Linux Audio

Check our new training course

Embedded Linux training

Mar 10-20, 2025, special US time zones
Register
Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * net/sunrpc/cache.c
   4 *
   5 * Generic code for various authentication-related caches
   6 * used by sunrpc clients and servers.
   7 *
   8 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
 
 
 
   9 */
  10
  11#include <linux/types.h>
  12#include <linux/fs.h>
  13#include <linux/file.h>
  14#include <linux/slab.h>
  15#include <linux/signal.h>
  16#include <linux/sched.h>
  17#include <linux/kmod.h>
  18#include <linux/list.h>
  19#include <linux/module.h>
  20#include <linux/ctype.h>
  21#include <linux/string_helpers.h>
  22#include <linux/uaccess.h>
  23#include <linux/poll.h>
  24#include <linux/seq_file.h>
  25#include <linux/proc_fs.h>
  26#include <linux/net.h>
  27#include <linux/workqueue.h>
  28#include <linux/mutex.h>
  29#include <linux/pagemap.h>
  30#include <asm/ioctls.h>
  31#include <linux/sunrpc/types.h>
  32#include <linux/sunrpc/cache.h>
  33#include <linux/sunrpc/stats.h>
  34#include <linux/sunrpc/rpc_pipe_fs.h>
  35#include "netns.h"
  36
  37#define	 RPCDBG_FACILITY RPCDBG_CACHE
  38
  39static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
  40static void cache_revisit_request(struct cache_head *item);
  41static bool cache_listeners_exist(struct cache_detail *detail);
  42
  43static void cache_init(struct cache_head *h, struct cache_detail *detail)
  44{
  45	time_t now = seconds_since_boot();
  46	INIT_HLIST_NODE(&h->cache_list);
  47	h->flags = 0;
  48	kref_init(&h->ref);
  49	h->expiry_time = now + CACHE_NEW_EXPIRY;
  50	if (now <= detail->flush_time)
  51		/* ensure it isn't already expired */
  52		now = detail->flush_time + 1;
  53	h->last_refresh = now;
  54}
  55
  56static inline int cache_is_valid(struct cache_head *h);
  57static void cache_fresh_locked(struct cache_head *head, time_t expiry,
  58				struct cache_detail *detail);
  59static void cache_fresh_unlocked(struct cache_head *head,
  60				struct cache_detail *detail);
  61
  62static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail,
  63						struct cache_head *key,
  64						int hash)
  65{
  66	struct hlist_head *head = &detail->hash_table[hash];
  67	struct cache_head *tmp;
  68
  69	rcu_read_lock();
  70	hlist_for_each_entry_rcu(tmp, head, cache_list) {
 
 
 
 
  71		if (detail->match(tmp, key)) {
  72			if (cache_is_expired(detail, tmp))
  73				continue;
  74			tmp = cache_get_rcu(tmp);
  75			rcu_read_unlock();
 
  76			return tmp;
  77		}
  78	}
  79	rcu_read_unlock();
  80	return NULL;
  81}
  82
  83static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail,
  84						 struct cache_head *key,
  85						 int hash)
  86{
  87	struct cache_head *new, *tmp, *freeme = NULL;
  88	struct hlist_head *head = &detail->hash_table[hash];
  89
  90	new = detail->alloc();
  91	if (!new)
  92		return NULL;
  93	/* must fully initialise 'new', else
  94	 * we might get lose if we need to
  95	 * cache_put it soon.
  96	 */
  97	cache_init(new, detail);
  98	detail->init(new, key);
  99
 100	spin_lock(&detail->hash_lock);
 101
 102	/* check if entry appeared while we slept */
 103	hlist_for_each_entry_rcu(tmp, head, cache_list) {
 
 104		if (detail->match(tmp, key)) {
 105			if (cache_is_expired(detail, tmp)) {
 106				hlist_del_init_rcu(&tmp->cache_list);
 
 107				detail->entries --;
 108				if (cache_is_valid(tmp) == -EAGAIN)
 109					set_bit(CACHE_NEGATIVE, &tmp->flags);
 110				cache_fresh_locked(tmp, 0, detail);
 111				freeme = tmp;
 112				break;
 113			}
 114			cache_get(tmp);
 115			spin_unlock(&detail->hash_lock);
 116			cache_put(new, detail);
 117			return tmp;
 118		}
 119	}
 120
 121	hlist_add_head_rcu(&new->cache_list, head);
 122	detail->entries++;
 123	cache_get(new);
 124	spin_unlock(&detail->hash_lock);
 125
 126	if (freeme) {
 127		cache_fresh_unlocked(freeme, detail);
 128		cache_put(freeme, detail);
 129	}
 130	return new;
 131}
 
 132
 133struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail,
 134					   struct cache_head *key, int hash)
 135{
 136	struct cache_head *ret;
 137
 138	ret = sunrpc_cache_find_rcu(detail, key, hash);
 139	if (ret)
 140		return ret;
 141	/* Didn't find anything, insert an empty entry */
 142	return sunrpc_cache_add_entry(detail, key, hash);
 143}
 144EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu);
 145
 146static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
 147
 148static void cache_fresh_locked(struct cache_head *head, time_t expiry,
 149			       struct cache_detail *detail)
 150{
 151	time_t now = seconds_since_boot();
 152	if (now <= detail->flush_time)
 153		/* ensure it isn't immediately treated as expired */
 154		now = detail->flush_time + 1;
 155	head->expiry_time = expiry;
 156	head->last_refresh = now;
 157	smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
 158	set_bit(CACHE_VALID, &head->flags);
 159}
 160
 161static void cache_fresh_unlocked(struct cache_head *head,
 162				 struct cache_detail *detail)
 163{
 164	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
 165		cache_revisit_request(head);
 166		cache_dequeue(detail, head);
 167	}
 168}
 169
 170struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
 171				       struct cache_head *new, struct cache_head *old, int hash)
 172{
 173	/* The 'old' entry is to be replaced by 'new'.
 174	 * If 'old' is not VALID, we update it directly,
 175	 * otherwise we need to replace it
 176	 */
 
 177	struct cache_head *tmp;
 178
 179	if (!test_bit(CACHE_VALID, &old->flags)) {
 180		spin_lock(&detail->hash_lock);
 181		if (!test_bit(CACHE_VALID, &old->flags)) {
 182			if (test_bit(CACHE_NEGATIVE, &new->flags))
 183				set_bit(CACHE_NEGATIVE, &old->flags);
 184			else
 185				detail->update(old, new);
 186			cache_fresh_locked(old, new->expiry_time, detail);
 187			spin_unlock(&detail->hash_lock);
 188			cache_fresh_unlocked(old, detail);
 189			return old;
 190		}
 191		spin_unlock(&detail->hash_lock);
 192	}
 193	/* We need to insert a new entry */
 194	tmp = detail->alloc();
 195	if (!tmp) {
 196		cache_put(old, detail);
 197		return NULL;
 198	}
 199	cache_init(tmp, detail);
 200	detail->init(tmp, old);
 
 201
 202	spin_lock(&detail->hash_lock);
 203	if (test_bit(CACHE_NEGATIVE, &new->flags))
 204		set_bit(CACHE_NEGATIVE, &tmp->flags);
 205	else
 206		detail->update(tmp, new);
 207	hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]);
 
 208	detail->entries++;
 209	cache_get(tmp);
 210	cache_fresh_locked(tmp, new->expiry_time, detail);
 211	cache_fresh_locked(old, 0, detail);
 212	spin_unlock(&detail->hash_lock);
 213	cache_fresh_unlocked(tmp, detail);
 214	cache_fresh_unlocked(old, detail);
 215	cache_put(old, detail);
 216	return tmp;
 217}
 218EXPORT_SYMBOL_GPL(sunrpc_cache_update);
 219
 220static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
 221{
 222	if (cd->cache_upcall)
 223		return cd->cache_upcall(cd, h);
 224	return sunrpc_cache_pipe_upcall(cd, h);
 225}
 226
 227static inline int cache_is_valid(struct cache_head *h)
 228{
 229	if (!test_bit(CACHE_VALID, &h->flags))
 230		return -EAGAIN;
 231	else {
 232		/* entry is valid */
 233		if (test_bit(CACHE_NEGATIVE, &h->flags))
 234			return -ENOENT;
 235		else {
 236			/*
 237			 * In combination with write barrier in
 238			 * sunrpc_cache_update, ensures that anyone
 239			 * using the cache entry after this sees the
 240			 * updated contents:
 241			 */
 242			smp_rmb();
 243			return 0;
 244		}
 245	}
 246}
 247
 248static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
 249{
 250	int rv;
 251
 252	spin_lock(&detail->hash_lock);
 253	rv = cache_is_valid(h);
 254	if (rv == -EAGAIN) {
 255		set_bit(CACHE_NEGATIVE, &h->flags);
 256		cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY,
 257				   detail);
 258		rv = -ENOENT;
 259	}
 260	spin_unlock(&detail->hash_lock);
 261	cache_fresh_unlocked(h, detail);
 262	return rv;
 263}
 264
 265/*
 266 * This is the generic cache management routine for all
 267 * the authentication caches.
 268 * It checks the currency of a cache item and will (later)
 269 * initiate an upcall to fill it if needed.
 270 *
 271 *
 272 * Returns 0 if the cache_head can be used, or cache_puts it and returns
 273 * -EAGAIN if upcall is pending and request has been queued
 274 * -ETIMEDOUT if upcall failed or request could not be queue or
 275 *           upcall completed but item is still invalid (implying that
 276 *           the cache item has been replaced with a newer one).
 277 * -ENOENT if cache entry was negative
 278 */
 279int cache_check(struct cache_detail *detail,
 280		    struct cache_head *h, struct cache_req *rqstp)
 281{
 282	int rv;
 283	long refresh_age, age;
 284
 285	/* First decide return status as best we can */
 286	rv = cache_is_valid(h);
 287
 288	/* now see if we want to start an upcall */
 289	refresh_age = (h->expiry_time - h->last_refresh);
 290	age = seconds_since_boot() - h->last_refresh;
 291
 292	if (rqstp == NULL) {
 293		if (rv == -EAGAIN)
 294			rv = -ENOENT;
 295	} else if (rv == -EAGAIN ||
 296		   (h->expiry_time != 0 && age > refresh_age/2)) {
 297		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
 298				refresh_age, age);
 299		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
 300			switch (cache_make_upcall(detail, h)) {
 301			case -EINVAL:
 302				rv = try_to_negate_entry(detail, h);
 303				break;
 304			case -EAGAIN:
 305				cache_fresh_unlocked(h, detail);
 306				break;
 307			}
 308		} else if (!cache_listeners_exist(detail))
 309			rv = try_to_negate_entry(detail, h);
 310	}
 311
 312	if (rv == -EAGAIN) {
 313		if (!cache_defer_req(rqstp, h)) {
 314			/*
 315			 * Request was not deferred; handle it as best
 316			 * we can ourselves:
 317			 */
 318			rv = cache_is_valid(h);
 319			if (rv == -EAGAIN)
 320				rv = -ETIMEDOUT;
 321		}
 322	}
 323	if (rv)
 324		cache_put(h, detail);
 325	return rv;
 326}
 327EXPORT_SYMBOL_GPL(cache_check);
 328
 329/*
 330 * caches need to be periodically cleaned.
 331 * For this we maintain a list of cache_detail and
 332 * a current pointer into that list and into the table
 333 * for that entry.
 334 *
 335 * Each time cache_clean is called it finds the next non-empty entry
 336 * in the current table and walks the list in that entry
 337 * looking for entries that can be removed.
 338 *
 339 * An entry gets removed if:
 340 * - The expiry is before current time
 341 * - The last_refresh time is before the flush_time for that cache
 342 *
 343 * later we might drop old entries with non-NEVER expiry if that table
 344 * is getting 'full' for some definition of 'full'
 345 *
 346 * The question of "how often to scan a table" is an interesting one
 347 * and is answered in part by the use of the "nextcheck" field in the
 348 * cache_detail.
 349 * When a scan of a table begins, the nextcheck field is set to a time
 350 * that is well into the future.
 351 * While scanning, if an expiry time is found that is earlier than the
 352 * current nextcheck time, nextcheck is set to that expiry time.
 353 * If the flush_time is ever set to a time earlier than the nextcheck
 354 * time, the nextcheck time is then set to that flush_time.
 355 *
 356 * A table is then only scanned if the current time is at least
 357 * the nextcheck time.
 358 *
 359 */
 360
 361static LIST_HEAD(cache_list);
 362static DEFINE_SPINLOCK(cache_list_lock);
 363static struct cache_detail *current_detail;
 364static int current_index;
 365
 366static void do_cache_clean(struct work_struct *work);
 367static struct delayed_work cache_cleaner;
 368
 369void sunrpc_init_cache_detail(struct cache_detail *cd)
 370{
 371	spin_lock_init(&cd->hash_lock);
 372	INIT_LIST_HEAD(&cd->queue);
 373	spin_lock(&cache_list_lock);
 374	cd->nextcheck = 0;
 375	cd->entries = 0;
 376	atomic_set(&cd->writers, 0);
 377	cd->last_close = 0;
 378	cd->last_warn = -1;
 379	list_add(&cd->others, &cache_list);
 380	spin_unlock(&cache_list_lock);
 381
 382	/* start the cleaning process */
 383	queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0);
 384}
 385EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
 386
 387void sunrpc_destroy_cache_detail(struct cache_detail *cd)
 388{
 389	cache_purge(cd);
 390	spin_lock(&cache_list_lock);
 391	spin_lock(&cd->hash_lock);
 
 
 
 
 
 392	if (current_detail == cd)
 393		current_detail = NULL;
 394	list_del_init(&cd->others);
 395	spin_unlock(&cd->hash_lock);
 396	spin_unlock(&cache_list_lock);
 397	if (list_empty(&cache_list)) {
 398		/* module must be being unloaded so its safe to kill the worker */
 399		cancel_delayed_work_sync(&cache_cleaner);
 400	}
 
 
 
