Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *    Time of day based timer functions.
  4 *
  5 *  S390 version
  6 *    Copyright IBM Corp. 1999, 2008
  7 *    Author(s): Hartmut Penner (hp@de.ibm.com),
  8 *               Martin Schwidefsky (schwidefsky@de.ibm.com),
  9 *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
 10 *
 11 *  Derived from "arch/i386/kernel/time.c"
 12 *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
 13 */
 14
 15#define KMSG_COMPONENT "time"
 16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
 17
 18#include <linux/kernel_stat.h>
 19#include <linux/errno.h>
 20#include <linux/export.h>
 21#include <linux/sched.h>
 22#include <linux/sched/clock.h>
 23#include <linux/kernel.h>
 24#include <linux/param.h>
 25#include <linux/string.h>
 26#include <linux/mm.h>
 27#include <linux/interrupt.h>
 28#include <linux/cpu.h>
 29#include <linux/stop_machine.h>
 30#include <linux/time.h>
 31#include <linux/device.h>
 32#include <linux/delay.h>
 33#include <linux/init.h>
 34#include <linux/smp.h>
 35#include <linux/types.h>
 36#include <linux/profile.h>
 37#include <linux/timex.h>
 38#include <linux/notifier.h>
 39#include <linux/timekeeper_internal.h>
 40#include <linux/clockchips.h>
 41#include <linux/gfp.h>
 42#include <linux/kprobes.h>
 43#include <linux/uaccess.h>
 44#include <asm/facility.h>
 45#include <asm/delay.h>
 46#include <asm/div64.h>
 47#include <asm/vdso.h>
 48#include <asm/irq.h>
 49#include <asm/irq_regs.h>
 50#include <asm/vtimer.h>
 51#include <asm/stp.h>
 52#include <asm/cio.h>
 53#include "entry.h"
 54
 55unsigned char tod_clock_base[16] __aligned(8) = {
 56	/* Force to data section. */
 57	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 58	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
 59};
 60EXPORT_SYMBOL_GPL(tod_clock_base);
 61
 62u64 clock_comparator_max = -1ULL;
 63EXPORT_SYMBOL_GPL(clock_comparator_max);
 64
 65static DEFINE_PER_CPU(struct clock_event_device, comparators);
 66
 67ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
 68EXPORT_SYMBOL(s390_epoch_delta_notifier);
 69
 70unsigned char ptff_function_mask[16];
 71
 72static unsigned long long lpar_offset;
 73static unsigned long long initial_leap_seconds;
 74static unsigned long long tod_steering_end;
 75static long long tod_steering_delta;
 76
 77/*
 78 * Get time offsets with PTFF
 79 */
 80void __init time_early_init(void)
 81{
 82	struct ptff_qto qto;
 83	struct ptff_qui qui;
 84
 85	/* Initialize TOD steering parameters */
 86	tod_steering_end = *(unsigned long long *) &tod_clock_base[1];
 87	vdso_data->ts_end = tod_steering_end;
 88
 89	if (!test_facility(28))
 90		return;
 91
 92	ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
 93
 94	/* get LPAR offset */
 95	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
 96		lpar_offset = qto.tod_epoch_difference;
 97
 98	/* get initial leap seconds */
 99	if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
100		initial_leap_seconds = (unsigned long long)
101			((long) qui.old_leap * 4096000000L);
102}
103
104/*
105 * Scheduler clock - returns current time in nanosec units.
106 */
107unsigned long long notrace sched_clock(void)
108{
109	return tod_to_ns(get_tod_clock_monotonic());
110}
111NOKPROBE_SYMBOL(sched_clock);
112
113/*
114 * Monotonic_clock - returns # of nanoseconds passed since time_init()
115 */
116unsigned long long monotonic_clock(void)
117{
118	return sched_clock();
119}
120EXPORT_SYMBOL(monotonic_clock);
121
122static void ext_to_timespec64(unsigned char *clk, struct timespec64 *xt)
123{
124	unsigned long long high, low, rem, sec, nsec;
125
126	/* Split extendnd TOD clock to micro-seconds and sub-micro-seconds */
127	high = (*(unsigned long long *) clk) >> 4;
128	low = (*(unsigned long long *)&clk[7]) << 4;
129	/* Calculate seconds and nano-seconds */
130	sec = high;
131	rem = do_div(sec, 1000000);
132	nsec = (((low >> 32) + (rem << 32)) * 1000) >> 32;
133
 
 
134	xt->tv_sec = sec;
135	xt->tv_nsec = nsec;
 
136}
 
137
138void clock_comparator_work(void)
139{
140	struct clock_event_device *cd;
141
142	S390_lowcore.clock_comparator = clock_comparator_max;
143	cd = this_cpu_ptr(&comparators);
144	cd->event_handler(cd);
145}
146
 
 
 
 
 
 
 
 
 
 
 
 
147static int s390_next_event(unsigned long delta,
148			   struct clock_event_device *evt)
149{
150	S390_lowcore.clock_comparator = get_tod_clock() + delta;
151	set_clock_comparator(S390_lowcore.clock_comparator);
152	return 0;
153}
154
 
 
 
 
 
155/*
156 * Set up lowcore and control register of the current cpu to
157 * enable TOD clock and clock comparator interrupts.
158 */
159void init_cpu_timer(void)
160{
161	struct clock_event_device *cd;
162	int cpu;
163
164	S390_lowcore.clock_comparator = clock_comparator_max;
165	set_clock_comparator(S390_lowcore.clock_comparator);
166
167	cpu = smp_processor_id();
168	cd = &per_cpu(comparators, cpu);
169	cd->name		= "comparator";
170	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
171	cd->mult		= 16777;
172	cd->shift		= 12;
173	cd->min_delta_ns	= 1;
174	cd->min_delta_ticks	= 1;
175	cd->max_delta_ns	= LONG_MAX;
176	cd->max_delta_ticks	= ULONG_MAX;
177	cd->rating		= 400;
178	cd->cpumask		= cpumask_of(cpu);
179	cd->set_next_event	= s390_next_event;
 
180
181	clockevents_register_device(cd);
182
183	/* Enable clock comparator timer interrupt. */
184	__ctl_set_bit(0,11);
185
186	/* Always allow the timing alert external interrupt. */
187	__ctl_set_bit(0, 4);
188}
189
190static void clock_comparator_interrupt(struct ext_code ext_code,
191				       unsigned int param32,
192				       unsigned long param64)
193{
194	inc_irq_stat(IRQEXT_CLK);
195	if (S390_lowcore.clock_comparator == clock_comparator_max)
196		set_clock_comparator(S390_lowcore.clock_comparator);
197}
198
 
199static void stp_timing_alert(struct stp_irq_parm *);
200
201static void timing_alert_interrupt(struct ext_code ext_code,
202				   unsigned int param32, unsigned long param64)
203{
204	inc_irq_stat(IRQEXT_TLA);
 
 
205	if (param32 & 0x00038000)
206		stp_timing_alert((struct stp_irq_parm *) &param32);
207}
208
 
209static void stp_reset(void);
210
211void read_persistent_clock64(struct timespec64 *ts)
212{
213	unsigned char clk[STORE_CLOCK_EXT_SIZE];
214	__u64 delta;
215
216	delta = initial_leap_seconds + TOD_UNIX_EPOCH;
217	get_tod_clock_ext(clk);
218	*(__u64 *) &clk[1] -= delta;
219	if (*(__u64 *) &clk[1] > delta)
220		clk[0]--;
221	ext_to_timespec64(clk, ts);
222}
223
224void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
225						 struct timespec64 *boot_offset)
226{
227	unsigned char clk[STORE_CLOCK_EXT_SIZE];
228	struct timespec64 boot_time;
229	__u64 delta;
230
231	delta = initial_leap_seconds + TOD_UNIX_EPOCH;
232	memcpy(clk, tod_clock_base, STORE_CLOCK_EXT_SIZE);
233	*(__u64 *)&clk[1] -= delta;
234	if (*(__u64 *)&clk[1] > delta)
235		clk[0]--;
236	ext_to_timespec64(clk, &boot_time);
237
238	read_persistent_clock64(wall_time);
239	*boot_offset = timespec64_sub(*wall_time, boot_time);
240}
241
242static u64 read_tod_clock(struct clocksource *cs)
243{
244	unsigned long long now, adj;
245
246	preempt_disable(); /* protect from changes to steering parameters */
247	now = get_tod_clock();
248	adj = tod_steering_end - now;
249	if (unlikely((s64) adj >= 0))
250		/*
251		 * manually steer by 1 cycle every 2^16 cycles. This
252		 * corresponds to shifting the tod delta by 15. 1s is
253		 * therefore steered in ~9h. The adjust will decrease
254		 * over time, until it finally reaches 0.
255		 */
256		now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15);
257	preempt_enable();
258	return now;
259}
260
261static struct clocksource clocksource_tod = {
262	.name		= "tod",
263	.rating		= 400,
264	.read		= read_tod_clock,
265	.mask		= -1ULL,
266	.mult		= 1000,
267	.shift		= 12,
268	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
269};
270
271struct clocksource * __init clocksource_default_clock(void)
272{
273	return &clocksource_tod;
274}
275
276void update_vsyscall(struct timekeeper *tk)
277{
278	u64 nsecps;
279
280	if (tk->tkr_mono.clock != &clocksource_tod)
281		return;
282
283	/* Make userspace gettimeofday spin until we're done. */
284	++vdso_data->tb_update_count;
285	smp_wmb();
286	vdso_data->xtime_tod_stamp = tk->tkr_mono.cycle_last;
287	vdso_data->xtime_clock_sec = tk->xtime_sec;
288	vdso_data->xtime_clock_nsec = tk->tkr_mono.xtime_nsec;
289	vdso_data->wtom_clock_sec =
290		tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
291	vdso_data->wtom_clock_nsec = tk->tkr_mono.xtime_nsec +
292		+ ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
293	nsecps = (u64) NSEC_PER_SEC << tk->tkr_mono.shift;
294	while (vdso_data->wtom_clock_nsec >= nsecps) {
295		vdso_data->wtom_clock_nsec -= nsecps;
296		vdso_data->wtom_clock_sec++;
297	}
298
299	vdso_data->xtime_coarse_sec = tk->xtime_sec;
300	vdso_data->xtime_coarse_nsec =
301		(long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
302	vdso_data->wtom_coarse_sec =
303		vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec;
304	vdso_data->wtom_coarse_nsec =
305		vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec;
306	while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) {
307		vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC;
308		vdso_data->wtom_coarse_sec++;
309	}
310
311	vdso_data->tk_mult = tk->tkr_mono.mult;
312	vdso_data->tk_shift = tk->tkr_mono.shift;
313	smp_wmb();
314	++vdso_data->tb_update_count;
315}
316
317extern struct timezone sys_tz;
318
319void update_vsyscall_tz(void)
320{
 
 
 
321	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
322	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
 
 
323}
324
325/*
326 * Initialize the TOD clock and the CPU timer of
327 * the boot cpu.
328 */
329void __init time_init(void)
330{
331	/* Reset time synchronization interfaces. */
 
