Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Ptrace user space interface.
4 *
5 * Copyright IBM Corp. 1999, 2010
6 * Author(s): Denis Joseph Barrow
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 */
9
10#include <linux/kernel.h>
11#include <linux/sched.h>
12#include <linux/sched/task_stack.h>
13#include <linux/mm.h>
14#include <linux/smp.h>
15#include <linux/errno.h>
16#include <linux/ptrace.h>
17#include <linux/user.h>
18#include <linux/security.h>
19#include <linux/audit.h>
20#include <linux/signal.h>
21#include <linux/elf.h>
22#include <linux/regset.h>
23#include <linux/tracehook.h>
24#include <linux/seccomp.h>
25#include <linux/compat.h>
26#include <trace/syscall.h>
27#include <asm/page.h>
28#include <asm/pgtable.h>
29#include <asm/pgalloc.h>
30#include <linux/uaccess.h>
31#include <asm/unistd.h>
32#include <asm/switch_to.h>
33#include <asm/runtime_instr.h>
34#include <asm/facility.h>
35
36#include "entry.h"
37
38#ifdef CONFIG_COMPAT
39#include "compat_ptrace.h"
40#endif
41
42#define CREATE_TRACE_POINTS
43#include <trace/events/syscalls.h>
44
45void update_cr_regs(struct task_struct *task)
46{
47 struct pt_regs *regs = task_pt_regs(task);
48 struct thread_struct *thread = &task->thread;
49 struct per_regs old, new;
50 union ctlreg0 cr0_old, cr0_new;
51 union ctlreg2 cr2_old, cr2_new;
52 int cr0_changed, cr2_changed;
53
54 __ctl_store(cr0_old.val, 0, 0);
55 __ctl_store(cr2_old.val, 2, 2);
56 cr0_new = cr0_old;
57 cr2_new = cr2_old;
58 /* Take care of the enable/disable of transactional execution. */
59 if (MACHINE_HAS_TE) {
60 /* Set or clear transaction execution TXC bit 8. */
61 cr0_new.tcx = 1;
62 if (task->thread.per_flags & PER_FLAG_NO_TE)
63 cr0_new.tcx = 0;
64 /* Set or clear transaction execution TDC bits 62 and 63. */
65 cr2_new.tdc = 0;
66 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
67 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
68 cr2_new.tdc = 1;
69 else
70 cr2_new.tdc = 2;
71 }
72 }
73 /* Take care of enable/disable of guarded storage. */
74 if (MACHINE_HAS_GS) {
75 cr2_new.gse = 0;
76 if (task->thread.gs_cb)
77 cr2_new.gse = 1;
78 }
79 /* Load control register 0/2 iff changed */
80 cr0_changed = cr0_new.val != cr0_old.val;
81 cr2_changed = cr2_new.val != cr2_old.val;
82 if (cr0_changed)
83 __ctl_load(cr0_new.val, 0, 0);
84 if (cr2_changed)
85 __ctl_load(cr2_new.val, 2, 2);
86 /* Copy user specified PER registers */
87 new.control = thread->per_user.control;
88 new.start = thread->per_user.start;
89 new.end = thread->per_user.end;
90
91 /* merge TIF_SINGLE_STEP into user specified PER registers. */
92 if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
93 test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
94 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
95 new.control |= PER_EVENT_BRANCH;
96 else
97 new.control |= PER_EVENT_IFETCH;
98 new.control |= PER_CONTROL_SUSPENSION;
99 new.control |= PER_EVENT_TRANSACTION_END;
100 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
101 new.control |= PER_EVENT_IFETCH;
102 new.start = 0;
103 new.end = -1UL;
104 }
105
106 /* Take care of the PER enablement bit in the PSW. */
107 if (!(new.control & PER_EVENT_MASK)) {
108 regs->psw.mask &= ~PSW_MASK_PER;
109 return;
110 }
111 regs->psw.mask |= PSW_MASK_PER;
112 __ctl_store(old, 9, 11);
113 if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
114 __ctl_load(new, 9, 11);
115}
116
117void user_enable_single_step(struct task_struct *task)
118{
119 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
120 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
121}
122
123void user_disable_single_step(struct task_struct *task)
124{
125 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
126 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
127}
128
129void user_enable_block_step(struct task_struct *task)
130{
131 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
132 set_tsk_thread_flag(task, TIF_BLOCK_STEP);
133}
134
135/*
136 * Called by kernel/ptrace.c when detaching..
137 *
138 * Clear all debugging related fields.
139 */
140void ptrace_disable(struct task_struct *task)
141{
142 memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
143 memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
144 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
145 clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
146 task->thread.per_flags = 0;
147}
148
149#define __ADDR_MASK 7
150
151static inline unsigned long __peek_user_per(struct task_struct *child,
152 addr_t addr)
153{
154 struct per_struct_kernel *dummy = NULL;
155
156 if (addr == (addr_t) &dummy->cr9)
157 /* Control bits of the active per set. */
158 return test_thread_flag(TIF_SINGLE_STEP) ?
159 PER_EVENT_IFETCH : child->thread.per_user.control;
160 else if (addr == (addr_t) &dummy->cr10)
161 /* Start address of the active per set. */
162 return test_thread_flag(TIF_SINGLE_STEP) ?
163 0 : child->thread.per_user.start;
164 else if (addr == (addr_t) &dummy->cr11)
165 /* End address of the active per set. */
166 return test_thread_flag(TIF_SINGLE_STEP) ?
167 -1UL : child->thread.per_user.end;
168 else if (addr == (addr_t) &dummy->bits)
169 /* Single-step bit. */
170 return test_thread_flag(TIF_SINGLE_STEP) ?
171 (1UL << (BITS_PER_LONG - 1)) : 0;
172 else if (addr == (addr_t) &dummy->starting_addr)
173 /* Start address of the user specified per set. */
174 return child->thread.per_user.start;
175 else if (addr == (addr_t) &dummy->ending_addr)
176 /* End address of the user specified per set. */
177 return child->thread.per_user.end;
178 else if (addr == (addr_t) &dummy->perc_atmid)
179 /* PER code, ATMID and AI of the last PER trap */
180 return (unsigned long)
181 child->thread.per_event.cause << (BITS_PER_LONG - 16);
182 else if (addr == (addr_t) &dummy->address)
183 /* Address of the last PER trap */
184 return child->thread.per_event.address;
185 else if (addr == (addr_t) &dummy->access_id)
186 /* Access id of the last PER trap */
187 return (unsigned long)
188 child->thread.per_event.paid << (BITS_PER_LONG - 8);
189 return 0;
190}
191
192/*
193 * Read the word at offset addr from the user area of a process. The
194 * trouble here is that the information is littered over different
195 * locations. The process registers are found on the kernel stack,
196 * the floating point stuff and the trace settings are stored in
197 * the task structure. In addition the different structures in
198 * struct user contain pad bytes that should be read as zeroes.
199 * Lovely...
200 */
201static unsigned long __peek_user(struct task_struct *child, addr_t addr)
202{
203 struct user *dummy = NULL;
204 addr_t offset, tmp;
205
206 if (addr < (addr_t) &dummy->regs.acrs) {
207 /*
208 * psw and gprs are stored on the stack
209 */
210 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
211 if (addr == (addr_t) &dummy->regs.psw.mask) {
212 /* Return a clean psw mask. */
213 tmp &= PSW_MASK_USER | PSW_MASK_RI;
214 tmp |= PSW_USER_BITS;
215 }
216
217 } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
218 /*
219 * access registers are stored in the thread structure
220 */
221 offset = addr - (addr_t) &dummy->regs.acrs;
222 /*
223 * Very special case: old & broken 64 bit gdb reading
224 * from acrs[15]. Result is a 64 bit value. Read the
225 * 32 bit acrs[15] value and shift it by 32. Sick...
226 */
227 if (addr == (addr_t) &dummy->regs.acrs[15])
228 tmp = ((unsigned long) child->thread.acrs[15]) << 32;
229 else
230 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
231
232 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
233 /*
234 * orig_gpr2 is stored on the kernel stack
235 */
236 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
237
238 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
239 /*
240 * prevent reads of padding hole between
241 * orig_gpr2 and fp_regs on s390.
242 */
243 tmp = 0;
244
245 } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
246 /*
247 * floating point control reg. is in the thread structure
248 */
249 tmp = child->thread.fpu.fpc;
250 tmp <<= BITS_PER_LONG - 32;
251
252 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
253 /*
254 * floating point regs. are either in child->thread.fpu
255 * or the child->thread.fpu.vxrs array
256 */
257 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
258 if (MACHINE_HAS_VX)
259 tmp = *(addr_t *)
260 ((addr_t) child->thread.fpu.vxrs + 2*offset);
261 else
262 tmp = *(addr_t *)
263 ((addr_t) child->thread.fpu.fprs + offset);
264
265 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
266 /*
267 * Handle access to the per_info structure.
268 */
269 addr -= (addr_t) &dummy->regs.per_info;
270 tmp = __peek_user_per(child, addr);
271
272 } else
273 tmp = 0;
274
275 return tmp;
276}
277
278static int
279peek_user(struct task_struct *child, addr_t addr, addr_t data)
280{
281 addr_t tmp, mask;
282
283 /*
284 * Stupid gdb peeks/pokes the access registers in 64 bit with
285 * an alignment of 4. Programmers from hell...
286 */
287 mask = __ADDR_MASK;
288 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
289 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
290 mask = 3;
291 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
292 return -EIO;
293
294 tmp = __peek_user(child, addr);
295 return put_user(tmp, (addr_t __user *) data);
296}
297
298static inline void __poke_user_per(struct task_struct *child,
299 addr_t addr, addr_t data)
300{
301 struct per_struct_kernel *dummy = NULL;
302
303 /*
304 * There are only three fields in the per_info struct that the
305 * debugger user can write to.
306 * 1) cr9: the debugger wants to set a new PER event mask
307 * 2) starting_addr: the debugger wants to set a new starting
308 * address to use with the PER event mask.
309 * 3) ending_addr: the debugger wants to set a new ending
310 * address to use with the PER event mask.
311 * The user specified PER event mask and the start and end
312 * addresses are used only if single stepping is not in effect.
313 * Writes to any other field in per_info are ignored.
314 */
315 if (addr == (addr_t) &dummy->cr9)
316 /* PER event mask of the user specified per set. */
317 child->thread.per_user.control =
318 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
319 else if (addr == (addr_t) &dummy->starting_addr)
320 /* Starting address of the user specified per set. */
321 child->thread.per_user.start = data;
322 else if (addr == (addr_t) &dummy->ending_addr)
323 /* Ending address of the user specified per set. */
324 child->thread.per_user.end = data;
325}
326
327/*
328 * Write a word to the user area of a process at location addr. This
329 * operation does have an additional problem compared to peek_user.
330 * Stores to the program status word and on the floating point
331 * control register needs to get checked for validity.
332 */
333static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
334{
335 struct user *dummy = NULL;
336 addr_t offset;
337
338 if (addr < (addr_t) &dummy->regs.acrs) {
339 /*
340 * psw and gprs are stored on the stack
341 */
342 if (addr == (addr_t) &dummy->regs.psw.mask) {
343 unsigned long mask = PSW_MASK_USER;
344
345 mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
346 if ((data ^ PSW_USER_BITS) & ~mask)
347 /* Invalid psw mask. */
348 return -EINVAL;
349 if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
350 /* Invalid address-space-control bits */
351 return -EINVAL;
352 if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
353 /* Invalid addressing mode bits */
354 return -EINVAL;
355 }
356 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
357
358 } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
359 /*
360 * access registers are stored in the thread structure
361 */
362 offset = addr - (addr_t) &dummy->regs.acrs;
363 /*
364 * Very special case: old & broken 64 bit gdb writing
365 * to acrs[15] with a 64 bit value. Ignore the lower
366 * half of the value and write the upper 32 bit to
367 * acrs[15]. Sick...
