Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * srmmu.c: SRMMU specific routines for memory management.
4 *
5 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
6 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
7 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
9 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
10 */
11
12#include <linux/seq_file.h>
13#include <linux/spinlock.h>
14#include <linux/memblock.h>
15#include <linux/pagemap.h>
16#include <linux/vmalloc.h>
17#include <linux/kdebug.h>
18#include <linux/export.h>
19#include <linux/kernel.h>
20#include <linux/init.h>
21#include <linux/log2.h>
22#include <linux/gfp.h>
23#include <linux/fs.h>
24#include <linux/mm.h>
25
26#include <asm/mmu_context.h>
27#include <asm/cacheflush.h>
28#include <asm/tlbflush.h>
29#include <asm/io-unit.h>
30#include <asm/pgalloc.h>
31#include <asm/pgtable.h>
32#include <asm/bitext.h>
33#include <asm/vaddrs.h>
34#include <asm/cache.h>
35#include <asm/traps.h>
36#include <asm/oplib.h>
37#include <asm/mbus.h>
38#include <asm/page.h>
39#include <asm/asi.h>
40#include <asm/smp.h>
41#include <asm/io.h>
42
43/* Now the cpu specific definitions. */
44#include <asm/turbosparc.h>
45#include <asm/tsunami.h>
46#include <asm/viking.h>
47#include <asm/swift.h>
48#include <asm/leon.h>
49#include <asm/mxcc.h>
50#include <asm/ross.h>
51
52#include "mm_32.h"
53
54enum mbus_module srmmu_modtype;
55static unsigned int hwbug_bitmask;
56int vac_cache_size;
57EXPORT_SYMBOL(vac_cache_size);
58int vac_line_size;
59
60extern struct resource sparc_iomap;
61
62extern unsigned long last_valid_pfn;
63
64static pgd_t *srmmu_swapper_pg_dir;
65
66const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
67EXPORT_SYMBOL(sparc32_cachetlb_ops);
68
69#ifdef CONFIG_SMP
70const struct sparc32_cachetlb_ops *local_ops;
71
72#define FLUSH_BEGIN(mm)
73#define FLUSH_END
74#else
75#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
76#define FLUSH_END }
77#endif
78
79int flush_page_for_dma_global = 1;
80
81char *srmmu_name;
82
83ctxd_t *srmmu_ctx_table_phys;
84static ctxd_t *srmmu_context_table;
85
86int viking_mxcc_present;
87static DEFINE_SPINLOCK(srmmu_context_spinlock);
88
89static int is_hypersparc;
90
91static int srmmu_cache_pagetables;
92
93/* these will be initialized in srmmu_nocache_calcsize() */
94static unsigned long srmmu_nocache_size;
95static unsigned long srmmu_nocache_end;
96
97/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
98#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
99
100/* The context table is a nocache user with the biggest alignment needs. */
101#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
102
103void *srmmu_nocache_pool;
104static struct bit_map srmmu_nocache_map;
105
106static inline int srmmu_pmd_none(pmd_t pmd)
107{ return !(pmd_val(pmd) & 0xFFFFFFF); }
108
109/* XXX should we hyper_flush_whole_icache here - Anton */
110static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
111{
112 pte_t pte;
113
114 pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
115 set_pte((pte_t *)ctxp, pte);
116}
117
118/*
119 * Locations of MSI Registers.
120 */
121#define MSI_MBUS_ARBEN 0xe0001008 /* MBus Arbiter Enable register */
122
123/*
124 * Useful bits in the MSI Registers.
125 */
126#define MSI_ASYNC_MODE 0x80000000 /* Operate the MSI asynchronously */
127
128static void msi_set_sync(void)
129{
130 __asm__ __volatile__ ("lda [%0] %1, %%g3\n\t"
131 "andn %%g3, %2, %%g3\n\t"
132 "sta %%g3, [%0] %1\n\t" : :
133 "r" (MSI_MBUS_ARBEN),
134 "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3");
135}
136
137void pmd_set(pmd_t *pmdp, pte_t *ptep)
138{
139 unsigned long ptp; /* Physical address, shifted right by 4 */
140 int i;
141
142 ptp = __nocache_pa(ptep) >> 4;
143 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
144 set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
145 ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
146 }
147}
148
149void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
150{
151 unsigned long ptp; /* Physical address, shifted right by 4 */
152 int i;
153
154 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
155 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
156 set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
157 ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
158 }
159}
160
161/* Find an entry in the third-level page table.. */
162pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
163{
164 void *pte;
165
166 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
167 return (pte_t *) pte +
168 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
169}
170
171/*
172 * size: bytes to allocate in the nocache area.
173 * align: bytes, number to align at.
174 * Returns the virtual address of the allocated area.
175 */
176static void *__srmmu_get_nocache(int size, int align)
177{
178 int offset;
179 unsigned long addr;
180
181 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
182 printk(KERN_ERR "Size 0x%x too small for nocache request\n",
183 size);
184 size = SRMMU_NOCACHE_BITMAP_SHIFT;
185 }
186 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
187 printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
188 size);
189 size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
190 }
191 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
192
193 offset = bit_map_string_get(&srmmu_nocache_map,
194 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
195 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
196 if (offset == -1) {
197 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
198 size, (int) srmmu_nocache_size,
199 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
200 return NULL;
201 }
202
203 addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
204 return (void *)addr;
205}
206
207void *srmmu_get_nocache(int size, int align)
208{
209 void *tmp;
210
211 tmp = __srmmu_get_nocache(size, align);
212
213 if (tmp)
214 memset(tmp, 0, size);
215
216 return tmp;
217}
218
219void srmmu_free_nocache(void *addr, int size)
220{
221 unsigned long vaddr;
222 int offset;
223
224 vaddr = (unsigned long)addr;
225 if (vaddr < SRMMU_NOCACHE_VADDR) {
226 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
227 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
228 BUG();
229 }
230 if (vaddr + size > srmmu_nocache_end) {
231 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
232 vaddr, srmmu_nocache_end);
233 BUG();
234 }
235 if (!is_power_of_2(size)) {
236 printk("Size 0x%x is not a power of 2\n", size);
237 BUG();
238 }
239 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
240 printk("Size 0x%x is too small\n", size);
241 BUG();
242 }
243 if (vaddr & (size - 1)) {
244 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
245 BUG();
246 }
247
248 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
249 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
250
251 bit_map_clear(&srmmu_nocache_map, offset, size);
252}
253
254static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
255 unsigned long end);
256
257/* Return how much physical memory we have. */
258static unsigned long __init probe_memory(void)
259{
260 unsigned long total = 0;
261 int i;
262
263 for (i = 0; sp_banks[i].num_bytes; i++)
264 total += sp_banks[i].num_bytes;
265
266 return total;
267}
268
269/*
270 * Reserve nocache dynamically proportionally to the amount of
271 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
272 */
273static void __init srmmu_nocache_calcsize(void)
274{
275 unsigned long sysmemavail = probe_memory() / 1024;
276 int srmmu_nocache_npages;
277
278 srmmu_nocache_npages =
279 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
280
281 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
282 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
283 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
284 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
285
286 /* anything above 1280 blows up */
287 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
288 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
289
290 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
291 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
292}
293
294static void __init srmmu_nocache_init(void)
295{
296 void *srmmu_nocache_bitmap;
297 unsigned int bitmap_bits;
298 pgd_t *pgd;
299 pmd_t *pmd;
300 pte_t *pte;
301 unsigned long paddr, vaddr;
302 unsigned long pteval;
303
304 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
305
306 srmmu_nocache_pool = memblock_alloc(srmmu_nocache_size,
307 SRMMU_NOCACHE_ALIGN_MAX);
308 if (!srmmu_nocache_pool)
309 panic("%s: Failed to allocate %lu bytes align=0x%x\n",
310 __func__, srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX);
311 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
312
313 srmmu_nocache_bitmap =
314 memblock_alloc(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
315 SMP_CACHE_BYTES);
316 if (!srmmu_nocache_bitmap)
317 panic("%s: Failed to allocate %zu bytes\n", __func__,
318 BITS_TO_LONGS(bitmap_bits) * sizeof(long));
319 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
320
321 srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
322 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
323 init_mm.pgd = srmmu_swapper_pg_dir;
324
325 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
326
327 paddr = __pa((unsigned long)srmmu_nocache_pool);
328 vaddr = SRMMU_NOCACHE_VADDR;
329
330 while (vaddr < srmmu_nocache_end) {
331 pgd = pgd_offset_k(vaddr);
332 pmd = pmd_offset(__nocache_fix(pgd), vaddr);
333 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
334
335 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
336
337 if (srmmu_cache_pagetables)
338 pteval |= SRMMU_CACHE;
339
340 set_pte(__nocache_fix(pte), __pte(pteval));
341
342 vaddr += PAGE_SIZE;
343 paddr += PAGE_SIZE;
344 }
345
346 flush_cache_all();
347 flush_tlb_all();
348}
349
350pgd_t *get_pgd_fast(void)
351{
352 pgd_t *pgd = NULL;
353
354 pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
355 if (pgd) {
356 pgd_t *init = pgd_offset_k(0);
357 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
358 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
359 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
360 }
361
362 return pgd;
363}
364
365/*
366 * Hardware needs alignment to 256 only, but we align to whole page size
367 * to reduce fragmentation problems due to the buddy principle.
368 * XXX Provide actual fragmentation statistics in /proc.
369 *
370 * Alignments up to the page size are the same for physical and virtual
371 * addresses of the nocache area.
372 */
373pgtable_t pte_alloc_one(struct mm_struct *mm)
374{
375 unsigned long pte;
376 struct page *page;
377
378 if ((pte = (unsigned long)pte_alloc_one_kernel(mm)) == 0)
379 return NULL;
380 page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
381 if (!pgtable_pte_page_ctor(page)) {
382 __free_page(page);
383 return NULL;
384 }
385 return page;
386}
387
388void pte_free(struct mm_struct *mm, pgtable_t pte)
389{
390 unsigned long p;
391
392 pgtable_pte_page_dtor(pte);
393 p = (unsigned long)page_address(pte); /* Cached address (for test) */
394 if (p == 0)
395 BUG();
396 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
397
398 /* free non cached virtual address*/
399 srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
400}
401
402/* context handling - a dynamically sized pool is used */
403#define NO_CONTEXT -1
404
405struct ctx_list {
406 struct ctx_list *next;
407 struct ctx_list *prev;
408 unsigned int ctx_number;
409 struct mm_struct *ctx_mm;
410};
411
412static struct ctx_list *ctx_list_pool;
413static struct ctx_list ctx_free;
414static struct ctx_list ctx_used;
415
416/* At boot time we determine the number of contexts */
417static int num_contexts;
418
419static inline void remove_from_ctx_list(struct ctx_list *entry)
420{
421 entry->next->prev = entry->prev;
422 entry->prev->next = entry->next;
423}
424
425static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
426{
427 entry->next = head;
428 (entry->prev = head->prev)->next = entry;
429 head->prev = entry;
430}
431#define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
432#define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
433
434
435static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
436{
437 struct ctx_list *ctxp;
438
439 ctxp = ctx_free.next;
440 if (ctxp != &ctx_free) {
441 remove_from_ctx_list(ctxp);
442 add_to_used_ctxlist(ctxp);
443 mm->context = ctxp->ctx_number;
444 ctxp->ctx_mm = mm;
445 return;
446 }
447 ctxp = ctx_used.next;
448 if (ctxp->ctx_mm == old_mm)
449 ctxp = ctxp->next;
450 if (ctxp == &ctx_used)
451 panic("out of mmu contexts");
452 flush_cache_mm(ctxp->ctx_mm);
453 flush_tlb_mm(ctxp->ctx_mm);
454 remove_from_ctx_list(ctxp);
455 add_to_used_ctxlist(ctxp);
456 ctxp->ctx_mm->context = NO_CONTEXT;
457 ctxp->ctx_mm = mm;
458 mm->context = ctxp->ctx_number;
459}
460
461static inline void free_context(int context)
462{
463 struct ctx_list *ctx_old;
464
465 ctx_old = ctx_list_pool + context;
466 remove_from_ctx_list(ctx_old);
467 add_to_free_ctxlist(ctx_old);
468}
469
470static void __init sparc_context_init(int numctx)
471{
472 int ctx;
473 unsigned long size;
474
475 size = numctx * sizeof(struct ctx_list);
476 ctx_list_pool = memblock_alloc(size, SMP_CACHE_BYTES);
477 if (!ctx_list_pool)
478 panic("%s: Failed to allocate %lu bytes\n", __func__, size);
479
480 for (ctx = 0; ctx < numctx; ctx++) {
481 struct ctx_list *clist;
482
483 clist = (ctx_list_pool + ctx);
484 clist->ctx_number = ctx;
485 clist->ctx_mm = NULL;
486 }
487 ctx_free.next = ctx_free.prev = &ctx_free;
488 ctx_used.next = ctx_used.prev = &ctx_used;
489 for (ctx = 0; ctx < numctx; ctx++)
490 add_to_free_ctxlist(ctx_list_pool + ctx);
491}
492
493void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
494 struct task_struct *tsk)
495{
496 unsigned long flags;
497
498 if (mm->context == NO_CONTEXT) {
499 spin_lock_irqsave(&srmmu_context_spinlock, flags);
500 alloc_context(old_mm, mm);
501 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
502 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
503 }
504
505 if (sparc_cpu_model == sparc_leon)
506 leon_switch_mm();
507
508 if (is_hypersparc)
509 hyper_flush_whole_icache();
510
511 srmmu_set_context(mm->context);
512}
513
514/* Low level IO area allocation on the SRMMU. */
515static inline void srmmu_mapioaddr(unsigned long physaddr,
516 unsigned long virt_addr, int bus_type)
517{
518 pgd_t *pgdp;
519 pmd_t *pmdp;
520 pte_t *ptep;
521 unsigned long tmp;
522
523 physaddr &= PAGE_MASK;
524 pgdp = pgd_offset_k(virt_addr);
525 pmdp = pmd_offset(pgdp, virt_addr);
526 ptep = pte_offset_kernel(pmdp, virt_addr);
527 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
528
529 /* I need to test whether this is consistent over all
530 * sun4m's. The bus_type represents the upper 4 bits of
531 * 36-bit physical address on the I/O space lines...
