Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* -*- mode: c; c-basic-offset: 8; -*-
3 * vim: noexpandtab sw=8 ts=8 sts=0:
4 *
5 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 */
7
8#include <linux/fs.h>
9#include <linux/slab.h>
10#include <linux/highmem.h>
11#include <linux/pagemap.h>
12#include <asm/byteorder.h>
13#include <linux/swap.h>
14#include <linux/pipe_fs_i.h>
15#include <linux/mpage.h>
16#include <linux/quotaops.h>
17#include <linux/blkdev.h>
18#include <linux/uio.h>
19#include <linux/mm.h>
20
21#include <cluster/masklog.h>
22
23#include "ocfs2.h"
24
25#include "alloc.h"
26#include "aops.h"
27#include "dlmglue.h"
28#include "extent_map.h"
29#include "file.h"
30#include "inode.h"
31#include "journal.h"
32#include "suballoc.h"
33#include "super.h"
34#include "symlink.h"
35#include "refcounttree.h"
36#include "ocfs2_trace.h"
37
38#include "buffer_head_io.h"
39#include "dir.h"
40#include "namei.h"
41#include "sysfile.h"
42
43static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
44 struct buffer_head *bh_result, int create)
45{
46 int err = -EIO;
47 int status;
48 struct ocfs2_dinode *fe = NULL;
49 struct buffer_head *bh = NULL;
50 struct buffer_head *buffer_cache_bh = NULL;
51 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
52 void *kaddr;
53
54 trace_ocfs2_symlink_get_block(
55 (unsigned long long)OCFS2_I(inode)->ip_blkno,
56 (unsigned long long)iblock, bh_result, create);
57
58 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
59
60 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
61 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
62 (unsigned long long)iblock);
63 goto bail;
64 }
65
66 status = ocfs2_read_inode_block(inode, &bh);
67 if (status < 0) {
68 mlog_errno(status);
69 goto bail;
70 }
71 fe = (struct ocfs2_dinode *) bh->b_data;
72
73 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
74 le32_to_cpu(fe->i_clusters))) {
75 err = -ENOMEM;
76 mlog(ML_ERROR, "block offset is outside the allocated size: "
77 "%llu\n", (unsigned long long)iblock);
78 goto bail;
79 }
80
81 /* We don't use the page cache to create symlink data, so if
82 * need be, copy it over from the buffer cache. */
83 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
84 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
85 iblock;
86 buffer_cache_bh = sb_getblk(osb->sb, blkno);
87 if (!buffer_cache_bh) {
88 err = -ENOMEM;
89 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
90 goto bail;
91 }
92
93 /* we haven't locked out transactions, so a commit
94 * could've happened. Since we've got a reference on
95 * the bh, even if it commits while we're doing the
96 * copy, the data is still good. */
97 if (buffer_jbd(buffer_cache_bh)
98 && ocfs2_inode_is_new(inode)) {
99 kaddr = kmap_atomic(bh_result->b_page);
100 if (!kaddr) {
101 mlog(ML_ERROR, "couldn't kmap!\n");
102 goto bail;
103 }
104 memcpy(kaddr + (bh_result->b_size * iblock),
105 buffer_cache_bh->b_data,
106 bh_result->b_size);
107 kunmap_atomic(kaddr);
108 set_buffer_uptodate(bh_result);
109 }
110 brelse(buffer_cache_bh);
111 }
112
113 map_bh(bh_result, inode->i_sb,
114 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
115
116 err = 0;
117
118bail:
119 brelse(bh);
120
121 return err;
122}
123
124static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
125 struct buffer_head *bh_result, int create)
126{
127 int ret = 0;
128 struct ocfs2_inode_info *oi = OCFS2_I(inode);
129
130 down_read(&oi->ip_alloc_sem);
131 ret = ocfs2_get_block(inode, iblock, bh_result, create);
132 up_read(&oi->ip_alloc_sem);
133
134 return ret;
135}
136
137int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 struct buffer_head *bh_result, int create)
139{
140 int err = 0;
141 unsigned int ext_flags;
142 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143 u64 p_blkno, count, past_eof;
144 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
145
146 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147 (unsigned long long)iblock, bh_result, create);
148
149 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151 inode, inode->i_ino);
152
153 if (S_ISLNK(inode->i_mode)) {
154 /* this always does I/O for some reason. */
155 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156 goto bail;
157 }
158
159 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
160 &ext_flags);
161 if (err) {
162 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
163 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164 (unsigned long long)p_blkno);
165 goto bail;
166 }
167
168 if (max_blocks < count)
169 count = max_blocks;
170
171 /*
172 * ocfs2 never allocates in this function - the only time we
173 * need to use BH_New is when we're extending i_size on a file
174 * system which doesn't support holes, in which case BH_New
175 * allows __block_write_begin() to zero.
176 *
177 * If we see this on a sparse file system, then a truncate has
178 * raced us and removed the cluster. In this case, we clear
179 * the buffers dirty and uptodate bits and let the buffer code
180 * ignore it as a hole.
181 */
182 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183 clear_buffer_dirty(bh_result);
184 clear_buffer_uptodate(bh_result);
185 goto bail;
186 }
187
188 /* Treat the unwritten extent as a hole for zeroing purposes. */
189 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
190 map_bh(bh_result, inode->i_sb, p_blkno);
191
192 bh_result->b_size = count << inode->i_blkbits;
193
194 if (!ocfs2_sparse_alloc(osb)) {
195 if (p_blkno == 0) {
196 err = -EIO;
197 mlog(ML_ERROR,
198 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199 (unsigned long long)iblock,
200 (unsigned long long)p_blkno,
201 (unsigned long long)OCFS2_I(inode)->ip_blkno);
202 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203 dump_stack();
204 goto bail;
205 }
206 }
207
208 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
209
210 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211 (unsigned long long)past_eof);
212 if (create && (iblock >= past_eof))
213 set_buffer_new(bh_result);
214
215bail:
216 if (err < 0)
217 err = -EIO;
218
219 return err;
220}
221
222int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223 struct buffer_head *di_bh)
224{
225 void *kaddr;
226 loff_t size;
227 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228
229 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
231 (unsigned long long)OCFS2_I(inode)->ip_blkno);
232 return -EROFS;
233 }
234
235 size = i_size_read(inode);
236
237 if (size > PAGE_SIZE ||
238 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
239 ocfs2_error(inode->i_sb,
240 "Inode %llu has with inline data has bad size: %Lu\n",
241 (unsigned long long)OCFS2_I(inode)->ip_blkno,
242 (unsigned long long)size);
243 return -EROFS;
244 }
245
246 kaddr = kmap_atomic(page);
247 if (size)
248 memcpy(kaddr, di->id2.i_data.id_data, size);
249 /* Clear the remaining part of the page */
250 memset(kaddr + size, 0, PAGE_SIZE - size);
251 flush_dcache_page(page);
252 kunmap_atomic(kaddr);
253
254 SetPageUptodate(page);
255
256 return 0;
257}
258
259static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260{
261 int ret;
262 struct buffer_head *di_bh = NULL;
263
264 BUG_ON(!PageLocked(page));
265 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
266
267 ret = ocfs2_read_inode_block(inode, &di_bh);
268 if (ret) {
269 mlog_errno(ret);
270 goto out;
271 }
272
273 ret = ocfs2_read_inline_data(inode, page, di_bh);
274out:
275 unlock_page(page);
276
277 brelse(di_bh);
278 return ret;
279}
280
281static int ocfs2_readpage(struct file *file, struct page *page)
282{
283 struct inode *inode = page->mapping->host;
284 struct ocfs2_inode_info *oi = OCFS2_I(inode);
285 loff_t start = (loff_t)page->index << PAGE_SHIFT;
286 int ret, unlock = 1;
287
288 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289 (page ? page->index : 0));
290
291 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
292 if (ret != 0) {
293 if (ret == AOP_TRUNCATED_PAGE)
294 unlock = 0;
295 mlog_errno(ret);
296 goto out;
297 }
298
299 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
300 /*
301 * Unlock the page and cycle ip_alloc_sem so that we don't
302 * busyloop waiting for ip_alloc_sem to unlock
303 */
304 ret = AOP_TRUNCATED_PAGE;
305 unlock_page(page);
306 unlock = 0;
307 down_read(&oi->ip_alloc_sem);
308 up_read(&oi->ip_alloc_sem);
309 goto out_inode_unlock;
310 }
311
312 /*
313 * i_size might have just been updated as we grabed the meta lock. We
314 * might now be discovering a truncate that hit on another node.
315 * block_read_full_page->get_block freaks out if it is asked to read
316 * beyond the end of a file, so we check here. Callers
317 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
318 * and notice that the page they just read isn't needed.
319 *
320 * XXX sys_readahead() seems to get that wrong?
321 */
322 if (start >= i_size_read(inode)) {
323 zero_user(page, 0, PAGE_SIZE);
324 SetPageUptodate(page);
325 ret = 0;
326 goto out_alloc;
327 }
328
329 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330 ret = ocfs2_readpage_inline(inode, page);
331 else
332 ret = block_read_full_page(page, ocfs2_get_block);
333 unlock = 0;
334
335out_alloc:
336 up_read(&oi->ip_alloc_sem);
337out_inode_unlock:
338 ocfs2_inode_unlock(inode, 0);
339out:
340 if (unlock)
341 unlock_page(page);
342 return ret;
343}
344
345/*
346 * This is used only for read-ahead. Failures or difficult to handle
347 * situations are safe to ignore.
348 *
349 * Right now, we don't bother with BH_Boundary - in-inode extent lists
350 * are quite large (243 extents on 4k blocks), so most inodes don't
351 * grow out to a tree. If need be, detecting boundary extents could
352 * trivially be added in a future version of ocfs2_get_block().
353 */
354static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355 struct list_head *pages, unsigned nr_pages)
356{
357 int ret, err = -EIO;
358 struct inode *inode = mapping->host;
359 struct ocfs2_inode_info *oi = OCFS2_I(inode);
360 loff_t start;
361 struct page *last;
362
363 /*
364 * Use the nonblocking flag for the dlm code to avoid page
365 * lock inversion, but don't bother with retrying.
366 */
367 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368 if (ret)
369 return err;
370
371 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372 ocfs2_inode_unlock(inode, 0);
373 return err;
374 }
375
376 /*
377 * Don't bother with inline-data. There isn't anything
378 * to read-ahead in that case anyway...
379 */
380 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381 goto out_unlock;
382
383 /*
384 * Check whether a remote node truncated this file - we just
385 * drop out in that case as it's not worth handling here.
386 */
387 last = lru_to_page(pages);
388 start = (loff_t)last->index << PAGE_SHIFT;
389 if (start >= i_size_read(inode))
390 goto out_unlock;
391
392 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393
394out_unlock:
395 up_read(&oi->ip_alloc_sem);
396 ocfs2_inode_unlock(inode, 0);
397
398 return err;
399}
400
401/* Note: Because we don't support holes, our allocation has
402 * already happened (allocation writes zeros to the file data)
403 * so we don't have to worry about ordered writes in
404 * ocfs2_writepage.
405 *
406 * ->writepage is called during the process of invalidating the page cache
407 * during blocked lock processing. It can't block on any cluster locks
408 * to during block mapping. It's relying on the fact that the block
409 * mapping can't have disappeared under the dirty pages that it is
410 * being asked to write back.
411 */
412static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413{
414 trace_ocfs2_writepage(
415 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416 page->index);
417
418 return block_write_full_page(page, ocfs2_get_block, wbc);
419}
420
421/* Taken from ext3. We don't necessarily need the full blown
422 * functionality yet, but IMHO it's better to cut and paste the whole
423 * thing so we can avoid introducing our own bugs (and easily pick up
424 * their fixes when they happen) --Mark */
425int walk_page_buffers( handle_t *handle,
426 struct buffer_head *head,
427 unsigned from,
428 unsigned to,
429 int *partial,
430 int (*fn)( handle_t *handle,
431 struct buffer_head *bh))
432{
433 struct buffer_head *bh;
434 unsigned block_start, block_end;
435 unsigned blocksize = head->b_size;
436 int err, ret = 0;
437 struct buffer_head *next;
438
439 for ( bh = head, block_start = 0;
440 ret == 0 && (bh != head || !block_start);
441 block_start = block_end, bh = next)
442 {
443 next = bh->b_this_page;
444 block_end = block_start + blocksize;
445 if (block_end <= from || block_start >= to) {
446 if (partial && !buffer_uptodate(bh))
447 *partial = 1;
448 continue;
449 }
450 err = (*fn)(handle, bh);
451 if (!ret)
452 ret = err;
453 }
454 return ret;
455}
456
457static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458{
459 sector_t status;
460 u64 p_blkno = 0;
461 int err = 0;
462 struct inode *inode = mapping->host;
463
464 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465 (unsigned long long)block);
466
467 /*
468 * The swap code (ab-)uses ->bmap to get a block mapping and then
469 * bypasseѕ the file system for actual I/O. We really can't allow
470 * that on refcounted inodes, so we have to skip out here. And yes,
471 * 0 is the magic code for a bmap error..
472 */
473 if (ocfs2_is_refcount_inode(inode))
474 return 0;
475
476 /* We don't need to lock journal system files, since they aren't
477 * accessed concurrently from multiple nodes.
478 */
479 if (!INODE_JOURNAL(inode)) {
480 err = ocfs2_inode_lock(inode, NULL, 0);
481 if (err) {
482 if (err != -ENOENT)
483 mlog_errno(err);
484 goto bail;
485 }
486 down_read(&OCFS2_I(inode)->ip_alloc_sem);
487 }
488
489 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
490 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
491 NULL);
492
493 if (!INODE_JOURNAL(inode)) {
494 up_read(&OCFS2_I(inode)->ip_alloc_sem);
495 ocfs2_inode_unlock(inode, 0);
496 }
497
498 if (err) {
499 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
500 (unsigned long long)block);
501 mlog_errno(err);
502 goto bail;
503 }
504
505bail:
506 status = err ? 0 : p_blkno;
507
508 return status;
509}
510
511static int ocfs2_releasepage(struct page *page, gfp_t wait)
512{
513 if (!page_has_buffers(page))
514 return 0;
515 return try_to_free_buffers(page);
516}
517
518static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
519 u32 cpos,
520 unsigned int *start,
521 unsigned int *end)
522{
523 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
524
525 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
526 unsigned int cpp;
527
528 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
529
530 cluster_start = cpos % cpp;
531 cluster_start = cluster_start << osb->s_clustersize_bits;
532
533 cluster_end = cluster_start + osb->s_clustersize;
534 }
535
536 BUG_ON(cluster_start > PAGE_SIZE);
537 BUG_ON(cluster_end > PAGE_SIZE);
538
539 if (start)
540 *start = cluster_start;
541 if (end)
542 *end = cluster_end;
543}
544
545/*
546 * 'from' and 'to' are the region in the page to avoid zeroing.
547 *
548 * If pagesize > clustersize, this function will avoid zeroing outside
549 * of the cluster boundary.
550 *
551 * from == to == 0 is code for "zero the entire cluster region"
552 */
553static void ocfs2_clear_page_regions(struct page *page,
554 struct ocfs2_super *osb, u32 cpos,
555 unsigned from, unsigned to)
556{
557 void *kaddr;
558 unsigned int cluster_start, cluster_end;
559
560 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
561
562 kaddr = kmap_atomic(page);
563
564 if (from || to) {
565 if (from > cluster_start)
566 memset(kaddr + cluster_start, 0, from - cluster_start);
567 if (to < cluster_end)
568 memset(kaddr + to, 0, cluster_end - to);
569 } else {
570 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
571 }
572
573 kunmap_atomic(kaddr);
574}
575
576/*
577 * Nonsparse file systems fully allocate before we get to the write
578 * code. This prevents ocfs2_write() from tagging the write as an
579 * allocating one, which means ocfs2_map_page_blocks() might try to
580 * read-in the blocks at the tail of our file. Avoid reading them by
581 * testing i_size against each block offset.
