Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Ptrace user space interface.
   4 *
   5 *    Copyright IBM Corp. 1999, 2010
   6 *    Author(s): Denis Joseph Barrow
   7 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/sched.h>
  12#include <linux/sched/task_stack.h>
  13#include <linux/mm.h>
  14#include <linux/smp.h>
  15#include <linux/errno.h>
  16#include <linux/ptrace.h>
  17#include <linux/user.h>
  18#include <linux/security.h>
  19#include <linux/audit.h>
  20#include <linux/signal.h>
  21#include <linux/elf.h>
  22#include <linux/regset.h>
  23#include <linux/tracehook.h>
  24#include <linux/seccomp.h>
  25#include <linux/compat.h>
  26#include <trace/syscall.h>
 
  27#include <asm/page.h>
  28#include <asm/pgtable.h>
  29#include <asm/pgalloc.h>
  30#include <linux/uaccess.h>
  31#include <asm/unistd.h>
  32#include <asm/switch_to.h>
  33#include <asm/runtime_instr.h>
  34#include <asm/facility.h>
  35
  36#include "entry.h"
  37
  38#ifdef CONFIG_COMPAT
  39#include "compat_ptrace.h"
  40#endif
  41
  42#define CREATE_TRACE_POINTS
  43#include <trace/events/syscalls.h>
  44
 
 
 
 
 
 
 
 
 
  45void update_cr_regs(struct task_struct *task)
  46{
  47	struct pt_regs *regs = task_pt_regs(task);
  48	struct thread_struct *thread = &task->thread;
  49	struct per_regs old, new;
  50	union ctlreg0 cr0_old, cr0_new;
  51	union ctlreg2 cr2_old, cr2_new;
  52	int cr0_changed, cr2_changed;
  53
  54	__ctl_store(cr0_old.val, 0, 0);
  55	__ctl_store(cr2_old.val, 2, 2);
  56	cr0_new = cr0_old;
  57	cr2_new = cr2_old;
  58	/* Take care of the enable/disable of transactional execution. */
  59	if (MACHINE_HAS_TE) {
 
 
 
  60		/* Set or clear transaction execution TXC bit 8. */
  61		cr0_new.tcx = 1;
  62		if (task->thread.per_flags & PER_FLAG_NO_TE)
  63			cr0_new.tcx = 0;
 
 
  64		/* Set or clear transaction execution TDC bits 62 and 63. */
  65		cr2_new.tdc = 0;
 
  66		if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
  67			if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
  68				cr2_new.tdc = 1;
  69			else
  70				cr2_new.tdc = 2;
  71		}
 
 
  72	}
  73	/* Take care of enable/disable of guarded storage. */
  74	if (MACHINE_HAS_GS) {
  75		cr2_new.gse = 0;
  76		if (task->thread.gs_cb)
  77			cr2_new.gse = 1;
  78	}
  79	/* Load control register 0/2 iff changed */
  80	cr0_changed = cr0_new.val != cr0_old.val;
  81	cr2_changed = cr2_new.val != cr2_old.val;
  82	if (cr0_changed)
  83		__ctl_load(cr0_new.val, 0, 0);
  84	if (cr2_changed)
  85		__ctl_load(cr2_new.val, 2, 2);
  86	/* Copy user specified PER registers */
  87	new.control = thread->per_user.control;
  88	new.start = thread->per_user.start;
  89	new.end = thread->per_user.end;
  90
  91	/* merge TIF_SINGLE_STEP into user specified PER registers. */
  92	if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
  93	    test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
  94		if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
  95			new.control |= PER_EVENT_BRANCH;
  96		else
  97			new.control |= PER_EVENT_IFETCH;
 
  98		new.control |= PER_CONTROL_SUSPENSION;
  99		new.control |= PER_EVENT_TRANSACTION_END;
 100		if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
 101			new.control |= PER_EVENT_IFETCH;
 102		new.start = 0;
 103		new.end = -1UL;
 104	}
 105
 106	/* Take care of the PER enablement bit in the PSW. */
 107	if (!(new.control & PER_EVENT_MASK)) {
 108		regs->psw.mask &= ~PSW_MASK_PER;
 109		return;
 110	}
 111	regs->psw.mask |= PSW_MASK_PER;
 112	__ctl_store(old, 9, 11);
 113	if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
 114		__ctl_load(new, 9, 11);
 115}
 116
 117void user_enable_single_step(struct task_struct *task)
 118{
 119	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 120	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 121}
 122
 123void user_disable_single_step(struct task_struct *task)
 124{
 125	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 126	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 127}
 128
 129void user_enable_block_step(struct task_struct *task)
 130{
 131	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 132	set_tsk_thread_flag(task, TIF_BLOCK_STEP);
 133}
 134
 135/*
 136 * Called by kernel/ptrace.c when detaching..
 137 *
 138 * Clear all debugging related fields.
 139 */
 140void ptrace_disable(struct task_struct *task)
 141{
 142	memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
 143	memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
 144	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 145	clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
 146	task->thread.per_flags = 0;
 147}
 148
 149#define __ADDR_MASK 7
 
 
 
 
 150
 151static inline unsigned long __peek_user_per(struct task_struct *child,
 152					    addr_t addr)
 153{
 154	struct per_struct_kernel *dummy = NULL;
 155
 156	if (addr == (addr_t) &dummy->cr9)
 157		/* Control bits of the active per set. */
 158		return test_thread_flag(TIF_SINGLE_STEP) ?
 159			PER_EVENT_IFETCH : child->thread.per_user.control;
 160	else if (addr == (addr_t) &dummy->cr10)
 161		/* Start address of the active per set. */
 162		return test_thread_flag(TIF_SINGLE_STEP) ?
 163			0 : child->thread.per_user.start;
 164	else if (addr == (addr_t) &dummy->cr11)
 165		/* End address of the active per set. */
 166		return test_thread_flag(TIF_SINGLE_STEP) ?
 167			-1UL : child->thread.per_user.end;
 168	else if (addr == (addr_t) &dummy->bits)
 169		/* Single-step bit. */
 170		return test_thread_flag(TIF_SINGLE_STEP) ?
 171			(1UL << (BITS_PER_LONG - 1)) : 0;
 172	else if (addr == (addr_t) &dummy->starting_addr)
 173		/* Start address of the user specified per set. */
 174		return child->thread.per_user.start;
 175	else if (addr == (addr_t) &dummy->ending_addr)
 176		/* End address of the user specified per set. */
 177		return child->thread.per_user.end;
 178	else if (addr == (addr_t) &dummy->perc_atmid)
 179		/* PER code, ATMID and AI of the last PER trap */
 180		return (unsigned long)
 181			child->thread.per_event.cause << (BITS_PER_LONG - 16);
 182	else if (addr == (addr_t) &dummy->address)
 183		/* Address of the last PER trap */
 184		return child->thread.per_event.address;
 185	else if (addr == (addr_t) &dummy->access_id)
 186		/* Access id of the last PER trap */
 187		return (unsigned long)
 188			child->thread.per_event.paid << (BITS_PER_LONG - 8);
 189	return 0;
 190}
 191
 192/*
 193 * Read the word at offset addr from the user area of a process. The
 194 * trouble here is that the information is littered over different
 195 * locations. The process registers are found on the kernel stack,
 196 * the floating point stuff and the trace settings are stored in
 197 * the task structure. In addition the different structures in
 198 * struct user contain pad bytes that should be read as zeroes.
 199 * Lovely...
 200 */
 201static unsigned long __peek_user(struct task_struct *child, addr_t addr)
 202{
 203	struct user *dummy = NULL;
 204	addr_t offset, tmp;
 205
 206	if (addr < (addr_t) &dummy->regs.acrs) {
 207		/*
 208		 * psw and gprs are stored on the stack
 209		 */
 210		tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
 211		if (addr == (addr_t) &dummy->regs.psw.mask) {
 212			/* Return a clean psw mask. */
 213			tmp &= PSW_MASK_USER | PSW_MASK_RI;
 214			tmp |= PSW_USER_BITS;
 215		}
 216
 217	} else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
 218		/*
 219		 * access registers are stored in the thread structure
 220		 */
 221		offset = addr - (addr_t) &dummy->regs.acrs;
 
 222		/*
 223		 * Very special case: old & broken 64 bit gdb reading
 224		 * from acrs[15]. Result is a 64 bit value. Read the
 225		 * 32 bit acrs[15] value and shift it by 32. Sick...
 226		 */
 227		if (addr == (addr_t) &dummy->regs.acrs[15])
 228			tmp = ((unsigned long) child->thread.acrs[15]) << 32;
 229		else
 230			tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
 
 231
 232	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 233		/*
 234		 * orig_gpr2 is stored on the kernel stack
 235		 */
 236		tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
 237
 238	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 239		/*
 240		 * prevent reads of padding hole between
 241		 * orig_gpr2 and fp_regs on s390.
 242		 */
 243		tmp = 0;
 244
 245	} else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
 246		/*
 247		 * floating point control reg. is in the thread structure
 248		 */
 249		tmp = child->thread.fpu.fpc;
 250		tmp <<= BITS_PER_LONG - 32;
 251
 252	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 253		/*
 254		 * floating point regs. are either in child->thread.fpu
 255		 * or the child->thread.fpu.vxrs array
 256		 */
 257		offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
 258		if (MACHINE_HAS_VX)
 259			tmp = *(addr_t *)
 260			       ((addr_t) child->thread.fpu.vxrs + 2*offset);
 261		else
 262			tmp = *(addr_t *)
 263			       ((addr_t) child->thread.fpu.fprs + offset);
 264
 265	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 266		/*
 267		 * Handle access to the per_info structure.
 268		 */
 269		addr -= (addr_t) &dummy->regs.per_info;
 270		tmp = __peek_user_per(child, addr);
 271
 272	} else
 273		tmp = 0;
 274
 275	return tmp;
 276}
 277
 278static int
 279peek_user(struct task_struct *child, addr_t addr, addr_t data)
 280{
 281	addr_t tmp, mask;
 282
 283	/*
 284	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 285	 * an alignment of 4. Programmers from hell...
 286	 */
 287	mask = __ADDR_MASK;
 
 288	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 289	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 290		mask = 3;
 
 291	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 292		return -EIO;
 293
 294	tmp = __peek_user(child, addr);
 295	return put_user(tmp, (addr_t __user *) data);
 296}
 297
 298static inline void __poke_user_per(struct task_struct *child,
 299				   addr_t addr, addr_t data)
 300{
 301	struct per_struct_kernel *dummy = NULL;
 302
 303	/*
 304	 * There are only three fields in the per_info struct that the
 305	 * debugger user can write to.
 306	 * 1) cr9: the debugger wants to set a new PER event mask
 307	 * 2) starting_addr: the debugger wants to set a new starting
 308	 *    address to use with the PER event mask.
 309	 * 3) ending_addr: the debugger wants to set a new ending
 310	 *    address to use with the PER event mask.
 311	 * The user specified PER event mask and the start and end
 312	 * addresses are used only if single stepping is not in effect.
 313	 * Writes to any other field in per_info are ignored.
 314	 */
 315	if (addr == (addr_t) &dummy->cr9)
 316		/* PER event mask of the user specified per set. */
 317		child->thread.per_user.control =
 318			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 319	else if (addr == (addr_t) &dummy->starting_addr)
 320		/* Starting address of the user specified per set. */
 321		child->thread.per_user.start = data;
 322	else if (addr == (addr_t) &dummy->ending_addr)
 323		/* Ending address of the user specified per set. */
 324		child->thread.per_user.end = data;
 325}
 326
 327/*
 328 * Write a word to the user area of a process at location addr. This
 329 * operation does have an additional problem compared to peek_user.
 330 * Stores to the program status word and on the floating point
 331 * control register needs to get checked for validity.
 332 */
 333static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
 334{
 335	struct user *dummy = NULL;
 336	addr_t offset;
 337
 338	if (addr < (addr_t) &dummy->regs.acrs) {
 339		/*
 340		 * psw and gprs are stored on the stack
 341		 */
 342		if (addr == (addr_t) &dummy->regs.psw.mask) {
 343			unsigned long mask = PSW_MASK_USER;
 344
 345			mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
 346			if ((data ^ PSW_USER_BITS) & ~mask)
 347				/* Invalid psw mask. */
 348				return -EINVAL;
 349			if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
 350				/* Invalid address-space-control bits */
 351				return -EINVAL;
 352			if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
 353				/* Invalid addressing mode bits */
 354				return -EINVAL;
 355		}
 356		*(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
 357
 358	} else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
 359		/*
 360		 * access registers are stored in the thread structure
 361		 */
 362		offset = addr - (addr_t) &dummy->regs.acrs;
 