 401}
 402EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
 403
 404/* clean cache tries to find something to clean
 405 * and cleans it.
 406 * It returns 1 if it cleaned something,
 407 *            0 if it didn't find anything this time
 408 *           -1 if it fell off the end of the list.
 409 */
 410static int cache_clean(void)
 411{
 412	int rv = 0;
 413	struct list_head *next;
 414
 415	spin_lock(&cache_list_lock);
 416
 417	/* find a suitable table if we don't already have one */
 418	while (current_detail == NULL ||
 419	    current_index >= current_detail->hash_size) {
 420		if (current_detail)
 421			next = current_detail->others.next;
 422		else
 423			next = cache_list.next;
 424		if (next == &cache_list) {
 425			current_detail = NULL;
 426			spin_unlock(&cache_list_lock);
 427			return -1;
 428		}
 429		current_detail = list_entry(next, struct cache_detail, others);
 430		if (current_detail->nextcheck > seconds_since_boot())
 431			current_index = current_detail->hash_size;
 432		else {
 433			current_index = 0;
 434			current_detail->nextcheck = seconds_since_boot()+30*60;
 435		}
 436	}
 437
 438	/* find a non-empty bucket in the table */
 439	while (current_detail &&
 440	       current_index < current_detail->hash_size &&
 441	       hlist_empty(&current_detail->hash_table[current_index]))
 442		current_index++;
 443
 444	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
 445
 446	if (current_detail && current_index < current_detail->hash_size) {
 447		struct cache_head *ch = NULL;
 448		struct cache_detail *d;
 449		struct hlist_head *head;
 450		struct hlist_node *tmp;
 451
 452		spin_lock(&current_detail->hash_lock);
 453
 454		/* Ok, now to clean this strand */
 455
 456		head = &current_detail->hash_table[current_index];
 457		hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
 458			if (current_detail->nextcheck > ch->expiry_time)
 459				current_detail->nextcheck = ch->expiry_time+1;
 460			if (!cache_is_expired(current_detail, ch))
 461				continue;
 462
 463			hlist_del_init_rcu(&ch->cache_list);
 
 464			current_detail->entries--;
 465			rv = 1;
 466			break;
 467		}
 468
 469		spin_unlock(&current_detail->hash_lock);
 470		d = current_detail;
 471		if (!ch)
 472			current_index ++;
 473		spin_unlock(&cache_list_lock);
 474		if (ch) {
 475			set_bit(CACHE_CLEANED, &ch->flags);
 476			cache_fresh_unlocked(ch, d);
 477			cache_put(ch, d);
 478		}
 479	} else
 480		spin_unlock(&cache_list_lock);
 481
 482	return rv;
 483}
 484
 485/*
 486 * We want to regularly clean the cache, so we need to schedule some work ...
 487 */
 488static void do_cache_clean(struct work_struct *work)
 489{
 490	int delay = 5;
 491	if (cache_clean() == -1)
 492		delay = round_jiffies_relative(30*HZ);
 493
 494	if (list_empty(&cache_list))
 495		delay = 0;
 496
 497	if (delay)
 498		queue_delayed_work(system_power_efficient_wq,
 499				   &cache_cleaner, delay);
 500}
 501
 502
 503/*
 504 * Clean all caches promptly.  This just calls cache_clean
 505 * repeatedly until we are sure that every cache has had a chance to
 506 * be fully cleaned
 507 */
 508void cache_flush(void)
 509{
 510	while (cache_clean() != -1)
 511		cond_resched();
 512	while (cache_clean() != -1)
 513		cond_resched();
 514}
 515EXPORT_SYMBOL_GPL(cache_flush);
 516
 517void cache_purge(struct cache_detail *detail)
 518{
 519	struct cache_head *ch = NULL;
 520	struct hlist_head *head = NULL;
 521	struct hlist_node *tmp = NULL;
 522	int i = 0;
 523
 524	spin_lock(&detail->hash_lock);
 525	if (!detail->entries) {
 526		spin_unlock(&detail->hash_lock);
 527		return;
 528	}
 529
 530	dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name);
 531	for (i = 0; i < detail->hash_size; i++) {
 532		head = &detail->hash_table[i];
 533		hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
 534			hlist_del_init_rcu(&ch->cache_list);
 535			detail->entries--;
 536
 537			set_bit(CACHE_CLEANED, &ch->flags);
 538			spin_unlock(&detail->hash_lock);
 539			cache_fresh_unlocked(ch, detail);
 540			cache_put(ch, detail);
 541			spin_lock(&detail->hash_lock);
 542		}
 543	}
 544	spin_unlock(&detail->hash_lock);
 545}
 546EXPORT_SYMBOL_GPL(cache_purge);
 547
 548
 549/*
 550 * Deferral and Revisiting of Requests.
 551 *
 552 * If a cache lookup finds a pending entry, we
 553 * need to defer the request and revisit it later.
 554 * All deferred requests are stored in a hash table,
 555 * indexed by "struct cache_head *".
 556 * As it may be wasteful to store a whole request
 557 * structure, we allow the request to provide a
 558 * deferred form, which must contain a
 559 * 'struct cache_deferred_req'
 560 * This cache_deferred_req contains a method to allow
 561 * it to be revisited when cache info is available
 562 */
 563
 564#define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
 565#define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
 566
 567#define	DFR_MAX	300	/* ??? */
 568
 569static DEFINE_SPINLOCK(cache_defer_lock);
 570static LIST_HEAD(cache_defer_list);
 571static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
 572static int cache_defer_cnt;
 573
 574static void __unhash_deferred_req(struct cache_deferred_req *dreq)
 575{
 576	hlist_del_init(&dreq->hash);
 577	if (!list_empty(&dreq->recent)) {
 578		list_del_init(&dreq->recent);
 579		cache_defer_cnt--;
 580	}
 581}
 582
 583static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
 584{
 585	int hash = DFR_HASH(item);
 586
 587	INIT_LIST_HEAD(&dreq->recent);
 588	hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
 589}
 590
 591static void setup_deferral(struct cache_deferred_req *dreq,
 592			   struct cache_head *item,
 593			   int count_me)
 594{
 595
 596	dreq->item = item;
 597
 598	spin_lock(&cache_defer_lock);
 599
 600	__hash_deferred_req(dreq, item);
 601
 602	if (count_me) {
 603		cache_defer_cnt++;
 604		list_add(&dreq->recent, &cache_defer_list);
 605	}
 606
 607	spin_unlock(&cache_defer_lock);
 608
 609}
 610
 611struct thread_deferred_req {
 612	struct cache_deferred_req handle;
 613	struct completion completion;
 614};
 615
 616static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
 617{
 618	struct thread_deferred_req *dr =
 619		container_of(dreq, struct thread_deferred_req, handle);
 620	complete(&dr->completion);
 621}
 622
 623static void cache_wait_req(struct cache_req *req, struct cache_head *item)
 624{
 625	struct thread_deferred_req sleeper;
 626	struct cache_deferred_req *dreq = &sleeper.handle;
 627
 628	sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
 629	dreq->revisit = cache_restart_thread;
 630
 631	setup_deferral(dreq, item, 0);
 632
 633	if (!test_bit(CACHE_PENDING, &item->flags) ||
 634	    wait_for_completion_interruptible_timeout(
 635		    &sleeper.completion, req->thread_wait) <= 0) {
 636		/* The completion wasn't completed, so we need
 637		 * to clean up
 638		 */
 639		spin_lock(&cache_defer_lock);
 640		if (!hlist_unhashed(&sleeper.handle.hash)) {
 641			__unhash_deferred_req(&sleeper.handle);
 642			spin_unlock(&cache_defer_lock);
 643		} else {
 644			/* cache_revisit_request already removed
 645			 * this from the hash table, but hasn't
 646			 * called ->revisit yet.  It will very soon
 647			 * and we need to wait for it.
 648			 */
 649			spin_unlock(&cache_defer_lock);
 650			wait_for_completion(&sleeper.completion);
 651		}
 652	}
 653}
 654
 655static void cache_limit_defers(void)
 656{
 657	/* Make sure we haven't exceed the limit of allowed deferred
 658	 * requests.
 659	 */
 660	struct cache_deferred_req *discard = NULL;
 661
 662	if (cache_defer_cnt <= DFR_MAX)
 663		return;
 664
 665	spin_lock(&cache_defer_lock);
 666
 667	/* Consider removing either the first or the last */
 668	if (cache_defer_cnt > DFR_MAX) {
 669		if (prandom_u32() & 1)
 670			discard = list_entry(cache_defer_list.next,
 671					     struct cache_deferred_req, recent);
 672		else
 673			discard = list_entry(cache_defer_list.prev,
 674					     struct cache_deferred_req, recent);
 675		__unhash_deferred_req(discard);
 676	}
 677	spin_unlock(&cache_defer_lock);
 678	if (discard)
 679		discard->revisit(discard, 1);
 680}
 681
 682/* Return true if and only if a deferred request is queued. */
 683static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
 684{
 685	struct cache_deferred_req *dreq;
 686
 687	if (req->thread_wait) {
 688		cache_wait_req(req, item);
 689		if (!test_bit(CACHE_PENDING, &item->flags))
 690			return false;
 691	}
 692	dreq = req->defer(req);
 693	if (dreq == NULL)
 694		return false;
 695	setup_deferral(dreq, item, 1);
 696	if (!test_bit(CACHE_PENDING, &item->flags))
 697		/* Bit could have been cleared before we managed to
 698		 * set up the deferral, so need to revisit just in case
 699		 */
 700		cache_revisit_request(item);
 701
 702	cache_limit_defers();
 703	return true;
 704}
 705
 706static void cache_revisit_request(struct cache_head *item)
 707{
 708	struct cache_deferred_req *dreq;
 709	struct list_head pending;
 710	struct hlist_node *tmp;
 711	int hash = DFR_HASH(item);
 712
 713	INIT_LIST_HEAD(&pending);
 714	spin_lock(&cache_defer_lock);
 715
 716	hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
 717		if (dreq->item == item) {
 718			__unhash_deferred_req(dreq);
 719			list_add(&dreq->recent, &pending);
 720		}
 721
 722	spin_unlock(&cache_defer_lock);
 723
 724	while (!list_empty(&pending)) {
 725		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
 726		list_del_init(&dreq->recent);
 727		dreq->revisit(dreq, 0);
 728	}
 729}
 730
 731void cache_clean_deferred(void *owner)
 732{
 733	struct cache_deferred_req *dreq, *tmp;
 734	struct list_head pending;
 735
 736
 737	INIT_LIST_HEAD(&pending);
 738	spin_lock(&cache_defer_lock);
 739
 740	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
 741		if (dreq->owner == owner) {
 742			__unhash_deferred_req(dreq);
 743			list_add(&dreq->recent, &pending);
 744		}
 745	}
 746	spin_unlock(&cache_defer_lock);
 747
 748	while (!list_empty(&pending)) {
 749		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
 750		list_del_init(&dreq->recent);
 751		dreq->revisit(dreq, 1);
 752	}
 753}
 754
 755/*
 756 * communicate with user-space
 757 *
 758 * We have a magic /proc file - /proc/net/rpc/<cachename>/channel.
 759 * On read, you get a full request, or block.
 760 * On write, an update request is processed.
 761 * Poll works if anything to read, and always allows write.
 762 *
 763 * Implemented by linked list of requests.  Each open file has
 764 * a ->private that also exists in this list.  New requests are added
 765 * to the end and may wakeup and preceding readers.
 766 * New readers are added to the head.  If, on read, an item is found with
 767 * CACHE_UPCALLING clear, we free it from the list.
 768 *
 769 */
 770
 771static DEFINE_SPINLOCK(queue_lock);
 772static DEFINE_MUTEX(queue_io_mutex);
 773
 774struct cache_queue {
 775	struct list_head	list;
 776	int			reader;	/* if 0, then request */
 777};
 778struct cache_request {
 779	struct cache_queue	q;
 780	struct cache_head	*item;
 781	char			* buf;
 782	int			len;
 783	int			readers;
 784};
 785struct cache_reader {
 786	struct cache_queue	q;
 787	int			offset;	/* if non-0, we have a refcnt on next request */
 788};
 789
 790static int cache_request(struct cache_detail *detail,
 791			       struct cache_request *crq)
 792{
 793	char *bp = crq->buf;
 794	int len = PAGE_SIZE;
 795
 796	detail->cache_request(detail, crq->item, &bp, &len);
 797	if (len < 0)
 798		return -EAGAIN;
 799	return PAGE_SIZE - len;
 800}
 801
 802static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
 803			  loff_t *ppos, struct cache_detail *cd)
 804{
 805	struct cache_reader *rp = filp->private_data;
 806	struct cache_request *rq;
 807	struct inode *inode = file_inode(filp);
 808	int err;
 809
 810	if (count == 0)
 811		return 0;
 812
 813	inode_lock(inode); /* protect against multiple concurrent
 814			      * readers on this file */
 815 again:
 816	spin_lock(&queue_lock);
 817	/* need to find next request */
 818	while (rp->q.list.next != &cd->queue &&
 819	       list_entry(rp->q.list.next, struct cache_queue, list)
 820	       ->reader) {
 821		struct list_head *next = rp->q.list.next;
 822		list_move(&rp->q.list, next);
 823	}
 824	if (rp->q.list.next == &cd->queue) {
 825		spin_unlock(&queue_lock);
 826		inode_unlock(inode);
 827		WARN_ON_ONCE(rp->offset);
 828		return 0;
 829	}
 830	rq = container_of(rp->q.list.next, struct cache_request, q.list);
 831	WARN_ON_ONCE(rq->q.reader);
 832	if (rp->offset == 0)
 833		rq->readers++;
 834	spin_unlock(&queue_lock);
 835
 836	if (rq->len == 0) {
 837		err = cache_request(cd, rq);
 838		if (err < 0)
 839			goto out;
 840		rq->len = err;
 841	}
 842
 843	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
 844		err = -EAGAIN;
 845		spin_lock(&queue_lock);
 846		list_move(&rp->q.list, &rq->q.list);
 847		spin_unlock(&queue_lock);
 848	} else {
 849		if (rp->offset + count > rq->len)
 850			count = rq->len - rp->offset;
 851		err = -EFAULT;
 852		if (copy_to_user(buf, rq->buf + rp->offset, count))
 853			goto out;
 854		rp->offset += count;
 855		if (rp->offset >= rq->len) {
 856			rp->offset = 0;
 857			spin_lock(&queue_lock);
 858			list_move(&rp->q.list, &rq->q.list);
 859			spin_unlock(&queue_lock);
 860		}
 861		err = 0;
 862	}
 863 out:
 864	if (rp->offset == 0) {
 865		/* need to release rq */
 866		spin_lock(&queue_lock);
 867		rq->readers--;
 868		if (rq->readers == 0 &&
 869		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
 870			list_del(&rq->q.list);
 871			spin_unlock(&queue_lock);
 872			cache_put(rq->item, cd);
 873			kfree(rq->buf);
 874			kfree(rq);
 875		} else
 876			spin_unlock(&queue_lock);
 877	}
 878	if (err == -EAGAIN)
 879		goto again;
 880	inode_unlock(inode);
 881	return err ? err :  count;
 882}
 883
 884static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
 885				 size_t count, struct cache_detail *cd)
 886{
 887	ssize_t ret;
 888
 889	if (count == 0)
 890		return -EINVAL;
 891	if (copy_from_user(kaddr, buf, count))
 892		return -EFAULT;
 893	kaddr[count] = '\0';
 894	ret = cd->cache_parse(cd, kaddr, count);
 895	if (!ret)
 896		ret = count;
 897	return ret;
 898}
 899
 900static ssize_t cache_slow_downcall(const char __user *buf,
 901				   size_t count, struct cache_detail *cd)
 902{
 903	static char write_buf[8192]; /* protected by queue_io_mutex */
 904	ssize_t ret = -EINVAL;
 905
 906	if (count >= sizeof(write_buf))
 907		goto out;
 908	mutex_lock(&queue_io_mutex);
 909	ret = cache_do_downcall(write_buf, buf, count, cd);
 910	mutex_unlock(&queue_io_mutex);
 911out:
 912	return ret;
 913}
 914
 915static ssize_t cache_downcall(struct address_space *mapping,
 916			      const char __user *buf,
 917			      size_t count, struct cache_detail *cd)
 918{
 919	struct page *page;
 920	char *kaddr;
 921	ssize_t ret = -ENOMEM;
 922
 923	if (count >= PAGE_SIZE)
 924		goto out_slow;
 925
 926	page = find_or_create_page(mapping, 0, GFP_KERNEL);
 927	if (!page)
 928		goto out_slow;
 929
 930	kaddr = kmap(page);
 931	ret = cache_do_downcall(kaddr, buf, count, cd);
 932	kunmap(page);
 933	unlock_page(page);
 934	put_page(page);
 935	return ret;
 936out_slow:
 937	return cache_slow_downcall(buf, count, cd);
 938}
 939
 940static ssize_t cache_write(struct file *filp, const char __user *buf,
 941			   size_t count, loff_t *ppos,
 942			   struct cache_detail *cd)
 943{
 944	struct address_space *mapping = filp->f_mapping;
 945	struct inode *inode = file_inode(filp);
 946	ssize_t ret = -EINVAL;
 947
 948	if (!cd->cache_parse)
 949		goto out;
 950
 951	inode_lock(inode);
 952	ret = cache_downcall(mapping, buf, count, cd);
 953	inode_unlock(inode);
 954out:
 955	return ret;
 956}
 957
 958static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
 959
 960static __poll_t cache_poll(struct file *filp, poll_table *wait,
 961			       struct cache_detail *cd)
 962{
 963	__poll_t mask;
 964	struct cache_reader *rp = filp->private_data;
 965	struct cache_queue *cq;
 966
 967	poll_wait(filp, &queue_wait, wait);
 968
 969	/* alway allow write */
 970	mask = EPOLLOUT | EPOLLWRNORM;
 971
 972	if (!rp)
 973		return mask;
 974
 975	spin_lock(&queue_lock);
 976
 977	for (cq= &rp->q; &cq->list != &cd->queue;
 978	     cq = list_entry(cq->list.next, struct cache_queue, list))
 979		if (!cq->reader) {
 980			mask |= EPOLLIN | EPOLLRDNORM;
 981			break;
 982		}
 983	spin_unlock(&queue_lock);
 984	return mask;
 985}
 986
 987static int cache_ioctl(struct inode *ino, struct file *filp,
 988		       unsigned int cmd, unsigned long arg,
 989		       struct cache_detail *cd)
 990{
 991	int len = 0;
 992	struct cache_reader *rp = filp->private_data;
 993	struct cache_queue *cq;
 994
 995	if (cmd != FIONREAD || !rp)
 996		return -EINVAL;
 997
 998	spin_lock(&queue_lock);
 999
1000	/* only find the length remaining in current request,
1001	 * or the length of the next request
1002	 */
1003	for (cq= &rp->q; &cq->list != &cd->queue;
1004	     cq = list_entry(cq->list.next, struct cache_queue, list))
1005		if (!cq->reader) {
1006			struct cache_request *cr =
1007				container_of(cq, struct cache_request, q);
1008			len = cr->len - rp->offset;
1009			break;
1010		}
1011	spin_unlock(&queue_lock);
1012
1013	return put_user(len, (int __user *)arg);
1014}
1015
1016static int cache_open(struct inode *inode, struct file *filp,
1017		      struct cache_detail *cd)
1018{
1019	struct cache_reader *rp = NULL;
1020
1021	if (!cd || !try_module_get(cd->owner))
1022		return -EACCES;
1023	nonseekable_open(inode, filp);
1024	if (filp->f_mode & FMODE_READ) {
1025		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
1026		if (!rp) {
1027			module_put(cd->owner);
1028			return -ENOMEM;
1029		}
1030		rp->offset = 0;
1031		rp->q.reader = 1;
1032
1033		spin_lock(&queue_lock);
1034		list_add(&rp->q.list, &cd->queue);
1035		spin_unlock(&queue_lock);
1036	}
1037	if (filp->f_mode & FMODE_WRITE)
1038		atomic_inc(&cd->writers);
1039	filp->private_data = rp;
1040	return 0;
1041}
1042
1043static int cache_release(struct inode *inode, struct file *filp,
1044			 struct cache_detail *cd)
1045{
1046	struct cache_reader *rp = filp->private_data;
1047
1048	if (rp) {
1049		spin_lock(&queue_lock);
1050		if (rp->offset) {
1051			struct cache_queue *cq;
1052			for (cq= &rp->q; &cq->list != &cd->queue;
1053			     cq = list_entry(cq->list.next, struct cache_queue, list))
1054				if (!cq->reader) {
1055					container_of(cq, struct cache_request, q)
1056						->readers--;
1057					break;
1058				}
1059			rp->offset = 0;
1060		}
1061		list_del(&rp->q.list);
1062		spin_unlock(&queue_lock);
1063
1064		filp->private_data = NULL;
1065		kfree(rp);
1066
1067	}
1068	if (filp->f_mode & FMODE_WRITE) {
1069		atomic_dec(&cd->writers);
1070		cd->last_close = seconds_since_boot();
 