582 */
583static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
584 unsigned int block_start)
585{
586 u64 offset = page_offset(page) + block_start;
587
588 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
589 return 1;
590
591 if (i_size_read(inode) > offset)
592 return 1;
593
594 return 0;
595}
596
597/*
598 * Some of this taken from __block_write_begin(). We already have our
599 * mapping by now though, and the entire write will be allocating or
600 * it won't, so not much need to use BH_New.
601 *
602 * This will also skip zeroing, which is handled externally.
603 */
604int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
605 struct inode *inode, unsigned int from,
606 unsigned int to, int new)
607{
608 int ret = 0;
609 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
610 unsigned int block_end, block_start;
611 unsigned int bsize = i_blocksize(inode);
612
613 if (!page_has_buffers(page))
614 create_empty_buffers(page, bsize, 0);
615
616 head = page_buffers(page);
617 for (bh = head, block_start = 0; bh != head || !block_start;
618 bh = bh->b_this_page, block_start += bsize) {
619 block_end = block_start + bsize;
620
621 clear_buffer_new(bh);
622
623 /*
624 * Ignore blocks outside of our i/o range -
625 * they may belong to unallocated clusters.
626 */
627 if (block_start >= to || block_end <= from) {
628 if (PageUptodate(page))
629 set_buffer_uptodate(bh);
630 continue;
631 }
632
633 /*
634 * For an allocating write with cluster size >= page
635 * size, we always write the entire page.
636 */
637 if (new)
638 set_buffer_new(bh);
639
640 if (!buffer_mapped(bh)) {
641 map_bh(bh, inode->i_sb, *p_blkno);
642 clean_bdev_bh_alias(bh);
643 }
644
645 if (PageUptodate(page)) {
646 if (!buffer_uptodate(bh))
647 set_buffer_uptodate(bh);
648 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
649 !buffer_new(bh) &&
650 ocfs2_should_read_blk(inode, page, block_start) &&
651 (block_start < from || block_end > to)) {
652 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
653 *wait_bh++=bh;
654 }
655
656 *p_blkno = *p_blkno + 1;
657 }
658
659 /*
660 * If we issued read requests - let them complete.
661 */
662 while(wait_bh > wait) {
663 wait_on_buffer(*--wait_bh);
664 if (!buffer_uptodate(*wait_bh))
665 ret = -EIO;
666 }
667
668 if (ret == 0 || !new)
669 return ret;
670
671 /*
672 * If we get -EIO above, zero out any newly allocated blocks
673 * to avoid exposing stale data.
674 */
675 bh = head;
676 block_start = 0;
677 do {
678 block_end = block_start + bsize;
679 if (block_end <= from)
680 goto next_bh;
681 if (block_start >= to)
682 break;
683
684 zero_user(page, block_start, bh->b_size);
685 set_buffer_uptodate(bh);
686 mark_buffer_dirty(bh);
687
688next_bh:
689 block_start = block_end;
690 bh = bh->b_this_page;
691 } while (bh != head);
692
693 return ret;
694}
695
696#if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
697#define OCFS2_MAX_CTXT_PAGES 1
698#else
699#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
700#endif
701
702#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
703
704struct ocfs2_unwritten_extent {
705 struct list_head ue_node;
706 struct list_head ue_ip_node;
707 u32 ue_cpos;
708 u32 ue_phys;
709};
710
711/*
712 * Describe the state of a single cluster to be written to.
713 */
714struct ocfs2_write_cluster_desc {
715 u32 c_cpos;
716 u32 c_phys;
717 /*
718 * Give this a unique field because c_phys eventually gets
719 * filled.
720 */
721 unsigned c_new;
722 unsigned c_clear_unwritten;
723 unsigned c_needs_zero;
724};
725
726struct ocfs2_write_ctxt {
727 /* Logical cluster position / len of write */
728 u32 w_cpos;
729 u32 w_clen;
730
731 /* First cluster allocated in a nonsparse extend */
732 u32 w_first_new_cpos;
733
734 /* Type of caller. Must be one of buffer, mmap, direct. */
735 ocfs2_write_type_t w_type;
736
737 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
738
739 /*
740 * This is true if page_size > cluster_size.
741 *
742 * It triggers a set of special cases during write which might
743 * have to deal with allocating writes to partial pages.
744 */
745 unsigned int w_large_pages;
746
747 /*
748 * Pages involved in this write.
749 *
750 * w_target_page is the page being written to by the user.
751 *
752 * w_pages is an array of pages which always contains
753 * w_target_page, and in the case of an allocating write with
754 * page_size < cluster size, it will contain zero'd and mapped
755 * pages adjacent to w_target_page which need to be written
756 * out in so that future reads from that region will get
757 * zero's.
758 */
759 unsigned int w_num_pages;
760 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
761 struct page *w_target_page;
762
763 /*
764 * w_target_locked is used for page_mkwrite path indicating no unlocking
765 * against w_target_page in ocfs2_write_end_nolock.
766 */
767 unsigned int w_target_locked:1;
768
769 /*
770 * ocfs2_write_end() uses this to know what the real range to
771 * write in the target should be.
772 */
773 unsigned int w_target_from;
774 unsigned int w_target_to;
775
776 /*
777 * We could use journal_current_handle() but this is cleaner,
778 * IMHO -Mark
779 */
780 handle_t *w_handle;
781
782 struct buffer_head *w_di_bh;
783
784 struct ocfs2_cached_dealloc_ctxt w_dealloc;
785
786 struct list_head w_unwritten_list;
787 unsigned int w_unwritten_count;
788};
789
790void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
791{
792 int i;
793
794 for(i = 0; i < num_pages; i++) {
795 if (pages[i]) {
796 unlock_page(pages[i]);
797 mark_page_accessed(pages[i]);
798 put_page(pages[i]);
799 }
800 }
801}
802
803static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
804{
805 int i;
806
807 /*
808 * w_target_locked is only set to true in the page_mkwrite() case.
809 * The intent is to allow us to lock the target page from write_begin()
810 * to write_end(). The caller must hold a ref on w_target_page.
811 */
812 if (wc->w_target_locked) {
813 BUG_ON(!wc->w_target_page);
814 for (i = 0; i < wc->w_num_pages; i++) {
815 if (wc->w_target_page == wc->w_pages[i]) {
816 wc->w_pages[i] = NULL;
817 break;
818 }
819 }
820 mark_page_accessed(wc->w_target_page);
821 put_page(wc->w_target_page);
822 }
823 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
824}
825
826static void ocfs2_free_unwritten_list(struct inode *inode,
827 struct list_head *head)
828{
829 struct ocfs2_inode_info *oi = OCFS2_I(inode);
830 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
831
832 list_for_each_entry_safe(ue, tmp, head, ue_node) {
833 list_del(&ue->ue_node);
834 spin_lock(&oi->ip_lock);
835 list_del(&ue->ue_ip_node);
836 spin_unlock(&oi->ip_lock);
837 kfree(ue);
838 }
839}
840
841static void ocfs2_free_write_ctxt(struct inode *inode,
842 struct ocfs2_write_ctxt *wc)
843{
844 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
845 ocfs2_unlock_pages(wc);
846 brelse(wc->w_di_bh);
847 kfree(wc);
848}
849
850static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
851 struct ocfs2_super *osb, loff_t pos,
852 unsigned len, ocfs2_write_type_t type,
853 struct buffer_head *di_bh)
854{
855 u32 cend;
856 struct ocfs2_write_ctxt *wc;
857
858 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
859 if (!wc)
860 return -ENOMEM;
861
862 wc->w_cpos = pos >> osb->s_clustersize_bits;
863 wc->w_first_new_cpos = UINT_MAX;
864 cend = (pos + len - 1) >> osb->s_clustersize_bits;
865 wc->w_clen = cend - wc->w_cpos + 1;
866 get_bh(di_bh);
867 wc->w_di_bh = di_bh;
868 wc->w_type = type;
869
870 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
871 wc->w_large_pages = 1;
872 else
873 wc->w_large_pages = 0;
874
875 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
876 INIT_LIST_HEAD(&wc->w_unwritten_list);
877
878 *wcp = wc;
879
880 return 0;
881}
882
883/*
884 * If a page has any new buffers, zero them out here, and mark them uptodate
885 * and dirty so they'll be written out (in order to prevent uninitialised
886 * block data from leaking). And clear the new bit.
887 */
888static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
889{
890 unsigned int block_start, block_end;
891 struct buffer_head *head, *bh;
892
893 BUG_ON(!PageLocked(page));
894 if (!page_has_buffers(page))
895 return;
896
897 bh = head = page_buffers(page);
898 block_start = 0;
899 do {
900 block_end = block_start + bh->b_size;
901
902 if (buffer_new(bh)) {
903 if (block_end > from && block_start < to) {
904 if (!PageUptodate(page)) {
905 unsigned start, end;
906
907 start = max(from, block_start);
908 end = min(to, block_end);
909
910 zero_user_segment(page, start, end);
911 set_buffer_uptodate(bh);
912 }
913
914 clear_buffer_new(bh);
915 mark_buffer_dirty(bh);
916 }
917 }
918
919 block_start = block_end;
920 bh = bh->b_this_page;
921 } while (bh != head);
922}
923
924/*
925 * Only called when we have a failure during allocating write to write
926 * zero's to the newly allocated region.
927 */
928static void ocfs2_write_failure(struct inode *inode,
929 struct ocfs2_write_ctxt *wc,
930 loff_t user_pos, unsigned user_len)
931{
932 int i;
933 unsigned from = user_pos & (PAGE_SIZE - 1),
934 to = user_pos + user_len;
935 struct page *tmppage;
936
937 if (wc->w_target_page)
938 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
939
940 for(i = 0; i < wc->w_num_pages; i++) {
941 tmppage = wc->w_pages[i];
942
943 if (tmppage && page_has_buffers(tmppage)) {
944 if (ocfs2_should_order_data(inode))
945 ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
946 user_pos, user_len);
947
948 block_commit_write(tmppage, from, to);
949 }
950 }
951}
952
953static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
954 struct ocfs2_write_ctxt *wc,
955 struct page *page, u32 cpos,
956 loff_t user_pos, unsigned user_len,
957 int new)
958{
959 int ret;
960 unsigned int map_from = 0, map_to = 0;
961 unsigned int cluster_start, cluster_end;
962 unsigned int user_data_from = 0, user_data_to = 0;
963
964 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
965 &cluster_start, &cluster_end);
966
967 /* treat the write as new if the a hole/lseek spanned across
968 * the page boundary.
969 */
970 new = new | ((i_size_read(inode) <= page_offset(page)) &&
971 (page_offset(page) <= user_pos));
972
973 if (page == wc->w_target_page) {
974 map_from = user_pos & (PAGE_SIZE - 1);
975 map_to = map_from + user_len;
976
977 if (new)
978 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
979 cluster_start, cluster_end,
980 new);
981 else
982 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
983 map_from, map_to, new);
984 if (ret) {
985 mlog_errno(ret);
986 goto out;
987 }
988
989 user_data_from = map_from;
990 user_data_to = map_to;
991 if (new) {
992 map_from = cluster_start;
993 map_to = cluster_end;
994 }
995 } else {
996 /*
997 * If we haven't allocated the new page yet, we
998 * shouldn't be writing it out without copying user
999 * data. This is likely a math error from the caller.
1000 */
1001 BUG_ON(!new);
1002
1003 map_from = cluster_start;
1004 map_to = cluster_end;
1005
1006 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1007 cluster_start, cluster_end, new);
1008 if (ret) {
1009 mlog_errno(ret);
1010 goto out;
1011 }
1012 }
1013
1014 /*
1015 * Parts of newly allocated pages need to be zero'd.
1016 *
1017 * Above, we have also rewritten 'to' and 'from' - as far as
1018 * the rest of the function is concerned, the entire cluster
1019 * range inside of a page needs to be written.
1020 *
1021 * We can skip this if the page is up to date - it's already
1022 * been zero'd from being read in as a hole.
1023 */
1024 if (new && !PageUptodate(page))
1025 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1026 cpos, user_data_from, user_data_to);
1027
1028 flush_dcache_page(page);
1029
1030out:
1031 return ret;
1032}
1033
1034/*
1035 * This function will only grab one clusters worth of pages.
1036 */
1037static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1038 struct ocfs2_write_ctxt *wc,
1039 u32 cpos, loff_t user_pos,
1040 unsigned user_len, int new,
1041 struct page *mmap_page)
1042{
1043 int ret = 0, i;
1044 unsigned long start, target_index, end_index, index;
1045 struct inode *inode = mapping->host;
1046 loff_t last_byte;
1047
1048 target_index = user_pos >> PAGE_SHIFT;
1049
1050 /*
1051 * Figure out how many pages we'll be manipulating here. For
1052 * non allocating write, we just change the one
1053 * page. Otherwise, we'll need a whole clusters worth. If we're
1054 * writing past i_size, we only need enough pages to cover the
1055 * last page of the write.
1056 */
1057 if (new) {
1058 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1059 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1060 /*
1061 * We need the index *past* the last page we could possibly
1062 * touch. This is the page past the end of the write or
1063 * i_size, whichever is greater.
1064 */
1065 last_byte = max(user_pos + user_len, i_size_read(inode));
1066 BUG_ON(last_byte < 1);
1067 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1068 if ((start + wc->w_num_pages) > end_index)
1069 wc->w_num_pages = end_index - start;
1070 } else {
1071 wc->w_num_pages = 1;
1072 start = target_index;
1073 }
1074 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1075
1076 for(i = 0; i < wc->w_num_pages; i++) {
1077 index = start + i;
1078
1079 if (index >= target_index && index <= end_index &&
1080 wc->w_type == OCFS2_WRITE_MMAP) {
1081 /*
1082 * ocfs2_pagemkwrite() is a little different
1083 * and wants us to directly use the page
1084 * passed in.
1085 */
1086 lock_page(mmap_page);
1087
1088 /* Exit and let the caller retry */
1089 if (mmap_page->mapping != mapping) {
1090 WARN_ON(mmap_page->mapping);
1091 unlock_page(mmap_page);
1092 ret = -EAGAIN;
1093 goto out;
1094 }
1095
1096 get_page(mmap_page);
1097 wc->w_pages[i] = mmap_page;
1098 wc->w_target_locked = true;
1099 } else if (index >= target_index && index <= end_index &&
1100 wc->w_type == OCFS2_WRITE_DIRECT) {
1101 /* Direct write has no mapping page. */
1102 wc->w_pages[i] = NULL;
1103 continue;
1104 } else {
1105 wc->w_pages[i] = find_or_create_page(mapping, index,
1106 GFP_NOFS);
1107 if (!wc->w_pages[i]) {
1108 ret = -ENOMEM;
1109 mlog_errno(ret);
1110 goto out;
1111 }
1112 }
1113 wait_for_stable_page(wc->w_pages[i]);
1114
1115 if (index == target_index)
1116 wc->w_target_page = wc->w_pages[i];
1117 }
1118out:
1119 if (ret)
1120 wc->w_target_locked = false;
1121 return ret;
1122}
1123
1124/*
1125 * Prepare a single cluster for write one cluster into the file.
1126 */
1127static int ocfs2_write_cluster(struct address_space *mapping,
1128 u32 *phys, unsigned int new,
1129 unsigned int clear_unwritten,
1130 unsigned int should_zero,
1131 struct ocfs2_alloc_context *data_ac,
1132 struct ocfs2_alloc_context *meta_ac,
1133 struct ocfs2_write_ctxt *wc, u32 cpos,
1134 loff_t user_pos, unsigned user_len)
1135{
1136 int ret, i;
1137 u64 p_blkno;
1138 struct inode *inode = mapping->host;
1139 struct ocfs2_extent_tree et;
1140 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1141
1142 if (new) {
1143 u32 tmp_pos;
1144
1145 /*
1146 * This is safe to call with the page locks - it won't take
1147 * any additional semaphores or cluster locks.