 363		/*
 364		 * Very special case: old & broken 64 bit gdb writing
 365		 * to acrs[15] with a 64 bit value. Ignore the lower
 366		 * half of the value and write the upper 32 bit to
 367		 * acrs[15]. Sick...
 368		 */
 369		if (addr == (addr_t) &dummy->regs.acrs[15])
 370			child->thread.acrs[15] = (unsigned int) (data >> 32);
 371		else
 372			*(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
 
 373
 374	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 375		/*
 376		 * orig_gpr2 is stored on the kernel stack
 377		 */
 378		task_pt_regs(child)->orig_gpr2 = data;
 379
 380	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 381		/*
 382		 * prevent writes of padding hole between
 383		 * orig_gpr2 and fp_regs on s390.
 384		 */
 385		return 0;
 386
 387	} else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
 388		/*
 389		 * floating point control reg. is in the thread structure
 390		 */
 391		if ((unsigned int) data != 0 ||
 392		    test_fp_ctl(data >> (BITS_PER_LONG - 32)))
 393			return -EINVAL;
 394		child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
 395
 396	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 397		/*
 398		 * floating point regs. are either in child->thread.fpu
 399		 * or the child->thread.fpu.vxrs array
 400		 */
 401		offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
 402		if (MACHINE_HAS_VX)
 403			*(addr_t *)((addr_t)
 404				child->thread.fpu.vxrs + 2*offset) = data;
 405		else
 406			*(addr_t *)((addr_t)
 407				child->thread.fpu.fprs + offset) = data;
 408
 409	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 410		/*
 411		 * Handle access to the per_info structure.
 412		 */
 413		addr -= (addr_t) &dummy->regs.per_info;
 414		__poke_user_per(child, addr, data);
 415
 416	}
 417
 418	return 0;
 419}
 420
 421static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
 422{
 423	addr_t mask;
 424
 425	/*
 426	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 427	 * an alignment of 4. Programmers from hell indeed...
 428	 */
 429	mask = __ADDR_MASK;
 
 430	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 431	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 432		mask = 3;
 
 433	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 434		return -EIO;
 435
 436	return __poke_user(child, addr, data);
 437}
 438
 439long arch_ptrace(struct task_struct *child, long request,
 440		 unsigned long addr, unsigned long data)
 441{
 442	ptrace_area parea; 
 443	int copied, ret;
 444
 445	switch (request) {
 446	case PTRACE_PEEKUSR:
 447		/* read the word at location addr in the USER area. */
 448		return peek_user(child, addr, data);
 449
 450	case PTRACE_POKEUSR:
 451		/* write the word at location addr in the USER area */
 452		return poke_user(child, addr, data);
 453
 454	case PTRACE_PEEKUSR_AREA:
 455	case PTRACE_POKEUSR_AREA:
 456		if (copy_from_user(&parea, (void __force __user *) addr,
 457							sizeof(parea)))
 458			return -EFAULT;
 459		addr = parea.kernel_addr;
 460		data = parea.process_addr;
 461		copied = 0;
 462		while (copied < parea.len) {
 463			if (request == PTRACE_PEEKUSR_AREA)
 464				ret = peek_user(child, addr, data);
 465			else {
 466				addr_t utmp;
 467				if (get_user(utmp,
 468					     (addr_t __force __user *) data))
 469					return -EFAULT;
 470				ret = poke_user(child, addr, utmp);
 471			}
 472			if (ret)
 473				return ret;
 474			addr += sizeof(unsigned long);
 475			data += sizeof(unsigned long);
 476			copied += sizeof(unsigned long);
 477		}
 478		return 0;
 479	case PTRACE_GET_LAST_BREAK:
 480		put_user(child->thread.last_break,
 481			 (unsigned long __user *) data);
 482		return 0;
 483	case PTRACE_ENABLE_TE:
 484		if (!MACHINE_HAS_TE)
 485			return -EIO;
 486		child->thread.per_flags &= ~PER_FLAG_NO_TE;
 487		return 0;
 488	case PTRACE_DISABLE_TE:
 489		if (!MACHINE_HAS_TE)
 490			return -EIO;
 491		child->thread.per_flags |= PER_FLAG_NO_TE;
 492		child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 493		return 0;
 494	case PTRACE_TE_ABORT_RAND:
 495		if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
 496			return -EIO;
 497		switch (data) {
 498		case 0UL:
 499			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 500			break;
 501		case 1UL:
 502			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 503			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
 504			break;
 505		case 2UL:
 506			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 507			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
 508			break;
 509		default:
 510			return -EINVAL;
 511		}
 512		return 0;
 513	default:
 
 
 514		return ptrace_request(child, request, addr, data);
 515	}
 516}
 517
 518#ifdef CONFIG_COMPAT
 519/*
 520 * Now the fun part starts... a 31 bit program running in the
 521 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
 522 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
 523 * to handle, the difference to the 64 bit versions of the requests
 524 * is that the access is done in multiples of 4 byte instead of
 525 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
 526 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
 527 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
 528 * is a 31 bit program too, the content of struct user can be
 529 * emulated. A 31 bit program peeking into the struct user of
 530 * a 64 bit program is a no-no.
 531 */
 532
 533/*
 534 * Same as peek_user_per but for a 31 bit program.
 535 */
 536static inline __u32 __peek_user_per_compat(struct task_struct *child,
 537					   addr_t addr)
 538{
 539	struct compat_per_struct_kernel *dummy32 = NULL;
 540
 541	if (addr == (addr_t) &dummy32->cr9)
 542		/* Control bits of the active per set. */
 543		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 544			PER_EVENT_IFETCH : child->thread.per_user.control;
 545	else if (addr == (addr_t) &dummy32->cr10)
 546		/* Start address of the active per set. */
 547		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 548			0 : child->thread.per_user.start;
 549	else if (addr == (addr_t) &dummy32->cr11)
 550		/* End address of the active per set. */
 551		return test_thread_flag(TIF_SINGLE_STEP) ?
 552			PSW32_ADDR_INSN : child->thread.per_user.end;
 553	else if (addr == (addr_t) &dummy32->bits)
 554		/* Single-step bit. */
 555		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 556			0x80000000 : 0;
 557	else if (addr == (addr_t) &dummy32->starting_addr)
 558		/* Start address of the user specified per set. */
 559		return (__u32) child->thread.per_user.start;
 560	else if (addr == (addr_t) &dummy32->ending_addr)
 561		/* End address of the user specified per set. */
 562		return (__u32) child->thread.per_user.end;
 563	else if (addr == (addr_t) &dummy32->perc_atmid)
 564		/* PER code, ATMID and AI of the last PER trap */
 565		return (__u32) child->thread.per_event.cause << 16;
 566	else if (addr == (addr_t) &dummy32->address)
 567		/* Address of the last PER trap */
 568		return (__u32) child->thread.per_event.address;
 569	else if (addr == (addr_t) &dummy32->access_id)
 570		/* Access id of the last PER trap */
 571		return (__u32) child->thread.per_event.paid << 24;
 572	return 0;
 573}
 574
 575/*
 576 * Same as peek_user but for a 31 bit program.
 577 */
 578static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
 579{
 580	struct compat_user *dummy32 = NULL;
 581	addr_t offset;
 582	__u32 tmp;
 583
 584	if (addr < (addr_t) &dummy32->regs.acrs) {
 585		struct pt_regs *regs = task_pt_regs(child);
 586		/*
 587		 * psw and gprs are stored on the stack
 588		 */
 589		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 590			/* Fake a 31 bit psw mask. */
 591			tmp = (__u32)(regs->psw.mask >> 32);
 592			tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
 593			tmp |= PSW32_USER_BITS;
 594		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 595			/* Fake a 31 bit psw address. */
 596			tmp = (__u32) regs->psw.addr |
 597				(__u32)(regs->psw.mask & PSW_MASK_BA);
 598		} else {
 599			/* gpr 0-15 */
 600			tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
 601		}
 602	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 603		/*
 604		 * access registers are stored in the thread structure
 605		 */
 606		offset = addr - (addr_t) &dummy32->regs.acrs;
 607		tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
 608
 609	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 610		/*
 611		 * orig_gpr2 is stored on the kernel stack
 612		 */
 613		tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
 614
 615	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 616		/*
 617		 * prevent reads of padding hole between
 618		 * orig_gpr2 and fp_regs on s390.
 619		 */
 620		tmp = 0;
 621
 622	} else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
 623		/*
 624		 * floating point control reg. is in the thread structure
 625		 */
 626		tmp = child->thread.fpu.fpc;
 627
 628	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 629		/*
 630		 * floating point regs. are either in child->thread.fpu
 631		 * or the child->thread.fpu.vxrs array
 632		 */
 633		offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
 634		if (MACHINE_HAS_VX)
 635			tmp = *(__u32 *)
 636			       ((addr_t) child->thread.fpu.vxrs + 2*offset);
 637		else
 638			tmp = *(__u32 *)
 639			       ((addr_t) child->thread.fpu.fprs + offset);
 640
 641	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 642		/*
 643		 * Handle access to the per_info structure.
 644		 */
 645		addr -= (addr_t) &dummy32->regs.per_info;
 646		tmp = __peek_user_per_compat(child, addr);
 647
 648	} else
 649		tmp = 0;
 650
 651	return tmp;
 652}
 653
 654static int peek_user_compat(struct task_struct *child,
 655			    addr_t addr, addr_t data)
 656{
 657	__u32 tmp;
 658
 659	if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
 660		return -EIO;
 661
 662	tmp = __peek_user_compat(child, addr);
 663	return put_user(tmp, (__u32 __user *) data);
 664}
 665
 666/*
 667 * Same as poke_user_per but for a 31 bit program.
 668 */
 669static inline void __poke_user_per_compat(struct task_struct *child,
 670					  addr_t addr, __u32 data)
 671{
 672	struct compat_per_struct_kernel *dummy32 = NULL;
 673
 674	if (addr == (addr_t) &dummy32->cr9)
 675		/* PER event mask of the user specified per set. */
 676		child->thread.per_user.control =
 677			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 678	else if (addr == (addr_t) &dummy32->starting_addr)
 679		/* Starting address of the user specified per set. */
 680		child->thread.per_user.start = data;
 681	else if (addr == (addr_t) &dummy32->ending_addr)
 682		/* Ending address of the user specified per set. */
 683		child->thread.per_user.end = data;
 684}
 685
 686/*
 687 * Same as poke_user but for a 31 bit program.
 688 */
 689static int __poke_user_compat(struct task_struct *child,
 690			      addr_t addr, addr_t data)
 691{
 692	struct compat_user *dummy32 = NULL;
 693	__u32 tmp = (__u32) data;
 694	addr_t offset;
 695
 696	if (addr < (addr_t) &dummy32->regs.acrs) {
 697		struct pt_regs *regs = task_pt_regs(child);
 698		/*
 699		 * psw, gprs, acrs and orig_gpr2 are stored on the stack
 700		 */
 701		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 702			__u32 mask = PSW32_MASK_USER;
 703
 704			mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
 705			/* Build a 64 bit psw mask from 31 bit mask. */
 706			if ((tmp ^ PSW32_USER_BITS) & ~mask)
 707				/* Invalid psw mask. */
 708				return -EINVAL;
 709			if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
 710				/* Invalid address-space-control bits */
 711				return -EINVAL;
 712			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
 713				(regs->psw.mask & PSW_MASK_BA) |
 714				(__u64)(tmp & mask) << 32;
 715		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 716			/* Build a 64 bit psw address from 31 bit address. */
 717			regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
 718			/* Transfer 31 bit amode bit to psw mask. */
 719			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
 720				(__u64)(tmp & PSW32_ADDR_AMODE);
 721		} else {
 722			/* gpr 0-15 */
 723			*(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
 724		}
 725	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 726		/*
 727		 * access registers are stored in the thread structure
 728		 */
 729		offset = addr - (addr_t) &dummy32->regs.acrs;
 730		*(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
 731
 732	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 733		/*
 734		 * orig_gpr2 is stored on the kernel stack
 735		 */
 736		*(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
 737
 738	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 739		/*
 740		 * prevent writess of padding hole between
 741		 * orig_gpr2 and fp_regs on s390.
 742		 */
 743		return 0;
 744
 745	} else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
 746		/*
 747		 * floating point control reg. is in the thread structure
 748		 */
 749		if (test_fp_ctl(tmp))
 750			return -EINVAL;
 751		child->thread.fpu.fpc = data;
 752
 753	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 754		/*
 755		 * floating point regs. are either in child->thread.fpu
 756		 * or the child->thread.fpu.vxrs array
 757		 */
 758		offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
 759		if (MACHINE_HAS_VX)
 760			*(__u32 *)((addr_t)
 761				child->thread.fpu.vxrs + 2*offset) = tmp;
 762		else
 763			*(__u32 *)((addr_t)
 764				child->thread.fpu.fprs + offset) = tmp;
 765
 766	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 767		/*
 768		 * Handle access to the per_info structure.
 769		 */
 770		addr -= (addr_t) &dummy32->regs.per_info;
 771		__poke_user_per_compat(child, addr, data);
 772	}
 773
 774	return 0;
 775}
 776
 777static int poke_user_compat(struct task_struct *child,
 778			    addr_t addr, addr_t data)
 779{
 780	if (!is_compat_task() || (addr & 3) ||
 781	    addr > sizeof(struct compat_user) - 3)
 782		return -EIO;
 783
 784	return __poke_user_compat(child, addr, data);
 785}
 786
 787long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
 788			compat_ulong_t caddr, compat_ulong_t cdata)
 789{
 790	unsigned long addr = caddr;
 791	unsigned long data = cdata;
 792	compat_ptrace_area parea;
 793	int copied, ret;
 794
 795	switch (request) {
 796	case PTRACE_PEEKUSR:
 797		/* read the word at location addr in the USER area. */
 798		return peek_user_compat(child, addr, data);
 799
 800	case PTRACE_POKEUSR:
 801		/* write the word at location addr in the USER area */
 802		return poke_user_compat(child, addr, data);
 803
 804	case PTRACE_PEEKUSR_AREA:
 805	case PTRACE_POKEUSR_AREA:
 806		if (copy_from_user(&parea, (void __force __user *) addr,
 807							sizeof(parea)))
 808			return -EFAULT;
 809		addr = parea.kernel_addr;
 810		data = parea.process_addr;
 811		copied = 0;
 812		while (copied < parea.len) {
 813			if (request == PTRACE_PEEKUSR_AREA)
 814				ret = peek_user_compat(child, addr, data);
 815			else {
 816				__u32 utmp;
 817				if (get_user(utmp,
 818					     (__u32 __force __user *) data))
 819					return -EFAULT;
 820				ret = poke_user_compat(child, addr, utmp);
 821			}
 822			if (ret)
 823				return ret;
 824			addr += sizeof(unsigned int);
 825			data += sizeof(unsigned int);
 826			copied += sizeof(unsigned int);
 827		}
 828		return 0;
 829	case PTRACE_GET_LAST_BREAK:
 830		put_user(child->thread.last_break,
 831			 (unsigned int __user *) data);
 832		return 0;
 833	}
 834	return compat_ptrace_request(child, request, addr, data);
 835}
 836#endif
 837
 838asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
 839{
 840	unsigned long mask = -1UL;
 
