Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Memory Migration functionality - linux/mm/migrate.c
   4 *
   5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   6 *
   7 * Page migration was first developed in the context of the memory hotplug
   8 * project. The main authors of the migration code are:
   9 *
  10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  11 * Hirokazu Takahashi <taka@valinux.co.jp>
  12 * Dave Hansen <haveblue@us.ibm.com>
  13 * Christoph Lameter
  14 */
  15
  16#include <linux/migrate.h>
  17#include <linux/export.h>
  18#include <linux/swap.h>
  19#include <linux/swapops.h>
  20#include <linux/pagemap.h>
  21#include <linux/buffer_head.h>
  22#include <linux/mm_inline.h>
  23#include <linux/nsproxy.h>
  24#include <linux/pagevec.h>
  25#include <linux/ksm.h>
  26#include <linux/rmap.h>
  27#include <linux/topology.h>
  28#include <linux/cpu.h>
  29#include <linux/cpuset.h>
  30#include <linux/writeback.h>
  31#include <linux/mempolicy.h>
  32#include <linux/vmalloc.h>
  33#include <linux/security.h>
  34#include <linux/backing-dev.h>
  35#include <linux/compaction.h>
  36#include <linux/syscalls.h>
  37#include <linux/compat.h>
  38#include <linux/hugetlb.h>
  39#include <linux/hugetlb_cgroup.h>
  40#include <linux/gfp.h>
  41#include <linux/pagewalk.h>
  42#include <linux/pfn_t.h>
  43#include <linux/memremap.h>
  44#include <linux/userfaultfd_k.h>
  45#include <linux/balloon_compaction.h>
  46#include <linux/mmu_notifier.h>
  47#include <linux/page_idle.h>
  48#include <linux/page_owner.h>
  49#include <linux/sched/mm.h>
  50#include <linux/ptrace.h>
  51
  52#include <asm/tlbflush.h>
  53
  54#define CREATE_TRACE_POINTS
  55#include <trace/events/migrate.h>
  56
  57#include "internal.h"
  58
  59/*
  60 * migrate_prep() needs to be called before we start compiling a list of pages
  61 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
  62 * undesirable, use migrate_prep_local()
  63 */
  64int migrate_prep(void)
  65{
  66	/*
  67	 * Clear the LRU lists so pages can be isolated.
  68	 * Note that pages may be moved off the LRU after we have
  69	 * drained them. Those pages will fail to migrate like other
  70	 * pages that may be busy.
  71	 */
  72	lru_add_drain_all();
  73
  74	return 0;
  75}
  76
  77/* Do the necessary work of migrate_prep but not if it involves other CPUs */
  78int migrate_prep_local(void)
  79{
  80	lru_add_drain();
  81
  82	return 0;
  83}
  84
  85int isolate_movable_page(struct page *page, isolate_mode_t mode)
  86{
  87	struct address_space *mapping;
  88
  89	/*
  90	 * Avoid burning cycles with pages that are yet under __free_pages(),
  91	 * or just got freed under us.
  92	 *
  93	 * In case we 'win' a race for a movable page being freed under us and
  94	 * raise its refcount preventing __free_pages() from doing its job
  95	 * the put_page() at the end of this block will take care of
  96	 * release this page, thus avoiding a nasty leakage.
  97	 */
  98	if (unlikely(!get_page_unless_zero(page)))
  99		goto out;
 100
 101	/*
 102	 * Check PageMovable before holding a PG_lock because page's owner
 103	 * assumes anybody doesn't touch PG_lock of newly allocated page
 104	 * so unconditionally grabbing the lock ruins page's owner side.
 105	 */
 106	if (unlikely(!__PageMovable(page)))
 107		goto out_putpage;
 108	/*
 109	 * As movable pages are not isolated from LRU lists, concurrent
 110	 * compaction threads can race against page migration functions
 111	 * as well as race against the releasing a page.
 112	 *
 113	 * In order to avoid having an already isolated movable page
 114	 * being (wrongly) re-isolated while it is under migration,
 115	 * or to avoid attempting to isolate pages being released,
 116	 * lets be sure we have the page lock
 117	 * before proceeding with the movable page isolation steps.
 118	 */
 119	if (unlikely(!trylock_page(page)))
 120		goto out_putpage;
 121
 122	if (!PageMovable(page) || PageIsolated(page))
 123		goto out_no_isolated;
 124
 125	mapping = page_mapping(page);
 126	VM_BUG_ON_PAGE(!mapping, page);
 127
 128	if (!mapping->a_ops->isolate_page(page, mode))
 129		goto out_no_isolated;
 130
 131	/* Driver shouldn't use PG_isolated bit of page->flags */
 132	WARN_ON_ONCE(PageIsolated(page));
 133	__SetPageIsolated(page);
 134	unlock_page(page);
 135
 136	return 0;
 137
 138out_no_isolated:
 139	unlock_page(page);
 140out_putpage:
 141	put_page(page);
 142out:
 143	return -EBUSY;
 144}
 145
 146/* It should be called on page which is PG_movable */
 147void putback_movable_page(struct page *page)
 148{
 149	struct address_space *mapping;
 150
 151	VM_BUG_ON_PAGE(!PageLocked(page), page);
 152	VM_BUG_ON_PAGE(!PageMovable(page), page);
 153	VM_BUG_ON_PAGE(!PageIsolated(page), page);
 154
 155	mapping = page_mapping(page);
 156	mapping->a_ops->putback_page(page);
 157	__ClearPageIsolated(page);
 158}
 159
 160/*
 161 * Put previously isolated pages back onto the appropriate lists
 162 * from where they were once taken off for compaction/migration.
 163 *
 164 * This function shall be used whenever the isolated pageset has been
 165 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 166 * and isolate_huge_page().
 167 */
 168void putback_movable_pages(struct list_head *l)
 169{
 170	struct page *page;
 171	struct page *page2;
 172
 173	list_for_each_entry_safe(page, page2, l, lru) {
 174		if (unlikely(PageHuge(page))) {
 175			putback_active_hugepage(page);
 176			continue;
 177		}
 178		list_del(&page->lru);
 179		/*
 180		 * We isolated non-lru movable page so here we can use
 181		 * __PageMovable because LRU page's mapping cannot have
 182		 * PAGE_MAPPING_MOVABLE.
 183		 */
 184		if (unlikely(__PageMovable(page))) {
 185			VM_BUG_ON_PAGE(!PageIsolated(page), page);
 186			lock_page(page);
 187			if (PageMovable(page))
 188				putback_movable_page(page);
 189			else
 190				__ClearPageIsolated(page);
 191			unlock_page(page);
 192			put_page(page);
 193		} else {
 194			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
 195					page_is_file_cache(page), -hpage_nr_pages(page));
 196			putback_lru_page(page);
 197		}
 198	}
 199}
 200
 201/*
 202 * Restore a potential migration pte to a working pte entry
 203 */
 204static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
 205				 unsigned long addr, void *old)
 206{
 207	struct page_vma_mapped_walk pvmw = {
 208		.page = old,
 209		.vma = vma,
 210		.address = addr,
 211		.flags = PVMW_SYNC | PVMW_MIGRATION,
 212	};
 213	struct page *new;
 214	pte_t pte;
 215	swp_entry_t entry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 216
 217	VM_BUG_ON_PAGE(PageTail(page), page);
 218	while (page_vma_mapped_walk(&pvmw)) {
 219		if (PageKsm(page))
 220			new = page;
 221		else
 222			new = page - pvmw.page->index +
 223				linear_page_index(vma, pvmw.address);
 224
 225#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 226		/* PMD-mapped THP migration entry */
 227		if (!pvmw.pte) {
 228			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
 229			remove_migration_pmd(&pvmw, new);
 230			continue;
 231		}
 232#endif
 233
 234		get_page(new);
 235		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
 236		if (pte_swp_soft_dirty(*pvmw.pte))
 237			pte = pte_mksoft_dirty(pte);
 238
 239		/*
 240		 * Recheck VMA as permissions can change since migration started
 
 241		 */
 242		entry = pte_to_swp_entry(*pvmw.pte);
 243		if (is_write_migration_entry(entry))
 244			pte = maybe_mkwrite(pte, vma);
 245
 246		if (unlikely(is_zone_device_page(new))) {
 247			if (is_device_private_page(new)) {
 248				entry = make_device_private_entry(new, pte_write(pte));
 249				pte = swp_entry_to_pte(entry);
 250			}
 251		}
 252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 253#ifdef CONFIG_HUGETLB_PAGE
 254		if (PageHuge(new)) {
 255			pte = pte_mkhuge(pte);
 256			pte = arch_make_huge_pte(pte, vma, new, 0);
 257			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 258			if (PageAnon(new))
 259				hugepage_add_anon_rmap(new, vma, pvmw.address);
 260			else
 261				page_dup_rmap(new, true);
 262		} else
 263#endif
 264		{
 265			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 266
 267			if (PageAnon(new))
 268				page_add_anon_rmap(new, vma, pvmw.address, false);
 269			else
 270				page_add_file_rmap(new, false);
 271		}
 272		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
 273			mlock_vma_page(new);
 
 
 274
 275		if (PageTransHuge(page) && PageMlocked(page))
 276			clear_page_mlock(page);
 
 
 
 
 
 277
 278		/* No need to invalidate - it was non-present before */
 279		update_mmu_cache(vma, pvmw.address, pvmw.pte);
 280	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 281
 282	return true;
 
 
 
 
 
 
 
 283}
 284
 285/*
 286 * Get rid of all migration entries and replace them by
 287 * references to the indicated page.
 288 */
 289void remove_migration_ptes(struct page *old, struct page *new, bool locked)
 290{
 291	struct rmap_walk_control rwc = {
 292		.rmap_one = remove_migration_pte,
 293		.arg = old,
 
 294	};
 295
 296	if (locked)
 297		rmap_walk_locked(new, &rwc);
 298	else
 299		rmap_walk(new, &rwc);
 300}
 301
 302/*
 303 * Something used the pte of a page under migration. We need to
 304 * get to the page and wait until migration is finished.
 305 * When we return from this function the fault will be retried.
 306 */
 307void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
 308				spinlock_t *ptl)
 309{
 310	pte_t pte;
 311	swp_entry_t entry;
 312	struct page *page;
 313
 314	spin_lock(ptl);
 315	pte = *ptep;
 316	if (!is_swap_pte(pte))
 317		goto out;
 318
 319	entry = pte_to_swp_entry(pte);
 320	if (!is_migration_entry(entry))
 321		goto out;
 322
 323	page = migration_entry_to_page(entry);
 324
 325	/*
 326	 * Once page cache replacement of page migration started, page_count
 327	 * is zero; but we must not call put_and_wait_on_page_locked() without
 328	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
 
 
 329	 */
 330	if (!get_page_unless_zero(page))
 331		goto out;
 332	pte_unmap_unlock(ptep, ptl);
 333	put_and_wait_on_page_locked(page);
 
 334	return;
 335out:
 336	pte_unmap_unlock(ptep, ptl);
 337}
 338
 339void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 340				unsigned long address)
 341{
 342	spinlock_t *ptl = pte_lockptr(mm, pmd);
 343	pte_t *ptep = pte_offset_map(pmd, address);
 344	__migration_entry_wait(mm, ptep, ptl);
 345}
 346
 347void migration_entry_wait_huge(struct vm_area_struct *vma,
 348		struct mm_struct *mm, pte_t *pte)
 349{
 350	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
 351	__migration_entry_wait(mm, pte, ptl);
 352}
 353
 354#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 355void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
 
 
 356{
 357	spinlock_t *ptl;
 358	struct page *page;
 359
 360	ptl = pmd_lock(mm, pmd);
 361	if (!is_pmd_migration_entry(*pmd))
 362		goto unlock;
 363	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
 364	if (!get_page_unless_zero(page))
 365		goto unlock;
 366	spin_unlock(ptl);
 367	put_and_wait_on_page_locked(page);
 368	return;
 369unlock:
 370	spin_unlock(ptl);
 371}
 372#endif
 373
 374static int expected_page_refs(struct address_space *mapping, struct page *page)
 375{
 376	int expected_count = 1;
 377
 378	/*
 379	 * Device public or private pages have an extra refcount as they are
 380	 * ZONE_DEVICE pages.
 381	 */
 382	expected_count += is_device_private_page(page);
 383	if (mapping)
 384		expected_count += hpage_nr_pages(page) + page_has_private(page);
 385
 386	return expected_count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 387}
 
 388
 389/*
 390 * Replace the page in the mapping.
 391 *
 392 * The number of remaining references must be:
 393 * 1 for anonymous pages without a mapping
 394 * 2 for pages with a mapping
 395 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 396 */
 397int migrate_page_move_mapping(struct address_space *mapping,
 398		struct page *newpage, struct page *page, int extra_count)
 
 
 399{
 400	XA_STATE(xas, &mapping->i_pages, page_index(page));
 401	struct zone *oldzone, *newzone;
 402	int dirty;
 403	int expected_count = expected_page_refs(mapping, page) + extra_count;
 404
 405	if (!mapping) {
 406		/* Anonymous page without mapping */
 407		if (page_count(page) != expected_count)
 408			return -EAGAIN;
 409
 410		/* No turning back from here */
 411		newpage->index = page->index;
 412		newpage->mapping = page->mapping;
 413		if (PageSwapBacked(page))
 414			__SetPageSwapBacked(newpage);
 415
 416		return MIGRATEPAGE_SUCCESS;
 417	}
 418
 419	oldzone = page_zone(page);
 420	newzone = page_zone(newpage);
 
 
 421
 422	xas_lock_irq(&xas);
 423	if (page_count(page) != expected_count || xas_load(&xas) != page) {
 424		xas_unlock_irq(&xas);
 
 425		return -EAGAIN;
 426	}
 427
 428	if (!page_ref_freeze(page, expected_count)) {
 429		xas_unlock_irq(&xas);
 430		return -EAGAIN;
 431	}
 432
 433	/*
 434	 * Now we know that no one else is looking at the page:
 435	 * no turning back from here.
 436	 */
 437	newpage->index = page->index;
 438	newpage->mapping = page->mapping;
 439	page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
 440	if (PageSwapBacked(page)) {
 441		__SetPageSwapBacked(newpage);
 442		if (PageSwapCache(page)) {
 443			SetPageSwapCache(newpage);
 444			set_page_private(newpage, page_private(page));
 445		}
 446	} else {
 447		VM_BUG_ON_PAGE(PageSwapCache(page), page);
 448	}
 449
 450	/* Move dirty while page refs frozen and newpage not yet exposed */
 451	dirty = PageDirty(page);
 452	if (dirty) {
 453		ClearPageDirty(page);
 454		SetPageDirty(newpage);
 
 
 455	}
 456
 457	xas_store(&xas, newpage);
 458	if (PageTransHuge(page)) {
 459		int i;
 460
 461		for (i = 1; i < HPAGE_PMD_NR; i++) {
 462			xas_next(&xas);
 463			xas_store(&xas, newpage);
 464		}
 465	}
 466
 467	/*
 468	 * Drop cache reference from old page by unfreezing
 469	 * to one less reference.
 470	 * We know this isn't the last reference.
 471	 */
 472	page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
 473
 474	xas_unlock(&xas);
 475	/* Leave irq disabled to prevent preemption while updating stats */
 476
 477	/*
 478	 * If moved to a different zone then also account
 479	 * the page for that zone. Other VM counters will be
 480	 * taken care of when we establish references to the
 481	 * new page and drop references to the old page.
 482	 *
 483	 * Note that anonymous pages are accounted for
 484	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
 485	 * are mapped to swap space.
 486	 */
 487	if (newzone != oldzone) {
 488		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
 489		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
 490		if (PageSwapBacked(page) && !PageSwapCache(page)) {
 491			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
 492			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
 493		}
 494		if (dirty && mapping_cap_account_dirty(mapping)) {
 495			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
 496			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
 497			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
 498			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
 499		}
 500	}
 501	local_irq_enable();
 502
 503	return MIGRATEPAGE_SUCCESS;
 504}
 505EXPORT_SYMBOL(migrate_page_move_mapping);
 506
 507/*
 508 * The expected number of remaining references is the same as that
 509 * of migrate_page_move_mapping().
 510 */
 511int migrate_huge_page_move_mapping(struct address_space *mapping,
 512				   struct page *newpage, struct page *page)
 513{
 514	XA_STATE(xas, &mapping->i_pages, page_index(page));
 515	int expected_count;
 
 
 
 
 
 
 
 
 
 
 
 
 516
 517	xas_lock_irq(&xas);
 518	expected_count = 2 + page_has_private(page);
 519	if (page_count(page) != expected_count || xas_load(&xas) != page) {
 520		xas_unlock_irq(&xas);
 
 521		return -EAGAIN;
 522	}
 523
 524	if (!page_ref_freeze(page, expected_count)) {
 525		xas_unlock_irq(&xas);
 526		return -EAGAIN;
 527	}
 528
 529	newpage->index = page->index;
 530	newpage->mapping = page->mapping;
 531
 532	get_page(newpage);
 533
 534	xas_store(&xas, newpage);
 535
 536	page_ref_unfreeze(page, expected_count - 1);
 537
 538	xas_unlock_irq(&xas);
 539
 
 540	return MIGRATEPAGE_SUCCESS;
 541}
 542
 543/*
 544 * Gigantic pages are so large that we do not guarantee that page++ pointer
 545 * arithmetic will work across the entire page.  We need something more
 546 * specialized.
 547 */
 548static void __copy_gigantic_page(struct page *dst, struct page *src,
 549				int nr_pages)
 550{
 551	int i;
 552	struct page *dst_base = dst;
 553	struct page *src_base = src;
 554
 555	for (i = 0; i < nr_pages; ) {
 556		cond_resched();
 557		copy_highpage(dst, src);
 558
 559		i++;
 560		dst = mem_map_next(dst, dst_base, i);
 561		src = mem_map_next(src, src_base, i);
 562	}
 563}
 564
 565static void copy_huge_page(struct page *dst, struct page *src)
 566{
 567	int i;
 568	int nr_pages;
 569
 570	if (PageHuge(src)) {
 571		/* hugetlbfs page */
 572		struct hstate *h = page_hstate(src);
 573		nr_pages = pages_per_huge_page(h);
 574
 575		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
 576			__copy_gigantic_page(dst, src, nr_pages);
 577			return;
 578		}
 579	} else {
 580		/* thp page */
 581		BUG_ON(!PageTransHuge(src));
 582		nr_pages = hpage_nr_pages(src);
 583	}
 584
 585	for (i = 0; i < nr_pages; i++) {
 586		cond_resched();
 587		copy_highpage(dst + i, src + i);
 588	}
 589}
 590
 591/*
 592 * Copy the page to its new location
 593 */
 594void migrate_page_states(struct page *newpage, struct page *page)
 595{
 596	int cpupid;
 597
 
 
 
 
 