332	stp_reset();
333
334	/* request the clock comparator external interrupt */
335	if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
336		panic("Couldn't request external interrupt 0x1004");
337
338	/* request the timing alert external interrupt */
339	if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
340		panic("Couldn't request external interrupt 0x1406");
341
342	if (__clocksource_register(&clocksource_tod) != 0)
343		panic("Could not register TOD clock source");
344
345	/* Enable TOD clock interrupts on the boot cpu. */
346	init_cpu_timer();
347
348	/* Enable cpu timer interrupts on the boot cpu. */
349	vtime_init();
350}
351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
352static DEFINE_PER_CPU(atomic_t, clock_sync_word);
353static DEFINE_MUTEX(clock_sync_mutex);
354static unsigned long clock_sync_flags;
355
356#define CLOCK_SYNC_HAS_STP	0
357#define CLOCK_SYNC_STP		1
 
 
358
359/*
360 * The get_clock function for the physical clock. It will get the current
361 * TOD clock, subtract the LPAR offset and write the result to *clock.
362 * The function returns 0 if the clock is in sync with the external time
363 * source. If the clock mode is local it will return -EOPNOTSUPP and
364 * -EAGAIN if the clock is not in sync with the external reference.
365 */
366int get_phys_clock(unsigned long *clock)
367{
368	atomic_t *sw_ptr;
369	unsigned int sw0, sw1;
370
371	sw_ptr = &get_cpu_var(clock_sync_word);
372	sw0 = atomic_read(sw_ptr);
373	*clock = get_tod_clock() - lpar_offset;
374	sw1 = atomic_read(sw_ptr);
375	put_cpu_var(clock_sync_word);
376	if (sw0 == sw1 && (sw0 & 0x80000000U))
377		/* Success: time is in sync. */
378		return 0;
379	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
 
380		return -EOPNOTSUPP;
381	if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
 
382		return -EACCES;
383	return -EAGAIN;
384}
385EXPORT_SYMBOL(get_phys_clock);
386
387/*
388 * Make get_phys_clock() return -EAGAIN.
389 */
390static void disable_sync_clock(void *dummy)
391{
392	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
393	/*
394	 * Clear the in-sync bit 2^31. All get_phys_clock calls will
395	 * fail until the sync bit is turned back on. In addition
396	 * increase the "sequence" counter to avoid the race of an
397	 * stp event and the complete recovery against get_phys_clock.
398	 */
399	atomic_andnot(0x80000000, sw_ptr);
400	atomic_inc(sw_ptr);
401}
402
403/*
404 * Make get_phys_clock() return 0 again.
405 * Needs to be called from a context disabled for preemption.
406 */
407static void enable_sync_clock(void)
408{
409	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
410	atomic_or(0x80000000, sw_ptr);
411}
412
413/*
414 * Function to check if the clock is in sync.
415 */
416static inline int check_sync_clock(void)
417{
418	atomic_t *sw_ptr;
419	int rc;
420
421	sw_ptr = &get_cpu_var(clock_sync_word);
422	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
423	put_cpu_var(clock_sync_word);
424	return rc;
425}
426
 
 
 
 
 
 
 
 
 
 
427/*
428 * Apply clock delta to the global data structures.
429 * This is called once on the CPU that performed the clock sync.
430 */
431static void clock_sync_global(unsigned long long delta)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
432{
433	unsigned long now, adj;
434	struct ptff_qto qto;
435
436	/* Fixup the monotonic sched clock. */
437	*(unsigned long long *) &tod_clock_base[1] += delta;
438	if (*(unsigned long long *) &tod_clock_base[1] < delta)
439		/* Epoch overflow */
440		tod_clock_base[0]++;
441	/* Adjust TOD steering parameters. */
442	vdso_data->tb_update_count++;
443	now = get_tod_clock();
444	adj = tod_steering_end - now;
445	if (unlikely((s64) adj >= 0))
446		/* Calculate how much of the old adjustment is left. */
447		tod_steering_delta = (tod_steering_delta < 0) ?
448			-(adj >> 15) : (adj >> 15);
449	tod_steering_delta += delta;
450	if ((abs(tod_steering_delta) >> 48) != 0)
451		panic("TOD clock sync offset %lli is too large to drift\n",
452		      tod_steering_delta);
453	tod_steering_end = now + (abs(tod_steering_delta) << 15);
454	vdso_data->ts_dir = (tod_steering_delta < 0) ? 0 : 1;
455	vdso_data->ts_end = tod_steering_end;
456	vdso_data->tb_update_count++;
457	/* Update LPAR offset. */
458	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
459		lpar_offset = qto.tod_epoch_difference;
460	/* Call the TOD clock change notifier. */
461	atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
462}
463
 
 
464/*
465 * Apply clock delta to the per-CPU data structures of this CPU.
466 * This is called for each online CPU after the call to clock_sync_global.
467 */
468static void clock_sync_local(unsigned long long delta)
469{
470	/* Add the delta to the clock comparator. */
471	if (S390_lowcore.clock_comparator != clock_comparator_max) {
472		S390_lowcore.clock_comparator += delta;
473		set_clock_comparator(S390_lowcore.clock_comparator);
 
 
 
 
 
 
 
 
 
 
 
 
474	}
475	/* Adjust the last_update_clock time-stamp. */
476	S390_lowcore.last_update_clock += delta;
477}
478
479/* Single threaded workqueue used for stp sync events */
480static struct workqueue_struct *time_sync_wq;
481
482static void __init time_init_wq(void)
 
 
 
483{
484	if (time_sync_wq)
485		return;
486	time_sync_wq = create_singlethread_workqueue("timesync");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487}
488
489struct clock_sync_data {
490	atomic_t cpus;
491	int in_sync;
492	unsigned long long clock_delta;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
493};
494
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
495/*
496 * Server Time Protocol (STP) code.
497 */
498static bool stp_online;
499static struct stp_sstpi stp_info;
500static void *stp_page;
501
502static void stp_work_fn(struct work_struct *work);
503static DEFINE_MUTEX(stp_work_mutex);
504static DECLARE_WORK(stp_work, stp_work_fn);
505static struct timer_list stp_timer;
506
507static int __init early_parse_stp(char *p)
508{
509	return kstrtobool(p, &stp_online);
 
 
 
 
510}
511early_param("stp", early_parse_stp);
512
513/*
514 * Reset STP attachment.
515 */
516static void __init stp_reset(void)
517{
518	int rc;
519
520	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
521	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
522	if (rc == 0)
523		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
524	else if (stp_online) {
525		pr_warn("The real or virtual hardware system does not provide an STP interface\n");
 
526		free_page((unsigned long) stp_page);
527		stp_page = NULL;
528		stp_online = false;
529	}
530}
531
532static void stp_timeout(struct timer_list *unused)
533{
534	queue_work(time_sync_wq, &stp_work);
535}
536
537static int __init stp_init(void)
538{
539	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
540		return 0;
541	timer_setup(&stp_timer, stp_timeout, 0);
542	time_init_wq();
543	if (!stp_online)
544		return 0;
545	queue_work(time_sync_wq, &stp_work);
546	return 0;
547}
548
549arch_initcall(stp_init);
550
551/*
552 * STP timing alert. There are three causes:
553 * 1) timing status change
554 * 2) link availability change
555 * 3) time control parameter change
556 * In all three cases we are only interested in the clock source state.
557 * If a STP clock source is now available use it.
558 */
559static void stp_timing_alert(struct stp_irq_parm *intparm)
560{
561	if (intparm->tsc || intparm->lac || intparm->tcpc)
562		queue_work(time_sync_wq, &stp_work);
563}
564
565/*
566 * STP sync check machine check. This is called when the timing state
567 * changes from the synchronized state to the unsynchronized state.
568 * After a STP sync check the clock is not in sync. The machine check
569 * is broadcasted to all cpus at the same time.
570 */
571int stp_sync_check(void)
572{
573	disable_sync_clock(NULL);
574	return 1;
575}
576
577/*
578 * STP island condition machine check. This is called when an attached
579 * server  attempts to communicate over an STP link and the servers
580 * have matching CTN ids and have a valid stratum-1 configuration
581 * but the configurations do not match.
582 */
583int stp_island_check(void)
584{
585	disable_sync_clock(NULL);
586	return 1;
587}
588
589void stp_queue_work(void)
590{
591	queue_work(time_sync_wq, &stp_work);
592}
593
 
594static int stp_sync_clock(void *data)
595{
596	struct clock_sync_data *sync = data;
597	unsigned long long clock_delta;
598	static int first;
 
 
599	int rc;
600
 
 
 
 
 
 
 
 
 
 
 
 
601	enable_sync_clock();
602	if (xchg(&first, 1) == 0) {
603		/* Wait until all other cpus entered the sync function. */
604		while (atomic_read(&sync->cpus) != 0)
605			cpu_relax();
606		rc = 0;
607		if (stp_info.todoff[0] || stp_info.todoff[1] ||
608		    stp_info.todoff[2] || stp_info.todoff[3] ||
609		    stp_info.tmd != 2) {
610			rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
611					&clock_delta);
612			if (rc == 0) {
613				sync->clock_delta = clock_delta;
614				clock_sync_global(clock_delta);
615				rc = chsc_sstpi(stp_page, &stp_info,
616						sizeof(struct stp_sstpi));
617				if (rc == 0 && stp_info.tmd != 2)
618					rc = -EAGAIN;
619			}
620		}
621		sync->in_sync = rc ? -EAGAIN : 1;
622		xchg(&first, 0);
623	} else {
624		/* Slave */
625		atomic_dec(&sync->cpus);
626		/* Wait for in_sync to be set. */
627		while (READ_ONCE(sync->in_sync) == 0)
628			__udelay(1);
629	}
630	if (sync->in_sync != 1)
631		/* Didn't work. Clear per-cpu in sync bit again. */
632		disable_sync_clock(NULL);
633	/* Apply clock delta to per-CPU fields of this CPU. */
634	clock_sync_local(sync->clock_delta);
635
 