368 */
369 if (addr == (addr_t) &dummy->regs.acrs[15])
370 child->thread.acrs[15] = (unsigned int) (data >> 32);
371 else
372 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
373
374 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
375 /*
376 * orig_gpr2 is stored on the kernel stack
377 */
378 task_pt_regs(child)->orig_gpr2 = data;
379
380 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
381 /*
382 * prevent writes of padding hole between
383 * orig_gpr2 and fp_regs on s390.
384 */
385 return 0;
386
387 } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
388 /*
389 * floating point control reg. is in the thread structure
390 */
391 if ((unsigned int) data != 0 ||
392 test_fp_ctl(data >> (BITS_PER_LONG - 32)))
393 return -EINVAL;
394 child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
395
396 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
397 /*
398 * floating point regs. are either in child->thread.fpu
399 * or the child->thread.fpu.vxrs array
400 */
401 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
402 if (MACHINE_HAS_VX)
403 *(addr_t *)((addr_t)
404 child->thread.fpu.vxrs + 2*offset) = data;
405 else
406 *(addr_t *)((addr_t)
407 child->thread.fpu.fprs + offset) = data;
408
409 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
410 /*
411 * Handle access to the per_info structure.
412 */
413 addr -= (addr_t) &dummy->regs.per_info;
414 __poke_user_per(child, addr, data);
415
416 }
417
418 return 0;
419}
420
421static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
422{
423 addr_t mask;
424
425 /*
426 * Stupid gdb peeks/pokes the access registers in 64 bit with
427 * an alignment of 4. Programmers from hell indeed...
428 */
429 mask = __ADDR_MASK;
430 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
431 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
432 mask = 3;
433 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
434 return -EIO;
435
436 return __poke_user(child, addr, data);
437}
438
439long arch_ptrace(struct task_struct *child, long request,
440 unsigned long addr, unsigned long data)
441{
442 ptrace_area parea;
443 int copied, ret;
444
445 switch (request) {
446 case PTRACE_PEEKUSR:
447 /* read the word at location addr in the USER area. */
448 return peek_user(child, addr, data);
449
450 case PTRACE_POKEUSR:
451 /* write the word at location addr in the USER area */
452 return poke_user(child, addr, data);
453
454 case PTRACE_PEEKUSR_AREA:
455 case PTRACE_POKEUSR_AREA:
456 if (copy_from_user(&parea, (void __force __user *) addr,
457 sizeof(parea)))
458 return -EFAULT;
459 addr = parea.kernel_addr;
460 data = parea.process_addr;
461 copied = 0;
462 while (copied < parea.len) {
463 if (request == PTRACE_PEEKUSR_AREA)
464 ret = peek_user(child, addr, data);
465 else {
466 addr_t utmp;
467 if (get_user(utmp,
468 (addr_t __force __user *) data))
469 return -EFAULT;
470 ret = poke_user(child, addr, utmp);
471 }
472 if (ret)
473 return ret;
474 addr += sizeof(unsigned long);
475 data += sizeof(unsigned long);
476 copied += sizeof(unsigned long);
477 }
478 return 0;
479 case PTRACE_GET_LAST_BREAK:
480 put_user(child->thread.last_break,
481 (unsigned long __user *) data);
482 return 0;
483 case PTRACE_ENABLE_TE:
484 if (!MACHINE_HAS_TE)
485 return -EIO;
486 child->thread.per_flags &= ~PER_FLAG_NO_TE;
487 return 0;
488 case PTRACE_DISABLE_TE:
489 if (!MACHINE_HAS_TE)
490 return -EIO;
491 child->thread.per_flags |= PER_FLAG_NO_TE;
492 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
493 return 0;
494 case PTRACE_TE_ABORT_RAND:
495 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
496 return -EIO;
497 switch (data) {
498 case 0UL:
499 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
500 break;
501 case 1UL:
502 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
503 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
504 break;
505 case 2UL:
506 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
507 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
508 break;
509 default:
510 return -EINVAL;
511 }
512 return 0;
513 default:
514 return ptrace_request(child, request, addr, data);
515 }
516}
517
518#ifdef CONFIG_COMPAT
519/*
520 * Now the fun part starts... a 31 bit program running in the
521 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
522 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
523 * to handle, the difference to the 64 bit versions of the requests
524 * is that the access is done in multiples of 4 byte instead of
525 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
526 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
527 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
528 * is a 31 bit program too, the content of struct user can be
529 * emulated. A 31 bit program peeking into the struct user of
530 * a 64 bit program is a no-no.
531 */
532
533/*
534 * Same as peek_user_per but for a 31 bit program.
535 */
536static inline __u32 __peek_user_per_compat(struct task_struct *child,
537 addr_t addr)
538{
539 struct compat_per_struct_kernel *dummy32 = NULL;
540
541 if (addr == (addr_t) &dummy32->cr9)
542 /* Control bits of the active per set. */
543 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
544 PER_EVENT_IFETCH : child->thread.per_user.control;
545 else if (addr == (addr_t) &dummy32->cr10)
546 /* Start address of the active per set. */
547 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
548 0 : child->thread.per_user.start;
549 else if (addr == (addr_t) &dummy32->cr11)
550 /* End address of the active per set. */
551 return test_thread_flag(TIF_SINGLE_STEP) ?
552 PSW32_ADDR_INSN : child->thread.per_user.end;
553 else if (addr == (addr_t) &dummy32->bits)
554 /* Single-step bit. */
555 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
556 0x80000000 : 0;
557 else if (addr == (addr_t) &dummy32->starting_addr)
558 /* Start address of the user specified per set. */
559 return (__u32) child->thread.per_user.start;
560 else if (addr == (addr_t) &dummy32->ending_addr)
561 /* End address of the user specified per set. */
562 return (__u32) child->thread.per_user.end;
563 else if (addr == (addr_t) &dummy32->perc_atmid)
564 /* PER code, ATMID and AI of the last PER trap */
565 return (__u32) child->thread.per_event.cause << 16;
566 else if (addr == (addr_t) &dummy32->address)
567 /* Address of the last PER trap */
568 return (__u32) child->thread.per_event.address;
569 else if (addr == (addr_t) &dummy32->access_id)
570 /* Access id of the last PER trap */
571 return (__u32) child->thread.per_event.paid << 24;
572 return 0;
573}
574
575/*
576 * Same as peek_user but for a 31 bit program.
577 */
578static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
579{
580 struct compat_user *dummy32 = NULL;
581 addr_t offset;
582 __u32 tmp;
583
584 if (addr < (addr_t) &dummy32->regs.acrs) {
585 struct pt_regs *regs = task_pt_regs(child);
586 /*
587 * psw and gprs are stored on the stack
588 */
589 if (addr == (addr_t) &dummy32->regs.psw.mask) {
590 /* Fake a 31 bit psw mask. */
591 tmp = (__u32)(regs->psw.mask >> 32);
592 tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
593 tmp |= PSW32_USER_BITS;
594 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
595 /* Fake a 31 bit psw address. */
596 tmp = (__u32) regs->psw.addr |
597 (__u32)(regs->psw.mask & PSW_MASK_BA);
598 } else {
599 /* gpr 0-15 */
600 tmp = *(__u32 *)((addr_t) ®s->psw + addr*2 + 4);
601 }
602 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
603 /*
604 * access registers are stored in the thread structure
605 */
606 offset = addr - (addr_t) &dummy32->regs.acrs;
607 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
608
609 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
610 /*
611 * orig_gpr2 is stored on the kernel stack
612 */
613 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
614
615 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
616 /*
617 * prevent reads of padding hole between
618 * orig_gpr2 and fp_regs on s390.
619 */
620 tmp = 0;
621
622 } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
623 /*
624 * floating point control reg. is in the thread structure
625 */
626 tmp = child->thread.fpu.fpc;
627
628 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
629 /*
630 * floating point regs. are either in child->thread.fpu
631 * or the child->thread.fpu.vxrs array
632 */
633 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
634 if (MACHINE_HAS_VX)
635 tmp = *(__u32 *)
636 ((addr_t) child->thread.fpu.vxrs + 2*offset);
637 else
638 tmp = *(__u32 *)
639 ((addr_t) child->thread.fpu.fprs + offset);
640
641 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
642 /*
643 * Handle access to the per_info structure.
644 */
645 addr -= (addr_t) &dummy32->regs.per_info;
646 tmp = __peek_user_per_compat(child, addr);
647
648 } else
649 tmp = 0;
650
651 return tmp;
652}
653
654static int peek_user_compat(struct task_struct *child,
655 addr_t addr, addr_t data)
656{
657 __u32 tmp;
658
659 if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
660 return -EIO;
661
662 tmp = __peek_user_compat(child, addr);
663 return put_user(tmp, (__u32 __user *) data);
664}
665
666/*
667 * Same as poke_user_per but for a 31 bit program.
668 */
669static inline void __poke_user_per_compat(struct task_struct *child,
670 addr_t addr, __u32 data)
671{
672 struct compat_per_struct_kernel *dummy32 = NULL;
673
674 if (addr == (addr_t) &dummy32->cr9)
675 /* PER event mask of the user specified per set. */
676 child->thread.per_user.control =
677 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
678 else if (addr == (addr_t) &dummy32->starting_addr)
679 /* Starting address of the user specified per set. */
680 child->thread.per_user.start = data;
681 else if (addr == (addr_t) &dummy32->ending_addr)
682 /* Ending address of the user specified per set. */
683 child->thread.per_user.end = data;
684}
685
686/*
687 * Same as poke_user but for a 31 bit program.
688 */
689static int __poke_user_compat(struct task_struct *child,
690 addr_t addr, addr_t data)
691{
692 struct compat_user *dummy32 = NULL;
693 __u32 tmp = (__u32) data;
694 addr_t offset;
695
696 if (addr < (addr_t) &dummy32->regs.acrs) {
697 struct pt_regs *regs = task_pt_regs(child);
698 /*
699 * psw, gprs, acrs and orig_gpr2 are stored on the stack
700 */
701 if (addr == (addr_t) &dummy32->regs.psw.mask) {
702 __u32 mask = PSW32_MASK_USER;
703
704 mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
705 /* Build a 64 bit psw mask from 31 bit mask. */
706 if ((tmp ^ PSW32_USER_BITS) & ~mask)
707 /* Invalid psw mask. */
708 return -EINVAL;
709 if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
710 /* Invalid address-space-control bits */
711 return -EINVAL;
712 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
713 (regs->psw.mask & PSW_MASK_BA) |
714 (__u64)(tmp & mask) << 32;
715 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
716 /* Build a 64 bit psw address from 31 bit address. */
717 regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
718 /* Transfer 31 bit amode bit to psw mask. */
719 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
720 (__u64)(tmp & PSW32_ADDR_AMODE);
721 } else {
722 /* gpr 0-15 */
723 *(__u32*)((addr_t) ®s->psw + addr*2 + 4) = tmp;
724 }
725 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
726 /*
727 * access registers are stored in the thread structure
728 */
729 offset = addr - (addr_t) &dummy32->regs.acrs;
730 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
731
732 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
733 /*
734 * orig_gpr2 is stored on the kernel stack
735 */
736 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
737
738 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
739 /*
740 * prevent writess of padding hole between
741 * orig_gpr2 and fp_regs on s390.
742 */
743 return 0;
744
745 } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
746 /*
747 * floating point control reg. is in the thread structure
748 */
749 if (test_fp_ctl(tmp))
750 return -EINVAL;
751 child->thread.fpu.fpc = data;
752
753 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
754 /*
755 * floating point regs. are either in child->thread.fpu
756 * or the child->thread.fpu.vxrs array
757 */
758 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
759 if (MACHINE_HAS_VX)
760 *(__u32 *)((addr_t)
761 child->thread.fpu.vxrs + 2*offset) = tmp;
762 else
763 *(__u32 *)((addr_t)
764 child->thread.fpu.fprs + offset) = tmp;
765
766 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
767 /*
768 * Handle access to the per_info structure.