1148 */
1149 tmp_pos = cpos;
1150 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1151 &tmp_pos, 1, !clear_unwritten,
1152 wc->w_di_bh, wc->w_handle,
1153 data_ac, meta_ac, NULL);
1154 /*
1155 * This shouldn't happen because we must have already
1156 * calculated the correct meta data allocation required. The
1157 * internal tree allocation code should know how to increase
1158 * transaction credits itself.
1159 *
1160 * If need be, we could handle -EAGAIN for a
1161 * RESTART_TRANS here.
1162 */
1163 mlog_bug_on_msg(ret == -EAGAIN,
1164 "Inode %llu: EAGAIN return during allocation.\n",
1165 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1166 if (ret < 0) {
1167 mlog_errno(ret);
1168 goto out;
1169 }
1170 } else if (clear_unwritten) {
1171 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1172 wc->w_di_bh);
1173 ret = ocfs2_mark_extent_written(inode, &et,
1174 wc->w_handle, cpos, 1, *phys,
1175 meta_ac, &wc->w_dealloc);
1176 if (ret < 0) {
1177 mlog_errno(ret);
1178 goto out;
1179 }
1180 }
1181
1182 /*
1183 * The only reason this should fail is due to an inability to
1184 * find the extent added.
1185 */
1186 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1187 if (ret < 0) {
1188 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1189 "at logical cluster %u",
1190 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1191 goto out;
1192 }
1193
1194 BUG_ON(*phys == 0);
1195
1196 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1197 if (!should_zero)
1198 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1199
1200 for(i = 0; i < wc->w_num_pages; i++) {
1201 int tmpret;
1202
1203 /* This is the direct io target page. */
1204 if (wc->w_pages[i] == NULL) {
1205 p_blkno++;
1206 continue;
1207 }
1208
1209 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1210 wc->w_pages[i], cpos,
1211 user_pos, user_len,
1212 should_zero);
1213 if (tmpret) {
1214 mlog_errno(tmpret);
1215 if (ret == 0)
1216 ret = tmpret;
1217 }
1218 }
1219
1220 /*
1221 * We only have cleanup to do in case of allocating write.
1222 */
1223 if (ret && new)
1224 ocfs2_write_failure(inode, wc, user_pos, user_len);
1225
1226out:
1227
1228 return ret;
1229}
1230
1231static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1232 struct ocfs2_alloc_context *data_ac,
1233 struct ocfs2_alloc_context *meta_ac,
1234 struct ocfs2_write_ctxt *wc,
1235 loff_t pos, unsigned len)
1236{
1237 int ret, i;
1238 loff_t cluster_off;
1239 unsigned int local_len = len;
1240 struct ocfs2_write_cluster_desc *desc;
1241 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1242
1243 for (i = 0; i < wc->w_clen; i++) {
1244 desc = &wc->w_desc[i];
1245
1246 /*
1247 * We have to make sure that the total write passed in
1248 * doesn't extend past a single cluster.
1249 */
1250 local_len = len;
1251 cluster_off = pos & (osb->s_clustersize - 1);
1252 if ((cluster_off + local_len) > osb->s_clustersize)
1253 local_len = osb->s_clustersize - cluster_off;
1254
1255 ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1256 desc->c_new,
1257 desc->c_clear_unwritten,
1258 desc->c_needs_zero,
1259 data_ac, meta_ac,
1260 wc, desc->c_cpos, pos, local_len);
1261 if (ret) {
1262 mlog_errno(ret);
1263 goto out;
1264 }
1265
1266 len -= local_len;
1267 pos += local_len;
1268 }
1269
1270 ret = 0;
1271out:
1272 return ret;
1273}
1274
1275/*
1276 * ocfs2_write_end() wants to know which parts of the target page it
1277 * should complete the write on. It's easiest to compute them ahead of
1278 * time when a more complete view of the write is available.
1279 */
1280static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1281 struct ocfs2_write_ctxt *wc,
1282 loff_t pos, unsigned len, int alloc)
1283{
1284 struct ocfs2_write_cluster_desc *desc;
1285
1286 wc->w_target_from = pos & (PAGE_SIZE - 1);
1287 wc->w_target_to = wc->w_target_from + len;
1288
1289 if (alloc == 0)
1290 return;
1291
1292 /*
1293 * Allocating write - we may have different boundaries based
1294 * on page size and cluster size.
1295 *
1296 * NOTE: We can no longer compute one value from the other as
1297 * the actual write length and user provided length may be
1298 * different.
1299 */
1300
1301 if (wc->w_large_pages) {
1302 /*
1303 * We only care about the 1st and last cluster within
1304 * our range and whether they should be zero'd or not. Either
1305 * value may be extended out to the start/end of a
1306 * newly allocated cluster.
1307 */
1308 desc = &wc->w_desc[0];
1309 if (desc->c_needs_zero)
1310 ocfs2_figure_cluster_boundaries(osb,
1311 desc->c_cpos,
1312 &wc->w_target_from,
1313 NULL);
1314
1315 desc = &wc->w_desc[wc->w_clen - 1];
1316 if (desc->c_needs_zero)
1317 ocfs2_figure_cluster_boundaries(osb,
1318 desc->c_cpos,
1319 NULL,
1320 &wc->w_target_to);
1321 } else {
1322 wc->w_target_from = 0;
1323 wc->w_target_to = PAGE_SIZE;
1324 }
1325}
1326
1327/*
1328 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1329 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1330 * by the direct io procedure.
1331 * If this is a new extent that allocated by direct io, we should mark it in
1332 * the ip_unwritten_list.
1333 */
1334static int ocfs2_unwritten_check(struct inode *inode,
1335 struct ocfs2_write_ctxt *wc,
1336 struct ocfs2_write_cluster_desc *desc)
1337{
1338 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1339 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1340 int ret = 0;
1341
1342 if (!desc->c_needs_zero)
1343 return 0;
1344
1345retry:
1346 spin_lock(&oi->ip_lock);
1347 /* Needs not to zero no metter buffer or direct. The one who is zero
1348 * the cluster is doing zero. And he will clear unwritten after all
1349 * cluster io finished. */
1350 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1351 if (desc->c_cpos == ue->ue_cpos) {
1352 BUG_ON(desc->c_new);
1353 desc->c_needs_zero = 0;
1354 desc->c_clear_unwritten = 0;
1355 goto unlock;
1356 }
1357 }
1358
1359 if (wc->w_type != OCFS2_WRITE_DIRECT)
1360 goto unlock;
1361
1362 if (new == NULL) {
1363 spin_unlock(&oi->ip_lock);
1364 new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1365 GFP_NOFS);
1366 if (new == NULL) {
1367 ret = -ENOMEM;
1368 goto out;
1369 }
1370 goto retry;
1371 }
1372 /* This direct write will doing zero. */
1373 new->ue_cpos = desc->c_cpos;
1374 new->ue_phys = desc->c_phys;
1375 desc->c_clear_unwritten = 0;
1376 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1377 list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1378 wc->w_unwritten_count++;
1379 new = NULL;
1380unlock:
1381 spin_unlock(&oi->ip_lock);
1382out:
1383 kfree(new);
1384 return ret;
1385}
1386
1387/*
1388 * Populate each single-cluster write descriptor in the write context
1389 * with information about the i/o to be done.
1390 *
1391 * Returns the number of clusters that will have to be allocated, as
1392 * well as a worst case estimate of the number of extent records that
1393 * would have to be created during a write to an unwritten region.
1394 */
1395static int ocfs2_populate_write_desc(struct inode *inode,
1396 struct ocfs2_write_ctxt *wc,
1397 unsigned int *clusters_to_alloc,
1398 unsigned int *extents_to_split)
1399{
1400 int ret;
1401 struct ocfs2_write_cluster_desc *desc;
1402 unsigned int num_clusters = 0;
1403 unsigned int ext_flags = 0;
1404 u32 phys = 0;
1405 int i;
1406
1407 *clusters_to_alloc = 0;
1408 *extents_to_split = 0;
1409
1410 for (i = 0; i < wc->w_clen; i++) {
1411 desc = &wc->w_desc[i];
1412 desc->c_cpos = wc->w_cpos + i;
1413
1414 if (num_clusters == 0) {
1415 /*
1416 * Need to look up the next extent record.
1417 */
1418 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1419 &num_clusters, &ext_flags);
1420 if (ret) {
1421 mlog_errno(ret);
1422 goto out;
1423 }
1424
1425 /* We should already CoW the refcountd extent. */
1426 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1427
1428 /*
1429 * Assume worst case - that we're writing in
1430 * the middle of the extent.
1431 *
1432 * We can assume that the write proceeds from
1433 * left to right, in which case the extent
1434 * insert code is smart enough to coalesce the
1435 * next splits into the previous records created.
1436 */
1437 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1438 *extents_to_split = *extents_to_split + 2;
1439 } else if (phys) {
1440 /*
1441 * Only increment phys if it doesn't describe
1442 * a hole.
1443 */
1444 phys++;
1445 }
1446
1447 /*
1448 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1449 * file that got extended. w_first_new_cpos tells us
1450 * where the newly allocated clusters are so we can
1451 * zero them.
1452 */
1453 if (desc->c_cpos >= wc->w_first_new_cpos) {
1454 BUG_ON(phys == 0);
1455 desc->c_needs_zero = 1;
1456 }
1457
1458 desc->c_phys = phys;
1459 if (phys == 0) {
1460 desc->c_new = 1;
1461 desc->c_needs_zero = 1;
1462 desc->c_clear_unwritten = 1;
1463 *clusters_to_alloc = *clusters_to_alloc + 1;
1464 }
1465
1466 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1467 desc->c_clear_unwritten = 1;
1468 desc->c_needs_zero = 1;
1469 }
1470
1471 ret = ocfs2_unwritten_check(inode, wc, desc);
1472 if (ret) {
1473 mlog_errno(ret);
1474 goto out;
1475 }
1476
1477 num_clusters--;
1478 }
1479
1480 ret = 0;
1481out:
1482 return ret;
1483}
1484
1485static int ocfs2_write_begin_inline(struct address_space *mapping,
1486 struct inode *inode,
1487 struct ocfs2_write_ctxt *wc)
1488{
1489 int ret;
1490 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1491 struct page *page;
1492 handle_t *handle;
1493 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1494
1495 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1496 if (IS_ERR(handle)) {
1497 ret = PTR_ERR(handle);
1498 mlog_errno(ret);
1499 goto out;
1500 }
1501
1502 page = find_or_create_page(mapping, 0, GFP_NOFS);
1503 if (!page) {
1504 ocfs2_commit_trans(osb, handle);
1505 ret = -ENOMEM;
1506 mlog_errno(ret);
1507 goto out;
1508 }
1509 /*
1510 * If we don't set w_num_pages then this page won't get unlocked
1511 * and freed on cleanup of the write context.
1512 */
1513 wc->w_pages[0] = wc->w_target_page = page;
1514 wc->w_num_pages = 1;
1515
1516 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1517 OCFS2_JOURNAL_ACCESS_WRITE);
1518 if (ret) {
1519 ocfs2_commit_trans(osb, handle);
1520
1521 mlog_errno(ret);
1522 goto out;
1523 }
1524
1525 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1526 ocfs2_set_inode_data_inline(inode, di);
1527
1528 if (!PageUptodate(page)) {
1529 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1530 if (ret) {
1531 ocfs2_commit_trans(osb, handle);
1532
1533 goto out;
1534 }
1535 }
1536
1537 wc->w_handle = handle;
1538out:
1539 return ret;
1540}
1541
1542int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1543{
1544 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1545
1546 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1547 return 1;
1548 return 0;
1549}
1550
1551static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1552 struct inode *inode, loff_t pos,
1553 unsigned len, struct page *mmap_page,
1554 struct ocfs2_write_ctxt *wc)
1555{
1556 int ret, written = 0;
1557 loff_t end = pos + len;
1558 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1559 struct ocfs2_dinode *di = NULL;
1560
1561 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1562 len, (unsigned long long)pos,
1563 oi->ip_dyn_features);
1564
1565 /*
1566 * Handle inodes which already have inline data 1st.
1567 */
1568 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1569 if (mmap_page == NULL &&
1570 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1571 goto do_inline_write;
1572
1573 /*
1574 * The write won't fit - we have to give this inode an
1575 * inline extent list now.
1576 */
1577 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1578 if (ret)
1579 mlog_errno(ret);
1580 goto out;
1581 }
1582
1583 /*
1584 * Check whether the inode can accept inline data.
1585 */
1586 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1587 return 0;
1588
1589 /*
1590 * Check whether the write can fit.
1591 */
1592 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1593 if (mmap_page ||
1594 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1595 return 0;
1596
1597do_inline_write:
1598 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1599 if (ret) {
1600 mlog_errno(ret);
1601 goto out;
1602 }
1603
1604 /*
1605 * This signals to the caller that the data can be written
1606 * inline.
1607 */
1608 written = 1;
1609out:
1610 return written ? written : ret;
1611}
1612
1613/*
1614 * This function only does anything for file systems which can't
1615 * handle sparse files.
1616 *
1617 * What we want to do here is fill in any hole between the current end
1618 * of allocation and the end of our write. That way the rest of the
1619 * write path can treat it as an non-allocating write, which has no
1620 * special case code for sparse/nonsparse files.
1621 */
1622static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1623 struct buffer_head *di_bh,
1624 loff_t pos, unsigned len,
1625 struct ocfs2_write_ctxt *wc)
1626{
1627 int ret;
1628 loff_t newsize = pos + len;
1629
1630 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1631
1632 if (newsize <= i_size_read(inode))
1633 return 0;
1634
1635 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1636 if (ret)
1637 mlog_errno(ret);
1638
1639 /* There is no wc if this is call from direct. */
1640 if (wc)
1641 wc->w_first_new_cpos =
1642 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1643
1644 return ret;
1645}
1646
1647static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1648 loff_t pos)
1649{
1650 int ret = 0;
1651
1652 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1653 if (pos > i_size_read(inode))
1654 ret = ocfs2_zero_extend(inode, di_bh, pos);
1655
1656 return ret;
1657}
1658
1659int ocfs2_write_begin_nolock(struct address_space *mapping,
1660 loff_t pos, unsigned len, ocfs2_write_type_t type,
1661 struct page **pagep, void **fsdata,
1662 struct buffer_head *di_bh, struct page *mmap_page)
1663{
1664 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1665 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1666 struct ocfs2_write_ctxt *wc;
1667 struct inode *inode = mapping->host;
1668 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1669 struct ocfs2_dinode *di;
1670 struct ocfs2_alloc_context *data_ac = NULL;
1671 struct ocfs2_alloc_context *meta_ac = NULL;
1672 handle_t *handle;
1673 struct ocfs2_extent_tree et;
1674 int try_free = 1, ret1;
1675
1676try_again:
1677 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1678 if (ret) {
1679 mlog_errno(ret);
1680 return ret;
1681 }
1682
1683 if (ocfs2_supports_inline_data(osb)) {
1684 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1685 mmap_page, wc);
1686 if (ret == 1) {
1687 ret = 0;
1688 goto success;
1689 }
1690 if (ret < 0) {
1691 mlog_errno(ret);
1692 goto out;
1693 }
1694 }
1695
1696 /* Direct io change i_size late, should not zero tail here. */
1697 if (type != OCFS2_WRITE_DIRECT) {
1698 if (ocfs2_sparse_alloc(osb))
1699 ret = ocfs2_zero_tail(inode, di_bh, pos);
1700 else
1701 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1702 len, wc);
1703 if (ret) {
1704 mlog_errno(ret);
1705 goto out;
1706 }
1707 }
1708
1709 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1710 if (ret < 0) {
1711 mlog_errno(ret);
1712 goto out;
1713 } else if (ret == 1) {
1714 clusters_need = wc->w_clen;
1715 ret = ocfs2_refcount_cow(inode, di_bh,
1716 wc->w_cpos, wc->w_clen, UINT_MAX);
1717 if (ret) {
1718 mlog_errno(ret);
1719 goto out;
1720 }
1721 }
1722
1723 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1724 &extents_to_split);
1725 if (ret) {
1726 mlog_errno(ret);
1727 goto out;
1728 }
1729 clusters_need += clusters_to_alloc;
1730
1731 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1732
1733 trace_ocfs2_write_begin_nolock(
1734 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1735 (long long)i_size_read(inode),
1736 le32_to_cpu(di->i_clusters),
1737 pos, len, type, mmap_page,
1738 clusters_to_alloc, extents_to_split);
1739
1740 /*
1741 * We set w_target_from, w_target_to here so that
1742 * ocfs2_write_end() knows which range in the target page to
1743 * write out. An allocation requires that we write the entire
1744 * cluster range.