636	return 0;
637}
638
639/*
640 * STP work. Check for the STP state and take over the clock
641 * synchronization if the STP clock source is usable.
642 */
643static void stp_work_fn(struct work_struct *work)
644{
645	struct clock_sync_data stp_sync;
646	int rc;
647
648	/* prevent multiple execution. */
649	mutex_lock(&stp_work_mutex);
650
651	if (!stp_online) {
652		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
653		del_timer_sync(&stp_timer);
654		goto out_unlock;
655	}
656
657	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0, NULL);
658	if (rc)
659		goto out_unlock;
660
661	rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
662	if (rc || stp_info.c == 0)
663		goto out_unlock;
664
665	/* Skip synchronization if the clock is already in sync. */
666	if (check_sync_clock())
667		goto out_unlock;
668
669	memset(&stp_sync, 0, sizeof(stp_sync));
670	cpus_read_lock();
671	atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
672	stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask);
673	cpus_read_unlock();
674
675	if (!check_sync_clock())
676		/*
677		 * There is a usable clock but the synchonization failed.
678		 * Retry after a second.
679		 */
680		mod_timer(&stp_timer, jiffies + HZ);
681
682out_unlock:
683	mutex_unlock(&stp_work_mutex);
684}
685
686/*
687 * STP subsys sysfs interface functions
688 */
689static struct bus_type stp_subsys = {
690	.name		= "stp",
691	.dev_name	= "stp",
692};
693
694static ssize_t stp_ctn_id_show(struct device *dev,
695				struct device_attribute *attr,
696				char *buf)
697{
698	if (!stp_online)
699		return -ENODATA;
700	return sprintf(buf, "%016llx\n",
701		       *(unsigned long long *) stp_info.ctnid);
702}
703
704static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
705
706static ssize_t stp_ctn_type_show(struct device *dev,
707				struct device_attribute *attr,
708				char *buf)
709{
710	if (!stp_online)
711		return -ENODATA;
712	return sprintf(buf, "%i\n", stp_info.ctn);
713}
714
715static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
716
717static ssize_t stp_dst_offset_show(struct device *dev,
718				   struct device_attribute *attr,
719				   char *buf)
720{
721	if (!stp_online || !(stp_info.vbits & 0x2000))
722		return -ENODATA;
723	return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
724}
725
726static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
727
728static ssize_t stp_leap_seconds_show(struct device *dev,
729					struct device_attribute *attr,
730					char *buf)
731{
732	if (!stp_online || !(stp_info.vbits & 0x8000))
733		return -ENODATA;
734	return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
735}
736
737static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
738
739static ssize_t stp_stratum_show(struct device *dev,
740				struct device_attribute *attr,
741				char *buf)
742{
743	if (!stp_online)
744		return -ENODATA;
745	return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
746}
747
748static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
749
750static ssize_t stp_time_offset_show(struct device *dev,
751				struct device_attribute *attr,
752				char *buf)
753{
754	if (!stp_online || !(stp_info.vbits & 0x0800))
755		return -ENODATA;
756	return sprintf(buf, "%i\n", (int) stp_info.tto);
757}
758
759static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
760
761static ssize_t stp_time_zone_offset_show(struct device *dev,
762				struct device_attribute *attr,
763				char *buf)
764{
765	if (!stp_online || !(stp_info.vbits & 0x4000))
766		return -ENODATA;
767	return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
768}
769
770static DEVICE_ATTR(time_zone_offset, 0400,
771			 stp_time_zone_offset_show, NULL);
772
773static ssize_t stp_timing_mode_show(struct device *dev,
774				struct device_attribute *attr,
775				char *buf)
776{
777	if (!stp_online)
778		return -ENODATA;
779	return sprintf(buf, "%i\n", stp_info.tmd);
780}
781
782static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
783
784static ssize_t stp_timing_state_show(struct device *dev,
785				struct device_attribute *attr,
786				char *buf)
787{
788	if (!stp_online)
789		return -ENODATA;
790	return sprintf(buf, "%i\n", stp_info.tst);
791}
792
793static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
794
795static ssize_t stp_online_show(struct device *dev,
796				struct device_attribute *attr,
797				char *buf)
798{
799	return sprintf(buf, "%i\n", stp_online);
800}
801
802static ssize_t stp_online_store(struct device *dev,
803				struct device_attribute *attr,
804				const char *buf, size_t count)
805{
806	unsigned int value;
807
808	value = simple_strtoul(buf, NULL, 0);
809	if (value != 0 && value != 1)
810		return -EINVAL;
811	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
812		return -EOPNOTSUPP;
813	mutex_lock(&clock_sync_mutex);
814	stp_online = value;
815	if (stp_online)
816		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
817	else
818		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
819	queue_work(time_sync_wq, &stp_work);
820	mutex_unlock(&clock_sync_mutex);
821	return count;
822}
823
824/*
825 * Can't use DEVICE_ATTR because the attribute should be named
826 * stp/online but dev_attr_online already exists in this file ..
827 */
828static struct device_attribute dev_attr_stp_online = {
829	.attr = { .name = "online", .mode = 0600 },
830	.show	= stp_online_show,
831	.store	= stp_online_store,
832};
833
834static struct device_attribute *stp_attributes[] = {
835	&dev_attr_ctn_id,
836	&dev_attr_ctn_type,
837	&dev_attr_dst_offset,
838	&dev_attr_leap_seconds,
839	&dev_attr_stp_online,
840	&dev_attr_stratum,
841	&dev_attr_time_offset,
842	&dev_attr_time_zone_offset,
843	&dev_attr_timing_mode,
844	&dev_attr_timing_state,
845	NULL
846};
847
848static int __init stp_init_sysfs(void)
849{
850	struct device_attribute **attr;
851	int rc;
852
853	rc = subsys_system_register(&stp_subsys, NULL);
854	if (rc)
855		goto out;
856	for (attr = stp_attributes; *attr; attr++) {
857		rc = device_create_file(stp_subsys.dev_root, *attr);
858		if (rc)
859			goto out_unreg;
860	}
861	return 0;
862out_unreg:
863	for (; attr >= stp_attributes; attr--)
864		device_remove_file(stp_subsys.dev_root, *attr);
865	bus_unregister(&stp_subsys);
866out:
867	return rc;
868}
869
870device_initcall(stp_init_sysfs);
v3.15
 
   1/*
   2 *    Time of day based timer functions.
   3 *
   4 *  S390 version
   5 *    Copyright IBM Corp. 1999, 2008
   6 *    Author(s): Hartmut Penner (hp@de.ibm.com),
   7 *               Martin Schwidefsky (schwidefsky@de.ibm.com),
   8 *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
   9 *
  10 *  Derived from "arch/i386/kernel/time.c"
  11 *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
  12 */
  13
  14#define KMSG_COMPONENT "time"
  15#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  16
  17#include <linux/kernel_stat.h>
  18#include <linux/errno.h>
  19#include <linux/module.h>
  20#include <linux/sched.h>
 
  21#include <linux/kernel.h>
  22#include <linux/param.h>
  23#include <linux/string.h>
  24#include <linux/mm.h>
  25#include <linux/interrupt.h>
  26#include <linux/cpu.h>
  27#include <linux/stop_machine.h>
  28#include <linux/time.h>
  29#include <linux/device.h>
  30#include <linux/delay.h>
  31#include <linux/init.h>
  32#include <linux/smp.h>
  33#include <linux/types.h>
  34#include <linux/profile.h>
  35#include <linux/timex.h>
  36#include <linux/notifier.h>
  37#include <linux/timekeeper_internal.h>
  38#include <linux/clockchips.h>
  39#include <linux/gfp.h>
  40#include <linux/kprobes.h>
  41#include <asm/uaccess.h>
 
  42#include <asm/delay.h>
  43#include <asm/div64.h>
  44#include <asm/vdso.h>
  45#include <asm/irq.h>
  46#include <asm/irq_regs.h>
  47#include <asm/vtimer.h>
  48#include <asm/etr.h>
  49#include <asm/cio.h>
  50#include "entry.h"
  51
  52/* change this if you have some constant time drift */
  53#define USECS_PER_JIFFY     ((unsigned long) 1000000/HZ)
  54#define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
 
 
 
  55
  56u64 sched_clock_base_cc = -1;	/* Force to data section. */
  57EXPORT_SYMBOL_GPL(sched_clock_base_cc);
  58
  59static DEFINE_PER_CPU(struct clock_event_device, comparators);
  60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  61/*
  62 * Scheduler clock - returns current time in nanosec units.
  63 */
  64unsigned long long notrace __kprobes sched_clock(void)
  65{
  66	return tod_to_ns(get_tod_clock_monotonic());
  67}
 
  68
  69/*
  70 * Monotonic_clock - returns # of nanoseconds passed since time_init()
  71 */
  72unsigned long long monotonic_clock(void)
  73{
  74	return sched_clock();
  75}
  76EXPORT_SYMBOL(monotonic_clock);
  77
  78void tod_to_timeval(__u64 todval, struct timespec *xt)
  79{
  80	unsigned long long sec;
 
 
 
 
 
 
 
 
  81
  82	sec = todval >> 12;
  83	do_div(sec, 1000000);
  84	xt->tv_sec = sec;
  85	todval -= (sec * 1000000) << 12;
  86	xt->tv_nsec = ((todval * 1000) >> 12);
  87}
  88EXPORT_SYMBOL(tod_to_timeval);
  89
  90void clock_comparator_work(void)
  91{
  92	struct clock_event_device *cd;
  93
  94	S390_lowcore.clock_comparator = -1ULL;
  95	cd = &__get_cpu_var(comparators);
  96	cd->event_handler(cd);
  97}
  98
  99/*
 100 * Fixup the clock comparator.
 101 */
 102static void fixup_clock_comparator(unsigned long long delta)
 103{
 104	/* If nobody is waiting there's nothing to fix. */
 105	if (S390_lowcore.clock_comparator == -1ULL)
 106		return;
 107	S390_lowcore.clock_comparator += delta;
 108	set_clock_comparator(S390_lowcore.clock_comparator);
 109}
 110
 111static int s390_next_event(unsigned long delta,
 112			   struct clock_event_device *evt)
 113{
 114	S390_lowcore.clock_comparator = get_tod_clock() + delta;
 115	set_clock_comparator(S390_lowcore.clock_comparator);
 116	return 0;
 117}
 118
 119static void s390_set_mode(enum clock_event_mode mode,
 120			  struct clock_event_device *evt)
 121{
 122}
 123
 124/*
 125 * Set up lowcore and control register of the current cpu to
 126 * enable TOD clock and clock comparator interrupts.
 127 */
 128void init_cpu_timer(void)
 129{
 130	struct clock_event_device *cd;
 131	int cpu;
 132
 133	S390_lowcore.clock_comparator = -1ULL;
 134	set_clock_comparator(S390_lowcore.clock_comparator);
 135
 136	cpu = smp_processor_id();
 137	cd = &per_cpu(comparators, cpu);
 138	cd->name		= "comparator";
 139	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
 140	cd->mult		= 16777;
 141	cd->shift		= 12;
 142	cd->min_delta_ns	= 1;
 
 143	cd->max_delta_ns	= LONG_MAX;
 
 144	cd->rating		= 400;
 145	cd->cpumask		= cpumask_of(cpu);
 146	cd->set_next_event	= s390_next_event;
 147	cd->set_mode		= s390_set_mode;
 148
 149	clockevents_register_device(cd);
 150
 151	/* Enable clock comparator timer interrupt. */
 152	__ctl_set_bit(0,11);
 153
 154	/* Always allow the timing alert external interrupt. */
 155	__ctl_set_bit(0, 4);
 156}
 157
 158static void clock_comparator_interrupt(struct ext_code ext_code,
 159				       unsigned int param32,
 160				       unsigned long param64)
 161{
 162	inc_irq_stat(IRQEXT_CLK);
 163	if (S390_lowcore.clock_comparator == -1ULL)
 164		set_clock_comparator(S390_lowcore.clock_comparator);
 165}
 166
 167static void etr_timing_alert(struct etr_irq_parm *);
 168static void stp_timing_alert(struct stp_irq_parm *);
 169
 170static void timing_alert_interrupt(struct ext_code ext_code,
 171				   unsigned int param32, unsigned long param64)
 172{
 173	inc_irq_stat(IRQEXT_TLA);
 174	if (param32 & 0x00c40000)
 175		etr_timing_alert((struct etr_irq_parm *) &param32);
 176	if (param32 & 0x00038000)
 177		stp_timing_alert((struct stp_irq_parm *) &param32);
 178}
 179
 180static void etr_reset(void);
 181static void stp_reset(void);
 182
 183void read_persistent_clock(struct timespec *ts)
 184{
 185	tod_to_timeval(get_tod_clock() - TOD_UNIX_EPOCH, ts);
 