769 */
770 addr -= (addr_t) &dummy32->regs.per_info;
771 __poke_user_per_compat(child, addr, data);
772 }
773
774 return 0;
775}
776
777static int poke_user_compat(struct task_struct *child,
778 addr_t addr, addr_t data)
779{
780 if (!is_compat_task() || (addr & 3) ||
781 addr > sizeof(struct compat_user) - 3)
782 return -EIO;
783
784 return __poke_user_compat(child, addr, data);
785}
786
787long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
788 compat_ulong_t caddr, compat_ulong_t cdata)
789{
790 unsigned long addr = caddr;
791 unsigned long data = cdata;
792 compat_ptrace_area parea;
793 int copied, ret;
794
795 switch (request) {
796 case PTRACE_PEEKUSR:
797 /* read the word at location addr in the USER area. */
798 return peek_user_compat(child, addr, data);
799
800 case PTRACE_POKEUSR:
801 /* write the word at location addr in the USER area */
802 return poke_user_compat(child, addr, data);
803
804 case PTRACE_PEEKUSR_AREA:
805 case PTRACE_POKEUSR_AREA:
806 if (copy_from_user(&parea, (void __force __user *) addr,
807 sizeof(parea)))
808 return -EFAULT;
809 addr = parea.kernel_addr;
810 data = parea.process_addr;
811 copied = 0;
812 while (copied < parea.len) {
813 if (request == PTRACE_PEEKUSR_AREA)
814 ret = peek_user_compat(child, addr, data);
815 else {
816 __u32 utmp;
817 if (get_user(utmp,
818 (__u32 __force __user *) data))
819 return -EFAULT;
820 ret = poke_user_compat(child, addr, utmp);
821 }
822 if (ret)
823 return ret;
824 addr += sizeof(unsigned int);
825 data += sizeof(unsigned int);
826 copied += sizeof(unsigned int);
827 }
828 return 0;
829 case PTRACE_GET_LAST_BREAK:
830 put_user(child->thread.last_break,
831 (unsigned int __user *) data);
832 return 0;
833 }
834 return compat_ptrace_request(child, request, addr, data);
835}
836#endif
837
838asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
839{
840 unsigned long mask = -1UL;
841
842 /*
843 * The sysc_tracesys code in entry.S stored the system
844 * call number to gprs[2].
845 */
846 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
847 (tracehook_report_syscall_entry(regs) ||
848 regs->gprs[2] >= NR_syscalls)) {
849 /*
850 * Tracing decided this syscall should not happen or the
851 * debugger stored an invalid system call number. Skip
852 * the system call and the system call restart handling.
853 */
854 clear_pt_regs_flag(regs, PIF_SYSCALL);
855 return -1;
856 }
857
858 /* Do the secure computing check after ptrace. */
859 if (secure_computing(NULL)) {
860 /* seccomp failures shouldn't expose any additional code. */
861 return -1;
862 }
863
864 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
865 trace_sys_enter(regs, regs->gprs[2]);
866
867 if (is_compat_task())
868 mask = 0xffffffff;
869
870 audit_syscall_entry(regs->gprs[2], regs->orig_gpr2 & mask,
871 regs->gprs[3] &mask, regs->gprs[4] &mask,
872 regs->gprs[5] &mask);
873
874 return regs->gprs[2];
875}
876
877asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
878{
879 audit_syscall_exit(regs);
880
881 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
882 trace_sys_exit(regs, regs->gprs[2]);
883
884 if (test_thread_flag(TIF_SYSCALL_TRACE))
885 tracehook_report_syscall_exit(regs, 0);
886}
887
888/*
889 * user_regset definitions.
890 */
891
892static int s390_regs_get(struct task_struct *target,
893 const struct user_regset *regset,
894 unsigned int pos, unsigned int count,
895 void *kbuf, void __user *ubuf)
896{
897 if (target == current)
898 save_access_regs(target->thread.acrs);
899
900 if (kbuf) {
901 unsigned long *k = kbuf;
902 while (count > 0) {
903 *k++ = __peek_user(target, pos);
904 count -= sizeof(*k);
905 pos += sizeof(*k);
906 }
907 } else {
908 unsigned long __user *u = ubuf;
909 while (count > 0) {
910 if (__put_user(__peek_user(target, pos), u++))
911 return -EFAULT;
912 count -= sizeof(*u);
913 pos += sizeof(*u);
914 }
915 }
916 return 0;
917}
918
919static int s390_regs_set(struct task_struct *target,
920 const struct user_regset *regset,
921 unsigned int pos, unsigned int count,
922 const void *kbuf, const void __user *ubuf)
923{
924 int rc = 0;
925
926 if (target == current)
927 save_access_regs(target->thread.acrs);
928
929 if (kbuf) {
930 const unsigned long *k = kbuf;
931 while (count > 0 && !rc) {
932 rc = __poke_user(target, pos, *k++);
933 count -= sizeof(*k);
934 pos += sizeof(*k);
935 }
936 } else {
937 const unsigned long __user *u = ubuf;
938 while (count > 0 && !rc) {
939 unsigned long word;
940 rc = __get_user(word, u++);
941 if (rc)
942 break;
943 rc = __poke_user(target, pos, word);
944 count -= sizeof(*u);
945 pos += sizeof(*u);
946 }
947 }
948
949 if (rc == 0 && target == current)
950 restore_access_regs(target->thread.acrs);
951
952 return rc;
953}
954
955static int s390_fpregs_get(struct task_struct *target,
956 const struct user_regset *regset, unsigned int pos,
957 unsigned int count, void *kbuf, void __user *ubuf)
958{
959 _s390_fp_regs fp_regs;
960
961 if (target == current)
962 save_fpu_regs();
963
964 fp_regs.fpc = target->thread.fpu.fpc;
965 fpregs_store(&fp_regs, &target->thread.fpu);
966
967 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
968 &fp_regs, 0, -1);
969}
970
971static int s390_fpregs_set(struct task_struct *target,
972 const struct user_regset *regset, unsigned int pos,
973 unsigned int count, const void *kbuf,
974 const void __user *ubuf)
975{
976 int rc = 0;
977 freg_t fprs[__NUM_FPRS];
978
979 if (target == current)
980 save_fpu_regs();
981
982 if (MACHINE_HAS_VX)
983 convert_vx_to_fp(fprs, target->thread.fpu.vxrs);
984 else
985 memcpy(&fprs, target->thread.fpu.fprs, sizeof(fprs));
986
987 /* If setting FPC, must validate it first. */
988 if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
989 u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
990 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
991 0, offsetof(s390_fp_regs, fprs));
992 if (rc)
993 return rc;
994 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
995 return -EINVAL;
996 target->thread.fpu.fpc = ufpc[0];
997 }
998
999 if (rc == 0 && count > 0)
1000 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1001 fprs, offsetof(s390_fp_regs, fprs), -1);
1002 if (rc)
1003 return rc;
1004
1005 if (MACHINE_HAS_VX)
1006 convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
1007 else
1008 memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
1009
1010 return rc;
1011}
1012
1013static int s390_last_break_get(struct task_struct *target,
1014 const struct user_regset *regset,
1015 unsigned int pos, unsigned int count,
1016 void *kbuf, void __user *ubuf)
1017{
1018 if (count > 0) {
1019 if (kbuf) {
1020 unsigned long *k = kbuf;
1021 *k = target->thread.last_break;
1022 } else {
1023 unsigned long __user *u = ubuf;
1024 if (__put_user(target->thread.last_break, u))
1025 return -EFAULT;
1026 }
1027 }
1028 return 0;
1029}
1030
1031static int s390_last_break_set(struct task_struct *target,
1032 const struct user_regset *regset,
1033 unsigned int pos, unsigned int count,
1034 const void *kbuf, const void __user *ubuf)
1035{
1036 return 0;
1037}
1038
1039static int s390_tdb_get(struct task_struct *target,
1040 const struct user_regset *regset,
1041 unsigned int pos, unsigned int count,
1042 void *kbuf, void __user *ubuf)
1043{
1044 struct pt_regs *regs = task_pt_regs(target);
1045 unsigned char *data;
1046
1047 if (!(regs->int_code & 0x200))
1048 return -ENODATA;
1049 data = target->thread.trap_tdb;
1050 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1051}
1052
1053static int s390_tdb_set(struct task_struct *target,
1054 const struct user_regset *regset,
1055 unsigned int pos, unsigned int count,
1056 const void *kbuf, const void __user *ubuf)
1057{
1058 return 0;
1059}
1060
1061static int s390_vxrs_low_get(struct task_struct *target,
1062 const struct user_regset *regset,
1063 unsigned int pos, unsigned int count,
1064 void *kbuf, void __user *ubuf)
1065{
1066 __u64 vxrs[__NUM_VXRS_LOW];
1067 int i;
1068
1069 if (!MACHINE_HAS_VX)
1070 return -ENODEV;
1071 if (target == current)
1072 save_fpu_regs();
1073 for (i = 0; i < __NUM_VXRS_LOW; i++)
1074 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1075 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1076}
1077
1078static int s390_vxrs_low_set(struct task_struct *target,
1079 const struct user_regset *regset,
1080 unsigned int pos, unsigned int count,
1081 const void *kbuf, const void __user *ubuf)
1082{
1083 __u64 vxrs[__NUM_VXRS_LOW];
1084 int i, rc;
1085
1086 if (!MACHINE_HAS_VX)
1087 return -ENODEV;
1088 if (target == current)
1089 save_fpu_regs();
1090
1091 for (i = 0; i < __NUM_VXRS_LOW; i++)
1092 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1093
1094 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1095 if (rc == 0)
1096 for (i = 0; i < __NUM_VXRS_LOW; i++)
1097 *((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1098
1099 return rc;
1100}
1101
1102static int s390_vxrs_high_get(struct task_struct *target,
1103 const struct user_regset *regset,
1104 unsigned int pos, unsigned int count,
1105 void *kbuf, void __user *ubuf)
1106{
1107 __vector128 vxrs[__NUM_VXRS_HIGH];
1108
1109 if (!MACHINE_HAS_VX)
1110 return -ENODEV;
1111 if (target == current)
1112 save_fpu_regs();
1113 memcpy(vxrs, target->thread.fpu.vxrs + __NUM_VXRS_LOW, sizeof(vxrs));
1114
1115 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1116}
1117
1118static int s390_vxrs_high_set(struct task_struct *target,
1119 const struct user_regset *regset,
1120 unsigned int pos, unsigned int count,
1121 const void *kbuf, const void __user *ubuf)
1122{
1123 int rc;
1124
1125 if (!MACHINE_HAS_VX)
1126 return -ENODEV;
1127 if (target == current)
1128 save_fpu_regs();
1129
1130 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1131 target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1132 return rc;
1133}
1134
1135static int s390_system_call_get(struct task_struct *target,
1136 const struct user_regset *regset,
1137 unsigned int pos, unsigned int count,
1138 void *kbuf, void __user *ubuf)
1139{
1140 unsigned int *data = &target->thread.system_call;
1141 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1142 data, 0, sizeof(unsigned int));
1143}
1144
1145static int s390_system_call_set(struct task_struct *target,