532 */
533 tmp |= (bus_type << 28);
534 tmp |= SRMMU_PRIV;
535 __flush_page_to_ram(virt_addr);
536 set_pte(ptep, __pte(tmp));
537}
538
539void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
540 unsigned long xva, unsigned int len)
541{
542 while (len != 0) {
543 len -= PAGE_SIZE;
544 srmmu_mapioaddr(xpa, xva, bus);
545 xva += PAGE_SIZE;
546 xpa += PAGE_SIZE;
547 }
548 flush_tlb_all();
549}
550
551static inline void srmmu_unmapioaddr(unsigned long virt_addr)
552{
553 pgd_t *pgdp;
554 pmd_t *pmdp;
555 pte_t *ptep;
556
557 pgdp = pgd_offset_k(virt_addr);
558 pmdp = pmd_offset(pgdp, virt_addr);
559 ptep = pte_offset_kernel(pmdp, virt_addr);
560
561 /* No need to flush uncacheable page. */
562 __pte_clear(ptep);
563}
564
565void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
566{
567 while (len != 0) {
568 len -= PAGE_SIZE;
569 srmmu_unmapioaddr(virt_addr);
570 virt_addr += PAGE_SIZE;
571 }
572 flush_tlb_all();
573}
574
575/* tsunami.S */
576extern void tsunami_flush_cache_all(void);
577extern void tsunami_flush_cache_mm(struct mm_struct *mm);
578extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
579extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
580extern void tsunami_flush_page_to_ram(unsigned long page);
581extern void tsunami_flush_page_for_dma(unsigned long page);
582extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
583extern void tsunami_flush_tlb_all(void);
584extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
585extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
586extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
587extern void tsunami_setup_blockops(void);
588
589/* swift.S */
590extern void swift_flush_cache_all(void);
591extern void swift_flush_cache_mm(struct mm_struct *mm);
592extern void swift_flush_cache_range(struct vm_area_struct *vma,
593 unsigned long start, unsigned long end);
594extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
595extern void swift_flush_page_to_ram(unsigned long page);
596extern void swift_flush_page_for_dma(unsigned long page);
597extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
598extern void swift_flush_tlb_all(void);
599extern void swift_flush_tlb_mm(struct mm_struct *mm);
600extern void swift_flush_tlb_range(struct vm_area_struct *vma,
601 unsigned long start, unsigned long end);
602extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
603
604#if 0 /* P3: deadwood to debug precise flushes on Swift. */
605void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
606{
607 int cctx, ctx1;
608
609 page &= PAGE_MASK;
610 if ((ctx1 = vma->vm_mm->context) != -1) {
611 cctx = srmmu_get_context();
612/* Is context # ever different from current context? P3 */
613 if (cctx != ctx1) {
614 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
615 srmmu_set_context(ctx1);
616 swift_flush_page(page);
617 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
618 "r" (page), "i" (ASI_M_FLUSH_PROBE));
619 srmmu_set_context(cctx);
620 } else {
621 /* Rm. prot. bits from virt. c. */
622 /* swift_flush_cache_all(); */
623 /* swift_flush_cache_page(vma, page); */
624 swift_flush_page(page);
625
626 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
627 "r" (page), "i" (ASI_M_FLUSH_PROBE));
628 /* same as above: srmmu_flush_tlb_page() */
629 }
630 }
631}
632#endif
633
634/*
635 * The following are all MBUS based SRMMU modules, and therefore could
636 * be found in a multiprocessor configuration. On the whole, these
637 * chips seems to be much more touchy about DVMA and page tables
638 * with respect to cache coherency.
639 */
640
641/* viking.S */
642extern void viking_flush_cache_all(void);
643extern void viking_flush_cache_mm(struct mm_struct *mm);
644extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
645 unsigned long end);
646extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
647extern void viking_flush_page_to_ram(unsigned long page);
648extern void viking_flush_page_for_dma(unsigned long page);
649extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
650extern void viking_flush_page(unsigned long page);
651extern void viking_mxcc_flush_page(unsigned long page);
652extern void viking_flush_tlb_all(void);
653extern void viking_flush_tlb_mm(struct mm_struct *mm);
654extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
655 unsigned long end);
656extern void viking_flush_tlb_page(struct vm_area_struct *vma,
657 unsigned long page);
658extern void sun4dsmp_flush_tlb_all(void);
659extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
660extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
661 unsigned long end);
662extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
663 unsigned long page);
664
665/* hypersparc.S */
666extern void hypersparc_flush_cache_all(void);
667extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
668extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
669extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
670extern void hypersparc_flush_page_to_ram(unsigned long page);
671extern void hypersparc_flush_page_for_dma(unsigned long page);
672extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
673extern void hypersparc_flush_tlb_all(void);
674extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
675extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
676extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
677extern void hypersparc_setup_blockops(void);
678
679/*
680 * NOTE: All of this startup code assumes the low 16mb (approx.) of
681 * kernel mappings are done with one single contiguous chunk of
682 * ram. On small ram machines (classics mainly) we only get
683 * around 8mb mapped for us.
684 */
685
686static void __init early_pgtable_allocfail(char *type)
687{
688 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
689 prom_halt();
690}
691
692static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
693 unsigned long end)
694{
695 pgd_t *pgdp;
696 pmd_t *pmdp;
697 pte_t *ptep;
698
699 while (start < end) {
700 pgdp = pgd_offset_k(start);
701 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
702 pmdp = __srmmu_get_nocache(
703 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
704 if (pmdp == NULL)
705 early_pgtable_allocfail("pmd");
706 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
707 pgd_set(__nocache_fix(pgdp), pmdp);
708 }
709 pmdp = pmd_offset(__nocache_fix(pgdp), start);
710 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
711 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
712 if (ptep == NULL)
713 early_pgtable_allocfail("pte");
714 memset(__nocache_fix(ptep), 0, PTE_SIZE);
715 pmd_set(__nocache_fix(pmdp), ptep);
716 }
717 if (start > (0xffffffffUL - PMD_SIZE))
718 break;
719 start = (start + PMD_SIZE) & PMD_MASK;
720 }
721}
722
723static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
724 unsigned long end)
725{
726 pgd_t *pgdp;
727 pmd_t *pmdp;
728 pte_t *ptep;
729
730 while (start < end) {
731 pgdp = pgd_offset_k(start);
732 if (pgd_none(*pgdp)) {
733 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
734 if (pmdp == NULL)
735 early_pgtable_allocfail("pmd");
736 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
737 pgd_set(pgdp, pmdp);
738 }
739 pmdp = pmd_offset(pgdp, start);
740 if (srmmu_pmd_none(*pmdp)) {
741 ptep = __srmmu_get_nocache(PTE_SIZE,
742 PTE_SIZE);
743 if (ptep == NULL)
744 early_pgtable_allocfail("pte");
745 memset(ptep, 0, PTE_SIZE);
746 pmd_set(pmdp, ptep);
747 }
748 if (start > (0xffffffffUL - PMD_SIZE))
749 break;
750 start = (start + PMD_SIZE) & PMD_MASK;
751 }
752}
753
754/* These flush types are not available on all chips... */
755static inline unsigned long srmmu_probe(unsigned long vaddr)
756{
757 unsigned long retval;
758
759 if (sparc_cpu_model != sparc_leon) {
760
761 vaddr &= PAGE_MASK;
762 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
763 "=r" (retval) :
764 "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
765 } else {
766 retval = leon_swprobe(vaddr, NULL);
767 }
768 return retval;
769}
770
771/*
772 * This is much cleaner than poking around physical address space
773 * looking at the prom's page table directly which is what most
774 * other OS's do. Yuck... this is much better.
775 */
776static void __init srmmu_inherit_prom_mappings(unsigned long start,
777 unsigned long end)
778{
779 unsigned long probed;
780 unsigned long addr;
781 pgd_t *pgdp;
782 pmd_t *pmdp;
783 pte_t *ptep;
784 int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
785
786 while (start <= end) {
787 if (start == 0)
788 break; /* probably wrap around */
789 if (start == 0xfef00000)
790 start = KADB_DEBUGGER_BEGVM;
791 probed = srmmu_probe(start);
792 if (!probed) {
793 /* continue probing until we find an entry */
794 start += PAGE_SIZE;
795 continue;
796 }
797
798 /* A red snapper, see what it really is. */
799 what = 0;
800 addr = start - PAGE_SIZE;
801
802 if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
803 if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
804 what = 1;
805 }
806
807 if (!(start & ~(SRMMU_PGDIR_MASK))) {
808 if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
809 what = 2;
810 }
811
812 pgdp = pgd_offset_k(start);
813 if (what == 2) {
814 *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
815 start += SRMMU_PGDIR_SIZE;
816 continue;
817 }
818 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
819 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
820 SRMMU_PMD_TABLE_SIZE);
821 if (pmdp == NULL)
822 early_pgtable_allocfail("pmd");
823 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
824 pgd_set(__nocache_fix(pgdp), pmdp);
825 }
826 pmdp = pmd_offset(__nocache_fix(pgdp), start);
827 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
828 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
829 if (ptep == NULL)
830 early_pgtable_allocfail("pte");
831 memset(__nocache_fix(ptep), 0, PTE_SIZE);
832 pmd_set(__nocache_fix(pmdp), ptep);
833 }
834 if (what == 1) {
835 /* We bend the rule where all 16 PTPs in a pmd_t point
836 * inside the same PTE page, and we leak a perfectly
837 * good hardware PTE piece. Alternatives seem worse.
838 */
839 unsigned int x; /* Index of HW PMD in soft cluster */
840 unsigned long *val;
841 x = (start >> PMD_SHIFT) & 15;
842 val = &pmdp->pmdv[x];
843 *(unsigned long *)__nocache_fix(val) = probed;
844 start += SRMMU_REAL_PMD_SIZE;
845 continue;
846 }
847 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
848 *(pte_t *)__nocache_fix(ptep) = __pte(probed);
849 start += PAGE_SIZE;
850 }
851}
852
853#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
854
855/* Create a third-level SRMMU 16MB page mapping. */
856static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
857{
858 pgd_t *pgdp = pgd_offset_k(vaddr);
859 unsigned long big_pte;
860
861 big_pte = KERNEL_PTE(phys_base >> 4);
862 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
863}
864
865/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
866static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
867{
868 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
869 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
870 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
871 /* Map "low" memory only */
872 const unsigned long min_vaddr = PAGE_OFFSET;
873 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
874
875 if (vstart < min_vaddr || vstart >= max_vaddr)
876 return vstart;
877
878 if (vend > max_vaddr || vend < min_vaddr)
879 vend = max_vaddr;
880
881 while (vstart < vend) {
882 do_large_mapping(vstart, pstart);
883 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
884 }
885 return vstart;
886}
887
888static void __init map_kernel(void)
889{
890 int i;
891
892 if (phys_base > 0) {
893 do_large_mapping(PAGE_OFFSET, phys_base);
894 }
895
896 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
897 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
898 }
899}
900
901void (*poke_srmmu)(void) = NULL;
902
903void __init srmmu_paging_init(void)
904{
905 int i;
906 phandle cpunode;
907 char node_str[128];
908 pgd_t *pgd;
909 pmd_t *pmd;
910 pte_t *pte;
911 unsigned long pages_avail;
912
913 init_mm.context = (unsigned long) NO_CONTEXT;
914 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
915
916 if (sparc_cpu_model == sun4d)
917 num_contexts = 65536; /* We know it is Viking */
918 else {
919 /* Find the number of contexts on the srmmu. */
920 cpunode = prom_getchild(prom_root_node);
921 num_contexts = 0;
922 while (cpunode != 0) {
923 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
924 if (!strcmp(node_str, "cpu")) {
925 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
926 break;
927 }
928 cpunode = prom_getsibling(cpunode);
929 }
930 }
931
932 if (!num_contexts) {
933 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
934 prom_halt();
935 }
936
937 pages_avail = 0;
938 last_valid_pfn = bootmem_init(&pages_avail);
939
940 srmmu_nocache_calcsize();
941 srmmu_nocache_init();
942 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
943 map_kernel();
944
945 /* ctx table has to be physically aligned to its size */
946 srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
947 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
948
949 for (i = 0; i < num_contexts; i++)
950 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
951
952 flush_cache_all();
953 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
954#ifdef CONFIG_SMP
955 /* Stop from hanging here... */
956 local_ops->tlb_all();
957#else
958 flush_tlb_all();
959#endif
960 poke_srmmu();
961
962 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
963 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
964
965 srmmu_allocate_ptable_skeleton(
966 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
967 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
968
969 pgd = pgd_offset_k(PKMAP_BASE);
970 pmd = pmd_offset(pgd, PKMAP_BASE);
971 pte = pte_offset_kernel(pmd, PKMAP_BASE);
972 pkmap_page_table = pte;
973
974 flush_cache_all();
975 flush_tlb_all();
976
977 sparc_context_init(num_contexts);
978
979 kmap_init();
980
981 {
982 unsigned long zones_size[MAX_NR_ZONES];
983 unsigned long zholes_size[MAX_NR_ZONES];
984 unsigned long npages;
985 int znum;
986
987 for (znum = 0; znum < MAX_NR_ZONES; znum++)
988 zones_size[znum] = zholes_size[znum] = 0;
989
990 npages = max_low_pfn - pfn_base;
991
992 zones_size[ZONE_DMA] = npages;
993 zholes_size[ZONE_DMA] = npages - pages_avail;
994
995 npages = highend_pfn - max_low_pfn;
996 zones_size[ZONE_HIGHMEM] = npages;
997 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
998
999 free_area_init_node(0, zones_size, pfn_base, zholes_size);
1000 }
1001}
1002
1003void mmu_info(struct seq_file *m)
1004{
1005 seq_printf(m,
1006 "MMU type\t: %s\n"
1007 "contexts\t: %d\n"
1008 "nocache total\t: %ld\n"
1009 "nocache used\t: %d\n",
1010 srmmu_name,
1011 num_contexts,
1012 srmmu_nocache_size,
1013 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1014}
1015
1016int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
1017{
1018 mm->context = NO_CONTEXT;
1019 return 0;
1020}
1021
1022void destroy_context(struct mm_struct *mm)
1023{
1024 unsigned long flags;
1025
1026 if (mm->context != NO_CONTEXT) {
1027 flush_cache_mm(mm);
1028 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1029 flush_tlb_mm(mm);
1030 spin_lock_irqsave(&srmmu_context_spinlock, flags);
1031 free_context(mm->context);
1032 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1033 mm->context = NO_CONTEXT;
1034 }
1035}
1036
1037/* Init various srmmu chip types. */
1038static void __init srmmu_is_bad(void)
1039{
1040 prom_printf("Could not determine SRMMU chip type.\n");
1041 prom_halt();
1042}
1043
1044static void __init init_vac_layout(void)
1045{
1046 phandle nd;
1047 int cache_lines;
1048 char node_str[128];
1049#ifdef CONFIG_SMP
1050 int cpu = 0;
1051 unsigned long max_size = 0;
1052 unsigned long min_line_size = 0x10000000;
1053#endif
1054
1055 nd = prom_getchild(prom_root_node);
1056 while ((nd = prom_getsibling(nd)) != 0) {
1057 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1058 if (!strcmp(node_str, "cpu")) {
1059 vac_line_size = prom_getint(nd, "cache-line-size");
1060 if (vac_line_size == -1) {
1061 prom_printf("can't determine cache-line-size, halting.\n");
1062 prom_halt();
1063 }
1064 cache_lines = prom_getint(nd, "cache-nlines");
1065 if (cache_lines == -1) {
1066 prom_printf("can't determine cache-nlines, halting.\n");
1067 prom_halt();
1068 }
1069
1070 vac_cache_size = cache_lines * vac_line_size;
1071#ifdef CONFIG_SMP
1072 if (vac_cache_size > max_size)
1073 max_size = vac_cache_size;
1074 if (vac_line_size < min_line_size)
1075 min_line_size = vac_line_size;
1076 //FIXME: cpus not contiguous!!