1745 */
1746 if (clusters_to_alloc || extents_to_split) {
1747 /*
1748 * XXX: We are stretching the limits of
1749 * ocfs2_lock_allocators(). It greatly over-estimates
1750 * the work to be done.
1751 */
1752 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1753 wc->w_di_bh);
1754 ret = ocfs2_lock_allocators(inode, &et,
1755 clusters_to_alloc, extents_to_split,
1756 &data_ac, &meta_ac);
1757 if (ret) {
1758 mlog_errno(ret);
1759 goto out;
1760 }
1761
1762 if (data_ac)
1763 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1764
1765 credits = ocfs2_calc_extend_credits(inode->i_sb,
1766 &di->id2.i_list);
1767 } else if (type == OCFS2_WRITE_DIRECT)
1768 /* direct write needs not to start trans if no extents alloc. */
1769 goto success;
1770
1771 /*
1772 * We have to zero sparse allocated clusters, unwritten extent clusters,
1773 * and non-sparse clusters we just extended. For non-sparse writes,
1774 * we know zeros will only be needed in the first and/or last cluster.
1775 */
1776 if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1777 wc->w_desc[wc->w_clen - 1].c_needs_zero))
1778 cluster_of_pages = 1;
1779 else
1780 cluster_of_pages = 0;
1781
1782 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1783
1784 handle = ocfs2_start_trans(osb, credits);
1785 if (IS_ERR(handle)) {
1786 ret = PTR_ERR(handle);
1787 mlog_errno(ret);
1788 goto out;
1789 }
1790
1791 wc->w_handle = handle;
1792
1793 if (clusters_to_alloc) {
1794 ret = dquot_alloc_space_nodirty(inode,
1795 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1796 if (ret)
1797 goto out_commit;
1798 }
1799
1800 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1801 OCFS2_JOURNAL_ACCESS_WRITE);
1802 if (ret) {
1803 mlog_errno(ret);
1804 goto out_quota;
1805 }
1806
1807 /*
1808 * Fill our page array first. That way we've grabbed enough so
1809 * that we can zero and flush if we error after adding the
1810 * extent.
1811 */
1812 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1813 cluster_of_pages, mmap_page);
1814 if (ret && ret != -EAGAIN) {
1815 mlog_errno(ret);
1816 goto out_quota;
1817 }
1818
1819 /*
1820 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1821 * the target page. In this case, we exit with no error and no target
1822 * page. This will trigger the caller, page_mkwrite(), to re-try
1823 * the operation.
1824 */
1825 if (ret == -EAGAIN) {
1826 BUG_ON(wc->w_target_page);
1827 ret = 0;
1828 goto out_quota;
1829 }
1830
1831 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1832 len);
1833 if (ret) {
1834 mlog_errno(ret);
1835 goto out_quota;
1836 }
1837
1838 if (data_ac)
1839 ocfs2_free_alloc_context(data_ac);
1840 if (meta_ac)
1841 ocfs2_free_alloc_context(meta_ac);
1842
1843success:
1844 if (pagep)
1845 *pagep = wc->w_target_page;
1846 *fsdata = wc;
1847 return 0;
1848out_quota:
1849 if (clusters_to_alloc)
1850 dquot_free_space(inode,
1851 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1852out_commit:
1853 ocfs2_commit_trans(osb, handle);
1854
1855out:
1856 /*
1857 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1858 * even in case of error here like ENOSPC and ENOMEM. So, we need
1859 * to unlock the target page manually to prevent deadlocks when
1860 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1861 * to VM code.
1862 */
1863 if (wc->w_target_locked)
1864 unlock_page(mmap_page);
1865
1866 ocfs2_free_write_ctxt(inode, wc);
1867
1868 if (data_ac) {
1869 ocfs2_free_alloc_context(data_ac);
1870 data_ac = NULL;
1871 }
1872 if (meta_ac) {
1873 ocfs2_free_alloc_context(meta_ac);
1874 meta_ac = NULL;
1875 }
1876
1877 if (ret == -ENOSPC && try_free) {
1878 /*
1879 * Try to free some truncate log so that we can have enough
1880 * clusters to allocate.
1881 */
1882 try_free = 0;
1883
1884 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1885 if (ret1 == 1)
1886 goto try_again;
1887
1888 if (ret1 < 0)
1889 mlog_errno(ret1);
1890 }
1891
1892 return ret;
1893}
1894
1895static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1896 loff_t pos, unsigned len, unsigned flags,
1897 struct page **pagep, void **fsdata)
1898{
1899 int ret;
1900 struct buffer_head *di_bh = NULL;
1901 struct inode *inode = mapping->host;
1902
1903 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1904 if (ret) {
1905 mlog_errno(ret);
1906 return ret;
1907 }
1908
1909 /*
1910 * Take alloc sem here to prevent concurrent lookups. That way
1911 * the mapping, zeroing and tree manipulation within
1912 * ocfs2_write() will be safe against ->readpage(). This
1913 * should also serve to lock out allocation from a shared
1914 * writeable region.
1915 */
1916 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1917
1918 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1919 pagep, fsdata, di_bh, NULL);
1920 if (ret) {
1921 mlog_errno(ret);
1922 goto out_fail;
1923 }
1924
1925 brelse(di_bh);
1926
1927 return 0;
1928
1929out_fail:
1930 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1931
1932 brelse(di_bh);
1933 ocfs2_inode_unlock(inode, 1);
1934
1935 return ret;
1936}
1937
1938static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1939 unsigned len, unsigned *copied,
1940 struct ocfs2_dinode *di,
1941 struct ocfs2_write_ctxt *wc)
1942{
1943 void *kaddr;
1944
1945 if (unlikely(*copied < len)) {
1946 if (!PageUptodate(wc->w_target_page)) {
1947 *copied = 0;
1948 return;
1949 }
1950 }
1951
1952 kaddr = kmap_atomic(wc->w_target_page);
1953 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1954 kunmap_atomic(kaddr);
1955
1956 trace_ocfs2_write_end_inline(
1957 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1958 (unsigned long long)pos, *copied,
1959 le16_to_cpu(di->id2.i_data.id_count),
1960 le16_to_cpu(di->i_dyn_features));
1961}
1962
1963int ocfs2_write_end_nolock(struct address_space *mapping,
1964 loff_t pos, unsigned len, unsigned copied, void *fsdata)
1965{
1966 int i, ret;
1967 unsigned from, to, start = pos & (PAGE_SIZE - 1);
1968 struct inode *inode = mapping->host;
1969 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1970 struct ocfs2_write_ctxt *wc = fsdata;
1971 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1972 handle_t *handle = wc->w_handle;
1973 struct page *tmppage;
1974
1975 BUG_ON(!list_empty(&wc->w_unwritten_list));
1976
1977 if (handle) {
1978 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1979 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1980 if (ret) {
1981 copied = ret;
1982 mlog_errno(ret);
1983 goto out;
1984 }
1985 }
1986
1987 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1988 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1989 goto out_write_size;
1990 }
1991
1992 if (unlikely(copied < len) && wc->w_target_page) {
1993 if (!PageUptodate(wc->w_target_page))
1994 copied = 0;
1995
1996 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1997 start+len);
1998 }
1999 if (wc->w_target_page)
2000 flush_dcache_page(wc->w_target_page);
2001
2002 for(i = 0; i < wc->w_num_pages; i++) {
2003 tmppage = wc->w_pages[i];
2004
2005 /* This is the direct io target page. */
2006 if (tmppage == NULL)
2007 continue;
2008
2009 if (tmppage == wc->w_target_page) {
2010 from = wc->w_target_from;
2011 to = wc->w_target_to;
2012
2013 BUG_ON(from > PAGE_SIZE ||
2014 to > PAGE_SIZE ||
2015 to < from);
2016 } else {
2017 /*
2018 * Pages adjacent to the target (if any) imply
2019 * a hole-filling write in which case we want
2020 * to flush their entire range.
2021 */
2022 from = 0;
2023 to = PAGE_SIZE;
2024 }
2025
2026 if (page_has_buffers(tmppage)) {
2027 if (handle && ocfs2_should_order_data(inode)) {
2028 loff_t start_byte =
2029 ((loff_t)tmppage->index << PAGE_SHIFT) +
2030 from;
2031 loff_t length = to - from;
2032 ocfs2_jbd2_inode_add_write(handle, inode,
2033 start_byte, length);
2034 }
2035 block_commit_write(tmppage, from, to);
2036 }
2037 }
2038
2039out_write_size:
2040 /* Direct io do not update i_size here. */
2041 if (wc->w_type != OCFS2_WRITE_DIRECT) {
2042 pos += copied;
2043 if (pos > i_size_read(inode)) {
2044 i_size_write(inode, pos);
2045 mark_inode_dirty(inode);
2046 }
2047 inode->i_blocks = ocfs2_inode_sector_count(inode);
2048 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2049 inode->i_mtime = inode->i_ctime = current_time(inode);
2050 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2051 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2052 if (handle)
2053 ocfs2_update_inode_fsync_trans(handle, inode, 1);
2054 }
2055 if (handle)
2056 ocfs2_journal_dirty(handle, wc->w_di_bh);
2057
2058out:
2059 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2060 * lock, or it will cause a deadlock since journal commit threads holds
2061 * this lock and will ask for the page lock when flushing the data.
2062 * put it here to preserve the unlock order.
2063 */
2064 ocfs2_unlock_pages(wc);
2065
2066 if (handle)
2067 ocfs2_commit_trans(osb, handle);
2068
2069 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2070
2071 brelse(wc->w_di_bh);
2072 kfree(wc);
2073
2074 return copied;
2075}
2076
2077static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2078 loff_t pos, unsigned len, unsigned copied,
2079 struct page *page, void *fsdata)
2080{
2081 int ret;
2082 struct inode *inode = mapping->host;
2083
2084 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2085
2086 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2087 ocfs2_inode_unlock(inode, 1);
2088
2089 return ret;
2090}
2091
2092struct ocfs2_dio_write_ctxt {
2093 struct list_head dw_zero_list;
2094 unsigned dw_zero_count;
2095 int dw_orphaned;
2096 pid_t dw_writer_pid;
2097};
2098
2099static struct ocfs2_dio_write_ctxt *
2100ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2101{
2102 struct ocfs2_dio_write_ctxt *dwc = NULL;
2103
2104 if (bh->b_private)
2105 return bh->b_private;
2106
2107 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2108 if (dwc == NULL)
2109 return NULL;
2110 INIT_LIST_HEAD(&dwc->dw_zero_list);
2111 dwc->dw_zero_count = 0;
2112 dwc->dw_orphaned = 0;
2113 dwc->dw_writer_pid = task_pid_nr(current);
2114 bh->b_private = dwc;
2115 *alloc = 1;
2116
2117 return dwc;
2118}
2119
2120static void ocfs2_dio_free_write_ctx(struct inode *inode,
2121 struct ocfs2_dio_write_ctxt *dwc)
2122{
2123 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2124 kfree(dwc);
2125}
2126
2127/*
2128 * TODO: Make this into a generic get_blocks function.
2129 *
2130 * From do_direct_io in direct-io.c:
2131 * "So what we do is to permit the ->get_blocks function to populate
2132 * bh.b_size with the size of IO which is permitted at this offset and
2133 * this i_blkbits."
2134 *
2135 * This function is called directly from get_more_blocks in direct-io.c.
2136 *
2137 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2138 * fs_count, map_bh, dio->rw == WRITE);
2139 */
2140static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2141 struct buffer_head *bh_result, int create)
2142{
2143 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2144 struct ocfs2_inode_info *oi = OCFS2_I(inode);
2145 struct ocfs2_write_ctxt *wc;
2146 struct ocfs2_write_cluster_desc *desc = NULL;
2147 struct ocfs2_dio_write_ctxt *dwc = NULL;
2148 struct buffer_head *di_bh = NULL;
2149 u64 p_blkno;
2150 unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2151 loff_t pos = iblock << i_blkbits;
2152 sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
2153 unsigned len, total_len = bh_result->b_size;
2154 int ret = 0, first_get_block = 0;
2155
2156 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2157 len = min(total_len, len);
2158
2159 /*
2160 * bh_result->b_size is count in get_more_blocks according to write
2161 * "pos" and "end", we need map twice to return different buffer state:
2162 * 1. area in file size, not set NEW;
2163 * 2. area out file size, set NEW.
2164 *
2165 * iblock endblk
2166 * |--------|---------|---------|---------
2167 * |<-------area in file------->|
2168 */
2169
2170 if ((iblock <= endblk) &&
2171 ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2172 len = (endblk - iblock + 1) << i_blkbits;
2173
2174 mlog(0, "get block of %lu at %llu:%u req %u\n",
2175 inode->i_ino, pos, len, total_len);
2176
2177 /*
2178 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2179 * we may need to add it to orphan dir. So can not fall to fast path
2180 * while file size will be changed.
2181 */
2182 if (pos + total_len <= i_size_read(inode)) {
2183
2184 /* This is the fast path for re-write. */
2185 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2186 if (buffer_mapped(bh_result) &&
2187 !buffer_new(bh_result) &&
2188 ret == 0)
2189 goto out;
2190
2191 /* Clear state set by ocfs2_get_block. */
2192 bh_result->b_state = 0;
2193 }
2194
2195 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2196 if (unlikely(dwc == NULL)) {
2197 ret = -ENOMEM;
2198 mlog_errno(ret);
2199 goto out;
2200 }
2201
2202 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2203 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2204 !dwc->dw_orphaned) {
2205 /*
2206 * when we are going to alloc extents beyond file size, add the
2207 * inode to orphan dir, so we can recall those spaces when
2208 * system crashed during write.
