Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Ptrace user space interface.
4 *
5 * Copyright IBM Corp. 1999, 2010
6 * Author(s): Denis Joseph Barrow
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 */
9
10#include <linux/kernel.h>
11#include <linux/sched.h>
12#include <linux/sched/task_stack.h>
13#include <linux/mm.h>
14#include <linux/smp.h>
15#include <linux/errno.h>
16#include <linux/ptrace.h>
17#include <linux/user.h>
18#include <linux/security.h>
19#include <linux/audit.h>
20#include <linux/signal.h>
21#include <linux/elf.h>
22#include <linux/regset.h>
23#include <linux/tracehook.h>
24#include <linux/seccomp.h>
25#include <linux/compat.h>
26#include <trace/syscall.h>
27#include <asm/page.h>
28#include <asm/pgtable.h>
29#include <asm/pgalloc.h>
30#include <linux/uaccess.h>
31#include <asm/unistd.h>
32#include <asm/switch_to.h>
33#include <asm/runtime_instr.h>
34#include <asm/facility.h>
35
36#include "entry.h"
37
38#ifdef CONFIG_COMPAT
39#include "compat_ptrace.h"
40#endif
41
42#define CREATE_TRACE_POINTS
43#include <trace/events/syscalls.h>
44
45void update_cr_regs(struct task_struct *task)
46{
47 struct pt_regs *regs = task_pt_regs(task);
48 struct thread_struct *thread = &task->thread;
49 struct per_regs old, new;
50 union ctlreg0 cr0_old, cr0_new;
51 union ctlreg2 cr2_old, cr2_new;
52 int cr0_changed, cr2_changed;
53
54 __ctl_store(cr0_old.val, 0, 0);
55 __ctl_store(cr2_old.val, 2, 2);
56 cr0_new = cr0_old;
57 cr2_new = cr2_old;
58 /* Take care of the enable/disable of transactional execution. */
59 if (MACHINE_HAS_TE) {
60 /* Set or clear transaction execution TXC bit 8. */
61 cr0_new.tcx = 1;
62 if (task->thread.per_flags & PER_FLAG_NO_TE)
63 cr0_new.tcx = 0;
64 /* Set or clear transaction execution TDC bits 62 and 63. */
65 cr2_new.tdc = 0;
66 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
67 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
68 cr2_new.tdc = 1;
69 else
70 cr2_new.tdc = 2;
71 }
72 }
73 /* Take care of enable/disable of guarded storage. */
74 if (MACHINE_HAS_GS) {
75 cr2_new.gse = 0;
76 if (task->thread.gs_cb)
77 cr2_new.gse = 1;
78 }
79 /* Load control register 0/2 iff changed */
80 cr0_changed = cr0_new.val != cr0_old.val;
81 cr2_changed = cr2_new.val != cr2_old.val;
82 if (cr0_changed)
83 __ctl_load(cr0_new.val, 0, 0);
84 if (cr2_changed)
85 __ctl_load(cr2_new.val, 2, 2);
86 /* Copy user specified PER registers */
87 new.control = thread->per_user.control;
88 new.start = thread->per_user.start;
89 new.end = thread->per_user.end;
90
91 /* merge TIF_SINGLE_STEP into user specified PER registers. */
92 if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
93 test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
94 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
95 new.control |= PER_EVENT_BRANCH;
96 else
97 new.control |= PER_EVENT_IFETCH;
98 new.control |= PER_CONTROL_SUSPENSION;
99 new.control |= PER_EVENT_TRANSACTION_END;
100 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
101 new.control |= PER_EVENT_IFETCH;
102 new.start = 0;
103 new.end = -1UL;
104 }
105
106 /* Take care of the PER enablement bit in the PSW. */
107 if (!(new.control & PER_EVENT_MASK)) {
108 regs->psw.mask &= ~PSW_MASK_PER;
109 return;
110 }
111 regs->psw.mask |= PSW_MASK_PER;
112 __ctl_store(old, 9, 11);
113 if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
114 __ctl_load(new, 9, 11);
115}
116
117void user_enable_single_step(struct task_struct *task)
118{
119 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
120 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
121}
122
123void user_disable_single_step(struct task_struct *task)
124{
125 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
126 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
127}
128
129void user_enable_block_step(struct task_struct *task)
130{
131 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
132 set_tsk_thread_flag(task, TIF_BLOCK_STEP);
133}
134
135/*
136 * Called by kernel/ptrace.c when detaching..
137 *
138 * Clear all debugging related fields.
139 */
140void ptrace_disable(struct task_struct *task)
141{
142 memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
143 memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
144 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
145 clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
146 task->thread.per_flags = 0;
147}
148
149#define __ADDR_MASK 7
150
151static inline unsigned long __peek_user_per(struct task_struct *child,
152 addr_t addr)
153{
154 struct per_struct_kernel *dummy = NULL;
155
156 if (addr == (addr_t) &dummy->cr9)
157 /* Control bits of the active per set. */
158 return test_thread_flag(TIF_SINGLE_STEP) ?
159 PER_EVENT_IFETCH : child->thread.per_user.control;
160 else if (addr == (addr_t) &dummy->cr10)
161 /* Start address of the active per set. */
162 return test_thread_flag(TIF_SINGLE_STEP) ?
163 0 : child->thread.per_user.start;
164 else if (addr == (addr_t) &dummy->cr11)
165 /* End address of the active per set. */
166 return test_thread_flag(TIF_SINGLE_STEP) ?
167 -1UL : child->thread.per_user.end;
168 else if (addr == (addr_t) &dummy->bits)
169 /* Single-step bit. */
170 return test_thread_flag(TIF_SINGLE_STEP) ?
171 (1UL << (BITS_PER_LONG - 1)) : 0;
172 else if (addr == (addr_t) &dummy->starting_addr)
173 /* Start address of the user specified per set. */
174 return child->thread.per_user.start;
175 else if (addr == (addr_t) &dummy->ending_addr)
176 /* End address of the user specified per set. */
177 return child->thread.per_user.end;
178 else if (addr == (addr_t) &dummy->perc_atmid)
179 /* PER code, ATMID and AI of the last PER trap */
180 return (unsigned long)
181 child->thread.per_event.cause << (BITS_PER_LONG - 16);
182 else if (addr == (addr_t) &dummy->address)
183 /* Address of the last PER trap */
184 return child->thread.per_event.address;
185 else if (addr == (addr_t) &dummy->access_id)
186 /* Access id of the last PER trap */
187 return (unsigned long)
188 child->thread.per_event.paid << (BITS_PER_LONG - 8);
189 return 0;
190}
191
192/*
193 * Read the word at offset addr from the user area of a process. The
194 * trouble here is that the information is littered over different
195 * locations. The process registers are found on the kernel stack,
196 * the floating point stuff and the trace settings are stored in
197 * the task structure. In addition the different structures in
198 * struct user contain pad bytes that should be read as zeroes.
199 * Lovely...
200 */
201static unsigned long __peek_user(struct task_struct *child, addr_t addr)
202{
203 struct user *dummy = NULL;
204 addr_t offset, tmp;
205
206 if (addr < (addr_t) &dummy->regs.acrs) {
207 /*
208 * psw and gprs are stored on the stack
209 */
210 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
211 if (addr == (addr_t) &dummy->regs.psw.mask) {
212 /* Return a clean psw mask. */
213 tmp &= PSW_MASK_USER | PSW_MASK_RI;
214 tmp |= PSW_USER_BITS;
215 }
216
217 } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
218 /*
219 * access registers are stored in the thread structure
220 */
221 offset = addr - (addr_t) &dummy->regs.acrs;
222 /*
223 * Very special case: old & broken 64 bit gdb reading
224 * from acrs[15]. Result is a 64 bit value. Read the
225 * 32 bit acrs[15] value and shift it by 32. Sick...
226 */
227 if (addr == (addr_t) &dummy->regs.acrs[15])
228 tmp = ((unsigned long) child->thread.acrs[15]) << 32;
229 else
230 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
231
232 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
233 /*
234 * orig_gpr2 is stored on the kernel stack
235 */
236 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
237
238 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
239 /*
240 * prevent reads of padding hole between
241 * orig_gpr2 and fp_regs on s390.
242 */
243 tmp = 0;
244
245 } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
246 /*
247 * floating point control reg. is in the thread structure
248 */
249 tmp = child->thread.fpu.fpc;
250 tmp <<= BITS_PER_LONG - 32;
251
252 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
253 /*
254 * floating point regs. are either in child->thread.fpu
255 * or the child->thread.fpu.vxrs array
256 */
257 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
258 if (MACHINE_HAS_VX)
259 tmp = *(addr_t *)
260 ((addr_t) child->thread.fpu.vxrs + 2*offset);
261 else
262 tmp = *(addr_t *)
263 ((addr_t) child->thread.fpu.fprs + offset);
264
265 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
266 /*
267 * Handle access to the per_info structure.
268 */
269 addr -= (addr_t) &dummy->regs.per_info;
270 tmp = __peek_user_per(child, addr);
271
272 } else
273 tmp = 0;
274
275 return tmp;
276}
277
278static int
279peek_user(struct task_struct *child, addr_t addr, addr_t data)
280{
281 addr_t tmp, mask;
282
283 /*
284 * Stupid gdb peeks/pokes the access registers in 64 bit with
285 * an alignment of 4. Programmers from hell...
286 */
287 mask = __ADDR_MASK;
288 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
289 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
290 mask = 3;
291 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
292 return -EIO;
293
294 tmp = __peek_user(child, addr);
295 return put_user(tmp, (addr_t __user *) data);
296}
297
298static inline void __poke_user_per(struct task_struct *child,
299 addr_t addr, addr_t data)
300{
301 struct per_struct_kernel *dummy = NULL;
302
303 /*
304 * There are only three fields in the per_info struct that the
305 * debugger user can write to.
306 * 1) cr9: the debugger wants to set a new PER event mask
307 * 2) starting_addr: the debugger wants to set a new starting
308 * address to use with the PER event mask.
309 * 3) ending_addr: the debugger wants to set a new ending
310 * address to use with the PER event mask.
311 * The user specified PER event mask and the start and end
312 * addresses are used only if single stepping is not in effect.
313 * Writes to any other field in per_info are ignored.
314 */
315 if (addr == (addr_t) &dummy->cr9)
316 /* PER event mask of the user specified per set. */
317 child->thread.per_user.control =
318 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
319 else if (addr == (addr_t) &dummy->starting_addr)
320 /* Starting address of the user specified per set. */
321 child->thread.per_user.start = data;
322 else if (addr == (addr_t) &dummy->ending_addr)
323 /* Ending address of the user specified per set. */
324 child->thread.per_user.end = data;
325}
326
327/*
328 * Write a word to the user area of a process at location addr. This
329 * operation does have an additional problem compared to peek_user.
330 * Stores to the program status word and on the floating point
331 * control register needs to get checked for validity.
332 */
333static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
334{
335 struct user *dummy = NULL;
336 addr_t offset;
337
338 if (addr < (addr_t) &dummy->regs.acrs) {
339 /*
340 * psw and gprs are stored on the stack
341 */
342 if (addr == (addr_t) &dummy->regs.psw.mask) {
343 unsigned long mask = PSW_MASK_USER;
344
345 mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
346 if ((data ^ PSW_USER_BITS) & ~mask)
347 /* Invalid psw mask. */
348 return -EINVAL;
349 if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
350 /* Invalid address-space-control bits */
351 return -EINVAL;
352 if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
353 /* Invalid addressing mode bits */
354 return -EINVAL;
355 }
356 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
357
358 } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
359 /*
360 * access registers are stored in the thread structure
361 */
362 offset = addr - (addr_t) &dummy->regs.acrs;
363 /*
364 * Very special case: old & broken 64 bit gdb writing
365 * to acrs[15] with a 64 bit value. Ignore the lower
366 * half of the value and write the upper 32 bit to
367 * acrs[15]. Sick...