1077 cpu++;
1078 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1079 break;
1080#else
1081 break;
1082#endif
1083 }
1084 }
1085 if (nd == 0) {
1086 prom_printf("No CPU nodes found, halting.\n");
1087 prom_halt();
1088 }
1089#ifdef CONFIG_SMP
1090 vac_cache_size = max_size;
1091 vac_line_size = min_line_size;
1092#endif
1093 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1094 (int)vac_cache_size, (int)vac_line_size);
1095}
1096
1097static void poke_hypersparc(void)
1098{
1099 volatile unsigned long clear;
1100 unsigned long mreg = srmmu_get_mmureg();
1101
1102 hyper_flush_unconditional_combined();
1103
1104 mreg &= ~(HYPERSPARC_CWENABLE);
1105 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1106 mreg |= (HYPERSPARC_CMODE);
1107
1108 srmmu_set_mmureg(mreg);
1109
1110#if 0 /* XXX I think this is bad news... -DaveM */
1111 hyper_clear_all_tags();
1112#endif
1113
1114 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1115 hyper_flush_whole_icache();
1116 clear = srmmu_get_faddr();
1117 clear = srmmu_get_fstatus();
1118}
1119
1120static const struct sparc32_cachetlb_ops hypersparc_ops = {
1121 .cache_all = hypersparc_flush_cache_all,
1122 .cache_mm = hypersparc_flush_cache_mm,
1123 .cache_page = hypersparc_flush_cache_page,
1124 .cache_range = hypersparc_flush_cache_range,
1125 .tlb_all = hypersparc_flush_tlb_all,
1126 .tlb_mm = hypersparc_flush_tlb_mm,
1127 .tlb_page = hypersparc_flush_tlb_page,
1128 .tlb_range = hypersparc_flush_tlb_range,
1129 .page_to_ram = hypersparc_flush_page_to_ram,
1130 .sig_insns = hypersparc_flush_sig_insns,
1131 .page_for_dma = hypersparc_flush_page_for_dma,
1132};
1133
1134static void __init init_hypersparc(void)
1135{
1136 srmmu_name = "ROSS HyperSparc";
1137 srmmu_modtype = HyperSparc;
1138
1139 init_vac_layout();
1140
1141 is_hypersparc = 1;
1142 sparc32_cachetlb_ops = &hypersparc_ops;
1143
1144 poke_srmmu = poke_hypersparc;
1145
1146 hypersparc_setup_blockops();
1147}
1148
1149static void poke_swift(void)
1150{
1151 unsigned long mreg;
1152
1153 /* Clear any crap from the cache or else... */
1154 swift_flush_cache_all();
1155
1156 /* Enable I & D caches */
1157 mreg = srmmu_get_mmureg();
1158 mreg |= (SWIFT_IE | SWIFT_DE);
1159 /*
1160 * The Swift branch folding logic is completely broken. At
1161 * trap time, if things are just right, if can mistakenly
1162 * think that a trap is coming from kernel mode when in fact
1163 * it is coming from user mode (it mis-executes the branch in
1164 * the trap code). So you see things like crashme completely
1165 * hosing your machine which is completely unacceptable. Turn
1166 * this shit off... nice job Fujitsu.
1167 */
1168 mreg &= ~(SWIFT_BF);
1169 srmmu_set_mmureg(mreg);
1170}
1171
1172static const struct sparc32_cachetlb_ops swift_ops = {
1173 .cache_all = swift_flush_cache_all,
1174 .cache_mm = swift_flush_cache_mm,
1175 .cache_page = swift_flush_cache_page,
1176 .cache_range = swift_flush_cache_range,
1177 .tlb_all = swift_flush_tlb_all,
1178 .tlb_mm = swift_flush_tlb_mm,
1179 .tlb_page = swift_flush_tlb_page,
1180 .tlb_range = swift_flush_tlb_range,
1181 .page_to_ram = swift_flush_page_to_ram,
1182 .sig_insns = swift_flush_sig_insns,
1183 .page_for_dma = swift_flush_page_for_dma,
1184};
1185
1186#define SWIFT_MASKID_ADDR 0x10003018
1187static void __init init_swift(void)
1188{
1189 unsigned long swift_rev;
1190
1191 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1192 "srl %0, 0x18, %0\n\t" :
1193 "=r" (swift_rev) :
1194 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1195 srmmu_name = "Fujitsu Swift";
1196 switch (swift_rev) {
1197 case 0x11:
1198 case 0x20:
1199 case 0x23:
1200 case 0x30:
1201 srmmu_modtype = Swift_lots_o_bugs;
1202 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1203 /*
1204 * Gee george, I wonder why Sun is so hush hush about
1205 * this hardware bug... really braindamage stuff going
1206 * on here. However I think we can find a way to avoid
1207 * all of the workaround overhead under Linux. Basically,
1208 * any page fault can cause kernel pages to become user
1209 * accessible (the mmu gets confused and clears some of
1210 * the ACC bits in kernel ptes). Aha, sounds pretty
1211 * horrible eh? But wait, after extensive testing it appears
1212 * that if you use pgd_t level large kernel pte's (like the
1213 * 4MB pages on the Pentium) the bug does not get tripped
1214 * at all. This avoids almost all of the major overhead.
1215 * Welcome to a world where your vendor tells you to,
1216 * "apply this kernel patch" instead of "sorry for the
1217 * broken hardware, send it back and we'll give you
1218 * properly functioning parts"
1219 */
1220 break;
1221 case 0x25:
1222 case 0x31:
1223 srmmu_modtype = Swift_bad_c;
1224 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1225 /*
1226 * You see Sun allude to this hardware bug but never
1227 * admit things directly, they'll say things like,
1228 * "the Swift chip cache problems" or similar.
1229 */
1230 break;
1231 default:
1232 srmmu_modtype = Swift_ok;
1233 break;
1234 }
1235
1236 sparc32_cachetlb_ops = &swift_ops;
1237 flush_page_for_dma_global = 0;
1238
1239 /*
1240 * Are you now convinced that the Swift is one of the
1241 * biggest VLSI abortions of all time? Bravo Fujitsu!
1242 * Fujitsu, the !#?!%$'d up processor people. I bet if
1243 * you examined the microcode of the Swift you'd find
1244 * XXX's all over the place.
1245 */
1246 poke_srmmu = poke_swift;
1247}
1248
1249static void turbosparc_flush_cache_all(void)
1250{
1251 flush_user_windows();
1252 turbosparc_idflash_clear();
1253}
1254
1255static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1256{
1257 FLUSH_BEGIN(mm)
1258 flush_user_windows();
1259 turbosparc_idflash_clear();
1260 FLUSH_END
1261}
1262
1263static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1264{
1265 FLUSH_BEGIN(vma->vm_mm)
1266 flush_user_windows();
1267 turbosparc_idflash_clear();
1268 FLUSH_END
1269}
1270
1271static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1272{
1273 FLUSH_BEGIN(vma->vm_mm)
1274 flush_user_windows();
1275 if (vma->vm_flags & VM_EXEC)
1276 turbosparc_flush_icache();
1277 turbosparc_flush_dcache();
1278 FLUSH_END
1279}
1280
1281/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1282static void turbosparc_flush_page_to_ram(unsigned long page)
1283{
1284#ifdef TURBOSPARC_WRITEBACK
1285 volatile unsigned long clear;
1286
1287 if (srmmu_probe(page))
1288 turbosparc_flush_page_cache(page);
1289 clear = srmmu_get_fstatus();
1290#endif
1291}
1292
1293static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1294{
1295}
1296
1297static void turbosparc_flush_page_for_dma(unsigned long page)
1298{
1299 turbosparc_flush_dcache();
1300}
1301
1302static void turbosparc_flush_tlb_all(void)
1303{
1304 srmmu_flush_whole_tlb();
1305}
1306
1307static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1308{
1309 FLUSH_BEGIN(mm)
1310 srmmu_flush_whole_tlb();
1311 FLUSH_END
1312}
1313
1314static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1315{
1316 FLUSH_BEGIN(vma->vm_mm)
1317 srmmu_flush_whole_tlb();
1318 FLUSH_END
1319}
1320
1321static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1322{
1323 FLUSH_BEGIN(vma->vm_mm)
1324 srmmu_flush_whole_tlb();
1325 FLUSH_END
1326}
1327
1328
1329static void poke_turbosparc(void)
1330{
1331 unsigned long mreg = srmmu_get_mmureg();
1332 unsigned long ccreg;
1333
1334 /* Clear any crap from the cache or else... */
1335 turbosparc_flush_cache_all();
1336 /* Temporarily disable I & D caches */
1337 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1338 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1339 srmmu_set_mmureg(mreg);
1340
1341 ccreg = turbosparc_get_ccreg();
1342
1343#ifdef TURBOSPARC_WRITEBACK
1344 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1345 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1346 /* Write-back D-cache, emulate VLSI
1347 * abortion number three, not number one */
1348#else
1349 /* For now let's play safe, optimize later */
1350 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1351 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1352 ccreg &= ~(TURBOSPARC_uS2);
1353 /* Emulate VLSI abortion number three, not number one */
1354#endif
1355
1356 switch (ccreg & 7) {
1357 case 0: /* No SE cache */
1358 case 7: /* Test mode */
1359 break;
1360 default:
1361 ccreg |= (TURBOSPARC_SCENABLE);
1362 }
1363 turbosparc_set_ccreg(ccreg);
1364
1365 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1366 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1367 srmmu_set_mmureg(mreg);
1368}
1369
1370static const struct sparc32_cachetlb_ops turbosparc_ops = {
1371 .cache_all = turbosparc_flush_cache_all,
1372 .cache_mm = turbosparc_flush_cache_mm,
1373 .cache_page = turbosparc_flush_cache_page,
1374 .cache_range = turbosparc_flush_cache_range,
1375 .tlb_all = turbosparc_flush_tlb_all,
1376 .tlb_mm = turbosparc_flush_tlb_mm,
1377 .tlb_page = turbosparc_flush_tlb_page,
1378 .tlb_range = turbosparc_flush_tlb_range,
1379 .page_to_ram = turbosparc_flush_page_to_ram,
1380 .sig_insns = turbosparc_flush_sig_insns,
1381 .page_for_dma = turbosparc_flush_page_for_dma,
1382};
1383
1384static void __init init_turbosparc(void)
1385{
1386 srmmu_name = "Fujitsu TurboSparc";
1387 srmmu_modtype = TurboSparc;
1388 sparc32_cachetlb_ops = &turbosparc_ops;
1389 poke_srmmu = poke_turbosparc;
1390}
1391
1392static void poke_tsunami(void)
1393{
1394 unsigned long mreg = srmmu_get_mmureg();
1395
1396 tsunami_flush_icache();
1397 tsunami_flush_dcache();
1398 mreg &= ~TSUNAMI_ITD;
1399 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1400 srmmu_set_mmureg(mreg);
1401}
1402
1403static const struct sparc32_cachetlb_ops tsunami_ops = {
1404 .cache_all = tsunami_flush_cache_all,
1405 .cache_mm = tsunami_flush_cache_mm,
1406 .cache_page = tsunami_flush_cache_page,
1407 .cache_range = tsunami_flush_cache_range,
1408 .tlb_all = tsunami_flush_tlb_all,
1409 .tlb_mm = tsunami_flush_tlb_mm,
1410 .tlb_page = tsunami_flush_tlb_page,
1411 .tlb_range = tsunami_flush_tlb_range,
1412 .page_to_ram = tsunami_flush_page_to_ram,
1413 .sig_insns = tsunami_flush_sig_insns,
1414 .page_for_dma = tsunami_flush_page_for_dma,
1415};
1416
1417static void __init init_tsunami(void)
1418{
1419 /*
1420 * Tsunami's pretty sane, Sun and TI actually got it
1421 * somewhat right this time. Fujitsu should have
1422 * taken some lessons from them.