 
 
 
 
 
 
 841
 842	/*
 843	 * The sysc_tracesys code in entry.S stored the system
 844	 * call number to gprs[2].
 845	 */
 846	if (test_thread_flag(TIF_SYSCALL_TRACE) &&
 847	    (tracehook_report_syscall_entry(regs) ||
 848	     regs->gprs[2] >= NR_syscalls)) {
 849		/*
 850		 * Tracing decided this syscall should not happen or the
 851		 * debugger stored an invalid system call number. Skip
 852		 * the system call and the system call restart handling.
 853		 */
 854		clear_pt_regs_flag(regs, PIF_SYSCALL);
 855		return -1;
 856	}
 857
 858	/* Do the secure computing check after ptrace. */
 859	if (secure_computing(NULL)) {
 860		/* seccomp failures shouldn't expose any additional code. */
 861		return -1;
 862	}
 863
 864	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 865		trace_sys_enter(regs, regs->gprs[2]);
 866
 867	if (is_compat_task())
 868		mask = 0xffffffff;
 869
 870	audit_syscall_entry(regs->gprs[2], regs->orig_gpr2 & mask,
 871			    regs->gprs[3] &mask, regs->gprs[4] &mask,
 872			    regs->gprs[5] &mask);
 873
 874	return regs->gprs[2];
 875}
 876
 877asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
 878{
 879	audit_syscall_exit(regs);
 880
 881	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 882		trace_sys_exit(regs, regs->gprs[2]);
 883
 884	if (test_thread_flag(TIF_SYSCALL_TRACE))
 885		tracehook_report_syscall_exit(regs, 0);
 886}
 887
 888/*
 889 * user_regset definitions.
 890 */
 891
 892static int s390_regs_get(struct task_struct *target,
 893			 const struct user_regset *regset,
 894			 unsigned int pos, unsigned int count,
 895			 void *kbuf, void __user *ubuf)
 896{
 897	if (target == current)
 898		save_access_regs(target->thread.acrs);
 899
 900	if (kbuf) {
 901		unsigned long *k = kbuf;
 902		while (count > 0) {
 903			*k++ = __peek_user(target, pos);
 904			count -= sizeof(*k);
 905			pos += sizeof(*k);
 906		}
 907	} else {
 908		unsigned long __user *u = ubuf;
 909		while (count > 0) {
 910			if (__put_user(__peek_user(target, pos), u++))
 911				return -EFAULT;
 912			count -= sizeof(*u);
 913			pos += sizeof(*u);
 914		}
 915	}
 916	return 0;
 917}
 918
 919static int s390_regs_set(struct task_struct *target,
 920			 const struct user_regset *regset,
 921			 unsigned int pos, unsigned int count,
 922			 const void *kbuf, const void __user *ubuf)
 923{
 924	int rc = 0;
 925
 926	if (target == current)
 927		save_access_regs(target->thread.acrs);
 928
 929	if (kbuf) {
 930		const unsigned long *k = kbuf;
 931		while (count > 0 && !rc) {
 932			rc = __poke_user(target, pos, *k++);
 933			count -= sizeof(*k);
 934			pos += sizeof(*k);
 935		}
 936	} else {
 937		const unsigned long  __user *u = ubuf;
 938		while (count > 0 && !rc) {
 939			unsigned long word;
 940			rc = __get_user(word, u++);
 941			if (rc)
 942				break;
 943			rc = __poke_user(target, pos, word);
 944			count -= sizeof(*u);
 945			pos += sizeof(*u);
 946		}
 947	}
 948
 949	if (rc == 0 && target == current)
 950		restore_access_regs(target->thread.acrs);
 951
 952	return rc;
 953}
 954
 955static int s390_fpregs_get(struct task_struct *target,
 956			   const struct user_regset *regset, unsigned int pos,
 957			   unsigned int count, void *kbuf, void __user *ubuf)
 958{
 959	_s390_fp_regs fp_regs;
 960
 961	if (target == current)
 962		save_fpu_regs();
 963
 964	fp_regs.fpc = target->thread.fpu.fpc;
 965	fpregs_store(&fp_regs, &target->thread.fpu);
 966
 967	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 968				   &fp_regs, 0, -1);
 969}
 970
 971static int s390_fpregs_set(struct task_struct *target,
 972			   const struct user_regset *regset, unsigned int pos,
 973			   unsigned int count, const void *kbuf,
 974			   const void __user *ubuf)
 975{
 976	int rc = 0;
 977	freg_t fprs[__NUM_FPRS];
 978
 979	if (target == current)
 980		save_fpu_regs();
 981
 982	if (MACHINE_HAS_VX)
 983		convert_vx_to_fp(fprs, target->thread.fpu.vxrs);
 984	else
 985		memcpy(&fprs, target->thread.fpu.fprs, sizeof(fprs));
 986
 987	/* If setting FPC, must validate it first. */
 988	if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
 989		u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
 990		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
 991					0, offsetof(s390_fp_regs, fprs));
 992		if (rc)
 993			return rc;
 994		if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
 995			return -EINVAL;
 996		target->thread.fpu.fpc = ufpc[0];
 997	}
 998
 999	if (rc == 0 && count > 0)
1000		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1001					fprs, offsetof(s390_fp_regs, fprs), -1);
1002	if (rc)
1003		return rc;
1004
1005	if (MACHINE_HAS_VX)
1006		convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
1007	else
1008		memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
1009
1010	return rc;
1011}
1012
 