 
 
 
 
 
 
 
 186}
 187
 188void read_boot_clock(struct timespec *ts)
 
 189{
 190	tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, ts);
 
 
 
 
 
 
 
 
 
 
 
 
 191}
 192
 193static cycle_t read_tod_clock(struct clocksource *cs)
 194{
 195	return get_tod_clock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 196}
 197
 198static struct clocksource clocksource_tod = {
 199	.name		= "tod",
 200	.rating		= 400,
 201	.read		= read_tod_clock,
 202	.mask		= -1ULL,
 203	.mult		= 1000,
 204	.shift		= 12,
 205	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
 206};
 207
 208struct clocksource * __init clocksource_default_clock(void)
 209{
 210	return &clocksource_tod;
 211}
 212
 213void update_vsyscall(struct timekeeper *tk)
 214{
 215	u64 nsecps;
 216
 217	if (tk->clock != &clocksource_tod)
 218		return;
 219
 220	/* Make userspace gettimeofday spin until we're done. */
 221	++vdso_data->tb_update_count;
 222	smp_wmb();
 223	vdso_data->xtime_tod_stamp = tk->clock->cycle_last;
 224	vdso_data->xtime_clock_sec = tk->xtime_sec;
 225	vdso_data->xtime_clock_nsec = tk->xtime_nsec;
 226	vdso_data->wtom_clock_sec =
 227		tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
 228	vdso_data->wtom_clock_nsec = tk->xtime_nsec +
 229		+ (tk->wall_to_monotonic.tv_nsec << tk->shift);
 230	nsecps = (u64) NSEC_PER_SEC << tk->shift;
 231	while (vdso_data->wtom_clock_nsec >= nsecps) {
 232		vdso_data->wtom_clock_nsec -= nsecps;
 233		vdso_data->wtom_clock_sec++;
 234	}
 235	vdso_data->tk_mult = tk->mult;
 236	vdso_data->tk_shift = tk->shift;
 
 
 
 
 
 
 
 
 
 
 
 
 
 237	smp_wmb();
 238	++vdso_data->tb_update_count;
 239}
 240
 241extern struct timezone sys_tz;
 242
 243void update_vsyscall_tz(void)
 244{
 245	/* Make userspace gettimeofday spin until we're done. */
 246	++vdso_data->tb_update_count;
 247	smp_wmb();
 248	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
 249	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
 250	smp_wmb();
 251	++vdso_data->tb_update_count;
 252}
 253
 254/*
 255 * Initialize the TOD clock and the CPU timer of
 256 * the boot cpu.
 257 */
 258void __init time_init(void)
 259{
 260	/* Reset time synchronization interfaces. */
 261	etr_reset();
 262	stp_reset();
 263
 264	/* request the clock comparator external interrupt */
 265	if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
 266		panic("Couldn't request external interrupt 0x1004");
 267
 268	/* request the timing alert external interrupt */
 269	if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
 270		panic("Couldn't request external interrupt 0x1406");
 271
 272	if (clocksource_register(&clocksource_tod) != 0)
 273		panic("Could not register TOD clock source");
 274
 275	/* Enable TOD clock interrupts on the boot cpu. */
 276	init_cpu_timer();
 277
 278	/* Enable cpu timer interrupts on the boot cpu. */
 279	vtime_init();
 280}
 281
 282/*
 283 * The time is "clock". old is what we think the time is.
 284 * Adjust the value by a multiple of jiffies and add the delta to ntp.
 285 * "delay" is an approximation how long the synchronization took. If
 286 * the time correction is positive, then "delay" is subtracted from
 287 * the time difference and only the remaining part is passed to ntp.
 288 */
 289static unsigned long long adjust_time(unsigned long long old,
 290				      unsigned long long clock,
 291				      unsigned long long delay)
 292{
 293	unsigned long long delta, ticks;
 294	struct timex adjust;
 295
 296	if (clock > old) {
 297		/* It is later than we thought. */
 298		delta = ticks = clock - old;
 299		delta = ticks = (delta < delay) ? 0 : delta - delay;
 300		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
 301		adjust.offset = ticks * (1000000 / HZ);
 302	} else {
 303		/* It is earlier than we thought. */
 304		delta = ticks = old - clock;
 305		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
 306		delta = -delta;
 307		adjust.offset = -ticks * (1000000 / HZ);
 308	}
 309	sched_clock_base_cc += delta;
 310	if (adjust.offset != 0) {
 311		pr_notice("The ETR interface has adjusted the clock "
 312			  "by %li microseconds\n", adjust.offset);
 313		adjust.modes = ADJ_OFFSET_SINGLESHOT;
 314		do_adjtimex(&adjust);
 315	}
 316	return delta;
 317}
 318
 319static DEFINE_PER_CPU(atomic_t, clock_sync_word);
 320static DEFINE_MUTEX(clock_sync_mutex);
 321static unsigned long clock_sync_flags;
 322
 323#define CLOCK_SYNC_HAS_ETR	0
 324#define CLOCK_SYNC_HAS_STP	1
 325#define CLOCK_SYNC_ETR		2
 326#define CLOCK_SYNC_STP		3
 327
 328/*
 329 * The synchronous get_clock function. It will write the current clock
 330 * value to the clock pointer and return 0 if the clock is in sync with
 331 * the external time source. If the clock mode is local it will return
 332 * -EOPNOTSUPP and -EAGAIN if the clock is not in sync with the external
 333 * reference.
 334 */
 335int get_sync_clock(unsigned long long *clock)
 336{
 337	atomic_t *sw_ptr;
 338	unsigned int sw0, sw1;
 339
 340	sw_ptr = &get_cpu_var(clock_sync_word);
 341	sw0 = atomic_read(sw_ptr);
 342	*clock = get_tod_clock();
 343	sw1 = atomic_read(sw_ptr);
 344	put_cpu_var(clock_sync_word);
 345	if (sw0 == sw1 && (sw0 & 0x80000000U))
 346		/* Success: time is in sync. */
 347		return 0;
 348	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
 349	    !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
 350		return -EOPNOTSUPP;
 351	if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
 352	    !test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
 353		return -EACCES;
 354	return -EAGAIN;
 355}
 356EXPORT_SYMBOL(get_sync_clock);
 357
 358/*
 359 * Make get_sync_clock return -EAGAIN.
 360 */
 361static void disable_sync_clock(void *dummy)
 362{
 363	atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
 364	/*
 365	 * Clear the in-sync bit 2^31. All get_sync_clock calls will
 366	 * fail until the sync bit is turned back on. In addition
 367	 * increase the "sequence" counter to avoid the race of an
 368	 * etr event and the complete recovery against get_sync_clock.
 369	 */
 370	atomic_clear_mask(0x80000000, sw_ptr);
 371	atomic_inc(sw_ptr);
 372}
 373
 374/*
 375 * Make get_sync_clock return 0 again.
 376 * Needs to be called from a context disabled for preemption.
 377 */
 378static void enable_sync_clock(void)
 379{
 380	atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
 381	atomic_set_mask(0x80000000, sw_ptr);
 382}
 383
 384/*
 385 * Function to check if the clock is in sync.
 386 */
 387static inline int check_sync_clock(void)
 388{
 389	atomic_t *sw_ptr;
 390	int rc;
 391
 392	sw_ptr = &get_cpu_var(clock_sync_word);
 393	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
 394	put_cpu_var(clock_sync_word);
 395	return rc;
 396}
 397
 398/* Single threaded workqueue used for etr and stp sync events */
 399static struct workqueue_struct *time_sync_wq;
 400
 401static void __init time_init_wq(void)
 402{
 403	if (time_sync_wq)
 404		return;
 405	time_sync_wq = create_singlethread_workqueue("timesync");
 406}
 407
 408/*
 409 * External Time Reference (ETR) code.
 
 410 */
 411static int etr_port0_online;
 412static int etr_port1_online;
 413static int etr_steai_available;
 414
 415static int __init early_parse_etr(char *p)
 416{
 417	if (strncmp(p, "off", 3) == 0)
 418		etr_port0_online = etr_port1_online = 0;
 419	else if (strncmp(p, "port0", 5) == 0)
 420		etr_port0_online = 1;
 421	else if (strncmp(p, "port1", 5) == 0)
 422		etr_port1_online = 1;
 423	else if (strncmp(p, "on", 2) == 0)
 424		etr_port0_online = etr_port1_online = 1;
 425	return 0;
 426}
 427early_param("etr", early_parse_etr);
 428
 429enum etr_event {
 430	ETR_EVENT_PORT0_CHANGE,
 431	ETR_EVENT_PORT1_CHANGE,
 432	ETR_EVENT_PORT_ALERT,
 433	ETR_EVENT_SYNC_CHECK,
 434	ETR_EVENT_SWITCH_LOCAL,
 435	ETR_EVENT_UPDATE,
 436};
 437
 438/*
 439 * Valid bit combinations of the eacr register are (x = don't care):
 440 * e0 e1 dp p0 p1 ea es sl
 441 *  0  0  x  0	0  0  0  0  initial, disabled state
 442 *  0  0  x  0	1  1  0  0  port 1 online
 443 *  0  0  x  1	0  1  0  0  port 0 online
 444 *  0  0  x  1	1  1  0  0  both ports online
 445 *  0  1  x  0	1  1  0  0  port 1 online and usable, ETR or PPS mode
 446 *  0  1  x  0	1  1  0  1  port 1 online, usable and ETR mode
 447 *  0  1  x  0	1  1  1  0  port 1 online, usable, PPS mode, in-sync
 448 *  0  1  x  0	1  1  1  1  port 1 online, usable, ETR mode, in-sync
 449 *  0  1  x  1	1  1  0  0  both ports online, port 1 usable
 450 *  0  1  x  1	1  1  1  0  both ports online, port 1 usable, PPS mode, in-sync
 451 *  0  1  x  1	1  1  1  1  both ports online, port 1 usable, ETR mode, in-sync
 452 *  1  0  x  1	0  1  0  0  port 0 online and usable, ETR or PPS mode
 453 *  1  0  x  1	0  1  0  1  port 0 online, usable and ETR mode
 454 *  1  0  x  1	0  1  1  0  port 0 online, usable, PPS mode, in-sync
 455 *  1  0  x  1	0  1  1  1  port 0 online, usable, ETR mode, in-sync
 456 *  1  0  x  1	1  1  0  0  both ports online, port 0 usable
 457 *  1  0  x  1	1  1  1  0  both ports online, port 0 usable, PPS mode, in-sync
 458 *  1  0  x  1	1  1  1  1  both ports online, port 0 usable, ETR mode, in-sync
 459 *  1  1  x  1	1  1  1  0  both ports online & usable, ETR, in-sync
 460 *  1  1  x  1	1  1  1  1  both ports online & usable, ETR, in-sync
 461 */
 462static struct etr_eacr etr_eacr;
 463static u64 etr_tolec;			/* time of last eacr update */
 464static struct etr_aib etr_port0;
 465static int etr_port0_uptodate;
 466static struct etr_aib etr_port1;
 467static int etr_port1_uptodate;
 468static unsigned long etr_events;
 469static struct timer_list etr_timer;
 470
 471static void etr_timeout(unsigned long dummy);
 472static void etr_work_fn(struct work_struct *work);
 473static DEFINE_MUTEX(etr_work_mutex);
 474static DECLARE_WORK(etr_work, etr_work_fn);
 475
 476/*
 477 * Reset ETR attachment.
 478 */
 479static void etr_reset(void)
 480{
 481	etr_eacr =  (struct etr_eacr) {
 482		.e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
 483		.p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
 484		.es = 0, .sl = 0 };
 485	if (etr_setr(&etr_eacr) == 0) {
 486		etr_tolec = get_tod_clock();
 487		set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags);
 488		if (etr_port0_online && etr_port1_online)
 489			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
 490	} else if (etr_port0_online || etr_port1_online) {
 491		pr_warning("The real or virtual hardware system does "
 492			   "not provide an ETR interface\n");
 493		etr_port0_online = etr_port1_online = 0;
 494	}
 495}
 496
 497static int __init etr_init(void)
 498{
 499	struct etr_aib aib;
 