2209 */
2210 ret = ocfs2_add_inode_to_orphan(osb, inode);
2211 if (ret < 0) {
2212 mlog_errno(ret);
2213 goto out;
2214 }
2215 dwc->dw_orphaned = 1;
2216 }
2217
2218 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2219 if (ret) {
2220 mlog_errno(ret);
2221 goto out;
2222 }
2223
2224 down_write(&oi->ip_alloc_sem);
2225
2226 if (first_get_block) {
2227 if (ocfs2_sparse_alloc(osb))
2228 ret = ocfs2_zero_tail(inode, di_bh, pos);
2229 else
2230 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2231 total_len, NULL);
2232 if (ret < 0) {
2233 mlog_errno(ret);
2234 goto unlock;
2235 }
2236 }
2237
2238 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2239 OCFS2_WRITE_DIRECT, NULL,
2240 (void **)&wc, di_bh, NULL);
2241 if (ret) {
2242 mlog_errno(ret);
2243 goto unlock;
2244 }
2245
2246 desc = &wc->w_desc[0];
2247
2248 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2249 BUG_ON(p_blkno == 0);
2250 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2251
2252 map_bh(bh_result, inode->i_sb, p_blkno);
2253 bh_result->b_size = len;
2254 if (desc->c_needs_zero)
2255 set_buffer_new(bh_result);
2256
2257 if (iblock > endblk)
2258 set_buffer_new(bh_result);
2259
2260 /* May sleep in end_io. It should not happen in a irq context. So defer
2261 * it to dio work queue. */
2262 set_buffer_defer_completion(bh_result);
2263
2264 if (!list_empty(&wc->w_unwritten_list)) {
2265 struct ocfs2_unwritten_extent *ue = NULL;
2266
2267 ue = list_first_entry(&wc->w_unwritten_list,
2268 struct ocfs2_unwritten_extent,
2269 ue_node);
2270 BUG_ON(ue->ue_cpos != desc->c_cpos);
2271 /* The physical address may be 0, fill it. */
2272 ue->ue_phys = desc->c_phys;
2273
2274 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2275 dwc->dw_zero_count += wc->w_unwritten_count;
2276 }
2277
2278 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2279 BUG_ON(ret != len);
2280 ret = 0;
2281unlock:
2282 up_write(&oi->ip_alloc_sem);
2283 ocfs2_inode_unlock(inode, 1);
2284 brelse(di_bh);
2285out:
2286 if (ret < 0)
2287 ret = -EIO;
2288 return ret;
2289}
2290
2291static int ocfs2_dio_end_io_write(struct inode *inode,
2292 struct ocfs2_dio_write_ctxt *dwc,
2293 loff_t offset,
2294 ssize_t bytes)
2295{
2296 struct ocfs2_cached_dealloc_ctxt dealloc;
2297 struct ocfs2_extent_tree et;
2298 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2299 struct ocfs2_inode_info *oi = OCFS2_I(inode);
2300 struct ocfs2_unwritten_extent *ue = NULL;
2301 struct buffer_head *di_bh = NULL;
2302 struct ocfs2_dinode *di;
2303 struct ocfs2_alloc_context *data_ac = NULL;
2304 struct ocfs2_alloc_context *meta_ac = NULL;
2305 handle_t *handle = NULL;
2306 loff_t end = offset + bytes;
2307 int ret = 0, credits = 0, locked = 0;
2308
2309 ocfs2_init_dealloc_ctxt(&dealloc);
2310
2311 /* We do clear unwritten, delete orphan, change i_size here. If neither
2312 * of these happen, we can skip all this. */
2313 if (list_empty(&dwc->dw_zero_list) &&
2314 end <= i_size_read(inode) &&
2315 !dwc->dw_orphaned)
2316 goto out;
2317
2318 /* ocfs2_file_write_iter will get i_mutex, so we need not lock if we
2319 * are in that context. */
2320 if (dwc->dw_writer_pid != task_pid_nr(current)) {
2321 inode_lock(inode);
2322 locked = 1;
2323 }
2324
2325 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2326 if (ret < 0) {
2327 mlog_errno(ret);
2328 goto out;
2329 }
2330
2331 down_write(&oi->ip_alloc_sem);
2332
2333 /* Delete orphan before acquire i_mutex. */
2334 if (dwc->dw_orphaned) {
2335 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2336
2337 end = end > i_size_read(inode) ? end : 0;
2338
2339 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2340 !!end, end);
2341 if (ret < 0)
2342 mlog_errno(ret);
2343 }
2344
2345 di = (struct ocfs2_dinode *)di_bh->b_data;
2346
2347 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2348
2349 /* Attach dealloc with extent tree in case that we may reuse extents
2350 * which are already unlinked from current extent tree due to extent
2351 * rotation and merging.
2352 */
2353 et.et_dealloc = &dealloc;
2354
2355 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2356 &data_ac, &meta_ac);
2357 if (ret) {
2358 mlog_errno(ret);
2359 goto unlock;
2360 }
2361
2362 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2363
2364 handle = ocfs2_start_trans(osb, credits);
2365 if (IS_ERR(handle)) {
2366 ret = PTR_ERR(handle);
2367 mlog_errno(ret);
2368 goto unlock;
2369 }
2370 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2371 OCFS2_JOURNAL_ACCESS_WRITE);
2372 if (ret) {
2373 mlog_errno(ret);
2374 goto commit;
2375 }
2376
2377 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2378 ret = ocfs2_mark_extent_written(inode, &et, handle,
2379 ue->ue_cpos, 1,
2380 ue->ue_phys,
2381 meta_ac, &dealloc);
2382 if (ret < 0) {
2383 mlog_errno(ret);
2384 break;
2385 }
2386 }
2387
2388 if (end > i_size_read(inode)) {
2389 ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2390 if (ret < 0)
2391 mlog_errno(ret);
2392 }
2393commit:
2394 ocfs2_commit_trans(osb, handle);
2395unlock:
2396 up_write(&oi->ip_alloc_sem);
2397 ocfs2_inode_unlock(inode, 1);
2398 brelse(di_bh);
2399out:
2400 if (data_ac)
2401 ocfs2_free_alloc_context(data_ac);
2402 if (meta_ac)
2403 ocfs2_free_alloc_context(meta_ac);
2404 ocfs2_run_deallocs(osb, &dealloc);
2405 if (locked)
2406 inode_unlock(inode);
2407 ocfs2_dio_free_write_ctx(inode, dwc);
2408
2409 return ret;
2410}
2411
2412/*
2413 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
2414 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
2415 * to protect io on one node from truncation on another.
2416 */
2417static int ocfs2_dio_end_io(struct kiocb *iocb,
2418 loff_t offset,
2419 ssize_t bytes,
2420 void *private)
2421{
2422 struct inode *inode = file_inode(iocb->ki_filp);
2423 int level;
2424 int ret = 0;
2425
2426 /* this io's submitter should not have unlocked this before we could */
2427 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2428
2429 if (bytes <= 0)
2430 mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2431 (long long)bytes);
2432 if (private) {
2433 if (bytes > 0)
2434 ret = ocfs2_dio_end_io_write(inode, private, offset,
2435 bytes);
2436 else
2437 ocfs2_dio_free_write_ctx(inode, private);
2438 }
2439
2440 ocfs2_iocb_clear_rw_locked(iocb);
2441
2442 level = ocfs2_iocb_rw_locked_level(iocb);
2443 ocfs2_rw_unlock(inode, level);
2444 return ret;
2445}
2446
2447static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2448{
2449 struct file *file = iocb->ki_filp;
2450 struct inode *inode = file->f_mapping->host;
2451 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2452 get_block_t *get_block;
2453
2454 /*
2455 * Fallback to buffered I/O if we see an inode without
2456 * extents.
2457 */
2458 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2459 return 0;
2460
2461 /* Fallback to buffered I/O if we do not support append dio. */
2462 if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2463 !ocfs2_supports_append_dio(osb))
2464 return 0;
2465
2466 if (iov_iter_rw(iter) == READ)
2467 get_block = ocfs2_lock_get_block;
2468 else
2469 get_block = ocfs2_dio_wr_get_block;
2470
2471 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2472 iter, get_block,
2473 ocfs2_dio_end_io, NULL, 0);
2474}
2475
2476const struct address_space_operations ocfs2_aops = {
2477 .readpage = ocfs2_readpage,
2478 .readpages = ocfs2_readpages,
2479 .writepage = ocfs2_writepage,
2480 .write_begin = ocfs2_write_begin,
2481 .write_end = ocfs2_write_end,
2482 .bmap = ocfs2_bmap,
2483 .direct_IO = ocfs2_direct_IO,
2484 .invalidatepage = block_invalidatepage,
2485 .releasepage = ocfs2_releasepage,
2486 .migratepage = buffer_migrate_page,
2487 .is_partially_uptodate = block_is_partially_uptodate,
2488 .error_remove_page = generic_error_remove_page,
2489};
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
27#include <linux/swap.h>
28#include <linux/pipe_fs_i.h>
29#include <linux/mpage.h>
30#include <linux/quotaops.h>
31
32#include <cluster/masklog.h>
33
34#include "ocfs2.h"
35
36#include "alloc.h"
37#include "aops.h"
38#include "dlmglue.h"
39#include "extent_map.h"
40#include "file.h"
41#include "inode.h"
42#include "journal.h"
43#include "suballoc.h"
44#include "super.h"
45#include "symlink.h"
46#include "refcounttree.h"
47#include "ocfs2_trace.h"
48
49#include "buffer_head_io.h"
50
51static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
53{
54 int err = -EIO;
55 int status;
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 void *kaddr;
61
62 trace_ocfs2_symlink_get_block(
63 (unsigned long long)OCFS2_I(inode)->ip_blkno,
64 (unsigned long long)iblock, bh_result, create);
65
66 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67
68 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70 (unsigned long long)iblock);
71 goto bail;
72 }
73
74 status = ocfs2_read_inode_block(inode, &bh);
75 if (status < 0) {
76 mlog_errno(status);
77 goto bail;
78 }
79 fe = (struct ocfs2_dinode *) bh->b_data;
80
81 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82 le32_to_cpu(fe->i_clusters))) {
83 err = -ENOMEM;
84 mlog(ML_ERROR, "block offset is outside the allocated size: "
85 "%llu\n", (unsigned long long)iblock);
86 goto bail;
87 }
88
89 /* We don't use the page cache to create symlink data, so if
90 * need be, copy it over from the buffer cache. */
91 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
92 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
93 iblock;
94 buffer_cache_bh = sb_getblk(osb->sb, blkno);
95 if (!buffer_cache_bh) {
96 err = -ENOMEM;
97 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
98 goto bail;
99 }
100
101 /* we haven't locked out transactions, so a commit
102 * could've happened. Since we've got a reference on
103 * the bh, even if it commits while we're doing the
104 * copy, the data is still good. */
105 if (buffer_jbd(buffer_cache_bh)
106 && ocfs2_inode_is_new(inode)) {
107 kaddr = kmap_atomic(bh_result->b_page);
108 if (!kaddr) {
109 mlog(ML_ERROR, "couldn't kmap!\n");
110 goto bail;
111 }
112 memcpy(kaddr + (bh_result->b_size * iblock),
113 buffer_cache_bh->b_data,
114 bh_result->b_size);
115 kunmap_atomic(kaddr);
116 set_buffer_uptodate(bh_result);
117 }
118 brelse(buffer_cache_bh);
119 }
120
121 map_bh(bh_result, inode->i_sb,
122 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
123
124 err = 0;
125
126bail:
127 brelse(bh);
128
129 return err;
130}
131
132int ocfs2_get_block(struct inode *inode, sector_t iblock,
133 struct buffer_head *bh_result, int create)
134{
135 int err = 0;
136 unsigned int ext_flags;
137 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
138 u64 p_blkno, count, past_eof;
139 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
140
141 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
142 (unsigned long long)iblock, bh_result, create);
143
144 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
145 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
146 inode, inode->i_ino);
147
148 if (S_ISLNK(inode->i_mode)) {
149 /* this always does I/O for some reason. */
150 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
151 goto bail;
152 }
153
154 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
155 &ext_flags);
156 if (err) {
157 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
158 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
159 (unsigned long long)p_blkno);
160 goto bail;
161 }
162
163 if (max_blocks < count)
164 count = max_blocks;
165
166 /*
167 * ocfs2 never allocates in this function - the only time we
168 * need to use BH_New is when we're extending i_size on a file
169 * system which doesn't support holes, in which case BH_New
170 * allows __block_write_begin() to zero.
171 *
172 * If we see this on a sparse file system, then a truncate has
173 * raced us and removed the cluster. In this case, we clear
174 * the buffers dirty and uptodate bits and let the buffer code
175 * ignore it as a hole.
176 */
177 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
178 clear_buffer_dirty(bh_result);
179 clear_buffer_uptodate(bh_result);
180 goto bail;
181 }
182
183 /* Treat the unwritten extent as a hole for zeroing purposes. */
184 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
185 map_bh(bh_result, inode->i_sb, p_blkno);
186
187 bh_result->b_size = count << inode->i_blkbits;
188
189 if (!ocfs2_sparse_alloc(osb)) {
190 if (p_blkno == 0) {
191 err = -EIO;
192 mlog(ML_ERROR,
193 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
194 (unsigned long long)iblock,
195 (unsigned long long)p_blkno,
196 (unsigned long long)OCFS2_I(inode)->ip_blkno);
197 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
198 dump_stack();
199 goto bail;
200 }
201 }
202
203 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
204
205 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
206 (unsigned long long)past_eof);
207 if (create && (iblock >= past_eof))
208 set_buffer_new(bh_result);
209
210bail:
211 if (err < 0)
212 err = -EIO;
213
214 return err;
215}
216
217int ocfs2_read_inline_data(struct inode *inode, struct page *page,
218 struct buffer_head *di_bh)
219{
220 void *kaddr;
221 loff_t size;
222 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
223
224 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
225 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
226 (unsigned long long)OCFS2_I(inode)->ip_blkno);
227 return -EROFS;
228 }
229
230 size = i_size_read(inode);
231
232 if (size > PAGE_CACHE_SIZE ||
233 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
234 ocfs2_error(inode->i_sb,
235 "Inode %llu has with inline data has bad size: %Lu",
236 (unsigned long long)OCFS2_I(inode)->ip_blkno,
237 (unsigned long long)size);
238 return -EROFS;
239 }
240
241 kaddr = kmap_atomic(page);
242 if (size)
243 memcpy(kaddr, di->id2.i_data.id_data, size);
244 /* Clear the remaining part of the page */
245 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
246 flush_dcache_page(page);
247 kunmap_atomic(kaddr);
248
249 SetPageUptodate(page);
250
251 return 0;
252}
253
254static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
255{
256 int ret;
257 struct buffer_head *di_bh = NULL;
258
259 BUG_ON(!PageLocked(page));
260 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
261
262 ret = ocfs2_read_inode_block(inode, &di_bh);
263 if (ret) {
264 mlog_errno(ret);
265 goto out;
266 }
267
268 ret = ocfs2_read_inline_data(inode, page, di_bh);
269out:
270 unlock_page(page);
271
272 brelse(di_bh);
273 return ret;
274}
275
276static int ocfs2_readpage(struct file *file, struct page *page)
277{
278 struct inode *inode = page->mapping->host;
279 struct ocfs2_inode_info *oi = OCFS2_I(inode);
280 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
281 int ret, unlock = 1;
282
283 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
284 (page ? page->index : 0));
285
286 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
287 if (ret != 0) {
288 if (ret == AOP_TRUNCATED_PAGE)
289 unlock = 0;
290 mlog_errno(ret);
291 goto out;
292 }
293
294 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
295 /*
296 * Unlock the page and cycle ip_alloc_sem so that we don't
297 * busyloop waiting for ip_alloc_sem to unlock
298 */
299 ret = AOP_TRUNCATED_PAGE;
300 unlock_page(page);
301 unlock = 0;
302 down_read(&oi->ip_alloc_sem);
303 up_read(&oi->ip_alloc_sem);
304 goto out_inode_unlock;
305 }
306
307 /*
308 * i_size might have just been updated as we grabed the meta lock. We
309 * might now be discovering a truncate that hit on another node.
310 * block_read_full_page->get_block freaks out if it is asked to read
311 * beyond the end of a file, so we check here. Callers
312 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
313 * and notice that the page they just read isn't needed.
314 *
315 * XXX sys_readahead() seems to get that wrong?
316 */
317 if (start >= i_size_read(inode)) {
318 zero_user(page, 0, PAGE_SIZE);
319 SetPageUptodate(page);
320 ret = 0;
321 goto out_alloc;
322 }
323
324 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
325 ret = ocfs2_readpage_inline(inode, page);
326 else
327 ret = block_read_full_page(page, ocfs2_get_block);
328 unlock = 0;
329
330out_alloc:
331 up_read(&OCFS2_I(inode)->ip_alloc_sem);
332out_inode_unlock:
333 ocfs2_inode_unlock(inode, 0);
334out:
335 if (unlock)
336 unlock_page(page);
337 return ret;
338}
339
340/*
341 * This is used only for read-ahead. Failures or difficult to handle
342 * situations are safe to ignore.
343 *
344 * Right now, we don't bother with BH_Boundary - in-inode extent lists
345 * are quite large (243 extents on 4k blocks), so most inodes don't
346 * grow out to a tree. If need be, detecting boundary extents could
347 * trivially be added in a future version of ocfs2_get_block().
348 */
349static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
350 struct list_head *pages, unsigned nr_pages)
351{
352 int ret, err = -EIO;
353 struct inode *inode = mapping->host;
354 struct ocfs2_inode_info *oi = OCFS2_I(inode);
355 loff_t start;
356 struct page *last;
357
358 /*
359 * Use the nonblocking flag for the dlm code to avoid page
360 * lock inversion, but don't bother with retrying.