368 */
369 if (addr == (addr_t) &dummy->regs.acrs[15])
370 child->thread.acrs[15] = (unsigned int) (data >> 32);
371 else
372 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
373
374 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
375 /*
376 * orig_gpr2 is stored on the kernel stack
377 */
378 task_pt_regs(child)->orig_gpr2 = data;
379
380 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
381 /*
382 * prevent writes of padding hole between
383 * orig_gpr2 and fp_regs on s390.
384 */
385 return 0;
386
387 } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
388 /*
389 * floating point control reg. is in the thread structure
390 */
391 if ((unsigned int) data != 0 ||
392 test_fp_ctl(data >> (BITS_PER_LONG - 32)))
393 return -EINVAL;
394 child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
395
396 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
397 /*
398 * floating point regs. are either in child->thread.fpu
399 * or the child->thread.fpu.vxrs array
400 */
401 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
402 if (MACHINE_HAS_VX)
403 *(addr_t *)((addr_t)
404 child->thread.fpu.vxrs + 2*offset) = data;
405 else
406 *(addr_t *)((addr_t)
407 child->thread.fpu.fprs + offset) = data;
408
409 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
410 /*
411 * Handle access to the per_info structure.
412 */
413 addr -= (addr_t) &dummy->regs.per_info;
414 __poke_user_per(child, addr, data);
415
416 }
417
418 return 0;
419}
420
421static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
422{
423 addr_t mask;
424
425 /*
426 * Stupid gdb peeks/pokes the access registers in 64 bit with
427 * an alignment of 4. Programmers from hell indeed...
428 */
429 mask = __ADDR_MASK;
430 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
431 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
432 mask = 3;
433 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
434 return -EIO;
435
436 return __poke_user(child, addr, data);
437}
438
439long arch_ptrace(struct task_struct *child, long request,
440 unsigned long addr, unsigned long data)
441{
442 ptrace_area parea;
443 int copied, ret;
444
445 switch (request) {
446 case PTRACE_PEEKUSR:
447 /* read the word at location addr in the USER area. */
448 return peek_user(child, addr, data);
449
450 case PTRACE_POKEUSR:
451 /* write the word at location addr in the USER area */
452 return poke_user(child, addr, data);
453
454 case PTRACE_PEEKUSR_AREA:
455 case PTRACE_POKEUSR_AREA:
456 if (copy_from_user(&parea, (void __force __user *) addr,
457 sizeof(parea)))
458 return -EFAULT;
459 addr = parea.kernel_addr;
460 data = parea.process_addr;
461 copied = 0;
462 while (copied < parea.len) {
463 if (request == PTRACE_PEEKUSR_AREA)
464 ret = peek_user(child, addr, data);
465 else {
466 addr_t utmp;
467 if (get_user(utmp,
468 (addr_t __force __user *) data))
469 return -EFAULT;
470 ret = poke_user(child, addr, utmp);
471 }
472 if (ret)
473 return ret;
474 addr += sizeof(unsigned long);
475 data += sizeof(unsigned long);
476 copied += sizeof(unsigned long);
477 }
478 return 0;
479 case PTRACE_GET_LAST_BREAK:
480 put_user(child->thread.last_break,
481 (unsigned long __user *) data);
482 return 0;
483 case PTRACE_ENABLE_TE:
484 if (!MACHINE_HAS_TE)
485 return -EIO;
486 child->thread.per_flags &= ~PER_FLAG_NO_TE;
487 return 0;
488 case PTRACE_DISABLE_TE:
489 if (!MACHINE_HAS_TE)
490 return -EIO;
491 child->thread.per_flags |= PER_FLAG_NO_TE;
492 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
493 return 0;
494 case PTRACE_TE_ABORT_RAND:
495 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
496 return -EIO;
497 switch (data) {
498 case 0UL:
499 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
500 break;
501 case 1UL:
502 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
503 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
504 break;
505 case 2UL:
506 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
507 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
508 break;
509 default:
510 return -EINVAL;
511 }
512 return 0;
513 default:
514 return ptrace_request(child, request, addr, data);
515 }
516}
517
518#ifdef CONFIG_COMPAT
519/*
520 * Now the fun part starts... a 31 bit program running in the
521 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
522 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
523 * to handle, the difference to the 64 bit versions of the requests
524 * is that the access is done in multiples of 4 byte instead of
525 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
526 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
527 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
528 * is a 31 bit program too, the content of struct user can be
529 * emulated. A 31 bit program peeking into the struct user of
530 * a 64 bit program is a no-no.
531 */
532
533/*
534 * Same as peek_user_per but for a 31 bit program.
535 */
536static inline __u32 __peek_user_per_compat(struct task_struct *child,
537 addr_t addr)
538{
539 struct compat_per_struct_kernel *dummy32 = NULL;
540
541 if (addr == (addr_t) &dummy32->cr9)
542 /* Control bits of the active per set. */
543 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
544 PER_EVENT_IFETCH : child->thread.per_user.control;
545 else if (addr == (addr_t) &dummy32->cr10)
546 /* Start address of the active per set. */
547 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
548 0 : child->thread.per_user.start;
549 else if (addr == (addr_t) &dummy32->cr11)
550 /* End address of the active per set. */
551 return test_thread_flag(TIF_SINGLE_STEP) ?
552 PSW32_ADDR_INSN : child->thread.per_user.end;
553 else if (addr == (addr_t) &dummy32->bits)
554 /* Single-step bit. */
555 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
556 0x80000000 : 0;
557 else if (addr == (addr_t) &dummy32->starting_addr)
558 /* Start address of the user specified per set. */
559 return (__u32) child->thread.per_user.start;
560 else if (addr == (addr_t) &dummy32->ending_addr)
561 /* End address of the user specified per set. */
562 return (__u32) child->thread.per_user.end;
563 else if (addr == (addr_t) &dummy32->perc_atmid)
564 /* PER code, ATMID and AI of the last PER trap */
565 return (__u32) child->thread.per_event.cause << 16;
566 else if (addr == (addr_t) &dummy32->address)
567 /* Address of the last PER trap */
568 return (__u32) child->thread.per_event.address;
569 else if (addr == (addr_t) &dummy32->access_id)
570 /* Access id of the last PER trap */
571 return (__u32) child->thread.per_event.paid << 24;
572 return 0;
573}
574
575/*
576 * Same as peek_user but for a 31 bit program.
577 */
578static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
579{
580 struct compat_user *dummy32 = NULL;
581 addr_t offset;
582 __u32 tmp;
583
584 if (addr < (addr_t) &dummy32->regs.acrs) {
585 struct pt_regs *regs = task_pt_regs(child);
586 /*
587 * psw and gprs are stored on the stack
588 */
589 if (addr == (addr_t) &dummy32->regs.psw.mask) {
590 /* Fake a 31 bit psw mask. */
591 tmp = (__u32)(regs->psw.mask >> 32);
592 tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
593 tmp |= PSW32_USER_BITS;
594 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
595 /* Fake a 31 bit psw address. */
596 tmp = (__u32) regs->psw.addr |
597 (__u32)(regs->psw.mask & PSW_MASK_BA);
598 } else {
599 /* gpr 0-15 */
600 tmp = *(__u32 *)((addr_t) ®s->psw + addr*2 + 4);
601 }
602 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
603 /*
604 * access registers are stored in the thread structure
605 */
606 offset = addr - (addr_t) &dummy32->regs.acrs;
607 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
608
609 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
610 /*
611 * orig_gpr2 is stored on the kernel stack
612 */
613 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
614
615 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
616 /*
617 * prevent reads of padding hole between
618 * orig_gpr2 and fp_regs on s390.
619 */
620 tmp = 0;
621
622 } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
623 /*
624 * floating point control reg. is in the thread structure
625 */
626 tmp = child->thread.fpu.fpc;
627
628 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
629 /*
630 * floating point regs. are either in child->thread.fpu
631 * or the child->thread.fpu.vxrs array
632 */
633 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
634 if (MACHINE_HAS_VX)
635 tmp = *(__u32 *)
636 ((addr_t) child->thread.fpu.vxrs + 2*offset);
637 else
638 tmp = *(__u32 *)
639 ((addr_t) child->thread.fpu.fprs + offset);
640
641 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
642 /*
643 * Handle access to the per_info structure.
644 */
645 addr -= (addr_t) &dummy32->regs.per_info;
646 tmp = __peek_user_per_compat(child, addr);
647
648 } else
649 tmp = 0;
650
651 return tmp;
652}
653
654static int peek_user_compat(struct task_struct *child,
655 addr_t addr, addr_t data)
656{
657 __u32 tmp;
658
659 if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
660 return -EIO;
661
662 tmp = __peek_user_compat(child, addr);
663 return put_user(tmp, (__u32 __user *) data);
664}
665
666/*
667 * Same as poke_user_per but for a 31 bit program.
668 */
669static inline void __poke_user_per_compat(struct task_struct *child,
670 addr_t addr, __u32 data)
671{
672 struct compat_per_struct_kernel *dummy32 = NULL;
673
674 if (addr == (addr_t) &dummy32->cr9)
675 /* PER event mask of the user specified per set. */
676 child->thread.per_user.control =
677 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
678 else if (addr == (addr_t) &dummy32->starting_addr)
679 /* Starting address of the user specified per set. */
680 child->thread.per_user.start = data;
681 else if (addr == (addr_t) &dummy32->ending_addr)
682 /* Ending address of the user specified per set. */
683 child->thread.per_user.end = data;
684}
685
686/*
687 * Same as poke_user but for a 31 bit program.
688 */
689static int __poke_user_compat(struct task_struct *child,
690 addr_t addr, addr_t data)
691{
692 struct compat_user *dummy32 = NULL;
693 __u32 tmp = (__u32) data;
694 addr_t offset;
695
696 if (addr < (addr_t) &dummy32->regs.acrs) {
697 struct pt_regs *regs = task_pt_regs(child);
698 /*
699 * psw, gprs, acrs and orig_gpr2 are stored on the stack
700 */
701 if (addr == (addr_t) &dummy32->regs.psw.mask) {
702 __u32 mask = PSW32_MASK_USER;
703
704 mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
705 /* Build a 64 bit psw mask from 31 bit mask. */
706 if ((tmp ^ PSW32_USER_BITS) & ~mask)
707 /* Invalid psw mask. */
708 return -EINVAL;
709 if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
710 /* Invalid address-space-control bits */
711 return -EINVAL;
712 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
713 (regs->psw.mask & PSW_MASK_BA) |
714 (__u64)(tmp & mask) << 32;
715 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
716 /* Build a 64 bit psw address from 31 bit address. */
717 regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
718 /* Transfer 31 bit amode bit to psw mask. */
719 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
720 (__u64)(tmp & PSW32_ADDR_AMODE);
721 } else {
722 /* gpr 0-15 */
723 *(__u32*)((addr_t) ®s->psw + addr*2 + 4) = tmp;
724 }
725 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
726 /*
727 * access registers are stored in the thread structure
728 */
729 offset = addr - (addr_t) &dummy32->regs.acrs;
730 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
731
732 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
733 /*
734 * orig_gpr2 is stored on the kernel stack
735 */
736 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
737
738 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
739 /*
740 * prevent writess of padding hole between
741 * orig_gpr2 and fp_regs on s390.