1423 */
1424
1425 srmmu_name = "TI Tsunami";
1426 srmmu_modtype = Tsunami;
1427 sparc32_cachetlb_ops = &tsunami_ops;
1428 poke_srmmu = poke_tsunami;
1429
1430 tsunami_setup_blockops();
1431}
1432
1433static void poke_viking(void)
1434{
1435 unsigned long mreg = srmmu_get_mmureg();
1436 static int smp_catch;
1437
1438 if (viking_mxcc_present) {
1439 unsigned long mxcc_control = mxcc_get_creg();
1440
1441 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1442 mxcc_control &= ~(MXCC_CTL_RRC);
1443 mxcc_set_creg(mxcc_control);
1444
1445 /*
1446 * We don't need memory parity checks.
1447 * XXX This is a mess, have to dig out later. ecd.
1448 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1449 */
1450
1451 /* We do cache ptables on MXCC. */
1452 mreg |= VIKING_TCENABLE;
1453 } else {
1454 unsigned long bpreg;
1455
1456 mreg &= ~(VIKING_TCENABLE);
1457 if (smp_catch++) {
1458 /* Must disable mixed-cmd mode here for other cpu's. */
1459 bpreg = viking_get_bpreg();
1460 bpreg &= ~(VIKING_ACTION_MIX);
1461 viking_set_bpreg(bpreg);
1462
1463 /* Just in case PROM does something funny. */
1464 msi_set_sync();
1465 }
1466 }
1467
1468 mreg |= VIKING_SPENABLE;
1469 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1470 mreg |= VIKING_SBENABLE;
1471 mreg &= ~(VIKING_ACENABLE);
1472 srmmu_set_mmureg(mreg);
1473}
1474
1475static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1476 .cache_all = viking_flush_cache_all,
1477 .cache_mm = viking_flush_cache_mm,
1478 .cache_page = viking_flush_cache_page,
1479 .cache_range = viking_flush_cache_range,
1480 .tlb_all = viking_flush_tlb_all,
1481 .tlb_mm = viking_flush_tlb_mm,
1482 .tlb_page = viking_flush_tlb_page,
1483 .tlb_range = viking_flush_tlb_range,
1484 .page_to_ram = viking_flush_page_to_ram,
1485 .sig_insns = viking_flush_sig_insns,
1486 .page_for_dma = viking_flush_page_for_dma,
1487};
1488
1489#ifdef CONFIG_SMP
1490/* On sun4d the cpu broadcasts local TLB flushes, so we can just
1491 * perform the local TLB flush and all the other cpus will see it.
1492 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1493 * that requires that we add some synchronization to these flushes.
1494 *
1495 * The bug is that the fifo which keeps track of all the pending TLB
1496 * broadcasts in the system is an entry or two too small, so if we
1497 * have too many going at once we'll overflow that fifo and lose a TLB
1498 * flush resulting in corruption.
1499 *
1500 * Our workaround is to take a global spinlock around the TLB flushes,
1501 * which guarentees we won't ever have too many pending. It's a big
1502 * hammer, but a semaphore like system to make sure we only have N TLB
1503 * flushes going at once will require SMP locking anyways so there's
1504 * no real value in trying any harder than this.
1505 */
1506static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1507 .cache_all = viking_flush_cache_all,
1508 .cache_mm = viking_flush_cache_mm,
1509 .cache_page = viking_flush_cache_page,
1510 .cache_range = viking_flush_cache_range,
1511 .tlb_all = sun4dsmp_flush_tlb_all,
1512 .tlb_mm = sun4dsmp_flush_tlb_mm,
1513 .tlb_page = sun4dsmp_flush_tlb_page,
1514 .tlb_range = sun4dsmp_flush_tlb_range,
1515 .page_to_ram = viking_flush_page_to_ram,
1516 .sig_insns = viking_flush_sig_insns,
1517 .page_for_dma = viking_flush_page_for_dma,
1518};
1519#endif
1520
1521static void __init init_viking(void)
1522{
1523 unsigned long mreg = srmmu_get_mmureg();
1524
1525 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1526 if (mreg & VIKING_MMODE) {
1527 srmmu_name = "TI Viking";
1528 viking_mxcc_present = 0;
1529 msi_set_sync();
1530
1531 /*
1532 * We need this to make sure old viking takes no hits
1533 * on it's cache for dma snoops to workaround the
1534 * "load from non-cacheable memory" interrupt bug.
1535 * This is only necessary because of the new way in
1536 * which we use the IOMMU.
1537 */
1538 viking_ops.page_for_dma = viking_flush_page;
1539#ifdef CONFIG_SMP
1540 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1541#endif
1542 flush_page_for_dma_global = 0;
1543 } else {
1544 srmmu_name = "TI Viking/MXCC";
1545 viking_mxcc_present = 1;
1546 srmmu_cache_pagetables = 1;
1547 }
1548
1549 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1550 &viking_ops;
1551#ifdef CONFIG_SMP
1552 if (sparc_cpu_model == sun4d)
1553 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1554 &viking_sun4d_smp_ops;
1555#endif
1556
1557 poke_srmmu = poke_viking;
1558}
1559
1560/* Probe for the srmmu chip version. */
1561static void __init get_srmmu_type(void)
1562{
1563 unsigned long mreg, psr;
1564 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1565
1566 srmmu_modtype = SRMMU_INVAL_MOD;
1567 hwbug_bitmask = 0;
1568
1569 mreg = srmmu_get_mmureg(); psr = get_psr();
1570 mod_typ = (mreg & 0xf0000000) >> 28;
1571 mod_rev = (mreg & 0x0f000000) >> 24;
1572 psr_typ = (psr >> 28) & 0xf;
1573 psr_vers = (psr >> 24) & 0xf;
1574
1575 /* First, check for sparc-leon. */
1576 if (sparc_cpu_model == sparc_leon) {
1577 init_leon();
1578 return;
1579 }
1580
1581 /* Second, check for HyperSparc or Cypress. */
1582 if (mod_typ == 1) {
1583 switch (mod_rev) {
1584 case 7:
1585 /* UP or MP Hypersparc */
1586 init_hypersparc();
1587 break;
1588 case 0:
1589 case 2:
1590 case 10:
1591 case 11:
1592 case 12:
1593 case 13:
1594 case 14:
1595 case 15:
1596 default:
1597 prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1598 prom_halt();
1599 break;
1600 }
1601 return;
1602 }
1603
1604 /* Now Fujitsu TurboSparc. It might happen that it is
1605 * in Swift emulation mode, so we will check later...
1606 */
1607 if (psr_typ == 0 && psr_vers == 5) {
1608 init_turbosparc();
1609 return;
1610 }
1611
1612 /* Next check for Fujitsu Swift. */
1613 if (psr_typ == 0 && psr_vers == 4) {
1614 phandle cpunode;
1615 char node_str[128];
1616
1617 /* Look if it is not a TurboSparc emulating Swift... */
1618 cpunode = prom_getchild(prom_root_node);
1619 while ((cpunode = prom_getsibling(cpunode)) != 0) {
1620 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1621 if (!strcmp(node_str, "cpu")) {
1622 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1623 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1624 init_turbosparc();
1625 return;
1626 }
1627 break;
1628 }
1629 }
1630
1631 init_swift();
1632 return;
1633 }
1634
1635 /* Now the Viking family of srmmu. */
1636 if (psr_typ == 4 &&
1637 ((psr_vers == 0) ||
1638 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1639 init_viking();
1640 return;
1641 }
1642
1643 /* Finally the Tsunami. */
1644 if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1645 init_tsunami();
1646 return;
1647 }
1648
1649 /* Oh well */
1650 srmmu_is_bad();
1651}
1652
1653#ifdef CONFIG_SMP
1654/* Local cross-calls. */
1655static void smp_flush_page_for_dma(unsigned long page)
1656{
1657 xc1((smpfunc_t) local_ops->page_for_dma, page);
1658 local_ops->page_for_dma(page);
1659}
1660
1661static void smp_flush_cache_all(void)
1662{
1663 xc0((smpfunc_t) local_ops->cache_all);
1664 local_ops->cache_all();
1665}
1666
1667static void smp_flush_tlb_all(void)
1668{
1669 xc0((smpfunc_t) local_ops->tlb_all);
1670 local_ops->tlb_all();
1671}
1672
1673static void smp_flush_cache_mm(struct mm_struct *mm)
1674{
1675 if (mm->context != NO_CONTEXT) {
1676 cpumask_t cpu_mask;
1677 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1678 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1679 if (!cpumask_empty(&cpu_mask))
1680 xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1681 local_ops->cache_mm(mm);
1682 }
1683}
1684
1685static void smp_flush_tlb_mm(struct mm_struct *mm)
1686{
1687 if (mm->context != NO_CONTEXT) {
1688 cpumask_t cpu_mask;
1689 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1690 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1691 if (!cpumask_empty(&cpu_mask)) {
1692 xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1693 if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1694 cpumask_copy(mm_cpumask(mm),
1695 cpumask_of(smp_processor_id()));
1696 }
1697 local_ops->tlb_mm(mm);
1698 }
1699}
1700
1701static void smp_flush_cache_range(struct vm_area_struct *vma,
1702 unsigned long start,
1703 unsigned long end)
1704{
1705 struct mm_struct *mm = vma->vm_mm;
1706
1707 if (mm->context != NO_CONTEXT) {
1708 cpumask_t cpu_mask;
1709 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1710 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1711 if (!cpumask_empty(&cpu_mask))
1712 xc3((smpfunc_t) local_ops->cache_range,
1713 (unsigned long) vma, start, end);
1714 local_ops->cache_range(vma, start, end);
1715 }
1716}
1717
1718static void smp_flush_tlb_range(struct vm_area_struct *vma,
1719 unsigned long start,
1720 unsigned long end)
1721{
1722 struct mm_struct *mm = vma->vm_mm;
1723
1724 if (mm->context != NO_CONTEXT) {
1725 cpumask_t cpu_mask;
1726 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1727 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1728 if (!cpumask_empty(&cpu_mask))
1729 xc3((smpfunc_t) local_ops->tlb_range,
1730 (unsigned long) vma, start, end);
1731 local_ops->tlb_range(vma, start, end);
1732 }
1733}
1734
1735static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1736{
1737 struct mm_struct *mm = vma->vm_mm;
1738
1739 if (mm->context != NO_CONTEXT) {
1740 cpumask_t cpu_mask;
1741 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1742 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1743 if (!cpumask_empty(&cpu_mask))
1744 xc2((smpfunc_t) local_ops->cache_page,
1745 (unsigned long) vma, page);
1746 local_ops->cache_page(vma, page);
1747 }
1748}
1749
1750static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1751{
1752 struct mm_struct *mm = vma->vm_mm;
1753
1754 if (mm->context != NO_CONTEXT) {
1755 cpumask_t cpu_mask;
1756 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1757 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1758 if (!cpumask_empty(&cpu_mask))
1759 xc2((smpfunc_t) local_ops->tlb_page,
1760 (unsigned long) vma, page);
1761 local_ops->tlb_page(vma, page);
1762 }
1763}
1764
1765static void smp_flush_page_to_ram(unsigned long page)
1766{
1767 /* Current theory is that those who call this are the one's
1768 * who have just dirtied their cache with the pages contents
1769 * in kernel space, therefore we only run this on local cpu.
1770 *
1771 * XXX This experiment failed, research further... -DaveM
1772 */
1773#if 1
1774 xc1((smpfunc_t) local_ops->page_to_ram, page);
1775#endif
1776 local_ops->page_to_ram(page);
1777}
1778
1779static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1780{
1781 cpumask_t cpu_mask;
1782 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1783 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1784 if (!cpumask_empty(&cpu_mask))
1785 xc2((smpfunc_t) local_ops->sig_insns,
1786 (unsigned long) mm, insn_addr);
1787 local_ops->sig_insns(mm, insn_addr);
1788}
1789
1790static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1791 .cache_all = smp_flush_cache_all,
1792 .cache_mm = smp_flush_cache_mm,
1793 .cache_page = smp_flush_cache_page,
1794 .cache_range = smp_flush_cache_range,
1795 .tlb_all = smp_flush_tlb_all,
1796 .tlb_mm = smp_flush_tlb_mm,
1797 .tlb_page = smp_flush_tlb_page,
1798 .tlb_range = smp_flush_tlb_range,
1799 .page_to_ram = smp_flush_page_to_ram,
1800 .sig_insns = smp_flush_sig_insns,
1801 .page_for_dma = smp_flush_page_for_dma,
1802};
1803#endif
1804
1805/* Load up routines and constants for sun4m and sun4d mmu */
1806void __init load_mmu(void)
1807{
1808 /* Functions */
1809 get_srmmu_type();
1810
1811#ifdef CONFIG_SMP
1812 /* El switcheroo... */
1813 local_ops = sparc32_cachetlb_ops;
1814
1815 if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1816 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1817 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1818 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1819 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1820 }
1821
1822 if (poke_srmmu == poke_viking) {
1823 /* Avoid unnecessary cross calls. */
1824 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1825 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1826 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1827 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1828
1829 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1830 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1831 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1832 }
1833
1834 /* It really is const after this point. */
1835 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1836 &smp_cachetlb_ops;
1837#endif
1838
1839 if (sparc_cpu_model == sun4d)
1840 ld_mmu_iounit();
1841 else
1842 ld_mmu_iommu();
1843#ifdef CONFIG_SMP
1844 if (sparc_cpu_model == sun4d)
1845 sun4d_init_smp();
1846 else if (sparc_cpu_model == sparc_leon)
1847 leon_init_smp();
1848 else
1849 sun4m_init_smp();
1850#endif
1851}
1/*
2 * srmmu.c: SRMMU specific routines for memory management.