361 */
362 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
363 if (ret)
364 return err;
365
366 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
367 ocfs2_inode_unlock(inode, 0);
368 return err;
369 }
370
371 /*
372 * Don't bother with inline-data. There isn't anything
373 * to read-ahead in that case anyway...
374 */
375 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
376 goto out_unlock;
377
378 /*
379 * Check whether a remote node truncated this file - we just
380 * drop out in that case as it's not worth handling here.
381 */
382 last = list_entry(pages->prev, struct page, lru);
383 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
384 if (start >= i_size_read(inode))
385 goto out_unlock;
386
387 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
388
389out_unlock:
390 up_read(&oi->ip_alloc_sem);
391 ocfs2_inode_unlock(inode, 0);
392
393 return err;
394}
395
396/* Note: Because we don't support holes, our allocation has
397 * already happened (allocation writes zeros to the file data)
398 * so we don't have to worry about ordered writes in
399 * ocfs2_writepage.
400 *
401 * ->writepage is called during the process of invalidating the page cache
402 * during blocked lock processing. It can't block on any cluster locks
403 * to during block mapping. It's relying on the fact that the block
404 * mapping can't have disappeared under the dirty pages that it is
405 * being asked to write back.
406 */
407static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
408{
409 trace_ocfs2_writepage(
410 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
411 page->index);
412
413 return block_write_full_page(page, ocfs2_get_block, wbc);
414}
415
416/* Taken from ext3. We don't necessarily need the full blown
417 * functionality yet, but IMHO it's better to cut and paste the whole
418 * thing so we can avoid introducing our own bugs (and easily pick up
419 * their fixes when they happen) --Mark */
420int walk_page_buffers( handle_t *handle,
421 struct buffer_head *head,
422 unsigned from,
423 unsigned to,
424 int *partial,
425 int (*fn)( handle_t *handle,
426 struct buffer_head *bh))
427{
428 struct buffer_head *bh;
429 unsigned block_start, block_end;
430 unsigned blocksize = head->b_size;
431 int err, ret = 0;
432 struct buffer_head *next;
433
434 for ( bh = head, block_start = 0;
435 ret == 0 && (bh != head || !block_start);
436 block_start = block_end, bh = next)
437 {
438 next = bh->b_this_page;
439 block_end = block_start + blocksize;
440 if (block_end <= from || block_start >= to) {
441 if (partial && !buffer_uptodate(bh))
442 *partial = 1;
443 continue;
444 }
445 err = (*fn)(handle, bh);
446 if (!ret)
447 ret = err;
448 }
449 return ret;
450}
451
452static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
453{
454 sector_t status;
455 u64 p_blkno = 0;
456 int err = 0;
457 struct inode *inode = mapping->host;
458
459 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
460 (unsigned long long)block);
461
462 /* We don't need to lock journal system files, since they aren't
463 * accessed concurrently from multiple nodes.
464 */
465 if (!INODE_JOURNAL(inode)) {
466 err = ocfs2_inode_lock(inode, NULL, 0);
467 if (err) {
468 if (err != -ENOENT)
469 mlog_errno(err);
470 goto bail;
471 }
472 down_read(&OCFS2_I(inode)->ip_alloc_sem);
473 }
474
475 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
476 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
477 NULL);
478
479 if (!INODE_JOURNAL(inode)) {
480 up_read(&OCFS2_I(inode)->ip_alloc_sem);
481 ocfs2_inode_unlock(inode, 0);
482 }
483
484 if (err) {
485 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
486 (unsigned long long)block);
487 mlog_errno(err);
488 goto bail;
489 }
490
491bail:
492 status = err ? 0 : p_blkno;
493
494 return status;
495}
496
497/*
498 * TODO: Make this into a generic get_blocks function.
499 *
500 * From do_direct_io in direct-io.c:
501 * "So what we do is to permit the ->get_blocks function to populate
502 * bh.b_size with the size of IO which is permitted at this offset and
503 * this i_blkbits."
504 *
505 * This function is called directly from get_more_blocks in direct-io.c.
506 *
507 * called like this: dio->get_blocks(dio->inode, fs_startblk,
508 * fs_count, map_bh, dio->rw == WRITE);
509 *
510 * Note that we never bother to allocate blocks here, and thus ignore the
511 * create argument.
512 */
513static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
514 struct buffer_head *bh_result, int create)
515{
516 int ret;
517 u64 p_blkno, inode_blocks, contig_blocks;
518 unsigned int ext_flags;
519 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
520 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
521
522 /* This function won't even be called if the request isn't all
523 * nicely aligned and of the right size, so there's no need
524 * for us to check any of that. */
525
526 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
527
528 /* This figures out the size of the next contiguous block, and
529 * our logical offset */
530 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
531 &contig_blocks, &ext_flags);
532 if (ret) {
533 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
534 (unsigned long long)iblock);
535 ret = -EIO;
536 goto bail;
537 }
538
539 /* We should already CoW the refcounted extent in case of create. */
540 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
541
542 /*
543 * get_more_blocks() expects us to describe a hole by clearing
544 * the mapped bit on bh_result().
545 *
546 * Consider an unwritten extent as a hole.
547 */
548 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
549 map_bh(bh_result, inode->i_sb, p_blkno);
550 else
551 clear_buffer_mapped(bh_result);
552
553 /* make sure we don't map more than max_blocks blocks here as
554 that's all the kernel will handle at this point. */
555 if (max_blocks < contig_blocks)
556 contig_blocks = max_blocks;
557 bh_result->b_size = contig_blocks << blocksize_bits;
558bail:
559 return ret;
560}
561
562/*
563 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
564 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
565 * to protect io on one node from truncation on another.
566 */
567static void ocfs2_dio_end_io(struct kiocb *iocb,
568 loff_t offset,
569 ssize_t bytes,
570 void *private)
571{
572 struct inode *inode = file_inode(iocb->ki_filp);
573 int level;
574
575 /* this io's submitter should not have unlocked this before we could */
576 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
577
578 if (ocfs2_iocb_is_sem_locked(iocb))
579 ocfs2_iocb_clear_sem_locked(iocb);
580
581 if (ocfs2_iocb_is_unaligned_aio(iocb)) {
582 ocfs2_iocb_clear_unaligned_aio(iocb);
583
584 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
585 }
586
587 ocfs2_iocb_clear_rw_locked(iocb);
588
589 level = ocfs2_iocb_rw_locked_level(iocb);
590 ocfs2_rw_unlock(inode, level);
591}
592
593static int ocfs2_releasepage(struct page *page, gfp_t wait)
594{
595 if (!page_has_buffers(page))
596 return 0;
597 return try_to_free_buffers(page);
598}
599
600static ssize_t ocfs2_direct_IO(int rw,
601 struct kiocb *iocb,
602 const struct iovec *iov,
603 loff_t offset,
604 unsigned long nr_segs)
605{
606 struct file *file = iocb->ki_filp;
607 struct inode *inode = file_inode(file)->i_mapping->host;
608
609 /*
610 * Fallback to buffered I/O if we see an inode without
611 * extents.
612 */
613 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
614 return 0;
615
616 /* Fallback to buffered I/O if we are appending. */
617 if (i_size_read(inode) <= offset)
618 return 0;
619
620 return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
621 iov, offset, nr_segs,
622 ocfs2_direct_IO_get_blocks,
623 ocfs2_dio_end_io, NULL, 0);
624}
625
626static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
627 u32 cpos,
628 unsigned int *start,
629 unsigned int *end)
630{
631 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
632
633 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
634 unsigned int cpp;
635
636 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
637
638 cluster_start = cpos % cpp;
639 cluster_start = cluster_start << osb->s_clustersize_bits;
640
641 cluster_end = cluster_start + osb->s_clustersize;
642 }
643
644 BUG_ON(cluster_start > PAGE_SIZE);
645 BUG_ON(cluster_end > PAGE_SIZE);
646
647 if (start)
648 *start = cluster_start;
649 if (end)
650 *end = cluster_end;
651}
652
653/*
654 * 'from' and 'to' are the region in the page to avoid zeroing.
655 *
656 * If pagesize > clustersize, this function will avoid zeroing outside
657 * of the cluster boundary.
658 *
659 * from == to == 0 is code for "zero the entire cluster region"
660 */
661static void ocfs2_clear_page_regions(struct page *page,
662 struct ocfs2_super *osb, u32 cpos,
663 unsigned from, unsigned to)
664{
665 void *kaddr;
666 unsigned int cluster_start, cluster_end;
667
668 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
669
670 kaddr = kmap_atomic(page);
671
672 if (from || to) {
673 if (from > cluster_start)
674 memset(kaddr + cluster_start, 0, from - cluster_start);
675 if (to < cluster_end)
676 memset(kaddr + to, 0, cluster_end - to);
677 } else {
678 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
679 }
680
681 kunmap_atomic(kaddr);
682}
683
684/*
685 * Nonsparse file systems fully allocate before we get to the write
686 * code. This prevents ocfs2_write() from tagging the write as an
687 * allocating one, which means ocfs2_map_page_blocks() might try to
688 * read-in the blocks at the tail of our file. Avoid reading them by
689 * testing i_size against each block offset.
690 */
691static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
692 unsigned int block_start)
693{
694 u64 offset = page_offset(page) + block_start;
695
696 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
697 return 1;
698
699 if (i_size_read(inode) > offset)
700 return 1;
701
702 return 0;
703}
704
705/*
706 * Some of this taken from __block_write_begin(). We already have our
707 * mapping by now though, and the entire write will be allocating or
708 * it won't, so not much need to use BH_New.
709 *
710 * This will also skip zeroing, which is handled externally.
711 */
712int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
713 struct inode *inode, unsigned int from,
714 unsigned int to, int new)
715{
716 int ret = 0;
717 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
718 unsigned int block_end, block_start;
719 unsigned int bsize = 1 << inode->i_blkbits;
720
721 if (!page_has_buffers(page))
722 create_empty_buffers(page, bsize, 0);
723
724 head = page_buffers(page);
725 for (bh = head, block_start = 0; bh != head || !block_start;
726 bh = bh->b_this_page, block_start += bsize) {
727 block_end = block_start + bsize;
728
729 clear_buffer_new(bh);
730
731 /*
732 * Ignore blocks outside of our i/o range -
733 * they may belong to unallocated clusters.
734 */
735 if (block_start >= to || block_end <= from) {
736 if (PageUptodate(page))
737 set_buffer_uptodate(bh);
738 continue;
739 }
740
741 /*
742 * For an allocating write with cluster size >= page
743 * size, we always write the entire page.
744 */
745 if (new)
746 set_buffer_new(bh);
747
748 if (!buffer_mapped(bh)) {
749 map_bh(bh, inode->i_sb, *p_blkno);
750 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
751 }
752
753 if (PageUptodate(page)) {
754 if (!buffer_uptodate(bh))
755 set_buffer_uptodate(bh);
756 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
757 !buffer_new(bh) &&
758 ocfs2_should_read_blk(inode, page, block_start) &&
759 (block_start < from || block_end > to)) {
760 ll_rw_block(READ, 1, &bh);
761 *wait_bh++=bh;
762 }
763
764 *p_blkno = *p_blkno + 1;
765 }
766
767 /*
768 * If we issued read requests - let them complete.
769 */
770 while(wait_bh > wait) {
771 wait_on_buffer(*--wait_bh);
772 if (!buffer_uptodate(*wait_bh))
773 ret = -EIO;
774 }
775
776 if (ret == 0 || !new)
777 return ret;
778
779 /*
780 * If we get -EIO above, zero out any newly allocated blocks
781 * to avoid exposing stale data.
782 */
783 bh = head;
784 block_start = 0;
785 do {
786 block_end = block_start + bsize;
787 if (block_end <= from)
788 goto next_bh;
789 if (block_start >= to)
790 break;
791
792 zero_user(page, block_start, bh->b_size);
793 set_buffer_uptodate(bh);
794 mark_buffer_dirty(bh);
795
796next_bh:
797 block_start = block_end;
798 bh = bh->b_this_page;
799 } while (bh != head);
800
801 return ret;
802}
803
804#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
805#define OCFS2_MAX_CTXT_PAGES 1
806#else
807#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
808#endif
809
810#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
811
812/*
813 * Describe the state of a single cluster to be written to.
814 */
815struct ocfs2_write_cluster_desc {
816 u32 c_cpos;
817 u32 c_phys;
818 /*
819 * Give this a unique field because c_phys eventually gets
820 * filled.
821 */
822 unsigned c_new;
823 unsigned c_unwritten;
824 unsigned c_needs_zero;
825};
826
827struct ocfs2_write_ctxt {
828 /* Logical cluster position / len of write */
829 u32 w_cpos;
830 u32 w_clen;
831
832 /* First cluster allocated in a nonsparse extend */
833 u32 w_first_new_cpos;
834
835 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
836
837 /*
838 * This is true if page_size > cluster_size.
839 *
840 * It triggers a set of special cases during write which might
841 * have to deal with allocating writes to partial pages.
842 */
843 unsigned int w_large_pages;
844
845 /*
846 * Pages involved in this write.
847 *
848 * w_target_page is the page being written to by the user.
849 *
850 * w_pages is an array of pages which always contains
851 * w_target_page, and in the case of an allocating write with
852 * page_size < cluster size, it will contain zero'd and mapped
853 * pages adjacent to w_target_page which need to be written
854 * out in so that future reads from that region will get
855 * zero's.
856 */
857 unsigned int w_num_pages;
858 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
859 struct page *w_target_page;
860
861 /*
862 * w_target_locked is used for page_mkwrite path indicating no unlocking
863 * against w_target_page in ocfs2_write_end_nolock.
864 */
865 unsigned int w_target_locked:1;
866
867 /*
868 * ocfs2_write_end() uses this to know what the real range to
869 * write in the target should be.
870 */
871 unsigned int w_target_from;
872 unsigned int w_target_to;
873
874 /*
875 * We could use journal_current_handle() but this is cleaner,
876 * IMHO -Mark
877 */
878 handle_t *w_handle;
879
880 struct buffer_head *w_di_bh;
881
882 struct ocfs2_cached_dealloc_ctxt w_dealloc;
883};
884
885void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
886{
887 int i;
888
889 for(i = 0; i < num_pages; i++) {
890 if (pages[i]) {
891 unlock_page(pages[i]);
892 mark_page_accessed(pages[i]);
893 page_cache_release(pages[i]);
894 }
895 }
896}
897
898static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
899{
900 int i;
901
902 /*
903 * w_target_locked is only set to true in the page_mkwrite() case.
904 * The intent is to allow us to lock the target page from write_begin()
905 * to write_end(). The caller must hold a ref on w_target_page.
906 */
907 if (wc->w_target_locked) {
908 BUG_ON(!wc->w_target_page);
909 for (i = 0; i < wc->w_num_pages; i++) {
910 if (wc->w_target_page == wc->w_pages[i]) {
911 wc->w_pages[i] = NULL;
912 break;
913 }
914 }
915 mark_page_accessed(wc->w_target_page);
916 page_cache_release(wc->w_target_page);
917 }
918 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
919
920 brelse(wc->w_di_bh);
921 kfree(wc);
922}
923
924static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
925 struct ocfs2_super *osb, loff_t pos,
926 unsigned len, struct buffer_head *di_bh)
927{
928 u32 cend;
929 struct ocfs2_write_ctxt *wc;
930
931 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
932 if (!wc)
933 return -ENOMEM;
934
935 wc->w_cpos = pos >> osb->s_clustersize_bits;
936 wc->w_first_new_cpos = UINT_MAX;
937 cend = (pos + len - 1) >> osb->s_clustersize_bits;
938 wc->w_clen = cend - wc->w_cpos + 1;
939 get_bh(di_bh);
940 wc->w_di_bh = di_bh;
941
942 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
943 wc->w_large_pages = 1;
944 else
945 wc->w_large_pages = 0;
946
947 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
948
949 *wcp = wc;
950
951 return 0;
952}
953
954/*
955 * If a page has any new buffers, zero them out here, and mark them uptodate
956 * and dirty so they'll be written out (in order to prevent uninitialised
957 * block data from leaking). And clear the new bit.
