
1001	struct cpu_hw_events *cpuc;
1002	struct perf_event *event;
1003	struct hw_perf_event *hwc;
1004	int idx, handled = 0;
1005	u64 val;
1006
1007	cpuc = &__get_cpu_var(cpu_hw_events);
1008
1009	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1010		int overflow;
1011
1012		if (!test_bit(idx, cpuc->active_mask)) {
1013			/* catch in-flight IRQs */
1014			if (__test_and_clear_bit(idx, cpuc->running))
1015				handled++;
1016			continue;
1017		}
1018
1019		event = cpuc->events[idx];
1020		hwc = &event->hw;
1021
1022		WARN_ON_ONCE(hwc->idx != idx);
1023
1024		/* it might be unflagged overflow */
1025		overflow = p4_pmu_clear_cccr_ovf(hwc);
1026
1027		val = x86_perf_event_update(event);
1028		if (!overflow && (val & (1ULL << (x86_pmu.cntval_bits - 1))))
1029			continue;
1030
1031		handled += overflow;
1032
1033		/* event overflow for sure */
1034		perf_sample_data_init(&data, 0, hwc->last_period);
1035
1036		if (!x86_perf_event_set_period(event))
1037			continue;
1038
1039
1040		if (perf_event_overflow(event, &data, regs))
1041			x86_pmu_stop(event, 0);
1042	}
1043
1044	if (handled)
1045		inc_irq_stat(apic_perf_irqs);
1046
1047	/*
1048	 * When dealing with the unmasking of the LVTPC on P4 perf hw, it has
1049	 * been observed that the OVF bit flag has to be cleared first _before_
1050	 * the LVTPC can be unmasked.
1051	 *
1052	 * The reason is the NMI line will continue to be asserted while the OVF
1053	 * bit is set.  This causes a second NMI to generate if the LVTPC is
1054	 * unmasked before the OVF bit is cleared, leading to unknown NMI
1055	 * messages.
1056	 */
1057	apic_write(APIC_LVTPC, APIC_DM_NMI);
1058
1059	return handled;
1060}
1061
1062/*
1063 * swap thread specific fields according to a thread
1064 * we are going to run on
1065 */
1066static void p4_pmu_swap_config_ts(struct hw_perf_event *hwc, int cpu)
1067{
1068	u32 escr, cccr;
1069
1070	/*
1071	 * we either lucky and continue on same cpu or no HT support
1072	 */
1073	if (!p4_should_swap_ts(hwc->config, cpu))
1074		return;
1075
1076	/*
1077	 * the event is migrated from an another logical
1078	 * cpu, so we need to swap thread specific flags
1079	 */
1080
1081	escr = p4_config_unpack_escr(hwc->config);
1082	cccr = p4_config_unpack_cccr(hwc->config);
1083
1084	if (p4_ht_thread(cpu)) {
1085		cccr &= ~P4_CCCR_OVF_PMI_T0;
1086		cccr |= P4_CCCR_OVF_PMI_T1;
1087		if (escr & P4_ESCR_T0_OS) {
1088			escr &= ~P4_ESCR_T0_OS;
1089			escr |= P4_ESCR_T1_OS;
1090		}
1091		if (escr & P4_ESCR_T0_USR) {
1092			escr &= ~P4_ESCR_T0_USR;
1093			escr |= P4_ESCR_T1_USR;
1094		}
1095		hwc->config  = p4_config_pack_escr(escr);
1096		hwc->config |= p4_config_pack_cccr(cccr);
1097		hwc->config |= P4_CONFIG_HT;
1098	} else {
1099		cccr &= ~P4_CCCR_OVF_PMI_T1;
1100		cccr |= P4_CCCR_OVF_PMI_T0;
1101		if (escr & P4_ESCR_T1_OS) {
1102			escr &= ~P4_ESCR_T1_OS;
1103			escr |= P4_ESCR_T0_OS;
1104		}
1105		if (escr & P4_ESCR_T1_USR) {
1106			escr &= ~P4_ESCR_T1_USR;
1107			escr |= P4_ESCR_T0_USR;
1108		}
1109		hwc->config  = p4_config_pack_escr(escr);
1110		hwc->config |= p4_config_pack_cccr(cccr);
1111		hwc->config &= ~P4_CONFIG_HT;
1112	}
1113}
1114
1115/*
1116 * ESCR address hashing is tricky, ESCRs are not sequential
1117 * in memory but all starts from MSR_P4_BSU_ESCR0 (0x03a0) and
1118 * the metric between any ESCRs is laid in range [0xa0,0xe1]
1119 *
1120 * so we make ~70% filled hashtable
1121 */
1122
1123#define P4_ESCR_MSR_BASE		0x000003a0
1124#define P4_ESCR_MSR_MAX			0x000003e1
1125#define P4_ESCR_MSR_TABLE_SIZE		(P4_ESCR_MSR_MAX - P4_ESCR_MSR_BASE + 1)
1126#define P4_ESCR_MSR_IDX(msr)		(msr - P4_ESCR_MSR_BASE)
1127#define P4_ESCR_MSR_TABLE_ENTRY(msr)	[P4_ESCR_MSR_IDX(msr)] = msr
1128
1129static const unsigned int p4_escr_table[P4_ESCR_MSR_TABLE_SIZE] = {
1130	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ALF_ESCR0),
1131	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ALF_ESCR1),
1132	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BPU_ESCR0),
1133	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BPU_ESCR1),
1134	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BSU_ESCR0),
1135	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BSU_ESCR1),
1136	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR0),
1137	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR1),
1138	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR2),
1139	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR3),
1140	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR4),
1141	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR5),
1142	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_DAC_ESCR0),
1143	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_DAC_ESCR1),