 598	if (PageError(page))
 599		SetPageError(newpage);
 600	if (PageReferenced(page))
 601		SetPageReferenced(newpage);
 602	if (PageUptodate(page))
 603		SetPageUptodate(newpage);
 604	if (TestClearPageActive(page)) {
 605		VM_BUG_ON_PAGE(PageUnevictable(page), page);
 606		SetPageActive(newpage);
 607	} else if (TestClearPageUnevictable(page))
 608		SetPageUnevictable(newpage);
 609	if (PageWorkingset(page))
 610		SetPageWorkingset(newpage);
 611	if (PageChecked(page))
 612		SetPageChecked(newpage);
 613	if (PageMappedToDisk(page))
 614		SetPageMappedToDisk(newpage);
 615
 616	/* Move dirty on pages not done by migrate_page_move_mapping() */
 617	if (PageDirty(page))
 618		SetPageDirty(newpage);
 619
 620	if (page_is_young(page))
 621		set_page_young(newpage);
 622	if (page_is_idle(page))
 623		set_page_idle(newpage);
 
 
 
 
 
 
 624
 625	/*
 626	 * Copy NUMA information to the new page, to prevent over-eager
 627	 * future migrations of this same page.
 628	 */
 629	cpupid = page_cpupid_xchg_last(page, -1);
 630	page_cpupid_xchg_last(newpage, cpupid);
 631
 
 632	ksm_migrate_page(newpage, page);
 633	/*
 634	 * Please do not reorder this without considering how mm/ksm.c's
 635	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 636	 */
 637	if (PageSwapCache(page))
 638		ClearPageSwapCache(page);
 639	ClearPagePrivate(page);
 640	set_page_private(page, 0);
 641
 642	/*
 643	 * If any waiters have accumulated on the new page then
 644	 * wake them up.
 645	 */
 646	if (PageWriteback(newpage))
 647		end_page_writeback(newpage);
 648
 649	copy_page_owner(page, newpage);
 650
 651	mem_cgroup_migrate(page, newpage);
 652}
 653EXPORT_SYMBOL(migrate_page_states);
 654
 655void migrate_page_copy(struct page *newpage, struct page *page)
 656{
 657	if (PageHuge(page) || PageTransHuge(page))
 658		copy_huge_page(newpage, page);
 659	else
 660		copy_highpage(newpage, page);
 661
 662	migrate_page_states(newpage, page);
 663}
 664EXPORT_SYMBOL(migrate_page_copy);
 665
 666/************************************************************
 667 *                    Migration functions
 668 ***********************************************************/
 669
 670/*
 671 * Common logic to directly migrate a single LRU page suitable for
 672 * pages that do not use PagePrivate/PagePrivate2.
 673 *
 674 * Pages are locked upon entry and exit.
 675 */
 676int migrate_page(struct address_space *mapping,
 677		struct page *newpage, struct page *page,
 678		enum migrate_mode mode)
 679{
 680	int rc;
 681
 682	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
 683
 684	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
 685
 686	if (rc != MIGRATEPAGE_SUCCESS)
 687		return rc;
 688
 689	if (mode != MIGRATE_SYNC_NO_COPY)
 690		migrate_page_copy(newpage, page);
 691	else
 692		migrate_page_states(newpage, page);
 693	return MIGRATEPAGE_SUCCESS;
 694}
 695EXPORT_SYMBOL(migrate_page);
 696
 697#ifdef CONFIG_BLOCK
 698/* Returns true if all buffers are successfully locked */
 699static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 700							enum migrate_mode mode)
 701{
 702	struct buffer_head *bh = head;
 703
 704	/* Simple case, sync compaction */
 705	if (mode != MIGRATE_ASYNC) {
 706		do {
 707			lock_buffer(bh);
 708			bh = bh->b_this_page;
 709
 710		} while (bh != head);
 711
 712		return true;
 713	}
 714
 715	/* async case, we cannot block on lock_buffer so use trylock_buffer */
 716	do {
 717		if (!trylock_buffer(bh)) {
 718			/*
 719			 * We failed to lock the buffer and cannot stall in
 720			 * async migration. Release the taken locks
 721			 */
 722			struct buffer_head *failed_bh = bh;
 723			bh = head;
 724			while (bh != failed_bh) {
 725				unlock_buffer(bh);
 726				bh = bh->b_this_page;
 727			}
 728			return false;
 729		}
 730
 731		bh = bh->b_this_page;
 732	} while (bh != head);
 733	return true;
 734}
 735
 736static int __buffer_migrate_page(struct address_space *mapping,
 737		struct page *newpage, struct page *page, enum migrate_mode mode,
 738		bool check_refs)
 739{
 740	struct buffer_head *bh, *head;
 741	int rc;
 742	int expected_count;
 743
 744	if (!page_has_buffers(page))
 745		return migrate_page(mapping, newpage, page, mode);
 746
 747	/* Check whether page does not have extra refs before we do more work */
 748	expected_count = expected_page_refs(mapping, page);
 749	if (page_count(page) != expected_count)
 750		return -EAGAIN;
 751
 752	head = page_buffers(page);
 753	if (!buffer_migrate_lock_buffers(head, mode))
 754		return -EAGAIN;
 755
 756	if (check_refs) {
 757		bool busy;
 758		bool invalidated = false;
 759
 760recheck_buffers:
 761		busy = false;
 762		spin_lock(&mapping->private_lock);
 763		bh = head;
 764		do {
 765			if (atomic_read(&bh->b_count)) {
 766				busy = true;
 767				break;
 768			}
 769			bh = bh->b_this_page;
 770		} while (bh != head);
 771		if (busy) {
 772			if (invalidated) {
 773				rc = -EAGAIN;
 774				goto unlock_buffers;
 775			}
 776			spin_unlock(&mapping->private_lock);
 777			invalidate_bh_lrus();
 778			invalidated = true;
 779			goto recheck_buffers;
 780		}
 781	}
 782
 783	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
 784	if (rc != MIGRATEPAGE_SUCCESS)
 785		goto unlock_buffers;
 
 
 
 
 
 
 
 
 786
 787	ClearPagePrivate(page);
 788	set_page_private(newpage, page_private(page));
 789	set_page_private(page, 0);
 790	put_page(page);
 791	get_page(newpage);
 792
 793	bh = head;
 794	do {
 795		set_bh_page(bh, newpage, bh_offset(bh));
 796		bh = bh->b_this_page;
 797
 798	} while (bh != head);
 799
 800	SetPagePrivate(newpage);
 801
 802	if (mode != MIGRATE_SYNC_NO_COPY)
 803		migrate_page_copy(newpage, page);
 804	else
 805		migrate_page_states(newpage, page);
 806
 807	rc = MIGRATEPAGE_SUCCESS;
 808unlock_buffers:
 809	if (check_refs)
 810		spin_unlock(&mapping->private_lock);
 811	bh = head;
 812	do {
 813		unlock_buffer(bh);
 
 814		bh = bh->b_this_page;
 815
 816	} while (bh != head);
 817
 818	return rc;
 819}
 820
 821/*
 822 * Migration function for pages with buffers. This function can only be used
 823 * if the underlying filesystem guarantees that no other references to "page"
 824 * exist. For example attached buffer heads are accessed only under page lock.
 825 */
 826int buffer_migrate_page(struct address_space *mapping,
 827		struct page *newpage, struct page *page, enum migrate_mode mode)
 828{
 829	return __buffer_migrate_page(mapping, newpage, page, mode, false);
 830}
 831EXPORT_SYMBOL(buffer_migrate_page);
 832
 833/*
 834 * Same as above except that this variant is more careful and checks that there
 835 * are also no buffer head references. This function is the right one for
 836 * mappings where buffer heads are directly looked up and referenced (such as
 837 * block device mappings).
 838 */
 839int buffer_migrate_page_norefs(struct address_space *mapping,
 840		struct page *newpage, struct page *page, enum migrate_mode mode)
 841{
 842	return __buffer_migrate_page(mapping, newpage, page, mode, true);
 843}
 844#endif
 845
 846/*
 847 * Writeback a page to clean the dirty state
 848 */
 849static int writeout(struct address_space *mapping, struct page *page)
 850{
 851	struct writeback_control wbc = {
 852		.sync_mode = WB_SYNC_NONE,
 853		.nr_to_write = 1,
 854		.range_start = 0,
 855		.range_end = LLONG_MAX,
 856		.for_reclaim = 1
 857	};
 858	int rc;
 859
 860	if (!mapping->a_ops->writepage)
 861		/* No write method for the address space */
 862		return -EINVAL;
 863
 864	if (!clear_page_dirty_for_io(page))
 865		/* Someone else already triggered a write */
 866		return -EAGAIN;
 867
 868	/*
 869	 * A dirty page may imply that the underlying filesystem has
 870	 * the page on some queue. So the page must be clean for
 871	 * migration. Writeout may mean we loose the lock and the
 872	 * page state is no longer what we checked for earlier.
 873	 * At this point we know that the migration attempt cannot
 874	 * be successful.
 875	 */
 876	remove_migration_ptes(page, page, false);
 877
 878	rc = mapping->a_ops->writepage(page, &wbc);
 879
 880	if (rc != AOP_WRITEPAGE_ACTIVATE)
 881		/* unlocked. Relock */
 882		lock_page(page);
 883
 884	return (rc < 0) ? -EIO : -EAGAIN;
 885}
 886
 887/*
 888 * Default handling if a filesystem does not provide a migration function.
 889 */
 890static int fallback_migrate_page(struct address_space *mapping,
 891	struct page *newpage, struct page *page, enum migrate_mode mode)
 892{
 893	if (PageDirty(page)) {
 894		/* Only writeback pages in full synchronous migration */
 895		switch (mode) {
 896		case MIGRATE_SYNC:
 897		case MIGRATE_SYNC_NO_COPY:
 898			break;
 899		default:
 900			return -EBUSY;
 901		}
 902		return writeout(mapping, page);
 903	}
 904
 905	/*
 906	 * Buffers may be managed in a filesystem specific way.
 907	 * We must have no buffers or drop them.
 908	 */
 909	if (page_has_private(page) &&
 910	    !try_to_release_page(page, GFP_KERNEL))
 911		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
 912
 913	return migrate_page(mapping, newpage, page, mode);
 914}
 915
 916/*
 917 * Move a page to a newly allocated page
 918 * The page is locked and all ptes have been successfully removed.
 919 *
 920 * The new page will have replaced the old page if this function
 921 * is successful.
 922 *
 923 * Return value:
 924 *   < 0 - error code
 925 *  MIGRATEPAGE_SUCCESS - success
 926 */
 927static int move_to_new_page(struct page *newpage, struct page *page,
 928				enum migrate_mode mode)
 929{
 930	struct address_space *mapping;
 931	int rc = -EAGAIN;
 932	bool is_lru = !__PageMovable(page);
 933
 934	VM_BUG_ON_PAGE(!PageLocked(page), page);
 935	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
 936
 937	mapping = page_mapping(page);
 938
 939	if (likely(is_lru)) {
 940		if (!mapping)
 941			rc = migrate_page(mapping, newpage, page, mode);
 942		else if (mapping->a_ops->migratepage)
 943			/*
 944			 * Most pages have a mapping and most filesystems
 945			 * provide a migratepage callback. Anonymous pages
 946			 * are part of swap space which also has its own
 947			 * migratepage callback. This is the most common path
 948			 * for page migration.
 949			 */
 950			rc = mapping->a_ops->migratepage(mapping, newpage,
 951							page, mode);
 952		else
 953			rc = fallback_migrate_page(mapping, newpage,
 954							page, mode);
 955	} else {
 956		/*
 957		 * In case of non-lru page, it could be released after
 958		 * isolation step. In that case, we shouldn't try migration.
 959		 */
 960		VM_BUG_ON_PAGE(!PageIsolated(page), page);
 961		if (!PageMovable(page)) {
 962			rc = MIGRATEPAGE_SUCCESS;
 963			__ClearPageIsolated(page);
 964			goto out;
 965		}
 966
 967		rc = mapping->a_ops->migratepage(mapping, newpage,
 968						page, mode);
 969		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
 970			!PageIsolated(page));
 971	}
 972
 973	/*
 974	 * When successful, old pagecache page->mapping must be cleared before
 975	 * page is freed; but stats require that PageAnon be left as PageAnon.
 
 976	 */
 977	if (rc == MIGRATEPAGE_SUCCESS) {
 978		if (__PageMovable(page)) {
 979			VM_BUG_ON_PAGE(!PageIsolated(page), page);
 980
 981			/*
 982			 * We clear PG_movable under page_lock so any compactor
 983			 * cannot try to migrate this page.
 984			 */
 985			__ClearPageIsolated(page);
 986		}
 987
 
 
 
 
 988		/*
 989		 * Anonymous and movable page->mapping will be cleard by
 990		 * free_pages_prepare so don't reset it here for keeping
 991		 * the type to work PageAnon, for example.
 
 992		 */
 993		if (!PageMappingFlags(page))
 994			page->mapping = NULL;
 995
 996		if (likely(!is_zone_device_page(newpage)))
 997			flush_dcache_page(newpage);
 998
 
 
 
 
 
 
 999	}
1000out:
 
 
1001	return rc;
1002}
1003
1004static int __unmap_and_move(struct page *page, struct page *newpage,
1005				int force, enum migrate_mode mode)
1006{
1007	int rc = -EAGAIN;
1008	int page_was_mapped = 0;
 
1009	struct anon_vma *anon_vma = NULL;
1010	bool is_lru = !__PageMovable(page);
1011
1012	if (!trylock_page(page)) {
1013		if (!force || mode == MIGRATE_ASYNC)
1014			goto out;
1015
1016		/*
1017		 * It's not safe for direct compaction to call lock_page.
1018		 * For example, during page readahead pages are added locked
1019		 * to the LRU. Later, when the IO completes the pages are
1020		 * marked uptodate and unlocked. However, the queueing
1021		 * could be merging multiple pages for one bio (e.g.
1022		 * mpage_readpages). If an allocation happens for the
1023		 * second or third page, the process can end up locking
1024		 * the same page twice and deadlocking. Rather than
1025		 * trying to be clever about what pages can be locked,
1026		 * avoid the use of lock_page for direct compaction
1027		 * altogether.
1028		 */
1029		if (current->flags & PF_MEMALLOC)
1030			goto out;
1031
1032		lock_page(page);
1033	}
1034
 
 
 
1035	if (PageWriteback(page)) {
1036		/*
1037		 * Only in the case of a full synchronous migration is it
1038		 * necessary to wait for PageWriteback. In the async case,
1039		 * the retry loop is too short and in the sync-light case,
1040		 * the overhead of stalling is too much
1041		 */
1042		switch (mode) {
1043		case MIGRATE_SYNC:
1044		case MIGRATE_SYNC_NO_COPY:
1045			break;
1046		default:
1047			rc = -EBUSY;
1048			goto out_unlock;
1049		}
1050		if (!force)
1051			goto out_unlock;
1052		wait_on_page_writeback(page);
1053	}
1054
1055	/*
1056	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1057	 * we cannot notice that anon_vma is freed while we migrates a page.
1058	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1059	 * of migration. File cache pages are no problem because of page_lock()
1060	 * File Caches may use write_page() or lock_page() in migration, then,
1061	 * just care Anon page here.
1062	 *
1063	 * Only page_get_anon_vma() understands the subtleties of
1064	 * getting a hold on an anon_vma from outside one of its mms.
1065	 * But if we cannot get anon_vma, then we won't need it anyway,
1066	 * because that implies that the anon page is no longer mapped
1067	 * (and cannot be remapped so long as we hold the page lock).
1068	 */
1069	if (PageAnon(page) && !PageKsm(page))
 
 
 
 
1070		anon_vma = page_get_anon_vma(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1071
1072	/*
1073	 * Block others from accessing the new page when we get around to
1074	 * establishing additional references. We are usually the only one
1075	 * holding a reference to newpage at this point. We used to have a BUG
1076	 * here if trylock_page(newpage) fails, but would like to allow for
1077	 * cases where there might be a race with the previous use of newpage.
1078	 * This is much like races on refcount of oldpage: just don't BUG().
1079	 */
1080	if (unlikely(!trylock_page(newpage)))
1081		goto out_unlock;
1082
1083	if (unlikely(!is_lru)) {
1084		rc = move_to_new_page(newpage, page, mode);
1085		goto out_unlock_both;
1086	}
1087
1088	/*
1089	 * Corner case handling:
1090	 * 1. When a new swap-cache page is read into, it is added to the LRU
1091	 * and treated as swapcache but it has no rmap yet.
1092	 * Calling try_to_unmap() against a page->mapping==NULL page will
1093	 * trigger a BUG.  So handle it here.
1094	 * 2. An orphaned page (see truncate_complete_page) might have
1095	 * fs-private metadata. The page can be picked up due to memory
1096	 * offlining.  Everywhere else except page reclaim, the page is
1097	 * invisible to the vm, so the page can not be migrated.  So try to
1098	 * free the metadata, so the page can be freed.
1099	 */
1100	if (!page->mapping) {
1101		VM_BUG_ON_PAGE(PageAnon(page), page);
1102		if (page_has_private(page)) {
1103			try_to_free_buffers(page);
1104			goto out_unlock_both;
1105		}
1106	} else if (page_mapped(page)) {
1107		/* Establish migration ptes */
1108		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1109				page);
1110		try_to_unmap(page,
1111			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1112		page_was_mapped = 1;
1113	}
1114
 
 
 
 
1115	if (!page_mapped(page))
1116		rc = move_to_new_page(newpage, page, mode);
1117
1118	if (page_was_mapped)
1119		remove_migration_ptes(page,
1120			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1121
1122out_unlock_both:
1123	unlock_page(newpage);
1124out_unlock:
1125	/* Drop an anon_vma reference if we took one */
1126	if (anon_vma)
1127		put_anon_vma(anon_vma);
 
 
 
 
 
1128	unlock_page(page);
1129out:
1130	/*
1131	 * If migration is successful, decrease refcount of the newpage
1132	 * which will not free the page because new page owner increased
1133	 * refcounter. As well, if it is LRU page, add the page to LRU
1134	 * list in here. Use the old state of the isolated source page to
1135	 * determine if we migrated a LRU page. newpage was already unlocked
1136	 * and possibly modified by its owner - don't rely on the page
1137	 * state.
1138	 */
1139	if (rc == MIGRATEPAGE_SUCCESS) {
1140		if (unlikely(!is_lru))
1141			put_page(newpage);
1142		else
1143			putback_lru_page(newpage);
1144	}
1145
1146	return rc;
1147}
1148
1149/*
1150 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1151 * around it.
1152 */
1153#if defined(CONFIG_ARM) && \
1154	defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1155#define ICE_noinline noinline
1156#else
1157#define ICE_noinline
1158#endif
1159
1160/*
1161 * Obtain the lock on page, remove all ptes and migrate the page
1162 * to the newly allocated page in newpage.
1163 */
1164static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1165				   free_page_t put_new_page,
1166				   unsigned long private, struct page *page,
1167				   int force, enum migrate_mode mode,
1168				   enum migrate_reason reason)
1169{
1170	int rc = MIGRATEPAGE_SUCCESS;
1171	struct page *newpage;
1172
1173	if (!thp_migration_supported() && PageTransHuge(page))
1174		return -ENOMEM;
1175
1176	newpage = get_new_page(page, private);
1177	if (!newpage)
1178		return -ENOMEM;
1179
1180	if (page_count(page) == 1) {
1181		/* page was freed from under us. So we are done. */
1182		ClearPageActive(page);
1183		ClearPageUnevictable(page);
1184		if (unlikely(__PageMovable(page))) {
1185			lock_page(page);
1186			if (!PageMovable(page))
1187				__ClearPageIsolated(page);
1188			unlock_page(page);
1189		}
1190		if (put_new_page)
1191			put_new_page(newpage, private);
1192		else
1193			put_page(newpage);
1194		goto out;
1195	}
1196
 