 500
 501	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
 502		return 0;
 503	time_init_wq();
 504	/* Check if this machine has the steai instruction. */
 505	if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
 506		etr_steai_available = 1;
 507	setup_timer(&etr_timer, etr_timeout, 0UL);
 508	if (etr_port0_online) {
 509		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
 510		queue_work(time_sync_wq, &etr_work);
 511	}
 512	if (etr_port1_online) {
 513		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
 514		queue_work(time_sync_wq, &etr_work);
 515	}
 516	return 0;
 
 
 
 
 
 
 
 
 
 
 517}
 518
 519arch_initcall(etr_init);
 520
 521/*
 522 * Two sorts of ETR machine checks. The architecture reads:
 523 * "When a machine-check niterruption occurs and if a switch-to-local or
 524 *  ETR-sync-check interrupt request is pending but disabled, this pending
 525 *  disabled interruption request is indicated and is cleared".
 526 * Which means that we can get etr_switch_to_local events from the machine
 527 * check handler although the interruption condition is disabled. Lovely..
 528 */
 529
 530/*
 531 * Switch to local machine check. This is called when the last usable
 532 * ETR port goes inactive. After switch to local the clock is not in sync.
 533 */
 534void etr_switch_to_local(void)
 535{
 536	if (!etr_eacr.sl)
 537		return;
 538	disable_sync_clock(NULL);
 539	if (!test_and_set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) {
 540		etr_eacr.es = etr_eacr.sl = 0;
 541		etr_setr(&etr_eacr);
 542		queue_work(time_sync_wq, &etr_work);
 543	}
 