742 */
743 return 0;
744
745 } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
746 /*
747 * floating point control reg. is in the thread structure
748 */
749 if (test_fp_ctl(tmp))
750 return -EINVAL;
751 child->thread.fpu.fpc = data;
752
753 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
754 /*
755 * floating point regs. are either in child->thread.fpu
756 * or the child->thread.fpu.vxrs array
757 */
758 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
759 if (MACHINE_HAS_VX)
760 *(__u32 *)((addr_t)
761 child->thread.fpu.vxrs + 2*offset) = tmp;
762 else
763 *(__u32 *)((addr_t)
764 child->thread.fpu.fprs + offset) = tmp;
765
766 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
767 /*
768 * Handle access to the per_info structure.
769 */
770 addr -= (addr_t) &dummy32->regs.per_info;
771 __poke_user_per_compat(child, addr, data);
772 }
773
774 return 0;
775}
776
777static int poke_user_compat(struct task_struct *child,
778 addr_t addr, addr_t data)
779{
780 if (!is_compat_task() || (addr & 3) ||
781 addr > sizeof(struct compat_user) - 3)
782 return -EIO;
783
784 return __poke_user_compat(child, addr, data);
785}
786
787long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
788 compat_ulong_t caddr, compat_ulong_t cdata)
789{
790 unsigned long addr = caddr;
791 unsigned long data = cdata;
792 compat_ptrace_area parea;
793 int copied, ret;
794
795 switch (request) {
796 case PTRACE_PEEKUSR:
797 /* read the word at location addr in the USER area. */
798 return peek_user_compat(child, addr, data);
799
800 case PTRACE_POKEUSR:
801 /* write the word at location addr in the USER area */
802 return poke_user_compat(child, addr, data);
803
804 case PTRACE_PEEKUSR_AREA:
805 case PTRACE_POKEUSR_AREA:
806 if (copy_from_user(&parea, (void __force __user *) addr,
807 sizeof(parea)))
808 return -EFAULT;
809 addr = parea.kernel_addr;
810 data = parea.process_addr;
811 copied = 0;
812 while (copied < parea.len) {
813 if (request == PTRACE_PEEKUSR_AREA)
814 ret = peek_user_compat(child, addr, data);
815 else {
816 __u32 utmp;
817 if (get_user(utmp,
818 (__u32 __force __user *) data))
819 return -EFAULT;
820 ret = poke_user_compat(child, addr, utmp);
821 }
822 if (ret)
823 return ret;
824 addr += sizeof(unsigned int);
825 data += sizeof(unsigned int);
826 copied += sizeof(unsigned int);
827 }
828 return 0;
829 case PTRACE_GET_LAST_BREAK:
830 put_user(child->thread.last_break,
831 (unsigned int __user *) data);
832 return 0;
833 }
834 return compat_ptrace_request(child, request, addr, data);
835}
836#endif
837
838asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
839{
840 unsigned long mask = -1UL;
841
842 /*
843 * The sysc_tracesys code in entry.S stored the system
844 * call number to gprs[2].
845 */
846 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
847 (tracehook_report_syscall_entry(regs) ||
848 regs->gprs[2] >= NR_syscalls)) {
849 /*
850 * Tracing decided this syscall should not happen or the
851 * debugger stored an invalid system call number. Skip
852 * the system call and the system call restart handling.
853 */
854 clear_pt_regs_flag(regs, PIF_SYSCALL);
855 return -1;
856 }
857
858 /* Do the secure computing check after ptrace. */
859 if (secure_computing(NULL)) {
860 /* seccomp failures shouldn't expose any additional code. */
861 return -1;
862 }
863
864 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
865 trace_sys_enter(regs, regs->gprs[2]);
866
867 if (is_compat_task())
868 mask = 0xffffffff;
869
870 audit_syscall_entry(regs->gprs[2], regs->orig_gpr2 & mask,
871 regs->gprs[3] &mask, regs->gprs[4] &mask,
872 regs->gprs[5] &mask);
873
874 return regs->gprs[2];
875}
876
877asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
878{
879 audit_syscall_exit(regs);
880
881 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
882 trace_sys_exit(regs, regs->gprs[2]);
883
884 if (test_thread_flag(TIF_SYSCALL_TRACE))
885 tracehook_report_syscall_exit(regs, 0);
886}
887
888/*
889 * user_regset definitions.
890 */
891
892static int s390_regs_get(struct task_struct *target,
893 const struct user_regset *regset,
894 unsigned int pos, unsigned int count,
895 void *kbuf, void __user *ubuf)
896{
897 if (target == current)
898 save_access_regs(target->thread.acrs);
899
900 if (kbuf) {
901 unsigned long *k = kbuf;
902 while (count > 0) {
903 *k++ = __peek_user(target, pos);
904 count -= sizeof(*k);
905 pos += sizeof(*k);
906 }
907 } else {
908 unsigned long __user *u = ubuf;
909 while (count > 0) {
910 if (__put_user(__peek_user(target, pos), u++))
911 return -EFAULT;
912 count -= sizeof(*u);
913 pos += sizeof(*u);
914 }
915 }
916 return 0;
917}
918
919static int s390_regs_set(struct task_struct *target,
920 const struct user_regset *regset,
921 unsigned int pos, unsigned int count,
922 const void *kbuf, const void __user *ubuf)
923{
924 int rc = 0;
925
926 if (target == current)
927 save_access_regs(target->thread.acrs);
928
929 if (kbuf) {
930 const unsigned long *k = kbuf;
931 while (count > 0 && !rc) {
932 rc = __poke_user(target, pos, *k++);
933 count -= sizeof(*k);
934 pos += sizeof(*k);
935 }
936 } else {
937 const unsigned long __user *u = ubuf;
938 while (count > 0 && !rc) {
939 unsigned long word;
940 rc = __get_user(word, u++);
941 if (rc)
942 break;
943 rc = __poke_user(target, pos, word);
944 count -= sizeof(*u);
945 pos += sizeof(*u);
946 }
947 }
948
949 if (rc == 0 && target == current)
950 restore_access_regs(target->thread.acrs);
951
952 return rc;
953}
954
955static int s390_fpregs_get(struct task_struct *target,
956 const struct user_regset *regset, unsigned int pos,
957 unsigned int count, void *kbuf, void __user *ubuf)
958{
959 _s390_fp_regs fp_regs;
960
961 if (target == current)
962 save_fpu_regs();
963
964 fp_regs.fpc = target->thread.fpu.fpc;
965 fpregs_store(&fp_regs, &target->thread.fpu);
966
967 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
968 &fp_regs, 0, -1);
969}
970
971static int s390_fpregs_set(struct task_struct *target,
972 const struct user_regset *regset, unsigned int pos,
973 unsigned int count, const void *kbuf,
974 const void __user *ubuf)
975{
976 int rc = 0;
977 freg_t fprs[__NUM_FPRS];
978
979 if (target == current)
980 save_fpu_regs();
981
982 if (MACHINE_HAS_VX)
983 convert_vx_to_fp(fprs, target->thread.fpu.vxrs);
984 else
985 memcpy(&fprs, target->thread.fpu.fprs, sizeof(fprs));
986
987 /* If setting FPC, must validate it first. */
988 if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
989 u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
990 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
991 0, offsetof(s390_fp_regs, fprs));
992 if (rc)
993 return rc;
994 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
995 return -EINVAL;
996 target->thread.fpu.fpc = ufpc[0];
997 }
998
999 if (rc == 0 && count > 0)
1000 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1001 fprs, offsetof(s390_fp_regs, fprs), -1);
1002 if (rc)
1003 return rc;
1004
1005 if (MACHINE_HAS_VX)
1006 convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
1007 else
1008 memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
1009
1010 return rc;
1011}
1012
1013static int s390_last_break_get(struct task_struct *target,
1014 const struct user_regset *regset,
1015 unsigned int pos, unsigned int count,
1016 void *kbuf, void __user *ubuf)
1017{
1018 if (count > 0) {
1019 if (kbuf) {
1020 unsigned long *k = kbuf;
1021 *k = target->thread.last_break;
1022 } else {
1023 unsigned long __user *u = ubuf;
1024 if (__put_user(target->thread.last_break, u))
1025 return -EFAULT;
1026 }
1027 }
1028 return 0;
1029}
1030
1031static int s390_last_break_set(struct task_struct *target,
1032 const struct user_regset *regset,
1033 unsigned int pos, unsigned int count,
1034 const void *kbuf, const void __user *ubuf)
1035{
1036 return 0;
1037}
1038
1039static int s390_tdb_get(struct task_struct *target,
1040 const struct user_regset *regset,
1041 unsigned int pos, unsigned int count,
1042 void *kbuf, void __user *ubuf)
1043{
1044 struct pt_regs *regs = task_pt_regs(target);
1045 unsigned char *data;
1046
1047 if (!(regs->int_code & 0x200))
1048 return -ENODATA;
1049 data = target->thread.trap_tdb;
1050 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1051}
1052
1053static int s390_tdb_set(struct task_struct *target,
1054 const struct user_regset *regset,
1055 unsigned int pos, unsigned int count,
1056 const void *kbuf, const void __user *ubuf)
1057{
1058 return 0;
1059}
1060
1061static int s390_vxrs_low_get(struct task_struct *target,
1062 const struct user_regset *regset,
1063 unsigned int pos, unsigned int count,
1064 void *kbuf, void __user *ubuf)
1065{
1066 __u64 vxrs[__NUM_VXRS_LOW];
1067 int i;
1068
1069 if (!MACHINE_HAS_VX)
1070 return -ENODEV;
1071 if (target == current)
1072 save_fpu_regs();
1073 for (i = 0; i < __NUM_VXRS_LOW; i++)
1074 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1075 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1076}
1077
1078static int s390_vxrs_low_set(struct task_struct *target,
1079 const struct user_regset *regset,
1080 unsigned int pos, unsigned int count,
1081 const void *kbuf, const void __user *ubuf)
1082{
1083 __u64 vxrs[__NUM_VXRS_LOW];
1084 int i, rc;
1085
1086 if (!MACHINE_HAS_VX)
1087 return -ENODEV;
1088 if (target == current)
1089 save_fpu_regs();
1090
1091 for (i = 0; i < __NUM_VXRS_LOW; i++)
1092 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1093
1094 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1095 if (rc == 0)
1096 for (i = 0; i < __NUM_VXRS_LOW; i++)
1097 *((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1098
1099 return rc;
1100}
1101
1102static int s390_vxrs_high_get(struct task_struct *target,
1103 const struct user_regset *regset,
1104 unsigned int pos, unsigned int count,
1105 void *kbuf, void __user *ubuf)
1106{
1107 __vector128 vxrs[__NUM_VXRS_HIGH];
1108
1109 if (!MACHINE_HAS_VX)
1110 return -ENODEV;