 
 
 
1197	rc = __unmap_and_move(page, newpage, force, mode);
1198	if (rc == MIGRATEPAGE_SUCCESS)
1199		set_page_owner_migrate_reason(newpage, reason);
1200
 
 
 
 
 
 
 
 
 
 
 
1201out:
1202	if (rc != -EAGAIN) {
1203		/*
1204		 * A page that has been migrated has all references
1205		 * removed and will be freed. A page that has not been
1206		 * migrated will have kepts its references and be
1207		 * restored.
1208		 */
1209		list_del(&page->lru);
1210
1211		/*
1212		 * Compaction can migrate also non-LRU pages which are
1213		 * not accounted to NR_ISOLATED_*. They can be recognized
1214		 * as __PageMovable
1215		 */
1216		if (likely(!__PageMovable(page)))
1217			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1218					page_is_file_cache(page), -hpage_nr_pages(page));
1219	}
1220
1221	/*
1222	 * If migration is successful, releases reference grabbed during
1223	 * isolation. Otherwise, restore the page to right list unless
1224	 * we want to retry.
1225	 */
1226	if (rc == MIGRATEPAGE_SUCCESS) {
1227		put_page(page);
1228		if (reason == MR_MEMORY_FAILURE) {
1229			/*
1230			 * Set PG_HWPoison on just freed page
1231			 * intentionally. Although it's rather weird,
1232			 * it's how HWPoison flag works at the moment.
1233			 */
1234			if (set_hwpoison_free_buddy_page(page))
1235				num_poisoned_pages_inc();
1236		}
1237	} else {
1238		if (rc != -EAGAIN) {
1239			if (likely(!__PageMovable(page))) {
1240				putback_lru_page(page);
1241				goto put_new;
1242			}
1243
1244			lock_page(page);
1245			if (PageMovable(page))
1246				putback_movable_page(page);
1247			else
1248				__ClearPageIsolated(page);
1249			unlock_page(page);
1250			put_page(page);
1251		}
1252put_new:
1253		if (put_new_page)
1254			put_new_page(newpage, private);
1255		else
1256			put_page(newpage);
1257	}
1258
1259	return rc;
1260}
1261
1262/*
1263 * Counterpart of unmap_and_move_page() for hugepage migration.
1264 *
1265 * This function doesn't wait the completion of hugepage I/O
1266 * because there is no race between I/O and migration for hugepage.
1267 * Note that currently hugepage I/O occurs only in direct I/O
1268 * where no lock is held and PG_writeback is irrelevant,
1269 * and writeback status of all subpages are counted in the reference
1270 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1271 * under direct I/O, the reference of the head page is 512 and a bit more.)
1272 * This means that when we try to migrate hugepage whose subpages are
1273 * doing direct I/O, some references remain after try_to_unmap() and
1274 * hugepage migration fails without data corruption.
1275 *
1276 * There is also no race when direct I/O is issued on the page under migration,
1277 * because then pte is replaced with migration swap entry and direct I/O code
1278 * will wait in the page fault for migration to complete.
1279 */
1280static int unmap_and_move_huge_page(new_page_t get_new_page,
1281				free_page_t put_new_page, unsigned long private,
1282				struct page *hpage, int force,
1283				enum migrate_mode mode, int reason)
1284{
1285	int rc = -EAGAIN;
1286	int page_was_mapped = 0;
1287	struct page *new_hpage;
1288	struct anon_vma *anon_vma = NULL;
1289
1290	/*
1291	 * Migratability of hugepages depends on architectures and their size.
1292	 * This check is necessary because some callers of hugepage migration
1293	 * like soft offline and memory hotremove don't walk through page
1294	 * tables or check whether the hugepage is pmd-based or not before
1295	 * kicking migration.
1296	 */
1297	if (!hugepage_migration_supported(page_hstate(hpage))) {
1298		putback_active_hugepage(hpage);
1299		return -ENOSYS;
1300	}
1301
1302	new_hpage = get_new_page(hpage, private);
1303	if (!new_hpage)
1304		return -ENOMEM;
1305
 
 
1306	if (!trylock_page(hpage)) {
1307		if (!force)
1308			goto out;
1309		switch (mode) {
1310		case MIGRATE_SYNC:
1311		case MIGRATE_SYNC_NO_COPY:
1312			break;
1313		default:
1314			goto out;
1315		}
1316		lock_page(hpage);
1317	}
1318
1319	/*
1320	 * Check for pages which are in the process of being freed.  Without
1321	 * page_mapping() set, hugetlbfs specific move page routine will not
1322	 * be called and we could leak usage counts for subpools.
1323	 */
1324	if (page_private(hpage) && !page_mapping(hpage)) {
1325		rc = -EBUSY;
1326		goto out_unlock;
1327	}
1328
1329	if (PageAnon(hpage))
1330		anon_vma = page_get_anon_vma(hpage);
1331
1332	if (unlikely(!trylock_page(new_hpage)))
1333		goto put_anon;
1334
1335	if (page_mapped(hpage)) {
1336		try_to_unmap(hpage,
1337			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1338		page_was_mapped = 1;
1339	}
1340
1341	if (!page_mapped(hpage))
1342		rc = move_to_new_page(new_hpage, hpage, mode);
1343
1344	if (page_was_mapped)
1345		remove_migration_ptes(hpage,
1346			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1347
1348	unlock_page(new_hpage);
 
1349
1350put_anon:
1351	if (anon_vma)
1352		put_anon_vma(anon_vma);
1353
1354	if (rc == MIGRATEPAGE_SUCCESS) {
1355		move_hugetlb_state(hpage, new_hpage, reason);
1356		put_new_page = NULL;
1357	}
1358
1359out_unlock:
1360	unlock_page(hpage);
1361out:
1362	if (rc != -EAGAIN)
1363		putback_active_hugepage(hpage);
1364
1365	/*
1366	 * If migration was not successful and there's a freeing callback, use
1367	 * it.  Otherwise, put_page() will drop the reference grabbed during
1368	 * isolation.
1369	 */
1370	if (put_new_page)
1371		put_new_page(new_hpage, private);
1372	else
1373		putback_active_hugepage(new_hpage);
1374
1375	return rc;
1376}
1377
1378/*
1379 * migrate_pages - migrate the pages specified in a list, to the free pages
1380 *		   supplied as the target for the page migration
1381 *
1382 * @from:		The list of pages to be migrated.
1383 * @get_new_page:	The function used to allocate free pages to be used
1384 *			as the target of the page migration.
1385 * @put_new_page:	The function used to free target pages if migration
1386 *			fails, or NULL if no special handling is necessary.
1387 * @private:		Private data to be passed on to get_new_page()
1388 * @mode:		The migration mode that specifies the constraints for
1389 *			page migration, if any.
1390 * @reason:		The reason for page migration.
1391 *
1392 * The function returns after 10 attempts or if no pages are movable any more
1393 * because the list has become empty or no retryable pages exist any more.
1394 * The caller should call putback_movable_pages() to return pages to the LRU
1395 * or free list only if ret != 0.
1396 *
1397 * Returns the number of pages that were not migrated, or an error code.
1398 */
1399int migrate_pages(struct list_head *from, new_page_t get_new_page,
1400		free_page_t put_new_page, unsigned long private,
1401		enum migrate_mode mode, int reason)
1402{
1403	int retry = 1;
1404	int nr_failed = 0;
1405	int nr_succeeded = 0;
1406	int pass = 0;
1407	struct page *page;
1408	struct page *page2;
1409	int swapwrite = current->flags & PF_SWAPWRITE;
1410	int rc;
1411
1412	if (!swapwrite)
1413		current->flags |= PF_SWAPWRITE;
1414
1415	for(pass = 0; pass < 10 && retry; pass++) {
1416		retry = 0;
1417
1418		list_for_each_entry_safe(page, page2, from, lru) {
1419retry:
1420			cond_resched();
1421
1422			if (PageHuge(page))
1423				rc = unmap_and_move_huge_page(get_new_page,
1424						put_new_page, private, page,
1425						pass > 2, mode, reason);
1426			else
1427				rc = unmap_and_move(get_new_page, put_new_page,
1428						private, page, pass > 2, mode,
1429						reason);
1430
1431			switch(rc) {
1432			case -ENOMEM:
1433				/*
1434				 * THP migration might be unsupported or the
1435				 * allocation could've failed so we should
1436				 * retry on the same page with the THP split
1437				 * to base pages.
1438				 *
1439				 * Head page is retried immediately and tail
1440				 * pages are added to the tail of the list so
1441				 * we encounter them after the rest of the list
1442				 * is processed.
1443				 */
1444				if (PageTransHuge(page) && !PageHuge(page)) {
1445					lock_page(page);
1446					rc = split_huge_page_to_list(page, from);
1447					unlock_page(page);
1448					if (!rc) {
1449						list_safe_reset_next(page, page2, lru);
1450						goto retry;
1451					}
1452				}
1453				nr_failed++;
1454				goto out;
1455			case -EAGAIN:
1456				retry++;
1457				break;
1458			case MIGRATEPAGE_SUCCESS:
1459				nr_succeeded++;
1460				break;
1461			default:
1462				/*
1463				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1464				 * unlike -EAGAIN case, the failed page is
1465				 * removed from migration page list and not
1466				 * retried in the next outer loop.
1467				 */
1468				nr_failed++;
1469				break;
1470			}
1471		}
1472	}
1473	nr_failed += retry;
1474	rc = nr_failed;
1475out:
1476	if (nr_succeeded)
1477		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1478	if (nr_failed)
1479		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1480	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1481
1482	if (!swapwrite)
1483		current->flags &= ~PF_SWAPWRITE;
1484
1485	return rc;
1486}
1487
1488#ifdef CONFIG_NUMA
 
 
 
 
 
 
 
 
 
1489
1490static int store_status(int __user *status, int start, int value, int nr)
 
1491{
1492	while (nr-- > 0) {
1493		if (put_user(value, status + start))
1494			return -EFAULT;
1495		start++;
1496	}
1497
1498	return 0;
1499}
1500
1501static int do_move_pages_to_node(struct mm_struct *mm,
1502		struct list_head *pagelist, int node)
1503{
1504	int err;
1505
1506	if (list_empty(pagelist))
1507		return 0;
1508
1509	err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1510			MIGRATE_SYNC, MR_SYSCALL);
1511	if (err)
1512		putback_movable_pages(pagelist);
1513	return err;
 
1514}
1515
1516/*
1517 * Resolves the given address to a struct page, isolates it from the LRU and
1518 * puts it to the given pagelist.
1519 * Returns -errno if the page cannot be found/isolated or 0 when it has been
1520 * queued or the page doesn't need to be migrated because it is already on
1521 * the target node
1522 */
1523static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1524		int node, struct list_head *pagelist, bool migrate_all)
 
1525{
1526	struct vm_area_struct *vma;
1527	struct page *page;
1528	unsigned int follflags;
1529	int err;
 
 
1530
1531	down_read(&mm->mmap_sem);
1532	err = -EFAULT;
1533	vma = find_vma(mm, addr);
1534	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1535		goto out;
1536
1537	/* FOLL_DUMP to ignore special (like zero) pages */
1538	follflags = FOLL_GET | FOLL_DUMP;
1539	page = follow_page(vma, addr, follflags);
 
 
 
1540
1541	err = PTR_ERR(page);
1542	if (IS_ERR(page))
1543		goto out;
 
1544
1545	err = -ENOENT;
1546	if (!page)
1547		goto out;
1548
1549	err = 0;
1550	if (page_to_nid(page) == node)
1551		goto out_putpage;
1552
1553	err = -EACCES;
1554	if (page_mapcount(page) > 1 && !migrate_all)
1555		goto out_putpage;
1556
1557	if (PageHuge(page)) {
1558		if (PageHead(page)) {
1559			isolate_huge_page(page, pagelist);
1560			err = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1561		}
1562	} else {
1563		struct page *head;
 
 
 
 
 
 
 
 
1564
1565		head = compound_head(page);
1566		err = isolate_lru_page(head);
 
 
1567		if (err)
1568			goto out_putpage;
 
1569
1570		err = 0;
1571		list_add_tail(&head->lru, pagelist);
1572		mod_node_page_state(page_pgdat(head),
1573			NR_ISOLATED_ANON + page_is_file_cache(head),
1574			hpage_nr_pages(head));
1575	}
1576out_putpage:
1577	/*
1578	 * Either remove the duplicate refcount from
1579	 * isolate_lru_page() or drop the page ref if it was
1580	 * not isolated.
1581	 */
1582	put_page(page);
1583out:
1584	up_read(&mm->mmap_sem);
1585	return err;
1586}
1587
1588/*
1589 * Migrate an array of page address onto an array of nodes and fill
1590 * the corresponding array of status.
1591 */
1592static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1593			 unsigned long nr_pages,
1594			 const void __user * __user *pages,
1595			 const int __user *nodes,
1596			 int __user *status, int flags)
1597{
1598	int current_node = NUMA_NO_NODE;
1599	LIST_HEAD(pagelist);
1600	int start, i;
1601	int err = 0, err1;
 
 
 
 
 
1602
1603	migrate_prep();
1604
1605	for (i = start = 0; i < nr_pages; i++) {
1606		const void __user *p;
1607		unsigned long addr;
1608		int node;
 
1609
1610		err = -EFAULT;
1611		if (get_user(p, pages + i))
1612			goto out_flush;
1613		if (get_user(node, nodes + i))
1614			goto out_flush;
1615		addr = (unsigned long)untagged_addr(p);
1616
1617		err = -ENODEV;
1618		if (node < 0 || node >= MAX_NUMNODES)
1619			goto out_flush;
1620		if (!node_state(node, N_MEMORY))
1621			goto out_flush;
1622
1623		err = -EACCES;
1624		if (!node_isset(node, task_nodes))
1625			goto out_flush;
1626
1627		if (current_node == NUMA_NO_NODE) {
1628			current_node = node;
1629			start = i;
1630		} else if (node != current_node) {
1631			err = do_move_pages_to_node(mm, &pagelist, current_node);
1632			if (err)
1633				goto out;
1634			err = store_status(status, start, current_node, i - start);
1635			if (err)
1636				goto out;
1637			start = i;
1638			current_node = node;
1639		}
1640
1641		/*
1642		 * Errors in the page lookup or isolation are not fatal and we simply
1643		 * report them via status
1644		 */
1645		err = add_page_for_migration(mm, addr, current_node,
1646				&pagelist, flags & MPOL_MF_MOVE_ALL);
1647		if (!err)
1648			continue;
1649
1650		err = store_status(status, i, err, 1);
1651		if (err)
1652			goto out_flush;
1653
1654		err = do_move_pages_to_node(mm, &pagelist, current_node);
1655		if (err)
1656			goto out;
1657		if (i > start) {
1658			err = store_status(status, start, current_node, i - start);
1659			if (err)
1660				goto out;
 
 
 
 
 
1661		}
1662		current_node = NUMA_NO_NODE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1663	}
1664out_flush:
1665	if (list_empty(&pagelist))
1666		return err;
1667
1668	/* Make sure we do not overwrite the existing error */
1669	err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1670	if (!err1)
1671		err1 = store_status(status, start, current_node, i - start);
1672	if (!err)
1673		err = err1;
1674out:
1675	return err;
1676}
1677
1678/*
1679 * Determine the nodes of an array of pages and store it in an array of status.
1680 */
1681static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1682				const void __user **pages, int *status)
1683{
1684	unsigned long i;
1685
1686	down_read(&mm->mmap_sem);
1687
1688	for (i = 0; i < nr_pages; i++) {
1689		unsigned long addr = (unsigned long)(*pages);
1690		struct vm_area_struct *vma;
1691		struct page *page;
1692		int err = -EFAULT;
1693
1694		vma = find_vma(mm, addr);
1695		if (!vma || addr < vma->vm_start)
1696			goto set_status;
1697
1698		/* FOLL_DUMP to ignore special (like zero) pages */
1699		page = follow_page(vma, addr, FOLL_DUMP);
1700
1701		err = PTR_ERR(page);
1702		if (IS_ERR(page))
1703			goto set_status;
1704
1705		err = page ? page_to_nid(page) : -ENOENT;
 
 
 
 
 
1706set_status:
1707		*status = err;
1708
1709		pages++;
1710		status++;
1711	}
1712
1713	up_read(&mm->mmap_sem);
1714}
1715
1716/*
1717 * Determine the nodes of a user array of pages and store it in
1718 * a user array of status.
1719 */
1720static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1721			 const void __user * __user *pages,
1722			 int __user *status)
1723{
1724#define DO_PAGES_STAT_CHUNK_NR 16
1725	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1726	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1727
1728	while (nr_pages) {
1729		unsigned long chunk_nr;
1730
1731		chunk_nr = nr_pages;
1732		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1733			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1734
1735		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1736			break;
1737
1738		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1739
1740		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1741			break;
1742
1743		pages += chunk_nr;
1744		status += chunk_nr;
1745		nr_pages -= chunk_nr;
1746	}
1747	return nr_pages ? -EFAULT : 0;
1748}
1749
1750/*
1751 * Move a list of pages in the address space of the currently executing
1752 * process.
1753 */
1754static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1755			     const void __user * __user *pages,
1756			     const int __user *nodes,
1757			     int __user *status, int flags)
1758{
 
1759	struct task_struct *task;
1760	struct mm_struct *mm;
1761	int err;
1762	nodemask_t task_nodes;
1763
1764	/* Check flags */
1765	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1766		return -EINVAL;
1767
1768	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1769		return -EPERM;
1770
1771	/* Find the mm_struct */
1772	rcu_read_lock();
1773	task = pid ? find_task_by_vpid(pid) : current;
1774	if (!task) {
1775		rcu_read_unlock();
1776		return -ESRCH;
1777	}
1778	get_task_struct(task);
1779
1780	/*
1781	 * Check if this process has the right to modify the specified
1782	 * process. Use the regular "ptrace_may_access()" checks.
1783	 */
1784	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
 
 
 
 
 
1785		rcu_read_unlock();
1786		err = -EPERM;
1787		goto out;
1788	}
1789	rcu_read_unlock();
1790
1791 	err = security_task_movememory(task);
1792 	if (err)
1793		goto out;
1794
1795	task_nodes = cpuset_mems_allowed(task);
1796	mm = get_task_mm(task);
1797	put_task_struct(task);
1798
1799	if (!mm)
1800		return -EINVAL;
1801
1802	if (nodes)
1803		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1804				    nodes, status, flags);
1805	else
1806		err = do_pages_stat(mm, nr_pages, pages, status);
1807
1808	mmput(mm);
1809	return err;
1810
1811out:
1812	put_task_struct(task);
1813	return err;
1814}
1815
1816SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1817		const void __user * __user *, pages,
1818		const int __user *, nodes,
1819		int __user *, status, int, flags)
1820{
1821	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1822}
1823
1824#ifdef CONFIG_COMPAT
1825COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1826		       compat_uptr_t __user *, pages32,
1827		       const int __user *, nodes,
1828		       int __user *, status,
1829		       int, flags)
1830{
1831	const void __user * __user *pages;
1832	int i;
1833
1834	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1835	for (i = 0; i < nr_pages; i++) {
1836		compat_uptr_t p;
1837
1838		if (get_user(p, pages32 + i) ||
1839			put_user(compat_ptr(p), pages + i))
1840			return -EFAULT;
1841	}
1842	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1843}
1844#endif /* CONFIG_COMPAT */
1845
1846#ifdef CONFIG_NUMA_BALANCING
1847/*
1848 * Returns true if this is a safe migration target node for misplaced NUMA
1849 * pages. Currently it only checks the watermarks which crude
1850 */
1851static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1852				   unsigned long nr_migrate_pages)
1853{
1854	int z;
1855
1856	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1857		struct zone *zone = pgdat->node_zones + z;
1858
1859		if (!populated_zone(zone))
1860			continue;
1861
 