 
 544}
 545
 546/*
 547 * ETR sync check machine check. This is called when the ETR OTE and the
 548 * local clock OTE are farther apart than the ETR sync check tolerance.
 549 * After a ETR sync check the clock is not in sync. The machine check
 550 * is broadcasted to all cpus at the same time.
 551 */
 552void etr_sync_check(void)
 553{
 554	if (!etr_eacr.es)
 555		return;
 556	disable_sync_clock(NULL);
 557	if (!test_and_set_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) {
 558		etr_eacr.es = 0;
 559		etr_setr(&etr_eacr);
 560		queue_work(time_sync_wq, &etr_work);
 561	}
 562}
 563
 564/*
 565 * ETR timing alert. There are two causes:
 566 * 1) port state change, check the usability of the port
 567 * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
 568 *    sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
 569 *    or ETR-data word 4 (edf4) has changed.
 570 */
 571static void etr_timing_alert(struct etr_irq_parm *intparm)
 572{
 573	if (intparm->pc0)
 574		/* ETR port 0 state change. */
 575		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
 576	if (intparm->pc1)
 577		/* ETR port 1 state change. */
 578		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
 579	if (intparm->eai)
 580		/*
 581		 * ETR port alert on either port 0, 1 or both.
 582		 * Both ports are not up-to-date now.
 583		 */
 584		set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
 585	queue_work(time_sync_wq, &etr_work);
 586}
 587
 588static void etr_timeout(unsigned long dummy)
 589{
 590	set_bit(ETR_EVENT_UPDATE, &etr_events);
 591	queue_work(time_sync_wq, &etr_work);
 592}
 593
 594/*
 595 * Check if the etr mode is pss.
 596 */
 597static inline int etr_mode_is_pps(struct etr_eacr eacr)
 598{
 599	return eacr.es && !eacr.sl;
 600}
 601
 602/*
 603 * Check if the etr mode is etr.
 604 */
 605static inline int etr_mode_is_etr(struct etr_eacr eacr)
 606{
 607	return eacr.es && eacr.sl;
 608}
 609
 610/*
 611 * Check if the port can be used for TOD synchronization.
 612 * For PPS mode the port has to receive OTEs. For ETR mode
 613 * the port has to receive OTEs, the ETR stepping bit has to
 614 * be zero and the validity bits for data frame 1, 2, and 3
 615 * have to be 1.
 616 */
 617static int etr_port_valid(struct etr_aib *aib, int port)
 618{
 619	unsigned int psc;
 620
 621	/* Check that this port is receiving OTEs. */
 622	if (aib->tsp == 0)
 623		return 0;
 624
 625	psc = port ? aib->esw.psc1 : aib->esw.psc0;
 626	if (psc == etr_lpsc_pps_mode)
 627		return 1;
 628	if (psc == etr_lpsc_operational_step)
 629		return !aib->esw.y && aib->slsw.v1 &&
 630			aib->slsw.v2 && aib->slsw.v3;
 631	return 0;
 632}
 633
 634/*
 635 * Check if two ports are on the same network.
 636 */
 637static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
 638{
 639	// FIXME: any other fields we have to compare?
 640	return aib1->edf1.net_id == aib2->edf1.net_id;
 641}
 642
 643/*
 644 * Wrapper for etr_stei that converts physical port states
 645 * to logical port states to be consistent with the output
 646 * of stetr (see etr_psc vs. etr_lpsc).
 647 */
 648static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
 649{
 650	BUG_ON(etr_steai(aib, func) != 0);
 651	/* Convert port state to logical port state. */
 652	if (aib->esw.psc0 == 1)
 653		aib->esw.psc0 = 2;
 654	else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
 655		aib->esw.psc0 = 1;
 656	if (aib->esw.psc1 == 1)
 657		aib->esw.psc1 = 2;
 658	else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
 659		aib->esw.psc1 = 1;
 660}
 661
 662/*
 663 * Check if the aib a2 is still connected to the same attachment as
 664 * aib a1, the etv values differ by one and a2 is valid.
 665 */
 666static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
 667{
 668	int state_a1, state_a2;
 669
 670	/* Paranoia check: e0/e1 should better be the same. */
 671	if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
 672	    a1->esw.eacr.e1 != a2->esw.eacr.e1)
 673		return 0;
 674
 675	/* Still connected to the same etr ? */
 676	state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
 677	state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
 678	if (state_a1 == etr_lpsc_operational_step) {
 679		if (state_a2 != etr_lpsc_operational_step ||
 680		    a1->edf1.net_id != a2->edf1.net_id ||
 681		    a1->edf1.etr_id != a2->edf1.etr_id ||
 682		    a1->edf1.etr_pn != a2->edf1.etr_pn)
 683			return 0;
 684	} else if (state_a2 != etr_lpsc_pps_mode)
 685		return 0;
 686
 687	/* The ETV value of a2 needs to be ETV of a1 + 1. */
 688	if (a1->edf2.etv + 1 != a2->edf2.etv)
 689		return 0;
 690
 691	if (!etr_port_valid(a2, p))
 692		return 0;
 693
 694	return 1;
 695}
 696
 697struct clock_sync_data {
 698	atomic_t cpus;
 699	int in_sync;
 700	unsigned long long fixup_cc;
 701	int etr_port;
 702	struct etr_aib *etr_aib;
 703};
 704
 705static void clock_sync_cpu(struct clock_sync_data *sync)
 706{
 707	atomic_dec(&sync->cpus);
 708	enable_sync_clock();
 709	/*
 710	 * This looks like a busy wait loop but it isn't. etr_sync_cpus
 711	 * is called on all other cpus while the TOD clocks is stopped.
 712	 * __udelay will stop the cpu on an enabled wait psw until the
 713	 * TOD is running again.
 714	 */
 715	while (sync->in_sync == 0) {
 716		__udelay(1);
 717		/*
 718		 * A different cpu changes *in_sync. Therefore use
 719		 * barrier() to force memory access.
 720		 */
 721		barrier();
 722	}
 723	if (sync->in_sync != 1)
 724		/* Didn't work. Clear per-cpu in sync bit again. */
 725		disable_sync_clock(NULL);
 726	/*
 727	 * This round of TOD syncing is done. Set the clock comparator
 728	 * to the next tick and let the processor continue.
 729	 */
 730	fixup_clock_comparator(sync->fixup_cc);
 731}
 732
 733/*
 734 * Sync the TOD clock using the port referred to by aibp. This port
 735 * has to be enabled and the other port has to be disabled. The
 736 * last eacr update has to be more than 1.6 seconds in the past.
 737 */
 738static int etr_sync_clock(void *data)
 739{
 740	static int first;
 741	unsigned long long clock, old_clock, delay, delta;
 742	struct clock_sync_data *etr_sync;
 743	struct etr_aib *sync_port, *aib;
 744	int port;
 745	int rc;
 746
 747	etr_sync = data;
 748
 749	if (xchg(&first, 1) == 1) {
 750		/* Slave */
 751		clock_sync_cpu(etr_sync);
 752		return 0;
 753	}
 754
 755	/* Wait until all other cpus entered the sync function. */
 756	while (atomic_read(&etr_sync->cpus) != 0)
 757		cpu_relax();
 758
 759	port = etr_sync->etr_port;
 760	aib = etr_sync->etr_aib;
 761	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
 762	enable_sync_clock();
 763
 764	/* Set clock to next OTE. */
 765	__ctl_set_bit(14, 21);
 766	__ctl_set_bit(0, 29);
 767	clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
 768	old_clock = get_tod_clock();
 769	if (set_tod_clock(clock) == 0) {
 770		__udelay(1);	/* Wait for the clock to start. */
 771		__ctl_clear_bit(0, 29);
 772		__ctl_clear_bit(14, 21);
 773		etr_stetr(aib);
 774		/* Adjust Linux timing variables. */
 775		delay = (unsigned long long)
 776			(aib->edf2.etv - sync_port->edf2.etv) << 32;
 777		delta = adjust_time(old_clock, clock, delay);
 778		etr_sync->fixup_cc = delta;
 779		fixup_clock_comparator(delta);
 780		/* Verify that the clock is properly set. */
 781		if (!etr_aib_follows(sync_port, aib, port)) {
 782			/* Didn't work. */
 783			disable_sync_clock(NULL);
 784			etr_sync->in_sync = -EAGAIN;
 785			rc = -EAGAIN;
 786		} else {
 787			etr_sync->in_sync = 1;
 788			rc = 0;
 789		}
 790	} else {
 791		/* Could not set the clock ?!? */
 792		__ctl_clear_bit(0, 29);
 793		__ctl_clear_bit(14, 21);
 794		disable_sync_clock(NULL);
 795		etr_sync->in_sync = -EAGAIN;
 796		rc = -EAGAIN;
 797	}
 798	xchg(&first, 0);
 799	return rc;
 800}
 801
 802static int etr_sync_clock_stop(struct etr_aib *aib, int port)
 803{
 804	struct clock_sync_data etr_sync;
 805	struct etr_aib *sync_port;
 806	int follows;
 807	int rc;
 808
 809	/* Check if the current aib is adjacent to the sync port aib. */
 810	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
 811	follows = etr_aib_follows(sync_port, aib, port);
 812	memcpy(sync_port, aib, sizeof(*aib));
 813	if (!follows)
 814		return -EAGAIN;
 815	memset(&etr_sync, 0, sizeof(etr_sync));
 816	etr_sync.etr_aib = aib;
 817	etr_sync.etr_port = port;
 818	get_online_cpus();
 819	atomic_set(&etr_sync.cpus, num_online_cpus() - 1);
 820	rc = stop_machine(etr_sync_clock, &etr_sync, cpu_online_mask);
 821	put_online_cpus();
 822	return rc;
 823}
 824
 825/*
 826 * Handle the immediate effects of the different events.
 827 * The port change event is used for online/offline changes.
 828 */
 829static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
 830{
 831	if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
 832		eacr.es = 0;
 833	if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
 834		eacr.es = eacr.sl = 0;
 835	if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
 836		etr_port0_uptodate = etr_port1_uptodate = 0;
 837
 838	if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
 839		if (eacr.e0)
 840			/*
 841			 * Port change of an enabled port. We have to
 842			 * assume that this can have caused an stepping
 843			 * port switch.
 844			 */
 845			etr_tolec = get_tod_clock();
 846		eacr.p0 = etr_port0_online;
 847		if (!eacr.p0)
 848			eacr.e0 = 0;
 849		etr_port0_uptodate = 0;
 850	}
 851	if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
 852		if (eacr.e1)
 853			/*
 854			 * Port change of an enabled port. We have to
 855			 * assume that this can have caused an stepping
 856			 * port switch.
 857			 */
 858			etr_tolec = get_tod_clock();
 859		eacr.p1 = etr_port1_online;
 860		if (!eacr.p1)
 861			eacr.e1 = 0;
 862		etr_port1_uptodate = 0;
 863	}
 864	clear_bit(ETR_EVENT_UPDATE, &etr_events);
 865	return eacr;
 866}
 867
 868/*
 869 * Set up a timer that expires after the etr_tolec + 1.6 seconds if
 870 * one of the ports needs an update.
 871 */
 872static void etr_set_tolec_timeout(unsigned long long now)
 873{
 874	unsigned long micros;
 875
 876	if ((!etr_eacr.p0 || etr_port0_uptodate) &&
 877	    (!etr_eacr.p1 || etr_port1_uptodate))
 878		return;
 879	micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
 880	micros = (micros > 1600000) ? 0 : 1600000 - micros;
 881	mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
 882}
 883
 884/*
 885 * Set up a time that expires after 1/2 second.
 886 */
 887static void etr_set_sync_timeout(void)
 888{
 889	mod_timer(&etr_timer, jiffies + HZ/2);
 890}
 891
 892/*
 893 * Update the aib information for one or both ports.
 894 */
 895static struct etr_eacr etr_handle_update(struct etr_aib *aib,
 896					 struct etr_eacr eacr)
 897{
 898	/* With both ports disabled the aib information is useless. */
 899	if (!eacr.e0 && !eacr.e1)
 900		return eacr;
 901
 902	/* Update port0 or port1 with aib stored in etr_work_fn. */
 903	if (aib->esw.q == 0) {
 904		/* Information for port 0 stored. */
 905		if (eacr.p0 && !etr_port0_uptodate) {
 906			etr_port0 = *aib;
 907			if (etr_port0_online)
 908				etr_port0_uptodate = 1;
 909		}
 910	} else {
 911		/* Information for port 1 stored. */
 912		if (eacr.p1 && !etr_port1_uptodate) {
 913			etr_port1 = *aib;
 914			if (etr_port0_online)
 915				etr_port1_uptodate = 1;
 916		}
 917	}
 918
 919	/*
 920	 * Do not try to get the alternate port aib if the clock
 921	 * is not in sync yet.
 922	 */
 923	if (!eacr.es || !check_sync_clock())
 924		return eacr;
 925
 926	/*
 927	 * If steai is available we can get the information about
 928	 * the other port immediately. If only stetr is available the
 929	 * data-port bit toggle has to be used.
 930	 */
 931	if (etr_steai_available) {
 932		if (eacr.p0 && !etr_port0_uptodate) {
 933			etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
 934			etr_port0_uptodate = 1;
 935		}
 936		if (eacr.p1 && !etr_port1_uptodate) {
 937			etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
 938			etr_port1_uptodate = 1;
 939		}
 940	} else {
 941		/*
 942		 * One port was updated above, if the other
 943		 * port is not uptodate toggle dp bit.
 944		 */
 945		if ((eacr.p0 && !etr_port0_uptodate) ||
 946		    (eacr.p1 && !etr_port1_uptodate))
 947			eacr.dp ^= 1;
 948		else
 949			eacr.dp = 0;
 950	}
 951	return eacr;
 952}
 953
 954/*
 955 * Write new etr control register if it differs from the current one.
 956 * Return 1 if etr_tolec has been updated as well.
 957 */
 958static void etr_update_eacr(struct etr_eacr eacr)
 959{
 960	int dp_changed;
 961
 962	if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
 963		/* No change, return. */
 964		return;
 965	/*
 966	 * The disable of an active port of the change of the data port
 967	 * bit can/will cause a change in the data port.
 968	 */
 969	dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
 970		(etr_eacr.dp ^ eacr.dp) != 0;
 971	etr_eacr = eacr;
 972	etr_setr(&etr_eacr);
 973	if (dp_changed)
 974		etr_tolec = get_tod_clock();
 975}
 976
 977/*
 978 * ETR work. In this function you'll find the main logic. In
 979 * particular this is the only function that calls etr_update_eacr(),
 980 * it "controls" the etr control register.
 981 */
 982static void etr_work_fn(struct work_struct *work)
 983{
 984	unsigned long long now;
 985	struct etr_eacr eacr;
 986	struct etr_aib aib;
 987	int sync_port;
 988
 989	/* prevent multiple execution. */
 990	mutex_lock(&etr_work_mutex);
 991
 992	/* Create working copy of etr_eacr. */
 993	eacr = etr_eacr;
 994
 995	/* Check for the different events and their immediate effects. */
 996	eacr = etr_handle_events(eacr);
 997
 998	/* Check if ETR is supposed to be active. */
 999	eacr.ea = eacr.p0 || eacr.p1;
1000	if (!eacr.ea) {
1001		/* Both ports offline. Reset everything. */
1002		eacr.dp = eacr.es = eacr.sl = 0;
1003		on_each_cpu(disable_sync_clock, NULL, 1);
1004		del_timer_sync(&etr_timer);
1005		etr_update_eacr(eacr);
1006		goto out_unlock;
1007	}
1008
1009	/* Store aib to get the current ETR status word. */
1010	BUG_ON(etr_stetr(&aib) != 0);
1011	etr_port0.esw = etr_port1.esw = aib.esw;	/* Copy status word. */
1012	now = get_tod_clock();
1013
1014	/*
1015	 * Update the port information if the last stepping port change
1016	 * or data port change is older than 1.6 seconds.
1017	 */
1018	if (now >= etr_tolec + (1600000 << 12))
1019		eacr = etr_handle_update(&aib, eacr);
1020
1021	/*
1022	 * Select ports to enable. The preferred synchronization mode is PPS.