1146 const struct user_regset *regset,
1147 unsigned int pos, unsigned int count,
1148 const void *kbuf, const void __user *ubuf)
1149{
1150 unsigned int *data = &target->thread.system_call;
1151 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1152 data, 0, sizeof(unsigned int));
1153}
1154
1155static int s390_gs_cb_get(struct task_struct *target,
1156 const struct user_regset *regset,
1157 unsigned int pos, unsigned int count,
1158 void *kbuf, void __user *ubuf)
1159{
1160 struct gs_cb *data = target->thread.gs_cb;
1161
1162 if (!MACHINE_HAS_GS)
1163 return -ENODEV;
1164 if (!data)
1165 return -ENODATA;
1166 if (target == current)
1167 save_gs_cb(data);
1168 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1169 data, 0, sizeof(struct gs_cb));
1170}
1171
1172static int s390_gs_cb_set(struct task_struct *target,
1173 const struct user_regset *regset,
1174 unsigned int pos, unsigned int count,
1175 const void *kbuf, const void __user *ubuf)
1176{
1177 struct gs_cb gs_cb = { }, *data = NULL;
1178 int rc;
1179
1180 if (!MACHINE_HAS_GS)
1181 return -ENODEV;
1182 if (!target->thread.gs_cb) {
1183 data = kzalloc(sizeof(*data), GFP_KERNEL);
1184 if (!data)
1185 return -ENOMEM;
1186 }
1187 if (!target->thread.gs_cb)
1188 gs_cb.gsd = 25;
1189 else if (target == current)
1190 save_gs_cb(&gs_cb);
1191 else
1192 gs_cb = *target->thread.gs_cb;
1193 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1194 &gs_cb, 0, sizeof(gs_cb));
1195 if (rc) {
1196 kfree(data);
1197 return -EFAULT;
1198 }
1199 preempt_disable();
1200 if (!target->thread.gs_cb)
1201 target->thread.gs_cb = data;
1202 *target->thread.gs_cb = gs_cb;
1203 if (target == current) {
1204 __ctl_set_bit(2, 4);
1205 restore_gs_cb(target->thread.gs_cb);
1206 }
1207 preempt_enable();
1208 return rc;
1209}
1210
1211static int s390_gs_bc_get(struct task_struct *target,
1212 const struct user_regset *regset,
1213 unsigned int pos, unsigned int count,
1214 void *kbuf, void __user *ubuf)
1215{
1216 struct gs_cb *data = target->thread.gs_bc_cb;
1217
1218 if (!MACHINE_HAS_GS)
1219 return -ENODEV;
1220 if (!data)
1221 return -ENODATA;
1222 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1223 data, 0, sizeof(struct gs_cb));
1224}
1225
1226static int s390_gs_bc_set(struct task_struct *target,
1227 const struct user_regset *regset,
1228 unsigned int pos, unsigned int count,
1229 const void *kbuf, const void __user *ubuf)
1230{
1231 struct gs_cb *data = target->thread.gs_bc_cb;
1232
1233 if (!MACHINE_HAS_GS)
1234 return -ENODEV;
1235 if (!data) {
1236 data = kzalloc(sizeof(*data), GFP_KERNEL);
1237 if (!data)
1238 return -ENOMEM;
1239 target->thread.gs_bc_cb = data;
1240 }
1241 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1242 data, 0, sizeof(struct gs_cb));
1243}
1244
1245static bool is_ri_cb_valid(struct runtime_instr_cb *cb)
1246{
1247 return (cb->rca & 0x1f) == 0 &&
1248 (cb->roa & 0xfff) == 0 &&
1249 (cb->rla & 0xfff) == 0xfff &&
1250 cb->s == 1 &&
1251 cb->k == 1 &&
1252 cb->h == 0 &&
1253 cb->reserved1 == 0 &&
1254 cb->ps == 1 &&
1255 cb->qs == 0 &&
1256 cb->pc == 1 &&
1257 cb->qc == 0 &&
1258 cb->reserved2 == 0 &&
1259 cb->key == PAGE_DEFAULT_KEY &&
1260 cb->reserved3 == 0 &&
1261 cb->reserved4 == 0 &&
1262 cb->reserved5 == 0 &&
1263 cb->reserved6 == 0 &&
1264 cb->reserved7 == 0 &&
1265 cb->reserved8 == 0 &&
1266 cb->rla >= cb->roa &&
1267 cb->rca >= cb->roa &&
1268 cb->rca <= cb->rla+1 &&
1269 cb->m < 3;
1270}
1271
1272static int s390_runtime_instr_get(struct task_struct *target,
1273 const struct user_regset *regset,
1274 unsigned int pos, unsigned int count,
1275 void *kbuf, void __user *ubuf)
1276{
1277 struct runtime_instr_cb *data = target->thread.ri_cb;
1278
1279 if (!test_facility(64))
1280 return -ENODEV;
1281 if (!data)
1282 return -ENODATA;
1283
1284 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1285 data, 0, sizeof(struct runtime_instr_cb));
1286}
1287
1288static int s390_runtime_instr_set(struct task_struct *target,
1289 const struct user_regset *regset,
1290 unsigned int pos, unsigned int count,
1291 const void *kbuf, const void __user *ubuf)
1292{
1293 struct runtime_instr_cb ri_cb = { }, *data = NULL;
1294 int rc;
1295
1296 if (!test_facility(64))
1297 return -ENODEV;
1298
1299 if (!target->thread.ri_cb) {
1300 data = kzalloc(sizeof(*data), GFP_KERNEL);
1301 if (!data)
1302 return -ENOMEM;
1303 }
1304
1305 if (target->thread.ri_cb) {
1306 if (target == current)
1307 store_runtime_instr_cb(&ri_cb);
1308 else
1309 ri_cb = *target->thread.ri_cb;
1310 }
1311
1312 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1313 &ri_cb, 0, sizeof(struct runtime_instr_cb));
1314 if (rc) {
1315 kfree(data);
1316 return -EFAULT;
1317 }
1318
1319 if (!is_ri_cb_valid(&ri_cb)) {
1320 kfree(data);
1321 return -EINVAL;
1322 }
1323
1324 preempt_disable();
1325 if (!target->thread.ri_cb)
1326 target->thread.ri_cb = data;
1327 *target->thread.ri_cb = ri_cb;
1328 if (target == current)
1329 load_runtime_instr_cb(target->thread.ri_cb);
1330 preempt_enable();
1331
1332 return 0;
1333}
1334
1335static const struct user_regset s390_regsets[] = {
1336 {
1337 .core_note_type = NT_PRSTATUS,
1338 .n = sizeof(s390_regs) / sizeof(long),
1339 .size = sizeof(long),
1340 .align = sizeof(long),
1341 .get = s390_regs_get,
1342 .set = s390_regs_set,
1343 },
1344 {
1345 .core_note_type = NT_PRFPREG,
1346 .n = sizeof(s390_fp_regs) / sizeof(long),
1347 .size = sizeof(long),
1348 .align = sizeof(long),
1349 .get = s390_fpregs_get,
1350 .set = s390_fpregs_set,
1351 },
1352 {
1353 .core_note_type = NT_S390_SYSTEM_CALL,
1354 .n = 1,
1355 .size = sizeof(unsigned int),
1356 .align = sizeof(unsigned int),
1357 .get = s390_system_call_get,
1358 .set = s390_system_call_set,
1359 },
1360 {
1361 .core_note_type = NT_S390_LAST_BREAK,
1362 .n = 1,
1363 .size = sizeof(long),
1364 .align = sizeof(long),
1365 .get = s390_last_break_get,
1366 .set = s390_last_break_set,
1367 },
1368 {
1369 .core_note_type = NT_S390_TDB,
1370 .n = 1,
1371 .size = 256,
1372 .align = 1,
1373 .get = s390_tdb_get,
1374 .set = s390_tdb_set,
1375 },
1376 {
1377 .core_note_type = NT_S390_VXRS_LOW,
1378 .n = __NUM_VXRS_LOW,
1379 .size = sizeof(__u64),
1380 .align = sizeof(__u64),
1381 .get = s390_vxrs_low_get,
1382 .set = s390_vxrs_low_set,
1383 },
1384 {
1385 .core_note_type = NT_S390_VXRS_HIGH,
1386 .n = __NUM_VXRS_HIGH,
1387 .size = sizeof(__vector128),
1388 .align = sizeof(__vector128),
1389 .get = s390_vxrs_high_get,
1390 .set = s390_vxrs_high_set,
1391 },
1392 {
1393 .core_note_type = NT_S390_GS_CB,
1394 .n = sizeof(struct gs_cb) / sizeof(__u64),
1395 .size = sizeof(__u64),
1396 .align = sizeof(__u64),
1397 .get = s390_gs_cb_get,
1398 .set = s390_gs_cb_set,
1399 },
1400 {
1401 .core_note_type = NT_S390_GS_BC,
1402 .n = sizeof(struct gs_cb) / sizeof(__u64),
1403 .size = sizeof(__u64),
1404 .align = sizeof(__u64),
1405 .get = s390_gs_bc_get,
1406 .set = s390_gs_bc_set,
1407 },
1408 {
1409 .core_note_type = NT_S390_RI_CB,
1410 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1411 .size = sizeof(__u64),
1412 .align = sizeof(__u64),
1413 .get = s390_runtime_instr_get,
1414 .set = s390_runtime_instr_set,
1415 },
1416};
1417
1418static const struct user_regset_view user_s390_view = {
1419 .name = UTS_MACHINE,
1420 .e_machine = EM_S390,
1421 .regsets = s390_regsets,
1422 .n = ARRAY_SIZE(s390_regsets)
1423};
1424
1425#ifdef CONFIG_COMPAT
1426static int s390_compat_regs_get(struct task_struct *target,
1427 const struct user_regset *regset,
1428 unsigned int pos, unsigned int count,
1429 void *kbuf, void __user *ubuf)
1430{
1431 if (target == current)
1432 save_access_regs(target->thread.acrs);
1433
1434 if (kbuf) {
1435 compat_ulong_t *k = kbuf;
1436 while (count > 0) {
1437 *k++ = __peek_user_compat(target, pos);
1438 count -= sizeof(*k);
1439 pos += sizeof(*k);
1440 }
1441 } else {
1442 compat_ulong_t __user *u = ubuf;
1443 while (count > 0) {
1444 if (__put_user(__peek_user_compat(target, pos), u++))
1445 return -EFAULT;
1446 count -= sizeof(*u);
1447 pos += sizeof(*u);
1448 }
1449 }
1450 return 0;
1451}
1452
1453static int s390_compat_regs_set(struct task_struct *target,
1454 const struct user_regset *regset,
1455 unsigned int pos, unsigned int count,
1456 const void *kbuf, const void __user *ubuf)
1457{
1458 int rc = 0;
1459
1460 if (target == current)
1461 save_access_regs(target->thread.acrs);
1462
1463 if (kbuf) {
1464 const compat_ulong_t *k = kbuf;
1465 while (count > 0 && !rc) {
1466 rc = __poke_user_compat(target, pos, *k++);
1467 count -= sizeof(*k);
1468 pos += sizeof(*k);
1469 }
1470 } else {
1471 const compat_ulong_t __user *u = ubuf;
1472 while (count > 0 && !rc) {
1473 compat_ulong_t word;
1474 rc = __get_user(word, u++);
1475 if (rc)
1476 break;
1477 rc = __poke_user_compat(target, pos, word);
1478 count -= sizeof(*u);
1479 pos += sizeof(*u);
1480 }
1481 }
1482
1483 if (rc == 0 && target == current)
1484 restore_access_regs(target->thread.acrs);
1485
1486 return rc;
1487}
1488
1489static int s390_compat_regs_high_get(struct task_struct *target,
1490 const struct user_regset *regset,
1491 unsigned int pos, unsigned int count,
1492 void *kbuf, void __user *ubuf)
1493{
1494 compat_ulong_t *gprs_high;
1495
1496 gprs_high = (compat_ulong_t *)
1497 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1498 if (kbuf) {
1499 compat_ulong_t *k = kbuf;
1500 while (count > 0) {
1501 *k++ = *gprs_high;
1502 gprs_high += 2;
1503 count -= sizeof(*k);
1504 }
1505 } else {
1506 compat_ulong_t __user *u = ubuf;
1507 while (count > 0) {
1508 if (__put_user(*gprs_high, u++))
1509 return -EFAULT;
1510 gprs_high += 2;
1511 count -= sizeof(*u);
1512 }
1513 }
1514 return 0;
1515}
1516
1517static int s390_compat_regs_high_set(struct task_struct *target,
1518 const struct user_regset *regset,
1519 unsigned int pos, unsigned int count,
1520 const void *kbuf, const void __user *ubuf)
1521{
1522 compat_ulong_t *gprs_high;
1523 int rc = 0;
1524
1525 gprs_high = (compat_ulong_t *)
1526 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1527 if (kbuf) {
1528 const compat_ulong_t *k = kbuf;
1529 while (count > 0) {
1530 *gprs_high = *k++;
1531 *gprs_high += 2;
1532 count -= sizeof(*k);
1533 }
1534 } else {
1535 const compat_ulong_t __user *u = ubuf;