 
1013static int s390_last_break_get(struct task_struct *target,
1014			       const struct user_regset *regset,
1015			       unsigned int pos, unsigned int count,
1016			       void *kbuf, void __user *ubuf)
1017{
1018	if (count > 0) {
1019		if (kbuf) {
1020			unsigned long *k = kbuf;
1021			*k = target->thread.last_break;
1022		} else {
1023			unsigned long  __user *u = ubuf;
1024			if (__put_user(target->thread.last_break, u))
1025				return -EFAULT;
1026		}
1027	}
1028	return 0;
1029}
1030
1031static int s390_last_break_set(struct task_struct *target,
1032			       const struct user_regset *regset,
1033			       unsigned int pos, unsigned int count,
1034			       const void *kbuf, const void __user *ubuf)
1035{
1036	return 0;
1037}
1038
1039static int s390_tdb_get(struct task_struct *target,
1040			const struct user_regset *regset,
1041			unsigned int pos, unsigned int count,
1042			void *kbuf, void __user *ubuf)
1043{
1044	struct pt_regs *regs = task_pt_regs(target);
1045	unsigned char *data;
1046
1047	if (!(regs->int_code & 0x200))
1048		return -ENODATA;
1049	data = target->thread.trap_tdb;
1050	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1051}
1052
1053static int s390_tdb_set(struct task_struct *target,
1054			const struct user_regset *regset,
1055			unsigned int pos, unsigned int count,
1056			const void *kbuf, const void __user *ubuf)
1057{
1058	return 0;
1059}
1060
1061static int s390_vxrs_low_get(struct task_struct *target,
1062			     const struct user_regset *regset,
1063			     unsigned int pos, unsigned int count,
1064			     void *kbuf, void __user *ubuf)
1065{
1066	__u64 vxrs[__NUM_VXRS_LOW];
1067	int i;
1068
1069	if (!MACHINE_HAS_VX)
1070		return -ENODEV;
1071	if (target == current)
1072		save_fpu_regs();
1073	for (i = 0; i < __NUM_VXRS_LOW; i++)
1074		vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1075	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1076}
1077
1078static int s390_vxrs_low_set(struct task_struct *target,
1079			     const struct user_regset *regset,
1080			     unsigned int pos, unsigned int count,
1081			     const void *kbuf, const void __user *ubuf)
1082{
1083	__u64 vxrs[__NUM_VXRS_LOW];
1084	int i, rc;
1085
1086	if (!MACHINE_HAS_VX)
1087		return -ENODEV;
1088	if (target == current)
1089		save_fpu_regs();
1090
1091	for (i = 0; i < __NUM_VXRS_LOW; i++)
1092		vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1093
1094	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1095	if (rc == 0)
1096		for (i = 0; i < __NUM_VXRS_LOW; i++)
1097			*((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1098
1099	return rc;
1100}
1101
1102static int s390_vxrs_high_get(struct task_struct *target,
1103			      const struct user_regset *regset,
1104			      unsigned int pos, unsigned int count,
1105			      void *kbuf, void __user *ubuf)
1106{
1107	__vector128 vxrs[__NUM_VXRS_HIGH];
1108
1109	if (!MACHINE_HAS_VX)
1110		return -ENODEV;
1111	if (target == current)
1112		save_fpu_regs();
1113	memcpy(vxrs, target->thread.fpu.vxrs + __NUM_VXRS_LOW, sizeof(vxrs));
1114
1115	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1116}
1117
1118static int s390_vxrs_high_set(struct task_struct *target,
1119			      const struct user_regset *regset,
1120			      unsigned int pos, unsigned int count,
1121			      const void *kbuf, const void __user *ubuf)
1122{
1123	int rc;
1124
1125	if (!MACHINE_HAS_VX)
1126		return -ENODEV;
1127	if (target == current)
1128		save_fpu_regs();
1129
1130	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1131				target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1132	return rc;
1133}
1134
1135static int s390_system_call_get(struct task_struct *target,
1136				const struct user_regset *regset,
1137				unsigned int pos, unsigned int count,
1138				void *kbuf, void __user *ubuf)
1139{
1140	unsigned int *data = &target->thread.system_call;
1141	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1142				   data, 0, sizeof(unsigned int));
1143}
1144
1145static int s390_system_call_set(struct task_struct *target,
1146				const struct user_regset *regset,
1147				unsigned int pos, unsigned int count,
1148				const void *kbuf, const void __user *ubuf)
1149{
1150	unsigned int *data = &target->thread.system_call;
1151	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1152				  data, 0, sizeof(unsigned int));
1153}
1154
1155static int s390_gs_cb_get(struct task_struct *target,
1156			  const struct user_regset *regset,
1157			  unsigned int pos, unsigned int count,
1158			  void *kbuf, void __user *ubuf)
1159{
1160	struct gs_cb *data = target->thread.gs_cb;
1161
1162	if (!MACHINE_HAS_GS)
1163		return -ENODEV;
1164	if (!data)
1165		return -ENODATA;
1166	if (target == current)
1167		save_gs_cb(data);
1168	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1169				   data, 0, sizeof(struct gs_cb));
1170}
1171
1172static int s390_gs_cb_set(struct task_struct *target,
1173			  const struct user_regset *regset,
1174			  unsigned int pos, unsigned int count,
1175			  const void *kbuf, const void __user *ubuf)
1176{
1177	struct gs_cb gs_cb = { }, *data = NULL;
1178	int rc;
1179
1180	if (!MACHINE_HAS_GS)
1181		return -ENODEV;
1182	if (!target->thread.gs_cb) {
1183		data = kzalloc(sizeof(*data), GFP_KERNEL);
1184		if (!data)
1185			return -ENOMEM;
1186	}
1187	if (!target->thread.gs_cb)
1188		gs_cb.gsd = 25;
1189	else if (target == current)
1190		save_gs_cb(&gs_cb);
1191	else
1192		gs_cb = *target->thread.gs_cb;
1193	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1194				&gs_cb, 0, sizeof(gs_cb));
1195	if (rc) {
1196		kfree(data);
1197		return -EFAULT;
1198	}
1199	preempt_disable();
1200	if (!target->thread.gs_cb)
1201		target->thread.gs_cb = data;
1202	*target->thread.gs_cb = gs_cb;
1203	if (target == current) {
1204		__ctl_set_bit(2, 4);
1205		restore_gs_cb(target->thread.gs_cb);
1206	}
1207	preempt_enable();
1208	return rc;
1209}
1210
1211static int s390_gs_bc_get(struct task_struct *target,
1212			  const struct user_regset *regset,
1213			  unsigned int pos, unsigned int count,
1214			  void *kbuf, void __user *ubuf)
1215{
1216	struct gs_cb *data = target->thread.gs_bc_cb;
1217
1218	if (!MACHINE_HAS_GS)
1219		return -ENODEV;
1220	if (!data)
1221		return -ENODATA;
1222	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1223				   data, 0, sizeof(struct gs_cb));
1224}
1225
1226static int s390_gs_bc_set(struct task_struct *target,
1227			  const struct user_regset *regset,
1228			  unsigned int pos, unsigned int count,
1229			  const void *kbuf, const void __user *ubuf)
1230{
1231	struct gs_cb *data = target->thread.gs_bc_cb;
1232
1233	if (!MACHINE_HAS_GS)
1234		return -ENODEV;
1235	if (!data) {
1236		data = kzalloc(sizeof(*data), GFP_KERNEL);
1237		if (!data)
1238			return -ENOMEM;
1239		target->thread.gs_bc_cb = data;
1240	}
1241	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1242				  data, 0, sizeof(struct gs_cb));
1243}
1244
1245static bool is_ri_cb_valid(struct runtime_instr_cb *cb)
1246{
1247	return (cb->rca & 0x1f) == 0 &&
1248		(cb->roa & 0xfff) == 0 &&
1249		(cb->rla & 0xfff) == 0xfff &&
1250		cb->s == 1 &&
1251		cb->k == 1 &&
1252		cb->h == 0 &&
1253		cb->reserved1 == 0 &&
1254		cb->ps == 1 &&
1255		cb->qs == 0 &&
1256		cb->pc == 1 &&
1257		cb->qc == 0 &&
1258		cb->reserved2 == 0 &&
1259		cb->key == PAGE_DEFAULT_KEY &&
1260		cb->reserved3 == 0 &&
1261		cb->reserved4 == 0 &&
1262		cb->reserved5 == 0 &&
1263		cb->reserved6 == 0 &&
1264		cb->reserved7 == 0 &&
1265		cb->reserved8 == 0 &&
1266		cb->rla >= cb->roa &&
1267		cb->rca >= cb->roa &&
1268		cb->rca <= cb->rla+1 &&
1269		cb->m < 3;
1270}
1271
1272static int s390_runtime_instr_get(struct task_struct *target,
1273				const struct user_regset *regset,
1274				unsigned int pos, unsigned int count,
1275				void *kbuf, void __user *ubuf)
1276{
1277	struct runtime_instr_cb *data = target->thread.ri_cb;
1278
1279	if (!test_facility(64))
1280		return -ENODEV;
1281	if (!data)
1282		return -ENODATA;
1283
1284	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1285				   data, 0, sizeof(struct runtime_instr_cb));
1286}
1287
1288static int s390_runtime_instr_set(struct task_struct *target,
1289				  const struct user_regset *regset,
1290				  unsigned int pos, unsigned int count,
1291				  const void *kbuf, const void __user *ubuf)
1292{
1293	struct runtime_instr_cb ri_cb = { }, *data = NULL;
1294	int rc;
1295
1296	if (!test_facility(64))
1297		return -ENODEV;
1298
1299	if (!target->thread.ri_cb) {
1300		data = kzalloc(sizeof(*data), GFP_KERNEL);
1301		if (!data)
1302			return -ENOMEM;
1303	}
1304
1305	if (target->thread.ri_cb) {
1306		if (target == current)
1307			store_runtime_instr_cb(&ri_cb);
1308		else
1309			ri_cb = *target->thread.ri_cb;
1310	}
1311
1312	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1313				&ri_cb, 0, sizeof(struct runtime_instr_cb));
1314	if (rc) {
1315		kfree(data);
1316		return -EFAULT;
1317	}
1318
1319	if (!is_ri_cb_valid(&ri_cb)) {
1320		kfree(data);
1321		return -EINVAL;
1322	}
1323
1324	preempt_disable();
1325	if (!target->thread.ri_cb)
1326		target->thread.ri_cb = data;
1327	*target->thread.ri_cb = ri_cb;
1328	if (target == current)
1329		load_runtime_instr_cb(target->thread.ri_cb);
1330	preempt_enable();
1331
1332	return 0;
1333}
1334
1335static const struct user_regset s390_regsets[] = {
1336	{
1337		.core_note_type = NT_PRSTATUS,
1338		.n = sizeof(s390_regs) / sizeof(long),
1339		.size = sizeof(long),
1340		.align = sizeof(long),
1341		.get = s390_regs_get,
1342		.set = s390_regs_set,
1343	},
1344	{
1345		.core_note_type = NT_PRFPREG,
1346		.n = sizeof(s390_fp_regs) / sizeof(long),
1347		.size = sizeof(long),
1348		.align = sizeof(long),
1349		.get = s390_fpregs_get,
1350		.set = s390_fpregs_set,
1351	},
1352	{
1353		.core_note_type = NT_S390_SYSTEM_CALL,
1354		.n = 1,
1355		.size = sizeof(unsigned int),
1356		.align = sizeof(unsigned int),
1357		.get = s390_system_call_get,
1358		.set = s390_system_call_set,
1359	},
1360	{
1361		.core_note_type = NT_S390_LAST_BREAK,
1362		.n = 1,
1363		.size = sizeof(long),
1364		.align = sizeof(long),
1365		.get = s390_last_break_get,
1366		.set = s390_last_break_set,
1367	},
1368	{
1369		.core_note_type = NT_S390_TDB,
1370		.n = 1,
1371		.size = 256,
1372		.align = 1,
1373		.get = s390_tdb_get,
1374		.set = s390_tdb_set,
1375	},
1376	{
1377		.core_note_type = NT_S390_VXRS_LOW,
1378		.n = __NUM_VXRS_LOW,
1379		.size = sizeof(__u64),
1380		.align = sizeof(__u64),
1381		.get = s390_vxrs_low_get,
1382		.set = s390_vxrs_low_set,
1383	},
1384	{
1385		.core_note_type = NT_S390_VXRS_HIGH,
1386		.n = __NUM_VXRS_HIGH,
1387		.size = sizeof(__vector128),
1388		.align = sizeof(__vector128),
1389		.get = s390_vxrs_high_get,
1390		.set = s390_vxrs_high_set,
1391	},
1392	{
1393		.core_note_type = NT_S390_GS_CB,
1394		.n = sizeof(struct gs_cb) / sizeof(__u64),
1395		.size = sizeof(__u64),
1396		.align = sizeof(__u64),
1397		.get = s390_gs_cb_get,
1398		.set = s390_gs_cb_set,
1399	},
1400	{
1401		.core_note_type = NT_S390_GS_BC,
1402		.n = sizeof(struct gs_cb) / sizeof(__u64),
1403		.size = sizeof(__u64),
1404		.align = sizeof(__u64),
1405		.get = s390_gs_bc_get,
1406		.set = s390_gs_bc_set,
1407	},
1408	{
1409		.core_note_type = NT_S390_RI_CB,
1410		.n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1411		.size = sizeof(__u64),
1412		.align = sizeof(__u64),
1413		.get = s390_runtime_instr_get,
1414		.set = s390_runtime_instr_set,
1415	},
1416};
1417
1418static const struct user_regset_view user_s390_view = {
1419	.name = UTS_MACHINE,
1420	.e_machine = EM_S390,
1421	.regsets = s390_regsets,
1422	.n = ARRAY_SIZE(s390_regsets)
1423};
1424
1425#ifdef CONFIG_COMPAT
1426static int s390_compat_regs_get(struct task_struct *target,
1427				const struct user_regset *regset,
1428				unsigned int pos, unsigned int count,
1429				void *kbuf, void __user *ubuf)
1430{
1431	if (target == current)
1432		save_access_regs(target->thread.acrs);
1433
1434	if (kbuf) {
1435		compat_ulong_t *k = kbuf;
1436		while (count > 0) {
1437			*k++ = __peek_user_compat(target, pos);
1438			count -= sizeof(*k);
1439			pos += sizeof(*k);
1440		}
1441	} else {
1442		compat_ulong_t __user *u = ubuf;
1443		while (count > 0) {
1444			if (__put_user(__peek_user_compat(target, pos), u++))
1445				return -EFAULT;
1446			count -= sizeof(*u);
1447			pos += sizeof(*u);
1448		}
1449	}
1450	return 0;
1451}
1452
1453static int s390_compat_regs_set(struct task_struct *target,
1454				const struct user_regset *regset,
1455				unsigned int pos, unsigned int count,
1456				const void *kbuf, const void __user *ubuf)
1457{
1458	int rc = 0;
1459
1460	if (target == current)
1461		save_access_regs(target->thread.acrs);
1462
1463	if (kbuf) {
1464		const compat_ulong_t *k = kbuf;
1465		while (count > 0 && !rc) {
1466			rc = __poke_user_compat(target, pos, *k++);
1467			count -= sizeof(*k);
1468			pos += sizeof(*k);
1469		}
1470	} else {
1471		const compat_ulong_t  __user *u = ubuf;
1472		while (count > 0 && !rc) {
1473			compat_ulong_t word;
1474			rc = __get_user(word, u++);
1475			if (rc)
1476				break;
1477			rc = __poke_user_compat(target, pos, word);
1478			count -= sizeof(*u);
1479			pos += sizeof(*u);
1480		}
1481	}
1482
1483	if (rc == 0 && target == current)
1484		restore_access_regs(target->thread.acrs);
1485
1486	return rc;
1487}
1488
1489static int s390_compat_regs_high_get(struct task_struct *target,
1490				     const struct user_regset *regset,
1491				     unsigned int pos, unsigned int count,
1492				     void *kbuf, void __user *ubuf)
1493{
1494	compat_ulong_t *gprs_high;
1495
1496	gprs_high = (compat_ulong_t *)
1497		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1498	if (kbuf) {
1499		compat_ulong_t *k = kbuf;
1500		while (count > 0) {
1501			*k++ = *gprs_high;
1502			gprs_high += 2;
1503			count -= sizeof(*k);
1504		}
1505	} else {
1506		compat_ulong_t __user *u = ubuf;
1507		while (count > 0) {
1508			if (__put_user(*gprs_high, u++))
1509				return -EFAULT;
1510			gprs_high += 2;
1511			count -= sizeof(*u);
1512		}
1513	}
1514	return 0;
1515}
1516
1517static int s390_compat_regs_high_set(struct task_struct *target,
1518				     const struct user_regset *regset,
1519				     unsigned int pos, unsigned int count,
1520				     const void *kbuf, const void __user *ubuf)
1521{
1522	compat_ulong_t *gprs_high;
1523	int rc = 0;
1524
1525	gprs_high = (compat_ulong_t *)
1526		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1527	if (kbuf) {
1528		const compat_ulong_t *k = kbuf;
1529		while (count > 0) {
1530			*gprs_high = *k++;
1531			*gprs_high += 2;
1532			count -= sizeof(*k);
1533		}
1534	} else {
1535		const compat_ulong_t  __user *u = ubuf;
1536		while (count > 0 && !rc) {
1537			unsigned long word;
1538			rc = __get_user(word, u++);
1539			if (rc)
1540				break;
1541			*gprs_high = word;
1542			*gprs_high += 2;
1543			count -= sizeof(*u);
1544		}
1545	}
1546
1547	return rc;
1548}
1549
1550static int s390_compat_last_break_get(struct task_struct *target,
1551				      const struct user_regset *regset,
1552				      unsigned int pos, unsigned int count,
1553				      void *kbuf, void __user *ubuf)
1554{
1555	compat_ulong_t last_break;
1556
1557	if (count > 0) {
1558		last_break = target->thread.last_break;
1559		if (kbuf) {
1560			unsigned long *k = kbuf;
1561			*k = last_break;
1562		} else {
1563			unsigned long  __user *u = ubuf;
1564			if (__put_user(last_break, u))
1565				return -EFAULT;
1566		}
1567	}
1568	return 0;
1569}
1570
1571static int s390_compat_last_break_set(struct task_struct *target,
1572				      const struct user_regset *regset,
1573				      unsigned int pos, unsigned int count,
1574				      const void *kbuf, const void __user *ubuf)
1575{
1576	return 0;
1577}
1578
1579static const struct user_regset s390_compat_regsets[] = {
1580	{
1581		.core_note_type = NT_PRSTATUS,
1582		.n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1583		.size = sizeof(compat_long_t),
1584		.align = sizeof(compat_long_t),
1585		.get = s390_compat_regs_get,
1586		.set = s390_compat_regs_set,
1587	},
1588	{
1589		.core_note_type = NT_PRFPREG,
1590		.n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1591		.size = sizeof(compat_long_t),
1592		.align = sizeof(compat_long_t),
1593		.get = s390_fpregs_get,
1594		.set = s390_fpregs_set,
1595	},
1596	{
1597		.core_note_type = NT_S390_SYSTEM_CALL,
1598		.n = 1,
1599		.size = sizeof(compat_uint_t),
1600		.align = sizeof(compat_uint_t),
1601		.get = s390_system_call_get,
1602		.set = s390_system_call_set,
1603	},
1604	{
1605		.core_note_type = NT_S390_LAST_BREAK,
1606		.n = 1,
1607		.size = sizeof(long),
1608		.align = sizeof(long),
1609		.get = s390_compat_last_break_get,
1610		.set = s390_compat_last_break_set,
1611	},
1612	{
1613		.core_note_type = NT_S390_TDB,
1614		.n = 1,
1615		.size = 256,
1616		.align = 1,
1617		.get = s390_tdb_get,
1618		.set = s390_tdb_set,
1619	},
1620	{
1621		.core_note_type = NT_S390_VXRS_LOW,
1622		.n = __NUM_VXRS_LOW,
1623		.size = sizeof(__u64),
1624		.align = sizeof(__u64),
1625		.get = s390_vxrs_low_get,
1626		.set = s390_vxrs_low_set,
1627	},
1628	{
1629		.core_note_type = NT_S390_VXRS_HIGH,
1630		.n = __NUM_VXRS_HIGH,
1631		.size = sizeof(__vector128),
1632		.align = sizeof(__vector128),
1633		.get = s390_vxrs_high_get,
1634		.set = s390_vxrs_high_set,
1635	},
1636	{
1637		.core_note_type = NT_S390_HIGH_GPRS,
1638		.n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1639		.size = sizeof(compat_long_t),
1640		.align = sizeof(compat_long_t),
1641		.get = s390_compat_regs_high_get,
1642		.set = s390_compat_regs_high_set,
1643	},
1644	{
1645		.core_note_type = NT_S390_GS_CB,
1646		.n = sizeof(struct gs_cb) / sizeof(__u64),
1647		.size = sizeof(__u64),
1648		.align = sizeof(__u64),
1649		.get = s390_gs_cb_get,
1650		.set = s390_gs_cb_set,
1651	},
1652	{
1653		.core_note_type = NT_S390_GS_BC,
1654		.n = sizeof(struct gs_cb) / sizeof(__u64),
1655		.size = sizeof(__u64),
1656		.align = sizeof(__u64),
1657		.get = s390_gs_bc_get,
1658		.set = s390_gs_bc_set,
1659	},
1660	{
1661		.core_note_type = NT_S390_RI_CB,
1662		.n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1663		.size = sizeof(__u64),
1664		.align = sizeof(__u64),
1665		.get = s390_runtime_instr_get,
1666		.set = s390_runtime_instr_set,
1667	},
1668};
1669
1670static const struct user_regset_view user_s390_compat_view = {
1671	.name = "s390",
1672	.e_machine = EM_S390,
1673	.regsets = s390_compat_regsets,
1674	.n = ARRAY_SIZE(s390_compat_regsets)
1675};
1676#endif
1677
1678const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1679{
1680#ifdef CONFIG_COMPAT
1681	if (test_tsk_thread_flag(task, TIF_31BIT))
1682		return &user_s390_compat_view;
1683#endif
1684	return &user_s390_view;
1685}
1686
1687static const char *gpr_names[NUM_GPRS] = {
1688	"r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1689	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1690};
1691
1692unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1693{
1694	if (offset >= NUM_GPRS)
1695		return 0;
1696	return regs->gprs[offset];
1697}
1698
1699int regs_query_register_offset(const char *name)
1700{
1701	unsigned long offset;
1702
1703	if (!name || *name != 'r')
1704		return -EINVAL;
1705	if (kstrtoul(name + 1, 10, &offset))
1706		return -EINVAL;
1707	if (offset >= NUM_GPRS)
1708		return -EINVAL;
1709	return offset;
1710}
1711
1712const char *regs_query_register_name(unsigned int offset)
1713{
1714	if (offset >= NUM_GPRS)
1715		return NULL;
1716	return gpr_names[offset];
1717}
1718
1719static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1720{
1721	unsigned long ksp = kernel_stack_pointer(regs);
1722
1723	return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1724}
1725
1726/**
1727 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1728 * @regs:pt_regs which contains kernel stack pointer.
1729 * @n:stack entry number.
1730 *
1731 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1732 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1733 * this returns 0.
1734 */
1735unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1736{
1737	unsigned long addr;
1738
1739	addr = kernel_stack_pointer(regs) + n * sizeof(long);
1740	if (!regs_within_kernel_stack(regs, addr))
1741		return 0;
1742	return *(unsigned long *)addr;
1743}
v3.15
 