1111 if (target == current)
1112 save_fpu_regs();
1113 memcpy(vxrs, target->thread.fpu.vxrs + __NUM_VXRS_LOW, sizeof(vxrs));
1114
1115 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1116}
1117
1118static int s390_vxrs_high_set(struct task_struct *target,
1119 const struct user_regset *regset,
1120 unsigned int pos, unsigned int count,
1121 const void *kbuf, const void __user *ubuf)
1122{
1123 int rc;
1124
1125 if (!MACHINE_HAS_VX)
1126 return -ENODEV;
1127 if (target == current)
1128 save_fpu_regs();
1129
1130 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1131 target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1132 return rc;
1133}
1134
1135static int s390_system_call_get(struct task_struct *target,
1136 const struct user_regset *regset,
1137 unsigned int pos, unsigned int count,
1138 void *kbuf, void __user *ubuf)
1139{
1140 unsigned int *data = &target->thread.system_call;
1141 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1142 data, 0, sizeof(unsigned int));
1143}
1144
1145static int s390_system_call_set(struct task_struct *target,
1146 const struct user_regset *regset,
1147 unsigned int pos, unsigned int count,
1148 const void *kbuf, const void __user *ubuf)
1149{
1150 unsigned int *data = &target->thread.system_call;
1151 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1152 data, 0, sizeof(unsigned int));
1153}
1154
1155static int s390_gs_cb_get(struct task_struct *target,
1156 const struct user_regset *regset,
1157 unsigned int pos, unsigned int count,
1158 void *kbuf, void __user *ubuf)
1159{
1160 struct gs_cb *data = target->thread.gs_cb;
1161
1162 if (!MACHINE_HAS_GS)
1163 return -ENODEV;
1164 if (!data)
1165 return -ENODATA;
1166 if (target == current)
1167 save_gs_cb(data);
1168 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1169 data, 0, sizeof(struct gs_cb));
1170}
1171
1172static int s390_gs_cb_set(struct task_struct *target,
1173 const struct user_regset *regset,
1174 unsigned int pos, unsigned int count,
1175 const void *kbuf, const void __user *ubuf)
1176{
1177 struct gs_cb gs_cb = { }, *data = NULL;
1178 int rc;
1179
1180 if (!MACHINE_HAS_GS)
1181 return -ENODEV;
1182 if (!target->thread.gs_cb) {
1183 data = kzalloc(sizeof(*data), GFP_KERNEL);
1184 if (!data)
1185 return -ENOMEM;
1186 }
1187 if (!target->thread.gs_cb)
1188 gs_cb.gsd = 25;
1189 else if (target == current)
1190 save_gs_cb(&gs_cb);
1191 else
1192 gs_cb = *target->thread.gs_cb;
1193 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1194 &gs_cb, 0, sizeof(gs_cb));
1195 if (rc) {
1196 kfree(data);
1197 return -EFAULT;
1198 }
1199 preempt_disable();
1200 if (!target->thread.gs_cb)
1201 target->thread.gs_cb = data;
1202 *target->thread.gs_cb = gs_cb;
1203 if (target == current) {
1204 __ctl_set_bit(2, 4);
1205 restore_gs_cb(target->thread.gs_cb);
1206 }
1207 preempt_enable();
1208 return rc;
1209}
1210
1211static int s390_gs_bc_get(struct task_struct *target,
1212 const struct user_regset *regset,
1213 unsigned int pos, unsigned int count,
1214 void *kbuf, void __user *ubuf)
1215{
1216 struct gs_cb *data = target->thread.gs_bc_cb;
1217
1218 if (!MACHINE_HAS_GS)
1219 return -ENODEV;
1220 if (!data)
1221 return -ENODATA;
1222 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1223 data, 0, sizeof(struct gs_cb));
1224}
1225
1226static int s390_gs_bc_set(struct task_struct *target,
1227 const struct user_regset *regset,
1228 unsigned int pos, unsigned int count,
1229 const void *kbuf, const void __user *ubuf)
1230{
1231 struct gs_cb *data = target->thread.gs_bc_cb;
1232
1233 if (!MACHINE_HAS_GS)
1234 return -ENODEV;
1235 if (!data) {
1236 data = kzalloc(sizeof(*data), GFP_KERNEL);
1237 if (!data)
1238 return -ENOMEM;
1239 target->thread.gs_bc_cb = data;
1240 }
1241 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1242 data, 0, sizeof(struct gs_cb));
1243}
1244
1245static bool is_ri_cb_valid(struct runtime_instr_cb *cb)
1246{
1247 return (cb->rca & 0x1f) == 0 &&
1248 (cb->roa & 0xfff) == 0 &&
1249 (cb->rla & 0xfff) == 0xfff &&
1250 cb->s == 1 &&
1251 cb->k == 1 &&
1252 cb->h == 0 &&
1253 cb->reserved1 == 0 &&
1254 cb->ps == 1 &&
1255 cb->qs == 0 &&
1256 cb->pc == 1 &&
1257 cb->qc == 0 &&
1258 cb->reserved2 == 0 &&
1259 cb->key == PAGE_DEFAULT_KEY &&
1260 cb->reserved3 == 0 &&
1261 cb->reserved4 == 0 &&
1262 cb->reserved5 == 0 &&
1263 cb->reserved6 == 0 &&
1264 cb->reserved7 == 0 &&
1265 cb->reserved8 == 0 &&
1266 cb->rla >= cb->roa &&
1267 cb->rca >= cb->roa &&
1268 cb->rca <= cb->rla+1 &&
1269 cb->m < 3;
1270}
1271
1272static int s390_runtime_instr_get(struct task_struct *target,
1273 const struct user_regset *regset,
1274 unsigned int pos, unsigned int count,
1275 void *kbuf, void __user *ubuf)
1276{
1277 struct runtime_instr_cb *data = target->thread.ri_cb;
1278
1279 if (!test_facility(64))
1280 return -ENODEV;
1281 if (!data)
1282 return -ENODATA;
1283
1284 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1285 data, 0, sizeof(struct runtime_instr_cb));
1286}
1287
1288static int s390_runtime_instr_set(struct task_struct *target,
1289 const struct user_regset *regset,
1290 unsigned int pos, unsigned int count,
1291 const void *kbuf, const void __user *ubuf)
1292{
1293 struct runtime_instr_cb ri_cb = { }, *data = NULL;
1294 int rc;
1295
1296 if (!test_facility(64))
1297 return -ENODEV;
1298
1299 if (!target->thread.ri_cb) {
1300 data = kzalloc(sizeof(*data), GFP_KERNEL);
1301 if (!data)
1302 return -ENOMEM;
1303 }
1304
1305 if (target->thread.ri_cb) {
1306 if (target == current)
1307 store_runtime_instr_cb(&ri_cb);
1308 else
1309 ri_cb = *target->thread.ri_cb;
1310 }
1311
1312 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1313 &ri_cb, 0, sizeof(struct runtime_instr_cb));
1314 if (rc) {
1315 kfree(data);
1316 return -EFAULT;
1317 }
1318
1319 if (!is_ri_cb_valid(&ri_cb)) {
1320 kfree(data);
1321 return -EINVAL;
1322 }
1323
1324 preempt_disable();
1325 if (!target->thread.ri_cb)
1326 target->thread.ri_cb = data;
1327 *target->thread.ri_cb = ri_cb;
1328 if (target == current)
1329 load_runtime_instr_cb(target->thread.ri_cb);
1330 preempt_enable();
1331
1332 return 0;
1333}
1334
1335static const struct user_regset s390_regsets[] = {
1336 {
1337 .core_note_type = NT_PRSTATUS,
1338 .n = sizeof(s390_regs) / sizeof(long),
1339 .size = sizeof(long),
1340 .align = sizeof(long),
1341 .get = s390_regs_get,
1342 .set = s390_regs_set,
1343 },
1344 {
1345 .core_note_type = NT_PRFPREG,
1346 .n = sizeof(s390_fp_regs) / sizeof(long),
1347 .size = sizeof(long),
1348 .align = sizeof(long),
1349 .get = s390_fpregs_get,
1350 .set = s390_fpregs_set,
1351 },
1352 {
1353 .core_note_type = NT_S390_SYSTEM_CALL,
1354 .n = 1,
1355 .size = sizeof(unsigned int),
1356 .align = sizeof(unsigned int),
1357 .get = s390_system_call_get,
1358 .set = s390_system_call_set,
1359 },
1360 {
1361 .core_note_type = NT_S390_LAST_BREAK,
1362 .n = 1,
1363 .size = sizeof(long),
1364 .align = sizeof(long),
1365 .get = s390_last_break_get,
1366 .set = s390_last_break_set,
1367 },
1368 {
1369 .core_note_type = NT_S390_TDB,
1370 .n = 1,
1371 .size = 256,
1372 .align = 1,
1373 .get = s390_tdb_get,
1374 .set = s390_tdb_set,
1375 },
1376 {
1377 .core_note_type = NT_S390_VXRS_LOW,
1378 .n = __NUM_VXRS_LOW,
1379 .size = sizeof(__u64),
1380 .align = sizeof(__u64),
1381 .get = s390_vxrs_low_get,
1382 .set = s390_vxrs_low_set,
1383 },
1384 {
1385 .core_note_type = NT_S390_VXRS_HIGH,
1386 .n = __NUM_VXRS_HIGH,
1387 .size = sizeof(__vector128),
1388 .align = sizeof(__vector128),
1389 .get = s390_vxrs_high_get,
1390 .set = s390_vxrs_high_set,
1391 },
1392 {
1393 .core_note_type = NT_S390_GS_CB,
1394 .n = sizeof(struct gs_cb) / sizeof(__u64),
1395 .size = sizeof(__u64),
1396 .align = sizeof(__u64),
1397 .get = s390_gs_cb_get,
1398 .set = s390_gs_cb_set,
1399 },
1400 {
1401 .core_note_type = NT_S390_GS_BC,
1402 .n = sizeof(struct gs_cb) / sizeof(__u64),
1403 .size = sizeof(__u64),
1404 .align = sizeof(__u64),
1405 .get = s390_gs_bc_get,
1406 .set = s390_gs_bc_set,
1407 },
1408 {
1409 .core_note_type = NT_S390_RI_CB,
1410 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1411 .size = sizeof(__u64),
1412 .align = sizeof(__u64),
1413 .get = s390_runtime_instr_get,
1414 .set = s390_runtime_instr_set,
1415 },
1416};
1417
1418static const struct user_regset_view user_s390_view = {
1419 .name = UTS_MACHINE,
1420 .e_machine = EM_S390,
1421 .regsets = s390_regsets,
1422 .n = ARRAY_SIZE(s390_regsets)
1423};
1424
1425#ifdef CONFIG_COMPAT
1426static int s390_compat_regs_get(struct task_struct *target,
1427 const struct user_regset *regset,
1428 unsigned int pos, unsigned int count,
1429 void *kbuf, void __user *ubuf)
1430{
1431 if (target == current)
1432 save_access_regs(target->thread.acrs);
1433
1434 if (kbuf) {
1435 compat_ulong_t *k = kbuf;
1436 while (count > 0) {
1437 *k++ = __peek_user_compat(target, pos);
1438 count -= sizeof(*k);
1439 pos += sizeof(*k);
1440 }
1441 } else {
1442 compat_ulong_t __user *u = ubuf;
1443 while (count > 0) {
1444 if (__put_user(__peek_user_compat(target, pos), u++))
1445 return -EFAULT;
1446 count -= sizeof(*u);
1447 pos += sizeof(*u);
1448 }
1449 }
1450 return 0;
1451}
1452
1453static int s390_compat_regs_set(struct task_struct *target,
1454 const struct user_regset *regset,
1455 unsigned int pos, unsigned int count,
1456 const void *kbuf, const void __user *ubuf)
1457{
1458 int rc = 0;
1459
1460 if (target == current)
1461 save_access_regs(target->thread.acrs);
1462
1463 if (kbuf) {
1464 const compat_ulong_t *k = kbuf;
1465 while (count > 0 && !rc) {
1466 rc = __poke_user_compat(target, pos, *k++);
1467 count -= sizeof(*k);
1468 pos += sizeof(*k);
1469 }
1470 } else {
1471 const compat_ulong_t __user *u = ubuf;
1472 while (count > 0 && !rc) {
1473 compat_ulong_t word;
1474 rc = __get_user(word, u++);
1475 if (rc)
1476 break;
1477 rc = __poke_user_compat(target, pos, word);
1478 count -= sizeof(*u);
1479 pos += sizeof(*u);