 
 
1862		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1863		if (!zone_watermark_ok(zone, 0,
1864				       high_wmark_pages(zone) +
1865				       nr_migrate_pages,
1866				       0, 0))
1867			continue;
1868		return true;
1869	}
1870	return false;
1871}
1872
1873static struct page *alloc_misplaced_dst_page(struct page *page,
1874					   unsigned long data)
 
1875{
1876	int nid = (int) data;
1877	struct page *newpage;
1878
1879	newpage = __alloc_pages_node(nid,
1880					 (GFP_HIGHUSER_MOVABLE |
1881					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1882					  __GFP_NORETRY | __GFP_NOWARN) &
1883					 ~__GFP_RECLAIM, 0);
1884
1885	return newpage;
1886}
1887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1888static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1889{
1890	int page_lru;
1891
1892	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1893
1894	/* Avoid migrating to a node that is nearly full */
1895	if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
1896		return 0;
1897
1898	if (isolate_lru_page(page))
1899		return 0;
1900
1901	/*
1902	 * migrate_misplaced_transhuge_page() skips page migration's usual
1903	 * check on page_count(), so we must do it here, now that the page
1904	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1905	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1906	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1907	 */
1908	if (PageTransHuge(page) && page_count(page) != 3) {
1909		putback_lru_page(page);
1910		return 0;
1911	}
1912
1913	page_lru = page_is_file_cache(page);
1914	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1915				hpage_nr_pages(page));
1916
1917	/*
1918	 * Isolating the page has taken another reference, so the
1919	 * caller's reference can be safely dropped without the page
1920	 * disappearing underneath us during migration.
1921	 */
1922	put_page(page);
1923	return 1;
1924}
1925
1926bool pmd_trans_migrating(pmd_t pmd)
1927{
1928	struct page *page = pmd_page(pmd);
1929	return PageLocked(page);
1930}
1931
 
 
 
 
 
 
1932/*
1933 * Attempt to migrate a misplaced page to the specified destination
1934 * node. Caller is expected to have an elevated reference count on
1935 * the page that will be dropped by this function before returning.
1936 */
1937int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1938			   int node)
1939{
1940	pg_data_t *pgdat = NODE_DATA(node);
1941	int isolated;
1942	int nr_remaining;
1943	LIST_HEAD(migratepages);
1944
1945	/*
1946	 * Don't migrate file pages that are mapped in multiple processes
1947	 * with execute permissions as they are probably shared libraries.
1948	 */
1949	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1950	    (vma->vm_flags & VM_EXEC))
1951		goto out;
1952
1953	/*
1954	 * Also do not migrate dirty pages as not all filesystems can move
1955	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
 
1956	 */
1957	if (page_is_file_cache(page) && PageDirty(page))
1958		goto out;
1959
1960	isolated = numamigrate_isolate_page(pgdat, page);
1961	if (!isolated)
1962		goto out;
1963
1964	list_add(&page->lru, &migratepages);
1965	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1966				     NULL, node, MIGRATE_ASYNC,
1967				     MR_NUMA_MISPLACED);
1968	if (nr_remaining) {
1969		if (!list_empty(&migratepages)) {
1970			list_del(&page->lru);
1971			dec_node_page_state(page, NR_ISOLATED_ANON +
1972					page_is_file_cache(page));
1973			putback_lru_page(page);
1974		}
1975		isolated = 0;
1976	} else
1977		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1978	BUG_ON(!list_empty(&migratepages));
1979	return isolated;
1980
1981out:
1982	put_page(page);
1983	return 0;
1984}
1985#endif /* CONFIG_NUMA_BALANCING */
1986
1987#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1988/*
1989 * Migrates a THP to a given target node. page must be locked and is unlocked
1990 * before returning.
1991 */
1992int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1993				struct vm_area_struct *vma,
1994				pmd_t *pmd, pmd_t entry,
1995				unsigned long address,
1996				struct page *page, int node)
1997{
1998	spinlock_t *ptl;
1999	pg_data_t *pgdat = NODE_DATA(node);
2000	int isolated = 0;
2001	struct page *new_page = NULL;
 
2002	int page_lru = page_is_file_cache(page);
2003	unsigned long start = address & HPAGE_PMD_MASK;
 
 
 
 
 
 
 
 
 
 
2004
2005	new_page = alloc_pages_node(node,
2006		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2007		HPAGE_PMD_ORDER);
2008	if (!new_page)
2009		goto out_fail;
2010	prep_transhuge_page(new_page);
2011
2012	isolated = numamigrate_isolate_page(pgdat, page);
2013	if (!isolated) {
2014		put_page(new_page);
2015		goto out_fail;
2016	}
2017
 
 
 
2018	/* Prepare a page as a migration target */
2019	__SetPageLocked(new_page);
2020	if (PageSwapBacked(page))
2021		__SetPageSwapBacked(new_page);
2022
2023	/* anon mapping, we can simply copy page->mapping to the new page: */
2024	new_page->mapping = page->mapping;
2025	new_page->index = page->index;
2026	/* flush the cache before copying using the kernel virtual address */
2027	flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2028	migrate_page_copy(new_page, page);
2029	WARN_ON(PageLRU(new_page));
2030
2031	/* Recheck the target PMD */
 
2032	ptl = pmd_lock(mm, pmd);
2033	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
 
2034		spin_unlock(ptl);
 
2035
2036		/* Reverse changes made by migrate_page_copy() */
2037		if (TestClearPageActive(new_page))
2038			SetPageActive(page);
2039		if (TestClearPageUnevictable(new_page))
2040			SetPageUnevictable(page);
 
2041
2042		unlock_page(new_page);
2043		put_page(new_page);		/* Free it */
2044
2045		/* Retake the callers reference and putback on LRU */
2046		get_page(page);
2047		putback_lru_page(page);
2048		mod_node_page_state(page_pgdat(page),
2049			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2050
2051		goto out_unlock;
2052	}
2053
2054	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
 
 
 
 
 
 
 
 
 
 
 
2055	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2056
2057	/*
2058	 * Overwrite the old entry under pagetable lock and establish
2059	 * the new PTE. Any parallel GUP will either observe the old
2060	 * page blocking on the page lock, block on the page table
2061	 * lock or observe the new page. The SetPageUptodate on the
2062	 * new page and page_add_new_anon_rmap guarantee the copy is
2063	 * visible before the pagetable update.
2064	 */
2065	page_add_anon_rmap(new_page, vma, start, true);
2066	/*
2067	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2068	 * has already been flushed globally.  So no TLB can be currently
2069	 * caching this non present pmd mapping.  There's no need to clear the
2070	 * pmd before doing set_pmd_at(), nor to flush the TLB after
2071	 * set_pmd_at().  Clearing the pmd here would introduce a race
2072	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2073	 * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2074	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2075	 * pmd.
2076	 */
2077	set_pmd_at(mm, start, pmd, entry);
2078	update_mmu_cache_pmd(vma, address, &entry);
2079
2080	page_ref_unfreeze(page, 2);
2081	mlock_migrate_page(new_page, page);
2082	page_remove_rmap(page, true);
2083	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
 
 
 
2084
2085	spin_unlock(ptl);
2086
2087	/* Take an "isolate" reference and put new page on the LRU. */
2088	get_page(new_page);
2089	putback_lru_page(new_page);
 
 
 
 
 
2090
2091	unlock_page(new_page);
2092	unlock_page(page);
2093	put_page(page);			/* Drop the rmap reference */
2094	put_page(page);			/* Drop the LRU isolation reference */
2095
2096	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2097	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2098
2099	mod_node_page_state(page_pgdat(page),
2100			NR_ISOLATED_ANON + page_lru,
2101			-HPAGE_PMD_NR);
2102	return isolated;
2103
2104out_fail:
2105	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
 