1144	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FIRM_ESCR0),
1145	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FIRM_ESCR1),
1146	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FLAME_ESCR0),
1147	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FLAME_ESCR1),
1148	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FSB_ESCR0),
1149	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FSB_ESCR1),
1150	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IQ_ESCR0),
1151	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IQ_ESCR1),
1152	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IS_ESCR0),
1153	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IS_ESCR1),
1154	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ITLB_ESCR0),
1155	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ITLB_ESCR1),
1156	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IX_ESCR0),
1157	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IX_ESCR1),
1158	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MOB_ESCR0),
1159	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MOB_ESCR1),
1160	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MS_ESCR0),
1161	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MS_ESCR1),
1162	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_PMH_ESCR0),
1163	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_PMH_ESCR1),
1164	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_RAT_ESCR0),
1165	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_RAT_ESCR1),
1166	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SAAT_ESCR0),
1167	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SAAT_ESCR1),
1168	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SSU_ESCR0),
1169	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SSU_ESCR1),
1170	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TBPU_ESCR0),
1171	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TBPU_ESCR1),
1172	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TC_ESCR0),
1173	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TC_ESCR1),
1174	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_U2L_ESCR0),
1175	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_U2L_ESCR1),
1176};
1177
1178static int p4_get_escr_idx(unsigned int addr)
1179{
1180	unsigned int idx = P4_ESCR_MSR_IDX(addr);
1181
1182	if (unlikely(idx >= P4_ESCR_MSR_TABLE_SIZE	||
1183			!p4_escr_table[idx]		||
1184			p4_escr_table[idx] != addr)) {
1185		WARN_ONCE(1, "P4 PMU: Wrong address passed: %x\n", addr);
1186		return -1;
1187	}
1188
1189	return idx;
1190}
1191
1192static int p4_next_cntr(int thread, unsigned long *used_mask,
1193			struct p4_event_bind *bind)
1194{
1195	int i, j;
1196
1197	for (i = 0; i < P4_CNTR_LIMIT; i++) {
1198		j = bind->cntr[thread][i];
1199		if (j != -1 && !test_bit(j, used_mask))
1200			return j;
1201	}
1202
1203	return -1;
1204}
1205
1206static int p4_pmu_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
1207{
1208	unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
1209	unsigned long escr_mask[BITS_TO_LONGS(P4_ESCR_MSR_TABLE_SIZE)];
1210	int cpu = smp_processor_id();
1211	struct hw_perf_event *hwc;
1212	struct p4_event_bind *bind;
1213	unsigned int i, thread, num;
1214	int cntr_idx, escr_idx;
1215	u64 config_alias;
1216	int pass;
1217
1218	bitmap_zero(used_mask, X86_PMC_IDX_MAX);
1219	bitmap_zero(escr_mask, P4_ESCR_MSR_TABLE_SIZE);
1220
1221	for (i = 0, num = n; i < n; i++, num--) {
1222
1223		hwc = &cpuc->event_list[i]->hw;
1224		thread = p4_ht_thread(cpu);
1225		pass = 0;
1226
1227again:
1228		/*
1229		 * It's possible to hit a circular lock
1230		 * between original and alternative events
1231		 * if both are scheduled already.
1232		 */
1233		if (pass > 2)
1234			goto done;
1235
1236		bind = p4_config_get_bind(hwc->config);
1237		escr_idx = p4_get_escr_idx(bind->escr_msr[thread]);
1238		if (unlikely(escr_idx == -1))
1239			goto done;
1240
1241		if (hwc->idx != -1 && !p4_should_swap_ts(hwc->config, cpu)) {
1242			cntr_idx = hwc->idx;
1243			if (assign)
1244				assign[i] = hwc->idx;
1245			goto reserve;
1246		}
1247
1248		cntr_idx = p4_next_cntr(thread, used_mask, bind);
1249		if (cntr_idx == -1 || test_bit(escr_idx, escr_mask)) {
1250			/*
1251			 * Check whether an event alias is still available.
1252			 */
1253			config_alias = p4_get_alias_event(hwc->config);
1254			if (!config_alias)
1255				goto done;
1256			hwc->config = config_alias;
1257			pass++;
1258			goto again;
1259		}
1260		/*
1261		 * Perf does test runs to see if a whole group can be assigned
1262		 * together succesfully.  There can be multiple rounds of this.