1071	}
1072	module_put(cd->owner);
1073	return 0;
1074}
1075
1076
1077
1078static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1079{
1080	struct cache_queue *cq, *tmp;
1081	struct cache_request *cr;
1082	struct list_head dequeued;
1083
1084	INIT_LIST_HEAD(&dequeued);
1085	spin_lock(&queue_lock);
1086	list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1087		if (!cq->reader) {
1088			cr = container_of(cq, struct cache_request, q);
1089			if (cr->item != ch)
1090				continue;
1091			if (test_bit(CACHE_PENDING, &ch->flags))
1092				/* Lost a race and it is pending again */
1093				break;
1094			if (cr->readers != 0)
1095				continue;
1096			list_move(&cr->q.list, &dequeued);
1097		}
1098	spin_unlock(&queue_lock);
1099	while (!list_empty(&dequeued)) {
1100		cr = list_entry(dequeued.next, struct cache_request, q.list);
1101		list_del(&cr->q.list);
1102		cache_put(cr->item, detail);
1103		kfree(cr->buf);
1104		kfree(cr);
1105	}
1106}
1107
1108/*
1109 * Support routines for text-based upcalls.
1110 * Fields are separated by spaces.
1111 * Fields are either mangled to quote space tab newline slosh with slosh
1112 * or a hexified with a leading \x
1113 * Record is terminated with newline.
1114 *
1115 */
1116
1117void qword_add(char **bpp, int *lp, char *str)
1118{
1119	char *bp = *bpp;
1120	int len = *lp;
1121	int ret;
1122
1123	if (len < 0) return;
1124
1125	ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1126	if (ret >= len) {
1127		bp += len;
1128		len = -1;
1129	} else {
1130		bp += ret;
1131		len -= ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
1132		*bp++ = ' ';
1133		len--;
1134	}
1135	*bpp = bp;
1136	*lp = len;
1137}
1138EXPORT_SYMBOL_GPL(qword_add);
1139
1140void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1141{
1142	char *bp = *bpp;
1143	int len = *lp;
1144
1145	if (len < 0) return;
1146
1147	if (len > 2) {
1148		*bp++ = '\\';
1149		*bp++ = 'x';
1150		len -= 2;
1151		while (blen && len >= 2) {
1152			bp = hex_byte_pack(bp, *buf++);
1153			len -= 2;
1154			blen--;
1155		}
1156	}
1157	if (blen || len<1) len = -1;
1158	else {
1159		*bp++ = ' ';
1160		len--;
1161	}
1162	*bpp = bp;
1163	*lp = len;
1164}
1165EXPORT_SYMBOL_GPL(qword_addhex);
1166
1167static void warn_no_listener(struct cache_detail *detail)
1168{
1169	if (detail->last_warn != detail->last_close) {
1170		detail->last_warn = detail->last_close;
1171		if (detail->warn_no_listener)
1172			detail->warn_no_listener(detail, detail->last_close != 0);
1173	}
1174}
1175
1176static bool cache_listeners_exist(struct cache_detail *detail)
1177{
1178	if (atomic_read(&detail->writers))
1179		return true;
1180	if (detail->last_close == 0)
1181		/* This cache was never opened */
1182		return false;
1183	if (detail->last_close < seconds_since_boot() - 30)
1184		/*
1185		 * We allow for the possibility that someone might
1186		 * restart a userspace daemon without restarting the
1187		 * server; but after 30 seconds, we give up.
1188		 */
1189		 return false;
1190	return true;
1191}
1192
1193/*
1194 * register an upcall request to user-space and queue it up for read() by the
1195 * upcall daemon.
1196 *
1197 * Each request is at most one page long.
1198 */
1199int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1200{
1201
1202	char *buf;
1203	struct cache_request *crq;
1204	int ret = 0;
1205
1206	if (!detail->cache_request)
1207		return -EINVAL;
1208
1209	if (!cache_listeners_exist(detail)) {
1210		warn_no_listener(detail);
1211		return -EINVAL;
1212	}
1213	if (test_bit(CACHE_CLEANED, &h->flags))
1214		/* Too late to make an upcall */
1215		return -EAGAIN;
1216
1217	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1218	if (!buf)
1219		return -EAGAIN;
1220
1221	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1222	if (!crq) {
1223		kfree(buf);
1224		return -EAGAIN;
1225	}
1226
1227	crq->q.reader = 0;
 
1228	crq->buf = buf;
1229	crq->len = 0;
1230	crq->readers = 0;
1231	spin_lock(&queue_lock);
1232	if (test_bit(CACHE_PENDING, &h->flags)) {
1233		crq->item = cache_get(h);
1234		list_add_tail(&crq->q.list, &detail->queue);
1235	} else
1236		/* Lost a race, no longer PENDING, so don't enqueue */
1237		ret = -EAGAIN;
1238	spin_unlock(&queue_lock);
1239	wake_up(&queue_wait);
1240	if (ret == -EAGAIN) {
1241		kfree(buf);
1242		kfree(crq);
1243	}
1244	return ret;
1245}
1246EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1247
1248/*
1249 * parse a message from user-space and pass it
1250 * to an appropriate cache
1251 * Messages are, like requests, separated into fields by
1252 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1253 *
1254 * Message is
1255 *   reply cachename expiry key ... content....
1256 *
1257 * key and content are both parsed by cache
1258 */
1259
1260int qword_get(char **bpp, char *dest, int bufsize)
1261{
1262	/* return bytes copied, or -1 on error */
1263	char *bp = *bpp;
1264	int len = 0;
1265
1266	while (*bp == ' ') bp++;
1267
1268	if (bp[0] == '\\' && bp[1] == 'x') {
1269		/* HEX STRING */
1270		bp += 2;
1271		while (len < bufsize - 1) {
1272			int h, l;
1273
1274			h = hex_to_bin(bp[0]);
1275			if (h < 0)
1276				break;
1277
1278			l = hex_to_bin(bp[1]);
1279			if (l < 0)
1280				break;
1281
1282			*dest++ = (h << 4) | l;
1283			bp += 2;
1284			len++;
1285		}
1286	} else {
1287		/* text with \nnn octal quoting */
1288		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1289			if (*bp == '\\' &&
1290			    isodigit(bp[1]) && (bp[1] <= '3') &&
1291			    isodigit(bp[2]) &&
1292			    isodigit(bp[3])) {
1293				int byte = (*++bp -'0');
1294				bp++;
1295				byte = (byte << 3) | (*bp++ - '0');
1296				byte = (byte << 3) | (*bp++ - '0');
1297				*dest++ = byte;
1298				len++;
1299			} else {
1300				*dest++ = *bp++;
1301				len++;
1302			}
1303		}
1304	}
1305
1306	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1307		return -1;
1308	while (*bp == ' ') bp++;
1309	*bpp = bp;
1310	*dest = '\0';
1311	return len;
1312}
1313EXPORT_SYMBOL_GPL(qword_get);
1314
1315
1316/*
1317 * support /proc/net/rpc/$CACHENAME/content
1318 * as a seqfile.
1319 * We call ->cache_show passing NULL for the item to
1320 * get a header, then pass each real item in the cache
1321 */
1322
1323static void *__cache_seq_start(struct seq_file *m, loff_t *pos)
 
 
 
 
 
1324{
1325	loff_t n = *pos;
1326	unsigned int hash, entry;
1327	struct cache_head *ch;
1328	struct cache_detail *cd = m->private;
1329
 