2106	ptl = pmd_lock(mm, pmd);
2107	if (pmd_same(*pmd, entry)) {
2108		entry = pmd_modify(entry, vma->vm_page_prot);
2109		set_pmd_at(mm, start, pmd, entry);
2110		update_mmu_cache_pmd(vma, address, &entry);
2111	}
2112	spin_unlock(ptl);
2113
2114out_unlock:
2115	unlock_page(page);
2116	put_page(page);
2117	return 0;
2118}
2119#endif /* CONFIG_NUMA_BALANCING */
2120
2121#endif /* CONFIG_NUMA */
2122
2123#ifdef CONFIG_DEVICE_PRIVATE
2124static int migrate_vma_collect_hole(unsigned long start,
2125				    unsigned long end,
2126				    struct mm_walk *walk)
2127{
2128	struct migrate_vma *migrate = walk->private;
2129	unsigned long addr;
2130
2131	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2132		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2133		migrate->dst[migrate->npages] = 0;
2134		migrate->npages++;
2135		migrate->cpages++;
2136	}
2137
2138	return 0;
2139}
2140
2141static int migrate_vma_collect_skip(unsigned long start,
2142				    unsigned long end,
2143				    struct mm_walk *walk)
2144{
2145	struct migrate_vma *migrate = walk->private;
2146	unsigned long addr;
2147
2148	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2149		migrate->dst[migrate->npages] = 0;
2150		migrate->src[migrate->npages++] = 0;
2151	}
2152
2153	return 0;
2154}
2155
2156static int migrate_vma_collect_pmd(pmd_t *pmdp,
2157				   unsigned long start,
2158				   unsigned long end,
2159				   struct mm_walk *walk)
2160{
2161	struct migrate_vma *migrate = walk->private;
2162	struct vm_area_struct *vma = walk->vma;
2163	struct mm_struct *mm = vma->vm_mm;
2164	unsigned long addr = start, unmapped = 0;
2165	spinlock_t *ptl;
2166	pte_t *ptep;
2167
2168again:
2169	if (pmd_none(*pmdp))
2170		return migrate_vma_collect_hole(start, end, walk);
2171
2172	if (pmd_trans_huge(*pmdp)) {
2173		struct page *page;
2174
2175		ptl = pmd_lock(mm, pmdp);
2176		if (unlikely(!pmd_trans_huge(*pmdp))) {
2177			spin_unlock(ptl);
2178			goto again;
2179		}
2180
2181		page = pmd_page(*pmdp);
2182		if (is_huge_zero_page(page)) {
2183			spin_unlock(ptl);
2184			split_huge_pmd(vma, pmdp, addr);
2185			if (pmd_trans_unstable(pmdp))
2186				return migrate_vma_collect_skip(start, end,
2187								walk);
2188		} else {
2189			int ret;
2190
2191			get_page(page);
2192			spin_unlock(ptl);
2193			if (unlikely(!trylock_page(page)))
2194				return migrate_vma_collect_skip(start, end,
2195								walk);
2196			ret = split_huge_page(page);
2197			unlock_page(page);
2198			put_page(page);
2199			if (ret)
2200				return migrate_vma_collect_skip(start, end,
2201								walk);
2202			if (pmd_none(*pmdp))
2203				return migrate_vma_collect_hole(start, end,
2204								walk);
2205		}
2206	}
2207
2208	if (unlikely(pmd_bad(*pmdp)))
2209		return migrate_vma_collect_skip(start, end, walk);
2210
2211	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2212	arch_enter_lazy_mmu_mode();
2213
2214	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2215		unsigned long mpfn, pfn;
2216		struct page *page;
2217		swp_entry_t entry;
2218		pte_t pte;
2219
2220		pte = *ptep;
2221
2222		if (pte_none(pte)) {
2223			mpfn = MIGRATE_PFN_MIGRATE;
2224			migrate->cpages++;
2225			goto next;
2226		}
2227
2228		if (!pte_present(pte)) {
2229			mpfn = 0;
2230
2231			/*
2232			 * Only care about unaddressable device page special
2233			 * page table entry. Other special swap entries are not
2234			 * migratable, and we ignore regular swapped page.
2235			 */
2236			entry = pte_to_swp_entry(pte);
2237			if (!is_device_private_entry(entry))
2238				goto next;
2239
2240			page = device_private_entry_to_page(entry);
2241			mpfn = migrate_pfn(page_to_pfn(page)) |
2242					MIGRATE_PFN_MIGRATE;
2243			if (is_write_device_private_entry(entry))
2244				mpfn |= MIGRATE_PFN_WRITE;
2245		} else {
2246			pfn = pte_pfn(pte);
2247			if (is_zero_pfn(pfn)) {
2248				mpfn = MIGRATE_PFN_MIGRATE;
2249				migrate->cpages++;
2250				goto next;
2251			}
2252			page = vm_normal_page(migrate->vma, addr, pte);
2253			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2254			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2255		}
2256
2257		/* FIXME support THP */
2258		if (!page || !page->mapping || PageTransCompound(page)) {
2259			mpfn = 0;
2260			goto next;
2261		}
2262
2263		/*
2264		 * By getting a reference on the page we pin it and that blocks
2265		 * any kind of migration. Side effect is that it "freezes" the
2266		 * pte.
2267		 *
2268		 * We drop this reference after isolating the page from the lru
2269		 * for non device page (device page are not on the lru and thus
2270		 * can't be dropped from it).
2271		 */
2272		get_page(page);
2273		migrate->cpages++;
2274
2275		/*
2276		 * Optimize for the common case where page is only mapped once
2277		 * in one process. If we can lock the page, then we can safely
2278		 * set up a special migration page table entry now.
2279		 */
2280		if (trylock_page(page)) {
2281			pte_t swp_pte;
2282
2283			mpfn |= MIGRATE_PFN_LOCKED;
2284			ptep_get_and_clear(mm, addr, ptep);
2285
2286			/* Setup special migration page table entry */
2287			entry = make_migration_entry(page, mpfn &
2288						     MIGRATE_PFN_WRITE);
2289			swp_pte = swp_entry_to_pte(entry);
2290			if (pte_soft_dirty(pte))
2291				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2292			set_pte_at(mm, addr, ptep, swp_pte);
2293
2294			/*
2295			 * This is like regular unmap: we remove the rmap and
2296			 * drop page refcount. Page won't be freed, as we took
2297			 * a reference just above.
2298			 */
2299			page_remove_rmap(page, false);
2300			put_page(page);
2301
2302			if (pte_present(pte))
2303				unmapped++;
2304		}
2305
2306next:
2307		migrate->dst[migrate->npages] = 0;
2308		migrate->src[migrate->npages++] = mpfn;
2309	}
2310	arch_leave_lazy_mmu_mode();
2311	pte_unmap_unlock(ptep - 1, ptl);
2312
2313	/* Only flush the TLB if we actually modified any entries */
2314	if (unmapped)
2315		flush_tlb_range(walk->vma, start, end);
2316
2317	return 0;
2318}
2319
2320static const struct mm_walk_ops migrate_vma_walk_ops = {
2321	.pmd_entry		= migrate_vma_collect_pmd,
2322	.pte_hole		= migrate_vma_collect_hole,
2323};
2324
2325/*
2326 * migrate_vma_collect() - collect pages over a range of virtual addresses
2327 * @migrate: migrate struct containing all migration information
2328 *
2329 * This will walk the CPU page table. For each virtual address backed by a
2330 * valid page, it updates the src array and takes a reference on the page, in
2331 * order to pin the page until we lock it and unmap it.
2332 */
2333static void migrate_vma_collect(struct migrate_vma *migrate)
2334{
2335	struct mmu_notifier_range range;
2336
2337	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL,
2338			migrate->vma->vm_mm, migrate->start, migrate->end);
2339	mmu_notifier_invalidate_range_start(&range);
2340
2341	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2342			&migrate_vma_walk_ops, migrate);
2343
2344	mmu_notifier_invalidate_range_end(&range);
2345	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2346}
2347
2348/*
2349 * migrate_vma_check_page() - check if page is pinned or not
2350 * @page: struct page to check
2351 *
2352 * Pinned pages cannot be migrated. This is the same test as in
2353 * migrate_page_move_mapping(), except that here we allow migration of a
2354 * ZONE_DEVICE page.
2355 */
2356static bool migrate_vma_check_page(struct page *page)
2357{
2358	/*
2359	 * One extra ref because caller holds an extra reference, either from
2360	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2361	 * a device page.
2362	 */
2363	int extra = 1;
2364
2365	/*
2366	 * FIXME support THP (transparent huge page), it is bit more complex to
2367	 * check them than regular pages, because they can be mapped with a pmd
2368	 * or with a pte (split pte mapping).
2369	 */
2370	if (PageCompound(page))
2371		return false;
2372
2373	/* Page from ZONE_DEVICE have one extra reference */
2374	if (is_zone_device_page(page)) {
2375		/*
2376		 * Private page can never be pin as they have no valid pte and
2377		 * GUP will fail for those. Yet if there is a pending migration
2378		 * a thread might try to wait on the pte migration entry and
2379		 * will bump the page reference count. Sadly there is no way to
2380		 * differentiate a regular pin from migration wait. Hence to
2381		 * avoid 2 racing thread trying to migrate back to CPU to enter
2382		 * infinite loop (one stoping migration because the other is
2383		 * waiting on pte migration entry). We always return true here.
2384		 *
2385		 * FIXME proper solution is to rework migration_entry_wait() so
2386		 * it does not need to take a reference on page.
2387		 */
2388		return is_device_private_page(page);
2389	}
2390
2391	/* For file back page */
2392	if (page_mapping(page))
2393		extra += 1 + page_has_private(page);
2394
2395	if ((page_count(page) - extra) > page_mapcount(page))
2396		return false;
2397
2398	return true;
2399}
2400
2401/*
2402 * migrate_vma_prepare() - lock pages and isolate them from the lru
2403 * @migrate: migrate struct containing all migration information
2404 *
2405 * This locks pages that have been collected by migrate_vma_collect(). Once each
2406 * page is locked it is isolated from the lru (for non-device pages). Finally,
2407 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2408 * migrated by concurrent kernel threads.
2409 */
2410static void migrate_vma_prepare(struct migrate_vma *migrate)
2411{
2412	const unsigned long npages = migrate->npages;
2413	const unsigned long start = migrate->start;
2414	unsigned long addr, i, restore = 0;
2415	bool allow_drain = true;
2416
2417	lru_add_drain();
2418
2419	for (i = 0; (i < npages) && migrate->cpages; i++) {
2420		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2421		bool remap = true;
2422
2423		if (!page)
2424			continue;
2425
2426		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2427			/*
2428			 * Because we are migrating several pages there can be
2429			 * a deadlock between 2 concurrent migration where each
2430			 * are waiting on each other page lock.
2431			 *
2432			 * Make migrate_vma() a best effort thing and backoff
2433			 * for any page we can not lock right away.
2434			 */
2435			if (!trylock_page(page)) {
2436				migrate->src[i] = 0;
2437				migrate->cpages--;
2438				put_page(page);
2439				continue;
2440			}
2441			remap = false;
2442			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2443		}
2444
2445		/* ZONE_DEVICE pages are not on LRU */
2446		if (!is_zone_device_page(page)) {
2447			if (!PageLRU(page) && allow_drain) {
2448				/* Drain CPU's pagevec */
2449				lru_add_drain_all();
2450				allow_drain = false;
2451			}
2452
2453			if (isolate_lru_page(page)) {
2454				if (remap) {
2455					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2456					migrate->cpages--;
2457					restore++;
2458				} else {
2459					migrate->src[i] = 0;
2460					unlock_page(page);
2461					migrate->cpages--;
2462					put_page(page);
2463				}
2464				continue;
2465			}
2466
2467			/* Drop the reference we took in collect */
2468			put_page(page);
2469		}
2470
2471		if (!migrate_vma_check_page(page)) {
2472			if (remap) {
2473				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2474				migrate->cpages--;
2475				restore++;
2476
2477				if (!is_zone_device_page(page)) {
2478					get_page(page);
2479					putback_lru_page(page);
2480				}
2481			} else {
2482				migrate->src[i] = 0;
2483				unlock_page(page);
2484				migrate->cpages--;
2485
2486				if (!is_zone_device_page(page))
2487					putback_lru_page(page);
2488				else
2489					put_page(page);
2490			}
2491		}
2492	}
2493
2494	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2495		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2496
2497		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2498			continue;
2499
2500		remove_migration_pte(page, migrate->vma, addr, page);
2501
2502		migrate->src[i] = 0;
2503		unlock_page(page);
2504		put_page(page);
2505		restore--;
2506	}
2507}
2508
2509/*
2510 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2511 * @migrate: migrate struct containing all migration information
2512 *
2513 * Replace page mapping (CPU page table pte) with a special migration pte entry
2514 * and check again if it has been pinned. Pinned pages are restored because we
2515 * cannot migrate them.
2516 *
2517 * This is the last step before we call the device driver callback to allocate
2518 * destination memory and copy contents of original page over to new page.
2519 */
2520static void migrate_vma_unmap(struct migrate_vma *migrate)
2521{
2522	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2523	const unsigned long npages = migrate->npages;
2524	const unsigned long start = migrate->start;
2525	unsigned long addr, i, restore = 0;
2526
2527	for (i = 0; i < npages; i++) {
2528		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2529
2530		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2531			continue;
2532
2533		if (page_mapped(page)) {
2534			try_to_unmap(page, flags);
2535			if (page_mapped(page))
2536				goto restore;
2537		}
2538
2539		if (migrate_vma_check_page(page))
2540			continue;
2541
2542restore:
2543		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2544		migrate->cpages--;
2545		restore++;
2546	}
2547
2548	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2549		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2550
2551		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2552			continue;
2553
2554		remove_migration_ptes(page, page, false);
2555
2556		migrate->src[i] = 0;
2557		unlock_page(page);
2558		restore--;
2559
2560		if (is_zone_device_page(page))
2561			put_page(page);
2562		else
2563			putback_lru_page(page);
2564	}
2565}
2566
2567/**
2568 * migrate_vma_setup() - prepare to migrate a range of memory
2569 * @args: contains the vma, start, and and pfns arrays for the migration
2570 *
2571 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2572 * without an error.
2573 *
2574 * Prepare to migrate a range of memory virtual address range by collecting all
2575 * the pages backing each virtual address in the range, saving them inside the
2576 * src array.  Then lock those pages and unmap them. Once the pages are locked
2577 * and unmapped, check whether each page is pinned or not.  Pages that aren't
2578 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2579 * corresponding src array entry.  Then restores any pages that are pinned, by
2580 * remapping and unlocking those pages.
2581 *
2582 * The caller should then allocate destination memory and copy source memory to
2583 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2584 * flag set).  Once these are allocated and copied, the caller must update each
2585 * corresponding entry in the dst array with the pfn value of the destination
2586 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2587 * (destination pages must have their struct pages locked, via lock_page()).
2588 *
2589 * Note that the caller does not have to migrate all the pages that are marked
2590 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2591 * device memory to system memory.  If the caller cannot migrate a device page
2592 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2593 * consequences for the userspace process, so it must be avoided if at all
2594 * possible.
2595 *
2596 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2597 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2598 * allowing the caller to allocate device memory for those unback virtual
2599 * address.  For this the caller simply has to allocate device memory and
2600 * properly set the destination entry like for regular migration.  Note that
2601 * this can still fails and thus inside the device driver must check if the
2602 * migration was successful for those entries after calling migrate_vma_pages()
2603 * just like for regular migration.
2604 *
2605 * After that, the callers must call migrate_vma_pages() to go over each entry
2606 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2607 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2608 * then migrate_vma_pages() to migrate struct page information from the source
2609 * struct page to the destination struct page.  If it fails to migrate the
2610 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2611 * src array.
2612 *
2613 * At this point all successfully migrated pages have an entry in the src
2614 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2615 * array entry with MIGRATE_PFN_VALID flag set.
2616 *
2617 * Once migrate_vma_pages() returns the caller may inspect which pages were
2618 * successfully migrated, and which were not.  Successfully migrated pages will
2619 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2620 *
2621 * It is safe to update device page table after migrate_vma_pages() because
2622 * both destination and source page are still locked, and the mmap_sem is held
2623 * in read mode (hence no one can unmap the range being migrated).
2624 *
2625 * Once the caller is done cleaning up things and updating its page table (if it
2626 * chose to do so, this is not an obligation) it finally calls
2627 * migrate_vma_finalize() to update the CPU page table to point to new pages
2628 * for successfully migrated pages or otherwise restore the CPU page table to
2629 * point to the original source pages.
2630 */
2631int migrate_vma_setup(struct migrate_vma *args)
2632{
2633	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2634
2635	args->start &= PAGE_MASK;
2636	args->end &= PAGE_MASK;
2637	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2638	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2639		return -EINVAL;
2640	if (nr_pages <= 0)
2641		return -EINVAL;
2642	if (args->start < args->vma->vm_start ||
2643	    args->start >= args->vma->vm_end)
2644		return -EINVAL;
2645	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2646		return -EINVAL;
2647	if (!args->src || !args->dst)
2648		return -EINVAL;
2649
2650	memset(args->src, 0, sizeof(*args->src) * nr_pages);
2651	args->cpages = 0;
2652	args->npages = 0;
2653
2654	migrate_vma_collect(args);
2655
2656	if (args->cpages)
2657		migrate_vma_prepare(args);
2658	if (args->cpages)
2659		migrate_vma_unmap(args);
2660
2661	/*
2662	 * At this point pages are locked and unmapped, and thus they have
2663	 * stable content and can safely be copied to destination memory that
2664	 * is allocated by the drivers.
2665	 */
2666	return 0;
2667
2668}
2669EXPORT_SYMBOL(migrate_vma_setup);
2670
2671static void migrate_vma_insert_page(struct migrate_vma *migrate,
2672				    unsigned long addr,
2673				    struct page *page,
2674				    unsigned long *src,
2675				    unsigned long *dst)
2676{
2677	struct vm_area_struct *vma = migrate->vma;
2678	struct mm_struct *mm = vma->vm_mm;
2679	struct mem_cgroup *memcg;
2680	bool flush = false;
2681	spinlock_t *ptl;
2682	pte_t entry;
2683	pgd_t *pgdp;
2684	p4d_t *p4dp;
2685	pud_t *pudp;
2686	pmd_t *pmdp;
2687	pte_t *ptep;
2688
2689	/* Only allow populating anonymous memory */
2690	if (!vma_is_anonymous(vma))
2691		goto abort;
2692
2693	pgdp = pgd_offset(mm, addr);
2694	p4dp = p4d_alloc(mm, pgdp, addr);
2695	if (!p4dp)
2696		goto abort;
2697	pudp = pud_alloc(mm, p4dp, addr);
2698	if (!pudp)
2699		goto abort;
2700	pmdp = pmd_alloc(mm, pudp, addr);
2701	if (!pmdp)
2702		goto abort;
2703
2704	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2705		goto abort;
2706
2707	/*
2708	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2709	 * pte_offset_map() on pmds where a huge pmd might be created
2710	 * from a different thread.
2711	 *
2712	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2713	 * parallel threads are excluded by other means.
2714	 *
2715	 * Here we only have down_read(mmap_sem).
2716	 */
2717	if (pte_alloc(mm, pmdp))
2718		goto abort;
2719
2720	/* See the comment in pte_alloc_one_map() */
2721	if (unlikely(pmd_trans_unstable(pmdp)))
2722		goto abort;
2723
2724	if (unlikely(anon_vma_prepare(vma)))
2725		goto abort;
2726	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2727		goto abort;
2728
2729	/*
2730	 * The memory barrier inside __SetPageUptodate makes sure that
2731	 * preceding stores to the page contents become visible before
2732	 * the set_pte_at() write.
2733	 */
2734	__SetPageUptodate(page);
2735
2736	if (is_zone_device_page(page)) {
2737		if (is_device_private_page(page)) {
2738			swp_entry_t swp_entry;
2739
2740			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2741			entry = swp_entry_to_pte(swp_entry);
2742		}
2743	} else {
2744		entry = mk_pte(page, vma->vm_page_prot);
2745		if (vma->vm_flags & VM_WRITE)
2746			entry = pte_mkwrite(pte_mkdirty(entry));
2747	}
2748
2749	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2750
2751	if (pte_present(*ptep)) {
2752		unsigned long pfn = pte_pfn(*ptep);
2753
2754		if (!is_zero_pfn(pfn)) {
2755			pte_unmap_unlock(ptep, ptl);
2756			mem_cgroup_cancel_charge(page, memcg, false);
2757			goto abort;
2758		}
2759		flush = true;
2760	} else if (!pte_none(*ptep)) {
2761		pte_unmap_unlock(ptep, ptl);
2762		mem_cgroup_cancel_charge(page, memcg, false);
2763		goto abort;
2764	}
2765
2766	/*
2767	 * Check for usefaultfd but do not deliver the fault. Instead,
2768	 * just back off.
2769	 */
2770	if (userfaultfd_missing(vma)) {
2771		pte_unmap_unlock(ptep, ptl);
2772		mem_cgroup_cancel_charge(page, memcg, false);
2773		goto abort;
2774	}
2775
2776	inc_mm_counter(mm, MM_ANONPAGES);
2777	page_add_new_anon_rmap(page, vma, addr, false);
2778	mem_cgroup_commit_charge(page, memcg, false, false);
2779	if (!is_zone_device_page(page))
2780		lru_cache_add_active_or_unevictable(page, vma);
2781	get_page(page);
2782
2783	if (flush) {
2784		flush_cache_page(vma, addr, pte_pfn(*ptep));
2785		ptep_clear_flush_notify(vma, addr, ptep);
2786		set_pte_at_notify(mm, addr, ptep, entry);
2787		update_mmu_cache(vma, addr, ptep);
2788	} else {
2789		/* No need to invalidate - it was non-present before */
2790		set_pte_at(mm, addr, ptep, entry);
2791		update_mmu_cache(vma, addr, ptep);
2792	}
2793
2794	pte_unmap_unlock(ptep, ptl);
2795	*src = MIGRATE_PFN_MIGRATE;
2796	return;
2797
2798abort:
2799	*src &= ~MIGRATE_PFN_MIGRATE;
2800}
2801
2802/**
2803 * migrate_vma_pages() - migrate meta-data from src page to dst page
2804 * @migrate: migrate struct containing all migration information
2805 *
2806 * This migrates struct page meta-data from source struct page to destination
2807 * struct page. This effectively finishes the migration from source page to the
2808 * destination page.
2809 */
2810void migrate_vma_pages(struct migrate_vma *migrate)
2811{
2812	const unsigned long npages = migrate->npages;
2813	const unsigned long start = migrate->start;
2814	struct mmu_notifier_range range;
2815	unsigned long addr, i;
2816	bool notified = false;
2817
2818	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2819		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2820		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2821		struct address_space *mapping;
2822		int r;
2823
2824		if (!newpage) {
2825			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2826			continue;
2827		}
2828
2829		if (!page) {
2830			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2831				continue;
2832			}
2833			if (!notified) {
2834				notified = true;
2835
2836				mmu_notifier_range_init(&range,
2837							MMU_NOTIFY_CLEAR, 0,
2838							NULL,
2839							migrate->vma->vm_mm,
2840							addr, migrate->end);
2841				mmu_notifier_invalidate_range_start(&range);
2842			}
2843			migrate_vma_insert_page(migrate, addr, newpage,
2844						&migrate->src[i],
2845						&migrate->dst[i]);
2846			continue;
2847		}
2848
2849		mapping = page_mapping(page);
2850
2851		if (is_zone_device_page(newpage)) {
2852			if (is_device_private_page(newpage)) {
2853				/*
2854				 * For now only support private anonymous when
2855				 * migrating to un-addressable device memory.
2856				 */
2857				if (mapping) {
2858					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2859					continue;
2860				}
2861			} else {
2862				/*
2863				 * Other types of ZONE_DEVICE page are not
2864				 * supported.
2865				 */
2866				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2867				continue;
2868			}
2869		}
2870
2871		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2872		if (r != MIGRATEPAGE_SUCCESS)
2873			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2874	}
2875
2876	/*
2877	 * No need to double call mmu_notifier->invalidate_range() callback as
2878	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2879	 * did already call it.
2880	 */
2881	if (notified)
2882		mmu_notifier_invalidate_range_only_end(&range);
2883}
2884EXPORT_SYMBOL(migrate_vma_pages);
2885
2886/**
2887 * migrate_vma_finalize() - restore CPU page table entry
2888 * @migrate: migrate struct containing all migration information
2889 *
2890 * This replaces the special migration pte entry with either a mapping to the
2891 * new page if migration was successful for that page, or to the original page
2892 * otherwise.
2893 *
2894 * This also unlocks the pages and puts them back on the lru, or drops the extra
2895 * refcount, for device pages.
2896 */
2897void migrate_vma_finalize(struct migrate_vma *migrate)
2898{
2899	const unsigned long npages = migrate->npages;
2900	unsigned long i;
2901
2902	for (i = 0; i < npages; i++) {
2903		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2904		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2905
2906		if (!page) {
2907			if (newpage) {
2908				unlock_page(newpage);
2909				put_page(newpage);
2910			}
2911			continue;
2912		}
2913
2914		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2915			if (newpage) {
2916				unlock_page(newpage);
2917				put_page(newpage);
2918			}
2919			newpage = page;
2920		}
2921
2922		remove_migration_ptes(page, newpage, false);
2923		unlock_page(page);
2924		migrate->cpages--;
2925
2926		if (is_zone_device_page(page))
2927			put_page(page);
2928		else
2929			putback_lru_page(page);
2930
2931		if (newpage != page) {
2932			unlock_page(newpage);
2933			if (is_zone_device_page(newpage))
2934				put_page(newpage);
2935			else
2936				putback_lru_page(newpage);
2937		}
2938	}
2939}
2940EXPORT_SYMBOL(migrate_vma_finalize);
2941#endif /* CONFIG_DEVICE_PRIVATE */
v3.15
 
   1/*
   2 * Memory Migration functionality - linux/mm/migration.c
   3 *
   4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   5 *
   6 * Page migration was first developed in the context of the memory hotplug
   7 * project. The main authors of the migration code are:
   8 *
   9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  10 * Hirokazu Takahashi <taka@valinux.co.jp>
  11 * Dave Hansen <haveblue@us.ibm.com>
  12 * Christoph Lameter
  13 */
  14
  15#include <linux/migrate.h>
  16#include <linux/export.h>
  17#include <linux/swap.h>
  18#include <linux/swapops.h>
  19#include <linux/pagemap.h>
  20#include <linux/buffer_head.h>
  21#include <linux/mm_inline.h>
  22#include <linux/nsproxy.h>
  23#include <linux/pagevec.h>
  24#include <linux/ksm.h>
  25#include <linux/rmap.h>
  26#include <linux/topology.h>
  27#include <linux/cpu.h>
  28#include <linux/cpuset.h>
  29#include <linux/writeback.h>
  30#include <linux/mempolicy.h>
  31#include <linux/vmalloc.h>
  32#include <linux/security.h>
  33#include <linux/memcontrol.h>
 
  34#include <linux/syscalls.h>
 
  35#include <linux/hugetlb.h>
  36#include <linux/hugetlb_cgroup.h>
  37#include <linux/gfp.h>
 
 
 
 
  38#include <linux/balloon_compaction.h>
  39#include <linux/mmu_notifier.h>
 
 
 
 
  40
  41#include <asm/tlbflush.h>
  42
  43#define CREATE_TRACE_POINTS
  44#include <trace/events/migrate.h>
  45
  46#include "internal.h"
  47
  48/*
  49 * migrate_prep() needs to be called before we start compiling a list of pages
  50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
  51 * undesirable, use migrate_prep_local()
  52 */
  53int migrate_prep(void)
  54{
  55	/*
  56	 * Clear the LRU lists so pages can be isolated.
  57	 * Note that pages may be moved off the LRU after we have
  58	 * drained them. Those pages will fail to migrate like other
  59	 * pages that may be busy.
  60	 */
  61	lru_add_drain_all();
  62
  63	return 0;
  64}
  65
  66/* Do the necessary work of migrate_prep but not if it involves other CPUs */
  67int migrate_prep_local(void)
  68{
  69	lru_add_drain();
  70
  71	return 0;
  72}
  73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  74/*
  75 * Put previously isolated pages back onto the appropriate lists
  76 * from where they were once taken off for compaction/migration.
  77 *
  78 * This function shall be used whenever the isolated pageset has been
  79 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
  80 * and isolate_huge_page().
  81 */
  82void putback_movable_pages(struct list_head *l)
  83{
  84	struct page *page;
  85	struct page *page2;
  86
  87	list_for_each_entry_safe(page, page2, l, lru) {
  88		if (unlikely(PageHuge(page))) {
  89			putback_active_hugepage(page);
  90			continue;
  91		}
  92		list_del(&page->lru);
  93		dec_zone_page_state(page, NR_ISOLATED_ANON +
  94				page_is_file_cache(page));
  95		if (unlikely(isolated_balloon_page(page)))
  96			balloon_page_putback(page);
  97		else
 
 
 
 
 
 
 
 
 
 
 
 
  98			putback_lru_page(page);
 
  99	}
 100}
 101
 102/*
 103 * Restore a potential migration pte to a working pte entry
 104 */
 105static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
 106				 unsigned long addr, void *old)
 107{
 108	struct mm_struct *mm = vma->vm_mm;
 
 
 
 
 
 
 
 109	swp_entry_t entry;
 110 	pmd_t *pmd;
 111	pte_t *ptep, pte;
 112 	spinlock_t *ptl;
 113
 114	if (unlikely(PageHuge(new))) {
 115		ptep = huge_pte_offset(mm, addr);
 116		if (!ptep)
 117			goto out;
 118		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
 119	} else {
 120		pmd = mm_find_pmd(mm, addr);
 121		if (!pmd)
 122			goto out;
 123		if (pmd_trans_huge(*pmd))
 124			goto out;
 125
 126		ptep = pte_offset_map(pmd, addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 127
 128		/*
 129		 * Peek to check is_swap_pte() before taking ptlock?  No, we
 130		 * can race mremap's move_ptes(), which skips anon_vma lock.
 131		 */
 