3 *
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9 */
10
11#include <linux/seq_file.h>
12#include <linux/spinlock.h>
13#include <linux/bootmem.h>
14#include <linux/pagemap.h>
15#include <linux/vmalloc.h>
16#include <linux/kdebug.h>
17#include <linux/export.h>
18#include <linux/kernel.h>
19#include <linux/init.h>
20#include <linux/log2.h>
21#include <linux/gfp.h>
22#include <linux/fs.h>
23#include <linux/mm.h>
24
25#include <asm/mmu_context.h>
26#include <asm/cacheflush.h>
27#include <asm/tlbflush.h>
28#include <asm/io-unit.h>
29#include <asm/pgalloc.h>
30#include <asm/pgtable.h>
31#include <asm/bitext.h>
32#include <asm/vaddrs.h>
33#include <asm/cache.h>
34#include <asm/traps.h>
35#include <asm/oplib.h>
36#include <asm/mbus.h>
37#include <asm/page.h>
38#include <asm/asi.h>
39#include <asm/msi.h>
40#include <asm/smp.h>
41#include <asm/io.h>
42
43/* Now the cpu specific definitions. */
44#include <asm/turbosparc.h>
45#include <asm/tsunami.h>
46#include <asm/viking.h>
47#include <asm/swift.h>
48#include <asm/leon.h>
49#include <asm/mxcc.h>
50#include <asm/ross.h>
51
52#include "srmmu.h"
53
54enum mbus_module srmmu_modtype;
55static unsigned int hwbug_bitmask;
56int vac_cache_size;
57int vac_line_size;
58
59extern struct resource sparc_iomap;
60
61extern unsigned long last_valid_pfn;
62
63static pgd_t *srmmu_swapper_pg_dir;
64
65const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
66EXPORT_SYMBOL(sparc32_cachetlb_ops);
67
68#ifdef CONFIG_SMP
69const struct sparc32_cachetlb_ops *local_ops;
70
71#define FLUSH_BEGIN(mm)
72#define FLUSH_END
73#else
74#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
75#define FLUSH_END }
76#endif
77
78int flush_page_for_dma_global = 1;
79
80char *srmmu_name;
81
82ctxd_t *srmmu_ctx_table_phys;
83static ctxd_t *srmmu_context_table;
84
85int viking_mxcc_present;
86static DEFINE_SPINLOCK(srmmu_context_spinlock);
87
88static int is_hypersparc;
89
90static int srmmu_cache_pagetables;
91
92/* these will be initialized in srmmu_nocache_calcsize() */
93static unsigned long srmmu_nocache_size;
94static unsigned long srmmu_nocache_end;
95
96/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
97#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
98
99/* The context table is a nocache user with the biggest alignment needs. */
100#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
101
102void *srmmu_nocache_pool;
103void *srmmu_nocache_bitmap;
104static struct bit_map srmmu_nocache_map;
105
106static inline int srmmu_pmd_none(pmd_t pmd)
107{ return !(pmd_val(pmd) & 0xFFFFFFF); }
108
109/* XXX should we hyper_flush_whole_icache here - Anton */
110static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
111{ set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
112
113void pmd_set(pmd_t *pmdp, pte_t *ptep)
114{
115 unsigned long ptp; /* Physical address, shifted right by 4 */
116 int i;
117
118 ptp = __nocache_pa((unsigned long) ptep) >> 4;
119 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
120 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
121 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
122 }
123}
124
125void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
126{
127 unsigned long ptp; /* Physical address, shifted right by 4 */
128 int i;
129
130 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
131 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
132 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
133 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
134 }
135}
136
137/* Find an entry in the third-level page table.. */
138pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
139{
140 void *pte;
141
142 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
143 return (pte_t *) pte +
144 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
145}
146
147/*
148 * size: bytes to allocate in the nocache area.
149 * align: bytes, number to align at.
150 * Returns the virtual address of the allocated area.
151 */
152static void *__srmmu_get_nocache(int size, int align)
153{
154 int offset;
155 unsigned long addr;
156
157 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
158 printk(KERN_ERR "Size 0x%x too small for nocache request\n",
159 size);
160 size = SRMMU_NOCACHE_BITMAP_SHIFT;
161 }
162 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
163 printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
164 size);
165 size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
166 }
167 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
168
169 offset = bit_map_string_get(&srmmu_nocache_map,
170 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
171 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
172 if (offset == -1) {
173 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
174 size, (int) srmmu_nocache_size,
175 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
176 return 0;
177 }
178
179 addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
180 return (void *)addr;
181}
182
183void *srmmu_get_nocache(int size, int align)
184{
185 void *tmp;
186
187 tmp = __srmmu_get_nocache(size, align);
188
189 if (tmp)
190 memset(tmp, 0, size);
191
192 return tmp;
193}
194
195void srmmu_free_nocache(void *addr, int size)
196{
197 unsigned long vaddr;
198 int offset;
199
200 vaddr = (unsigned long)addr;
201 if (vaddr < SRMMU_NOCACHE_VADDR) {
202 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
203 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
204 BUG();
205 }
206 if (vaddr + size > srmmu_nocache_end) {
207 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
208 vaddr, srmmu_nocache_end);
209 BUG();
210 }
211 if (!is_power_of_2(size)) {
212 printk("Size 0x%x is not a power of 2\n", size);
213 BUG();
214 }
215 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
216 printk("Size 0x%x is too small\n", size);
217 BUG();
218 }
219 if (vaddr & (size - 1)) {
220 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
221 BUG();
222 }
223
224 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
225 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
226
227 bit_map_clear(&srmmu_nocache_map, offset, size);
228}
229
230static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
231 unsigned long end);
232
233/* Return how much physical memory we have. */
234static unsigned long __init probe_memory(void)
235{
236 unsigned long total = 0;
237 int i;
238
239 for (i = 0; sp_banks[i].num_bytes; i++)
240 total += sp_banks[i].num_bytes;
241
242 return total;
243}
244
245/*
246 * Reserve nocache dynamically proportionally to the amount of
247 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
248 */
249static void __init srmmu_nocache_calcsize(void)
250{
251 unsigned long sysmemavail = probe_memory() / 1024;
252 int srmmu_nocache_npages;
253
254 srmmu_nocache_npages =
255 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
256
257 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
258 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
259 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
260 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
261
262 /* anything above 1280 blows up */
263 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
264 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
265
266 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
267 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
268}
269
270static void __init srmmu_nocache_init(void)
271{
272 unsigned int bitmap_bits;
273 pgd_t *pgd;
274 pmd_t *pmd;
275 pte_t *pte;
276 unsigned long paddr, vaddr;
277 unsigned long pteval;
278
279 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
280
281 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
282 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
283 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
284
285 srmmu_nocache_bitmap =
286 __alloc_bootmem(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
287 SMP_CACHE_BYTES, 0UL);
288 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
289
290 srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
291 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
292 init_mm.pgd = srmmu_swapper_pg_dir;
293
294 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
295
296 paddr = __pa((unsigned long)srmmu_nocache_pool);
297 vaddr = SRMMU_NOCACHE_VADDR;
298
299 while (vaddr < srmmu_nocache_end) {
300 pgd = pgd_offset_k(vaddr);
301 pmd = pmd_offset(__nocache_fix(pgd), vaddr);
302 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
303
304 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
305
306 if (srmmu_cache_pagetables)
307 pteval |= SRMMU_CACHE;
308
309 set_pte(__nocache_fix(pte), __pte(pteval));
310
311 vaddr += PAGE_SIZE;
312 paddr += PAGE_SIZE;
313 }
314
315 flush_cache_all();
316 flush_tlb_all();
317}
318
319pgd_t *get_pgd_fast(void)
320{
321 pgd_t *pgd = NULL;
322
323 pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
324 if (pgd) {
325 pgd_t *init = pgd_offset_k(0);
326 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
327 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
328 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
329 }
330
331 return pgd;
332}
333
334/*
335 * Hardware needs alignment to 256 only, but we align to whole page size
336 * to reduce fragmentation problems due to the buddy principle.
337 * XXX Provide actual fragmentation statistics in /proc.
338 *
339 * Alignments up to the page size are the same for physical and virtual
340 * addresses of the nocache area.
341 */
342pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
343{
344 unsigned long pte;
345 struct page *page;
346
347 if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
348 return NULL;
349 page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
350 if (!pgtable_page_ctor(page)) {
351 __free_page(page);
352 return NULL;
353 }
354 return page;
355}
356
357void pte_free(struct mm_struct *mm, pgtable_t pte)
358{
359 unsigned long p;
360
361 pgtable_page_dtor(pte);
362 p = (unsigned long)page_address(pte); /* Cached address (for test) */
363 if (p == 0)
364 BUG();
365 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
366
367 /* free non cached virtual address*/
368 srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
369}
370
371/* context handling - a dynamically sized pool is used */
372#define NO_CONTEXT -1
373
374struct ctx_list {
375 struct ctx_list *next;
376 struct ctx_list *prev;
377 unsigned int ctx_number;
378 struct mm_struct *ctx_mm;
379};
380
381static struct ctx_list *ctx_list_pool;
382static struct ctx_list ctx_free;
383static struct ctx_list ctx_used;
384
385/* At boot time we determine the number of contexts */
386static int num_contexts;
387
388static inline void remove_from_ctx_list(struct ctx_list *entry)
389{
390 entry->next->prev = entry->prev;
391 entry->prev->next = entry->next;
392}
393
394static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
395{
396 entry->next = head;
397 (entry->prev = head->prev)->next = entry;
398 head->prev = entry;
399}
400#define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
401#define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
402
403
404static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
405{
406 struct ctx_list *ctxp;
407
408 ctxp = ctx_free.next;
409 if (ctxp != &ctx_free) {
410 remove_from_ctx_list(ctxp);
411 add_to_used_ctxlist(ctxp);
412 mm->context = ctxp->ctx_number;
413 ctxp->ctx_mm = mm;
414 return;
415 }
416 ctxp = ctx_used.next;
417 if (ctxp->ctx_mm == old_mm)
418 ctxp = ctxp->next;
419 if (ctxp == &ctx_used)
420 panic("out of mmu contexts");
421 flush_cache_mm(ctxp->ctx_mm);
422 flush_tlb_mm(ctxp->ctx_mm);
423 remove_from_ctx_list(ctxp);
424 add_to_used_ctxlist(ctxp);
425 ctxp->ctx_mm->context = NO_CONTEXT;
426 ctxp->ctx_mm = mm;
427 mm->context = ctxp->ctx_number;
428}
429
430static inline void free_context(int context)
431{
432 struct ctx_list *ctx_old;
433
434 ctx_old = ctx_list_pool + context;
435 remove_from_ctx_list(ctx_old);
436 add_to_free_ctxlist(ctx_old);
437}
438
439static void __init sparc_context_init(int numctx)
440{
441 int ctx;
442 unsigned long size;
443
444 size = numctx * sizeof(struct ctx_list);
445 ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
446
447 for (ctx = 0; ctx < numctx; ctx++) {
448 struct ctx_list *clist;
449
450 clist = (ctx_list_pool + ctx);
451 clist->ctx_number = ctx;
452 clist->ctx_mm = NULL;
453 }
454 ctx_free.next = ctx_free.prev = &ctx_free;
455 ctx_used.next = ctx_used.prev = &ctx_used;
456 for (ctx = 0; ctx < numctx; ctx++)
457 add_to_free_ctxlist(ctx_list_pool + ctx);
458}
459
460void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
461 struct task_struct *tsk)
462{
463 if (mm->context == NO_CONTEXT) {
464 spin_lock(&srmmu_context_spinlock);
465 alloc_context(old_mm, mm);
466 spin_unlock(&srmmu_context_spinlock);
467 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
468 }
469
470 if (sparc_cpu_model == sparc_leon)
471 leon_switch_mm();
472
473 if (is_hypersparc)
474 hyper_flush_whole_icache();
475
476 srmmu_set_context(mm->context);
477}
478
479/* Low level IO area allocation on the SRMMU. */
480static inline void srmmu_mapioaddr(unsigned long physaddr,
481 unsigned long virt_addr, int bus_type)
482{
483 pgd_t *pgdp;
484 pmd_t *pmdp;
485 pte_t *ptep;
486 unsigned long tmp;
487
488 physaddr &= PAGE_MASK;
489 pgdp = pgd_offset_k(virt_addr);
490 pmdp = pmd_offset(pgdp, virt_addr);
491 ptep = pte_offset_kernel(pmdp, virt_addr);
492 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
493
494 /* I need to test whether this is consistent over all
495 * sun4m's. The bus_type represents the upper 4 bits of
496 * 36-bit physical address on the I/O space lines...