1536 while (count > 0 && !rc) {
1537 unsigned long word;
1538 rc = __get_user(word, u++);
1539 if (rc)
1540 break;
1541 *gprs_high = word;
1542 *gprs_high += 2;
1543 count -= sizeof(*u);
1544 }
1545 }
1546
1547 return rc;
1548}
1549
1550static int s390_compat_last_break_get(struct task_struct *target,
1551 const struct user_regset *regset,
1552 unsigned int pos, unsigned int count,
1553 void *kbuf, void __user *ubuf)
1554{
1555 compat_ulong_t last_break;
1556
1557 if (count > 0) {
1558 last_break = target->thread.last_break;
1559 if (kbuf) {
1560 unsigned long *k = kbuf;
1561 *k = last_break;
1562 } else {
1563 unsigned long __user *u = ubuf;
1564 if (__put_user(last_break, u))
1565 return -EFAULT;
1566 }
1567 }
1568 return 0;
1569}
1570
1571static int s390_compat_last_break_set(struct task_struct *target,
1572 const struct user_regset *regset,
1573 unsigned int pos, unsigned int count,
1574 const void *kbuf, const void __user *ubuf)
1575{
1576 return 0;
1577}
1578
1579static const struct user_regset s390_compat_regsets[] = {
1580 {
1581 .core_note_type = NT_PRSTATUS,
1582 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1583 .size = sizeof(compat_long_t),
1584 .align = sizeof(compat_long_t),
1585 .get = s390_compat_regs_get,
1586 .set = s390_compat_regs_set,
1587 },
1588 {
1589 .core_note_type = NT_PRFPREG,
1590 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1591 .size = sizeof(compat_long_t),
1592 .align = sizeof(compat_long_t),
1593 .get = s390_fpregs_get,
1594 .set = s390_fpregs_set,
1595 },
1596 {
1597 .core_note_type = NT_S390_SYSTEM_CALL,
1598 .n = 1,
1599 .size = sizeof(compat_uint_t),
1600 .align = sizeof(compat_uint_t),
1601 .get = s390_system_call_get,
1602 .set = s390_system_call_set,
1603 },
1604 {
1605 .core_note_type = NT_S390_LAST_BREAK,
1606 .n = 1,
1607 .size = sizeof(long),
1608 .align = sizeof(long),
1609 .get = s390_compat_last_break_get,
1610 .set = s390_compat_last_break_set,
1611 },
1612 {
1613 .core_note_type = NT_S390_TDB,
1614 .n = 1,
1615 .size = 256,
1616 .align = 1,
1617 .get = s390_tdb_get,
1618 .set = s390_tdb_set,
1619 },
1620 {
1621 .core_note_type = NT_S390_VXRS_LOW,
1622 .n = __NUM_VXRS_LOW,
1623 .size = sizeof(__u64),
1624 .align = sizeof(__u64),
1625 .get = s390_vxrs_low_get,
1626 .set = s390_vxrs_low_set,
1627 },
1628 {
1629 .core_note_type = NT_S390_VXRS_HIGH,
1630 .n = __NUM_VXRS_HIGH,
1631 .size = sizeof(__vector128),
1632 .align = sizeof(__vector128),
1633 .get = s390_vxrs_high_get,
1634 .set = s390_vxrs_high_set,
1635 },
1636 {
1637 .core_note_type = NT_S390_HIGH_GPRS,
1638 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1639 .size = sizeof(compat_long_t),
1640 .align = sizeof(compat_long_t),
1641 .get = s390_compat_regs_high_get,
1642 .set = s390_compat_regs_high_set,
1643 },
1644 {
1645 .core_note_type = NT_S390_GS_CB,
1646 .n = sizeof(struct gs_cb) / sizeof(__u64),
1647 .size = sizeof(__u64),
1648 .align = sizeof(__u64),
1649 .get = s390_gs_cb_get,
1650 .set = s390_gs_cb_set,
1651 },
1652 {
1653 .core_note_type = NT_S390_GS_BC,
1654 .n = sizeof(struct gs_cb) / sizeof(__u64),
1655 .size = sizeof(__u64),
1656 .align = sizeof(__u64),
1657 .get = s390_gs_bc_get,
1658 .set = s390_gs_bc_set,
1659 },
1660 {
1661 .core_note_type = NT_S390_RI_CB,
1662 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1663 .size = sizeof(__u64),
1664 .align = sizeof(__u64),
1665 .get = s390_runtime_instr_get,
1666 .set = s390_runtime_instr_set,
1667 },
1668};
1669
1670static const struct user_regset_view user_s390_compat_view = {
1671 .name = "s390",
1672 .e_machine = EM_S390,
1673 .regsets = s390_compat_regsets,
1674 .n = ARRAY_SIZE(s390_compat_regsets)
1675};
1676#endif
1677
1678const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1679{
1680#ifdef CONFIG_COMPAT
1681 if (test_tsk_thread_flag(task, TIF_31BIT))
1682 return &user_s390_compat_view;
1683#endif
1684 return &user_s390_view;
1685}
1686
1687static const char *gpr_names[NUM_GPRS] = {
1688 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1689 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1690};
1691
1692unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1693{
1694 if (offset >= NUM_GPRS)
1695 return 0;
1696 return regs->gprs[offset];
1697}
1698
1699int regs_query_register_offset(const char *name)
1700{
1701 unsigned long offset;
1702
1703 if (!name || *name != 'r')
1704 return -EINVAL;
1705 if (kstrtoul(name + 1, 10, &offset))
1706 return -EINVAL;
1707 if (offset >= NUM_GPRS)
1708 return -EINVAL;
1709 return offset;
1710}
1711
1712const char *regs_query_register_name(unsigned int offset)
1713{
1714 if (offset >= NUM_GPRS)
1715 return NULL;
1716 return gpr_names[offset];
1717}
1718
1719static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1720{
1721 unsigned long ksp = kernel_stack_pointer(regs);
1722
1723 return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1724}
1725
1726/**
1727 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1728 * @regs:pt_regs which contains kernel stack pointer.
1729 * @n:stack entry number.
1730 *
1731 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1732 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1733 * this returns 0.
1734 */
1735unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1736{
1737 unsigned long addr;
1738
1739 addr = kernel_stack_pointer(regs) + n * sizeof(long);
1740 if (!regs_within_kernel_stack(regs, addr))
1741 return 0;
1742 return *(unsigned long *)addr;
1743}
1/*
2 * Ptrace user space interface.
3 *
4 * Copyright IBM Corp. 1999, 2010
5 * Author(s): Denis Joseph Barrow
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 */
8
9#include <linux/kernel.h>
10#include <linux/sched.h>
11#include <linux/mm.h>
12#include <linux/smp.h>
13#include <linux/errno.h>
14#include <linux/ptrace.h>
15#include <linux/user.h>
16#include <linux/security.h>
17#include <linux/audit.h>
18#include <linux/signal.h>
19#include <linux/elf.h>
20#include <linux/regset.h>
21#include <linux/tracehook.h>
22#include <linux/seccomp.h>
23#include <linux/compat.h>
24#include <trace/syscall.h>
25#include <asm/segment.h>
26#include <asm/page.h>
27#include <asm/pgtable.h>
28#include <asm/pgalloc.h>
29#include <asm/uaccess.h>
30#include <asm/unistd.h>
31#include <asm/switch_to.h>
32#include "entry.h"
33
34#ifdef CONFIG_COMPAT
35#include "compat_ptrace.h"
36#endif
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/syscalls.h>
40
41enum s390_regset {
42 REGSET_GENERAL,
43 REGSET_FP,
44 REGSET_LAST_BREAK,
45 REGSET_TDB,
46 REGSET_SYSTEM_CALL,
47 REGSET_GENERAL_EXTENDED,
48};
49
50void update_cr_regs(struct task_struct *task)
51{
52 struct pt_regs *regs = task_pt_regs(task);
53 struct thread_struct *thread = &task->thread;
54 struct per_regs old, new;
55
56#ifdef CONFIG_64BIT
57 /* Take care of the enable/disable of transactional execution. */
58 if (MACHINE_HAS_TE) {
59 unsigned long cr, cr_new;
60
61 __ctl_store(cr, 0, 0);
62 /* Set or clear transaction execution TXC bit 8. */
63 cr_new = cr | (1UL << 55);
64 if (task->thread.per_flags & PER_FLAG_NO_TE)
65 cr_new &= ~(1UL << 55);
66 if (cr_new != cr)
67 __ctl_load(cr_new, 0, 0);
68 /* Set or clear transaction execution TDC bits 62 and 63. */
69 __ctl_store(cr, 2, 2);
70 cr_new = cr & ~3UL;
71 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
72 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
73 cr_new |= 1UL;
74 else
75 cr_new |= 2UL;
76 }
77 if (cr_new != cr)
78 __ctl_load(cr_new, 2, 2);
79 }
80#endif
81 /* Copy user specified PER registers */
82 new.control = thread->per_user.control;
83 new.start = thread->per_user.start;
84 new.end = thread->per_user.end;
85
86 /* merge TIF_SINGLE_STEP into user specified PER registers. */
87 if (test_tsk_thread_flag(task, TIF_SINGLE_STEP)) {
88 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
89 new.control |= PER_EVENT_BRANCH;
90 else
91 new.control |= PER_EVENT_IFETCH;
92#ifdef CONFIG_64BIT
93 new.control |= PER_CONTROL_SUSPENSION;
94 new.control |= PER_EVENT_TRANSACTION_END;
95#endif
96 new.start = 0;
97 new.end = PSW_ADDR_INSN;
98 }
99
100 /* Take care of the PER enablement bit in the PSW. */
101 if (!(new.control & PER_EVENT_MASK)) {
102 regs->psw.mask &= ~PSW_MASK_PER;
103 return;
104 }
105 regs->psw.mask |= PSW_MASK_PER;
106 __ctl_store(old, 9, 11);
107 if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
108 __ctl_load(new, 9, 11);
109}
110
111void user_enable_single_step(struct task_struct *task)
112{
113 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
114 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
115}
116
117void user_disable_single_step(struct task_struct *task)
118{
119 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
120 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
121}
122
123void user_enable_block_step(struct task_struct *task)
124{
125 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
126 set_tsk_thread_flag(task, TIF_BLOCK_STEP);
127}
128
129/*
130 * Called by kernel/ptrace.c when detaching..
131 *
132 * Clear all debugging related fields.
133 */
134void ptrace_disable(struct task_struct *task)
135{
136 memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
137 memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
138 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
139 clear_tsk_thread_flag(task, TIF_PER_TRAP);
140 task->thread.per_flags = 0;
141}
142
143#ifndef CONFIG_64BIT
144# define __ADDR_MASK 3
145#else
146# define __ADDR_MASK 7
147#endif
148
149static inline unsigned long __peek_user_per(struct task_struct *child,
150 addr_t addr)
151{
152 struct per_struct_kernel *dummy = NULL;
153
154 if (addr == (addr_t) &dummy->cr9)
155 /* Control bits of the active per set. */
156 return test_thread_flag(TIF_SINGLE_STEP) ?
157 PER_EVENT_IFETCH : child->thread.per_user.control;
158 else if (addr == (addr_t) &dummy->cr10)
159 /* Start address of the active per set. */
160 return test_thread_flag(TIF_SINGLE_STEP) ?
161 0 : child->thread.per_user.start;
162 else if (addr == (addr_t) &dummy->cr11)
163 /* End address of the active per set. */
164 return test_thread_flag(TIF_SINGLE_STEP) ?
165 PSW_ADDR_INSN : child->thread.per_user.end;
166 else if (addr == (addr_t) &dummy->bits)
167 /* Single-step bit. */
168 return test_thread_flag(TIF_SINGLE_STEP) ?