1480 }
1481 }
1482
1483 if (rc == 0 && target == current)
1484 restore_access_regs(target->thread.acrs);
1485
1486 return rc;
1487}
1488
1489static int s390_compat_regs_high_get(struct task_struct *target,
1490 const struct user_regset *regset,
1491 unsigned int pos, unsigned int count,
1492 void *kbuf, void __user *ubuf)
1493{
1494 compat_ulong_t *gprs_high;
1495
1496 gprs_high = (compat_ulong_t *)
1497 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1498 if (kbuf) {
1499 compat_ulong_t *k = kbuf;
1500 while (count > 0) {
1501 *k++ = *gprs_high;
1502 gprs_high += 2;
1503 count -= sizeof(*k);
1504 }
1505 } else {
1506 compat_ulong_t __user *u = ubuf;
1507 while (count > 0) {
1508 if (__put_user(*gprs_high, u++))
1509 return -EFAULT;
1510 gprs_high += 2;
1511 count -= sizeof(*u);
1512 }
1513 }
1514 return 0;
1515}
1516
1517static int s390_compat_regs_high_set(struct task_struct *target,
1518 const struct user_regset *regset,
1519 unsigned int pos, unsigned int count,
1520 const void *kbuf, const void __user *ubuf)
1521{
1522 compat_ulong_t *gprs_high;
1523 int rc = 0;
1524
1525 gprs_high = (compat_ulong_t *)
1526 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1527 if (kbuf) {
1528 const compat_ulong_t *k = kbuf;
1529 while (count > 0) {
1530 *gprs_high = *k++;
1531 *gprs_high += 2;
1532 count -= sizeof(*k);
1533 }
1534 } else {
1535 const compat_ulong_t __user *u = ubuf;
1536 while (count > 0 && !rc) {
1537 unsigned long word;
1538 rc = __get_user(word, u++);
1539 if (rc)
1540 break;
1541 *gprs_high = word;
1542 *gprs_high += 2;
1543 count -= sizeof(*u);
1544 }
1545 }
1546
1547 return rc;
1548}
1549
1550static int s390_compat_last_break_get(struct task_struct *target,
1551 const struct user_regset *regset,
1552 unsigned int pos, unsigned int count,
1553 void *kbuf, void __user *ubuf)
1554{
1555 compat_ulong_t last_break;
1556
1557 if (count > 0) {
1558 last_break = target->thread.last_break;
1559 if (kbuf) {
1560 unsigned long *k = kbuf;
1561 *k = last_break;
1562 } else {
1563 unsigned long __user *u = ubuf;
1564 if (__put_user(last_break, u))
1565 return -EFAULT;
1566 }
1567 }
1568 return 0;
1569}
1570
1571static int s390_compat_last_break_set(struct task_struct *target,
1572 const struct user_regset *regset,
1573 unsigned int pos, unsigned int count,
1574 const void *kbuf, const void __user *ubuf)
1575{
1576 return 0;
1577}
1578
1579static const struct user_regset s390_compat_regsets[] = {
1580 {
1581 .core_note_type = NT_PRSTATUS,
1582 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1583 .size = sizeof(compat_long_t),
1584 .align = sizeof(compat_long_t),
1585 .get = s390_compat_regs_get,
1586 .set = s390_compat_regs_set,
1587 },
1588 {
1589 .core_note_type = NT_PRFPREG,
1590 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1591 .size = sizeof(compat_long_t),
1592 .align = sizeof(compat_long_t),
1593 .get = s390_fpregs_get,
1594 .set = s390_fpregs_set,
1595 },
1596 {
1597 .core_note_type = NT_S390_SYSTEM_CALL,
1598 .n = 1,
1599 .size = sizeof(compat_uint_t),
1600 .align = sizeof(compat_uint_t),
1601 .get = s390_system_call_get,
1602 .set = s390_system_call_set,
1603 },
1604 {
1605 .core_note_type = NT_S390_LAST_BREAK,
1606 .n = 1,
1607 .size = sizeof(long),
1608 .align = sizeof(long),
1609 .get = s390_compat_last_break_get,
1610 .set = s390_compat_last_break_set,
1611 },
1612 {
1613 .core_note_type = NT_S390_TDB,
1614 .n = 1,
1615 .size = 256,
1616 .align = 1,
1617 .get = s390_tdb_get,
1618 .set = s390_tdb_set,
1619 },
1620 {
1621 .core_note_type = NT_S390_VXRS_LOW,
1622 .n = __NUM_VXRS_LOW,
1623 .size = sizeof(__u64),
1624 .align = sizeof(__u64),
1625 .get = s390_vxrs_low_get,
1626 .set = s390_vxrs_low_set,
1627 },
1628 {
1629 .core_note_type = NT_S390_VXRS_HIGH,
1630 .n = __NUM_VXRS_HIGH,
1631 .size = sizeof(__vector128),
1632 .align = sizeof(__vector128),
1633 .get = s390_vxrs_high_get,
1634 .set = s390_vxrs_high_set,
1635 },
1636 {
1637 .core_note_type = NT_S390_HIGH_GPRS,
1638 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1639 .size = sizeof(compat_long_t),
1640 .align = sizeof(compat_long_t),
1641 .get = s390_compat_regs_high_get,
1642 .set = s390_compat_regs_high_set,
1643 },
1644 {
1645 .core_note_type = NT_S390_GS_CB,
1646 .n = sizeof(struct gs_cb) / sizeof(__u64),
1647 .size = sizeof(__u64),
1648 .align = sizeof(__u64),
1649 .get = s390_gs_cb_get,
1650 .set = s390_gs_cb_set,
1651 },
1652 {
1653 .core_note_type = NT_S390_GS_BC,
1654 .n = sizeof(struct gs_cb) / sizeof(__u64),
1655 .size = sizeof(__u64),
1656 .align = sizeof(__u64),
1657 .get = s390_gs_bc_get,
1658 .set = s390_gs_bc_set,
1659 },
1660 {
1661 .core_note_type = NT_S390_RI_CB,
1662 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1663 .size = sizeof(__u64),
1664 .align = sizeof(__u64),
1665 .get = s390_runtime_instr_get,
1666 .set = s390_runtime_instr_set,
1667 },
1668};
1669
1670static const struct user_regset_view user_s390_compat_view = {
1671 .name = "s390",
1672 .e_machine = EM_S390,
1673 .regsets = s390_compat_regsets,
1674 .n = ARRAY_SIZE(s390_compat_regsets)
1675};
1676#endif
1677
1678const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1679{
1680#ifdef CONFIG_COMPAT
1681 if (test_tsk_thread_flag(task, TIF_31BIT))
1682 return &user_s390_compat_view;
1683#endif
1684 return &user_s390_view;
1685}
1686
1687static const char *gpr_names[NUM_GPRS] = {
1688 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1689 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1690};
1691
1692unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1693{
1694 if (offset >= NUM_GPRS)
1695 return 0;
1696 return regs->gprs[offset];
1697}
1698
1699int regs_query_register_offset(const char *name)
1700{
1701 unsigned long offset;
1702
1703 if (!name || *name != 'r')
1704 return -EINVAL;
1705 if (kstrtoul(name + 1, 10, &offset))
1706 return -EINVAL;
1707 if (offset >= NUM_GPRS)
1708 return -EINVAL;
1709 return offset;
1710}
1711
1712const char *regs_query_register_name(unsigned int offset)
1713{
1714 if (offset >= NUM_GPRS)
1715 return NULL;
1716 return gpr_names[offset];
1717}
1718
1719static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1720{
1721 unsigned long ksp = kernel_stack_pointer(regs);
1722
1723 return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1724}
1725
1726/**
1727 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1728 * @regs:pt_regs which contains kernel stack pointer.
1729 * @n:stack entry number.
1730 *
1731 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1732 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1733 * this returns 0.
1734 */
1735unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1736{
1737 unsigned long addr;
1738
1739 addr = kernel_stack_pointer(regs) + n * sizeof(long);
1740 if (!regs_within_kernel_stack(regs, addr))
1741 return 0;
1742 return *(unsigned long *)addr;
1743}
1/*
2 * Ptrace user space interface.
3 *
4 * Copyright IBM Corp. 1999,2010
5 * Author(s): Denis Joseph Barrow
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 */
8
9#include <linux/kernel.h>
10#include <linux/sched.h>
11#include <linux/mm.h>
12#include <linux/smp.h>
13#include <linux/errno.h>
14#include <linux/ptrace.h>
15#include <linux/user.h>
16#include <linux/security.h>
17#include <linux/audit.h>
18#include <linux/signal.h>
19#include <linux/elf.h>
20#include <linux/regset.h>
21#include <linux/tracehook.h>
22#include <linux/seccomp.h>
23#include <linux/compat.h>
24#include <trace/syscall.h>
25#include <asm/segment.h>
26#include <asm/page.h>
27#include <asm/pgtable.h>
28#include <asm/pgalloc.h>
29#include <asm/uaccess.h>
30#include <asm/unistd.h>
31#include <asm/switch_to.h>
32#include "entry.h"
33
34#ifdef CONFIG_COMPAT
35#include "compat_ptrace.h"
36#endif
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/syscalls.h>
40
41enum s390_regset {
42 REGSET_GENERAL,
43 REGSET_FP,
44 REGSET_LAST_BREAK,
45 REGSET_SYSTEM_CALL,
46 REGSET_GENERAL_EXTENDED,
47};
48
49void update_per_regs(struct task_struct *task)
50{
51 struct pt_regs *regs = task_pt_regs(task);
52 struct thread_struct *thread = &task->thread;
53 struct per_regs old, new;
54
55 /* Copy user specified PER registers */
56 new.control = thread->per_user.control;
57 new.start = thread->per_user.start;
58 new.end = thread->per_user.end;
59
60 /* merge TIF_SINGLE_STEP into user specified PER registers. */
61 if (test_tsk_thread_flag(task, TIF_SINGLE_STEP)) {
62 new.control |= PER_EVENT_IFETCH;
63 new.start = 0;
64 new.end = PSW_ADDR_INSN;
65 }
66
67 /* Take care of the PER enablement bit in the PSW. */
68 if (!(new.control & PER_EVENT_MASK)) {
69 regs->psw.mask &= ~PSW_MASK_PER;
70 return;
71 }
72 regs->psw.mask |= PSW_MASK_PER;
73 __ctl_store(old, 9, 11);
74 if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
75 __ctl_load(new, 9, 11);
76}
77
78void user_enable_single_step(struct task_struct *task)
79{
80 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
81 if (task == current)
82 update_per_regs(task);
83}
84
85void user_disable_single_step(struct task_struct *task)
86{
87 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
88 if (task == current)
89 update_per_regs(task);
90}
91
92/*
93 * Called by kernel/ptrace.c when detaching..
94 *
95 * Clear all debugging related fields.
96 */
97void ptrace_disable(struct task_struct *task)
98{
99 memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
100 memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
101 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
102 clear_tsk_thread_flag(task, TIF_PER_TRAP);
103}
104
105#ifndef CONFIG_64BIT
106# define __ADDR_MASK 3
107#else
108# define __ADDR_MASK 7
109#endif
110
111static inline unsigned long __peek_user_per(struct task_struct *child,
112 addr_t addr)
113{
114 struct per_struct_kernel *dummy = NULL;
115
116 if (addr == (addr_t) &dummy->cr9)
117 /* Control bits of the active per set. */
118 return test_thread_flag(TIF_SINGLE_STEP) ?