497 */
498 tmp |= (bus_type << 28);
499 tmp |= SRMMU_PRIV;
500 __flush_page_to_ram(virt_addr);
501 set_pte(ptep, __pte(tmp));
502}
503
504void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
505 unsigned long xva, unsigned int len)
506{
507 while (len != 0) {
508 len -= PAGE_SIZE;
509 srmmu_mapioaddr(xpa, xva, bus);
510 xva += PAGE_SIZE;
511 xpa += PAGE_SIZE;
512 }
513 flush_tlb_all();
514}
515
516static inline void srmmu_unmapioaddr(unsigned long virt_addr)
517{
518 pgd_t *pgdp;
519 pmd_t *pmdp;
520 pte_t *ptep;
521
522 pgdp = pgd_offset_k(virt_addr);
523 pmdp = pmd_offset(pgdp, virt_addr);
524 ptep = pte_offset_kernel(pmdp, virt_addr);
525
526 /* No need to flush uncacheable page. */
527 __pte_clear(ptep);
528}
529
530void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
531{
532 while (len != 0) {
533 len -= PAGE_SIZE;
534 srmmu_unmapioaddr(virt_addr);
535 virt_addr += PAGE_SIZE;
536 }
537 flush_tlb_all();
538}
539
540/* tsunami.S */
541extern void tsunami_flush_cache_all(void);
542extern void tsunami_flush_cache_mm(struct mm_struct *mm);
543extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
544extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
545extern void tsunami_flush_page_to_ram(unsigned long page);
546extern void tsunami_flush_page_for_dma(unsigned long page);
547extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
548extern void tsunami_flush_tlb_all(void);
549extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
550extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
551extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
552extern void tsunami_setup_blockops(void);
553
554/* swift.S */
555extern void swift_flush_cache_all(void);
556extern void swift_flush_cache_mm(struct mm_struct *mm);
557extern void swift_flush_cache_range(struct vm_area_struct *vma,
558 unsigned long start, unsigned long end);
559extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
560extern void swift_flush_page_to_ram(unsigned long page);
561extern void swift_flush_page_for_dma(unsigned long page);
562extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
563extern void swift_flush_tlb_all(void);
564extern void swift_flush_tlb_mm(struct mm_struct *mm);
565extern void swift_flush_tlb_range(struct vm_area_struct *vma,
566 unsigned long start, unsigned long end);
567extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
568
569#if 0 /* P3: deadwood to debug precise flushes on Swift. */
570void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
571{
572 int cctx, ctx1;
573
574 page &= PAGE_MASK;
575 if ((ctx1 = vma->vm_mm->context) != -1) {
576 cctx = srmmu_get_context();
577/* Is context # ever different from current context? P3 */
578 if (cctx != ctx1) {
579 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
580 srmmu_set_context(ctx1);
581 swift_flush_page(page);
582 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
583 "r" (page), "i" (ASI_M_FLUSH_PROBE));
584 srmmu_set_context(cctx);
585 } else {
586 /* Rm. prot. bits from virt. c. */
587 /* swift_flush_cache_all(); */
588 /* swift_flush_cache_page(vma, page); */
589 swift_flush_page(page);
590
591 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
592 "r" (page), "i" (ASI_M_FLUSH_PROBE));
593 /* same as above: srmmu_flush_tlb_page() */
594 }
595 }
596}
597#endif
598
599/*
600 * The following are all MBUS based SRMMU modules, and therefore could
601 * be found in a multiprocessor configuration. On the whole, these
602 * chips seems to be much more touchy about DVMA and page tables
603 * with respect to cache coherency.
604 */
605
606/* viking.S */
607extern void viking_flush_cache_all(void);
608extern void viking_flush_cache_mm(struct mm_struct *mm);
609extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
610 unsigned long end);
611extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
612extern void viking_flush_page_to_ram(unsigned long page);
613extern void viking_flush_page_for_dma(unsigned long page);
614extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
615extern void viking_flush_page(unsigned long page);
616extern void viking_mxcc_flush_page(unsigned long page);
617extern void viking_flush_tlb_all(void);
618extern void viking_flush_tlb_mm(struct mm_struct *mm);
619extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
620 unsigned long end);
621extern void viking_flush_tlb_page(struct vm_area_struct *vma,
622 unsigned long page);
623extern void sun4dsmp_flush_tlb_all(void);
624extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
625extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
626 unsigned long end);
627extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
628 unsigned long page);
629
630/* hypersparc.S */
631extern void hypersparc_flush_cache_all(void);
632extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
633extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
634extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
635extern void hypersparc_flush_page_to_ram(unsigned long page);
636extern void hypersparc_flush_page_for_dma(unsigned long page);
637extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
638extern void hypersparc_flush_tlb_all(void);
639extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
640extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
641extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
642extern void hypersparc_setup_blockops(void);
643
644/*
645 * NOTE: All of this startup code assumes the low 16mb (approx.) of
646 * kernel mappings are done with one single contiguous chunk of
647 * ram. On small ram machines (classics mainly) we only get
648 * around 8mb mapped for us.
649 */
650
651static void __init early_pgtable_allocfail(char *type)
652{
653 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
654 prom_halt();
655}
656
657static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
658 unsigned long end)
659{
660 pgd_t *pgdp;
661 pmd_t *pmdp;
662 pte_t *ptep;
663
664 while (start < end) {
665 pgdp = pgd_offset_k(start);
666 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
667 pmdp = __srmmu_get_nocache(
668 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
669 if (pmdp == NULL)
670 early_pgtable_allocfail("pmd");
671 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
672 pgd_set(__nocache_fix(pgdp), pmdp);
673 }
674 pmdp = pmd_offset(__nocache_fix(pgdp), start);
675 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
676 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
677 if (ptep == NULL)
678 early_pgtable_allocfail("pte");
679 memset(__nocache_fix(ptep), 0, PTE_SIZE);
680 pmd_set(__nocache_fix(pmdp), ptep);
681 }
682 if (start > (0xffffffffUL - PMD_SIZE))
683 break;
684 start = (start + PMD_SIZE) & PMD_MASK;
685 }
686}
687
688static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
689 unsigned long end)
690{
691 pgd_t *pgdp;
692 pmd_t *pmdp;
693 pte_t *ptep;
694
695 while (start < end) {
696 pgdp = pgd_offset_k(start);
697 if (pgd_none(*pgdp)) {
698 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
699 if (pmdp == NULL)
700 early_pgtable_allocfail("pmd");
701 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
702 pgd_set(pgdp, pmdp);
703 }
704 pmdp = pmd_offset(pgdp, start);
705 if (srmmu_pmd_none(*pmdp)) {
706 ptep = __srmmu_get_nocache(PTE_SIZE,
707 PTE_SIZE);
708 if (ptep == NULL)
709 early_pgtable_allocfail("pte");
710 memset(ptep, 0, PTE_SIZE);
711 pmd_set(pmdp, ptep);
712 }
713 if (start > (0xffffffffUL - PMD_SIZE))
714 break;
715 start = (start + PMD_SIZE) & PMD_MASK;
716 }
717}
718
719/* These flush types are not available on all chips... */
720static inline unsigned long srmmu_probe(unsigned long vaddr)
721{
722 unsigned long retval;
723
724 if (sparc_cpu_model != sparc_leon) {
725
726 vaddr &= PAGE_MASK;
727 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
728 "=r" (retval) :
729 "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
730 } else {
731 retval = leon_swprobe(vaddr, 0);
732 }
733 return retval;
734}
735
736/*
737 * This is much cleaner than poking around physical address space
738 * looking at the prom's page table directly which is what most
739 * other OS's do. Yuck... this is much better.
740 */
741static void __init srmmu_inherit_prom_mappings(unsigned long start,
742 unsigned long end)
743{
744 unsigned long probed;
745 unsigned long addr;
746 pgd_t *pgdp;
747 pmd_t *pmdp;
748 pte_t *ptep;
749 int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
750
751 while (start <= end) {
752 if (start == 0)
753 break; /* probably wrap around */
754 if (start == 0xfef00000)
755 start = KADB_DEBUGGER_BEGVM;
756 probed = srmmu_probe(start);
757 if (!probed) {
758 /* continue probing until we find an entry */
759 start += PAGE_SIZE;
760 continue;
761 }
762
763 /* A red snapper, see what it really is. */
764 what = 0;
765 addr = start - PAGE_SIZE;
766
767 if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
768 if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
769 what = 1;
770 }
771
772 if (!(start & ~(SRMMU_PGDIR_MASK))) {
773 if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
774 what = 2;
775 }
776
777 pgdp = pgd_offset_k(start);
778 if (what == 2) {
779 *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
780 start += SRMMU_PGDIR_SIZE;
781 continue;
782 }
783 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
784 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
785 SRMMU_PMD_TABLE_SIZE);
786 if (pmdp == NULL)
787 early_pgtable_allocfail("pmd");
788 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
789 pgd_set(__nocache_fix(pgdp), pmdp);
790 }
791 pmdp = pmd_offset(__nocache_fix(pgdp), start);
792 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
793 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
794 if (ptep == NULL)
795 early_pgtable_allocfail("pte");
796 memset(__nocache_fix(ptep), 0, PTE_SIZE);
797 pmd_set(__nocache_fix(pmdp), ptep);
798 }
799 if (what == 1) {
800 /* We bend the rule where all 16 PTPs in a pmd_t point
801 * inside the same PTE page, and we leak a perfectly
802 * good hardware PTE piece. Alternatives seem worse.
803 */
804 unsigned int x; /* Index of HW PMD in soft cluster */
805 unsigned long *val;
806 x = (start >> PMD_SHIFT) & 15;
807 val = &pmdp->pmdv[x];
808 *(unsigned long *)__nocache_fix(val) = probed;
809 start += SRMMU_REAL_PMD_SIZE;
810 continue;
811 }
812 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
813 *(pte_t *)__nocache_fix(ptep) = __pte(probed);
814 start += PAGE_SIZE;
815 }
816}
817
818#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
819
820/* Create a third-level SRMMU 16MB page mapping. */
821static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
822{
823 pgd_t *pgdp = pgd_offset_k(vaddr);
824 unsigned long big_pte;
825
826 big_pte = KERNEL_PTE(phys_base >> 4);
827 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
828}
829
830/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
831static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
832{
833 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
834 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
835 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
836 /* Map "low" memory only */
837 const unsigned long min_vaddr = PAGE_OFFSET;
838 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
839
840 if (vstart < min_vaddr || vstart >= max_vaddr)
841 return vstart;
842
843 if (vend > max_vaddr || vend < min_vaddr)
844 vend = max_vaddr;
845
846 while (vstart < vend) {
847 do_large_mapping(vstart, pstart);
848 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
849 }
850 return vstart;
851}
852
853static void __init map_kernel(void)
854{
855 int i;
856
857 if (phys_base > 0) {
858 do_large_mapping(PAGE_OFFSET, phys_base);
859 }
860
861 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
862 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
863 }
864}
865
866void (*poke_srmmu)(void) = NULL;
867
868extern unsigned long bootmem_init(unsigned long *pages_avail);
869
870void __init srmmu_paging_init(void)
871{
872 int i;
873 phandle cpunode;
874 char node_str[128];
875 pgd_t *pgd;
876 pmd_t *pmd;
877 pte_t *pte;
878 unsigned long pages_avail;
879
880 init_mm.context = (unsigned long) NO_CONTEXT;
881 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
882
883 if (sparc_cpu_model == sun4d)
884 num_contexts = 65536; /* We know it is Viking */
885 else {
886 /* Find the number of contexts on the srmmu. */
887 cpunode = prom_getchild(prom_root_node);
888 num_contexts = 0;
889 while (cpunode != 0) {
890 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
891 if (!strcmp(node_str, "cpu")) {
892 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
893 break;
894 }
895 cpunode = prom_getsibling(cpunode);
896 }
897 }
898
899 if (!num_contexts) {
900 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
901 prom_halt();
902 }
903
904 pages_avail = 0;
905 last_valid_pfn = bootmem_init(&pages_avail);
906
907 srmmu_nocache_calcsize();
908 srmmu_nocache_init();
909 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
910 map_kernel();
911
912 /* ctx table has to be physically aligned to its size */
913 srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
914 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
915
916 for (i = 0; i < num_contexts; i++)
917 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
918
919 flush_cache_all();
920 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
921#ifdef CONFIG_SMP
922 /* Stop from hanging here... */
923 local_ops->tlb_all();
924#else
925 flush_tlb_all();
926#endif
927 poke_srmmu();
928
929 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
930 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
931
932 srmmu_allocate_ptable_skeleton(
933 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
934 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
935
936 pgd = pgd_offset_k(PKMAP_BASE);
937 pmd = pmd_offset(pgd, PKMAP_BASE);
938 pte = pte_offset_kernel(pmd, PKMAP_BASE);
939 pkmap_page_table = pte;
940
941 flush_cache_all();
942 flush_tlb_all();
943
944 sparc_context_init(num_contexts);
945
946 kmap_init();
947
948 {
949 unsigned long zones_size[MAX_NR_ZONES];
950 unsigned long zholes_size[MAX_NR_ZONES];
951 unsigned long npages;
952 int znum;
953
954 for (znum = 0; znum < MAX_NR_ZONES; znum++)
955 zones_size[znum] = zholes_size[znum] = 0;
956
957 npages = max_low_pfn - pfn_base;
958
959 zones_size[ZONE_DMA] = npages;
960 zholes_size[ZONE_DMA] = npages - pages_avail;
961
962 npages = highend_pfn - max_low_pfn;
963 zones_size[ZONE_HIGHMEM] = npages;
964 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
965
966 free_area_init_node(0, zones_size, pfn_base, zholes_size);
967 }
968}
969
970void mmu_info(struct seq_file *m)
971{
972 seq_printf(m,
973 "MMU type\t: %s\n"
974 "contexts\t: %d\n"
975 "nocache total\t: %ld\n"
976 "nocache used\t: %d\n",
977 srmmu_name,
978 num_contexts,
979 srmmu_nocache_size,
980 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
981}
982
983int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
984{
985 mm->context = NO_CONTEXT;
986 return 0;
987}
988
989void destroy_context(struct mm_struct *mm)
990{
991
992 if (mm->context != NO_CONTEXT) {
993 flush_cache_mm(mm);
994 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
995 flush_tlb_mm(mm);
996 spin_lock(&srmmu_context_spinlock);
997 free_context(mm->context);
998 spin_unlock(&srmmu_context_spinlock);
999 mm->context = NO_CONTEXT;
1000 }
1001}
1002
1003/* Init various srmmu chip types. */
1004static void __init srmmu_is_bad(void)
1005{
1006 prom_printf("Could not determine SRMMU chip type.\n");
1007 prom_halt();
1008}
1009
1010static void __init init_vac_layout(void)
1011{
1012 phandle nd;
1013 int cache_lines;
1014 char node_str[128];
1015#ifdef CONFIG_SMP
1016 int cpu = 0;
1017 unsigned long max_size = 0;
1018 unsigned long min_line_size = 0x10000000;
1019#endif
1020
1021 nd = prom_getchild(prom_root_node);
1022 while ((nd = prom_getsibling(nd)) != 0) {
1023 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1024 if (!strcmp(node_str, "cpu")) {
1025 vac_line_size = prom_getint(nd, "cache-line-size");
1026 if (vac_line_size == -1) {
1027 prom_printf("can't determine cache-line-size, halting.\n");
1028 prom_halt();
1029 }
1030 cache_lines = prom_getint(nd, "cache-nlines");
1031 if (cache_lines == -1) {
1032 prom_printf("can't determine cache-nlines, halting.\n");
1033 prom_halt();
1034 }
1035
1036 vac_cache_size = cache_lines * vac_line_size;
1037#ifdef CONFIG_SMP
1038 if (vac_cache_size > max_size)
1039 max_size = vac_cache_size;
1040 if (vac_line_size < min_line_size)
1041 min_line_size = vac_line_size;
1042 //FIXME: cpus not contiguous!!