1263		 * Unfortunately, p4_pmu_swap_config_ts touches the hwc->config
1264		 * bits, such that the next round of group assignments will
1265		 * cause the above p4_should_swap_ts to pass instead of fail.
1266		 * This leads to counters exclusive to thread0 being used by
1267		 * thread1.
1268		 *
1269		 * Solve this with a cheap hack, reset the idx back to -1 to
1270		 * force a new lookup (p4_next_cntr) to get the right counter
1271		 * for the right thread.
1272		 *
1273		 * This probably doesn't comply with the general spirit of how
1274		 * perf wants to work, but P4 is special. :-(
1275		 */
1276		if (p4_should_swap_ts(hwc->config, cpu))
1277			hwc->idx = -1;
1278		p4_pmu_swap_config_ts(hwc, cpu);
1279		if (assign)
1280			assign[i] = cntr_idx;
1281reserve:
1282		set_bit(cntr_idx, used_mask);
1283		set_bit(escr_idx, escr_mask);
1284	}
1285
1286done:
1287	return num ? -EINVAL : 0;
1288}
1289
1290PMU_FORMAT_ATTR(cccr, "config:0-31" );
1291PMU_FORMAT_ATTR(escr, "config:32-62");
1292PMU_FORMAT_ATTR(ht,   "config:63"   );
1293
1294static struct attribute *intel_p4_formats_attr[] = {
1295	&format_attr_cccr.attr,
1296	&format_attr_escr.attr,
1297	&format_attr_ht.attr,
1298	NULL,
1299};
1300
1301static __initconst const struct x86_pmu p4_pmu = {
1302	.name			= "Netburst P4/Xeon",
1303	.handle_irq		= p4_pmu_handle_irq,
1304	.disable_all		= p4_pmu_disable_all,
1305	.enable_all		= p4_pmu_enable_all,
1306	.enable			= p4_pmu_enable_event,
1307	.disable		= p4_pmu_disable_event,
1308	.eventsel		= MSR_P4_BPU_CCCR0,
1309	.perfctr		= MSR_P4_BPU_PERFCTR0,
1310	.event_map		= p4_pmu_event_map,
1311	.max_events		= ARRAY_SIZE(p4_general_events),
1312	.get_event_constraints	= x86_get_event_constraints,
1313	/*
1314	 * IF HT disabled we may need to use all
1315	 * ARCH_P4_MAX_CCCR counters simulaneously
1316	 * though leave it restricted at moment assuming
1317	 * HT is on
1318	 */
1319	.num_counters		= ARCH_P4_MAX_CCCR,
1320	.apic			= 1,
1321	.cntval_bits		= ARCH_P4_CNTRVAL_BITS,
1322	.cntval_mask		= ARCH_P4_CNTRVAL_MASK,
1323	.max_period		= (1ULL << (ARCH_P4_CNTRVAL_BITS - 1)) - 1,
1324	.hw_config		= p4_hw_config,
1325	.schedule_events	= p4_pmu_schedule_events,
1326	/*
1327	 * This handles erratum N15 in intel doc 249199-029,
1328	 * the counter may not be updated correctly on write
1329	 * so we need a second write operation to do the trick
1330	 * (the official workaround didn't work)
1331	 *
1332	 * the former idea is taken from OProfile code
1333	 */
1334	.perfctr_second_write	= 1,
1335
1336	.format_attrs		= intel_p4_formats_attr,
1337};
1338
1339__init int p4_pmu_init(void)
1340{
1341	unsigned int low, high;
1342	int i, reg;
1343
1344	/* If we get stripped -- indexing fails */
1345	BUILD_BUG_ON(ARCH_P4_MAX_CCCR > INTEL_PMC_MAX_GENERIC);
1346
1347	rdmsr(MSR_IA32_MISC_ENABLE, low, high);
1348	if (!(low & (1 << 7))) {
1349		pr_cont("unsupported Netburst CPU model %d ",
1350			boot_cpu_data.x86_model);
1351		return -ENODEV;
1352	}
1353
1354	memcpy(hw_cache_event_ids, p4_hw_cache_event_ids,
1355		sizeof(hw_cache_event_ids));
1356
1357	pr_cont("Netburst events, ");
1358
1359	x86_pmu = p4_pmu;
1360
1361	/*
1362	 * Even though the counters are configured to interrupt a particular
1363	 * logical processor when an overflow happens, testing has shown that
1364	 * on kdump kernels (which uses a single cpu), thread1's counter
1365	 * continues to run and will report an NMI on thread0.  Due to the
1366	 * overflow bug, this leads to a stream of unknown NMIs.
1367	 *
1368	 * Solve this by zero'ing out the registers to mimic a reset.
1369	 */
1370	for (i = 0; i < x86_pmu.num_counters; i++) {
1371		reg = x86_pmu_config_addr(i);
1372		wrmsrl_safe(reg, 0ULL);
1373	}
1374
1375	return 0;
1376}