119 PER_EVENT_IFETCH : child->thread.per_user.control;
120 else if (addr == (addr_t) &dummy->cr10)
121 /* Start address of the active per set. */
122 return test_thread_flag(TIF_SINGLE_STEP) ?
123 0 : child->thread.per_user.start;
124 else if (addr == (addr_t) &dummy->cr11)
125 /* End address of the active per set. */
126 return test_thread_flag(TIF_SINGLE_STEP) ?
127 PSW_ADDR_INSN : child->thread.per_user.end;
128 else if (addr == (addr_t) &dummy->bits)
129 /* Single-step bit. */
130 return test_thread_flag(TIF_SINGLE_STEP) ?
131 (1UL << (BITS_PER_LONG - 1)) : 0;
132 else if (addr == (addr_t) &dummy->starting_addr)
133 /* Start address of the user specified per set. */
134 return child->thread.per_user.start;
135 else if (addr == (addr_t) &dummy->ending_addr)
136 /* End address of the user specified per set. */
137 return child->thread.per_user.end;
138 else if (addr == (addr_t) &dummy->perc_atmid)
139 /* PER code, ATMID and AI of the last PER trap */
140 return (unsigned long)
141 child->thread.per_event.cause << (BITS_PER_LONG - 16);
142 else if (addr == (addr_t) &dummy->address)
143 /* Address of the last PER trap */
144 return child->thread.per_event.address;
145 else if (addr == (addr_t) &dummy->access_id)
146 /* Access id of the last PER trap */
147 return (unsigned long)
148 child->thread.per_event.paid << (BITS_PER_LONG - 8);
149 return 0;
150}
151
152/*
153 * Read the word at offset addr from the user area of a process. The
154 * trouble here is that the information is littered over different
155 * locations. The process registers are found on the kernel stack,
156 * the floating point stuff and the trace settings are stored in
157 * the task structure. In addition the different structures in
158 * struct user contain pad bytes that should be read as zeroes.
159 * Lovely...
160 */
161static unsigned long __peek_user(struct task_struct *child, addr_t addr)
162{
163 struct user *dummy = NULL;
164 addr_t offset, tmp;
165
166 if (addr < (addr_t) &dummy->regs.acrs) {
167 /*
168 * psw and gprs are stored on the stack
169 */
170 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
171 if (addr == (addr_t) &dummy->regs.psw.mask)
172 /* Return a clean psw mask. */
173 tmp = psw_user_bits | (tmp & PSW_MASK_USER);
174
175 } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
176 /*
177 * access registers are stored in the thread structure
178 */
179 offset = addr - (addr_t) &dummy->regs.acrs;
180#ifdef CONFIG_64BIT
181 /*
182 * Very special case: old & broken 64 bit gdb reading
183 * from acrs[15]. Result is a 64 bit value. Read the
184 * 32 bit acrs[15] value and shift it by 32. Sick...
185 */
186 if (addr == (addr_t) &dummy->regs.acrs[15])
187 tmp = ((unsigned long) child->thread.acrs[15]) << 32;
188 else
189#endif
190 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
191
192 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
193 /*
194 * orig_gpr2 is stored on the kernel stack
195 */
196 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
197
198 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
199 /*
200 * prevent reads of padding hole between
201 * orig_gpr2 and fp_regs on s390.
202 */
203 tmp = 0;
204
205 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
206 /*
207 * floating point regs. are stored in the thread structure
208 */
209 offset = addr - (addr_t) &dummy->regs.fp_regs;
210 tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset);
211 if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
212 tmp &= (unsigned long) FPC_VALID_MASK
213 << (BITS_PER_LONG - 32);
214
215 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
216 /*
217 * Handle access to the per_info structure.
218 */
219 addr -= (addr_t) &dummy->regs.per_info;
220 tmp = __peek_user_per(child, addr);
221
222 } else
223 tmp = 0;
224
225 return tmp;
226}
227
228static int
229peek_user(struct task_struct *child, addr_t addr, addr_t data)
230{
231 addr_t tmp, mask;
232
233 /*
234 * Stupid gdb peeks/pokes the access registers in 64 bit with
235 * an alignment of 4. Programmers from hell...
236 */
237 mask = __ADDR_MASK;
238#ifdef CONFIG_64BIT
239 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
240 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
241 mask = 3;
242#endif
243 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
244 return -EIO;
245
246 tmp = __peek_user(child, addr);
247 return put_user(tmp, (addr_t __user *) data);
248}
249
250static inline void __poke_user_per(struct task_struct *child,
251 addr_t addr, addr_t data)
252{
253 struct per_struct_kernel *dummy = NULL;
254
255 /*
256 * There are only three fields in the per_info struct that the
257 * debugger user can write to.
258 * 1) cr9: the debugger wants to set a new PER event mask
259 * 2) starting_addr: the debugger wants to set a new starting
260 * address to use with the PER event mask.
261 * 3) ending_addr: the debugger wants to set a new ending
262 * address to use with the PER event mask.
263 * The user specified PER event mask and the start and end
264 * addresses are used only if single stepping is not in effect.
265 * Writes to any other field in per_info are ignored.
266 */
267 if (addr == (addr_t) &dummy->cr9)
268 /* PER event mask of the user specified per set. */
269 child->thread.per_user.control =
270 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
271 else if (addr == (addr_t) &dummy->starting_addr)
272 /* Starting address of the user specified per set. */
273 child->thread.per_user.start = data;
274 else if (addr == (addr_t) &dummy->ending_addr)
275 /* Ending address of the user specified per set. */
276 child->thread.per_user.end = data;
277}
278
279/*
280 * Write a word to the user area of a process at location addr. This
281 * operation does have an additional problem compared to peek_user.
282 * Stores to the program status word and on the floating point
283 * control register needs to get checked for validity.
284 */
285static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
286{
287 struct user *dummy = NULL;
288 addr_t offset;
289
290 if (addr < (addr_t) &dummy->regs.acrs) {
291 /*
292 * psw and gprs are stored on the stack
293 */
294 if (addr == (addr_t) &dummy->regs.psw.mask &&
295 ((data & ~PSW_MASK_USER) != psw_user_bits ||
296 ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))))
297 /* Invalid psw mask. */
298 return -EINVAL;
299 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
300
301 } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
302 /*
303 * access registers are stored in the thread structure
304 */
305 offset = addr - (addr_t) &dummy->regs.acrs;
306#ifdef CONFIG_64BIT
307 /*
308 * Very special case: old & broken 64 bit gdb writing
309 * to acrs[15] with a 64 bit value. Ignore the lower
310 * half of the value and write the upper 32 bit to
311 * acrs[15]. Sick...
312 */
313 if (addr == (addr_t) &dummy->regs.acrs[15])
314 child->thread.acrs[15] = (unsigned int) (data >> 32);
315 else
316#endif
317 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
318
319 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
320 /*
321 * orig_gpr2 is stored on the kernel stack
322 */
323 task_pt_regs(child)->orig_gpr2 = data;
324
325 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
326 /*
327 * prevent writes of padding hole between
328 * orig_gpr2 and fp_regs on s390.
329 */
330 return 0;
331
332 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
333 /*
334 * floating point regs. are stored in the thread structure
335 */
336 if (addr == (addr_t) &dummy->regs.fp_regs.fpc &&
337 (data & ~((unsigned long) FPC_VALID_MASK
338 << (BITS_PER_LONG - 32))) != 0)
339 return -EINVAL;
340 offset = addr - (addr_t) &dummy->regs.fp_regs;
341 *(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data;
342
343 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
344 /*
345 * Handle access to the per_info structure.
346 */
347 addr -= (addr_t) &dummy->regs.per_info;
348 __poke_user_per(child, addr, data);
349
350 }
351
352 return 0;
353}
354
355static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
356{
357 addr_t mask;
358
359 /*
360 * Stupid gdb peeks/pokes the access registers in 64 bit with
361 * an alignment of 4. Programmers from hell indeed...
362 */
363 mask = __ADDR_MASK;
364#ifdef CONFIG_64BIT
365 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
366 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
367 mask = 3;
368#endif
369 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
370 return -EIO;
371
372 return __poke_user(child, addr, data);
373}
374
375long arch_ptrace(struct task_struct *child, long request,
376 unsigned long addr, unsigned long data)
377{
378 ptrace_area parea;
379 int copied, ret;
380
381 switch (request) {
382 case PTRACE_PEEKUSR:
383 /* read the word at location addr in the USER area. */
384 return peek_user(child, addr, data);
385
386 case PTRACE_POKEUSR:
387 /* write the word at location addr in the USER area */
388 return poke_user(child, addr, data);
389
390 case PTRACE_PEEKUSR_AREA:
391 case PTRACE_POKEUSR_AREA:
392 if (copy_from_user(&parea, (void __force __user *) addr,
393 sizeof(parea)))
394 return -EFAULT;
395 addr = parea.kernel_addr;
396 data = parea.process_addr;
397 copied = 0;
398 while (copied < parea.len) {
399 if (request == PTRACE_PEEKUSR_AREA)
400 ret = peek_user(child, addr, data);
401 else {
402 addr_t utmp;
403 if (get_user(utmp,
404 (addr_t __force __user *) data))
405 return -EFAULT;
406 ret = poke_user(child, addr, utmp);
407 }
408 if (ret)
409 return ret;
410 addr += sizeof(unsigned long);
411 data += sizeof(unsigned long);
412 copied += sizeof(unsigned long);
413 }
414 return 0;
415 case PTRACE_GET_LAST_BREAK:
416 put_user(task_thread_info(child)->last_break,
417 (unsigned long __user *) data);
418 return 0;
419 default:
420 /* Removing high order bit from addr (only for 31 bit). */
421 addr &= PSW_ADDR_INSN;
422 return ptrace_request(child, request, addr, data);
423 }
424}
425
426#ifdef CONFIG_COMPAT
427/*
428 * Now the fun part starts... a 31 bit program running in the
429 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
430 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
431 * to handle, the difference to the 64 bit versions of the requests
432 * is that the access is done in multiples of 4 byte instead of
433 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
434 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
435 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
436 * is a 31 bit program too, the content of struct user can be
437 * emulated. A 31 bit program peeking into the struct user of
438 * a 64 bit program is a no-no.
439 */
440
441/*
442 * Same as peek_user_per but for a 31 bit program.
443 */
444static inline __u32 __peek_user_per_compat(struct task_struct *child,
445 addr_t addr)
446{
447 struct compat_per_struct_kernel *dummy32 = NULL;
448
449 if (addr == (addr_t) &dummy32->cr9)
450 /* Control bits of the active per set. */
451 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
452 PER_EVENT_IFETCH : child->thread.per_user.control;
453 else if (addr == (addr_t) &dummy32->cr10)
454 /* Start address of the active per set. */
455 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
456 0 : child->thread.per_user.start;
457 else if (addr == (addr_t) &dummy32->cr11)
458 /* End address of the active per set. */
459 return test_thread_flag(TIF_SINGLE_STEP) ?
460 PSW32_ADDR_INSN : child->thread.per_user.end;
461 else if (addr == (addr_t) &dummy32->bits)
462 /* Single-step bit. */
463 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
464 0x80000000 : 0;
465 else if (addr == (addr_t) &dummy32->starting_addr)
466 /* Start address of the user specified per set. */
467 return (__u32) child->thread.per_user.start;
468 else if (addr == (addr_t) &dummy32->ending_addr)
469 /* End address of the user specified per set. */
470 return (__u32) child->thread.per_user.end;
471 else if (addr == (addr_t) &dummy32->perc_atmid)
472 /* PER code, ATMID and AI of the last PER trap */
473 return (__u32) child->thread.per_event.cause << 16;
474 else if (addr == (addr_t) &dummy32->address)
475 /* Address of the last PER trap */
476 return (__u32) child->thread.per_event.address;
477 else if (addr == (addr_t) &dummy32->access_id)
478 /* Access id of the last PER trap */
479 return (__u32) child->thread.per_event.paid << 24;
480 return 0;
481}
482
483/*
484 * Same as peek_user but for a 31 bit program.