958 */
959static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
960{
961 unsigned int block_start, block_end;
962 struct buffer_head *head, *bh;
963
964 BUG_ON(!PageLocked(page));
965 if (!page_has_buffers(page))
966 return;
967
968 bh = head = page_buffers(page);
969 block_start = 0;
970 do {
971 block_end = block_start + bh->b_size;
972
973 if (buffer_new(bh)) {
974 if (block_end > from && block_start < to) {
975 if (!PageUptodate(page)) {
976 unsigned start, end;
977
978 start = max(from, block_start);
979 end = min(to, block_end);
980
981 zero_user_segment(page, start, end);
982 set_buffer_uptodate(bh);
983 }
984
985 clear_buffer_new(bh);
986 mark_buffer_dirty(bh);
987 }
988 }
989
990 block_start = block_end;
991 bh = bh->b_this_page;
992 } while (bh != head);
993}
994
995/*
996 * Only called when we have a failure during allocating write to write
997 * zero's to the newly allocated region.
998 */
999static void ocfs2_write_failure(struct inode *inode,
1000 struct ocfs2_write_ctxt *wc,
1001 loff_t user_pos, unsigned user_len)
1002{
1003 int i;
1004 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1005 to = user_pos + user_len;
1006 struct page *tmppage;
1007
1008 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1009
1010 for(i = 0; i < wc->w_num_pages; i++) {
1011 tmppage = wc->w_pages[i];
1012
1013 if (page_has_buffers(tmppage)) {
1014 if (ocfs2_should_order_data(inode))
1015 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1016
1017 block_commit_write(tmppage, from, to);
1018 }
1019 }
1020}
1021
1022static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1023 struct ocfs2_write_ctxt *wc,
1024 struct page *page, u32 cpos,
1025 loff_t user_pos, unsigned user_len,
1026 int new)
1027{
1028 int ret;
1029 unsigned int map_from = 0, map_to = 0;
1030 unsigned int cluster_start, cluster_end;
1031 unsigned int user_data_from = 0, user_data_to = 0;
1032
1033 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1034 &cluster_start, &cluster_end);
1035
1036 /* treat the write as new if the a hole/lseek spanned across
1037 * the page boundary.
1038 */
1039 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1040 (page_offset(page) <= user_pos));
1041
1042 if (page == wc->w_target_page) {
1043 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1044 map_to = map_from + user_len;
1045
1046 if (new)
1047 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1048 cluster_start, cluster_end,
1049 new);
1050 else
1051 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1052 map_from, map_to, new);
1053 if (ret) {
1054 mlog_errno(ret);
1055 goto out;
1056 }
1057
1058 user_data_from = map_from;
1059 user_data_to = map_to;
1060 if (new) {
1061 map_from = cluster_start;
1062 map_to = cluster_end;
1063 }
1064 } else {
1065 /*
1066 * If we haven't allocated the new page yet, we
1067 * shouldn't be writing it out without copying user
1068 * data. This is likely a math error from the caller.
1069 */
1070 BUG_ON(!new);
1071
1072 map_from = cluster_start;
1073 map_to = cluster_end;
1074
1075 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1076 cluster_start, cluster_end, new);
1077 if (ret) {
1078 mlog_errno(ret);
1079 goto out;
1080 }
1081 }
1082
1083 /*
1084 * Parts of newly allocated pages need to be zero'd.
1085 *
1086 * Above, we have also rewritten 'to' and 'from' - as far as
1087 * the rest of the function is concerned, the entire cluster
1088 * range inside of a page needs to be written.
1089 *
1090 * We can skip this if the page is up to date - it's already
1091 * been zero'd from being read in as a hole.
1092 */
1093 if (new && !PageUptodate(page))
1094 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1095 cpos, user_data_from, user_data_to);
1096
1097 flush_dcache_page(page);
1098
1099out:
1100 return ret;
1101}
1102
1103/*
1104 * This function will only grab one clusters worth of pages.
1105 */
1106static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1107 struct ocfs2_write_ctxt *wc,
1108 u32 cpos, loff_t user_pos,
1109 unsigned user_len, int new,
1110 struct page *mmap_page)
1111{
1112 int ret = 0, i;
1113 unsigned long start, target_index, end_index, index;
1114 struct inode *inode = mapping->host;
1115 loff_t last_byte;
1116
1117 target_index = user_pos >> PAGE_CACHE_SHIFT;
1118
1119 /*
1120 * Figure out how many pages we'll be manipulating here. For
1121 * non allocating write, we just change the one
1122 * page. Otherwise, we'll need a whole clusters worth. If we're
1123 * writing past i_size, we only need enough pages to cover the
1124 * last page of the write.
1125 */
1126 if (new) {
1127 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1128 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1129 /*
1130 * We need the index *past* the last page we could possibly
1131 * touch. This is the page past the end of the write or
1132 * i_size, whichever is greater.
1133 */
1134 last_byte = max(user_pos + user_len, i_size_read(inode));
1135 BUG_ON(last_byte < 1);
1136 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1137 if ((start + wc->w_num_pages) > end_index)
1138 wc->w_num_pages = end_index - start;
1139 } else {
1140 wc->w_num_pages = 1;
1141 start = target_index;
1142 }
1143
1144 for(i = 0; i < wc->w_num_pages; i++) {
1145 index = start + i;
1146
1147 if (index == target_index && mmap_page) {
1148 /*
1149 * ocfs2_pagemkwrite() is a little different
1150 * and wants us to directly use the page
1151 * passed in.
1152 */
1153 lock_page(mmap_page);
1154
1155 /* Exit and let the caller retry */
1156 if (mmap_page->mapping != mapping) {
1157 WARN_ON(mmap_page->mapping);
1158 unlock_page(mmap_page);
1159 ret = -EAGAIN;
1160 goto out;
1161 }
1162
1163 page_cache_get(mmap_page);
1164 wc->w_pages[i] = mmap_page;
1165 wc->w_target_locked = true;
1166 } else {
1167 wc->w_pages[i] = find_or_create_page(mapping, index,
1168 GFP_NOFS);
1169 if (!wc->w_pages[i]) {
1170 ret = -ENOMEM;
1171 mlog_errno(ret);
1172 goto out;
1173 }
1174 }
1175 wait_for_stable_page(wc->w_pages[i]);
1176
1177 if (index == target_index)
1178 wc->w_target_page = wc->w_pages[i];
1179 }
1180out:
1181 if (ret)
1182 wc->w_target_locked = false;
1183 return ret;
1184}
1185
1186/*
1187 * Prepare a single cluster for write one cluster into the file.
1188 */
1189static int ocfs2_write_cluster(struct address_space *mapping,
1190 u32 phys, unsigned int unwritten,
1191 unsigned int should_zero,
1192 struct ocfs2_alloc_context *data_ac,
1193 struct ocfs2_alloc_context *meta_ac,
1194 struct ocfs2_write_ctxt *wc, u32 cpos,
1195 loff_t user_pos, unsigned user_len)
1196{
1197 int ret, i, new;
1198 u64 v_blkno, p_blkno;
1199 struct inode *inode = mapping->host;
1200 struct ocfs2_extent_tree et;
1201
1202 new = phys == 0 ? 1 : 0;
1203 if (new) {
1204 u32 tmp_pos;
1205
1206 /*
1207 * This is safe to call with the page locks - it won't take
1208 * any additional semaphores or cluster locks.
1209 */
1210 tmp_pos = cpos;
1211 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1212 &tmp_pos, 1, 0, wc->w_di_bh,
1213 wc->w_handle, data_ac,
1214 meta_ac, NULL);
1215 /*
1216 * This shouldn't happen because we must have already
1217 * calculated the correct meta data allocation required. The
1218 * internal tree allocation code should know how to increase
1219 * transaction credits itself.
1220 *
1221 * If need be, we could handle -EAGAIN for a
1222 * RESTART_TRANS here.
1223 */
1224 mlog_bug_on_msg(ret == -EAGAIN,
1225 "Inode %llu: EAGAIN return during allocation.\n",
1226 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1227 if (ret < 0) {
1228 mlog_errno(ret);
1229 goto out;
1230 }
1231 } else if (unwritten) {
1232 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1233 wc->w_di_bh);
1234 ret = ocfs2_mark_extent_written(inode, &et,
1235 wc->w_handle, cpos, 1, phys,
1236 meta_ac, &wc->w_dealloc);
1237 if (ret < 0) {
1238 mlog_errno(ret);
1239 goto out;
1240 }
1241 }
1242
1243 if (should_zero)
1244 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1245 else
1246 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1247
1248 /*
1249 * The only reason this should fail is due to an inability to
1250 * find the extent added.
1251 */
1252 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1253 NULL);
1254 if (ret < 0) {
1255 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1256 "at logical block %llu",
1257 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1258 (unsigned long long)v_blkno);
1259 goto out;
1260 }
1261
1262 BUG_ON(p_blkno == 0);
1263
1264 for(i = 0; i < wc->w_num_pages; i++) {
1265 int tmpret;
1266
1267 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1268 wc->w_pages[i], cpos,
1269 user_pos, user_len,
1270 should_zero);
1271 if (tmpret) {
1272 mlog_errno(tmpret);
1273 if (ret == 0)
1274 ret = tmpret;
1275 }
1276 }
1277
1278 /*
1279 * We only have cleanup to do in case of allocating write.
1280 */
1281 if (ret && new)
1282 ocfs2_write_failure(inode, wc, user_pos, user_len);
1283
1284out:
1285
1286 return ret;
1287}
1288
1289static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1290 struct ocfs2_alloc_context *data_ac,
1291 struct ocfs2_alloc_context *meta_ac,
1292 struct ocfs2_write_ctxt *wc,
1293 loff_t pos, unsigned len)
1294{
1295 int ret, i;
1296 loff_t cluster_off;
1297 unsigned int local_len = len;
1298 struct ocfs2_write_cluster_desc *desc;
1299 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1300
1301 for (i = 0; i < wc->w_clen; i++) {
1302 desc = &wc->w_desc[i];
1303
1304 /*
1305 * We have to make sure that the total write passed in
1306 * doesn't extend past a single cluster.
1307 */
1308 local_len = len;
1309 cluster_off = pos & (osb->s_clustersize - 1);
1310 if ((cluster_off + local_len) > osb->s_clustersize)
1311 local_len = osb->s_clustersize - cluster_off;
1312
1313 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1314 desc->c_unwritten,
1315 desc->c_needs_zero,
1316 data_ac, meta_ac,
1317 wc, desc->c_cpos, pos, local_len);
1318 if (ret) {
1319 mlog_errno(ret);
1320 goto out;
1321 }
1322
1323 len -= local_len;
1324 pos += local_len;
1325 }
1326
1327 ret = 0;
1328out:
1329 return ret;
1330}
1331
1332/*
1333 * ocfs2_write_end() wants to know which parts of the target page it
1334 * should complete the write on. It's easiest to compute them ahead of
1335 * time when a more complete view of the write is available.
1336 */
1337static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1338 struct ocfs2_write_ctxt *wc,
1339 loff_t pos, unsigned len, int alloc)
1340{
1341 struct ocfs2_write_cluster_desc *desc;
1342
1343 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1344 wc->w_target_to = wc->w_target_from + len;
1345
1346 if (alloc == 0)
1347 return;
1348
1349 /*
1350 * Allocating write - we may have different boundaries based
1351 * on page size and cluster size.
1352 *
1353 * NOTE: We can no longer compute one value from the other as
1354 * the actual write length and user provided length may be
1355 * different.
1356 */
1357
1358 if (wc->w_large_pages) {
1359 /*
1360 * We only care about the 1st and last cluster within
1361 * our range and whether they should be zero'd or not. Either
1362 * value may be extended out to the start/end of a
1363 * newly allocated cluster.
1364 */
1365 desc = &wc->w_desc[0];
1366 if (desc->c_needs_zero)
1367 ocfs2_figure_cluster_boundaries(osb,
1368 desc->c_cpos,
1369 &wc->w_target_from,
1370 NULL);
1371
1372 desc = &wc->w_desc[wc->w_clen - 1];
1373 if (desc->c_needs_zero)
1374 ocfs2_figure_cluster_boundaries(osb,
1375 desc->c_cpos,
1376 NULL,
1377 &wc->w_target_to);
1378 } else {
1379 wc->w_target_from = 0;
1380 wc->w_target_to = PAGE_CACHE_SIZE;
1381 }
1382}
1383
1384/*
1385 * Populate each single-cluster write descriptor in the write context
1386 * with information about the i/o to be done.
1387 *
1388 * Returns the number of clusters that will have to be allocated, as
1389 * well as a worst case estimate of the number of extent records that
1390 * would have to be created during a write to an unwritten region.
1391 */
1392static int ocfs2_populate_write_desc(struct inode *inode,
1393 struct ocfs2_write_ctxt *wc,
1394 unsigned int *clusters_to_alloc,
1395 unsigned int *extents_to_split)
1396{
1397 int ret;
1398 struct ocfs2_write_cluster_desc *desc;
1399 unsigned int num_clusters = 0;
1400 unsigned int ext_flags = 0;
1401 u32 phys = 0;
1402 int i;
1403
1404 *clusters_to_alloc = 0;
1405 *extents_to_split = 0;
1406
1407 for (i = 0; i < wc->w_clen; i++) {
1408 desc = &wc->w_desc[i];
1409 desc->c_cpos = wc->w_cpos + i;
1410
1411 if (num_clusters == 0) {
1412 /*
1413 * Need to look up the next extent record.
1414 */
1415 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1416 &num_clusters, &ext_flags);
1417 if (ret) {
1418 mlog_errno(ret);
1419 goto out;
1420 }
1421
1422 /* We should already CoW the refcountd extent. */
1423 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1424
1425 /*
1426 * Assume worst case - that we're writing in
1427 * the middle of the extent.
1428 *
1429 * We can assume that the write proceeds from
1430 * left to right, in which case the extent
1431 * insert code is smart enough to coalesce the
1432 * next splits into the previous records created.
1433 */
1434 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1435 *extents_to_split = *extents_to_split + 2;
1436 } else if (phys) {
1437 /*
1438 * Only increment phys if it doesn't describe
1439 * a hole.
1440 */
1441 phys++;
1442 }
1443
1444 /*
1445 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1446 * file that got extended. w_first_new_cpos tells us
1447 * where the newly allocated clusters are so we can
1448 * zero them.
1449 */
1450 if (desc->c_cpos >= wc->w_first_new_cpos) {
1451 BUG_ON(phys == 0);
1452 desc->c_needs_zero = 1;
1453 }
1454
1455 desc->c_phys = phys;
1456 if (phys == 0) {
1457 desc->c_new = 1;
1458 desc->c_needs_zero = 1;
1459 *clusters_to_alloc = *clusters_to_alloc + 1;
1460 }
1461
1462 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1463 desc->c_unwritten = 1;
1464 desc->c_needs_zero = 1;
1465 }
1466
1467 num_clusters--;
1468 }
1469
1470 ret = 0;
1471out:
1472 return ret;
1473}
1474
1475static int ocfs2_write_begin_inline(struct address_space *mapping,
1476 struct inode *inode,
1477 struct ocfs2_write_ctxt *wc)
1478{
1479 int ret;
1480 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1481 struct page *page;
1482 handle_t *handle;
1483 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1484
1485 page = find_or_create_page(mapping, 0, GFP_NOFS);
1486 if (!page) {
1487 ret = -ENOMEM;
1488 mlog_errno(ret);
1489 goto out;
1490 }
1491 /*
1492 * If we don't set w_num_pages then this page won't get unlocked
1493 * and freed on cleanup of the write context.