   1/*
   2 *  Ptrace user space interface.
   3 *
   4 *    Copyright IBM Corp. 1999, 2010
   5 *    Author(s): Denis Joseph Barrow
   6 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/sched.h>
 
  11#include <linux/mm.h>
  12#include <linux/smp.h>
  13#include <linux/errno.h>
  14#include <linux/ptrace.h>
  15#include <linux/user.h>
  16#include <linux/security.h>
  17#include <linux/audit.h>
  18#include <linux/signal.h>
  19#include <linux/elf.h>
  20#include <linux/regset.h>
  21#include <linux/tracehook.h>
  22#include <linux/seccomp.h>
  23#include <linux/compat.h>
  24#include <trace/syscall.h>
  25#include <asm/segment.h>
  26#include <asm/page.h>
  27#include <asm/pgtable.h>
  28#include <asm/pgalloc.h>
  29#include <asm/uaccess.h>
  30#include <asm/unistd.h>
  31#include <asm/switch_to.h>
 
 
 
  32#include "entry.h"
  33
  34#ifdef CONFIG_COMPAT
  35#include "compat_ptrace.h"
  36#endif
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/syscalls.h>
  40
  41enum s390_regset {
  42	REGSET_GENERAL,
  43	REGSET_FP,
  44	REGSET_LAST_BREAK,
  45	REGSET_TDB,
  46	REGSET_SYSTEM_CALL,
  47	REGSET_GENERAL_EXTENDED,
  48};
  49
  50void update_cr_regs(struct task_struct *task)
  51{
  52	struct pt_regs *regs = task_pt_regs(task);
  53	struct thread_struct *thread = &task->thread;
  54	struct per_regs old, new;
  55
  56#ifdef CONFIG_64BIT
 
 
 
 
 
 
  57	/* Take care of the enable/disable of transactional execution. */
  58	if (MACHINE_HAS_TE) {
  59		unsigned long cr, cr_new;
  60
  61		__ctl_store(cr, 0, 0);
  62		/* Set or clear transaction execution TXC bit 8. */
  63		cr_new = cr | (1UL << 55);
  64		if (task->thread.per_flags & PER_FLAG_NO_TE)
  65			cr_new &= ~(1UL << 55);
  66		if (cr_new != cr)
  67			__ctl_load(cr_new, 0, 0);
  68		/* Set or clear transaction execution TDC bits 62 and 63. */
  69		__ctl_store(cr, 2, 2);
  70		cr_new = cr & ~3UL;
  71		if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
  72			if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
  73				cr_new |= 1UL;
  74			else
  75				cr_new |= 2UL;
  76		}
  77		if (cr_new != cr)
  78			__ctl_load(cr_new, 2, 2);
  79	}
  80#endif
 
 
 
 
 
 
 
 
 
 
 
 
  81	/* Copy user specified PER registers */
  82	new.control = thread->per_user.control;
  83	new.start = thread->per_user.start;
  84	new.end = thread->per_user.end;
  85
  86	/* merge TIF_SINGLE_STEP into user specified PER registers. */
  87	if (test_tsk_thread_flag(task, TIF_SINGLE_STEP)) {
 
  88		if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
  89			new.control |= PER_EVENT_BRANCH;
  90		else
  91			new.control |= PER_EVENT_IFETCH;
  92#ifdef CONFIG_64BIT
  93		new.control |= PER_CONTROL_SUSPENSION;
  94		new.control |= PER_EVENT_TRANSACTION_END;
  95#endif
 
  96		new.start = 0;
  97		new.end = PSW_ADDR_INSN;
  98	}
  99
 100	/* Take care of the PER enablement bit in the PSW. */
 101	if (!(new.control & PER_EVENT_MASK)) {
 102		regs->psw.mask &= ~PSW_MASK_PER;
 103		return;
 104	}
 105	regs->psw.mask |= PSW_MASK_PER;
 106	__ctl_store(old, 9, 11);
 107	if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
 108		__ctl_load(new, 9, 11);
 109}
 110
 111void user_enable_single_step(struct task_struct *task)
 112{
 113	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 114	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 115}
 116
 117void user_disable_single_step(struct task_struct *task)
 118{
 119	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 120	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 121}
 122
 123void user_enable_block_step(struct task_struct *task)
 124{
 125	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 126	set_tsk_thread_flag(task, TIF_BLOCK_STEP);
 127}
 128
 129/*
 130 * Called by kernel/ptrace.c when detaching..
 131 *
 132 * Clear all debugging related fields.
 133 */
 134void ptrace_disable(struct task_struct *task)
 135{
 136	memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
 137	memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
 138	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 139	clear_tsk_thread_flag(task, TIF_PER_TRAP);
 140	task->thread.per_flags = 0;
 141}
 142
 143#ifndef CONFIG_64BIT
 144# define __ADDR_MASK 3
 145#else
 146# define __ADDR_MASK 7
 147#endif
 148
 149static inline unsigned long __peek_user_per(struct task_struct *child,
 150					    addr_t addr)
 151{
 152	struct per_struct_kernel *dummy = NULL;
 153
 154	if (addr == (addr_t) &dummy->cr9)
 155		/* Control bits of the active per set. */
 156		return test_thread_flag(TIF_SINGLE_STEP) ?
 157			PER_EVENT_IFETCH : child->thread.per_user.control;
 158	else if (addr == (addr_t) &dummy->cr10)
 159		/* Start address of the active per set. */
 160		return test_thread_flag(TIF_SINGLE_STEP) ?
 161			0 : child->thread.per_user.start;
 162	else if (addr == (addr_t) &dummy->cr11)
 163		/* End address of the active per set. */
 164		return test_thread_flag(TIF_SINGLE_STEP) ?
 165			PSW_ADDR_INSN : child->thread.per_user.end;
 166	else if (addr == (addr_t) &dummy->bits)
 167		/* Single-step bit. */
 168		return test_thread_flag(TIF_SINGLE_STEP) ?
 169			(1UL << (BITS_PER_LONG - 1)) : 0;
 170	else if (addr == (addr_t) &dummy->starting_addr)
 171		/* Start address of the user specified per set. */
 172		return child->thread.per_user.start;
 173	else if (addr == (addr_t) &dummy->ending_addr)
 174		/* End address of the user specified per set. */
 175		return child->thread.per_user.end;
 176	else if (addr == (addr_t) &dummy->perc_atmid)
 177		/* PER code, ATMID and AI of the last PER trap */
 178		return (unsigned long)
 179			child->thread.per_event.cause << (BITS_PER_LONG - 16);
 180	else if (addr == (addr_t) &dummy->address)
 181		/* Address of the last PER trap */
 182		return child->thread.per_event.address;
 183	else if (addr == (addr_t) &dummy->access_id)
 184		/* Access id of the last PER trap */
 185		return (unsigned long)
 186			child->thread.per_event.paid << (BITS_PER_LONG - 8);
 187	return 0;
 188}
 189
 190/*
 191 * Read the word at offset addr from the user area of a process. The
 192 * trouble here is that the information is littered over different
 193 * locations. The process registers are found on the kernel stack,
 194 * the floating point stuff and the trace settings are stored in
 195 * the task structure. In addition the different structures in
 196 * struct user contain pad bytes that should be read as zeroes.
 197 * Lovely...
 198 */
 199static unsigned long __peek_user(struct task_struct *child, addr_t addr)
 200{
 201	struct user *dummy = NULL;
 202	addr_t offset, tmp;
 203
 204	if (addr < (addr_t) &dummy->regs.acrs) {
 205		/*
 206		 * psw and gprs are stored on the stack
 207		 */
 208		tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
 209		if (addr == (addr_t) &dummy->regs.psw.mask) {
 210			/* Return a clean psw mask. */
 211			tmp &= PSW_MASK_USER | PSW_MASK_RI;
 212			tmp |= PSW_USER_BITS;
 213		}
 214
 215	} else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
 216		/*
 217		 * access registers are stored in the thread structure
 218		 */
 219		offset = addr - (addr_t) &dummy->regs.acrs;
 220#ifdef CONFIG_64BIT
 221		/*
 222		 * Very special case: old & broken 64 bit gdb reading
 223		 * from acrs[15]. Result is a 64 bit value. Read the
 224		 * 32 bit acrs[15] value and shift it by 32. Sick...
 225		 */
 226		if (addr == (addr_t) &dummy->regs.acrs[15])
 227			tmp = ((unsigned long) child->thread.acrs[15]) << 32;
 228		else
 229#endif
 230		tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
 231
 232	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 233		/*
 234		 * orig_gpr2 is stored on the kernel stack
 235		 */
 236		tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
 237
 238	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 239		/*
 240		 * prevent reads of padding hole between
 241		 * orig_gpr2 and fp_regs on s390.
 242		 */
 243		tmp = 0;
 244
 