 
1330	if (!n--)
1331		return SEQ_START_TOKEN;
1332	hash = n >> 32;
1333	entry = n & ((1LL<<32) - 1);
1334
1335	hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list)
1336		if (!entry--)
1337			return ch;
1338	n &= ~((1LL<<32) - 1);
1339	do {
1340		hash++;
1341		n += 1LL<<32;
1342	} while(hash < cd->hash_size &&
1343		hlist_empty(&cd->hash_table[hash]));
1344	if (hash >= cd->hash_size)
1345		return NULL;
1346	*pos = n+1;
1347	return hlist_entry_safe(rcu_dereference_raw(
1348				hlist_first_rcu(&cd->hash_table[hash])),
1349				struct cache_head, cache_list);
1350}
1351
1352static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos)
1353{
1354	struct cache_head *ch = p;
1355	int hash = (*pos >> 32);
1356	struct cache_detail *cd = m->private;
1357
1358	if (p == SEQ_START_TOKEN)
1359		hash = 0;
1360	else if (ch->cache_list.next == NULL) {
1361		hash++;
1362		*pos += 1LL<<32;
1363	} else {
1364		++*pos;
1365		return hlist_entry_safe(rcu_dereference_raw(
1366					hlist_next_rcu(&ch->cache_list)),
1367					struct cache_head, cache_list);
1368	}
1369	*pos &= ~((1LL<<32) - 1);
1370	while (hash < cd->hash_size &&
1371	       hlist_empty(&cd->hash_table[hash])) {
1372		hash++;
1373		*pos += 1LL<<32;
1374	}
1375	if (hash >= cd->hash_size)
1376		return NULL;
1377	++*pos;
1378	return hlist_entry_safe(rcu_dereference_raw(
1379				hlist_first_rcu(&cd->hash_table[hash])),
1380				struct cache_head, cache_list);
1381}
1382
1383void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos)
1384	__acquires(RCU)
1385{
1386	rcu_read_lock();
1387	return __cache_seq_start(m, pos);
1388}
1389EXPORT_SYMBOL_GPL(cache_seq_start_rcu);
1390
1391void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos)
1392{
1393	return cache_seq_next(file, p, pos);
1394}
1395EXPORT_SYMBOL_GPL(cache_seq_next_rcu);
1396
1397void cache_seq_stop_rcu(struct seq_file *m, void *p)
1398	__releases(RCU)
1399{
1400	rcu_read_unlock();
1401}
1402EXPORT_SYMBOL_GPL(cache_seq_stop_rcu);
1403
1404static int c_show(struct seq_file *m, void *p)
1405{
1406	struct cache_head *cp = p;
1407	struct cache_detail *cd = m->private;
1408
1409	if (p == SEQ_START_TOKEN)
1410		return cd->cache_show(m, cd, NULL);
1411
1412	ifdebug(CACHE)
1413		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1414			   convert_to_wallclock(cp->expiry_time),
1415			   kref_read(&cp->ref), cp->flags);
1416	cache_get(cp);
1417	if (cache_check(cd, cp, NULL))
1418		/* cache_check does a cache_put on failure */
1419		seq_printf(m, "# ");
1420	else {
1421		if (cache_is_expired(cd, cp))
1422			seq_printf(m, "# ");
1423		cache_put(cp, cd);
1424	}
1425
1426	return cd->cache_show(m, cd, cp);
1427}
1428
1429static const struct seq_operations cache_content_op = {
1430	.start	= cache_seq_start_rcu,
1431	.next	= cache_seq_next_rcu,
1432	.stop	= cache_seq_stop_rcu,
1433	.show	= c_show,
1434};
1435
1436static int content_open(struct inode *inode, struct file *file,
1437			struct cache_detail *cd)
1438{
1439	struct seq_file *seq;
1440	int err;
1441
1442	if (!cd || !try_module_get(cd->owner))
1443		return -EACCES;
1444
1445	err = seq_open(file, &cache_content_op);
1446	if (err) {
1447		module_put(cd->owner);
1448		return err;
1449	}
1450
1451	seq = file->private_data;
1452	seq->private = cd;
1453	return 0;
1454}
1455
1456static int content_release(struct inode *inode, struct file *file,
1457		struct cache_detail *cd)
1458{
1459	int ret = seq_release(inode, file);
1460	module_put(cd->owner);
1461	return ret;
1462}
1463
1464static int open_flush(struct inode *inode, struct file *file,
1465			struct cache_detail *cd)
1466{
1467	if (!cd || !try_module_get(cd->owner))
1468		return -EACCES;
1469	return nonseekable_open(inode, file);
1470}
1471
1472static int release_flush(struct inode *inode, struct file *file,
1473			struct cache_detail *cd)
1474{
1475	module_put(cd->owner);
1476	return 0;
1477}
1478
1479static ssize_t read_flush(struct file *file, char __user *buf,
1480			  size_t count, loff_t *ppos,
1481			  struct cache_detail *cd)
1482{
1483	char tbuf[22];
 
1484	size_t len;
1485
1486	len = snprintf(tbuf, sizeof(tbuf), "%lu\n",
1487			convert_to_wallclock(cd->flush_time));
1488	return simple_read_from_buffer(buf, count, ppos, tbuf, len);
 
 
 
 
 
 
 
 
1489}
1490
1491static ssize_t write_flush(struct file *file, const char __user *buf,
1492			   size_t count, loff_t *ppos,
1493			   struct cache_detail *cd)
1494{
1495	char tbuf[20];
1496	char *ep;
1497	time_t now;
1498
1499	if (*ppos || count > sizeof(tbuf)-1)
1500		return -EINVAL;
1501	if (copy_from_user(tbuf, buf, count))
1502		return -EFAULT;
1503	tbuf[count] = 0;
1504	simple_strtoul(tbuf, &ep, 0);
1505	if (*ep && *ep != '\n')
1506		return -EINVAL;
1507	/* Note that while we check that 'buf' holds a valid number,
1508	 * we always ignore the value and just flush everything.
1509	 * Making use of the number leads to races.
1510	 */
1511
1512	now = seconds_since_boot();
1513	/* Always flush everything, so behave like cache_purge()
1514	 * Do this by advancing flush_time to the current time,
1515	 * or by one second if it has already reached the current time.
1516	 * Newly added cache entries will always have ->last_refresh greater
1517	 * that ->flush_time, so they don't get flushed prematurely.
1518	 */
1519
1520	if (cd->flush_time >= now)
1521		now = cd->flush_time + 1;
1522
1523	cd->flush_time = now;
1524	cd->nextcheck = now;
1525	cache_flush();
1526
1527	if (cd->flush)
1528		cd->flush();
1529
1530	*ppos += count;
1531	return count;
1532}
1533
1534static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1535				 size_t count, loff_t *ppos)
1536{
1537	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1538
1539	return cache_read(filp, buf, count, ppos, cd);
1540}
1541
1542static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1543				  size_t count, loff_t *ppos)
1544{
1545	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1546
1547	return cache_write(filp, buf, count, ppos, cd);
1548}
1549
1550static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait)
1551{
1552	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1553
1554	return cache_poll(filp, wait, cd);
1555}
1556
1557static long cache_ioctl_procfs(struct file *filp,
1558			       unsigned int cmd, unsigned long arg)
1559{
1560	struct inode *inode = file_inode(filp);
1561	struct cache_detail *cd = PDE_DATA(inode);
1562
1563	return cache_ioctl(inode, filp, cmd, arg, cd);
1564}
1565
1566static int cache_open_procfs(struct inode *inode, struct file *filp)
1567{
1568	struct cache_detail *cd = PDE_DATA(inode);
1569
1570	return cache_open(inode, filp, cd);
1571}
1572
1573static int cache_release_procfs(struct inode *inode, struct file *filp)
1574{
1575	struct cache_detail *cd = PDE_DATA(inode);
1576
1577	return cache_release(inode, filp, cd);
1578}
1579
1580static const struct file_operations cache_file_operations_procfs = {
1581	.owner		= THIS_MODULE,
1582	.llseek		= no_llseek,
1583	.read		= cache_read_procfs,
1584	.write		= cache_write_procfs,
1585	.poll		= cache_poll_procfs,
1586	.unlocked_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1587	.open		= cache_open_procfs,
1588	.release	= cache_release_procfs,
1589};
1590
1591static int content_open_procfs(struct inode *inode, struct file *filp)
1592{
1593	struct cache_detail *cd = PDE_DATA(inode);
1594
1595	return content_open(inode, filp, cd);
1596}
1597
1598static int content_release_procfs(struct inode *inode, struct file *filp)
1599{
1600	struct cache_detail *cd = PDE_DATA(inode);
1601
1602	return content_release(inode, filp, cd);
1603}
1604
1605static const struct file_operations content_file_operations_procfs = {
1606	.open		= content_open_procfs,
1607	.read		= seq_read,
1608	.llseek		= seq_lseek,
1609	.release	= content_release_procfs,
1610};
1611
1612static int open_flush_procfs(struct inode *inode, struct file *filp)
1613{
1614	struct cache_detail *cd = PDE_DATA(inode);
1615
1616	return open_flush(inode, filp, cd);
1617}
1618
1619static int release_flush_procfs(struct inode *inode, struct file *filp)
1620{
1621	struct cache_detail *cd = PDE_DATA(inode);
1622
1623	return release_flush(inode, filp, cd);
1624}
1625
1626static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1627			    size_t count, loff_t *ppos)
1628{
1629	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1630
1631	return read_flush(filp, buf, count, ppos, cd);
1632}
1633
1634static ssize_t write_flush_procfs(struct file *filp,
1635				  const char __user *buf,
1636				  size_t count, loff_t *ppos)
1637{
1638	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1639
1640	return write_flush(filp, buf, count, ppos, cd);
1641}
1642
1643static const struct file_operations cache_flush_operations_procfs = {
1644	.open		= open_flush_procfs,
1645	.read		= read_flush_procfs,
1646	.write		= write_flush_procfs,
1647	.release	= release_flush_procfs,
1648	.llseek		= no_llseek,
1649};
1650
1651static void remove_cache_proc_entries(struct cache_detail *cd)
1652{
1653	if (cd->procfs) {
1654		proc_remove(cd->procfs);
1655		cd->procfs = NULL;
1656	}
 
 
 
 
 
 
 
 
 
1657}
1658
1659#ifdef CONFIG_PROC_FS
1660static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1661{
1662	struct proc_dir_entry *p;
1663	struct sunrpc_net *sn;
1664
1665	sn = net_generic(net, sunrpc_net_id);
1666	cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc);
1667	if (cd->procfs == NULL)
1668		goto out_nomem;
 
 
1669
1670	p = proc_create_data("flush", S_IFREG | 0600,
1671			     cd->procfs, &cache_flush_operations_procfs, cd);
 
 
1672	if (p == NULL)
1673		goto out_nomem;
1674
1675	if (cd->cache_request || cd->cache_parse) {
1676		p = proc_create_data("channel", S_IFREG | 0600, cd->procfs,
 
1677				     &cache_file_operations_procfs, cd);
 
1678		if (p == NULL)
1679			goto out_nomem;
1680	}
1681	if (cd->cache_show) {
1682		p = proc_create_data("content", S_IFREG | 0400, cd->procfs,
1683				     &content_file_operations_procfs, cd);
 
 
1684		if (p == NULL)
1685			goto out_nomem;
1686	}
1687	return 0;
1688out_nomem:
1689	remove_cache_proc_entries(cd);
1690	return -ENOMEM;
1691}
1692#else /* CONFIG_PROC_FS */
1693static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1694{
1695	return 0;
1696}
1697#endif
1698
1699void __init cache_initialize(void)
1700{
1701	INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1702}
1703
1704int cache_register_net(struct cache_detail *cd, struct net *net)
1705{
1706	int ret;
1707
1708	sunrpc_init_cache_detail(cd);
1709	ret = create_cache_proc_entries(cd, net);
1710	if (ret)
1711		sunrpc_destroy_cache_detail(cd);
1712	return ret;
1713}
1714EXPORT_SYMBOL_GPL(cache_register_net);
1715
1716void cache_unregister_net(struct cache_detail *cd, struct net *net)
1717{
1718	remove_cache_proc_entries(cd);
1719	sunrpc_destroy_cache_detail(cd);
1720}
1721EXPORT_SYMBOL_GPL(cache_unregister_net);
1722
1723struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net)
1724{
1725	struct cache_detail *cd;
1726	int i;
1727
1728	cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1729	if (cd == NULL)
1730		return ERR_PTR(-ENOMEM);
1731
1732	cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head),
1733				 GFP_KERNEL);
1734	if (cd->hash_table == NULL) {
1735		kfree(cd);
1736		return ERR_PTR(-ENOMEM);
1737	}
1738
1739	for (i = 0; i < cd->hash_size; i++)
1740		INIT_HLIST_HEAD(&cd->hash_table[i]);
1741	cd->net = net;
1742	return cd;
1743}
1744EXPORT_SYMBOL_GPL(cache_create_net);
1745
1746void cache_destroy_net(struct cache_detail *cd, struct net *net)
1747{
1748	kfree(cd->hash_table);
1749	kfree(cd);
1750}
1751EXPORT_SYMBOL_GPL(cache_destroy_net);
1752
1753static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1754				 size_t count, loff_t *ppos)
1755{
1756	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1757
1758	return cache_read(filp, buf, count, ppos, cd);
1759}
1760
1761static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1762				  size_t count, loff_t *ppos)
1763{
1764	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1765
1766	return cache_write(filp, buf, count, ppos, cd);
1767}
1768
1769static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait)
1770{
1771	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1772
1773	return cache_poll(filp, wait, cd);
1774}
1775
1776static long cache_ioctl_pipefs(struct file *filp,
1777			      unsigned int cmd, unsigned long arg)
1778{
1779	struct inode *inode = file_inode(filp);
1780	struct cache_detail *cd = RPC_I(inode)->private;
1781
1782	return cache_ioctl(inode, filp, cmd, arg, cd);
1783}
1784
1785static int cache_open_pipefs(struct inode *inode, struct file *filp)
1786{
1787	struct cache_detail *cd = RPC_I(inode)->private;
1788
1789	return cache_open(inode, filp, cd);
1790}
1791
1792static int cache_release_pipefs(struct inode *inode, struct file *filp)
1793{
1794	struct cache_detail *cd = RPC_I(inode)->private;
1795
1796	return cache_release(inode, filp, cd);
1797}
1798
1799const struct file_operations cache_file_operations_pipefs = {
1800	.owner		= THIS_MODULE,
1801	.llseek		= no_llseek,
1802	.read		= cache_read_pipefs,
1803	.write		= cache_write_pipefs,
1804	.poll		= cache_poll_pipefs,
1805	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1806	.open		= cache_open_pipefs,
1807	.release	= cache_release_pipefs,
1808};
1809
1810static int content_open_pipefs(struct inode *inode, struct file *filp)
1811{
1812	struct cache_detail *cd = RPC_I(inode)->private;
1813
1814	return content_open(inode, filp, cd);
1815}
1816
1817static int content_release_pipefs(struct inode *inode, struct file *filp)
1818{
1819	struct cache_detail *cd = RPC_I(inode)->private;
1820
1821	return content_release(inode, filp, cd);
1822}
1823
1824const struct file_operations content_file_operations_pipefs = {
1825	.open		= content_open_pipefs,
1826	.read		= seq_read,
1827	.llseek		= seq_lseek,
1828	.release	= content_release_pipefs,
1829};
1830
1831static int open_flush_pipefs(struct inode *inode, struct file *filp)
1832{
1833	struct cache_detail *cd = RPC_I(inode)->private;
1834
1835	return open_flush(inode, filp, cd);
1836}
1837
1838static int release_flush_pipefs(struct inode *inode, struct file *filp)
1839{
1840	struct cache_detail *cd = RPC_I(inode)->private;
1841
1842	return release_flush(inode, filp, cd);
1843}
1844
1845static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1846			    size_t count, loff_t *ppos)
1847{
1848	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1849
1850	return read_flush(filp, buf, count, ppos, cd);
1851}
1852
1853static ssize_t write_flush_pipefs(struct file *filp,
1854				  const char __user *buf,
1855				  size_t count, loff_t *ppos)
1856{
1857	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1858
1859	return write_flush(filp, buf, count, ppos, cd);
1860}
1861
1862const struct file_operations cache_flush_operations_pipefs = {
1863	.open		= open_flush_pipefs,
1864	.read		= read_flush_pipefs,
1865	.write		= write_flush_pipefs,
1866	.release	= release_flush_pipefs,
1867	.llseek		= no_llseek,
1868};
1869
1870int sunrpc_cache_register_pipefs(struct dentry *parent,
1871				 const char *name, umode_t umode,
1872				 struct cache_detail *cd)
1873{
1874	struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1875	if (IS_ERR(dir))
1876		return PTR_ERR(dir);
1877	cd->pipefs = dir;
1878	return 0;
1879}
1880EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1881
1882void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1883{
1884	if (cd->pipefs) {
1885		rpc_remove_cache_dir(cd->pipefs);
1886		cd->pipefs = NULL;
1887	}
1888}
1889EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1890
1891void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h)
1892{
1893	spin_lock(&cd->hash_lock);
1894	if (!hlist_unhashed(&h->cache_list)){
1895		hlist_del_init_rcu(&h->cache_list);
1896		cd->entries--;
1897		spin_unlock(&cd->hash_lock);
1898		cache_put(h, cd);
1899	} else
1900		spin_unlock(&cd->hash_lock);
1901}
1902EXPORT_SYMBOL_GPL(sunrpc_cache_unhash);
v3.15
 