169 (1UL << (BITS_PER_LONG - 1)) : 0;
170 else if (addr == (addr_t) &dummy->starting_addr)
171 /* Start address of the user specified per set. */
172 return child->thread.per_user.start;
173 else if (addr == (addr_t) &dummy->ending_addr)
174 /* End address of the user specified per set. */
175 return child->thread.per_user.end;
176 else if (addr == (addr_t) &dummy->perc_atmid)
177 /* PER code, ATMID and AI of the last PER trap */
178 return (unsigned long)
179 child->thread.per_event.cause << (BITS_PER_LONG - 16);
180 else if (addr == (addr_t) &dummy->address)
181 /* Address of the last PER trap */
182 return child->thread.per_event.address;
183 else if (addr == (addr_t) &dummy->access_id)
184 /* Access id of the last PER trap */
185 return (unsigned long)
186 child->thread.per_event.paid << (BITS_PER_LONG - 8);
187 return 0;
188}
189
190/*
191 * Read the word at offset addr from the user area of a process. The
192 * trouble here is that the information is littered over different
193 * locations. The process registers are found on the kernel stack,
194 * the floating point stuff and the trace settings are stored in
195 * the task structure. In addition the different structures in
196 * struct user contain pad bytes that should be read as zeroes.
197 * Lovely...
198 */
199static unsigned long __peek_user(struct task_struct *child, addr_t addr)
200{
201 struct user *dummy = NULL;
202 addr_t offset, tmp;
203
204 if (addr < (addr_t) &dummy->regs.acrs) {
205 /*
206 * psw and gprs are stored on the stack
207 */
208 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
209 if (addr == (addr_t) &dummy->regs.psw.mask) {
210 /* Return a clean psw mask. */
211 tmp &= PSW_MASK_USER | PSW_MASK_RI;
212 tmp |= PSW_USER_BITS;
213 }
214
215 } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
216 /*
217 * access registers are stored in the thread structure
218 */
219 offset = addr - (addr_t) &dummy->regs.acrs;
220#ifdef CONFIG_64BIT
221 /*
222 * Very special case: old & broken 64 bit gdb reading
223 * from acrs[15]. Result is a 64 bit value. Read the
224 * 32 bit acrs[15] value and shift it by 32. Sick...
225 */
226 if (addr == (addr_t) &dummy->regs.acrs[15])
227 tmp = ((unsigned long) child->thread.acrs[15]) << 32;
228 else
229#endif
230 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
231
232 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
233 /*
234 * orig_gpr2 is stored on the kernel stack
235 */
236 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
237
238 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
239 /*
240 * prevent reads of padding hole between
241 * orig_gpr2 and fp_regs on s390.
242 */
243 tmp = 0;
244
245 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
246 /*
247 * floating point regs. are stored in the thread structure
248 */
249 offset = addr - (addr_t) &dummy->regs.fp_regs;
250 tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset);
251 if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
252 tmp <<= BITS_PER_LONG - 32;
253
254 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
255 /*
256 * Handle access to the per_info structure.
257 */
258 addr -= (addr_t) &dummy->regs.per_info;
259 tmp = __peek_user_per(child, addr);
260
261 } else
262 tmp = 0;
263
264 return tmp;
265}
266
267static int
268peek_user(struct task_struct *child, addr_t addr, addr_t data)
269{
270 addr_t tmp, mask;
271
272 /*
273 * Stupid gdb peeks/pokes the access registers in 64 bit with
274 * an alignment of 4. Programmers from hell...
275 */
276 mask = __ADDR_MASK;
277#ifdef CONFIG_64BIT
278 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
279 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
280 mask = 3;
281#endif
282 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
283 return -EIO;
284
285 tmp = __peek_user(child, addr);
286 return put_user(tmp, (addr_t __user *) data);
287}
288
289static inline void __poke_user_per(struct task_struct *child,
290 addr_t addr, addr_t data)
291{
292 struct per_struct_kernel *dummy = NULL;
293
294 /*
295 * There are only three fields in the per_info struct that the
296 * debugger user can write to.
297 * 1) cr9: the debugger wants to set a new PER event mask
298 * 2) starting_addr: the debugger wants to set a new starting
299 * address to use with the PER event mask.
300 * 3) ending_addr: the debugger wants to set a new ending
301 * address to use with the PER event mask.
302 * The user specified PER event mask and the start and end
303 * addresses are used only if single stepping is not in effect.
304 * Writes to any other field in per_info are ignored.
305 */
306 if (addr == (addr_t) &dummy->cr9)
307 /* PER event mask of the user specified per set. */
308 child->thread.per_user.control =
309 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
310 else if (addr == (addr_t) &dummy->starting_addr)
311 /* Starting address of the user specified per set. */
312 child->thread.per_user.start = data;
313 else if (addr == (addr_t) &dummy->ending_addr)
314 /* Ending address of the user specified per set. */
315 child->thread.per_user.end = data;
316}
317
318/*
319 * Write a word to the user area of a process at location addr. This
320 * operation does have an additional problem compared to peek_user.
321 * Stores to the program status word and on the floating point
322 * control register needs to get checked for validity.
323 */
324static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
325{
326 struct user *dummy = NULL;
327 addr_t offset;
328
329 if (addr < (addr_t) &dummy->regs.acrs) {
330 /*
331 * psw and gprs are stored on the stack
332 */
333 if (addr == (addr_t) &dummy->regs.psw.mask) {
334 unsigned long mask = PSW_MASK_USER;
335
336 mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
337 if ((data & ~mask) != PSW_USER_BITS)
338 return -EINVAL;
339 if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
340 return -EINVAL;
341 }
342 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
343
344 } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
345 /*
346 * access registers are stored in the thread structure
347 */
348 offset = addr - (addr_t) &dummy->regs.acrs;
349#ifdef CONFIG_64BIT
350 /*
351 * Very special case: old & broken 64 bit gdb writing
352 * to acrs[15] with a 64 bit value. Ignore the lower
353 * half of the value and write the upper 32 bit to
354 * acrs[15]. Sick...
355 */
356 if (addr == (addr_t) &dummy->regs.acrs[15])
357 child->thread.acrs[15] = (unsigned int) (data >> 32);
358 else
359#endif
360 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
361
362 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
363 /*
364 * orig_gpr2 is stored on the kernel stack
365 */
366 task_pt_regs(child)->orig_gpr2 = data;
367
368 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
369 /*
370 * prevent writes of padding hole between
371 * orig_gpr2 and fp_regs on s390.
372 */
373 return 0;
374
375 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
376 /*
377 * floating point regs. are stored in the thread structure
378 */
379 if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
380 if ((unsigned int) data != 0 ||
381 test_fp_ctl(data >> (BITS_PER_LONG - 32)))
382 return -EINVAL;
383 offset = addr - (addr_t) &dummy->regs.fp_regs;
384 *(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data;
385
386 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
387 /*
388 * Handle access to the per_info structure.
389 */
390 addr -= (addr_t) &dummy->regs.per_info;
391 __poke_user_per(child, addr, data);
392
393 }
394
395 return 0;
396}
397
398static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
399{
400 addr_t mask;
401
402 /*
403 * Stupid gdb peeks/pokes the access registers in 64 bit with
404 * an alignment of 4. Programmers from hell indeed...
405 */
406 mask = __ADDR_MASK;
407#ifdef CONFIG_64BIT
408 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
409 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
410 mask = 3;
411#endif
412 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
413 return -EIO;
414
415 return __poke_user(child, addr, data);
416}
417
418long arch_ptrace(struct task_struct *child, long request,
419 unsigned long addr, unsigned long data)
420{
421 ptrace_area parea;
422 int copied, ret;
423
424 switch (request) {
425 case PTRACE_PEEKUSR:
426 /* read the word at location addr in the USER area. */
427 return peek_user(child, addr, data);
428
429 case PTRACE_POKEUSR:
430 /* write the word at location addr in the USER area */
431 return poke_user(child, addr, data);
432
433 case PTRACE_PEEKUSR_AREA:
434 case PTRACE_POKEUSR_AREA:
435 if (copy_from_user(&parea, (void __force __user *) addr,
436 sizeof(parea)))
437 return -EFAULT;
438 addr = parea.kernel_addr;
439 data = parea.process_addr;
440 copied = 0;
441 while (copied < parea.len) {
442 if (request == PTRACE_PEEKUSR_AREA)
443 ret = peek_user(child, addr, data);
444 else {
445 addr_t utmp;
446 if (get_user(utmp,
447 (addr_t __force __user *) data))
448 return -EFAULT;
449 ret = poke_user(child, addr, utmp);
450 }
451 if (ret)
452 return ret;
453 addr += sizeof(unsigned long);
454 data += sizeof(unsigned long);
455 copied += sizeof(unsigned long);
456 }
457 return 0;
458 case PTRACE_GET_LAST_BREAK:
459 put_user(task_thread_info(child)->last_break,
460 (unsigned long __user *) data);
461 return 0;
462 case PTRACE_ENABLE_TE:
463 if (!MACHINE_HAS_TE)
464 return -EIO;
465 child->thread.per_flags &= ~PER_FLAG_NO_TE;
466 return 0;
467 case PTRACE_DISABLE_TE:
468 if (!MACHINE_HAS_TE)
469 return -EIO;
470 child->thread.per_flags |= PER_FLAG_NO_TE;
471 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
472 return 0;
473 case PTRACE_TE_ABORT_RAND:
474 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
475 return -EIO;
476 switch (data) {
477 case 0UL:
478 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
479 break;
480 case 1UL:
481 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
482 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
483 break;
484 case 2UL:
485 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
486 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
487 break;
488 default:
489 return -EINVAL;
490 }
491 return 0;
492 default:
493 /* Removing high order bit from addr (only for 31 bit). */
494 addr &= PSW_ADDR_INSN;
495 return ptrace_request(child, request, addr, data);
496 }
497}
498
499#ifdef CONFIG_COMPAT
500/*
501 * Now the fun part starts... a 31 bit program running in the
502 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
503 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
504 * to handle, the difference to the 64 bit versions of the requests
505 * is that the access is done in multiples of 4 byte instead of
506 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
507 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
508 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
509 * is a 31 bit program too, the content of struct user can be
510 * emulated. A 31 bit program peeking into the struct user of
511 * a 64 bit program is a no-no.
512 */
513
514/*
515 * Same as peek_user_per but for a 31 bit program.
516 */
517static inline __u32 __peek_user_per_compat(struct task_struct *child,
518 addr_t addr)
519{
520 struct compat_per_struct_kernel *dummy32 = NULL;
521
522 if (addr == (addr_t) &dummy32->cr9)
523 /* Control bits of the active per set. */
524 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
525 PER_EVENT_IFETCH : child->thread.per_user.control;
526 else if (addr == (addr_t) &dummy32->cr10)
527 /* Start address of the active per set. */
528 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
529 0 : child->thread.per_user.start;
530 else if (addr == (addr_t) &dummy32->cr11)
531 /* End address of the active per set. */
532 return test_thread_flag(TIF_SINGLE_STEP) ?
533 PSW32_ADDR_INSN : child->thread.per_user.end;
534 else if (addr == (addr_t) &dummy32->bits)
535 /* Single-step bit. */
536 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
537 0x80000000 : 0;
538 else if (addr == (addr_t) &dummy32->starting_addr)
539 /* Start address of the user specified per set. */
540 return (__u32) child->thread.per_user.start;
541 else if (addr == (addr_t) &dummy32->ending_addr)
542 /* End address of the user specified per set. */
543 return (__u32) child->thread.per_user.end;
544 else if (addr == (addr_t) &dummy32->perc_atmid)
545 /* PER code, ATMID and AI of the last PER trap */
546 return (__u32) child->thread.per_event.cause << 16;
547 else if (addr == (addr_t) &dummy32->address)
548 /* Address of the last PER trap */
549 return (__u32) child->thread.per_event.address;
550 else if (addr == (addr_t) &dummy32->access_id)
551 /* Access id of the last PER trap */
552 return (__u32) child->thread.per_event.paid << 24;
553 return 0;
554}
555
556/*
557 * Same as peek_user but for a 31 bit program.