1494 */
1495 wc->w_pages[0] = wc->w_target_page = page;
1496 wc->w_num_pages = 1;
1497
1498 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1499 if (IS_ERR(handle)) {
1500 ret = PTR_ERR(handle);
1501 mlog_errno(ret);
1502 goto out;
1503 }
1504
1505 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1506 OCFS2_JOURNAL_ACCESS_WRITE);
1507 if (ret) {
1508 ocfs2_commit_trans(osb, handle);
1509
1510 mlog_errno(ret);
1511 goto out;
1512 }
1513
1514 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1515 ocfs2_set_inode_data_inline(inode, di);
1516
1517 if (!PageUptodate(page)) {
1518 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1519 if (ret) {
1520 ocfs2_commit_trans(osb, handle);
1521
1522 goto out;
1523 }
1524 }
1525
1526 wc->w_handle = handle;
1527out:
1528 return ret;
1529}
1530
1531int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1532{
1533 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1534
1535 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1536 return 1;
1537 return 0;
1538}
1539
1540static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1541 struct inode *inode, loff_t pos,
1542 unsigned len, struct page *mmap_page,
1543 struct ocfs2_write_ctxt *wc)
1544{
1545 int ret, written = 0;
1546 loff_t end = pos + len;
1547 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1548 struct ocfs2_dinode *di = NULL;
1549
1550 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1551 len, (unsigned long long)pos,
1552 oi->ip_dyn_features);
1553
1554 /*
1555 * Handle inodes which already have inline data 1st.
1556 */
1557 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1558 if (mmap_page == NULL &&
1559 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1560 goto do_inline_write;
1561
1562 /*
1563 * The write won't fit - we have to give this inode an
1564 * inline extent list now.
1565 */
1566 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1567 if (ret)
1568 mlog_errno(ret);
1569 goto out;
1570 }
1571
1572 /*
1573 * Check whether the inode can accept inline data.
1574 */
1575 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1576 return 0;
1577
1578 /*
1579 * Check whether the write can fit.
1580 */
1581 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1582 if (mmap_page ||
1583 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1584 return 0;
1585
1586do_inline_write:
1587 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1588 if (ret) {
1589 mlog_errno(ret);
1590 goto out;
1591 }
1592
1593 /*
1594 * This signals to the caller that the data can be written
1595 * inline.
1596 */
1597 written = 1;
1598out:
1599 return written ? written : ret;
1600}
1601
1602/*
1603 * This function only does anything for file systems which can't
1604 * handle sparse files.
1605 *
1606 * What we want to do here is fill in any hole between the current end
1607 * of allocation and the end of our write. That way the rest of the
1608 * write path can treat it as an non-allocating write, which has no
1609 * special case code for sparse/nonsparse files.
1610 */
1611static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1612 struct buffer_head *di_bh,
1613 loff_t pos, unsigned len,
1614 struct ocfs2_write_ctxt *wc)
1615{
1616 int ret;
1617 loff_t newsize = pos + len;
1618
1619 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1620
1621 if (newsize <= i_size_read(inode))
1622 return 0;
1623
1624 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1625 if (ret)
1626 mlog_errno(ret);
1627
1628 wc->w_first_new_cpos =
1629 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1630
1631 return ret;
1632}
1633
1634static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1635 loff_t pos)
1636{
1637 int ret = 0;
1638
1639 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1640 if (pos > i_size_read(inode))
1641 ret = ocfs2_zero_extend(inode, di_bh, pos);
1642
1643 return ret;
1644}
1645
1646/*
1647 * Try to flush truncate logs if we can free enough clusters from it.
1648 * As for return value, "< 0" means error, "0" no space and "1" means
1649 * we have freed enough spaces and let the caller try to allocate again.
1650 */
1651static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1652 unsigned int needed)
1653{
1654 tid_t target;
1655 int ret = 0;
1656 unsigned int truncated_clusters;
1657
1658 mutex_lock(&osb->osb_tl_inode->i_mutex);
1659 truncated_clusters = osb->truncated_clusters;
1660 mutex_unlock(&osb->osb_tl_inode->i_mutex);
1661
1662 /*
1663 * Check whether we can succeed in allocating if we free
1664 * the truncate log.
1665 */
1666 if (truncated_clusters < needed)
1667 goto out;
1668
1669 ret = ocfs2_flush_truncate_log(osb);
1670 if (ret) {
1671 mlog_errno(ret);
1672 goto out;
1673 }
1674
1675 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1676 jbd2_log_wait_commit(osb->journal->j_journal, target);
1677 ret = 1;
1678 }
1679out:
1680 return ret;
1681}
1682
1683int ocfs2_write_begin_nolock(struct file *filp,
1684 struct address_space *mapping,
1685 loff_t pos, unsigned len, unsigned flags,
1686 struct page **pagep, void **fsdata,
1687 struct buffer_head *di_bh, struct page *mmap_page)
1688{
1689 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1690 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1691 struct ocfs2_write_ctxt *wc;
1692 struct inode *inode = mapping->host;
1693 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1694 struct ocfs2_dinode *di;
1695 struct ocfs2_alloc_context *data_ac = NULL;
1696 struct ocfs2_alloc_context *meta_ac = NULL;
1697 handle_t *handle;
1698 struct ocfs2_extent_tree et;
1699 int try_free = 1, ret1;
1700
1701try_again:
1702 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1703 if (ret) {
1704 mlog_errno(ret);
1705 return ret;
1706 }
1707
1708 if (ocfs2_supports_inline_data(osb)) {
1709 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1710 mmap_page, wc);
1711 if (ret == 1) {
1712 ret = 0;
1713 goto success;
1714 }
1715 if (ret < 0) {
1716 mlog_errno(ret);
1717 goto out;
1718 }
1719 }
1720
1721 if (ocfs2_sparse_alloc(osb))
1722 ret = ocfs2_zero_tail(inode, di_bh, pos);
1723 else
1724 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1725 wc);
1726 if (ret) {
1727 mlog_errno(ret);
1728 goto out;
1729 }
1730
1731 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1732 if (ret < 0) {
1733 mlog_errno(ret);
1734 goto out;
1735 } else if (ret == 1) {
1736 clusters_need = wc->w_clen;
1737 ret = ocfs2_refcount_cow(inode, di_bh,
1738 wc->w_cpos, wc->w_clen, UINT_MAX);
1739 if (ret) {
1740 mlog_errno(ret);
1741 goto out;
1742 }
1743 }
1744
1745 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1746 &extents_to_split);
1747 if (ret) {
1748 mlog_errno(ret);
1749 goto out;
1750 }
1751 clusters_need += clusters_to_alloc;
1752
1753 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1754
1755 trace_ocfs2_write_begin_nolock(
1756 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1757 (long long)i_size_read(inode),
1758 le32_to_cpu(di->i_clusters),
1759 pos, len, flags, mmap_page,
1760 clusters_to_alloc, extents_to_split);
1761
1762 /*
1763 * We set w_target_from, w_target_to here so that
1764 * ocfs2_write_end() knows which range in the target page to
1765 * write out. An allocation requires that we write the entire
1766 * cluster range.
1767 */
1768 if (clusters_to_alloc || extents_to_split) {
1769 /*
1770 * XXX: We are stretching the limits of
1771 * ocfs2_lock_allocators(). It greatly over-estimates
1772 * the work to be done.
1773 */
1774 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1775 wc->w_di_bh);
1776 ret = ocfs2_lock_allocators(inode, &et,
1777 clusters_to_alloc, extents_to_split,
1778 &data_ac, &meta_ac);
1779 if (ret) {
1780 mlog_errno(ret);
1781 goto out;
1782 }
1783
1784 if (data_ac)
1785 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1786
1787 credits = ocfs2_calc_extend_credits(inode->i_sb,
1788 &di->id2.i_list);
1789
1790 }
1791
1792 /*
1793 * We have to zero sparse allocated clusters, unwritten extent clusters,
1794 * and non-sparse clusters we just extended. For non-sparse writes,
1795 * we know zeros will only be needed in the first and/or last cluster.
1796 */
1797 if (clusters_to_alloc || extents_to_split ||
1798 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1799 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1800 cluster_of_pages = 1;
1801 else
1802 cluster_of_pages = 0;
1803
1804 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1805
1806 handle = ocfs2_start_trans(osb, credits);
1807 if (IS_ERR(handle)) {
1808 ret = PTR_ERR(handle);
1809 mlog_errno(ret);
1810 goto out;
1811 }
1812
1813 wc->w_handle = handle;
1814
1815 if (clusters_to_alloc) {
1816 ret = dquot_alloc_space_nodirty(inode,
1817 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1818 if (ret)
1819 goto out_commit;
1820 }
1821 /*
1822 * We don't want this to fail in ocfs2_write_end(), so do it
1823 * here.
1824 */
1825 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1826 OCFS2_JOURNAL_ACCESS_WRITE);
1827 if (ret) {
1828 mlog_errno(ret);
1829 goto out_quota;
1830 }
1831
1832 /*
1833 * Fill our page array first. That way we've grabbed enough so
1834 * that we can zero and flush if we error after adding the
1835 * extent.
1836 */
1837 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1838 cluster_of_pages, mmap_page);
1839 if (ret && ret != -EAGAIN) {
1840 mlog_errno(ret);
1841 goto out_quota;
1842 }
1843
1844 /*
1845 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1846 * the target page. In this case, we exit with no error and no target
1847 * page. This will trigger the caller, page_mkwrite(), to re-try
1848 * the operation.
1849 */
1850 if (ret == -EAGAIN) {
1851 BUG_ON(wc->w_target_page);
1852 ret = 0;
1853 goto out_quota;
1854 }
1855
1856 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1857 len);
1858 if (ret) {
1859 mlog_errno(ret);
1860 goto out_quota;
1861 }
1862
1863 if (data_ac)
1864 ocfs2_free_alloc_context(data_ac);
1865 if (meta_ac)
1866 ocfs2_free_alloc_context(meta_ac);
1867
1868success:
1869 *pagep = wc->w_target_page;
1870 *fsdata = wc;
1871 return 0;
1872out_quota:
1873 if (clusters_to_alloc)
1874 dquot_free_space(inode,
1875 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1876out_commit:
1877 ocfs2_commit_trans(osb, handle);
1878
1879out:
1880 ocfs2_free_write_ctxt(wc);
1881
1882 if (data_ac) {
1883 ocfs2_free_alloc_context(data_ac);
1884 data_ac = NULL;
1885 }
1886 if (meta_ac) {
1887 ocfs2_free_alloc_context(meta_ac);
1888 meta_ac = NULL;
1889 }
1890
1891 if (ret == -ENOSPC && try_free) {
1892 /*
1893 * Try to free some truncate log so that we can have enough
1894 * clusters to allocate.
1895 */
1896 try_free = 0;
1897
1898 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1899 if (ret1 == 1)
1900 goto try_again;
1901
1902 if (ret1 < 0)
1903 mlog_errno(ret1);
1904 }
1905
1906 return ret;
1907}
1908
1909static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1910 loff_t pos, unsigned len, unsigned flags,
1911 struct page **pagep, void **fsdata)
1912{
1913 int ret;
1914 struct buffer_head *di_bh = NULL;
1915 struct inode *inode = mapping->host;
1916
1917 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1918 if (ret) {
1919 mlog_errno(ret);
1920 return ret;
1921 }
1922
1923 /*
1924 * Take alloc sem here to prevent concurrent lookups. That way
1925 * the mapping, zeroing and tree manipulation within
1926 * ocfs2_write() will be safe against ->readpage(). This
1927 * should also serve to lock out allocation from a shared
1928 * writeable region.
1929 */
1930 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1931
1932 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1933 fsdata, di_bh, NULL);
1934 if (ret) {
1935 mlog_errno(ret);
1936 goto out_fail;
1937 }
1938
1939 brelse(di_bh);
1940
1941 return 0;
1942
1943out_fail:
1944 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1945
1946 brelse(di_bh);
1947 ocfs2_inode_unlock(inode, 1);
1948
1949 return ret;
1950}
1951
1952static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1953 unsigned len, unsigned *copied,
1954 struct ocfs2_dinode *di,
1955 struct ocfs2_write_ctxt *wc)
1956{
1957 void *kaddr;
1958
1959 if (unlikely(*copied < len)) {
1960 if (!PageUptodate(wc->w_target_page)) {
1961 *copied = 0;
1962 return;
1963 }
1964 }
1965
1966 kaddr = kmap_atomic(wc->w_target_page);
1967 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1968 kunmap_atomic(kaddr);
1969
1970 trace_ocfs2_write_end_inline(
1971 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1972 (unsigned long long)pos, *copied,
1973 le16_to_cpu(di->id2.i_data.id_count),
1974 le16_to_cpu(di->i_dyn_features));
1975}
1976
1977int ocfs2_write_end_nolock(struct address_space *mapping,
1978 loff_t pos, unsigned len, unsigned copied,
1979 struct page *page, void *fsdata)
1980{
1981 int i;
1982 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1983 struct inode *inode = mapping->host;
1984 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1985 struct ocfs2_write_ctxt *wc = fsdata;
1986 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1987 handle_t *handle = wc->w_handle;
1988 struct page *tmppage;
1989
1990 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1991 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1992 goto out_write_size;
1993 }
1994
1995 if (unlikely(copied < len)) {
1996 if (!PageUptodate(wc->w_target_page))
1997 copied = 0;
1998
1999 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2000 start+len);
2001 }
2002 flush_dcache_page(wc->w_target_page);
2003
2004 for(i = 0; i < wc->w_num_pages; i++) {
2005 tmppage = wc->w_pages[i];
2006
2007 if (tmppage == wc->w_target_page) {
2008 from = wc->w_target_from;
2009 to = wc->w_target_to;
2010
2011 BUG_ON(from > PAGE_CACHE_SIZE ||
2012 to > PAGE_CACHE_SIZE ||
2013 to < from);
2014 } else {
2015 /*
2016 * Pages adjacent to the target (if any) imply
2017 * a hole-filling write in which case we want
2018 * to flush their entire range.
2019 */
2020 from = 0;
2021 to = PAGE_CACHE_SIZE;
2022 }
2023
2024 if (page_has_buffers(tmppage)) {
2025 if (ocfs2_should_order_data(inode))
2026 ocfs2_jbd2_file_inode(wc->w_handle, inode);
2027 block_commit_write(tmppage, from, to);
2028 }
2029 }
2030
2031out_write_size:
2032 pos += copied;
2033 if (pos > i_size_read(inode)) {
2034 i_size_write(inode, pos);
2035 mark_inode_dirty(inode);
2036 }
2037 inode->i_blocks = ocfs2_inode_sector_count(inode);
2038 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2039 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2040 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2041 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2042 ocfs2_update_inode_fsync_trans(handle, inode, 1);
2043 ocfs2_journal_dirty(handle, wc->w_di_bh);
2044
2045 ocfs2_commit_trans(osb, handle);
2046
2047 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2048
2049 ocfs2_free_write_ctxt(wc);
2050
2051 return copied;
2052}
2053
2054static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2055 loff_t pos, unsigned len, unsigned copied,
2056 struct page *page, void *fsdata)
2057{
2058 int ret;
2059 struct inode *inode = mapping->host;
2060
2061 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2062
2063 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2064 ocfs2_inode_unlock(inode, 1);
2065
2066 return ret;
2067}
2068
2069const struct address_space_operations ocfs2_aops = {
2070 .readpage = ocfs2_readpage,
2071 .readpages = ocfs2_readpages,
2072 .writepage = ocfs2_writepage,
2073 .write_begin = ocfs2_write_begin,
2074 .write_end = ocfs2_write_end,
2075 .bmap = ocfs2_bmap,
2076 .direct_IO = ocfs2_direct_IO,
2077 .invalidatepage = block_invalidatepage,
2078 .releasepage = ocfs2_releasepage,
2079 .migratepage = buffer_migrate_page,
2080 .is_partially_uptodate = block_is_partially_uptodate,
2081 .error_remove_page = generic_error_remove_page,
2082};