 
 
 
 
 
 
 245	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 246		/* 
 247		 * floating point regs. are stored in the thread structure
 
 248		 */
 249		offset = addr - (addr_t) &dummy->regs.fp_regs;
 250		tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset);
 251		if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
 252			tmp <<= BITS_PER_LONG - 32;
 
 
 
 253
 254	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 255		/*
 256		 * Handle access to the per_info structure.
 257		 */
 258		addr -= (addr_t) &dummy->regs.per_info;
 259		tmp = __peek_user_per(child, addr);
 260
 261	} else
 262		tmp = 0;
 263
 264	return tmp;
 265}
 266
 267static int
 268peek_user(struct task_struct *child, addr_t addr, addr_t data)
 269{
 270	addr_t tmp, mask;
 271
 272	/*
 273	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 274	 * an alignment of 4. Programmers from hell...
 275	 */
 276	mask = __ADDR_MASK;
 277#ifdef CONFIG_64BIT
 278	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 279	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 280		mask = 3;
 281#endif
 282	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 283		return -EIO;
 284
 285	tmp = __peek_user(child, addr);
 286	return put_user(tmp, (addr_t __user *) data);
 287}
 288
 289static inline void __poke_user_per(struct task_struct *child,
 290				   addr_t addr, addr_t data)
 291{
 292	struct per_struct_kernel *dummy = NULL;
 293
 294	/*
 295	 * There are only three fields in the per_info struct that the
 296	 * debugger user can write to.
 297	 * 1) cr9: the debugger wants to set a new PER event mask
 298	 * 2) starting_addr: the debugger wants to set a new starting
 299	 *    address to use with the PER event mask.
 300	 * 3) ending_addr: the debugger wants to set a new ending
 301	 *    address to use with the PER event mask.
 302	 * The user specified PER event mask and the start and end
 303	 * addresses are used only if single stepping is not in effect.
 304	 * Writes to any other field in per_info are ignored.
 305	 */
 306	if (addr == (addr_t) &dummy->cr9)
 307		/* PER event mask of the user specified per set. */
 308		child->thread.per_user.control =
 309			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 310	else if (addr == (addr_t) &dummy->starting_addr)
 311		/* Starting address of the user specified per set. */
 312		child->thread.per_user.start = data;
 313	else if (addr == (addr_t) &dummy->ending_addr)
 314		/* Ending address of the user specified per set. */
 315		child->thread.per_user.end = data;
 316}
 317
 318/*
 319 * Write a word to the user area of a process at location addr. This
 320 * operation does have an additional problem compared to peek_user.
 321 * Stores to the program status word and on the floating point
 322 * control register needs to get checked for validity.
 323 */
 324static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
 325{
 326	struct user *dummy = NULL;
 327	addr_t offset;
 328
 329	if (addr < (addr_t) &dummy->regs.acrs) {
 330		/*
 331		 * psw and gprs are stored on the stack
 332		 */
 333		if (addr == (addr_t) &dummy->regs.psw.mask) {
 334			unsigned long mask = PSW_MASK_USER;
 335
 336			mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
 337			if ((data & ~mask) != PSW_USER_BITS)
 
 
 
 
 338				return -EINVAL;
 339			if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
 
 340				return -EINVAL;
 341		}
 342		*(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
 343
 344	} else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
 345		/*
 346		 * access registers are stored in the thread structure
 347		 */
 348		offset = addr - (addr_t) &dummy->regs.acrs;
 349#ifdef CONFIG_64BIT
 350		/*
 351		 * Very special case: old & broken 64 bit gdb writing
 352		 * to acrs[15] with a 64 bit value. Ignore the lower
 353		 * half of the value and write the upper 32 bit to
 354		 * acrs[15]. Sick...
 355		 */
 356		if (addr == (addr_t) &dummy->regs.acrs[15])
 357			child->thread.acrs[15] = (unsigned int) (data >> 32);
 358		else
 359#endif
 360		*(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
 361
 362	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 363		/*
 364		 * orig_gpr2 is stored on the kernel stack
 365		 */
 366		task_pt_regs(child)->orig_gpr2 = data;
 367
 368	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 369		/*
 370		 * prevent writes of padding hole between
 371		 * orig_gpr2 and fp_regs on s390.
 372		 */
 373		return 0;
 374
 
 
 
 
 
 
 
 
 
 375	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 376		/*
 377		 * floating point regs. are stored in the thread structure
 
 378		 */
 379		if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
 380			if ((unsigned int) data != 0 ||
 381			    test_fp_ctl(data >> (BITS_PER_LONG - 32)))
 382				return -EINVAL;
 383		offset = addr - (addr_t) &dummy->regs.fp_regs;
 384		*(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data;
 
 385
 386	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 387		/*
 388		 * Handle access to the per_info structure.
 389		 */
 390		addr -= (addr_t) &dummy->regs.per_info;
 391		__poke_user_per(child, addr, data);
 392
 393	}
 394
 395	return 0;
 396}
 397
 398static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
 399{
 400	addr_t mask;
 401
 402	/*
 403	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 404	 * an alignment of 4. Programmers from hell indeed...
 405	 */
 406	mask = __ADDR_MASK;
 407#ifdef CONFIG_64BIT
 408	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 409	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 410		mask = 3;
 411#endif
 412	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 413		return -EIO;
 414
 415	return __poke_user(child, addr, data);
 416}
 417
 418long arch_ptrace(struct task_struct *child, long request,
 419		 unsigned long addr, unsigned long data)
 420{
 421	ptrace_area parea; 
 422	int copied, ret;
 423
 424	switch (request) {
 425	case PTRACE_PEEKUSR:
 426		/* read the word at location addr in the USER area. */
 427		return peek_user(child, addr, data);
 428
 429	case PTRACE_POKEUSR:
 430		/* write the word at location addr in the USER area */
 431		return poke_user(child, addr, data);
 432
 433	case PTRACE_PEEKUSR_AREA:
 434	case PTRACE_POKEUSR_AREA:
 435		if (copy_from_user(&parea, (void __force __user *) addr,
 436							sizeof(parea)))
 437			return -EFAULT;
 438		addr = parea.kernel_addr;
 439		data = parea.process_addr;
 440		copied = 0;
 441		while (copied < parea.len) {
 442			if (request == PTRACE_PEEKUSR_AREA)
 443				ret = peek_user(child, addr, data);
 444			else {
 445				addr_t utmp;
 446				if (get_user(utmp,
 447					     (addr_t __force __user *) data))
 448					return -EFAULT;
 449				ret = poke_user(child, addr, utmp);
 450			}
 451			if (ret)
 452				return ret;
 453			addr += sizeof(unsigned long);
 454			data += sizeof(unsigned long);
 455			copied += sizeof(unsigned long);
 456		}
 457		return 0;
 458	case PTRACE_GET_LAST_BREAK:
 459		put_user(task_thread_info(child)->last_break,
 460			 (unsigned long __user *) data);
 461		return 0;
 462	case PTRACE_ENABLE_TE:
 463		if (!MACHINE_HAS_TE)
 464			return -EIO;
 465		child->thread.per_flags &= ~PER_FLAG_NO_TE;
 466		return 0;
 467	case PTRACE_DISABLE_TE:
 468		if (!MACHINE_HAS_TE)
 469			return -EIO;
 470		child->thread.per_flags |= PER_FLAG_NO_TE;
 471		child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 472		return 0;
 473	case PTRACE_TE_ABORT_RAND:
 474		if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
 475			return -EIO;
 476		switch (data) {
 477		case 0UL:
 478			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 479			break;
 480		case 1UL:
 481			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 482			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
 483			break;
 484		case 2UL:
 485			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 486			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
 487			break;
 488		default:
 489			return -EINVAL;
 490		}
 491		return 0;
 492	default:
 493		/* Removing high order bit from addr (only for 31 bit). */
 494		addr &= PSW_ADDR_INSN;
 495		return ptrace_request(child, request, addr, data);
 496	}
 497}
 498
 499#ifdef CONFIG_COMPAT
 500/*
 501 * Now the fun part starts... a 31 bit program running in the
 502 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
 503 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
 504 * to handle, the difference to the 64 bit versions of the requests
 505 * is that the access is done in multiples of 4 byte instead of
 506 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
 507 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
 508 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
 509 * is a 31 bit program too, the content of struct user can be
 510 * emulated. A 31 bit program peeking into the struct user of
 511 * a 64 bit program is a no-no.
 512 */
 513
 514/*
 515 * Same as peek_user_per but for a 31 bit program.
 516 */
 517static inline __u32 __peek_user_per_compat(struct task_struct *child,
 518					   addr_t addr)
 519{
 520	struct compat_per_struct_kernel *dummy32 = NULL;
 521
 522	if (addr == (addr_t) &dummy32->cr9)
 523		/* Control bits of the active per set. */
 524		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 525			PER_EVENT_IFETCH : child->thread.per_user.control;
 526	else if (addr == (addr_t) &dummy32->cr10)
 527		/* Start address of the active per set. */
 528		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 529			0 : child->thread.per_user.start;
 530	else if (addr == (addr_t) &dummy32->cr11)
 531		/* End address of the active per set. */
 532		return test_thread_flag(TIF_SINGLE_STEP) ?
 533			PSW32_ADDR_INSN : child->thread.per_user.end;
 534	else if (addr == (addr_t) &dummy32->bits)
 535		/* Single-step bit. */
 536		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 537			0x80000000 : 0;
 538	else if (addr == (addr_t) &dummy32->starting_addr)
 539		/* Start address of the user specified per set. */
 540		return (__u32) child->thread.per_user.start;
 541	else if (addr == (addr_t) &dummy32->ending_addr)
 542		/* End address of the user specified per set. */
 543		return (__u32) child->thread.per_user.end;
 544	else if (addr == (addr_t) &dummy32->perc_atmid)
 545		/* PER code, ATMID and AI of the last PER trap */
 546		return (__u32) child->thread.per_event.cause << 16;
 547	else if (addr == (addr_t) &dummy32->address)
 548		/* Address of the last PER trap */
 549		return (__u32) child->thread.per_event.address;
 550	else if (addr == (addr_t) &dummy32->access_id)
 551		/* Access id of the last PER trap */
 552		return (__u32) child->thread.per_event.paid << 24;
 553	return 0;
 554}
 555
 556/*
 557 * Same as peek_user but for a 31 bit program.
 558 */
 559static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
 560{
 561	struct compat_user *dummy32 = NULL;
 562	addr_t offset;
 563	__u32 tmp;
 564
 565	if (addr < (addr_t) &dummy32->regs.acrs) {
 566		struct pt_regs *regs = task_pt_regs(child);
 567		/*
 568		 * psw and gprs are stored on the stack
 569		 */
 570		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 571			/* Fake a 31 bit psw mask. */
 572			tmp = (__u32)(regs->psw.mask >> 32);
 573			tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
 574			tmp |= PSW32_USER_BITS;
 575		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 576			/* Fake a 31 bit psw address. */
 577			tmp = (__u32) regs->psw.addr |
 578				(__u32)(regs->psw.mask & PSW_MASK_BA);
 579		} else {
 580			/* gpr 0-15 */
 581			tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
 582		}
 583	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 584		/*
 585		 * access registers are stored in the thread structure
 586		 */
 587		offset = addr - (addr_t) &dummy32->regs.acrs;
 588		tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
 589
 590	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 591		/*
 592		 * orig_gpr2 is stored on the kernel stack
 593		 */
 594		tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
 595
 596	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 597		/*
 598		 * prevent reads of padding hole between
 599		 * orig_gpr2 and fp_regs on s390.
 600		 */
 601		tmp = 0;
 602
 