1023	 * If a port can be enabled depends on a number of things:
1024	 * 1) The port needs to be online and uptodate. A port is not
1025	 *    disabled just because it is not uptodate, but it is only
1026	 *    enabled if it is uptodate.
1027	 * 2) The port needs to have the same mode (pps / etr).
1028	 * 3) The port needs to be usable -> etr_port_valid() == 1
1029	 * 4) To enable the second port the clock needs to be in sync.
1030	 * 5) If both ports are useable and are ETR ports, the network id
1031	 *    has to be the same.
1032	 * The eacr.sl bit is used to indicate etr mode vs. pps mode.
1033	 */
1034	if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
1035		eacr.sl = 0;
1036		eacr.e0 = 1;
1037		if (!etr_mode_is_pps(etr_eacr))
1038			eacr.es = 0;
1039		if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
1040			eacr.e1 = 0;
1041		// FIXME: uptodate checks ?
1042		else if (etr_port0_uptodate && etr_port1_uptodate)
1043			eacr.e1 = 1;
1044		sync_port = (etr_port0_uptodate &&
1045			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1046	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
1047		eacr.sl = 0;
1048		eacr.e0 = 0;
1049		eacr.e1 = 1;
1050		if (!etr_mode_is_pps(etr_eacr))
1051			eacr.es = 0;
1052		sync_port = (etr_port1_uptodate &&
1053			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1054	} else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
1055		eacr.sl = 1;
1056		eacr.e0 = 1;
1057		if (!etr_mode_is_etr(etr_eacr))
1058			eacr.es = 0;
1059		if (!eacr.es || !eacr.p1 ||
1060		    aib.esw.psc1 != etr_lpsc_operational_alt)
1061			eacr.e1 = 0;
1062		else if (etr_port0_uptodate && etr_port1_uptodate &&
1063			 etr_compare_network(&etr_port0, &etr_port1))
1064			eacr.e1 = 1;
1065		sync_port = (etr_port0_uptodate &&
1066			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1067	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
1068		eacr.sl = 1;
1069		eacr.e0 = 0;
1070		eacr.e1 = 1;
1071		if (!etr_mode_is_etr(etr_eacr))
1072			eacr.es = 0;
1073		sync_port = (etr_port1_uptodate &&
1074			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1075	} else {
1076		/* Both ports not usable. */
1077		eacr.es = eacr.sl = 0;
1078		sync_port = -1;
1079	}
1080
1081	/*
1082	 * If the clock is in sync just update the eacr and return.
1083	 * If there is no valid sync port wait for a port update.
1084	 */
1085	if ((eacr.es && check_sync_clock()) || sync_port < 0) {
1086		etr_update_eacr(eacr);
1087		etr_set_tolec_timeout(now);
1088		goto out_unlock;
1089	}
1090
1091	/*
1092	 * Prepare control register for clock syncing
1093	 * (reset data port bit, set sync check control.
1094	 */
1095	eacr.dp = 0;
1096	eacr.es = 1;
1097
1098	/*
1099	 * Update eacr and try to synchronize the clock. If the update
1100	 * of eacr caused a stepping port switch (or if we have to
1101	 * assume that a stepping port switch has occurred) or the
1102	 * clock syncing failed, reset the sync check control bit
1103	 * and set up a timer to try again after 0.5 seconds
1104	 */
1105	etr_update_eacr(eacr);
1106	if (now < etr_tolec + (1600000 << 12) ||
1107	    etr_sync_clock_stop(&aib, sync_port) != 0) {
1108		/* Sync failed. Try again in 1/2 second. */
1109		eacr.es = 0;
1110		etr_update_eacr(eacr);
1111		etr_set_sync_timeout();
1112	} else
1113		etr_set_tolec_timeout(now);
1114out_unlock:
1115	mutex_unlock(&etr_work_mutex);
1116}
1117
1118/*
1119 * Sysfs interface functions
1120 */
1121static struct bus_type etr_subsys = {
1122	.name		= "etr",
1123	.dev_name	= "etr",
1124};
1125
1126static struct device etr_port0_dev = {
1127	.id	= 0,
1128	.bus	= &etr_subsys,
1129};
1130
1131static struct device etr_port1_dev = {
1132	.id	= 1,
1133	.bus	= &etr_subsys,
1134};
1135
1136/*
1137 * ETR subsys attributes
1138 */
1139static ssize_t etr_stepping_port_show(struct device *dev,
1140					struct device_attribute *attr,
1141					char *buf)
1142{
1143	return sprintf(buf, "%i\n", etr_port0.esw.p);
1144}
1145
1146static DEVICE_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
1147
1148static ssize_t etr_stepping_mode_show(struct device *dev,
1149					struct device_attribute *attr,
1150					char *buf)
1151{
1152	char *mode_str;
1153
1154	if (etr_mode_is_pps(etr_eacr))
1155		mode_str = "pps";
1156	else if (etr_mode_is_etr(etr_eacr))
1157		mode_str = "etr";
1158	else
1159		mode_str = "local";
1160	return sprintf(buf, "%s\n", mode_str);
1161}
1162
1163static DEVICE_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
1164
1165/*
1166 * ETR port attributes
1167 */
1168static inline struct etr_aib *etr_aib_from_dev(struct device *dev)
1169{
1170	if (dev == &etr_port0_dev)
1171		return etr_port0_online ? &etr_port0 : NULL;
1172	else
1173		return etr_port1_online ? &etr_port1 : NULL;
1174}
1175
1176static ssize_t etr_online_show(struct device *dev,
1177				struct device_attribute *attr,
1178				char *buf)
1179{
1180	unsigned int online;
1181
1182	online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
1183	return sprintf(buf, "%i\n", online);
1184}
1185
1186static ssize_t etr_online_store(struct device *dev,
1187				struct device_attribute *attr,
1188				const char *buf, size_t count)
1189{
1190	unsigned int value;
1191
1192	value = simple_strtoul(buf, NULL, 0);
1193	if (value != 0 && value != 1)
1194		return -EINVAL;
1195	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
1196		return -EOPNOTSUPP;
1197	mutex_lock(&clock_sync_mutex);
1198	if (dev == &etr_port0_dev) {
1199		if (etr_port0_online == value)
1200			goto out;	/* Nothing to do. */
1201		etr_port0_online = value;
1202		if (etr_port0_online && etr_port1_online)
1203			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1204		else
1205			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1206		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
1207		queue_work(time_sync_wq, &etr_work);
1208	} else {
1209		if (etr_port1_online == value)
1210			goto out;	/* Nothing to do. */
1211		etr_port1_online = value;
1212		if (etr_port0_online && etr_port1_online)
1213			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1214		else
1215			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1216		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
1217		queue_work(time_sync_wq, &etr_work);
1218	}
1219out:
1220	mutex_unlock(&clock_sync_mutex);
1221	return count;
1222}
1223
1224static DEVICE_ATTR(online, 0600, etr_online_show, etr_online_store);
1225
1226static ssize_t etr_stepping_control_show(struct device *dev,
1227					struct device_attribute *attr,
1228					char *buf)
1229{
1230	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1231		       etr_eacr.e0 : etr_eacr.e1);
1232}
1233
1234static DEVICE_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
1235
1236static ssize_t etr_mode_code_show(struct device *dev,
1237				struct device_attribute *attr, char *buf)
1238{
1239	if (!etr_port0_online && !etr_port1_online)
1240		/* Status word is not uptodate if both ports are offline. */
1241		return -ENODATA;
1242	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1243		       etr_port0.esw.psc0 : etr_port0.esw.psc1);
1244}
1245
1246static DEVICE_ATTR(state_code, 0400, etr_mode_code_show, NULL);
1247
1248static ssize_t etr_untuned_show(struct device *dev,
1249				struct device_attribute *attr, char *buf)
1250{
1251	struct etr_aib *aib = etr_aib_from_dev(dev);
1252
1253	if (!aib || !aib->slsw.v1)
1254		return -ENODATA;
1255	return sprintf(buf, "%i\n", aib->edf1.u);
1256}
1257
1258static DEVICE_ATTR(untuned, 0400, etr_untuned_show, NULL);
1259
1260static ssize_t etr_network_id_show(struct device *dev,
1261				struct device_attribute *attr, char *buf)
1262{
1263	struct etr_aib *aib = etr_aib_from_dev(dev);
1264
1265	if (!aib || !aib->slsw.v1)
1266		return -ENODATA;
1267	return sprintf(buf, "%i\n", aib->edf1.net_id);
1268}
1269
1270static DEVICE_ATTR(network, 0400, etr_network_id_show, NULL);
1271
1272static ssize_t etr_id_show(struct device *dev,
1273			struct device_attribute *attr, char *buf)
1274{
1275	struct etr_aib *aib = etr_aib_from_dev(dev);
1276
1277	if (!aib || !aib->slsw.v1)
1278		return -ENODATA;
1279	return sprintf(buf, "%i\n", aib->edf1.etr_id);
1280}
1281
1282static DEVICE_ATTR(id, 0400, etr_id_show, NULL);
1283
1284static ssize_t etr_port_number_show(struct device *dev,
1285			struct device_attribute *attr, char *buf)
1286{
1287	struct etr_aib *aib = etr_aib_from_dev(dev);
1288
1289	if (!aib || !aib->slsw.v1)
1290		return -ENODATA;
1291	return sprintf(buf, "%i\n", aib->edf1.etr_pn);
1292}
1293
1294static DEVICE_ATTR(port, 0400, etr_port_number_show, NULL);
1295
1296static ssize_t etr_coupled_show(struct device *dev,
1297			struct device_attribute *attr, char *buf)
1298{
1299	struct etr_aib *aib = etr_aib_from_dev(dev);
1300
1301	if (!aib || !aib->slsw.v3)
1302		return -ENODATA;
1303	return sprintf(buf, "%i\n", aib->edf3.c);
1304}
1305
1306static DEVICE_ATTR(coupled, 0400, etr_coupled_show, NULL);
1307
1308static ssize_t etr_local_time_show(struct device *dev,
1309			struct device_attribute *attr, char *buf)
1310{
1311	struct etr_aib *aib = etr_aib_from_dev(dev);
1312
1313	if (!aib || !aib->slsw.v3)
1314		return -ENODATA;
1315	return sprintf(buf, "%i\n", aib->edf3.blto);
1316}
1317
1318static DEVICE_ATTR(local_time, 0400, etr_local_time_show, NULL);
1319
1320static ssize_t etr_utc_offset_show(struct device *dev,
1321			struct device_attribute *attr, char *buf)
1322{
1323	struct etr_aib *aib = etr_aib_from_dev(dev);
1324
1325	if (!aib || !aib->slsw.v3)
1326		return -ENODATA;
1327	return sprintf(buf, "%i\n", aib->edf3.buo);
1328}
1329
1330static DEVICE_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
1331
1332static struct device_attribute *etr_port_attributes[] = {
1333	&dev_attr_online,
1334	&dev_attr_stepping_control,
1335	&dev_attr_state_code,
1336	&dev_attr_untuned,
1337	&dev_attr_network,
1338	&dev_attr_id,
1339	&dev_attr_port,
1340	&dev_attr_coupled,
1341	&dev_attr_local_time,
1342	&dev_attr_utc_offset,
1343	NULL
1344};
1345
1346static int __init etr_register_port(struct device *dev)
1347{
1348	struct device_attribute **attr;
1349	int rc;
1350
1351	rc = device_register(dev);
1352	if (rc)
1353		goto out;
1354	for (attr = etr_port_attributes; *attr; attr++) {
1355		rc = device_create_file(dev, *attr);
1356		if (rc)
1357			goto out_unreg;
1358	}
1359	return 0;
1360out_unreg:
1361	for (; attr >= etr_port_attributes; attr--)
1362		device_remove_file(dev, *attr);
1363	device_unregister(dev);
1364out:
1365	return rc;
1366}
1367
1368static void __init etr_unregister_port(struct device *dev)
1369{
1370	struct device_attribute **attr;
1371
1372	for (attr = etr_port_attributes; *attr; attr++)
1373		device_remove_file(dev, *attr);
1374	device_unregister(dev);
1375}
1376
1377static int __init etr_init_sysfs(void)
1378{
1379	int rc;
1380
1381	rc = subsys_system_register(&etr_subsys, NULL);
1382	if (rc)
1383		goto out;
1384	rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1385	if (rc)
1386		goto out_unreg_subsys;
1387	rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1388	if (rc)
1389		goto out_remove_stepping_port;
1390	rc = etr_register_port(&etr_port0_dev);
1391	if (rc)
1392		goto out_remove_stepping_mode;
1393	rc = etr_register_port(&etr_port1_dev);
1394	if (rc)
1395		goto out_remove_port0;
1396	return 0;
1397
1398out_remove_port0:
1399	etr_unregister_port(&etr_port0_dev);
1400out_remove_stepping_mode:
1401	device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1402out_remove_stepping_port:
1403	device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1404out_unreg_subsys:
1405	bus_unregister(&etr_subsys);
1406out:
1407	return rc;
1408}
1409
1410device_initcall(etr_init_sysfs);
1411
1412/*
1413 * Server Time Protocol (STP) code.
1414 */
1415static int stp_online;
1416static struct stp_sstpi stp_info;
1417static void *stp_page;
1418
1419static void stp_work_fn(struct work_struct *work);
1420static DEFINE_MUTEX(stp_work_mutex);
1421static DECLARE_WORK(stp_work, stp_work_fn);
1422static struct timer_list stp_timer;
1423
1424static int __init early_parse_stp(char *p)
1425{
1426	if (strncmp(p, "off", 3) == 0)
1427		stp_online = 0;
1428	else if (strncmp(p, "on", 2) == 0)
1429		stp_online = 1;
1430	return 0;
1431}
1432early_param("stp", early_parse_stp);
1433
1434/*
1435 * Reset STP attachment.
1436 */
1437static void __init stp_reset(void)
1438{
1439	int rc;
1440
1441	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
1442	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1443	if (rc == 0)
1444		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
1445	else if (stp_online) {
1446		pr_warning("The real or virtual hardware system does "
1447			   "not provide an STP interface\n");
1448		free_page((unsigned long) stp_page);
1449		stp_page = NULL;
1450		stp_online = 0;
1451	}
1452}
1453
1454static void stp_timeout(unsigned long dummy)
1455{
1456	queue_work(time_sync_wq, &stp_work);
1457}
1458
1459static int __init stp_init(void)
1460{
1461	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1462		return 0;
1463	setup_timer(&stp_timer, stp_timeout, 0UL);
1464	time_init_wq();
1465	if (!stp_online)
1466		return 0;
1467	queue_work(time_sync_wq, &stp_work);
1468	return 0;
1469}
1470
1471arch_initcall(stp_init);
1472
1473/*
1474 * STP timing alert. There are three causes:
1475 * 1) timing status change
1476 * 2) link availability change
1477 * 3) time control parameter change
1478 * In all three cases we are only interested in the clock source state.
1479 * If a STP clock source is now available use it.
1480 */
1481static void stp_timing_alert(struct stp_irq_parm *intparm)
1482{
1483	if (intparm->tsc || intparm->lac || intparm->tcpc)
1484		queue_work(time_sync_wq, &stp_work);
1485}
1486
1487/*
1488 * STP sync check machine check. This is called when the timing state
1489 * changes from the synchronized state to the unsynchronized state.
1490 * After a STP sync check the clock is not in sync. The machine check
1491 * is broadcasted to all cpus at the same time.
1492 */
1493void stp_sync_check(void)
1494{
1495	disable_sync_clock(NULL);
1496	queue_work(time_sync_wq, &stp_work);
1497}
1498
1499/*
1500 * STP island condition machine check. This is called when an attached
1501 * server  attempts to communicate over an STP link and the servers
1502 * have matching CTN ids and have a valid stratum-1 configuration
1503 * but the configurations do not match.
1504 */
1505void stp_island_check(void)
1506{
1507	disable_sync_clock(NULL);
 