   1/*
   2 * net/sunrpc/cache.c
   3 *
   4 * Generic code for various authentication-related caches
   5 * used by sunrpc clients and servers.
   6 *
   7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
   8 *
   9 * Released under terms in GPL version 2.  See COPYING.
  10 *
  11 */
  12
  13#include <linux/types.h>
  14#include <linux/fs.h>
  15#include <linux/file.h>
  16#include <linux/slab.h>
  17#include <linux/signal.h>
  18#include <linux/sched.h>
  19#include <linux/kmod.h>
  20#include <linux/list.h>
  21#include <linux/module.h>
  22#include <linux/ctype.h>
  23#include <asm/uaccess.h>
 
  24#include <linux/poll.h>
  25#include <linux/seq_file.h>
  26#include <linux/proc_fs.h>
  27#include <linux/net.h>
  28#include <linux/workqueue.h>
  29#include <linux/mutex.h>
  30#include <linux/pagemap.h>
  31#include <asm/ioctls.h>
  32#include <linux/sunrpc/types.h>
  33#include <linux/sunrpc/cache.h>
  34#include <linux/sunrpc/stats.h>
  35#include <linux/sunrpc/rpc_pipe_fs.h>
  36#include "netns.h"
  37
  38#define	 RPCDBG_FACILITY RPCDBG_CACHE
  39
  40static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
  41static void cache_revisit_request(struct cache_head *item);
 
  42
  43static void cache_init(struct cache_head *h)
  44{
  45	time_t now = seconds_since_boot();
  46	h->next = NULL;
  47	h->flags = 0;
  48	kref_init(&h->ref);
  49	h->expiry_time = now + CACHE_NEW_EXPIRY;
 
 
 
  50	h->last_refresh = now;
  51}
  52
  53struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
  54				       struct cache_head *key, int hash)
 
 
 
 
 
 
 
  55{
  56	struct cache_head **head,  **hp;
  57	struct cache_head *new = NULL, *freeme = NULL;
  58
  59	head = &detail->hash_table[hash];
  60
  61	read_lock(&detail->hash_lock);
  62
  63	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
  64		struct cache_head *tmp = *hp;
  65		if (detail->match(tmp, key)) {
  66			if (cache_is_expired(detail, tmp))
  67				/* This entry is expired, we will discard it. */
  68				break;
  69			cache_get(tmp);
  70			read_unlock(&detail->hash_lock);
  71			return tmp;
  72		}
  73	}
  74	read_unlock(&detail->hash_lock);
  75	/* Didn't find anything, insert an empty entry */
 
 
 
 
 
 
 
 
  76
  77	new = detail->alloc();
  78	if (!new)
  79		return NULL;
  80	/* must fully initialise 'new', else
  81	 * we might get lose if we need to
  82	 * cache_put it soon.
  83	 */
  84	cache_init(new);
  85	detail->init(new, key);
  86
  87	write_lock(&detail->hash_lock);
  88
  89	/* check if entry appeared while we slept */
  90	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
  91		struct cache_head *tmp = *hp;
  92		if (detail->match(tmp, key)) {
  93			if (cache_is_expired(detail, tmp)) {
  94				*hp = tmp->next;
  95				tmp->next = NULL;
  96				detail->entries --;
 
 
 
  97				freeme = tmp;
  98				break;
  99			}
 100			cache_get(tmp);
 101			write_unlock(&detail->hash_lock);
 102			cache_put(new, detail);
 103			return tmp;
 104		}
 105	}
 106	new->next = *head;
 107	*head = new;
 108	detail->entries++;
 109	cache_get(new);
 110	write_unlock(&detail->hash_lock);
 111
 112	if (freeme)
 
 113		cache_put(freeme, detail);
 
 114	return new;
 115}
 116EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
 117
 
 
 
 
 
 
 
 
 
 
 
 
 118
 119static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
 120
 121static void cache_fresh_locked(struct cache_head *head, time_t expiry)
 
 122{
 
 
 
 
 123	head->expiry_time = expiry;
 124	head->last_refresh = seconds_since_boot();
 125	smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
 126	set_bit(CACHE_VALID, &head->flags);
 127}
 128
 129static void cache_fresh_unlocked(struct cache_head *head,
 130				 struct cache_detail *detail)
 131{
 132	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
 133		cache_revisit_request(head);
 134		cache_dequeue(detail, head);
 135	}
 136}
 137
 138struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
 139				       struct cache_head *new, struct cache_head *old, int hash)
 140{
 141	/* The 'old' entry is to be replaced by 'new'.
 142	 * If 'old' is not VALID, we update it directly,
 143	 * otherwise we need to replace it
 144	 */
 145	struct cache_head **head;
 146	struct cache_head *tmp;
 147
 148	if (!test_bit(CACHE_VALID, &old->flags)) {
 149		write_lock(&detail->hash_lock);
 150		if (!test_bit(CACHE_VALID, &old->flags)) {
 151			if (test_bit(CACHE_NEGATIVE, &new->flags))
 152				set_bit(CACHE_NEGATIVE, &old->flags);
 153			else
 154				detail->update(old, new);
 155			cache_fresh_locked(old, new->expiry_time);
 156			write_unlock(&detail->hash_lock);
 157			cache_fresh_unlocked(old, detail);
 158			return old;
 159		}
 160		write_unlock(&detail->hash_lock);
 161	}
 162	/* We need to insert a new entry */
 163	tmp = detail->alloc();
 164	if (!tmp) {
 165		cache_put(old, detail);
 166		return NULL;
 167	}
 168	cache_init(tmp);
 169	detail->init(tmp, old);
 170	head = &detail->hash_table[hash];
 171
 172	write_lock(&detail->hash_lock);
 173	if (test_bit(CACHE_NEGATIVE, &new->flags))
 174		set_bit(CACHE_NEGATIVE, &tmp->flags);
 175	else
 176		detail->update(tmp, new);
 177	tmp->next = *head;
 178	*head = tmp;
 179	detail->entries++;
 180	cache_get(tmp);
 181	cache_fresh_locked(tmp, new->expiry_time);
 182	cache_fresh_locked(old, 0);
 183	write_unlock(&detail->hash_lock);
 184	cache_fresh_unlocked(tmp, detail);
 185	cache_fresh_unlocked(old, detail);
 186	cache_put(old, detail);
 187	return tmp;
 188}
 189EXPORT_SYMBOL_GPL(sunrpc_cache_update);
 190
 191static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
 192{
 193	if (cd->cache_upcall)
 194		return cd->cache_upcall(cd, h);
 195	return sunrpc_cache_pipe_upcall(cd, h);
 196}
 197
 198static inline int cache_is_valid(struct cache_head *h)
 199{
 200	if (!test_bit(CACHE_VALID, &h->flags))
 201		return -EAGAIN;
 202	else {
 203		/* entry is valid */
 204		if (test_bit(CACHE_NEGATIVE, &h->flags))
 205			return -ENOENT;
 206		else {
 207			/*
 208			 * In combination with write barrier in
 209			 * sunrpc_cache_update, ensures that anyone
 210			 * using the cache entry after this sees the
 211			 * updated contents:
 212			 */
 213			smp_rmb();
 214			return 0;
 215		}
 216	}
 217}
 218
 219static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
 220{
 221	int rv;
 222
 223	write_lock(&detail->hash_lock);
 224	rv = cache_is_valid(h);
 225	if (rv == -EAGAIN) {
 226		set_bit(CACHE_NEGATIVE, &h->flags);
 227		cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY);
 
 228		rv = -ENOENT;
 229	}
 230	write_unlock(&detail->hash_lock);
 231	cache_fresh_unlocked(h, detail);
 232	return rv;
 233}
 234
 235/*
 236 * This is the generic cache management routine for all
 237 * the authentication caches.
 238 * It checks the currency of a cache item and will (later)
 239 * initiate an upcall to fill it if needed.
 240 *
 241 *
 242 * Returns 0 if the cache_head can be used, or cache_puts it and returns
 243 * -EAGAIN if upcall is pending and request has been queued
 244 * -ETIMEDOUT if upcall failed or request could not be queue or
 245 *           upcall completed but item is still invalid (implying that
 246 *           the cache item has been replaced with a newer one).
 247 * -ENOENT if cache entry was negative
 248 */
 249int cache_check(struct cache_detail *detail,
 250		    struct cache_head *h, struct cache_req *rqstp)
 251{
 252	int rv;
 253	long refresh_age, age;
 254
 255	/* First decide return status as best we can */
 256	rv = cache_is_valid(h);
 257
 258	/* now see if we want to start an upcall */
 259	refresh_age = (h->expiry_time - h->last_refresh);
 260	age = seconds_since_boot() - h->last_refresh;
 261
 262	if (rqstp == NULL) {
 263		if (rv == -EAGAIN)
 264			rv = -ENOENT;
 265	} else if (rv == -EAGAIN ||
 266		   (h->expiry_time != 0 && age > refresh_age/2)) {
 267		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
 268				refresh_age, age);
 269		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
 270			switch (cache_make_upcall(detail, h)) {
 271			case -EINVAL:
 272				rv = try_to_negate_entry(detail, h);
 273				break;
 274			case -EAGAIN:
 275				cache_fresh_unlocked(h, detail);
 276				break;
 277			}
 278		}
 
 279	}
 280
 281	if (rv == -EAGAIN) {
 282		if (!cache_defer_req(rqstp, h)) {
 283			/*
 284			 * Request was not deferred; handle it as best
 285			 * we can ourselves:
 286			 */
 287			rv = cache_is_valid(h);
 288			if (rv == -EAGAIN)
 289				rv = -ETIMEDOUT;
 290		}
 291	}
 292	if (rv)
 293		cache_put(h, detail);
 294	return rv;
 295}
 296EXPORT_SYMBOL_GPL(cache_check);
 297
 298/*
 299 * caches need to be periodically cleaned.
 300 * For this we maintain a list of cache_detail and
 301 * a current pointer into that list and into the table
 302 * for that entry.
 303 *
 304 * Each time cache_clean is called it finds the next non-empty entry
 305 * in the current table and walks the list in that entry
 306 * looking for entries that can be removed.
 307 *
 308 * An entry gets removed if:
 309 * - The expiry is before current time
 310 * - The last_refresh time is before the flush_time for that cache
 311 *
 312 * later we might drop old entries with non-NEVER expiry if that table
 313 * is getting 'full' for some definition of 'full'
 314 *
 315 * The question of "how often to scan a table" is an interesting one
 316 * and is answered in part by the use of the "nextcheck" field in the
 317 * cache_detail.
 318 * When a scan of a table begins, the nextcheck field is set to a time
 319 * that is well into the future.
 320 * While scanning, if an expiry time is found that is earlier than the
 321 * current nextcheck time, nextcheck is set to that expiry time.
 322 * If the flush_time is ever set to a time earlier than the nextcheck
 323 * time, the nextcheck time is then set to that flush_time.
 324 *
 325 * A table is then only scanned if the current time is at least
 326 * the nextcheck time.
 327 *
 328 */
 329
 330static LIST_HEAD(cache_list);
 331static DEFINE_SPINLOCK(cache_list_lock);
 332static struct cache_detail *current_detail;
 333static int current_index;
 334
 335static void do_cache_clean(struct work_struct *work);
 336static struct delayed_work cache_cleaner;
 337
 338void sunrpc_init_cache_detail(struct cache_detail *cd)
 339{
 340	rwlock_init(&cd->hash_lock);
 341	INIT_LIST_HEAD(&cd->queue);
 342	spin_lock(&cache_list_lock);
 343	cd->nextcheck = 0;
 344	cd->entries = 0;
 345	atomic_set(&cd->readers, 0);
 346	cd->last_close = 0;
 347	cd->last_warn = -1;
 348	list_add(&cd->others, &cache_list);
 349	spin_unlock(&cache_list_lock);
 350
 351	/* start the cleaning process */
 352	schedule_delayed_work(&cache_cleaner, 0);
 353}
 354EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
 355
 356void sunrpc_destroy_cache_detail(struct cache_detail *cd)
 357{
 358	cache_purge(cd);
 359	spin_lock(&cache_list_lock);
 360	write_lock(&cd->hash_lock);
 361	if (cd->entries || atomic_read(&cd->inuse)) {
 362		write_unlock(&cd->hash_lock);
 363		spin_unlock(&cache_list_lock);
 364		goto out;
 365	}
 366	if (current_detail == cd)
 367		current_detail = NULL;
 368	list_del_init(&cd->others);
 369	write_unlock(&cd->hash_lock);
 370	spin_unlock(&cache_list_lock);
 371	if (list_empty(&cache_list)) {
 372		/* module must be being unloaded so its safe to kill the worker */
 373		cancel_delayed_work_sync(&cache_cleaner);
 374	}
 375	return;
 376out:
 377	printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
 378}
 379EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
 380
 381/* clean cache tries to find something to clean
 382 * and cleans it.
 383 * It returns 1 if it cleaned something,
 384 *            0 if it didn't find anything this time
 385 *           -1 if it fell off the end of the list.
 386 */
 387static int cache_clean(void)
 388{
 389	int rv = 0;
 390	struct list_head *next;
 391
 392	spin_lock(&cache_list_lock);
 393
 394	/* find a suitable table if we don't already have one */
 395	while (current_detail == NULL ||
 396	    current_index >= current_detail->hash_size) {
 397		if (current_detail)
 398			next = current_detail->others.next;
 399		else
 400			next = cache_list.next;
 401		if (next == &cache_list) {
 402			current_detail = NULL;
 403			spin_unlock(&cache_list_lock);
 404			return -1;
 405		}
 406		current_detail = list_entry(next, struct cache_detail, others);
 407		if (current_detail->nextcheck > seconds_since_boot())
 408			current_index = current_detail->hash_size;
 409		else {
 410			current_index = 0;
 411			current_detail->nextcheck = seconds_since_boot()+30*60;
 412		}
 413	}
 414
 415	/* find a non-empty bucket in the table */
 416	while (current_detail &&
 417	       current_index < current_detail->hash_size &&
 418	       current_detail->hash_table[current_index] == NULL)
 419		current_index++;
 420
 421	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
 422
 423	if (current_detail && current_index < current_detail->hash_size) {
 424		struct cache_head *ch, **cp;
 425		struct cache_detail *d;
 