 
 
 
 
 
 603	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 604		/*
 605		 * floating point regs. are stored in the thread structure 
 
 606		 */
 607	        offset = addr - (addr_t) &dummy32->regs.fp_regs;
 608		tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset);
 
 
 
 
 
 609
 610	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 611		/*
 612		 * Handle access to the per_info structure.
 613		 */
 614		addr -= (addr_t) &dummy32->regs.per_info;
 615		tmp = __peek_user_per_compat(child, addr);
 616
 617	} else
 618		tmp = 0;
 619
 620	return tmp;
 621}
 622
 623static int peek_user_compat(struct task_struct *child,
 624			    addr_t addr, addr_t data)
 625{
 626	__u32 tmp;
 627
 628	if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
 629		return -EIO;
 630
 631	tmp = __peek_user_compat(child, addr);
 632	return put_user(tmp, (__u32 __user *) data);
 633}
 634
 635/*
 636 * Same as poke_user_per but for a 31 bit program.
 637 */
 638static inline void __poke_user_per_compat(struct task_struct *child,
 639					  addr_t addr, __u32 data)
 640{
 641	struct compat_per_struct_kernel *dummy32 = NULL;
 642
 643	if (addr == (addr_t) &dummy32->cr9)
 644		/* PER event mask of the user specified per set. */
 645		child->thread.per_user.control =
 646			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 647	else if (addr == (addr_t) &dummy32->starting_addr)
 648		/* Starting address of the user specified per set. */
 649		child->thread.per_user.start = data;
 650	else if (addr == (addr_t) &dummy32->ending_addr)
 651		/* Ending address of the user specified per set. */
 652		child->thread.per_user.end = data;
 653}
 654
 655/*
 656 * Same as poke_user but for a 31 bit program.
 657 */
 658static int __poke_user_compat(struct task_struct *child,
 659			      addr_t addr, addr_t data)
 660{
 661	struct compat_user *dummy32 = NULL;
 662	__u32 tmp = (__u32) data;
 663	addr_t offset;
 664
 665	if (addr < (addr_t) &dummy32->regs.acrs) {
 666		struct pt_regs *regs = task_pt_regs(child);
 667		/*
 668		 * psw, gprs, acrs and orig_gpr2 are stored on the stack
 669		 */
 670		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 671			__u32 mask = PSW32_MASK_USER;
 672
 673			mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
 674			/* Build a 64 bit psw mask from 31 bit mask. */
 675			if ((tmp & ~mask) != PSW32_USER_BITS)
 676				/* Invalid psw mask. */
 677				return -EINVAL;
 
 
 
 678			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
 679				(regs->psw.mask & PSW_MASK_BA) |
 680				(__u64)(tmp & mask) << 32;
 681		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 682			/* Build a 64 bit psw address from 31 bit address. */
 683			regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
 684			/* Transfer 31 bit amode bit to psw mask. */
 685			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
 686				(__u64)(tmp & PSW32_ADDR_AMODE);
 687		} else {
 688			/* gpr 0-15 */
 689			*(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
 690		}
 691	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 692		/*
 693		 * access registers are stored in the thread structure
 694		 */
 695		offset = addr - (addr_t) &dummy32->regs.acrs;
 696		*(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
 697
 698	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 699		/*
 700		 * orig_gpr2 is stored on the kernel stack
 701		 */
 702		*(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
 703
 704	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 705		/*
 706		 * prevent writess of padding hole between
 707		 * orig_gpr2 and fp_regs on s390.
 708		 */
 709		return 0;
 710
 
 
 
 
 
 
 
 
 711	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 712		/*
 713		 * floating point regs. are stored in the thread structure 
 
 714		 */
 715		if (addr == (addr_t) &dummy32->regs.fp_regs.fpc &&
 716		    test_fp_ctl(tmp))
 717			return -EINVAL;
 718	        offset = addr - (addr_t) &dummy32->regs.fp_regs;
 719		*(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp;
 
 
 720
 721	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 722		/*
 723		 * Handle access to the per_info structure.
 724		 */
 725		addr -= (addr_t) &dummy32->regs.per_info;
 726		__poke_user_per_compat(child, addr, data);
 727	}
 728
 729	return 0;
 730}
 731
 732static int poke_user_compat(struct task_struct *child,
 733			    addr_t addr, addr_t data)
 734{
 735	if (!is_compat_task() || (addr & 3) ||
 736	    addr > sizeof(struct compat_user) - 3)
 737		return -EIO;
 738
 739	return __poke_user_compat(child, addr, data);
 740}
 741
 742long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
 743			compat_ulong_t caddr, compat_ulong_t cdata)
 744{
 745	unsigned long addr = caddr;
 746	unsigned long data = cdata;
 747	compat_ptrace_area parea;
 748	int copied, ret;
 749
 750	switch (request) {
 751	case PTRACE_PEEKUSR:
 752		/* read the word at location addr in the USER area. */
 753		return peek_user_compat(child, addr, data);
 754
 755	case PTRACE_POKEUSR:
 756		/* write the word at location addr in the USER area */
 757		return poke_user_compat(child, addr, data);
 758
 759	case PTRACE_PEEKUSR_AREA:
 760	case PTRACE_POKEUSR_AREA:
 761		if (copy_from_user(&parea, (void __force __user *) addr,
 762							sizeof(parea)))
 763			return -EFAULT;
 764		addr = parea.kernel_addr;
 765		data = parea.process_addr;
 766		copied = 0;
 767		while (copied < parea.len) {
 768			if (request == PTRACE_PEEKUSR_AREA)
 769				ret = peek_user_compat(child, addr, data);
 770			else {
 771				__u32 utmp;
 772				if (get_user(utmp,
 773					     (__u32 __force __user *) data))
 774					return -EFAULT;
 775				ret = poke_user_compat(child, addr, utmp);
 776			}
 777			if (ret)
 778				return ret;
 779			addr += sizeof(unsigned int);
 780			data += sizeof(unsigned int);
 781			copied += sizeof(unsigned int);
 782		}
 783		return 0;
 784	case PTRACE_GET_LAST_BREAK:
 785		put_user(task_thread_info(child)->last_break,
 786			 (unsigned int __user *) data);
 787		return 0;
 788	}
 789	return compat_ptrace_request(child, request, addr, data);
 790}
 791#endif
 792
 793asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
 794{
 795	long ret = 0;
 796
 797	/* Do the secure computing check first. */
 798	if (secure_computing(regs->gprs[2])) {
 799		/* seccomp failures shouldn't expose any additional code. */
 800		ret = -1;
 801		goto out;
 802	}
 803
 804	/*
 805	 * The sysc_tracesys code in entry.S stored the system
 806	 * call number to gprs[2].
 807	 */
 808	if (test_thread_flag(TIF_SYSCALL_TRACE) &&
 809	    (tracehook_report_syscall_entry(regs) ||
 810	     regs->gprs[2] >= NR_syscalls)) {
 811		/*
 812		 * Tracing decided this syscall should not happen or the
 813		 * debugger stored an invalid system call number. Skip
 814		 * the system call and the system call restart handling.
 815		 */
 816		clear_thread_flag(TIF_SYSCALL);
 817		ret = -1;
 
 
 
 
 
 
 818	}
 819
 820	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 821		trace_sys_enter(regs, regs->gprs[2]);
 822
 823	audit_syscall_entry(is_compat_task() ?
 824				AUDIT_ARCH_S390 : AUDIT_ARCH_S390X,
 825			    regs->gprs[2], regs->orig_gpr2,
 826			    regs->gprs[3], regs->gprs[4],
 827			    regs->gprs[5]);
 828out:
 829	return ret ?: regs->gprs[2];
 
 830}
 831
 832asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
 833{
 834	audit_syscall_exit(regs);
 835
 836	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 837		trace_sys_exit(regs, regs->gprs[2]);
 838
 839	if (test_thread_flag(TIF_SYSCALL_TRACE))
 840		tracehook_report_syscall_exit(regs, 0);
 841}
 842
 843/*
 844 * user_regset definitions.
 845 */
 846
 847static int s390_regs_get(struct task_struct *target,
 848			 const struct user_regset *regset,
 849			 unsigned int pos, unsigned int count,
 850			 void *kbuf, void __user *ubuf)
 851{
 852	if (target == current)
 853		save_access_regs(target->thread.acrs);
 854
 855	if (kbuf) {
 856		unsigned long *k = kbuf;
 857		while (count > 0) {
 858			*k++ = __peek_user(target, pos);
 859			count -= sizeof(*k);
 860			pos += sizeof(*k);
 861		}
 862	} else {
 863		unsigned long __user *u = ubuf;
 864		while (count > 0) {
 865			if (__put_user(__peek_user(target, pos), u++))
 866				return -EFAULT;
 867			count -= sizeof(*u);
 868			pos += sizeof(*u);
 869		}
 870	}
 871	return 0;
 872}
 873
 874static int s390_regs_set(struct task_struct *target,
 875			 const struct user_regset *regset,
 876			 unsigned int pos, unsigned int count,
 877			 const void *kbuf, const void __user *ubuf)
 878{
 879	int rc = 0;
 880
 881	if (target == current)
 882		save_access_regs(target->thread.acrs);
 883
 884	if (kbuf) {
 885		const unsigned long *k = kbuf;
 886		while (count > 0 && !rc) {
 887			rc = __poke_user(target, pos, *k++);
 888			count -= sizeof(*k);
 889			pos += sizeof(*k);
 890		}
 891	} else {
 892		const unsigned long  __user *u = ubuf;
 893		while (count > 0 && !rc) {
 894			unsigned long word;
 895			rc = __get_user(word, u++);
 896			if (rc)
 897				break;
 898			rc = __poke_user(target, pos, word);
 899			count -= sizeof(*u);
 900			pos += sizeof(*u);
 901		}
 902	}
 903
 904	if (rc == 0 && target == current)
 905		restore_access_regs(target->thread.acrs);
 906
 907	return rc;
 908}
 909
 910static int s390_fpregs_get(struct task_struct *target,
 911			   const struct user_regset *regset, unsigned int pos,
 912			   unsigned int count, void *kbuf, void __user *ubuf)
 913{
 914	if (target == current) {
 915		save_fp_ctl(&target->thread.fp_regs.fpc);
 916		save_fp_regs(target->thread.fp_regs.fprs);
 917	}
 
 
 
 918
 919	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 920				   &target->thread.fp_regs, 0, -1);
 921}
 922
 923static int s390_fpregs_set(struct task_struct *target,
 924			   const struct user_regset *regset, unsigned int pos,
 925			   unsigned int count, const void *kbuf,
 926			   const void __user *ubuf)
 927{
 928	int rc = 0;
 
 929
 930	if (target == current) {
 931		save_fp_ctl(&target->thread.fp_regs.fpc);
 932		save_fp_regs(target->thread.fp_regs.fprs);
 933	}
 
 
 
 934
 935	/* If setting FPC, must validate it first. */
 936	if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
 937		u32 ufpc[2] = { target->thread.fp_regs.fpc, 0 };
 938		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
 939					0, offsetof(s390_fp_regs, fprs));
 940		if (rc)
 941			return rc;
 942		if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
 943			return -EINVAL;
 944		target->thread.fp_regs.fpc = ufpc[0];
 945	}
 946
 947	if (rc == 0 && count > 0)
 948		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 949					target->thread.fp_regs.fprs,
 950					offsetof(s390_fp_regs, fprs), -1);
 951
 952	if (rc == 0 && target == current) {
 953		restore_fp_ctl(&target->thread.fp_regs.fpc);
 954		restore_fp_regs(target->thread.fp_regs.fprs);
 955	}
 