558 */
559static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
560{
561 struct compat_user *dummy32 = NULL;
562 addr_t offset;
563 __u32 tmp;
564
565 if (addr < (addr_t) &dummy32->regs.acrs) {
566 struct pt_regs *regs = task_pt_regs(child);
567 /*
568 * psw and gprs are stored on the stack
569 */
570 if (addr == (addr_t) &dummy32->regs.psw.mask) {
571 /* Fake a 31 bit psw mask. */
572 tmp = (__u32)(regs->psw.mask >> 32);
573 tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
574 tmp |= PSW32_USER_BITS;
575 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
576 /* Fake a 31 bit psw address. */
577 tmp = (__u32) regs->psw.addr |
578 (__u32)(regs->psw.mask & PSW_MASK_BA);
579 } else {
580 /* gpr 0-15 */
581 tmp = *(__u32 *)((addr_t) ®s->psw + addr*2 + 4);
582 }
583 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
584 /*
585 * access registers are stored in the thread structure
586 */
587 offset = addr - (addr_t) &dummy32->regs.acrs;
588 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
589
590 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
591 /*
592 * orig_gpr2 is stored on the kernel stack
593 */
594 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
595
596 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
597 /*
598 * prevent reads of padding hole between
599 * orig_gpr2 and fp_regs on s390.
600 */
601 tmp = 0;
602
603 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
604 /*
605 * floating point regs. are stored in the thread structure
606 */
607 offset = addr - (addr_t) &dummy32->regs.fp_regs;
608 tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset);
609
610 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
611 /*
612 * Handle access to the per_info structure.
613 */
614 addr -= (addr_t) &dummy32->regs.per_info;
615 tmp = __peek_user_per_compat(child, addr);
616
617 } else
618 tmp = 0;
619
620 return tmp;
621}
622
623static int peek_user_compat(struct task_struct *child,
624 addr_t addr, addr_t data)
625{
626 __u32 tmp;
627
628 if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
629 return -EIO;
630
631 tmp = __peek_user_compat(child, addr);
632 return put_user(tmp, (__u32 __user *) data);
633}
634
635/*
636 * Same as poke_user_per but for a 31 bit program.
637 */
638static inline void __poke_user_per_compat(struct task_struct *child,
639 addr_t addr, __u32 data)
640{
641 struct compat_per_struct_kernel *dummy32 = NULL;
642
643 if (addr == (addr_t) &dummy32->cr9)
644 /* PER event mask of the user specified per set. */
645 child->thread.per_user.control =
646 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
647 else if (addr == (addr_t) &dummy32->starting_addr)
648 /* Starting address of the user specified per set. */
649 child->thread.per_user.start = data;
650 else if (addr == (addr_t) &dummy32->ending_addr)
651 /* Ending address of the user specified per set. */
652 child->thread.per_user.end = data;
653}
654
655/*
656 * Same as poke_user but for a 31 bit program.
657 */
658static int __poke_user_compat(struct task_struct *child,
659 addr_t addr, addr_t data)
660{
661 struct compat_user *dummy32 = NULL;
662 __u32 tmp = (__u32) data;
663 addr_t offset;
664
665 if (addr < (addr_t) &dummy32->regs.acrs) {
666 struct pt_regs *regs = task_pt_regs(child);
667 /*
668 * psw, gprs, acrs and orig_gpr2 are stored on the stack
669 */
670 if (addr == (addr_t) &dummy32->regs.psw.mask) {
671 __u32 mask = PSW32_MASK_USER;
672
673 mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
674 /* Build a 64 bit psw mask from 31 bit mask. */
675 if ((tmp & ~mask) != PSW32_USER_BITS)
676 /* Invalid psw mask. */
677 return -EINVAL;
678 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
679 (regs->psw.mask & PSW_MASK_BA) |
680 (__u64)(tmp & mask) << 32;
681 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
682 /* Build a 64 bit psw address from 31 bit address. */
683 regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
684 /* Transfer 31 bit amode bit to psw mask. */
685 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
686 (__u64)(tmp & PSW32_ADDR_AMODE);
687 } else {
688 /* gpr 0-15 */
689 *(__u32*)((addr_t) ®s->psw + addr*2 + 4) = tmp;
690 }
691 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
692 /*
693 * access registers are stored in the thread structure
694 */
695 offset = addr - (addr_t) &dummy32->regs.acrs;
696 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
697
698 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
699 /*
700 * orig_gpr2 is stored on the kernel stack
701 */
702 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
703
704 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
705 /*
706 * prevent writess of padding hole between
707 * orig_gpr2 and fp_regs on s390.
708 */
709 return 0;
710
711 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
712 /*
713 * floating point regs. are stored in the thread structure
714 */
715 if (addr == (addr_t) &dummy32->regs.fp_regs.fpc &&
716 test_fp_ctl(tmp))
717 return -EINVAL;
718 offset = addr - (addr_t) &dummy32->regs.fp_regs;
719 *(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp;
720
721 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
722 /*
723 * Handle access to the per_info structure.
724 */
725 addr -= (addr_t) &dummy32->regs.per_info;
726 __poke_user_per_compat(child, addr, data);
727 }
728
729 return 0;
730}
731
732static int poke_user_compat(struct task_struct *child,
733 addr_t addr, addr_t data)
734{
735 if (!is_compat_task() || (addr & 3) ||
736 addr > sizeof(struct compat_user) - 3)
737 return -EIO;
738
739 return __poke_user_compat(child, addr, data);
740}
741
742long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
743 compat_ulong_t caddr, compat_ulong_t cdata)
744{
745 unsigned long addr = caddr;
746 unsigned long data = cdata;
747 compat_ptrace_area parea;
748 int copied, ret;
749
750 switch (request) {
751 case PTRACE_PEEKUSR:
752 /* read the word at location addr in the USER area. */
753 return peek_user_compat(child, addr, data);
754
755 case PTRACE_POKEUSR:
756 /* write the word at location addr in the USER area */
757 return poke_user_compat(child, addr, data);
758
759 case PTRACE_PEEKUSR_AREA:
760 case PTRACE_POKEUSR_AREA:
761 if (copy_from_user(&parea, (void __force __user *) addr,
762 sizeof(parea)))
763 return -EFAULT;
764 addr = parea.kernel_addr;
765 data = parea.process_addr;
766 copied = 0;
767 while (copied < parea.len) {
768 if (request == PTRACE_PEEKUSR_AREA)
769 ret = peek_user_compat(child, addr, data);
770 else {
771 __u32 utmp;
772 if (get_user(utmp,
773 (__u32 __force __user *) data))
774 return -EFAULT;
775 ret = poke_user_compat(child, addr, utmp);
776 }
777 if (ret)
778 return ret;
779 addr += sizeof(unsigned int);
780 data += sizeof(unsigned int);
781 copied += sizeof(unsigned int);
782 }
783 return 0;
784 case PTRACE_GET_LAST_BREAK:
785 put_user(task_thread_info(child)->last_break,
786 (unsigned int __user *) data);
787 return 0;
788 }
789 return compat_ptrace_request(child, request, addr, data);
790}
791#endif
792
793asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
794{
795 long ret = 0;
796
797 /* Do the secure computing check first. */
798 if (secure_computing(regs->gprs[2])) {
799 /* seccomp failures shouldn't expose any additional code. */
800 ret = -1;
801 goto out;
802 }
803
804 /*
805 * The sysc_tracesys code in entry.S stored the system
806 * call number to gprs[2].
807 */
808 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
809 (tracehook_report_syscall_entry(regs) ||
810 regs->gprs[2] >= NR_syscalls)) {
811 /*
812 * Tracing decided this syscall should not happen or the
813 * debugger stored an invalid system call number. Skip
814 * the system call and the system call restart handling.
815 */
816 clear_thread_flag(TIF_SYSCALL);
817 ret = -1;
818 }
819
820 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
821 trace_sys_enter(regs, regs->gprs[2]);
822
823 audit_syscall_entry(is_compat_task() ?
824 AUDIT_ARCH_S390 : AUDIT_ARCH_S390X,
825 regs->gprs[2], regs->orig_gpr2,
826 regs->gprs[3], regs->gprs[4],
827 regs->gprs[5]);
828out:
829 return ret ?: regs->gprs[2];
830}
831
832asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
833{
834 audit_syscall_exit(regs);
835
836 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
837 trace_sys_exit(regs, regs->gprs[2]);
838
839 if (test_thread_flag(TIF_SYSCALL_TRACE))
840 tracehook_report_syscall_exit(regs, 0);
841}
842
843/*
844 * user_regset definitions.
845 */
846
847static int s390_regs_get(struct task_struct *target,
848 const struct user_regset *regset,
849 unsigned int pos, unsigned int count,
850 void *kbuf, void __user *ubuf)
851{
852 if (target == current)
853 save_access_regs(target->thread.acrs);
854
855 if (kbuf) {
856 unsigned long *k = kbuf;
857 while (count > 0) {
858 *k++ = __peek_user(target, pos);
859 count -= sizeof(*k);
860 pos += sizeof(*k);
861 }
862 } else {
863 unsigned long __user *u = ubuf;
864 while (count > 0) {
865 if (__put_user(__peek_user(target, pos), u++))
866 return -EFAULT;
867 count -= sizeof(*u);
868 pos += sizeof(*u);
869 }
870 }
871 return 0;
872}
873
874static int s390_regs_set(struct task_struct *target,
875 const struct user_regset *regset,
876 unsigned int pos, unsigned int count,
877 const void *kbuf, const void __user *ubuf)
878{
879 int rc = 0;
880
881 if (target == current)
882 save_access_regs(target->thread.acrs);
883
884 if (kbuf) {
885 const unsigned long *k = kbuf;
886 while (count > 0 && !rc) {
887 rc = __poke_user(target, pos, *k++);
888 count -= sizeof(*k);
889 pos += sizeof(*k);
890 }
891 } else {
892 const unsigned long __user *u = ubuf;
893 while (count > 0 && !rc) {
894 unsigned long word;
895 rc = __get_user(word, u++);
896 if (rc)
897 break;
898 rc = __poke_user(target, pos, word);
899 count -= sizeof(*u);
900 pos += sizeof(*u);
901 }
902 }
903
904 if (rc == 0 && target == current)
905 restore_access_regs(target->thread.acrs);
906
907 return rc;
908}
909
910static int s390_fpregs_get(struct task_struct *target,
911 const struct user_regset *regset, unsigned int pos,
912 unsigned int count, void *kbuf, void __user *ubuf)
913{
914 if (target == current) {
915 save_fp_ctl(&target->thread.fp_regs.fpc);
916 save_fp_regs(target->thread.fp_regs.fprs);
917 }
918
919 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
920 &target->thread.fp_regs, 0, -1);
921}
922
923static int s390_fpregs_set(struct task_struct *target,
924 const struct user_regset *regset, unsigned int pos,
925 unsigned int count, const void *kbuf,
926 const void __user *ubuf)
927{
928 int rc = 0;
929
930 if (target == current) {
931 save_fp_ctl(&target->thread.fp_regs.fpc);
932 save_fp_regs(target->thread.fp_regs.fprs);
933 }
934
935 /* If setting FPC, must validate it first. */
936 if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
937 u32 ufpc[2] = { target->thread.fp_regs.fpc, 0 };
938 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
939 0, offsetof(s390_fp_regs, fprs));
940 if (rc)
941 return rc;
942 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
943 return -EINVAL;
944 target->thread.fp_regs.fpc = ufpc[0];
945 }
946