 
 426
 427		write_lock(&current_detail->hash_lock);
 428
 429		/* Ok, now to clean this strand */
 430
 431		cp = & current_detail->hash_table[current_index];
 432		for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) {
 433			if (current_detail->nextcheck > ch->expiry_time)
 434				current_detail->nextcheck = ch->expiry_time+1;
 435			if (!cache_is_expired(current_detail, ch))
 436				continue;
 437
 438			*cp = ch->next;
 439			ch->next = NULL;
 440			current_detail->entries--;
 441			rv = 1;
 442			break;
 443		}
 444
 445		write_unlock(&current_detail->hash_lock);
 446		d = current_detail;
 447		if (!ch)
 448			current_index ++;
 449		spin_unlock(&cache_list_lock);
 450		if (ch) {
 451			set_bit(CACHE_CLEANED, &ch->flags);
 452			cache_fresh_unlocked(ch, d);
 453			cache_put(ch, d);
 454		}
 455	} else
 456		spin_unlock(&cache_list_lock);
 457
 458	return rv;
 459}
 460
 461/*
 462 * We want to regularly clean the cache, so we need to schedule some work ...
 463 */
 464static void do_cache_clean(struct work_struct *work)
 465{
 466	int delay = 5;
 467	if (cache_clean() == -1)
 468		delay = round_jiffies_relative(30*HZ);
 469
 470	if (list_empty(&cache_list))
 471		delay = 0;
 472
 473	if (delay)
 474		schedule_delayed_work(&cache_cleaner, delay);
 
 475}
 476
 477
 478/*
 479 * Clean all caches promptly.  This just calls cache_clean
 480 * repeatedly until we are sure that every cache has had a chance to
 481 * be fully cleaned
 482 */
 483void cache_flush(void)
 484{
 485	while (cache_clean() != -1)
 486		cond_resched();
 487	while (cache_clean() != -1)
 488		cond_resched();
 489}
 490EXPORT_SYMBOL_GPL(cache_flush);
 491
 492void cache_purge(struct cache_detail *detail)
 493{
 494	detail->flush_time = LONG_MAX;
 495	detail->nextcheck = seconds_since_boot();
 496	cache_flush();
 497	detail->flush_time = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 498}
 499EXPORT_SYMBOL_GPL(cache_purge);
 500
 501
 502/*
 503 * Deferral and Revisiting of Requests.
 504 *
 505 * If a cache lookup finds a pending entry, we
 506 * need to defer the request and revisit it later.
 507 * All deferred requests are stored in a hash table,
 508 * indexed by "struct cache_head *".
 509 * As it may be wasteful to store a whole request
 510 * structure, we allow the request to provide a
 511 * deferred form, which must contain a
 512 * 'struct cache_deferred_req'
 513 * This cache_deferred_req contains a method to allow
 514 * it to be revisited when cache info is available
 515 */
 516
 517#define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
 518#define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
 519
 520#define	DFR_MAX	300	/* ??? */
 521
 522static DEFINE_SPINLOCK(cache_defer_lock);
 523static LIST_HEAD(cache_defer_list);
 524static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
 525static int cache_defer_cnt;
 526
 527static void __unhash_deferred_req(struct cache_deferred_req *dreq)
 528{
 529	hlist_del_init(&dreq->hash);
 530	if (!list_empty(&dreq->recent)) {
 531		list_del_init(&dreq->recent);
 532		cache_defer_cnt--;
 533	}
 534}
 535
 536static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
 537{
 538	int hash = DFR_HASH(item);
 539
 540	INIT_LIST_HEAD(&dreq->recent);
 541	hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
 542}
 543
 544static void setup_deferral(struct cache_deferred_req *dreq,
 545			   struct cache_head *item,
 546			   int count_me)
 547{
 548
 549	dreq->item = item;
 550
 551	spin_lock(&cache_defer_lock);
 552
 553	__hash_deferred_req(dreq, item);
 554
 555	if (count_me) {
 556		cache_defer_cnt++;
 557		list_add(&dreq->recent, &cache_defer_list);
 558	}
 559
 560	spin_unlock(&cache_defer_lock);
 561
 562}
 563
 564struct thread_deferred_req {
 565	struct cache_deferred_req handle;
 566	struct completion completion;
 567};
 568
 569static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
 570{
 571	struct thread_deferred_req *dr =
 572		container_of(dreq, struct thread_deferred_req, handle);
 573	complete(&dr->completion);
 574}
 575
 576static void cache_wait_req(struct cache_req *req, struct cache_head *item)
 577{
 578	struct thread_deferred_req sleeper;
 579	struct cache_deferred_req *dreq = &sleeper.handle;
 580
 581	sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
 582	dreq->revisit = cache_restart_thread;
 583
 584	setup_deferral(dreq, item, 0);
 585
 586	if (!test_bit(CACHE_PENDING, &item->flags) ||
 587	    wait_for_completion_interruptible_timeout(
 588		    &sleeper.completion, req->thread_wait) <= 0) {
 589		/* The completion wasn't completed, so we need
 590		 * to clean up
 591		 */
 592		spin_lock(&cache_defer_lock);
 593		if (!hlist_unhashed(&sleeper.handle.hash)) {
 594			__unhash_deferred_req(&sleeper.handle);
 595			spin_unlock(&cache_defer_lock);
 596		} else {
 597			/* cache_revisit_request already removed
 598			 * this from the hash table, but hasn't
 599			 * called ->revisit yet.  It will very soon
 600			 * and we need to wait for it.
 601			 */
 602			spin_unlock(&cache_defer_lock);
 603			wait_for_completion(&sleeper.completion);
 604		}
 605	}
 606}
 607
 608static void cache_limit_defers(void)
 609{
 610	/* Make sure we haven't exceed the limit of allowed deferred
 611	 * requests.
 612	 */
 613	struct cache_deferred_req *discard = NULL;
 614
 615	if (cache_defer_cnt <= DFR_MAX)
 616		return;
 617
 618	spin_lock(&cache_defer_lock);
 619
 620	/* Consider removing either the first or the last */
 621	if (cache_defer_cnt > DFR_MAX) {
 622		if (prandom_u32() & 1)
 623			discard = list_entry(cache_defer_list.next,
 624					     struct cache_deferred_req, recent);
 625		else
 626			discard = list_entry(cache_defer_list.prev,
 627					     struct cache_deferred_req, recent);
 628		__unhash_deferred_req(discard);
 629	}
 630	spin_unlock(&cache_defer_lock);
 631	if (discard)
 632		discard->revisit(discard, 1);
 633}
 634
 635/* Return true if and only if a deferred request is queued. */
 636static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
 637{
 638	struct cache_deferred_req *dreq;
 639
 640	if (req->thread_wait) {
 641		cache_wait_req(req, item);
 642		if (!test_bit(CACHE_PENDING, &item->flags))
 643			return false;
 644	}
 645	dreq = req->defer(req);
 646	if (dreq == NULL)
 647		return false;
 648	setup_deferral(dreq, item, 1);
 649	if (!test_bit(CACHE_PENDING, &item->flags))
 650		/* Bit could have been cleared before we managed to
 651		 * set up the deferral, so need to revisit just in case
 652		 */
 653		cache_revisit_request(item);
 654
 655	cache_limit_defers();
 656	return true;
 657}
 658
 659static void cache_revisit_request(struct cache_head *item)
 660{
 661	struct cache_deferred_req *dreq;
 662	struct list_head pending;
 663	struct hlist_node *tmp;
 664	int hash = DFR_HASH(item);
 665
 666	INIT_LIST_HEAD(&pending);
 667	spin_lock(&cache_defer_lock);
 668
 669	hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
 670		if (dreq->item == item) {
 671			__unhash_deferred_req(dreq);
 672			list_add(&dreq->recent, &pending);
 673		}
 674
 675	spin_unlock(&cache_defer_lock);
 676
 677	while (!list_empty(&pending)) {
 678		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
 679		list_del_init(&dreq->recent);
 680		dreq->revisit(dreq, 0);
 681	}
 682}
 683
 684void cache_clean_deferred(void *owner)
 685{
 686	struct cache_deferred_req *dreq, *tmp;
 687	struct list_head pending;
 688
 689
 690	INIT_LIST_HEAD(&pending);
 691	spin_lock(&cache_defer_lock);
 692
 693	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
 694		if (dreq->owner == owner) {
 695			__unhash_deferred_req(dreq);
 696			list_add(&dreq->recent, &pending);
 697		}
 698	}
 699	spin_unlock(&cache_defer_lock);
 700
 701	while (!list_empty(&pending)) {
 702		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
 703		list_del_init(&dreq->recent);
 704		dreq->revisit(dreq, 1);
 705	}
 706}
 707
 708/*
 709 * communicate with user-space
 710 *
 711 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
 712 * On read, you get a full request, or block.
 713 * On write, an update request is processed.
 714 * Poll works if anything to read, and always allows write.
 715 *
 716 * Implemented by linked list of requests.  Each open file has
 717 * a ->private that also exists in this list.  New requests are added
 718 * to the end and may wakeup and preceding readers.
 719 * New readers are added to the head.  If, on read, an item is found with
 720 * CACHE_UPCALLING clear, we free it from the list.
 721 *
 722 */
 723
 724static DEFINE_SPINLOCK(queue_lock);
 725static DEFINE_MUTEX(queue_io_mutex);
 726
 727struct cache_queue {
 728	struct list_head	list;
 729	int			reader;	/* if 0, then request */
 730};
 731struct cache_request {
 732	struct cache_queue	q;
 733	struct cache_head	*item;
 734	char			* buf;
 735	int			len;
 736	int			readers;
 737};
 738struct cache_reader {
 739	struct cache_queue	q;
 740	int			offset;	/* if non-0, we have a refcnt on next request */
 741};
 742
 743static int cache_request(struct cache_detail *detail,
 744			       struct cache_request *crq)
 745{
 746	char *bp = crq->buf;
 747	int len = PAGE_SIZE;
 748
 749	detail->cache_request(detail, crq->item, &bp, &len);
 750	if (len < 0)
 751		return -EAGAIN;
 752	return PAGE_SIZE - len;
 753}
 754
 755static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
 756			  loff_t *ppos, struct cache_detail *cd)
 757{
 758	struct cache_reader *rp = filp->private_data;
 759	struct cache_request *rq;
 760	struct inode *inode = file_inode(filp);
 761	int err;
 762
 763	if (count == 0)
 764		return 0;
 765
 766	mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
 767			      * readers on this file */
 768 again:
 769	spin_lock(&queue_lock);
 770	/* need to find next request */
 771	while (rp->q.list.next != &cd->queue &&
 772	       list_entry(rp->q.list.next, struct cache_queue, list)
 773	       ->reader) {
 774		struct list_head *next = rp->q.list.next;
 775		list_move(&rp->q.list, next);
 776	}
 777	if (rp->q.list.next == &cd->queue) {
 778		spin_unlock(&queue_lock);
 779		mutex_unlock(&inode->i_mutex);
 780		WARN_ON_ONCE(rp->offset);
 781		return 0;
 782	}
 783	rq = container_of(rp->q.list.next, struct cache_request, q.list);
 784	WARN_ON_ONCE(rq->q.reader);
 785	if (rp->offset == 0)
 786		rq->readers++;
 787	spin_unlock(&queue_lock);
 788
 789	if (rq->len == 0) {
 790		err = cache_request(cd, rq);
 791		if (err < 0)
 792			goto out;
 793		rq->len = err;
 794	}
 795
 796	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
 797		err = -EAGAIN;
 798		spin_lock(&queue_lock);
 799		list_move(&rp->q.list, &rq->q.list);
 800		spin_unlock(&queue_lock);
 801	} else {
 802		if (rp->offset + count > rq->len)
 803			count = rq->len - rp->offset;
 804		err = -EFAULT;
 805		if (copy_to_user(buf, rq->buf + rp->offset, count))
 806			goto out;
 807		rp->offset += count;
 808		if (rp->offset >= rq->len) {
 809			rp->offset = 0;
 810			spin_lock(&queue_lock);
 811			list_move(&rp->q.list, &rq->q.list);
 812			spin_unlock(&queue_lock);
 813		}
 814		err = 0;
 815	}
 816 out:
 817	if (rp->offset == 0) {
 818		/* need to release rq */
 819		spin_lock(&queue_lock);
 820		rq->readers--;
 821		if (rq->readers == 0 &&
 822		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
 823			list_del(&rq->q.list);
 824			spin_unlock(&queue_lock);
 825			cache_put(rq->item, cd);
 826			kfree(rq->buf);
 827			kfree(rq);
 828		} else
 829			spin_unlock(&queue_lock);
 830	}
 831	if (err == -EAGAIN)
 832		goto again;
 833	mutex_unlock(&inode->i_mutex);
 834	return err ? err :  count;
 835}
 836
 837static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
 838				 size_t count, struct cache_detail *cd)
 839{
 840	ssize_t ret;
 841
 842	if (count == 0)
 843		return -EINVAL;
 844	if (copy_from_user(kaddr, buf, count))
 845		return -EFAULT;
 846	kaddr[count] = '\0';
 847	ret = cd->cache_parse(cd, kaddr, count);
 848	if (!ret)
 849		ret = count;
 850	return ret;
 851}
 852
 853static ssize_t cache_slow_downcall(const char __user *buf,
 854				   size_t count, struct cache_detail *cd)
 855{
 856	static char write_buf[8192]; /* protected by queue_io_mutex */
 857	ssize_t ret = -EINVAL;
 858
 859	if (count >= sizeof(write_buf))
 860		goto out;
 861	mutex_lock(&queue_io_mutex);
 862	ret = cache_do_downcall(write_buf, buf, count, cd);
 863	mutex_unlock(&queue_io_mutex);
 864out:
 865	return ret;
 866}
 867
 868static ssize_t cache_downcall(struct address_space *mapping,
 869			      const char __user *buf,
 870			      size_t count, struct cache_detail *cd)
 871{
 872	struct page *page;
 873	char *kaddr;
 874	ssize_t ret = -ENOMEM;
 875
 876	if (count >= PAGE_CACHE_SIZE)
 877		goto out_slow;
 878
 879	page = find_or_create_page(mapping, 0, GFP_KERNEL);
 880	if (!page)
 881		goto out_slow;
 882
 883	kaddr = kmap(page);
 884	ret = cache_do_downcall(kaddr, buf, count, cd);
 885	kunmap(page);
 886	unlock_page(page);
 887	page_cache_release(page);
 888	return ret;
 889out_slow:
 890	return cache_slow_downcall(buf, count, cd);
 891}
 892
 893static ssize_t cache_write(struct file *filp, const char __user *buf,
 894			   size_t count, loff_t *ppos,
 895			   struct cache_detail *cd)
 896{
 897	struct address_space *mapping = filp->f_mapping;
 898	struct inode *inode = file_inode(filp);
 899	ssize_t ret = -EINVAL;
 900
 901	if (!cd->cache_parse)
 902		goto out;
 903
 904	mutex_lock(&inode->i_mutex);
 905	ret = cache_downcall(mapping, buf, count, cd);
 906	mutex_unlock(&inode->i_mutex);
 907out:
 908	return ret;
 909}
 910
 911static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
 912
 913static unsigned int cache_poll(struct file *filp, poll_table *wait,
 914			       struct cache_detail *cd)
 915{
 916	unsigned int mask;
 917	struct cache_reader *rp = filp->private_data;
 918	struct cache_queue *cq;
 919
 920	poll_wait(filp, &queue_wait, wait);
 921
 922	/* alway allow write */
 923	mask = POLL_OUT | POLLWRNORM;
 924
 925	if (!rp)
 926		return mask;
 927
 928	spin_lock(&queue_lock);
 929
 930	for (cq= &rp->q; &cq->list != &cd->queue;
 931	     cq = list_entry(cq->list.next, struct cache_queue, list))
 932		if (!cq->reader) {
 933			mask |= POLLIN | POLLRDNORM;
 934			break;
 935		}
 936	spin_unlock(&queue_lock);
 937	return mask;
 938}
 939
 940static int cache_ioctl(struct inode *ino, struct file *filp,
 941		       unsigned int cmd, unsigned long arg,
 942		       struct cache_detail *cd)
 943{
 944	int len = 0;
 945	struct cache_reader *rp = filp->private_data;
 946	struct cache_queue *cq;
 947
 948	if (cmd != FIONREAD || !rp)
 949		return -EINVAL;
 950
 951	spin_lock(&queue_lock);
 952
 953	/* only find the length remaining in current request,
 954	 * or the length of the next request
 955	 */
 956	for (cq= &rp->q; &cq->list != &cd->queue;
 957	     cq = list_entry(cq->list.next, struct cache_queue, list))
 958		if (!cq->reader) {
 959			struct cache_request *cr =
 960				container_of(cq, struct cache_request, q);
 961			len = cr->len - rp->offset;
 962			break;
 963		}
 964	spin_unlock(&queue_lock);
 965
 966	return put_user(len, (int __user *)arg);
 967}
 968
 969static int cache_open(struct inode *inode, struct file *filp,
 970		      struct cache_detail *cd)
 971{
 972	struct cache_reader *rp = NULL;
 973
 974	if (!cd || !try_module_get(cd->owner))
 975		return -EACCES;
 976	nonseekable_open(inode, filp);
 977	if (filp->f_mode & FMODE_READ) {
 978		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
 979		if (!rp) {
 980			module_put(cd->owner);
 981			return -ENOMEM;
 982		}
 983		rp->offset = 0;
 984		rp->q.reader = 1;
 985		atomic_inc(&cd->readers);
 986		spin_lock(&queue_lock);
 987		list_add(&rp->q.list, &cd->queue);
 988		spin_unlock(&queue_lock);
 989	}
 