 956
 957	return rc;
 958}
 959
 960#ifdef CONFIG_64BIT
 961
 962static int s390_last_break_get(struct task_struct *target,
 963			       const struct user_regset *regset,
 964			       unsigned int pos, unsigned int count,
 965			       void *kbuf, void __user *ubuf)
 966{
 967	if (count > 0) {
 968		if (kbuf) {
 969			unsigned long *k = kbuf;
 970			*k = task_thread_info(target)->last_break;
 971		} else {
 972			unsigned long  __user *u = ubuf;
 973			if (__put_user(task_thread_info(target)->last_break, u))
 974				return -EFAULT;
 975		}
 976	}
 977	return 0;
 978}
 979
 980static int s390_last_break_set(struct task_struct *target,
 981			       const struct user_regset *regset,
 982			       unsigned int pos, unsigned int count,
 983			       const void *kbuf, const void __user *ubuf)
 984{
 985	return 0;
 986}
 987
 988static int s390_tdb_get(struct task_struct *target,
 989			const struct user_regset *regset,
 990			unsigned int pos, unsigned int count,
 991			void *kbuf, void __user *ubuf)
 992{
 993	struct pt_regs *regs = task_pt_regs(target);
 994	unsigned char *data;
 995
 996	if (!(regs->int_code & 0x200))
 997		return -ENODATA;
 998	data = target->thread.trap_tdb;
 999	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1000}
1001
1002static int s390_tdb_set(struct task_struct *target,
1003			const struct user_regset *regset,
1004			unsigned int pos, unsigned int count,
1005			const void *kbuf, const void __user *ubuf)
1006{
1007	return 0;
1008}
1009
1010#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1011
1012static int s390_system_call_get(struct task_struct *target,
1013				const struct user_regset *regset,
1014				unsigned int pos, unsigned int count,
1015				void *kbuf, void __user *ubuf)
1016{
1017	unsigned int *data = &task_thread_info(target)->system_call;
1018	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1019				   data, 0, sizeof(unsigned int));
1020}
1021
1022static int s390_system_call_set(struct task_struct *target,
1023				const struct user_regset *regset,
1024				unsigned int pos, unsigned int count,
1025				const void *kbuf, const void __user *ubuf)
1026{
1027	unsigned int *data = &task_thread_info(target)->system_call;
1028	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1029				  data, 0, sizeof(unsigned int));
1030}
1031
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1032static const struct user_regset s390_regsets[] = {
1033	[REGSET_GENERAL] = {
1034		.core_note_type = NT_PRSTATUS,
1035		.n = sizeof(s390_regs) / sizeof(long),
1036		.size = sizeof(long),
1037		.align = sizeof(long),
1038		.get = s390_regs_get,
1039		.set = s390_regs_set,
1040	},
1041	[REGSET_FP] = {
1042		.core_note_type = NT_PRFPREG,
1043		.n = sizeof(s390_fp_regs) / sizeof(long),
1044		.size = sizeof(long),
1045		.align = sizeof(long),
1046		.get = s390_fpregs_get,
1047		.set = s390_fpregs_set,
1048	},
1049#ifdef CONFIG_64BIT
1050	[REGSET_LAST_BREAK] = {
 
 
 
 
 
 
 
1051		.core_note_type = NT_S390_LAST_BREAK,
1052		.n = 1,
1053		.size = sizeof(long),
1054		.align = sizeof(long),
1055		.get = s390_last_break_get,
1056		.set = s390_last_break_set,
1057	},
1058	[REGSET_TDB] = {
1059		.core_note_type = NT_S390_TDB,
1060		.n = 1,
1061		.size = 256,
1062		.align = 1,
1063		.get = s390_tdb_get,
1064		.set = s390_tdb_set,
1065	},
1066#endif
1067	[REGSET_SYSTEM_CALL] = {
1068		.core_note_type = NT_S390_SYSTEM_CALL,
1069		.n = 1,
1070		.size = sizeof(unsigned int),
1071		.align = sizeof(unsigned int),
1072		.get = s390_system_call_get,
1073		.set = s390_system_call_set,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1074	},
1075};
1076
1077static const struct user_regset_view user_s390_view = {
1078	.name = UTS_MACHINE,
1079	.e_machine = EM_S390,
1080	.regsets = s390_regsets,
1081	.n = ARRAY_SIZE(s390_regsets)
1082};
1083
1084#ifdef CONFIG_COMPAT
1085static int s390_compat_regs_get(struct task_struct *target,
1086				const struct user_regset *regset,
1087				unsigned int pos, unsigned int count,
1088				void *kbuf, void __user *ubuf)
1089{
1090	if (target == current)
1091		save_access_regs(target->thread.acrs);
1092
1093	if (kbuf) {
1094		compat_ulong_t *k = kbuf;
1095		while (count > 0) {
1096			*k++ = __peek_user_compat(target, pos);
1097			count -= sizeof(*k);
1098			pos += sizeof(*k);
1099		}
1100	} else {
1101		compat_ulong_t __user *u = ubuf;
1102		while (count > 0) {
1103			if (__put_user(__peek_user_compat(target, pos), u++))
1104				return -EFAULT;
1105			count -= sizeof(*u);
1106			pos += sizeof(*u);
1107		}
1108	}
1109	return 0;
1110}
1111
1112static int s390_compat_regs_set(struct task_struct *target,
1113				const struct user_regset *regset,
1114				unsigned int pos, unsigned int count,
1115				const void *kbuf, const void __user *ubuf)
1116{
1117	int rc = 0;
1118
1119	if (target == current)
1120		save_access_regs(target->thread.acrs);
1121
1122	if (kbuf) {
1123		const compat_ulong_t *k = kbuf;
1124		while (count > 0 && !rc) {
1125			rc = __poke_user_compat(target, pos, *k++);
1126			count -= sizeof(*k);
1127			pos += sizeof(*k);
1128		}
1129	} else {
1130		const compat_ulong_t  __user *u = ubuf;
1131		while (count > 0 && !rc) {
1132			compat_ulong_t word;
1133			rc = __get_user(word, u++);
1134			if (rc)
1135				break;
1136			rc = __poke_user_compat(target, pos, word);
1137			count -= sizeof(*u);
1138			pos += sizeof(*u);
1139		}
1140	}
1141
1142	if (rc == 0 && target == current)
1143		restore_access_regs(target->thread.acrs);
1144
1145	return rc;
1146}
1147
1148static int s390_compat_regs_high_get(struct task_struct *target,
1149				     const struct user_regset *regset,
1150				     unsigned int pos, unsigned int count,
1151				     void *kbuf, void __user *ubuf)
1152{
1153	compat_ulong_t *gprs_high;
1154
1155	gprs_high = (compat_ulong_t *)
1156		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1157	if (kbuf) {
1158		compat_ulong_t *k = kbuf;
1159		while (count > 0) {
1160			*k++ = *gprs_high;
1161			gprs_high += 2;
1162			count -= sizeof(*k);
1163		}
1164	} else {
1165		compat_ulong_t __user *u = ubuf;
1166		while (count > 0) {
1167			if (__put_user(*gprs_high, u++))
1168				return -EFAULT;
1169			gprs_high += 2;
1170			count -= sizeof(*u);
1171		}
1172	}
1173	return 0;
1174}
1175
1176static int s390_compat_regs_high_set(struct task_struct *target,
1177				     const struct user_regset *regset,
1178				     unsigned int pos, unsigned int count,
1179				     const void *kbuf, const void __user *ubuf)
1180{
1181	compat_ulong_t *gprs_high;
1182	int rc = 0;
1183
1184	gprs_high = (compat_ulong_t *)
1185		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1186	if (kbuf) {
1187		const compat_ulong_t *k = kbuf;
1188		while (count > 0) {
1189			*gprs_high = *k++;
1190			*gprs_high += 2;
1191			count -= sizeof(*k);
1192		}
1193	} else {
1194		const compat_ulong_t  __user *u = ubuf;
1195		while (count > 0 && !rc) {
1196			unsigned long word;
1197			rc = __get_user(word, u++);
1198			if (rc)
1199				break;
1200			*gprs_high = word;
1201			*gprs_high += 2;
1202			count -= sizeof(*u);
1203		}
1204	}
1205
1206	return rc;
1207}
1208
1209static int s390_compat_last_break_get(struct task_struct *target,
1210				      const struct user_regset *regset,
1211				      unsigned int pos, unsigned int count,
1212				      void *kbuf, void __user *ubuf)
1213{
1214	compat_ulong_t last_break;
1215
1216	if (count > 0) {
1217		last_break = task_thread_info(target)->last_break;
1218		if (kbuf) {
1219			unsigned long *k = kbuf;
1220			*k = last_break;
1221		} else {
1222			unsigned long  __user *u = ubuf;
1223			if (__put_user(last_break, u))
1224				return -EFAULT;
1225		}
1226	}
1227	return 0;
1228}
1229
1230static int s390_compat_last_break_set(struct task_struct *target,
1231				      const struct user_regset *regset,
1232				      unsigned int pos, unsigned int count,
1233				      const void *kbuf, const void __user *ubuf)
1234{
1235	return 0;
1236}
1237
1238static const struct user_regset s390_compat_regsets[] = {
1239	[REGSET_GENERAL] = {
1240		.core_note_type = NT_PRSTATUS,
1241		.n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1242		.size = sizeof(compat_long_t),
1243		.align = sizeof(compat_long_t),
1244		.get = s390_compat_regs_get,
1245		.set = s390_compat_regs_set,
1246	},
1247	[REGSET_FP] = {
1248		.core_note_type = NT_PRFPREG,
1249		.n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1250		.size = sizeof(compat_long_t),
1251		.align = sizeof(compat_long_t),
1252		.get = s390_fpregs_get,
1253		.set = s390_fpregs_set,
1254	},
1255	[REGSET_LAST_BREAK] = {
 
 
 
 
 
 
 
 
1256		.core_note_type = NT_S390_LAST_BREAK,
1257		.n = 1,
1258		.size = sizeof(long),
1259		.align = sizeof(long),
1260		.get = s390_compat_last_break_get,
1261		.set = s390_compat_last_break_set,
1262	},
1263	[REGSET_TDB] = {
1264		.core_note_type = NT_S390_TDB,
1265		.n = 1,
1266		.size = 256,
1267		.align = 1,
1268		.get = s390_tdb_get,
1269		.set = s390_tdb_set,
1270	},
1271	[REGSET_SYSTEM_CALL] = {
1272		.core_note_type = NT_S390_SYSTEM_CALL,
1273		.n = 1,
1274		.size = sizeof(compat_uint_t),
1275		.align = sizeof(compat_uint_t),
1276		.get = s390_system_call_get,
1277		.set = s390_system_call_set,
 
 
 
 
 
 
 
 
1278	},
1279	[REGSET_GENERAL_EXTENDED] = {
1280		.core_note_type = NT_S390_HIGH_GPRS,
1281		.n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1282		.size = sizeof(compat_long_t),
1283		.align = sizeof(compat_long_t),
1284		.get = s390_compat_regs_high_get,
1285		.set = s390_compat_regs_high_set,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1286	},
1287};
1288
1289static const struct user_regset_view user_s390_compat_view = {
1290	.name = "s390",
1291	.e_machine = EM_S390,
1292	.regsets = s390_compat_regsets,
1293	.n = ARRAY_SIZE(s390_compat_regsets)
1294};
1295#endif
1296
1297const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1298{
1299#ifdef CONFIG_COMPAT
1300	if (test_tsk_thread_flag(task, TIF_31BIT))
1301		return &user_s390_compat_view;
1302#endif
1303	return &user_s390_view;
1304}
1305
1306static const char *gpr_names[NUM_GPRS] = {
1307	"r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1308	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1309};
1310
1311unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1312{
1313	if (offset >= NUM_GPRS)
1314		return 0;
1315	return regs->gprs[offset];
1316}
1317
1318int regs_query_register_offset(const char *name)
1319{
1320	unsigned long offset;
1321
1322	if (!name || *name != 'r')
1323		return -EINVAL;
1324	if (kstrtoul(name + 1, 10, &offset))
1325		return -EINVAL;
1326	if (offset >= NUM_GPRS)
1327		return -EINVAL;
1328	return offset;
1329}
1330
1331const char *regs_query_register_name(unsigned int offset)
1332{
1333	if (offset >= NUM_GPRS)
1334		return NULL;
1335	return gpr_names[offset];
1336}
1337
1338static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1339{
1340	unsigned long ksp = kernel_stack_pointer(regs);
1341
1342	return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1343}
1344
1345/**
1346 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1347 * @regs:pt_regs which contains kernel stack pointer.
1348 * @n:stack entry number.
1349 *
1350 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1351 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1352 * this returns 0.
1353 */
1354unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1355{
1356	unsigned long addr;
1357
1358	addr = kernel_stack_pointer(regs) + n * sizeof(long);
1359	if (!regs_within_kernel_stack(regs, addr))
1360		return 0;
1361	return *(unsigned long *)addr;
1362}