485 */
486static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
487{
488 struct compat_user *dummy32 = NULL;
489 addr_t offset;
490 __u32 tmp;
491
492 if (addr < (addr_t) &dummy32->regs.acrs) {
493 struct pt_regs *regs = task_pt_regs(child);
494 /*
495 * psw and gprs are stored on the stack
496 */
497 if (addr == (addr_t) &dummy32->regs.psw.mask) {
498 /* Fake a 31 bit psw mask. */
499 tmp = (__u32)(regs->psw.mask >> 32);
500 tmp = psw32_user_bits | (tmp & PSW32_MASK_USER);
501 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
502 /* Fake a 31 bit psw address. */
503 tmp = (__u32) regs->psw.addr |
504 (__u32)(regs->psw.mask & PSW_MASK_BA);
505 } else {
506 /* gpr 0-15 */
507 tmp = *(__u32 *)((addr_t) ®s->psw + addr*2 + 4);
508 }
509 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
510 /*
511 * access registers are stored in the thread structure
512 */
513 offset = addr - (addr_t) &dummy32->regs.acrs;
514 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
515
516 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
517 /*
518 * orig_gpr2 is stored on the kernel stack
519 */
520 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
521
522 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
523 /*
524 * prevent reads of padding hole between
525 * orig_gpr2 and fp_regs on s390.
526 */
527 tmp = 0;
528
529 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
530 /*
531 * floating point regs. are stored in the thread structure
532 */
533 offset = addr - (addr_t) &dummy32->regs.fp_regs;
534 tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset);
535
536 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
537 /*
538 * Handle access to the per_info structure.
539 */
540 addr -= (addr_t) &dummy32->regs.per_info;
541 tmp = __peek_user_per_compat(child, addr);
542
543 } else
544 tmp = 0;
545
546 return tmp;
547}
548
549static int peek_user_compat(struct task_struct *child,
550 addr_t addr, addr_t data)
551{
552 __u32 tmp;
553
554 if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
555 return -EIO;
556
557 tmp = __peek_user_compat(child, addr);
558 return put_user(tmp, (__u32 __user *) data);
559}
560
561/*
562 * Same as poke_user_per but for a 31 bit program.
563 */
564static inline void __poke_user_per_compat(struct task_struct *child,
565 addr_t addr, __u32 data)
566{
567 struct compat_per_struct_kernel *dummy32 = NULL;
568
569 if (addr == (addr_t) &dummy32->cr9)
570 /* PER event mask of the user specified per set. */
571 child->thread.per_user.control =
572 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
573 else if (addr == (addr_t) &dummy32->starting_addr)
574 /* Starting address of the user specified per set. */
575 child->thread.per_user.start = data;
576 else if (addr == (addr_t) &dummy32->ending_addr)
577 /* Ending address of the user specified per set. */
578 child->thread.per_user.end = data;
579}
580
581/*
582 * Same as poke_user but for a 31 bit program.
583 */
584static int __poke_user_compat(struct task_struct *child,
585 addr_t addr, addr_t data)
586{
587 struct compat_user *dummy32 = NULL;
588 __u32 tmp = (__u32) data;
589 addr_t offset;
590
591 if (addr < (addr_t) &dummy32->regs.acrs) {
592 struct pt_regs *regs = task_pt_regs(child);
593 /*
594 * psw, gprs, acrs and orig_gpr2 are stored on the stack
595 */
596 if (addr == (addr_t) &dummy32->regs.psw.mask) {
597 /* Build a 64 bit psw mask from 31 bit mask. */
598 if ((tmp & ~PSW32_MASK_USER) != psw32_user_bits)
599 /* Invalid psw mask. */
600 return -EINVAL;
601 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
602 (regs->psw.mask & PSW_MASK_BA) |
603 (__u64)(tmp & PSW32_MASK_USER) << 32;
604 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
605 /* Build a 64 bit psw address from 31 bit address. */
606 regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
607 /* Transfer 31 bit amode bit to psw mask. */
608 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
609 (__u64)(tmp & PSW32_ADDR_AMODE);
610 } else {
611 /* gpr 0-15 */
612 *(__u32*)((addr_t) ®s->psw + addr*2 + 4) = tmp;
613 }
614 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
615 /*
616 * access registers are stored in the thread structure
617 */
618 offset = addr - (addr_t) &dummy32->regs.acrs;
619 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
620
621 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
622 /*
623 * orig_gpr2 is stored on the kernel stack
624 */
625 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
626
627 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
628 /*
629 * prevent writess of padding hole between
630 * orig_gpr2 and fp_regs on s390.
631 */
632 return 0;
633
634 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
635 /*
636 * floating point regs. are stored in the thread structure
637 */
638 if (addr == (addr_t) &dummy32->regs.fp_regs.fpc &&
639 (tmp & ~FPC_VALID_MASK) != 0)
640 /* Invalid floating point control. */
641 return -EINVAL;
642 offset = addr - (addr_t) &dummy32->regs.fp_regs;
643 *(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp;
644
645 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
646 /*
647 * Handle access to the per_info structure.
648 */
649 addr -= (addr_t) &dummy32->regs.per_info;
650 __poke_user_per_compat(child, addr, data);
651 }
652
653 return 0;
654}
655
656static int poke_user_compat(struct task_struct *child,
657 addr_t addr, addr_t data)
658{
659 if (!is_compat_task() || (addr & 3) ||
660 addr > sizeof(struct compat_user) - 3)
661 return -EIO;
662
663 return __poke_user_compat(child, addr, data);
664}
665
666long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
667 compat_ulong_t caddr, compat_ulong_t cdata)
668{
669 unsigned long addr = caddr;
670 unsigned long data = cdata;
671 compat_ptrace_area parea;
672 int copied, ret;
673
674 switch (request) {
675 case PTRACE_PEEKUSR:
676 /* read the word at location addr in the USER area. */
677 return peek_user_compat(child, addr, data);
678
679 case PTRACE_POKEUSR:
680 /* write the word at location addr in the USER area */
681 return poke_user_compat(child, addr, data);
682
683 case PTRACE_PEEKUSR_AREA:
684 case PTRACE_POKEUSR_AREA:
685 if (copy_from_user(&parea, (void __force __user *) addr,
686 sizeof(parea)))
687 return -EFAULT;
688 addr = parea.kernel_addr;
689 data = parea.process_addr;
690 copied = 0;
691 while (copied < parea.len) {
692 if (request == PTRACE_PEEKUSR_AREA)
693 ret = peek_user_compat(child, addr, data);
694 else {
695 __u32 utmp;
696 if (get_user(utmp,
697 (__u32 __force __user *) data))
698 return -EFAULT;
699 ret = poke_user_compat(child, addr, utmp);
700 }
701 if (ret)
702 return ret;
703 addr += sizeof(unsigned int);
704 data += sizeof(unsigned int);
705 copied += sizeof(unsigned int);
706 }
707 return 0;
708 case PTRACE_GET_LAST_BREAK:
709 put_user(task_thread_info(child)->last_break,
710 (unsigned int __user *) data);
711 return 0;
712 }
713 return compat_ptrace_request(child, request, addr, data);
714}
715#endif
716
717asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
718{
719 long ret = 0;
720
721 /* Do the secure computing check first. */
722 secure_computing_strict(regs->gprs[2]);
723
724 /*
725 * The sysc_tracesys code in entry.S stored the system
726 * call number to gprs[2].
727 */
728 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
729 (tracehook_report_syscall_entry(regs) ||
730 regs->gprs[2] >= NR_syscalls)) {
731 /*
732 * Tracing decided this syscall should not happen or the
733 * debugger stored an invalid system call number. Skip
734 * the system call and the system call restart handling.
735 */
736 clear_thread_flag(TIF_SYSCALL);
737 ret = -1;
738 }
739
740 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
741 trace_sys_enter(regs, regs->gprs[2]);
742
743 audit_syscall_entry(is_compat_task() ?
744 AUDIT_ARCH_S390 : AUDIT_ARCH_S390X,
745 regs->gprs[2], regs->orig_gpr2,
746 regs->gprs[3], regs->gprs[4],
747 regs->gprs[5]);
748 return ret ?: regs->gprs[2];
749}
750
751asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
752{
753 audit_syscall_exit(regs);
754
755 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
756 trace_sys_exit(regs, regs->gprs[2]);
757
758 if (test_thread_flag(TIF_SYSCALL_TRACE))
759 tracehook_report_syscall_exit(regs, 0);
760}
761
762/*
763 * user_regset definitions.