1043 cpu++;
1044 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1045 break;
1046#else
1047 break;
1048#endif
1049 }
1050 }
1051 if (nd == 0) {
1052 prom_printf("No CPU nodes found, halting.\n");
1053 prom_halt();
1054 }
1055#ifdef CONFIG_SMP
1056 vac_cache_size = max_size;
1057 vac_line_size = min_line_size;
1058#endif
1059 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1060 (int)vac_cache_size, (int)vac_line_size);
1061}
1062
1063static void poke_hypersparc(void)
1064{
1065 volatile unsigned long clear;
1066 unsigned long mreg = srmmu_get_mmureg();
1067
1068 hyper_flush_unconditional_combined();
1069
1070 mreg &= ~(HYPERSPARC_CWENABLE);
1071 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1072 mreg |= (HYPERSPARC_CMODE);
1073
1074 srmmu_set_mmureg(mreg);
1075
1076#if 0 /* XXX I think this is bad news... -DaveM */
1077 hyper_clear_all_tags();
1078#endif
1079
1080 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1081 hyper_flush_whole_icache();
1082 clear = srmmu_get_faddr();
1083 clear = srmmu_get_fstatus();
1084}
1085
1086static const struct sparc32_cachetlb_ops hypersparc_ops = {
1087 .cache_all = hypersparc_flush_cache_all,
1088 .cache_mm = hypersparc_flush_cache_mm,
1089 .cache_page = hypersparc_flush_cache_page,
1090 .cache_range = hypersparc_flush_cache_range,
1091 .tlb_all = hypersparc_flush_tlb_all,
1092 .tlb_mm = hypersparc_flush_tlb_mm,
1093 .tlb_page = hypersparc_flush_tlb_page,
1094 .tlb_range = hypersparc_flush_tlb_range,
1095 .page_to_ram = hypersparc_flush_page_to_ram,
1096 .sig_insns = hypersparc_flush_sig_insns,
1097 .page_for_dma = hypersparc_flush_page_for_dma,
1098};
1099
1100static void __init init_hypersparc(void)
1101{
1102 srmmu_name = "ROSS HyperSparc";
1103 srmmu_modtype = HyperSparc;
1104
1105 init_vac_layout();
1106
1107 is_hypersparc = 1;
1108 sparc32_cachetlb_ops = &hypersparc_ops;
1109
1110 poke_srmmu = poke_hypersparc;
1111
1112 hypersparc_setup_blockops();
1113}
1114
1115static void poke_swift(void)
1116{
1117 unsigned long mreg;
1118
1119 /* Clear any crap from the cache or else... */
1120 swift_flush_cache_all();
1121
1122 /* Enable I & D caches */
1123 mreg = srmmu_get_mmureg();
1124 mreg |= (SWIFT_IE | SWIFT_DE);
1125 /*
1126 * The Swift branch folding logic is completely broken. At
1127 * trap time, if things are just right, if can mistakenly
1128 * think that a trap is coming from kernel mode when in fact
1129 * it is coming from user mode (it mis-executes the branch in
1130 * the trap code). So you see things like crashme completely
1131 * hosing your machine which is completely unacceptable. Turn
1132 * this shit off... nice job Fujitsu.
1133 */
1134 mreg &= ~(SWIFT_BF);
1135 srmmu_set_mmureg(mreg);
1136}
1137
1138static const struct sparc32_cachetlb_ops swift_ops = {
1139 .cache_all = swift_flush_cache_all,
1140 .cache_mm = swift_flush_cache_mm,
1141 .cache_page = swift_flush_cache_page,
1142 .cache_range = swift_flush_cache_range,
1143 .tlb_all = swift_flush_tlb_all,
1144 .tlb_mm = swift_flush_tlb_mm,
1145 .tlb_page = swift_flush_tlb_page,
1146 .tlb_range = swift_flush_tlb_range,
1147 .page_to_ram = swift_flush_page_to_ram,
1148 .sig_insns = swift_flush_sig_insns,
1149 .page_for_dma = swift_flush_page_for_dma,
1150};
1151
1152#define SWIFT_MASKID_ADDR 0x10003018
1153static void __init init_swift(void)
1154{
1155 unsigned long swift_rev;
1156
1157 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1158 "srl %0, 0x18, %0\n\t" :
1159 "=r" (swift_rev) :
1160 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1161 srmmu_name = "Fujitsu Swift";
1162 switch (swift_rev) {
1163 case 0x11:
1164 case 0x20:
1165 case 0x23:
1166 case 0x30:
1167 srmmu_modtype = Swift_lots_o_bugs;
1168 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1169 /*
1170 * Gee george, I wonder why Sun is so hush hush about
1171 * this hardware bug... really braindamage stuff going
1172 * on here. However I think we can find a way to avoid
1173 * all of the workaround overhead under Linux. Basically,
1174 * any page fault can cause kernel pages to become user
1175 * accessible (the mmu gets confused and clears some of
1176 * the ACC bits in kernel ptes). Aha, sounds pretty
1177 * horrible eh? But wait, after extensive testing it appears
1178 * that if you use pgd_t level large kernel pte's (like the
1179 * 4MB pages on the Pentium) the bug does not get tripped
1180 * at all. This avoids almost all of the major overhead.
1181 * Welcome to a world where your vendor tells you to,
1182 * "apply this kernel patch" instead of "sorry for the
1183 * broken hardware, send it back and we'll give you
1184 * properly functioning parts"
1185 */
1186 break;
1187 case 0x25:
1188 case 0x31:
1189 srmmu_modtype = Swift_bad_c;
1190 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1191 /*
1192 * You see Sun allude to this hardware bug but never
1193 * admit things directly, they'll say things like,
1194 * "the Swift chip cache problems" or similar.
1195 */
1196 break;
1197 default:
1198 srmmu_modtype = Swift_ok;
1199 break;
1200 }
1201
1202 sparc32_cachetlb_ops = &swift_ops;
1203 flush_page_for_dma_global = 0;
1204
1205 /*
1206 * Are you now convinced that the Swift is one of the
1207 * biggest VLSI abortions of all time? Bravo Fujitsu!
1208 * Fujitsu, the !#?!%$'d up processor people. I bet if
1209 * you examined the microcode of the Swift you'd find
1210 * XXX's all over the place.
1211 */
1212 poke_srmmu = poke_swift;
1213}
1214
1215static void turbosparc_flush_cache_all(void)
1216{
1217 flush_user_windows();
1218 turbosparc_idflash_clear();
1219}
1220
1221static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1222{
1223 FLUSH_BEGIN(mm)
1224 flush_user_windows();
1225 turbosparc_idflash_clear();
1226 FLUSH_END
1227}
1228
1229static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1230{
1231 FLUSH_BEGIN(vma->vm_mm)
1232 flush_user_windows();
1233 turbosparc_idflash_clear();
1234 FLUSH_END
1235}
1236
1237static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1238{
1239 FLUSH_BEGIN(vma->vm_mm)
1240 flush_user_windows();
1241 if (vma->vm_flags & VM_EXEC)
1242 turbosparc_flush_icache();
1243 turbosparc_flush_dcache();
1244 FLUSH_END
1245}
1246
1247/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1248static void turbosparc_flush_page_to_ram(unsigned long page)
1249{
1250#ifdef TURBOSPARC_WRITEBACK
1251 volatile unsigned long clear;
1252
1253 if (srmmu_probe(page))
1254 turbosparc_flush_page_cache(page);
1255 clear = srmmu_get_fstatus();
1256#endif
1257}
1258
1259static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1260{
1261}
1262
1263static void turbosparc_flush_page_for_dma(unsigned long page)
1264{
1265 turbosparc_flush_dcache();
1266}
1267
1268static void turbosparc_flush_tlb_all(void)
1269{
1270 srmmu_flush_whole_tlb();
1271}
1272
1273static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1274{
1275 FLUSH_BEGIN(mm)
1276 srmmu_flush_whole_tlb();
1277 FLUSH_END
1278}
1279
1280static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1281{
1282 FLUSH_BEGIN(vma->vm_mm)
1283 srmmu_flush_whole_tlb();
1284 FLUSH_END
1285}
1286
1287static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1288{
1289 FLUSH_BEGIN(vma->vm_mm)
1290 srmmu_flush_whole_tlb();
1291 FLUSH_END
1292}
1293
1294
1295static void poke_turbosparc(void)
1296{
1297 unsigned long mreg = srmmu_get_mmureg();
1298 unsigned long ccreg;
1299
1300 /* Clear any crap from the cache or else... */
1301 turbosparc_flush_cache_all();
1302 /* Temporarily disable I & D caches */
1303 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1304 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1305 srmmu_set_mmureg(mreg);
1306
1307 ccreg = turbosparc_get_ccreg();
1308
1309#ifdef TURBOSPARC_WRITEBACK
1310 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1311 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1312 /* Write-back D-cache, emulate VLSI
1313 * abortion number three, not number one */
1314#else
1315 /* For now let's play safe, optimize later */
1316 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1317 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1318 ccreg &= ~(TURBOSPARC_uS2);
1319 /* Emulate VLSI abortion number three, not number one */
1320#endif
1321
1322 switch (ccreg & 7) {
1323 case 0: /* No SE cache */
1324 case 7: /* Test mode */
1325 break;
1326 default:
1327 ccreg |= (TURBOSPARC_SCENABLE);
1328 }
1329 turbosparc_set_ccreg(ccreg);
1330
1331 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1332 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1333 srmmu_set_mmureg(mreg);
1334}
1335
1336static const struct sparc32_cachetlb_ops turbosparc_ops = {
1337 .cache_all = turbosparc_flush_cache_all,
1338 .cache_mm = turbosparc_flush_cache_mm,
1339 .cache_page = turbosparc_flush_cache_page,
1340 .cache_range = turbosparc_flush_cache_range,
1341 .tlb_all = turbosparc_flush_tlb_all,
1342 .tlb_mm = turbosparc_flush_tlb_mm,
1343 .tlb_page = turbosparc_flush_tlb_page,
1344 .tlb_range = turbosparc_flush_tlb_range,
1345 .page_to_ram = turbosparc_flush_page_to_ram,
1346 .sig_insns = turbosparc_flush_sig_insns,
1347 .page_for_dma = turbosparc_flush_page_for_dma,
1348};
1349
1350static void __init init_turbosparc(void)
1351{
1352 srmmu_name = "Fujitsu TurboSparc";
1353 srmmu_modtype = TurboSparc;
1354 sparc32_cachetlb_ops = &turbosparc_ops;
1355 poke_srmmu = poke_turbosparc;
1356}
1357
1358static void poke_tsunami(void)
1359{
1360 unsigned long mreg = srmmu_get_mmureg();
1361
1362 tsunami_flush_icache();
1363 tsunami_flush_dcache();
1364 mreg &= ~TSUNAMI_ITD;
1365 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1366 srmmu_set_mmureg(mreg);
1367}
1368
1369static const struct sparc32_cachetlb_ops tsunami_ops = {
1370 .cache_all = tsunami_flush_cache_all,
1371 .cache_mm = tsunami_flush_cache_mm,
1372 .cache_page = tsunami_flush_cache_page,
1373 .cache_range = tsunami_flush_cache_range,
1374 .tlb_all = tsunami_flush_tlb_all,
1375 .tlb_mm = tsunami_flush_tlb_mm,
1376 .tlb_page = tsunami_flush_tlb_page,
1377 .tlb_range = tsunami_flush_tlb_range,
1378 .page_to_ram = tsunami_flush_page_to_ram,
1379 .sig_insns = tsunami_flush_sig_insns,
1380 .page_for_dma = tsunami_flush_page_for_dma,
1381};
1382
1383static void __init init_tsunami(void)
1384{
1385 /*
1386 * Tsunami's pretty sane, Sun and TI actually got it
1387 * somewhat right this time. Fujitsu should have
1388 * taken some lessons from them.