 
 990	filp->private_data = rp;
 991	return 0;
 992}
 993
 994static int cache_release(struct inode *inode, struct file *filp,
 995			 struct cache_detail *cd)
 996{
 997	struct cache_reader *rp = filp->private_data;
 998
 999	if (rp) {
1000		spin_lock(&queue_lock);
1001		if (rp->offset) {
1002			struct cache_queue *cq;
1003			for (cq= &rp->q; &cq->list != &cd->queue;
1004			     cq = list_entry(cq->list.next, struct cache_queue, list))
1005				if (!cq->reader) {
1006					container_of(cq, struct cache_request, q)
1007						->readers--;
1008					break;
1009				}
1010			rp->offset = 0;
1011		}
1012		list_del(&rp->q.list);
1013		spin_unlock(&queue_lock);
1014
1015		filp->private_data = NULL;
1016		kfree(rp);
1017
 
 
 
1018		cd->last_close = seconds_since_boot();
1019		atomic_dec(&cd->readers);
1020	}
1021	module_put(cd->owner);
1022	return 0;
1023}
1024
1025
1026
1027static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1028{
1029	struct cache_queue *cq, *tmp;
1030	struct cache_request *cr;
1031	struct list_head dequeued;
1032
1033	INIT_LIST_HEAD(&dequeued);
1034	spin_lock(&queue_lock);
1035	list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1036		if (!cq->reader) {
1037			cr = container_of(cq, struct cache_request, q);
1038			if (cr->item != ch)
1039				continue;
1040			if (test_bit(CACHE_PENDING, &ch->flags))
1041				/* Lost a race and it is pending again */
1042				break;
1043			if (cr->readers != 0)
1044				continue;
1045			list_move(&cr->q.list, &dequeued);
1046		}
1047	spin_unlock(&queue_lock);
1048	while (!list_empty(&dequeued)) {
1049		cr = list_entry(dequeued.next, struct cache_request, q.list);
1050		list_del(&cr->q.list);
1051		cache_put(cr->item, detail);
1052		kfree(cr->buf);
1053		kfree(cr);
1054	}
1055}
1056
1057/*
1058 * Support routines for text-based upcalls.
1059 * Fields are separated by spaces.
1060 * Fields are either mangled to quote space tab newline slosh with slosh
1061 * or a hexified with a leading \x
1062 * Record is terminated with newline.
1063 *
1064 */
1065
1066void qword_add(char **bpp, int *lp, char *str)
1067{
1068	char *bp = *bpp;
1069	int len = *lp;
1070	char c;
1071
1072	if (len < 0) return;
1073
1074	while ((c=*str++) && len)
1075		switch(c) {
1076		case ' ':
1077		case '\t':
1078		case '\n':
1079		case '\\':
1080			if (len >= 4) {
1081				*bp++ = '\\';
1082				*bp++ = '0' + ((c & 0300)>>6);
1083				*bp++ = '0' + ((c & 0070)>>3);
1084				*bp++ = '0' + ((c & 0007)>>0);
1085			}
1086			len -= 4;
1087			break;
1088		default:
1089			*bp++ = c;
1090			len--;
1091		}
1092	if (c || len <1) len = -1;
1093	else {
1094		*bp++ = ' ';
1095		len--;
1096	}
1097	*bpp = bp;
1098	*lp = len;
1099}
1100EXPORT_SYMBOL_GPL(qword_add);
1101
1102void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1103{
1104	char *bp = *bpp;
1105	int len = *lp;
1106
1107	if (len < 0) return;
1108
1109	if (len > 2) {
1110		*bp++ = '\\';
1111		*bp++ = 'x';
1112		len -= 2;
1113		while (blen && len >= 2) {
1114			bp = hex_byte_pack(bp, *buf++);
1115			len -= 2;
1116			blen--;
1117		}
1118	}
1119	if (blen || len<1) len = -1;
1120	else {
1121		*bp++ = ' ';
1122		len--;
1123	}
1124	*bpp = bp;
1125	*lp = len;
1126}
1127EXPORT_SYMBOL_GPL(qword_addhex);
1128
1129static void warn_no_listener(struct cache_detail *detail)
1130{
1131	if (detail->last_warn != detail->last_close) {
1132		detail->last_warn = detail->last_close;
1133		if (detail->warn_no_listener)
1134			detail->warn_no_listener(detail, detail->last_close != 0);
1135	}
1136}
1137
1138static bool cache_listeners_exist(struct cache_detail *detail)
1139{
1140	if (atomic_read(&detail->readers))
1141		return true;
1142	if (detail->last_close == 0)
1143		/* This cache was never opened */
1144		return false;
1145	if (detail->last_close < seconds_since_boot() - 30)
1146		/*
1147		 * We allow for the possibility that someone might
1148		 * restart a userspace daemon without restarting the
1149		 * server; but after 30 seconds, we give up.
1150		 */
1151		 return false;
1152	return true;
1153}
1154
1155/*
1156 * register an upcall request to user-space and queue it up for read() by the
1157 * upcall daemon.
1158 *
1159 * Each request is at most one page long.
1160 */
1161int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1162{
1163
1164	char *buf;
1165	struct cache_request *crq;
1166	int ret = 0;
1167
1168	if (!detail->cache_request)
1169		return -EINVAL;
1170
1171	if (!cache_listeners_exist(detail)) {
1172		warn_no_listener(detail);
1173		return -EINVAL;
1174	}
1175	if (test_bit(CACHE_CLEANED, &h->flags))
1176		/* Too late to make an upcall */
1177		return -EAGAIN;
1178
1179	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1180	if (!buf)
1181		return -EAGAIN;
1182
1183	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1184	if (!crq) {
1185		kfree(buf);
1186		return -EAGAIN;
1187	}
1188
1189	crq->q.reader = 0;
1190	crq->item = cache_get(h);
1191	crq->buf = buf;
1192	crq->len = 0;
1193	crq->readers = 0;
1194	spin_lock(&queue_lock);
1195	if (test_bit(CACHE_PENDING, &h->flags))
 
1196		list_add_tail(&crq->q.list, &detail->queue);
1197	else
1198		/* Lost a race, no longer PENDING, so don't enqueue */
1199		ret = -EAGAIN;
1200	spin_unlock(&queue_lock);
1201	wake_up(&queue_wait);
1202	if (ret == -EAGAIN) {
1203		kfree(buf);
1204		kfree(crq);
1205	}
1206	return ret;
1207}
1208EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1209
1210/*
1211 * parse a message from user-space and pass it
1212 * to an appropriate cache
1213 * Messages are, like requests, separated into fields by
1214 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1215 *
1216 * Message is
1217 *   reply cachename expiry key ... content....
1218 *
1219 * key and content are both parsed by cache
1220 */
1221
1222int qword_get(char **bpp, char *dest, int bufsize)
1223{
1224	/* return bytes copied, or -1 on error */
1225	char *bp = *bpp;
1226	int len = 0;
1227
1228	while (*bp == ' ') bp++;
1229
1230	if (bp[0] == '\\' && bp[1] == 'x') {
1231		/* HEX STRING */
1232		bp += 2;
1233		while (len < bufsize) {
1234			int h, l;
1235
1236			h = hex_to_bin(bp[0]);
1237			if (h < 0)
1238				break;
1239
1240			l = hex_to_bin(bp[1]);
1241			if (l < 0)
1242				break;
1243
1244			*dest++ = (h << 4) | l;
1245			bp += 2;
1246			len++;
1247		}
1248	} else {
1249		/* text with \nnn octal quoting */
1250		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1251			if (*bp == '\\' &&
1252			    isodigit(bp[1]) && (bp[1] <= '3') &&
1253			    isodigit(bp[2]) &&
1254			    isodigit(bp[3])) {
1255				int byte = (*++bp -'0');
1256				bp++;
1257				byte = (byte << 3) | (*bp++ - '0');
1258				byte = (byte << 3) | (*bp++ - '0');
1259				*dest++ = byte;
1260				len++;
1261			} else {
1262				*dest++ = *bp++;
1263				len++;
1264			}
1265		}
1266	}
1267
1268	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1269		return -1;
1270	while (*bp == ' ') bp++;
1271	*bpp = bp;
1272	*dest = '\0';
1273	return len;
1274}
1275EXPORT_SYMBOL_GPL(qword_get);
1276
1277
1278/*
1279 * support /proc/sunrpc/cache/$CACHENAME/content
1280 * as a seqfile.
1281 * We call ->cache_show passing NULL for the item to
1282 * get a header, then pass each real item in the cache
1283 */
1284
1285struct handle {
1286	struct cache_detail *cd;
1287};
1288
1289static void *c_start(struct seq_file *m, loff_t *pos)
1290	__acquires(cd->hash_lock)
1291{
1292	loff_t n = *pos;
1293	unsigned int hash, entry;
1294	struct cache_head *ch;
1295	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1296
1297
1298	read_lock(&cd->hash_lock);
1299	if (!n--)
1300		return SEQ_START_TOKEN;
1301	hash = n >> 32;
1302	entry = n & ((1LL<<32) - 1);
1303
1304	for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1305		if (!entry--)
1306			return ch;
1307	n &= ~((1LL<<32) - 1);
1308	do {
1309		hash++;
1310		n += 1LL<<32;
1311	} while(hash < cd->hash_size &&
1312		cd->hash_table[hash]==NULL);
1313	if (hash >= cd->hash_size)
1314		return NULL;
1315	*pos = n+1;
1316	return cd->hash_table[hash];
 
 
1317}
1318
1319static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1320{
1321	struct cache_head *ch = p;
1322	int hash = (*pos >> 32);
1323	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1324
1325	if (p == SEQ_START_TOKEN)
1326		hash = 0;
1327	else if (ch->next == NULL) {
1328		hash++;
1329		*pos += 1LL<<32;
1330	} else {
1331		++*pos;
1332		return ch->next;
 
 
1333	}
1334	*pos &= ~((1LL<<32) - 1);
1335	while (hash < cd->hash_size &&
1336	       cd->hash_table[hash] == NULL) {
1337		hash++;
1338		*pos += 1LL<<32;
1339	}
1340	if (hash >= cd->hash_size)
1341		return NULL;
1342	++*pos;
1343	return cd->hash_table[hash];
 