 
 
 
 
 
 
 
 
 
 132
 133		ptl = pte_lockptr(mm, pmd);
 134	}
 135
 136 	spin_lock(ptl);
 137	pte = *ptep;
 138	if (!is_swap_pte(pte))
 139		goto unlock;
 140
 141	entry = pte_to_swp_entry(pte);
 142
 143	if (!is_migration_entry(entry) ||
 144	    migration_entry_to_page(entry) != old)
 145		goto unlock;
 146
 147	get_page(new);
 148	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
 149	if (pte_swp_soft_dirty(*ptep))
 150		pte = pte_mksoft_dirty(pte);
 151	if (is_write_migration_entry(entry))
 152		pte = pte_mkwrite(pte);
 153#ifdef CONFIG_HUGETLB_PAGE
 154	if (PageHuge(new)) {
 155		pte = pte_mkhuge(pte);
 156		pte = arch_make_huge_pte(pte, vma, new, 0);
 157	}
 
 
 
 
 
 158#endif
 159	flush_dcache_page(new);
 160	set_pte_at(mm, addr, ptep, pte);
 161
 162	if (PageHuge(new)) {
 163		if (PageAnon(new))
 164			hugepage_add_anon_rmap(new, vma, addr);
 165		else
 166			page_dup_rmap(new);
 167	} else if (PageAnon(new))
 168		page_add_anon_rmap(new, vma, addr);
 169	else
 170		page_add_file_rmap(new);
 171
 172	/* No need to invalidate - it was non-present before */
 173	update_mmu_cache(vma, addr, ptep);
 174unlock:
 175	pte_unmap_unlock(ptep, ptl);
 176out:
 177	return SWAP_AGAIN;
 178}
 179
 180/*
 181 * Congratulations to trinity for discovering this bug.
 182 * mm/fremap.c's remap_file_pages() accepts any range within a single vma to
 183 * convert that vma to VM_NONLINEAR; and generic_file_remap_pages() will then
 184 * replace the specified range by file ptes throughout (maybe populated after).
 185 * If page migration finds a page within that range, while it's still located
 186 * by vma_interval_tree rather than lost to i_mmap_nonlinear list, no problem:
 187 * zap_pte() clears the temporary migration entry before mmap_sem is dropped.
 188 * But if the migrating page is in a part of the vma outside the range to be
 189 * remapped, then it will not be cleared, and remove_migration_ptes() needs to
 190 * deal with it.  Fortunately, this part of the vma is of course still linear,
 191 * so we just need to use linear location on the nonlinear list.
 192 */
 193static int remove_linear_migration_ptes_from_nonlinear(struct page *page,
 194		struct address_space *mapping, void *arg)
 195{
 196	struct vm_area_struct *vma;
 197	/* hugetlbfs does not support remap_pages, so no huge pgoff worries */
 198	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
 199	unsigned long addr;
 200
 201	list_for_each_entry(vma,
 202		&mapping->i_mmap_nonlinear, shared.nonlinear) {
 203
 204		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 205		if (addr >= vma->vm_start && addr < vma->vm_end)
 206			remove_migration_pte(page, vma, addr, arg);
 207	}
 208	return SWAP_AGAIN;
 209}
 210
 211/*
 212 * Get rid of all migration entries and replace them by
 213 * references to the indicated page.
 214 */
 215static void remove_migration_ptes(struct page *old, struct page *new)
 216{
 217	struct rmap_walk_control rwc = {
 218		.rmap_one = remove_migration_pte,
 219		.arg = old,
 220		.file_nonlinear = remove_linear_migration_ptes_from_nonlinear,
 221	};
 222
 223	rmap_walk(new, &rwc);
 
 
 
 224}
 225
 226/*
 227 * Something used the pte of a page under migration. We need to
 228 * get to the page and wait until migration is finished.
 229 * When we return from this function the fault will be retried.
 230 */
 231static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
 232				spinlock_t *ptl)
 233{
 234	pte_t pte;
 235	swp_entry_t entry;
 236	struct page *page;
 237
 238	spin_lock(ptl);
 239	pte = *ptep;
 240	if (!is_swap_pte(pte))
 241		goto out;
 242
 243	entry = pte_to_swp_entry(pte);
 244	if (!is_migration_entry(entry))
 245		goto out;
 246
 247	page = migration_entry_to_page(entry);
 248
 249	/*
 250	 * Once radix-tree replacement of page migration started, page_count
 251	 * *must* be zero. And, we don't want to call wait_on_page_locked()
 252	 * against a page without get_page().
 253	 * So, we use get_page_unless_zero(), here. Even failed, page fault
 254	 * will occur again.
 255	 */
 256	if (!get_page_unless_zero(page))
 257		goto out;
 258	pte_unmap_unlock(ptep, ptl);
 259	wait_on_page_locked(page);
 260	put_page(page);
 261	return;
 262out:
 263	pte_unmap_unlock(ptep, ptl);
 264}
 265
 266void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 267				unsigned long address)
 268{
 269	spinlock_t *ptl = pte_lockptr(mm, pmd);
 270	pte_t *ptep = pte_offset_map(pmd, address);
 271	__migration_entry_wait(mm, ptep, ptl);
 272}
 273
 274void migration_entry_wait_huge(struct vm_area_struct *vma,
 275		struct mm_struct *mm, pte_t *pte)
 276{
 277	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
 278	__migration_entry_wait(mm, pte, ptl);
 279}
 280
 281#ifdef CONFIG_BLOCK
 282/* Returns true if all buffers are successfully locked */
 283static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 284							enum migrate_mode mode)
 285{
 286	struct buffer_head *bh = head;
 
 287
 288	/* Simple case, sync compaction */
 289	if (mode != MIGRATE_ASYNC) {
 290		do {
 291			get_bh(bh);
 292			lock_buffer(bh);
 293			bh = bh->b_this_page;
 
 
 
 
 
 
 
 294
 295		} while (bh != head);
 
 
 296
 297		return true;
 298	}
 
 
 
 
 
 299
 300	/* async case, we cannot block on lock_buffer so use trylock_buffer */
 301	do {
 302		get_bh(bh);
 303		if (!trylock_buffer(bh)) {
 304			/*
 305			 * We failed to lock the buffer and cannot stall in
 306			 * async migration. Release the taken locks
 307			 */
 308			struct buffer_head *failed_bh = bh;
 309			put_bh(failed_bh);
 310			bh = head;
 311			while (bh != failed_bh) {
 312				unlock_buffer(bh);
 313				put_bh(bh);
 314				bh = bh->b_this_page;
 315			}
 316			return false;
 317		}
 318
 319		bh = bh->b_this_page;
 320	} while (bh != head);
 321	return true;
 322}
 323#else
 324static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
 325							enum migrate_mode mode)
 326{
 327	return true;
 328}
 329#endif /* CONFIG_BLOCK */
 330
 331/*
 332 * Replace the page in the mapping.
 333 *
 334 * The number of remaining references must be:
 335 * 1 for anonymous pages without a mapping
 336 * 2 for pages with a mapping
 337 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 338 */
 339int migrate_page_move_mapping(struct address_space *mapping,
 340		struct page *newpage, struct page *page,
 341		struct buffer_head *head, enum migrate_mode mode,
 342		int extra_count)
 343{
 344	int expected_count = 1 + extra_count;
 345	void **pslot;
 
 
 346
 347	if (!mapping) {
 348		/* Anonymous page without mapping */
 349		if (page_count(page) != expected_count)
 350			return -EAGAIN;
 
 
 
 
 
 
 
 351		return MIGRATEPAGE_SUCCESS;
 352	}
 353
 354	spin_lock_irq(&mapping->tree_lock);
 355
 356	pslot = radix_tree_lookup_slot(&mapping->page_tree,
 357 					page_index(page));
 358
 359	expected_count += 1 + page_has_private(page);
 360	if (page_count(page) != expected_count ||
 361		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
 362		spin_unlock_irq(&mapping->tree_lock);
 363		return -EAGAIN;
 364	}
 365
 366	if (!page_freeze_refs(page, expected_count)) {
 367		spin_unlock_irq(&mapping->tree_lock);
 368		return -EAGAIN;
 369	}
 370
 371	/*
 372	 * In the async migration case of moving a page with buffers, lock the
 373	 * buffers using trylock before the mapping is moved. If the mapping
 374	 * was moved, we later failed to lock the buffers and could not move
 375	 * the mapping back due to an elevated page count, we would have to
 376	 * block waiting on other references to be dropped.
 377	 */
 378	if (mode == MIGRATE_ASYNC && head &&
 379			!buffer_migrate_lock_buffers(head, mode)) {
 380		page_unfreeze_refs(page, expected_count);
 381		spin_unlock_irq(&mapping->tree_lock);
 382		return -EAGAIN;
 
 
 
 383	}
 384
 385	/*
 386	 * Now we know that no one else is looking at the page.
 387	 */
 388	get_page(newpage);	/* add cache reference */
 389	if (PageSwapCache(page)) {
 390		SetPageSwapCache(newpage);
 391		set_page_private(newpage, page_private(page));
 392	}
 393
 394	radix_tree_replace_slot(pslot, newpage);
 
 
 
 
 
 
 
 
 395
 396	/*
 397	 * Drop cache reference from old page by unfreezing
 398	 * to one less reference.
 399	 * We know this isn't the last reference.
 400	 */
 401	page_unfreeze_refs(page, expected_count - 1);
 
 
 
 402
 403	/*
 404	 * If moved to a different zone then also account
 405	 * the page for that zone. Other VM counters will be
 406	 * taken care of when we establish references to the
 407	 * new page and drop references to the old page.
 408	 *
 409	 * Note that anonymous pages are accounted for
 410	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
 411	 * are mapped to swap space.
 412	 */
 413	__dec_zone_page_state(page, NR_FILE_PAGES);
 414	__inc_zone_page_state(newpage, NR_FILE_PAGES);
 415	if (!PageSwapCache(page) && PageSwapBacked(page)) {
 416		__dec_zone_page_state(page, NR_SHMEM);
 417		__inc_zone_page_state(newpage, NR_SHMEM);
 
 
 
 
 
 
 
 
 418	}
 419	spin_unlock_irq(&mapping->tree_lock);
 420
 421	return MIGRATEPAGE_SUCCESS;
 422}
 
 423
 424/*
 425 * The expected number of remaining references is the same as that
 426 * of migrate_page_move_mapping().
 427 */
 428int migrate_huge_page_move_mapping(struct address_space *mapping,
 429				   struct page *newpage, struct page *page)
 430{
 
 431	int expected_count;
 432	void **pslot;
 433
 434	if (!mapping) {
 435		if (page_count(page) != 1)
 436			return -EAGAIN;
 437		return MIGRATEPAGE_SUCCESS;
 438	}
 439
 440	spin_lock_irq(&mapping->tree_lock);
 441
 442	pslot = radix_tree_lookup_slot(&mapping->page_tree,
 443					page_index(page));
 444
 
 445	expected_count = 2 + page_has_private(page);
 446	if (page_count(page) != expected_count ||
 447		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
 448		spin_unlock_irq(&mapping->tree_lock);
 449		return -EAGAIN;
 450	}
 451
 452	if (!page_freeze_refs(page, expected_count)) {
 453		spin_unlock_irq(&mapping->tree_lock);
 454		return -EAGAIN;
 455	}
 456
 
 
 
 457	get_page(newpage);
 458
 459	radix_tree_replace_slot(pslot, newpage);
 460
 461	page_unfreeze_refs(page, expected_count - 1);
 
 
 462
 463	spin_unlock_irq(&mapping->tree_lock);
 464	return MIGRATEPAGE_SUCCESS;
 465}
 466
 467/*
 468 * Gigantic pages are so large that we do not guarantee that page++ pointer
 469 * arithmetic will work across the entire page.  We need something more
 470 * specialized.
 471 */
 472static void __copy_gigantic_page(struct page *dst, struct page *src,
 473				int nr_pages)
 474{
 475	int i;
 476	struct page *dst_base = dst;
 477	struct page *src_base = src;
 478
 479	for (i = 0; i < nr_pages; ) {
 480		cond_resched();
 481		copy_highpage(dst, src);
 482
 483		i++;
 484		dst = mem_map_next(dst, dst_base, i);
 485		src = mem_map_next(src, src_base, i);
 486	}
 487}
 488
 489static void copy_huge_page(struct page *dst, struct page *src)
 490{
 491	int i;
 492	int nr_pages;
 493
 494	if (PageHuge(src)) {
 495		/* hugetlbfs page */
 496		struct hstate *h = page_hstate(src);
 497		nr_pages = pages_per_huge_page(h);
 498
 499		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
 500			__copy_gigantic_page(dst, src, nr_pages);
 501			return;
 502		}
 503	} else {
 504		/* thp page */
 505		BUG_ON(!PageTransHuge(src));
 506		nr_pages = hpage_nr_pages(src);
 507	}
 508
 509	for (i = 0; i < nr_pages; i++) {
 510		cond_resched();
 511		copy_highpage(dst + i, src + i);
 512	}
 513}
 514
 515/*
 516 * Copy the page to its new location
 517 */
 518void migrate_page_copy(struct page *newpage, struct page *page)
 519{
 520	int cpupid;
 521
 522	if (PageHuge(page) || PageTransHuge(page))
 523		copy_huge_page(newpage, page);
 524	else
 525		copy_highpage(newpage, page);
 526
 527	if (PageError(page))
 528		SetPageError(newpage);
 529	if (PageReferenced(page))
 530		SetPageReferenced(newpage);
 531	if (PageUptodate(page))
 532		SetPageUptodate(newpage);
 533	if (TestClearPageActive(page)) {
 534		VM_BUG_ON_PAGE(PageUnevictable(page), page);
 535		SetPageActive(newpage);
 536	} else if (TestClearPageUnevictable(page))
 537		SetPageUnevictable(newpage);
 
 
 538	if (PageChecked(page))
 539		SetPageChecked(newpage);
 540	if (PageMappedToDisk(page))
 541		SetPageMappedToDisk(newpage);
 542
 543	if (PageDirty(page)) {
 544		clear_page_dirty_for_io(page);
 545		/*
 546		 * Want to mark the page and the radix tree as dirty, and
 547		 * redo the accounting that clear_page_dirty_for_io undid,
 548		 * but we can't use set_page_dirty because that function
 549		 * is actually a signal that all of the page has become dirty.
 550		 * Whereas only part of our page may be dirty.
 551		 */
 552		if (PageSwapBacked(page))
 553			SetPageDirty(newpage);
 554		else
 555			__set_page_dirty_nobuffers(newpage);
 556 	}
 557
 558	/*
 559	 * Copy NUMA information to the new page, to prevent over-eager
 560	 * future migrations of this same page.
 561	 */
 562	cpupid = page_cpupid_xchg_last(page, -1);
 563	page_cpupid_xchg_last(newpage, cpupid);
 564
 565	mlock_migrate_page(newpage, page);
 566	ksm_migrate_page(newpage, page);
 567	/*
 568	 * Please do not reorder this without considering how mm/ksm.c's
 569	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 570	 */
 571	ClearPageSwapCache(page);
 
 572	ClearPagePrivate(page);
 573	set_page_private(page, 0);
 574
 575	/*
 576	 * If any waiters have accumulated on the new page then
 577	 * wake them up.
 578	 */
 579	if (PageWriteback(newpage))
 580		end_page_writeback(newpage);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 581}
 
 582
 583/************************************************************
 584 *                    Migration functions
 585 ***********************************************************/
 586
 587/*
 588 * Common logic to directly migrate a single page suitable for
 589 * pages that do not use PagePrivate/PagePrivate2.
 590 *
 591 * Pages are locked upon entry and exit.
 592 */
 593int migrate_page(struct address_space *mapping,
 594		struct page *newpage, struct page *page,
 595		enum migrate_mode mode)
 596{
 597	int rc;
 598
 599	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
 600
 601	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
 602
 603	if (rc != MIGRATEPAGE_SUCCESS)
 604		return rc;
 605
 606	migrate_page_copy(newpage, page);
 
 
 
 607	return MIGRATEPAGE_SUCCESS;
 608}
 609EXPORT_SYMBOL(migrate_page);
 610
 611#ifdef CONFIG_BLOCK
 612/*
 613 * Migration function for pages with buffers. This function can only be used
 614 * if the underlying filesystem guarantees that no other references to "page"
 615 * exist.
 616 */
 617int buffer_migrate_page(struct address_space *mapping,
 618		struct page *newpage, struct page *page, enum migrate_mode mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 619{
 620	struct buffer_head *bh, *head;
 621	int rc;
 
 622
 623	if (!page_has_buffers(page))
 624		return migrate_page(mapping, newpage, page, mode);
 625
 
 
 
 
 
 626	head = page_buffers(page);
 
 
 627
 628	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 629
 
 630	if (rc != MIGRATEPAGE_SUCCESS)
 631		return rc;
 632
 633	/*
 634	 * In the async case, migrate_page_move_mapping locked the buffers
 635	 * with an IRQ-safe spinlock held. In the sync case, the buffers
 636	 * need to be locked now
 637	 */
 638	if (mode != MIGRATE_ASYNC)
 639		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
 640
 641	ClearPagePrivate(page);
 642	set_page_private(newpage, page_private(page));
 643	set_page_private(page, 0);
 644	put_page(page);
 645	get_page(newpage);
 646
 647	bh = head;
 648	do {
 649		set_bh_page(bh, newpage, bh_offset(bh));
 650		bh = bh->b_this_page;
 651
 652	} while (bh != head);
 653
 654	SetPagePrivate(newpage);
 655
 656	migrate_page_copy(newpage, page);
 
 
 
 657
 
 
 
 
 658	bh = head;
 659	do {
 660		unlock_buffer(bh);
 661 		put_bh(bh);
 662		bh = bh->b_this_page;
 663
 664	} while (bh != head);
 665
 666	return MIGRATEPAGE_SUCCESS;
 
 
 
 
 
 
 
 
 
 
 
 667}
 668EXPORT_SYMBOL(buffer_migrate_page);
 
 
 
 
 
 
 
 
 
 
 
 
 669#endif
 670
 671/*
 672 * Writeback a page to clean the dirty state
 673 */
 674static int writeout(struct address_space *mapping, struct page *page)
 675{
 676	struct writeback_control wbc = {
 677		.sync_mode = WB_SYNC_NONE,
 678		.nr_to_write = 1,
 679		.range_start = 0,
 680		.range_end = LLONG_MAX,
 681		.for_reclaim = 1
 682	};
 683	int rc;
 684
 685	if (!mapping->a_ops->writepage)
 686		/* No write method for the address space */
 687		return -EINVAL;
 688
 689	if (!clear_page_dirty_for_io(page))
 690		/* Someone else already triggered a write */
 691		return -EAGAIN;
 692
 693	/*
 694	 * A dirty page may imply that the underlying filesystem has
 695	 * the page on some queue. So the page must be clean for
 696	 * migration. Writeout may mean we loose the lock and the
 697	 * page state is no longer what we checked for earlier.
 698	 * At this point we know that the migration attempt cannot
 699	 * be successful.
 700	 */
 701	remove_migration_ptes(page, page);
 702
 703	rc = mapping->a_ops->writepage(page, &wbc);
 704
 705	if (rc != AOP_WRITEPAGE_ACTIVATE)
 706		/* unlocked. Relock */
 707		lock_page(page);
 708
 709	return (rc < 0) ? -EIO : -EAGAIN;
 710}
 711
 712/*
 713 * Default handling if a filesystem does not provide a migration function.
 714 */
 715static int fallback_migrate_page(struct address_space *mapping,
 716	struct page *newpage, struct page *page, enum migrate_mode mode)
 717{
 718	if (PageDirty(page)) {
 719		/* Only writeback pages in full synchronous migration */
 720		if (mode != MIGRATE_SYNC)
 