1389 */
1390
1391 srmmu_name = "TI Tsunami";
1392 srmmu_modtype = Tsunami;
1393 sparc32_cachetlb_ops = &tsunami_ops;
1394 poke_srmmu = poke_tsunami;
1395
1396 tsunami_setup_blockops();
1397}
1398
1399static void poke_viking(void)
1400{
1401 unsigned long mreg = srmmu_get_mmureg();
1402 static int smp_catch;
1403
1404 if (viking_mxcc_present) {
1405 unsigned long mxcc_control = mxcc_get_creg();
1406
1407 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1408 mxcc_control &= ~(MXCC_CTL_RRC);
1409 mxcc_set_creg(mxcc_control);
1410
1411 /*
1412 * We don't need memory parity checks.
1413 * XXX This is a mess, have to dig out later. ecd.
1414 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1415 */
1416
1417 /* We do cache ptables on MXCC. */
1418 mreg |= VIKING_TCENABLE;
1419 } else {
1420 unsigned long bpreg;
1421
1422 mreg &= ~(VIKING_TCENABLE);
1423 if (smp_catch++) {
1424 /* Must disable mixed-cmd mode here for other cpu's. */
1425 bpreg = viking_get_bpreg();
1426 bpreg &= ~(VIKING_ACTION_MIX);
1427 viking_set_bpreg(bpreg);
1428
1429 /* Just in case PROM does something funny. */
1430 msi_set_sync();
1431 }
1432 }
1433
1434 mreg |= VIKING_SPENABLE;
1435 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1436 mreg |= VIKING_SBENABLE;
1437 mreg &= ~(VIKING_ACENABLE);
1438 srmmu_set_mmureg(mreg);
1439}
1440
1441static struct sparc32_cachetlb_ops viking_ops = {
1442 .cache_all = viking_flush_cache_all,
1443 .cache_mm = viking_flush_cache_mm,
1444 .cache_page = viking_flush_cache_page,
1445 .cache_range = viking_flush_cache_range,
1446 .tlb_all = viking_flush_tlb_all,
1447 .tlb_mm = viking_flush_tlb_mm,
1448 .tlb_page = viking_flush_tlb_page,
1449 .tlb_range = viking_flush_tlb_range,
1450 .page_to_ram = viking_flush_page_to_ram,
1451 .sig_insns = viking_flush_sig_insns,
1452 .page_for_dma = viking_flush_page_for_dma,
1453};
1454
1455#ifdef CONFIG_SMP
1456/* On sun4d the cpu broadcasts local TLB flushes, so we can just
1457 * perform the local TLB flush and all the other cpus will see it.
1458 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1459 * that requires that we add some synchronization to these flushes.
1460 *
1461 * The bug is that the fifo which keeps track of all the pending TLB
1462 * broadcasts in the system is an entry or two too small, so if we
1463 * have too many going at once we'll overflow that fifo and lose a TLB
1464 * flush resulting in corruption.
1465 *
1466 * Our workaround is to take a global spinlock around the TLB flushes,
1467 * which guarentees we won't ever have too many pending. It's a big
1468 * hammer, but a semaphore like system to make sure we only have N TLB
1469 * flushes going at once will require SMP locking anyways so there's
1470 * no real value in trying any harder than this.
1471 */
1472static struct sparc32_cachetlb_ops viking_sun4d_smp_ops = {
1473 .cache_all = viking_flush_cache_all,
1474 .cache_mm = viking_flush_cache_mm,
1475 .cache_page = viking_flush_cache_page,
1476 .cache_range = viking_flush_cache_range,
1477 .tlb_all = sun4dsmp_flush_tlb_all,
1478 .tlb_mm = sun4dsmp_flush_tlb_mm,
1479 .tlb_page = sun4dsmp_flush_tlb_page,
1480 .tlb_range = sun4dsmp_flush_tlb_range,
1481 .page_to_ram = viking_flush_page_to_ram,
1482 .sig_insns = viking_flush_sig_insns,
1483 .page_for_dma = viking_flush_page_for_dma,
1484};
1485#endif
1486
1487static void __init init_viking(void)
1488{
1489 unsigned long mreg = srmmu_get_mmureg();
1490
1491 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1492 if (mreg & VIKING_MMODE) {
1493 srmmu_name = "TI Viking";
1494 viking_mxcc_present = 0;
1495 msi_set_sync();
1496
1497 /*
1498 * We need this to make sure old viking takes no hits
1499 * on it's cache for dma snoops to workaround the
1500 * "load from non-cacheable memory" interrupt bug.
1501 * This is only necessary because of the new way in
1502 * which we use the IOMMU.
1503 */
1504 viking_ops.page_for_dma = viking_flush_page;
1505#ifdef CONFIG_SMP
1506 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1507#endif
1508 flush_page_for_dma_global = 0;
1509 } else {
1510 srmmu_name = "TI Viking/MXCC";
1511 viking_mxcc_present = 1;
1512 srmmu_cache_pagetables = 1;
1513 }
1514
1515 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1516 &viking_ops;
1517#ifdef CONFIG_SMP
1518 if (sparc_cpu_model == sun4d)
1519 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1520 &viking_sun4d_smp_ops;
1521#endif
1522
1523 poke_srmmu = poke_viking;
1524}
1525
1526/* Probe for the srmmu chip version. */
1527static void __init get_srmmu_type(void)
1528{
1529 unsigned long mreg, psr;
1530 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1531
1532 srmmu_modtype = SRMMU_INVAL_MOD;
1533 hwbug_bitmask = 0;
1534
1535 mreg = srmmu_get_mmureg(); psr = get_psr();
1536 mod_typ = (mreg & 0xf0000000) >> 28;
1537 mod_rev = (mreg & 0x0f000000) >> 24;
1538 psr_typ = (psr >> 28) & 0xf;
1539 psr_vers = (psr >> 24) & 0xf;
1540
1541 /* First, check for sparc-leon. */
1542 if (sparc_cpu_model == sparc_leon) {
1543 init_leon();
1544 return;
1545 }
1546
1547 /* Second, check for HyperSparc or Cypress. */
1548 if (mod_typ == 1) {
1549 switch (mod_rev) {
1550 case 7:
1551 /* UP or MP Hypersparc */
1552 init_hypersparc();
1553 break;
1554 case 0:
1555 case 2:
1556 case 10:
1557 case 11:
1558 case 12:
1559 case 13:
1560 case 14:
1561 case 15:
1562 default:
1563 prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1564 prom_halt();
1565 break;
1566 }
1567 return;
1568 }
1569
1570 /* Now Fujitsu TurboSparc. It might happen that it is
1571 * in Swift emulation mode, so we will check later...
1572 */
1573 if (psr_typ == 0 && psr_vers == 5) {
1574 init_turbosparc();
1575 return;
1576 }
1577
1578 /* Next check for Fujitsu Swift. */
1579 if (psr_typ == 0 && psr_vers == 4) {
1580 phandle cpunode;
1581 char node_str[128];
1582
1583 /* Look if it is not a TurboSparc emulating Swift... */
1584 cpunode = prom_getchild(prom_root_node);
1585 while ((cpunode = prom_getsibling(cpunode)) != 0) {
1586 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1587 if (!strcmp(node_str, "cpu")) {
1588 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1589 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1590 init_turbosparc();
1591 return;
1592 }
1593 break;
1594 }
1595 }
1596
1597 init_swift();
1598 return;
1599 }
1600
1601 /* Now the Viking family of srmmu. */
1602 if (psr_typ == 4 &&
1603 ((psr_vers == 0) ||
1604 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1605 init_viking();
1606 return;
1607 }
1608
1609 /* Finally the Tsunami. */
1610 if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1611 init_tsunami();
1612 return;
1613 }
1614
1615 /* Oh well */
1616 srmmu_is_bad();
1617}
1618
1619#ifdef CONFIG_SMP
1620/* Local cross-calls. */
1621static void smp_flush_page_for_dma(unsigned long page)
1622{
1623 xc1((smpfunc_t) local_ops->page_for_dma, page);
1624 local_ops->page_for_dma(page);
1625}
1626
1627static void smp_flush_cache_all(void)
1628{
1629 xc0((smpfunc_t) local_ops->cache_all);
1630 local_ops->cache_all();
1631}
1632
1633static void smp_flush_tlb_all(void)
1634{
1635 xc0((smpfunc_t) local_ops->tlb_all);
1636 local_ops->tlb_all();
1637}
1638
1639static void smp_flush_cache_mm(struct mm_struct *mm)
1640{
1641 if (mm->context != NO_CONTEXT) {
1642 cpumask_t cpu_mask;
1643 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1644 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1645 if (!cpumask_empty(&cpu_mask))
1646 xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1647 local_ops->cache_mm(mm);
1648 }
1649}
1650
1651static void smp_flush_tlb_mm(struct mm_struct *mm)
1652{
1653 if (mm->context != NO_CONTEXT) {
1654 cpumask_t cpu_mask;
1655 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1656 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1657 if (!cpumask_empty(&cpu_mask)) {
1658 xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1659 if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1660 cpumask_copy(mm_cpumask(mm),
1661 cpumask_of(smp_processor_id()));
1662 }
1663 local_ops->tlb_mm(mm);
1664 }
1665}
1666
1667static void smp_flush_cache_range(struct vm_area_struct *vma,
1668 unsigned long start,
1669 unsigned long end)
1670{
1671 struct mm_struct *mm = vma->vm_mm;
1672
1673 if (mm->context != NO_CONTEXT) {
1674 cpumask_t cpu_mask;
1675 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1676 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1677 if (!cpumask_empty(&cpu_mask))
1678 xc3((smpfunc_t) local_ops->cache_range,
1679 (unsigned long) vma, start, end);
1680 local_ops->cache_range(vma, start, end);
1681 }
1682}
1683
1684static void smp_flush_tlb_range(struct vm_area_struct *vma,
1685 unsigned long start,
1686 unsigned long end)
1687{
1688 struct mm_struct *mm = vma->vm_mm;
1689
1690 if (mm->context != NO_CONTEXT) {
1691 cpumask_t cpu_mask;
1692 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1693 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1694 if (!cpumask_empty(&cpu_mask))
1695 xc3((smpfunc_t) local_ops->tlb_range,
1696 (unsigned long) vma, start, end);
1697 local_ops->tlb_range(vma, start, end);
1698 }
1699}
1700
1701static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1702{
1703 struct mm_struct *mm = vma->vm_mm;
1704
1705 if (mm->context != NO_CONTEXT) {
1706 cpumask_t cpu_mask;
1707 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1708 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1709 if (!cpumask_empty(&cpu_mask))
1710 xc2((smpfunc_t) local_ops->cache_page,
1711 (unsigned long) vma, page);
1712 local_ops->cache_page(vma, page);
1713 }
1714}
1715
1716static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1717{
1718 struct mm_struct *mm = vma->vm_mm;
1719
1720 if (mm->context != NO_CONTEXT) {
1721 cpumask_t cpu_mask;
1722 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1723 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1724 if (!cpumask_empty(&cpu_mask))
1725 xc2((smpfunc_t) local_ops->tlb_page,
1726 (unsigned long) vma, page);
1727 local_ops->tlb_page(vma, page);
1728 }
1729}
1730
1731static void smp_flush_page_to_ram(unsigned long page)
1732{
1733 /* Current theory is that those who call this are the one's
1734 * who have just dirtied their cache with the pages contents
1735 * in kernel space, therefore we only run this on local cpu.
1736 *
1737 * XXX This experiment failed, research further... -DaveM
1738 */
1739#if 1
1740 xc1((smpfunc_t) local_ops->page_to_ram, page);
1741#endif
1742 local_ops->page_to_ram(page);
1743}
1744
1745static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1746{
1747 cpumask_t cpu_mask;
1748 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1749 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1750 if (!cpumask_empty(&cpu_mask))
1751 xc2((smpfunc_t) local_ops->sig_insns,
1752 (unsigned long) mm, insn_addr);
1753 local_ops->sig_insns(mm, insn_addr);
1754}
1755
1756static struct sparc32_cachetlb_ops smp_cachetlb_ops = {
1757 .cache_all = smp_flush_cache_all,
1758 .cache_mm = smp_flush_cache_mm,
1759 .cache_page = smp_flush_cache_page,
1760 .cache_range = smp_flush_cache_range,
1761 .tlb_all = smp_flush_tlb_all,
1762 .tlb_mm = smp_flush_tlb_mm,
1763 .tlb_page = smp_flush_tlb_page,
1764 .tlb_range = smp_flush_tlb_range,
1765 .page_to_ram = smp_flush_page_to_ram,
1766 .sig_insns = smp_flush_sig_insns,
1767 .page_for_dma = smp_flush_page_for_dma,
1768};
1769#endif
1770
1771/* Load up routines and constants for sun4m and sun4d mmu */
1772void __init load_mmu(void)
1773{
1774 extern void ld_mmu_iommu(void);
1775 extern void ld_mmu_iounit(void);
1776
1777 /* Functions */
1778 get_srmmu_type();
1779
1780#ifdef CONFIG_SMP
1781 /* El switcheroo... */
1782 local_ops = sparc32_cachetlb_ops;
1783
1784 if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1785 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1786 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1787 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1788 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1789 }
1790
1791 if (poke_srmmu == poke_viking) {
1792 /* Avoid unnecessary cross calls. */
1793 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1794 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1795 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1796 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1797
1798 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1799 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1800 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1801 }
1802
1803 /* It really is const after this point. */
1804 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1805 &smp_cachetlb_ops;
1806#endif
1807
1808 if (sparc_cpu_model == sun4d)
1809 ld_mmu_iounit();
1810 else
1811 ld_mmu_iommu();
1812#ifdef CONFIG_SMP
1813 if (sparc_cpu_model == sun4d)
1814 sun4d_init_smp();
1815 else if (sparc_cpu_model == sparc_leon)
1816 leon_init_smp();
1817 else
1818 sun4m_init_smp();
1819#endif
1820}