764 */
765
766static int s390_regs_get(struct task_struct *target,
767 const struct user_regset *regset,
768 unsigned int pos, unsigned int count,
769 void *kbuf, void __user *ubuf)
770{
771 if (target == current)
772 save_access_regs(target->thread.acrs);
773
774 if (kbuf) {
775 unsigned long *k = kbuf;
776 while (count > 0) {
777 *k++ = __peek_user(target, pos);
778 count -= sizeof(*k);
779 pos += sizeof(*k);
780 }
781 } else {
782 unsigned long __user *u = ubuf;
783 while (count > 0) {
784 if (__put_user(__peek_user(target, pos), u++))
785 return -EFAULT;
786 count -= sizeof(*u);
787 pos += sizeof(*u);
788 }
789 }
790 return 0;
791}
792
793static int s390_regs_set(struct task_struct *target,
794 const struct user_regset *regset,
795 unsigned int pos, unsigned int count,
796 const void *kbuf, const void __user *ubuf)
797{
798 int rc = 0;
799
800 if (target == current)
801 save_access_regs(target->thread.acrs);
802
803 if (kbuf) {
804 const unsigned long *k = kbuf;
805 while (count > 0 && !rc) {
806 rc = __poke_user(target, pos, *k++);
807 count -= sizeof(*k);
808 pos += sizeof(*k);
809 }
810 } else {
811 const unsigned long __user *u = ubuf;
812 while (count > 0 && !rc) {
813 unsigned long word;
814 rc = __get_user(word, u++);
815 if (rc)
816 break;
817 rc = __poke_user(target, pos, word);
818 count -= sizeof(*u);
819 pos += sizeof(*u);
820 }
821 }
822
823 if (rc == 0 && target == current)
824 restore_access_regs(target->thread.acrs);
825
826 return rc;
827}
828
829static int s390_fpregs_get(struct task_struct *target,
830 const struct user_regset *regset, unsigned int pos,
831 unsigned int count, void *kbuf, void __user *ubuf)
832{
833 if (target == current)
834 save_fp_regs(&target->thread.fp_regs);
835
836 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
837 &target->thread.fp_regs, 0, -1);
838}
839
840static int s390_fpregs_set(struct task_struct *target,
841 const struct user_regset *regset, unsigned int pos,
842 unsigned int count, const void *kbuf,
843 const void __user *ubuf)
844{
845 int rc = 0;
846
847 if (target == current)
848 save_fp_regs(&target->thread.fp_regs);
849
850 /* If setting FPC, must validate it first. */
851 if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
852 u32 fpc[2] = { target->thread.fp_regs.fpc, 0 };
853 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpc,
854 0, offsetof(s390_fp_regs, fprs));
855 if (rc)
856 return rc;
857 if ((fpc[0] & ~FPC_VALID_MASK) != 0 || fpc[1] != 0)
858 return -EINVAL;
859 target->thread.fp_regs.fpc = fpc[0];
860 }
861
862 if (rc == 0 && count > 0)
863 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
864 target->thread.fp_regs.fprs,
865 offsetof(s390_fp_regs, fprs), -1);
866
867 if (rc == 0 && target == current)
868 restore_fp_regs(&target->thread.fp_regs);
869
870 return rc;
871}
872
873#ifdef CONFIG_64BIT
874
875static int s390_last_break_get(struct task_struct *target,
876 const struct user_regset *regset,
877 unsigned int pos, unsigned int count,
878 void *kbuf, void __user *ubuf)
879{
880 if (count > 0) {
881 if (kbuf) {
882 unsigned long *k = kbuf;
883 *k = task_thread_info(target)->last_break;
884 } else {
885 unsigned long __user *u = ubuf;
886 if (__put_user(task_thread_info(target)->last_break, u))
887 return -EFAULT;
888 }
889 }
890 return 0;
891}
892
893static int s390_last_break_set(struct task_struct *target,
894 const struct user_regset *regset,
895 unsigned int pos, unsigned int count,
896 const void *kbuf, const void __user *ubuf)
897{
898 return 0;
899}
900
901#endif
902
903static int s390_system_call_get(struct task_struct *target,
904 const struct user_regset *regset,
905 unsigned int pos, unsigned int count,
906 void *kbuf, void __user *ubuf)
907{
908 unsigned int *data = &task_thread_info(target)->system_call;
909 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
910 data, 0, sizeof(unsigned int));
911}
912
913static int s390_system_call_set(struct task_struct *target,
914 const struct user_regset *regset,
915 unsigned int pos, unsigned int count,
916 const void *kbuf, const void __user *ubuf)
917{
918 unsigned int *data = &task_thread_info(target)->system_call;
919 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
920 data, 0, sizeof(unsigned int));
921}
922
923static const struct user_regset s390_regsets[] = {
924 [REGSET_GENERAL] = {
925 .core_note_type = NT_PRSTATUS,
926 .n = sizeof(s390_regs) / sizeof(long),
927 .size = sizeof(long),
928 .align = sizeof(long),
929 .get = s390_regs_get,
930 .set = s390_regs_set,
931 },
932 [REGSET_FP] = {
933 .core_note_type = NT_PRFPREG,
934 .n = sizeof(s390_fp_regs) / sizeof(long),
935 .size = sizeof(long),
936 .align = sizeof(long),
937 .get = s390_fpregs_get,
938 .set = s390_fpregs_set,
939 },
940#ifdef CONFIG_64BIT
941 [REGSET_LAST_BREAK] = {
942 .core_note_type = NT_S390_LAST_BREAK,
943 .n = 1,
944 .size = sizeof(long),
945 .align = sizeof(long),
946 .get = s390_last_break_get,
947 .set = s390_last_break_set,
948 },
949#endif
950 [REGSET_SYSTEM_CALL] = {
951 .core_note_type = NT_S390_SYSTEM_CALL,
952 .n = 1,
953 .size = sizeof(unsigned int),
954 .align = sizeof(unsigned int),
955 .get = s390_system_call_get,
956 .set = s390_system_call_set,
957 },
958};
959
960static const struct user_regset_view user_s390_view = {
961 .name = UTS_MACHINE,
962 .e_machine = EM_S390,
963 .regsets = s390_regsets,
964 .n = ARRAY_SIZE(s390_regsets)
965};
966
967#ifdef CONFIG_COMPAT
968static int s390_compat_regs_get(struct task_struct *target,
969 const struct user_regset *regset,
970 unsigned int pos, unsigned int count,
971 void *kbuf, void __user *ubuf)
972{
973 if (target == current)
974 save_access_regs(target->thread.acrs);
975
976 if (kbuf) {
977 compat_ulong_t *k = kbuf;
978 while (count > 0) {
979 *k++ = __peek_user_compat(target, pos);
980 count -= sizeof(*k);
981 pos += sizeof(*k);
982 }
983 } else {
984 compat_ulong_t __user *u = ubuf;
985 while (count > 0) {
986 if (__put_user(__peek_user_compat(target, pos), u++))
987 return -EFAULT;
988 count -= sizeof(*u);
989 pos += sizeof(*u);
990 }
991 }
992 return 0;
993}
994
995static int s390_compat_regs_set(struct task_struct *target,
996 const struct user_regset *regset,
997 unsigned int pos, unsigned int count,
998 const void *kbuf, const void __user *ubuf)
999{
1000 int rc = 0;
1001
1002 if (target == current)
1003 save_access_regs(target->thread.acrs);
1004
1005 if (kbuf) {
1006 const compat_ulong_t *k = kbuf;
1007 while (count > 0 && !rc) {
1008 rc = __poke_user_compat(target, pos, *k++);
1009 count -= sizeof(*k);
1010 pos += sizeof(*k);
1011 }
1012 } else {
1013 const compat_ulong_t __user *u = ubuf;
1014 while (count > 0 && !rc) {
1015 compat_ulong_t word;
1016 rc = __get_user(word, u++);
1017 if (rc)
1018 break;
1019 rc = __poke_user_compat(target, pos, word);
1020 count -= sizeof(*u);
1021 pos += sizeof(*u);
1022 }
1023 }
1024
1025 if (rc == 0 && target == current)
1026 restore_access_regs(target->thread.acrs);
1027
1028 return rc;
1029}
1030
1031static int s390_compat_regs_high_get(struct task_struct *target,
1032 const struct user_regset *regset,
1033 unsigned int pos, unsigned int count,
1034 void *kbuf, void __user *ubuf)
1035{
1036 compat_ulong_t *gprs_high;
1037
1038 gprs_high = (compat_ulong_t *)
1039 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1040 if (kbuf) {
1041 compat_ulong_t *k = kbuf;
1042 while (count > 0) {
1043 *k++ = *gprs_high;
1044 gprs_high += 2;
1045 count -= sizeof(*k);
1046 }
1047 } else {
1048 compat_ulong_t __user *u = ubuf;
1049 while (count > 0) {
1050 if (__put_user(*gprs_high, u++))
1051 return -EFAULT;
1052 gprs_high += 2;
1053 count -= sizeof(*u);
1054 }
1055 }
1056 return 0;
1057}
1058
1059static int s390_compat_regs_high_set(struct task_struct *target,
1060 const struct user_regset *regset,
1061 unsigned int pos, unsigned int count,
1062 const void *kbuf, const void __user *ubuf)
1063{
1064 compat_ulong_t *gprs_high;
1065 int rc = 0;
1066
1067 gprs_high = (compat_ulong_t *)
1068 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1069 if (kbuf) {
1070 const compat_ulong_t *k = kbuf;
1071 while (count > 0) {
1072 *gprs_high = *k++;
1073 *gprs_high += 2;
1074 count -= sizeof(*k);
1075 }
1076 } else {
1077 const compat_ulong_t __user *u = ubuf;
1078 while (count > 0 && !rc) {
1079 unsigned long word;
1080 rc = __get_user(word, u++);
1081 if (rc)
1082 break;
1083 *gprs_high = word;
1084 *gprs_high += 2;
1085 count -= sizeof(*u);
1086 }
1087 }
1088
1089 return rc;
1090}
1091
1092static int s390_compat_last_break_get(struct task_struct *target,
1093 const struct user_regset *regset,
1094 unsigned int pos, unsigned int count,
1095 void *kbuf, void __user *ubuf)
1096{
1097 compat_ulong_t last_break;
1098
1099 if (count > 0) {
1100 last_break = task_thread_info(target)->last_break;
1101 if (kbuf) {
1102 unsigned long *k = kbuf;
1103 *k = last_break;
1104 } else {
1105 unsigned long __user *u = ubuf;
1106 if (__put_user(last_break, u))
1107 return -EFAULT;
1108 }
1109 }
1110 return 0;
1111}
1112
1113static int s390_compat_last_break_set(struct task_struct *target,
1114 const struct user_regset *regset,
1115 unsigned int pos, unsigned int count,
1116 const void *kbuf, const void __user *ubuf)
1117{
1118 return 0;
1119}
1120
1121static const struct user_regset s390_compat_regsets[] = {
1122 [REGSET_GENERAL] = {
1123 .core_note_type = NT_PRSTATUS,
1124 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1125 .size = sizeof(compat_long_t),
1126 .align = sizeof(compat_long_t),
1127 .get = s390_compat_regs_get,
1128 .set = s390_compat_regs_set,
1129 },
1130 [REGSET_FP] = {
1131 .core_note_type = NT_PRFPREG,
1132 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1133 .size = sizeof(compat_long_t),
1134 .align = sizeof(compat_long_t),
1135 .get = s390_fpregs_get,
1136 .set = s390_fpregs_set,
1137 },
1138 [REGSET_LAST_BREAK] = {
1139 .core_note_type = NT_S390_LAST_BREAK,
1140 .n = 1,
1141 .size = sizeof(long),
1142 .align = sizeof(long),
1143 .get = s390_compat_last_break_get,
1144 .set = s390_compat_last_break_set,
1145 },
1146 [REGSET_SYSTEM_CALL] = {
1147 .core_note_type = NT_S390_SYSTEM_CALL,
1148 .n = 1,
1149 .size = sizeof(compat_uint_t),
1150 .align = sizeof(compat_uint_t),
1151 .get = s390_system_call_get,
1152 .set = s390_system_call_set,
1153 },
1154 [REGSET_GENERAL_EXTENDED] = {
1155 .core_note_type = NT_S390_HIGH_GPRS,
1156 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1157 .size = sizeof(compat_long_t),
1158 .align = sizeof(compat_long_t),
1159 .get = s390_compat_regs_high_get,
1160 .set = s390_compat_regs_high_set,
1161 },
1162};
1163
1164static const struct user_regset_view user_s390_compat_view = {
1165 .name = "s390",
1166 .e_machine = EM_S390,
1167 .regsets = s390_compat_regsets,
1168 .n = ARRAY_SIZE(s390_compat_regsets)
1169};
1170#endif
1171
1172const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1173{
1174#ifdef CONFIG_COMPAT
1175 if (test_tsk_thread_flag(task, TIF_31BIT))
1176 return &user_s390_compat_view;
1177#endif
1178 return &user_s390_view;
1179}
1180
1181static const char *gpr_names[NUM_GPRS] = {
1182 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1183 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1184};
1185
1186unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1187{
1188 if (offset >= NUM_GPRS)
1189 return 0;
1190 return regs->gprs[offset];
1191}
1192
1193int regs_query_register_offset(const char *name)
1194{
1195 unsigned long offset;
1196
1197 if (!name || *name != 'r')
1198 return -EINVAL;
1199 if (strict_strtoul(name + 1, 10, &offset))
1200 return -EINVAL;
1201 if (offset >= NUM_GPRS)
1202 return -EINVAL;
1203 return offset;
1204}
1205
1206const char *regs_query_register_name(unsigned int offset)
1207{
1208 if (offset >= NUM_GPRS)
1209 return NULL;
1210 return gpr_names[offset];
1211}
1212
1213static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1214{
1215 unsigned long ksp = kernel_stack_pointer(regs);
1216
1217 return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1218}
1219
1220/**
1221 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1222 * @regs:pt_regs which contains kernel stack pointer.
1223 * @n:stack entry number.
1224 *
1225 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1226 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1227 * this returns 0.
1228 */
1229unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1230{
1231 unsigned long addr;
1232
1233 addr = kernel_stack_pointer(regs) + n * sizeof(long);
1234 if (!regs_within_kernel_stack(regs, addr))
1235 return 0;
1236 return *(unsigned long *)addr;
1237}