 
 
 
 721			return -EBUSY;
 
 722		return writeout(mapping, page);
 723	}
 724
 725	/*
 726	 * Buffers may be managed in a filesystem specific way.
 727	 * We must have no buffers or drop them.
 728	 */
 729	if (page_has_private(page) &&
 730	    !try_to_release_page(page, GFP_KERNEL))
 731		return -EAGAIN;
 732
 733	return migrate_page(mapping, newpage, page, mode);
 734}
 735
 736/*
 737 * Move a page to a newly allocated page
 738 * The page is locked and all ptes have been successfully removed.
 739 *
 740 * The new page will have replaced the old page if this function
 741 * is successful.
 742 *
 743 * Return value:
 744 *   < 0 - error code
 745 *  MIGRATEPAGE_SUCCESS - success
 746 */
 747static int move_to_new_page(struct page *newpage, struct page *page,
 748				int remap_swapcache, enum migrate_mode mode)
 749{
 750	struct address_space *mapping;
 751	int rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 752
 753	/*
 754	 * Block others from accessing the page when we get around to
 755	 * establishing additional references. We are the only one
 756	 * holding a reference to the new page at this point.
 757	 */
 758	if (!trylock_page(newpage))
 759		BUG();
 
 760
 761	/* Prepare mapping for the new page.*/
 762	newpage->index = page->index;
 763	newpage->mapping = page->mapping;
 764	if (PageSwapBacked(page))
 765		SetPageSwapBacked(newpage);
 
 766
 767	mapping = page_mapping(page);
 768	if (!mapping)
 769		rc = migrate_page(mapping, newpage, page, mode);
 770	else if (mapping->a_ops->migratepage)
 771		/*
 772		 * Most pages have a mapping and most filesystems provide a
 773		 * migratepage callback. Anonymous pages are part of swap
 774		 * space which also has its own migratepage callback. This
 775		 * is the most common path for page migration.
 776		 */
 777		rc = mapping->a_ops->migratepage(mapping,
 778						newpage, page, mode);
 779	else
 780		rc = fallback_migrate_page(mapping, newpage, page, mode);
 
 781
 782	if (rc != MIGRATEPAGE_SUCCESS) {
 783		newpage->mapping = NULL;
 784	} else {
 785		if (remap_swapcache)
 786			remove_migration_ptes(page, newpage);
 787		page->mapping = NULL;
 788	}
 789
 790	unlock_page(newpage);
 791
 792	return rc;
 793}
 794
 795static int __unmap_and_move(struct page *page, struct page *newpage,
 796				int force, enum migrate_mode mode)
 797{
 798	int rc = -EAGAIN;
 799	int remap_swapcache = 1;
 800	struct mem_cgroup *mem;
 801	struct anon_vma *anon_vma = NULL;
 
 802
 803	if (!trylock_page(page)) {
 804		if (!force || mode == MIGRATE_ASYNC)
 805			goto out;
 806
 807		/*
 808		 * It's not safe for direct compaction to call lock_page.
 809		 * For example, during page readahead pages are added locked
 810		 * to the LRU. Later, when the IO completes the pages are
 811		 * marked uptodate and unlocked. However, the queueing
 812		 * could be merging multiple pages for one bio (e.g.
 813		 * mpage_readpages). If an allocation happens for the
 814		 * second or third page, the process can end up locking
 815		 * the same page twice and deadlocking. Rather than
 816		 * trying to be clever about what pages can be locked,
 817		 * avoid the use of lock_page for direct compaction
 818		 * altogether.
 819		 */
 820		if (current->flags & PF_MEMALLOC)
 821			goto out;
 822
 823		lock_page(page);
 824	}
 825
 826	/* charge against new page */
 827	mem_cgroup_prepare_migration(page, newpage, &mem);
 828
 829	if (PageWriteback(page)) {
 830		/*
 831		 * Only in the case of a full synchronous migration is it
 832		 * necessary to wait for PageWriteback. In the async case,
 833		 * the retry loop is too short and in the sync-light case,
 834		 * the overhead of stalling is too much
 835		 */
 836		if (mode != MIGRATE_SYNC) {
 
 
 
 
 837			rc = -EBUSY;
 838			goto uncharge;
 839		}
 840		if (!force)
 841			goto uncharge;
 842		wait_on_page_writeback(page);
 843	}
 
 844	/*
 845	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
 846	 * we cannot notice that anon_vma is freed while we migrates a page.
 847	 * This get_anon_vma() delays freeing anon_vma pointer until the end
 848	 * of migration. File cache pages are no problem because of page_lock()
 849	 * File Caches may use write_page() or lock_page() in migration, then,
 850	 * just care Anon page here.
 
 
 
 
 
 
 851	 */
 852	if (PageAnon(page) && !PageKsm(page)) {
 853		/*
 854		 * Only page_lock_anon_vma_read() understands the subtleties of
 855		 * getting a hold on an anon_vma from outside one of its mms.
 856		 */
 857		anon_vma = page_get_anon_vma(page);
 858		if (anon_vma) {
 859			/*
 860			 * Anon page
 861			 */
 862		} else if (PageSwapCache(page)) {
 863			/*
 864			 * We cannot be sure that the anon_vma of an unmapped
 865			 * swapcache page is safe to use because we don't
 866			 * know in advance if the VMA that this page belonged
 867			 * to still exists. If the VMA and others sharing the
 868			 * data have been freed, then the anon_vma could
 869			 * already be invalid.
 870			 *
 871			 * To avoid this possibility, swapcache pages get
 872			 * migrated but are not remapped when migration
 873			 * completes
 874			 */
 875			remap_swapcache = 0;
 876		} else {
 877			goto uncharge;
 878		}
 879	}
 880
 881	if (unlikely(balloon_page_movable(page))) {
 882		/*
 883		 * A ballooned page does not need any special attention from
 884		 * physical to virtual reverse mapping procedures.
 885		 * Skip any attempt to unmap PTEs or to remap swap cache,
 886		 * in order to avoid burning cycles at rmap level, and perform
 887		 * the page migration right away (proteced by page lock).
 888		 */
 889		rc = balloon_page_migrate(newpage, page, mode);
 890		goto uncharge;
 
 
 
 
 891	}
 892
 893	/*
 894	 * Corner case handling:
 895	 * 1. When a new swap-cache page is read into, it is added to the LRU
 896	 * and treated as swapcache but it has no rmap yet.
 897	 * Calling try_to_unmap() against a page->mapping==NULL page will
 898	 * trigger a BUG.  So handle it here.
 899	 * 2. An orphaned page (see truncate_complete_page) might have
 900	 * fs-private metadata. The page can be picked up due to memory
 901	 * offlining.  Everywhere else except page reclaim, the page is
 902	 * invisible to the vm, so the page can not be migrated.  So try to
 903	 * free the metadata, so the page can be freed.
 904	 */
 905	if (!page->mapping) {
 906		VM_BUG_ON_PAGE(PageAnon(page), page);
 907		if (page_has_private(page)) {
 908			try_to_free_buffers(page);
 909			goto uncharge;
 910		}
 911		goto skip_unmap;
 
 
 
 
 
 
 912	}
 913
 914	/* Establish migration ptes or remove ptes */
 915	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
 916
 917skip_unmap:
 918	if (!page_mapped(page))
 919		rc = move_to_new_page(newpage, page, remap_swapcache, mode);
 920
 921	if (rc && remap_swapcache)
 922		remove_migration_ptes(page, page);
 
 923
 
 
 
 924	/* Drop an anon_vma reference if we took one */
 925	if (anon_vma)
 926		put_anon_vma(anon_vma);
 927
 928uncharge:
 929	mem_cgroup_end_migration(mem, page, newpage,
 930				 (rc == MIGRATEPAGE_SUCCESS ||
 931				  rc == MIGRATEPAGE_BALLOON_SUCCESS));
 932	unlock_page(page);
 933out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 934	return rc;
 935}
 936
 937/*
 
 
 
 
 
 
 
 
 
 
 
 938 * Obtain the lock on page, remove all ptes and migrate the page
 939 * to the newly allocated page in newpage.
 940 */
 941static int unmap_and_move(new_page_t get_new_page, unsigned long private,
 942			struct page *page, int force, enum migrate_mode mode)
 
 
 
 943{
 944	int rc = 0;
 945	int *result = NULL;
 946	struct page *newpage = get_new_page(page, private, &result);
 
 
 947
 
 948	if (!newpage)
 949		return -ENOMEM;
 950
 951	if (page_count(page) == 1) {
 952		/* page was freed from under us. So we are done. */
 
 
 
 
 
 
 
 
 
 
 
 
 953		goto out;
 954	}
 955
 956	if (unlikely(PageTransHuge(page)))
 957		if (unlikely(split_huge_page(page)))
 958			goto out;
 959
 960	rc = __unmap_and_move(page, newpage, force, mode);
 
 
 961
 962	if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
 963		/*
 964		 * A ballooned page has been migrated already.
 965		 * Now, it's the time to wrap-up counters,
 966		 * handle the page back to Buddy and return.
 967		 */
 968		dec_zone_page_state(page, NR_ISOLATED_ANON +
 969				    page_is_file_cache(page));
 970		balloon_page_free(page);
 971		return MIGRATEPAGE_SUCCESS;
 972	}
 973out:
 974	if (rc != -EAGAIN) {
 975		/*
 976		 * A page that has been migrated has all references
 977		 * removed and will be freed. A page that has not been
 978		 * migrated will have kepts its references and be
 979		 * restored.
 980		 */
 981		list_del(&page->lru);
 982		dec_zone_page_state(page, NR_ISOLATED_ANON +
 983				page_is_file_cache(page));
 984		putback_lru_page(page);
 
 
 
 
 
 
 985	}
 
 986	/*
 987	 * Move the new page to the LRU. If migration was not successful
 988	 * then this will free the page.
 
 989	 */
 990	putback_lru_page(newpage);
 991	if (result) {
 992		if (rc)
 993			*result = rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 994		else
 995			*result = page_to_nid(newpage);
 996	}
 
 997	return rc;
 998}
 999
1000/*
1001 * Counterpart of unmap_and_move_page() for hugepage migration.
1002 *
1003 * This function doesn't wait the completion of hugepage I/O
1004 * because there is no race between I/O and migration for hugepage.
1005 * Note that currently hugepage I/O occurs only in direct I/O
1006 * where no lock is held and PG_writeback is irrelevant,
1007 * and writeback status of all subpages are counted in the reference
1008 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1009 * under direct I/O, the reference of the head page is 512 and a bit more.)
1010 * This means that when we try to migrate hugepage whose subpages are
1011 * doing direct I/O, some references remain after try_to_unmap() and
1012 * hugepage migration fails without data corruption.
1013 *
1014 * There is also no race when direct I/O is issued on the page under migration,
1015 * because then pte is replaced with migration swap entry and direct I/O code
1016 * will wait in the page fault for migration to complete.
1017 */
1018static int unmap_and_move_huge_page(new_page_t get_new_page,
1019				unsigned long private, struct page *hpage,
1020				int force, enum migrate_mode mode)
 
1021{
1022	int rc = 0;
1023	int *result = NULL;
1024	struct page *new_hpage;
1025	struct anon_vma *anon_vma = NULL;
1026
1027	/*
1028	 * Movability of hugepages depends on architectures and hugepage size.
1029	 * This check is necessary because some callers of hugepage migration
1030	 * like soft offline and memory hotremove don't walk through page
1031	 * tables or check whether the hugepage is pmd-based or not before
1032	 * kicking migration.
1033	 */
1034	if (!hugepage_migration_support(page_hstate(hpage))) {
1035		putback_active_hugepage(hpage);
1036		return -ENOSYS;
1037	}
1038
1039	new_hpage = get_new_page(hpage, private, &result);
1040	if (!new_hpage)
1041		return -ENOMEM;
1042
1043	rc = -EAGAIN;
1044
1045	if (!trylock_page(hpage)) {
1046		if (!force || mode != MIGRATE_SYNC)
1047			goto out;
 
 
 
 
 
 
 
1048		lock_page(hpage);
1049	}
1050
 
 
 
 
 
 
 
 
 
 
1051	if (PageAnon(hpage))
1052		anon_vma = page_get_anon_vma(hpage);
1053
1054	try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
 
 
 
 
 
 
 
1055
1056	if (!page_mapped(hpage))
1057		rc = move_to_new_page(new_hpage, hpage, 1, mode);
 
 
 
 
1058
1059	if (rc)
1060		remove_migration_ptes(hpage, hpage);
1061
 
1062	if (anon_vma)
1063		put_anon_vma(anon_vma);
1064
1065	if (!rc)
1066		hugetlb_cgroup_migrate(hpage, new_hpage);
 
 
1067
 
1068	unlock_page(hpage);
1069out:
1070	if (rc != -EAGAIN)
1071		putback_active_hugepage(hpage);
1072	put_page(new_hpage);
1073	if (result) {
1074		if (rc)
1075			*result = rc;
1076		else
1077			*result = page_to_nid(new_hpage);
1078	}
 
 
 
 
1079	return rc;
1080}
1081
1082/*
1083 * migrate_pages - migrate the pages specified in a list, to the free pages
1084 *		   supplied as the target for the page migration
1085 *
1086 * @from:		The list of pages to be migrated.
1087 * @get_new_page:	The function used to allocate free pages to be used
1088 *			as the target of the page migration.
 
 
1089 * @private:		Private data to be passed on to get_new_page()
1090 * @mode:		The migration mode that specifies the constraints for
1091 *			page migration, if any.
1092 * @reason:		The reason for page migration.
1093 *
1094 * The function returns after 10 attempts or if no pages are movable any more
1095 * because the list has become empty or no retryable pages exist any more.
1096 * The caller should call putback_lru_pages() to return pages to the LRU
1097 * or free list only if ret != 0.
1098 *
1099 * Returns the number of pages that were not migrated, or an error code.
1100 */
1101int migrate_pages(struct list_head *from, new_page_t get_new_page,
1102		unsigned long private, enum migrate_mode mode, int reason)
 
1103{
1104	int retry = 1;
1105	int nr_failed = 0;
1106	int nr_succeeded = 0;
1107	int pass = 0;
1108	struct page *page;
1109	struct page *page2;
1110	int swapwrite = current->flags & PF_SWAPWRITE;
1111	int rc;
1112
1113	if (!swapwrite)
1114		current->flags |= PF_SWAPWRITE;
1115
1116	for(pass = 0; pass < 10 && retry; pass++) {
1117		retry = 0;
1118
1119		list_for_each_entry_safe(page, page2, from, lru) {
 
1120			cond_resched();
1121
1122			if (PageHuge(page))
1123				rc = unmap_and_move_huge_page(get_new_page,
1124						private, page, pass > 2, mode);
 
1125			else
1126				rc = unmap_and_move(get_new_page, private,
1127						page, pass > 2, mode);
 
1128
1129			switch(rc) {
1130			case -ENOMEM:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1131				goto out;
1132			case -EAGAIN:
1133				retry++;
1134				break;
1135			case MIGRATEPAGE_SUCCESS:
1136				nr_succeeded++;
1137				break;
1138			default:
1139				/*
1140				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1141				 * unlike -EAGAIN case, the failed page is
1142				 * removed from migration page list and not
1143				 * retried in the next outer loop.
1144				 */
1145				nr_failed++;
1146				break;
1147			}
1148		}
1149	}
1150	rc = nr_failed + retry;
 
1151out:
1152	if (nr_succeeded)
1153		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1154	if (nr_failed)
1155		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1156	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1157
1158	if (!swapwrite)
1159		current->flags &= ~PF_SWAPWRITE;
1160
1161	return rc;
1162}
1163
1164#ifdef CONFIG_NUMA
1165/*
1166 * Move a list of individual pages
1167 */
1168struct page_to_node {
1169	unsigned long addr;
1170	struct page *page;
1171	int node;
1172	int status;
1173};
1174
1175static struct page *new_page_node(struct page *p, unsigned long private,
1176		int **result)
1177{
1178	struct page_to_node *pm = (struct page_to_node *)private;
 
 
 
 
1179
1180	while (pm->node != MAX_NUMNODES && pm->page != p)
1181		pm++;
1182
1183	if (pm->node == MAX_NUMNODES)
1184		return NULL;
 
 
1185
1186	*result = &pm->status;
 
1187
1188	if (PageHuge(p))
1189		return alloc_huge_page_node(page_hstate(compound_head(p)),
1190					pm->node);
1191	else
1192		return alloc_pages_exact_node(pm->node,
1193				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1194}
1195
1196/*
1197 * Move a set of pages as indicated in the pm array. The addr
1198 * field must be set to the virtual address of the page to be moved
1199 * and the node number must contain a valid target node.
1200 * The pm array ends with node = MAX_NUMNODES.
 