 
1344}
1345
1346static void c_stop(struct seq_file *m, void *p)
1347	__releases(cd->hash_lock)
1348{
1349	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1350	read_unlock(&cd->hash_lock);
1351}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1352
1353static int c_show(struct seq_file *m, void *p)
1354{
1355	struct cache_head *cp = p;
1356	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1357
1358	if (p == SEQ_START_TOKEN)
1359		return cd->cache_show(m, cd, NULL);
1360
1361	ifdebug(CACHE)
1362		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1363			   convert_to_wallclock(cp->expiry_time),
1364			   atomic_read(&cp->ref.refcount), cp->flags);
1365	cache_get(cp);
1366	if (cache_check(cd, cp, NULL))
1367		/* cache_check does a cache_put on failure */
1368		seq_printf(m, "# ");
1369	else {
1370		if (cache_is_expired(cd, cp))
1371			seq_printf(m, "# ");
1372		cache_put(cp, cd);
1373	}
1374
1375	return cd->cache_show(m, cd, cp);
1376}
1377
1378static const struct seq_operations cache_content_op = {
1379	.start	= c_start,
1380	.next	= c_next,
1381	.stop	= c_stop,
1382	.show	= c_show,
1383};
1384
1385static int content_open(struct inode *inode, struct file *file,
1386			struct cache_detail *cd)
1387{
1388	struct handle *han;
 
1389
1390	if (!cd || !try_module_get(cd->owner))
1391		return -EACCES;
1392	han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1393	if (han == NULL) {
 
1394		module_put(cd->owner);
1395		return -ENOMEM;
1396	}
1397
1398	han->cd = cd;
 
1399	return 0;
1400}
1401
1402static int content_release(struct inode *inode, struct file *file,
1403		struct cache_detail *cd)
1404{
1405	int ret = seq_release_private(inode, file);
1406	module_put(cd->owner);
1407	return ret;
1408}
1409
1410static int open_flush(struct inode *inode, struct file *file,
1411			struct cache_detail *cd)
1412{
1413	if (!cd || !try_module_get(cd->owner))
1414		return -EACCES;
1415	return nonseekable_open(inode, file);
1416}
1417
1418static int release_flush(struct inode *inode, struct file *file,
1419			struct cache_detail *cd)
1420{
1421	module_put(cd->owner);
1422	return 0;
1423}
1424
1425static ssize_t read_flush(struct file *file, char __user *buf,
1426			  size_t count, loff_t *ppos,
1427			  struct cache_detail *cd)
1428{
1429	char tbuf[22];
1430	unsigned long p = *ppos;
1431	size_t len;
1432
1433	snprintf(tbuf, sizeof(tbuf), "%lu\n", convert_to_wallclock(cd->flush_time));
1434	len = strlen(tbuf);
1435	if (p >= len)
1436		return 0;
1437	len -= p;
1438	if (len > count)
1439		len = count;
1440	if (copy_to_user(buf, (void*)(tbuf+p), len))
1441		return -EFAULT;
1442	*ppos += len;
1443	return len;
1444}
1445
1446static ssize_t write_flush(struct file *file, const char __user *buf,
1447			   size_t count, loff_t *ppos,
1448			   struct cache_detail *cd)
1449{
1450	char tbuf[20];
1451	char *bp, *ep;
 
1452
1453	if (*ppos || count > sizeof(tbuf)-1)
1454		return -EINVAL;
1455	if (copy_from_user(tbuf, buf, count))
1456		return -EFAULT;
1457	tbuf[count] = 0;
1458	simple_strtoul(tbuf, &ep, 0);
1459	if (*ep && *ep != '\n')
1460		return -EINVAL;
 
 
 
 
1461
1462	bp = tbuf;
1463	cd->flush_time = get_expiry(&bp);
1464	cd->nextcheck = seconds_since_boot();
 
 
 
 
 
 
 
 
 
 
1465	cache_flush();
1466
 
 
 
1467	*ppos += count;
1468	return count;
1469}
1470
1471static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1472				 size_t count, loff_t *ppos)
1473{
1474	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1475
1476	return cache_read(filp, buf, count, ppos, cd);
1477}
1478
1479static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1480				  size_t count, loff_t *ppos)
1481{
1482	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1483
1484	return cache_write(filp, buf, count, ppos, cd);
1485}
1486
1487static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1488{
1489	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1490
1491	return cache_poll(filp, wait, cd);
1492}
1493
1494static long cache_ioctl_procfs(struct file *filp,
1495			       unsigned int cmd, unsigned long arg)
1496{
1497	struct inode *inode = file_inode(filp);
1498	struct cache_detail *cd = PDE_DATA(inode);
1499
1500	return cache_ioctl(inode, filp, cmd, arg, cd);
1501}
1502
1503static int cache_open_procfs(struct inode *inode, struct file *filp)
1504{
1505	struct cache_detail *cd = PDE_DATA(inode);
1506
1507	return cache_open(inode, filp, cd);
1508}
1509
1510static int cache_release_procfs(struct inode *inode, struct file *filp)
1511{
1512	struct cache_detail *cd = PDE_DATA(inode);
1513
1514	return cache_release(inode, filp, cd);
1515}
1516
1517static const struct file_operations cache_file_operations_procfs = {
1518	.owner		= THIS_MODULE,
1519	.llseek		= no_llseek,
1520	.read		= cache_read_procfs,
1521	.write		= cache_write_procfs,
1522	.poll		= cache_poll_procfs,
1523	.unlocked_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1524	.open		= cache_open_procfs,
1525	.release	= cache_release_procfs,
1526};
1527
1528static int content_open_procfs(struct inode *inode, struct file *filp)
1529{
1530	struct cache_detail *cd = PDE_DATA(inode);
1531
1532	return content_open(inode, filp, cd);
1533}
1534
1535static int content_release_procfs(struct inode *inode, struct file *filp)
1536{
1537	struct cache_detail *cd = PDE_DATA(inode);
1538
1539	return content_release(inode, filp, cd);
1540}
1541
1542static const struct file_operations content_file_operations_procfs = {
1543	.open		= content_open_procfs,
1544	.read		= seq_read,
1545	.llseek		= seq_lseek,
1546	.release	= content_release_procfs,
1547};
1548
1549static int open_flush_procfs(struct inode *inode, struct file *filp)
1550{
1551	struct cache_detail *cd = PDE_DATA(inode);
1552
1553	return open_flush(inode, filp, cd);
1554}
1555
1556static int release_flush_procfs(struct inode *inode, struct file *filp)
1557{
1558	struct cache_detail *cd = PDE_DATA(inode);
1559
1560	return release_flush(inode, filp, cd);
1561}
1562
1563static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1564			    size_t count, loff_t *ppos)
1565{
1566	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1567
1568	return read_flush(filp, buf, count, ppos, cd);
1569}
1570
1571static ssize_t write_flush_procfs(struct file *filp,
1572				  const char __user *buf,
1573				  size_t count, loff_t *ppos)
1574{
1575	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1576
1577	return write_flush(filp, buf, count, ppos, cd);
1578}
1579
1580static const struct file_operations cache_flush_operations_procfs = {
1581	.open		= open_flush_procfs,
1582	.read		= read_flush_procfs,
1583	.write		= write_flush_procfs,
1584	.release	= release_flush_procfs,
1585	.llseek		= no_llseek,
1586};
1587
1588static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net)
1589{
1590	struct sunrpc_net *sn;
1591
1592	if (cd->u.procfs.proc_ent == NULL)
1593		return;
1594	if (cd->u.procfs.flush_ent)
1595		remove_proc_entry("flush", cd->u.procfs.proc_ent);
1596	if (cd->u.procfs.channel_ent)
1597		remove_proc_entry("channel", cd->u.procfs.proc_ent);
1598	if (cd->u.procfs.content_ent)
1599		remove_proc_entry("content", cd->u.procfs.proc_ent);
1600	cd->u.procfs.proc_ent = NULL;
1601	sn = net_generic(net, sunrpc_net_id);
1602	remove_proc_entry(cd->name, sn->proc_net_rpc);
1603}
1604
1605#ifdef CONFIG_PROC_FS
1606static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1607{
1608	struct proc_dir_entry *p;
1609	struct sunrpc_net *sn;
1610
1611	sn = net_generic(net, sunrpc_net_id);
1612	cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc);
1613	if (cd->u.procfs.proc_ent == NULL)
1614		goto out_nomem;
1615	cd->u.procfs.channel_ent = NULL;
1616	cd->u.procfs.content_ent = NULL;
1617
1618	p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1619			     cd->u.procfs.proc_ent,
1620			     &cache_flush_operations_procfs, cd);
1621	cd->u.procfs.flush_ent = p;
1622	if (p == NULL)
1623		goto out_nomem;
1624
1625	if (cd->cache_request || cd->cache_parse) {
1626		p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1627				     cd->u.procfs.proc_ent,
1628				     &cache_file_operations_procfs, cd);
1629		cd->u.procfs.channel_ent = p;
1630		if (p == NULL)
1631			goto out_nomem;
1632	}
1633	if (cd->cache_show) {
1634		p = proc_create_data("content", S_IFREG|S_IRUSR,
1635				cd->u.procfs.proc_ent,
1636				&content_file_operations_procfs, cd);
1637		cd->u.procfs.content_ent = p;
1638		if (p == NULL)
1639			goto out_nomem;
1640	}
1641	return 0;
1642out_nomem:
1643	remove_cache_proc_entries(cd, net);
1644	return -ENOMEM;
1645}
1646#else /* CONFIG_PROC_FS */
1647static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1648{
1649	return 0;
1650}
1651#endif
1652
1653void __init cache_initialize(void)
1654{
1655	INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1656}
1657
1658int cache_register_net(struct cache_detail *cd, struct net *net)
1659{
1660	int ret;
1661
1662	sunrpc_init_cache_detail(cd);
1663	ret = create_cache_proc_entries(cd, net);
1664	if (ret)
1665		sunrpc_destroy_cache_detail(cd);
1666	return ret;
1667}
1668EXPORT_SYMBOL_GPL(cache_register_net);
1669
1670void cache_unregister_net(struct cache_detail *cd, struct net *net)
1671{
1672	remove_cache_proc_entries(cd, net);
1673	sunrpc_destroy_cache_detail(cd);
1674}
1675EXPORT_SYMBOL_GPL(cache_unregister_net);
1676
1677struct cache_detail *cache_create_net(struct cache_detail *tmpl, struct net *net)
1678{
1679	struct cache_detail *cd;
 
1680
1681	cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1682	if (cd == NULL)
1683		return ERR_PTR(-ENOMEM);
1684
1685	cd->hash_table = kzalloc(cd->hash_size * sizeof(struct cache_head *),
1686				 GFP_KERNEL);
1687	if (cd->hash_table == NULL) {
1688		kfree(cd);
1689		return ERR_PTR(-ENOMEM);
1690	}
 
 
 
1691	cd->net = net;
1692	return cd;
1693}
1694EXPORT_SYMBOL_GPL(cache_create_net);
1695
1696void cache_destroy_net(struct cache_detail *cd, struct net *net)
1697{
1698	kfree(cd->hash_table);
1699	kfree(cd);
1700}
1701EXPORT_SYMBOL_GPL(cache_destroy_net);
1702
1703static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1704				 size_t count, loff_t *ppos)
1705{
1706	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1707
1708	return cache_read(filp, buf, count, ppos, cd);
1709}
1710
1711static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1712				  size_t count, loff_t *ppos)
1713{
1714	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1715
1716	return cache_write(filp, buf, count, ppos, cd);
1717}
1718
1719static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1720{
1721	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1722
1723	return cache_poll(filp, wait, cd);
1724}
1725
1726static long cache_ioctl_pipefs(struct file *filp,
1727			      unsigned int cmd, unsigned long arg)
1728{
1729	struct inode *inode = file_inode(filp);
1730	struct cache_detail *cd = RPC_I(inode)->private;
1731
1732	return cache_ioctl(inode, filp, cmd, arg, cd);
1733}
1734
1735static int cache_open_pipefs(struct inode *inode, struct file *filp)
1736{
1737	struct cache_detail *cd = RPC_I(inode)->private;
1738
1739	return cache_open(inode, filp, cd);
1740}
1741
1742static int cache_release_pipefs(struct inode *inode, struct file *filp)
1743{
1744	struct cache_detail *cd = RPC_I(inode)->private;
1745
1746	return cache_release(inode, filp, cd);
1747}
1748
1749const struct file_operations cache_file_operations_pipefs = {
1750	.owner		= THIS_MODULE,
1751	.llseek		= no_llseek,
1752	.read		= cache_read_pipefs,
1753	.write		= cache_write_pipefs,
1754	.poll		= cache_poll_pipefs,
1755	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1756	.open		= cache_open_pipefs,
1757	.release	= cache_release_pipefs,
1758};
1759
1760static int content_open_pipefs(struct inode *inode, struct file *filp)
1761{
1762	struct cache_detail *cd = RPC_I(inode)->private;
1763
1764	return content_open(inode, filp, cd);
1765}
1766
1767static int content_release_pipefs(struct inode *inode, struct file *filp)
1768{
1769	struct cache_detail *cd = RPC_I(inode)->private;
1770
1771	return content_release(inode, filp, cd);
1772}
1773
1774const struct file_operations content_file_operations_pipefs = {
1775	.open		= content_open_pipefs,
1776	.read		= seq_read,
1777	.llseek		= seq_lseek,
1778	.release	= content_release_pipefs,
1779};
1780
1781static int open_flush_pipefs(struct inode *inode, struct file *filp)
1782{
1783	struct cache_detail *cd = RPC_I(inode)->private;
1784
1785	return open_flush(inode, filp, cd);
1786}
1787
1788static int release_flush_pipefs(struct inode *inode, struct file *filp)
1789{
1790	struct cache_detail *cd = RPC_I(inode)->private;
1791
1792	return release_flush(inode, filp, cd);
1793}
1794
1795static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1796			    size_t count, loff_t *ppos)
1797{
1798	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1799
1800	return read_flush(filp, buf, count, ppos, cd);
1801}
1802
1803static ssize_t write_flush_pipefs(struct file *filp,
1804				  const char __user *buf,
1805				  size_t count, loff_t *ppos)
1806{
1807	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1808
1809	return write_flush(filp, buf, count, ppos, cd);
1810}
1811
1812const struct file_operations cache_flush_operations_pipefs = {
1813	.open		= open_flush_pipefs,
1814	.read		= read_flush_pipefs,
1815	.write		= write_flush_pipefs,
1816	.release	= release_flush_pipefs,
1817	.llseek		= no_llseek,
1818};
1819
1820int sunrpc_cache_register_pipefs(struct dentry *parent,
1821				 const char *name, umode_t umode,
1822				 struct cache_detail *cd)
1823{
1824	struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1825	if (IS_ERR(dir))
1826		return PTR_ERR(dir);
1827	cd->u.pipefs.dir = dir;
1828	return 0;
1829}
1830EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1831
1832void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1833{
1834	rpc_remove_cache_dir(cd->u.pipefs.dir);
1835	cd->u.pipefs.dir = NULL;
 
 
1836}
1837EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1838