947 if (rc == 0 && count > 0)
948 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
949 target->thread.fp_regs.fprs,
950 offsetof(s390_fp_regs, fprs), -1);
951
952 if (rc == 0 && target == current) {
953 restore_fp_ctl(&target->thread.fp_regs.fpc);
954 restore_fp_regs(target->thread.fp_regs.fprs);
955 }
956
957 return rc;
958}
959
960#ifdef CONFIG_64BIT
961
962static int s390_last_break_get(struct task_struct *target,
963 const struct user_regset *regset,
964 unsigned int pos, unsigned int count,
965 void *kbuf, void __user *ubuf)
966{
967 if (count > 0) {
968 if (kbuf) {
969 unsigned long *k = kbuf;
970 *k = task_thread_info(target)->last_break;
971 } else {
972 unsigned long __user *u = ubuf;
973 if (__put_user(task_thread_info(target)->last_break, u))
974 return -EFAULT;
975 }
976 }
977 return 0;
978}
979
980static int s390_last_break_set(struct task_struct *target,
981 const struct user_regset *regset,
982 unsigned int pos, unsigned int count,
983 const void *kbuf, const void __user *ubuf)
984{
985 return 0;
986}
987
988static int s390_tdb_get(struct task_struct *target,
989 const struct user_regset *regset,
990 unsigned int pos, unsigned int count,
991 void *kbuf, void __user *ubuf)
992{
993 struct pt_regs *regs = task_pt_regs(target);
994 unsigned char *data;
995
996 if (!(regs->int_code & 0x200))
997 return -ENODATA;
998 data = target->thread.trap_tdb;
999 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1000}
1001
1002static int s390_tdb_set(struct task_struct *target,
1003 const struct user_regset *regset,
1004 unsigned int pos, unsigned int count,
1005 const void *kbuf, const void __user *ubuf)
1006{
1007 return 0;
1008}
1009
1010#endif
1011
1012static int s390_system_call_get(struct task_struct *target,
1013 const struct user_regset *regset,
1014 unsigned int pos, unsigned int count,
1015 void *kbuf, void __user *ubuf)
1016{
1017 unsigned int *data = &task_thread_info(target)->system_call;
1018 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1019 data, 0, sizeof(unsigned int));
1020}
1021
1022static int s390_system_call_set(struct task_struct *target,
1023 const struct user_regset *regset,
1024 unsigned int pos, unsigned int count,
1025 const void *kbuf, const void __user *ubuf)
1026{
1027 unsigned int *data = &task_thread_info(target)->system_call;
1028 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1029 data, 0, sizeof(unsigned int));
1030}
1031
1032static const struct user_regset s390_regsets[] = {
1033 [REGSET_GENERAL] = {
1034 .core_note_type = NT_PRSTATUS,
1035 .n = sizeof(s390_regs) / sizeof(long),
1036 .size = sizeof(long),
1037 .align = sizeof(long),
1038 .get = s390_regs_get,
1039 .set = s390_regs_set,
1040 },
1041 [REGSET_FP] = {
1042 .core_note_type = NT_PRFPREG,
1043 .n = sizeof(s390_fp_regs) / sizeof(long),
1044 .size = sizeof(long),
1045 .align = sizeof(long),
1046 .get = s390_fpregs_get,
1047 .set = s390_fpregs_set,
1048 },
1049#ifdef CONFIG_64BIT
1050 [REGSET_LAST_BREAK] = {
1051 .core_note_type = NT_S390_LAST_BREAK,
1052 .n = 1,
1053 .size = sizeof(long),
1054 .align = sizeof(long),
1055 .get = s390_last_break_get,
1056 .set = s390_last_break_set,
1057 },
1058 [REGSET_TDB] = {
1059 .core_note_type = NT_S390_TDB,
1060 .n = 1,
1061 .size = 256,
1062 .align = 1,
1063 .get = s390_tdb_get,
1064 .set = s390_tdb_set,
1065 },
1066#endif
1067 [REGSET_SYSTEM_CALL] = {
1068 .core_note_type = NT_S390_SYSTEM_CALL,
1069 .n = 1,
1070 .size = sizeof(unsigned int),
1071 .align = sizeof(unsigned int),
1072 .get = s390_system_call_get,
1073 .set = s390_system_call_set,
1074 },
1075};
1076
1077static const struct user_regset_view user_s390_view = {
1078 .name = UTS_MACHINE,
1079 .e_machine = EM_S390,
1080 .regsets = s390_regsets,
1081 .n = ARRAY_SIZE(s390_regsets)
1082};
1083
1084#ifdef CONFIG_COMPAT
1085static int s390_compat_regs_get(struct task_struct *target,
1086 const struct user_regset *regset,
1087 unsigned int pos, unsigned int count,
1088 void *kbuf, void __user *ubuf)
1089{
1090 if (target == current)
1091 save_access_regs(target->thread.acrs);
1092
1093 if (kbuf) {
1094 compat_ulong_t *k = kbuf;
1095 while (count > 0) {
1096 *k++ = __peek_user_compat(target, pos);
1097 count -= sizeof(*k);
1098 pos += sizeof(*k);
1099 }
1100 } else {
1101 compat_ulong_t __user *u = ubuf;
1102 while (count > 0) {
1103 if (__put_user(__peek_user_compat(target, pos), u++))
1104 return -EFAULT;
1105 count -= sizeof(*u);
1106 pos += sizeof(*u);
1107 }
1108 }
1109 return 0;
1110}
1111
1112static int s390_compat_regs_set(struct task_struct *target,
1113 const struct user_regset *regset,
1114 unsigned int pos, unsigned int count,
1115 const void *kbuf, const void __user *ubuf)
1116{
1117 int rc = 0;
1118
1119 if (target == current)
1120 save_access_regs(target->thread.acrs);
1121
1122 if (kbuf) {
1123 const compat_ulong_t *k = kbuf;
1124 while (count > 0 && !rc) {
1125 rc = __poke_user_compat(target, pos, *k++);
1126 count -= sizeof(*k);
1127 pos += sizeof(*k);
1128 }
1129 } else {
1130 const compat_ulong_t __user *u = ubuf;
1131 while (count > 0 && !rc) {
1132 compat_ulong_t word;
1133 rc = __get_user(word, u++);
1134 if (rc)
1135 break;
1136 rc = __poke_user_compat(target, pos, word);
1137 count -= sizeof(*u);
1138 pos += sizeof(*u);
1139 }
1140 }
1141
1142 if (rc == 0 && target == current)
1143 restore_access_regs(target->thread.acrs);
1144
1145 return rc;
1146}
1147
1148static int s390_compat_regs_high_get(struct task_struct *target,
1149 const struct user_regset *regset,
1150 unsigned int pos, unsigned int count,
1151 void *kbuf, void __user *ubuf)
1152{
1153 compat_ulong_t *gprs_high;
1154
1155 gprs_high = (compat_ulong_t *)
1156 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1157 if (kbuf) {
1158 compat_ulong_t *k = kbuf;
1159 while (count > 0) {
1160 *k++ = *gprs_high;
1161 gprs_high += 2;
1162 count -= sizeof(*k);
1163 }
1164 } else {
1165 compat_ulong_t __user *u = ubuf;
1166 while (count > 0) {
1167 if (__put_user(*gprs_high, u++))
1168 return -EFAULT;
1169 gprs_high += 2;
1170 count -= sizeof(*u);
1171 }
1172 }
1173 return 0;
1174}
1175
1176static int s390_compat_regs_high_set(struct task_struct *target,
1177 const struct user_regset *regset,
1178 unsigned int pos, unsigned int count,
1179 const void *kbuf, const void __user *ubuf)
1180{
1181 compat_ulong_t *gprs_high;
1182 int rc = 0;
1183
1184 gprs_high = (compat_ulong_t *)
1185 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1186 if (kbuf) {
1187 const compat_ulong_t *k = kbuf;
1188 while (count > 0) {
1189 *gprs_high = *k++;
1190 *gprs_high += 2;
1191 count -= sizeof(*k);
1192 }
1193 } else {
1194 const compat_ulong_t __user *u = ubuf;
1195 while (count > 0 && !rc) {
1196 unsigned long word;
1197 rc = __get_user(word, u++);
1198 if (rc)
1199 break;
1200 *gprs_high = word;
1201 *gprs_high += 2;
1202 count -= sizeof(*u);
1203 }
1204 }
1205
1206 return rc;
1207}
1208
1209static int s390_compat_last_break_get(struct task_struct *target,
1210 const struct user_regset *regset,
1211 unsigned int pos, unsigned int count,
1212 void *kbuf, void __user *ubuf)
1213{
1214 compat_ulong_t last_break;
1215
1216 if (count > 0) {
1217 last_break = task_thread_info(target)->last_break;
1218 if (kbuf) {
1219 unsigned long *k = kbuf;
1220 *k = last_break;
1221 } else {
1222 unsigned long __user *u = ubuf;
1223 if (__put_user(last_break, u))
1224 return -EFAULT;
1225 }
1226 }
1227 return 0;
1228}
1229
1230static int s390_compat_last_break_set(struct task_struct *target,
1231 const struct user_regset *regset,
1232 unsigned int pos, unsigned int count,
1233 const void *kbuf, const void __user *ubuf)
1234{
1235 return 0;
1236}
1237
1238static const struct user_regset s390_compat_regsets[] = {
1239 [REGSET_GENERAL] = {
1240 .core_note_type = NT_PRSTATUS,
1241 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1242 .size = sizeof(compat_long_t),
1243 .align = sizeof(compat_long_t),
1244 .get = s390_compat_regs_get,
1245 .set = s390_compat_regs_set,
1246 },
1247 [REGSET_FP] = {
1248 .core_note_type = NT_PRFPREG,
1249 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1250 .size = sizeof(compat_long_t),
1251 .align = sizeof(compat_long_t),
1252 .get = s390_fpregs_get,
1253 .set = s390_fpregs_set,
1254 },
1255 [REGSET_LAST_BREAK] = {
1256 .core_note_type = NT_S390_LAST_BREAK,
1257 .n = 1,
1258 .size = sizeof(long),
1259 .align = sizeof(long),
1260 .get = s390_compat_last_break_get,
1261 .set = s390_compat_last_break_set,
1262 },
1263 [REGSET_TDB] = {
1264 .core_note_type = NT_S390_TDB,
1265 .n = 1,
1266 .size = 256,
1267 .align = 1,
1268 .get = s390_tdb_get,
1269 .set = s390_tdb_set,
1270 },
1271 [REGSET_SYSTEM_CALL] = {
1272 .core_note_type = NT_S390_SYSTEM_CALL,
1273 .n = 1,
1274 .size = sizeof(compat_uint_t),
1275 .align = sizeof(compat_uint_t),
1276 .get = s390_system_call_get,
1277 .set = s390_system_call_set,
1278 },
1279 [REGSET_GENERAL_EXTENDED] = {
1280 .core_note_type = NT_S390_HIGH_GPRS,
1281 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1282 .size = sizeof(compat_long_t),
1283 .align = sizeof(compat_long_t),
1284 .get = s390_compat_regs_high_get,
1285 .set = s390_compat_regs_high_set,
1286 },
1287};
1288
1289static const struct user_regset_view user_s390_compat_view = {
1290 .name = "s390",
1291 .e_machine = EM_S390,
1292 .regsets = s390_compat_regsets,
1293 .n = ARRAY_SIZE(s390_compat_regsets)
1294};
1295#endif
1296
1297const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1298{
1299#ifdef CONFIG_COMPAT
1300 if (test_tsk_thread_flag(task, TIF_31BIT))
1301 return &user_s390_compat_view;
1302#endif
1303 return &user_s390_view;
1304}
1305
1306static const char *gpr_names[NUM_GPRS] = {
1307 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1308 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1309};
1310
1311unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1312{
1313 if (offset >= NUM_GPRS)
1314 return 0;
1315 return regs->gprs[offset];
1316}
1317
1318int regs_query_register_offset(const char *name)
1319{
1320 unsigned long offset;
1321
1322 if (!name || *name != 'r')
1323 return -EINVAL;
1324 if (kstrtoul(name + 1, 10, &offset))
1325 return -EINVAL;
1326 if (offset >= NUM_GPRS)
1327 return -EINVAL;
1328 return offset;
1329}
1330
1331const char *regs_query_register_name(unsigned int offset)
1332{
1333 if (offset >= NUM_GPRS)
1334 return NULL;
1335 return gpr_names[offset];
1336}
1337
1338static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1339{
1340 unsigned long ksp = kernel_stack_pointer(regs);
1341
1342 return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1343}
1344
1345/**
1346 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1347 * @regs:pt_regs which contains kernel stack pointer.
1348 * @n:stack entry number.
1349 *
1350 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1351 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1352 * this returns 0.
1353 */
1354unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1355{
1356 unsigned long addr;
1357
1358 addr = kernel_stack_pointer(regs) + n * sizeof(long);
1359 if (!regs_within_kernel_stack(regs, addr))
1360 return 0;
1361 return *(unsigned long *)addr;
1362}