1201 */
1202static int do_move_page_to_node_array(struct mm_struct *mm,
1203				      struct page_to_node *pm,
1204				      int migrate_all)
1205{
 
 
 
1206	int err;
1207	struct page_to_node *pp;
1208	LIST_HEAD(pagelist);
1209
1210	down_read(&mm->mmap_sem);
 
 
 
 
1211
1212	/*
1213	 * Build a list of pages to migrate
1214	 */
1215	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1216		struct vm_area_struct *vma;
1217		struct page *page;
1218
1219		err = -EFAULT;
1220		vma = find_vma(mm, pp->addr);
1221		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1222			goto set_status;
1223
1224		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
 
 
1225
1226		err = PTR_ERR(page);
1227		if (IS_ERR(page))
1228			goto set_status;
1229
1230		err = -ENOENT;
1231		if (!page)
1232			goto set_status;
1233
1234		/* Use PageReserved to check for zero page */
1235		if (PageReserved(page))
1236			goto put_and_set;
1237
1238		pp->page = page;
1239		err = page_to_nid(page);
1240
1241		if (err == pp->node)
1242			/*
1243			 * Node already in the right place
1244			 */
1245			goto put_and_set;
1246
1247		err = -EACCES;
1248		if (page_mapcount(page) > 1 &&
1249				!migrate_all)
1250			goto put_and_set;
1251
1252		if (PageHuge(page)) {
1253			isolate_huge_page(page, &pagelist);
1254			goto put_and_set;
1255		}
1256
1257		err = isolate_lru_page(page);
1258		if (!err) {
1259			list_add_tail(&page->lru, &pagelist);
1260			inc_zone_page_state(page, NR_ISOLATED_ANON +
1261					    page_is_file_cache(page));
1262		}
1263put_and_set:
1264		/*
1265		 * Either remove the duplicate refcount from
1266		 * isolate_lru_page() or drop the page ref if it was
1267		 * not isolated.
1268		 */
1269		put_page(page);
1270set_status:
1271		pp->status = err;
1272	}
1273
1274	err = 0;
1275	if (!list_empty(&pagelist)) {
1276		err = migrate_pages(&pagelist, new_page_node,
1277				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1278		if (err)
1279			putback_movable_pages(&pagelist);
1280	}
1281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1282	up_read(&mm->mmap_sem);
1283	return err;
1284}
1285
1286/*
1287 * Migrate an array of page address onto an array of nodes and fill
1288 * the corresponding array of status.
1289 */
1290static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1291			 unsigned long nr_pages,
1292			 const void __user * __user *pages,
1293			 const int __user *nodes,
1294			 int __user *status, int flags)
1295{
1296	struct page_to_node *pm;
1297	unsigned long chunk_nr_pages;
1298	unsigned long chunk_start;
1299	int err;
1300
1301	err = -ENOMEM;
1302	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1303	if (!pm)
1304		goto out;
1305
1306	migrate_prep();
1307
1308	/*
1309	 * Store a chunk of page_to_node array in a page,
1310	 * but keep the last one as a marker
1311	 */
1312	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1313
1314	for (chunk_start = 0;
1315	     chunk_start < nr_pages;
1316	     chunk_start += chunk_nr_pages) {
1317		int j;
 
 
 
 
 
 
 
 
1318
1319		if (chunk_start + chunk_nr_pages > nr_pages)
1320			chunk_nr_pages = nr_pages - chunk_start;
 
1321
1322		/* fill the chunk pm with addrs and nodes from user-space */
1323		for (j = 0; j < chunk_nr_pages; j++) {
1324			const void __user *p;
1325			int node;
 
 
 
 
 
 
 
 
 
1326
1327			err = -EFAULT;
1328			if (get_user(p, pages + j + chunk_start))
1329				goto out_pm;
1330			pm[j].addr = (unsigned long) p;
 
 
 
 
1331
1332			if (get_user(node, nodes + j + chunk_start))
1333				goto out_pm;
 
1334
1335			err = -ENODEV;
1336			if (node < 0 || node >= MAX_NUMNODES)
1337				goto out_pm;
1338
1339			if (!node_state(node, N_MEMORY))
1340				goto out_pm;
1341
1342			err = -EACCES;
1343			if (!node_isset(node, task_nodes))
1344				goto out_pm;
1345
1346			pm[j].node = node;
1347		}
1348
1349		/* End marker for this chunk */
1350		pm[chunk_nr_pages].node = MAX_NUMNODES;
1351
1352		/* Migrate this chunk */
1353		err = do_move_page_to_node_array(mm, pm,
1354						 flags & MPOL_MF_MOVE_ALL);
1355		if (err < 0)
1356			goto out_pm;
1357
1358		/* Return status information */
1359		for (j = 0; j < chunk_nr_pages; j++)
1360			if (put_user(pm[j].status, status + j + chunk_start)) {
1361				err = -EFAULT;
1362				goto out_pm;
1363			}
1364	}
1365	err = 0;
1366
1367out_pm:
1368	free_page((unsigned long)pm);
 
 
 
 
 
 
1369out:
1370	return err;
1371}
1372
1373/*
1374 * Determine the nodes of an array of pages and store it in an array of status.
1375 */
1376static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1377				const void __user **pages, int *status)
1378{
1379	unsigned long i;
1380
1381	down_read(&mm->mmap_sem);
1382
1383	for (i = 0; i < nr_pages; i++) {
1384		unsigned long addr = (unsigned long)(*pages);
1385		struct vm_area_struct *vma;
1386		struct page *page;
1387		int err = -EFAULT;
1388
1389		vma = find_vma(mm, addr);
1390		if (!vma || addr < vma->vm_start)
1391			goto set_status;
1392
1393		page = follow_page(vma, addr, 0);
 
1394
1395		err = PTR_ERR(page);
1396		if (IS_ERR(page))
1397			goto set_status;
1398
1399		err = -ENOENT;
1400		/* Use PageReserved to check for zero page */
1401		if (!page || PageReserved(page))
1402			goto set_status;
1403
1404		err = page_to_nid(page);
1405set_status:
1406		*status = err;
1407
1408		pages++;
1409		status++;
1410	}
1411
1412	up_read(&mm->mmap_sem);
1413}
1414
1415/*
1416 * Determine the nodes of a user array of pages and store it in
1417 * a user array of status.
1418 */
1419static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1420			 const void __user * __user *pages,
1421			 int __user *status)
1422{
1423#define DO_PAGES_STAT_CHUNK_NR 16
1424	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1425	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1426
1427	while (nr_pages) {
1428		unsigned long chunk_nr;
1429
1430		chunk_nr = nr_pages;
1431		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1432			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1433
1434		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1435			break;
1436
1437		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1438
1439		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1440			break;
1441
1442		pages += chunk_nr;
1443		status += chunk_nr;
1444		nr_pages -= chunk_nr;
1445	}
1446	return nr_pages ? -EFAULT : 0;
1447}
1448
1449/*
1450 * Move a list of pages in the address space of the currently executing
1451 * process.
1452 */
1453SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1454		const void __user * __user *, pages,
1455		const int __user *, nodes,
1456		int __user *, status, int, flags)
1457{
1458	const struct cred *cred = current_cred(), *tcred;
1459	struct task_struct *task;
1460	struct mm_struct *mm;
1461	int err;
1462	nodemask_t task_nodes;
1463
1464	/* Check flags */
1465	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1466		return -EINVAL;
1467
1468	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1469		return -EPERM;
1470
1471	/* Find the mm_struct */
1472	rcu_read_lock();
1473	task = pid ? find_task_by_vpid(pid) : current;
1474	if (!task) {
1475		rcu_read_unlock();
1476		return -ESRCH;
1477	}
1478	get_task_struct(task);
1479
1480	/*
1481	 * Check if this process has the right to modify the specified
1482	 * process. The right exists if the process has administrative
1483	 * capabilities, superuser privileges or the same
1484	 * userid as the target process.
1485	 */
1486	tcred = __task_cred(task);
1487	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1488	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1489	    !capable(CAP_SYS_NICE)) {
1490		rcu_read_unlock();
1491		err = -EPERM;
1492		goto out;
1493	}
1494	rcu_read_unlock();
1495
1496 	err = security_task_movememory(task);
1497 	if (err)
1498		goto out;
1499
1500	task_nodes = cpuset_mems_allowed(task);
1501	mm = get_task_mm(task);
1502	put_task_struct(task);
1503
1504	if (!mm)
1505		return -EINVAL;
1506
1507	if (nodes)
1508		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1509				    nodes, status, flags);
1510	else
1511		err = do_pages_stat(mm, nr_pages, pages, status);
1512
1513	mmput(mm);
1514	return err;
1515
1516out:
1517	put_task_struct(task);
1518	return err;
1519}
1520
1521/*
1522 * Call migration functions in the vma_ops that may prepare
1523 * memory in a vm for migration. migration functions may perform
1524 * the migration for vmas that do not have an underlying page struct.
1525 */
1526int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1527	const nodemask_t *from, unsigned long flags)
1528{
1529 	struct vm_area_struct *vma;
1530 	int err = 0;
1531
1532	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1533 		if (vma->vm_ops && vma->vm_ops->migrate) {
1534 			err = vma->vm_ops->migrate(vma, to, from, flags);
1535 			if (err)
1536 				break;
1537 		}
1538 	}
1539 	return err;
 
 
 
 
 
 
 
 
1540}
 
1541
1542#ifdef CONFIG_NUMA_BALANCING
1543/*
1544 * Returns true if this is a safe migration target node for misplaced NUMA
1545 * pages. Currently it only checks the watermarks which crude
1546 */
1547static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1548				   unsigned long nr_migrate_pages)
1549{
1550	int z;
 
1551	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1552		struct zone *zone = pgdat->node_zones + z;
1553
1554		if (!populated_zone(zone))
1555			continue;
1556
1557		if (!zone_reclaimable(zone))
1558			continue;
1559
1560		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1561		if (!zone_watermark_ok(zone, 0,
1562				       high_wmark_pages(zone) +
1563				       nr_migrate_pages,
1564				       0, 0))
1565			continue;
1566		return true;
1567	}
1568	return false;
1569}
1570
1571static struct page *alloc_misplaced_dst_page(struct page *page,
1572					   unsigned long data,
1573					   int **result)
1574{
1575	int nid = (int) data;
1576	struct page *newpage;
1577
1578	newpage = alloc_pages_exact_node(nid,
1579					 (GFP_HIGHUSER_MOVABLE |
1580					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1581					  __GFP_NORETRY | __GFP_NOWARN) &
1582					 ~GFP_IOFS, 0);
1583
1584	return newpage;
1585}
1586
1587/*
1588 * page migration rate limiting control.
1589 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1590 * window of time. Default here says do not migrate more than 1280M per second.
1591 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1592 * as it is faults that reset the window, pte updates will happen unconditionally
1593 * if there has not been a fault since @pteupdate_interval_millisecs after the
1594 * throttle window closed.
1595 */
1596static unsigned int migrate_interval_millisecs __read_mostly = 100;
1597static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1598static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1599
1600/* Returns true if NUMA migration is currently rate limited */
1601bool migrate_ratelimited(int node)
1602{
1603	pg_data_t *pgdat = NODE_DATA(node);
1604
1605	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1606				msecs_to_jiffies(pteupdate_interval_millisecs)))
1607		return false;
1608
1609	if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1610		return false;
1611
1612	return true;
1613}
1614
1615/* Returns true if the node is migrate rate-limited after the update */
1616static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1617					unsigned long nr_pages)
1618{
1619	/*
1620	 * Rate-limit the amount of data that is being migrated to a node.
1621	 * Optimal placement is no good if the memory bus is saturated and
1622	 * all the time is being spent migrating!
1623	 */
1624	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1625		spin_lock(&pgdat->numabalancing_migrate_lock);
1626		pgdat->numabalancing_migrate_nr_pages = 0;
1627		pgdat->numabalancing_migrate_next_window = jiffies +
1628			msecs_to_jiffies(migrate_interval_millisecs);
1629		spin_unlock(&pgdat->numabalancing_migrate_lock);
1630	}
1631	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1632		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1633								nr_pages);
1634		return true;
1635	}
1636
1637	/*
1638	 * This is an unlocked non-atomic update so errors are possible.
1639	 * The consequences are failing to migrate when we potentiall should
1640	 * have which is not severe enough to warrant locking. If it is ever
1641	 * a problem, it can be converted to a per-cpu counter.
1642	 */
1643	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1644	return false;
1645}
1646
1647static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1648{
1649	int page_lru;
1650
1651	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1652
1653	/* Avoid migrating to a node that is nearly full */
1654	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1655		return 0;
1656
1657	if (isolate_lru_page(page))
1658		return 0;
1659
1660	/*
1661	 * migrate_misplaced_transhuge_page() skips page migration's usual
1662	 * check on page_count(), so we must do it here, now that the page
1663	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1664	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1665	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1666	 */
1667	if (PageTransHuge(page) && page_count(page) != 3) {
1668		putback_lru_page(page);
1669		return 0;
1670	}
1671
1672	page_lru = page_is_file_cache(page);
1673	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1674				hpage_nr_pages(page));
1675
1676	/*
1677	 * Isolating the page has taken another reference, so the
1678	 * caller's reference can be safely dropped without the page
1679	 * disappearing underneath us during migration.
1680	 */
1681	put_page(page);
1682	return 1;
1683}
1684
1685bool pmd_trans_migrating(pmd_t pmd)
1686{
1687	struct page *page = pmd_page(pmd);
1688	return PageLocked(page);
1689}
1690
1691void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd)
1692{
1693	struct page *page = pmd_page(*pmd);
1694	wait_on_page_locked(page);
1695}
1696
1697/*
1698 * Attempt to migrate a misplaced page to the specified destination
1699 * node. Caller is expected to have an elevated reference count on
1700 * the page that will be dropped by this function before returning.
1701 */
1702int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1703			   int node)
1704{
1705	pg_data_t *pgdat = NODE_DATA(node);
1706	int isolated;
1707	int nr_remaining;
1708	LIST_HEAD(migratepages);
1709
1710	/*
1711	 * Don't migrate file pages that are mapped in multiple processes
1712	 * with execute permissions as they are probably shared libraries.
1713	 */
1714	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1715	    (vma->vm_flags & VM_EXEC))
1716		goto out;
1717
1718	/*
1719	 * Rate-limit the amount of data that is being migrated to a node.
1720	 * Optimal placement is no good if the memory bus is saturated and
1721	 * all the time is being spent migrating!
1722	 */
1723	if (numamigrate_update_ratelimit(pgdat, 1))
1724		goto out;
1725
1726	isolated = numamigrate_isolate_page(pgdat, page);
1727	if (!isolated)
1728		goto out;
1729
1730	list_add(&page->lru, &migratepages);
1731	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1732				     node, MIGRATE_ASYNC, MR_NUMA_MISPLACED);
 
1733	if (nr_remaining) {
1734		if (!list_empty(&migratepages)) {
1735			list_del(&page->lru);
1736			dec_zone_page_state(page, NR_ISOLATED_ANON +
1737					page_is_file_cache(page));
1738			putback_lru_page(page);
1739		}
1740		isolated = 0;
1741	} else
1742		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1743	BUG_ON(!list_empty(&migratepages));
1744	return isolated;
1745
1746out:
1747	put_page(page);
1748	return 0;
1749}
1750#endif /* CONFIG_NUMA_BALANCING */
1751
1752#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1753/*
1754 * Migrates a THP to a given target node. page must be locked and is unlocked
1755 * before returning.
1756 */
1757int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1758				struct vm_area_struct *vma,
1759				pmd_t *pmd, pmd_t entry,
1760				unsigned long address,
1761				struct page *page, int node)
1762{
1763	spinlock_t *ptl;
1764	pg_data_t *pgdat = NODE_DATA(node);
1765	int isolated = 0;
1766	struct page *new_page = NULL;
1767	struct mem_cgroup *memcg = NULL;
1768	int page_lru = page_is_file_cache(page);
1769	unsigned long mmun_start = address & HPAGE_PMD_MASK;
1770	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1771	pmd_t orig_entry;
1772
1773	/*
1774	 * Rate-limit the amount of data that is being migrated to a node.
1775	 * Optimal placement is no good if the memory bus is saturated and
1776	 * all the time is being spent migrating!
1777	 */
1778	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1779		goto out_dropref;
1780
1781	new_page = alloc_pages_node(node,
1782		(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT,
1783		HPAGE_PMD_ORDER);
1784	if (!new_page)
1785		goto out_fail;
 
1786
1787	isolated = numamigrate_isolate_page(pgdat, page);
1788	if (!isolated) {
1789		put_page(new_page);
1790		goto out_fail;
1791	}
1792
1793	if (mm_tlb_flush_pending(mm))
1794		flush_tlb_range(vma, mmun_start, mmun_end);
1795
1796	/* Prepare a page as a migration target */
1797	__set_page_locked(new_page);
1798	SetPageSwapBacked(new_page);
 
1799
1800	/* anon mapping, we can simply copy page->mapping to the new page: */
1801	new_page->mapping = page->mapping;
1802	new_page->index = page->index;
 
 
1803	migrate_page_copy(new_page, page);
1804	WARN_ON(PageLRU(new_page));
1805
1806	/* Recheck the target PMD */
1807	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1808	ptl = pmd_lock(mm, pmd);
1809	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1810fail_putback:
1811		spin_unlock(ptl);
1812		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1813
1814		/* Reverse changes made by migrate_page_copy() */
1815		if (TestClearPageActive(new_page))
1816			SetPageActive(page);
1817		if (TestClearPageUnevictable(new_page))
1818			SetPageUnevictable(page);
1819		mlock_migrate_page(page, new_page);
1820
1821		unlock_page(new_page);
1822		put_page(new_page);		/* Free it */
1823
1824		/* Retake the callers reference and putback on LRU */
1825		get_page(page);
1826		putback_lru_page(page);
1827		mod_zone_page_state(page_zone(page),
1828			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1829
1830		goto out_unlock;
1831	}
1832
1833	/*
1834	 * Traditional migration needs to prepare the memcg charge
1835	 * transaction early to prevent the old page from being
1836	 * uncharged when installing migration entries.  Here we can
1837	 * save the potential rollback and start the charge transfer
1838	 * only when migration is already known to end successfully.
1839	 */
1840	mem_cgroup_prepare_migration(page, new_page, &memcg);
1841
1842	orig_entry = *pmd;
1843	entry = mk_pmd(new_page, vma->vm_page_prot);
1844	entry = pmd_mkhuge(entry);
1845	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1846
1847	/*
1848	 * Clear the old entry under pagetable lock and establish the new PTE.
1849	 * Any parallel GUP will either observe the old page blocking on the
1850	 * page lock, block on the page table lock or observe the new page.
1851	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1852	 * guarantee the copy is visible before the pagetable update.
1853	 */
1854	flush_cache_range(vma, mmun_start, mmun_end);
1855	page_add_new_anon_rmap(new_page, vma, mmun_start);
1856	pmdp_clear_flush(vma, mmun_start, pmd);
1857	set_pmd_at(mm, mmun_start, pmd, entry);
1858	flush_tlb_range(vma, mmun_start, mmun_end);
 
 
 
 
 
 
 
 
 
1859	update_mmu_cache_pmd(vma, address, &entry);
1860
1861	if (page_count(page) != 2) {
1862		set_pmd_at(mm, mmun_start, pmd, orig_entry);
1863		flush_tlb_range(vma, mmun_start, mmun_end);
1864		update_mmu_cache_pmd(vma, address, &entry);
1865		page_remove_rmap(new_page);
1866		goto fail_putback;
1867	}
1868
1869	page_remove_rmap(page);
1870
1871	/*
1872	 * Finish the charge transaction under the page table lock to
1873	 * prevent split_huge_page() from dividing up the charge
1874	 * before it's fully transferred to the new page.
1875	 */
1876	mem_cgroup_end_migration(memcg, page, new_page, true);
1877	spin_unlock(ptl);
1878	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1879
1880	unlock_page(new_page);
1881	unlock_page(page);
1882	put_page(page);			/* Drop the rmap reference */
1883	put_page(page);			/* Drop the LRU isolation reference */
1884
1885	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1886	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1887
1888	mod_zone_page_state(page_zone(page),
1889			NR_ISOLATED_ANON + page_lru,
1890			-HPAGE_PMD_NR);
1891	return isolated;
1892
1893out_fail:
1894	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1895out_dropref:
1896	ptl = pmd_lock(mm, pmd);
1897	if (pmd_same(*pmd, entry)) {
1898		entry = pmd_mknonnuma(entry);
1899		set_pmd_at(mm, mmun_start, pmd, entry);
1900		update_mmu_cache_pmd(vma, address, &entry);
1901	}
1902	spin_unlock(ptl);
1903
1904out_unlock:
1905	unlock_page(page);
1906	put_page(page);
1907	return 0;
1908}
1909#endif /* CONFIG_NUMA_BALANCING */
1910
1911#endif /* CONFIG_NUMA */