 
 
 
 
1508	queue_work(time_sync_wq, &stp_work);
1509}
1510
1511
1512static int stp_sync_clock(void *data)
1513{
 
 
1514	static int first;
1515	unsigned long long old_clock, delta;
1516	struct clock_sync_data *stp_sync;
1517	int rc;
1518
1519	stp_sync = data;
1520
1521	if (xchg(&first, 1) == 1) {
1522		/* Slave */
1523		clock_sync_cpu(stp_sync);
1524		return 0;
1525	}
1526
1527	/* Wait until all other cpus entered the sync function. */
1528	while (atomic_read(&stp_sync->cpus) != 0)
1529		cpu_relax();
1530
1531	enable_sync_clock();
1532
1533	rc = 0;
1534	if (stp_info.todoff[0] || stp_info.todoff[1] ||
1535	    stp_info.todoff[2] || stp_info.todoff[3] ||
1536	    stp_info.tmd != 2) {
1537		old_clock = get_tod_clock();
1538		rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0);
1539		if (rc == 0) {
1540			delta = adjust_time(old_clock, get_tod_clock(), 0);
1541			fixup_clock_comparator(delta);
1542			rc = chsc_sstpi(stp_page, &stp_info,
1543					sizeof(struct stp_sstpi));
1544			if (rc == 0 && stp_info.tmd != 2)
1545				rc = -EAGAIN;
 
 
 
 
1546		}
 
 
 
 
 
 
 
 
1547	}
1548	if (rc) {
 
1549		disable_sync_clock(NULL);
1550		stp_sync->in_sync = -EAGAIN;
1551	} else
1552		stp_sync->in_sync = 1;
1553	xchg(&first, 0);
1554	return 0;
1555}
1556
1557/*
1558 * STP work. Check for the STP state and take over the clock
1559 * synchronization if the STP clock source is usable.
1560 */
1561static void stp_work_fn(struct work_struct *work)
1562{
1563	struct clock_sync_data stp_sync;
1564	int rc;
1565
1566	/* prevent multiple execution. */
1567	mutex_lock(&stp_work_mutex);
1568
1569	if (!stp_online) {
1570		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1571		del_timer_sync(&stp_timer);
1572		goto out_unlock;
1573	}
1574
1575	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0);
1576	if (rc)
1577		goto out_unlock;
1578
1579	rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
1580	if (rc || stp_info.c == 0)
1581		goto out_unlock;
1582
1583	/* Skip synchronization if the clock is already in sync. */
1584	if (check_sync_clock())
1585		goto out_unlock;
1586
1587	memset(&stp_sync, 0, sizeof(stp_sync));
1588	get_online_cpus();
1589	atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
1590	stop_machine(stp_sync_clock, &stp_sync, cpu_online_mask);
1591	put_online_cpus();
1592
1593	if (!check_sync_clock())
1594		/*
1595		 * There is a usable clock but the synchonization failed.
1596		 * Retry after a second.
1597		 */
1598		mod_timer(&stp_timer, jiffies + HZ);
1599
1600out_unlock:
1601	mutex_unlock(&stp_work_mutex);
1602}
1603
1604/*
1605 * STP subsys sysfs interface functions
1606 */
1607static struct bus_type stp_subsys = {
1608	.name		= "stp",
1609	.dev_name	= "stp",
1610};
1611
1612static ssize_t stp_ctn_id_show(struct device *dev,
1613				struct device_attribute *attr,
1614				char *buf)
1615{
1616	if (!stp_online)
1617		return -ENODATA;
1618	return sprintf(buf, "%016llx\n",
1619		       *(unsigned long long *) stp_info.ctnid);
1620}
1621
1622static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
1623
1624static ssize_t stp_ctn_type_show(struct device *dev,
1625				struct device_attribute *attr,
1626				char *buf)
1627{
1628	if (!stp_online)
1629		return -ENODATA;
1630	return sprintf(buf, "%i\n", stp_info.ctn);
1631}
1632
1633static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
1634
1635static ssize_t stp_dst_offset_show(struct device *dev,
1636				   struct device_attribute *attr,
1637				   char *buf)
1638{
1639	if (!stp_online || !(stp_info.vbits & 0x2000))
1640		return -ENODATA;
1641	return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
1642}
1643
1644static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
1645
1646static ssize_t stp_leap_seconds_show(struct device *dev,
1647					struct device_attribute *attr,
1648					char *buf)
1649{
1650	if (!stp_online || !(stp_info.vbits & 0x8000))
1651		return -ENODATA;
1652	return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
1653}
1654
1655static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
1656
1657static ssize_t stp_stratum_show(struct device *dev,
1658				struct device_attribute *attr,
1659				char *buf)
1660{
1661	if (!stp_online)
1662		return -ENODATA;
1663	return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
1664}
1665
1666static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
1667
1668static ssize_t stp_time_offset_show(struct device *dev,
1669				struct device_attribute *attr,
1670				char *buf)
1671{
1672	if (!stp_online || !(stp_info.vbits & 0x0800))
1673		return -ENODATA;
1674	return sprintf(buf, "%i\n", (int) stp_info.tto);
1675}
1676
1677static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
1678
1679static ssize_t stp_time_zone_offset_show(struct device *dev,
1680				struct device_attribute *attr,
1681				char *buf)
1682{
1683	if (!stp_online || !(stp_info.vbits & 0x4000))
1684		return -ENODATA;
1685	return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
1686}
1687
1688static DEVICE_ATTR(time_zone_offset, 0400,
1689			 stp_time_zone_offset_show, NULL);
1690
1691static ssize_t stp_timing_mode_show(struct device *dev,
1692				struct device_attribute *attr,
1693				char *buf)
1694{
1695	if (!stp_online)
1696		return -ENODATA;
1697	return sprintf(buf, "%i\n", stp_info.tmd);
1698}
1699
1700static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
1701
1702static ssize_t stp_timing_state_show(struct device *dev,
1703				struct device_attribute *attr,
1704				char *buf)
1705{
1706	if (!stp_online)
1707		return -ENODATA;
1708	return sprintf(buf, "%i\n", stp_info.tst);
1709}
1710
1711static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
1712
1713static ssize_t stp_online_show(struct device *dev,
1714				struct device_attribute *attr,
1715				char *buf)
1716{
1717	return sprintf(buf, "%i\n", stp_online);
1718}
1719
1720static ssize_t stp_online_store(struct device *dev,
1721				struct device_attribute *attr,
1722				const char *buf, size_t count)
1723{
1724	unsigned int value;
1725
1726	value = simple_strtoul(buf, NULL, 0);
1727	if (value != 0 && value != 1)
1728		return -EINVAL;
1729	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1730		return -EOPNOTSUPP;
1731	mutex_lock(&clock_sync_mutex);
1732	stp_online = value;
1733	if (stp_online)
1734		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1735	else
1736		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1737	queue_work(time_sync_wq, &stp_work);
1738	mutex_unlock(&clock_sync_mutex);
1739	return count;
1740}
1741
1742/*
1743 * Can't use DEVICE_ATTR because the attribute should be named
1744 * stp/online but dev_attr_online already exists in this file ..
1745 */
1746static struct device_attribute dev_attr_stp_online = {
1747	.attr = { .name = "online", .mode = 0600 },
1748	.show	= stp_online_show,
1749	.store	= stp_online_store,
1750};
1751
1752static struct device_attribute *stp_attributes[] = {
1753	&dev_attr_ctn_id,
1754	&dev_attr_ctn_type,
1755	&dev_attr_dst_offset,
1756	&dev_attr_leap_seconds,
1757	&dev_attr_stp_online,
1758	&dev_attr_stratum,
1759	&dev_attr_time_offset,
1760	&dev_attr_time_zone_offset,
1761	&dev_attr_timing_mode,
1762	&dev_attr_timing_state,
1763	NULL
1764};
1765
1766static int __init stp_init_sysfs(void)
1767{
1768	struct device_attribute **attr;
1769	int rc;
1770
1771	rc = subsys_system_register(&stp_subsys, NULL);
1772	if (rc)
1773		goto out;
1774	for (attr = stp_attributes; *attr; attr++) {
1775		rc = device_create_file(stp_subsys.dev_root, *attr);
1776		if (rc)
1777			goto out_unreg;
1778	}
1779	return 0;
1780out_unreg:
1781	for (; attr >= stp_attributes; attr--)
1782		device_remove_file(stp_subsys.dev_root, *attr);
1783	bus_unregister(&stp_subsys);
1784out:
1785	return rc;
1786}
1787
1788device_initcall(stp_init_sysfs);