Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* -*- mode: c; c-basic-offset: 8; -*-
3 * vim: noexpandtab sw=8 ts=8 sts=0:
4 *
5 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 */
7
8#include <linux/fs.h>
9#include <linux/slab.h>
10#include <linux/highmem.h>
11#include <linux/pagemap.h>
12#include <asm/byteorder.h>
13#include <linux/swap.h>
14#include <linux/pipe_fs_i.h>
15#include <linux/mpage.h>
16#include <linux/quotaops.h>
17#include <linux/blkdev.h>
18#include <linux/uio.h>
19#include <linux/mm.h>
20
21#include <cluster/masklog.h>
22
23#include "ocfs2.h"
24
25#include "alloc.h"
26#include "aops.h"
27#include "dlmglue.h"
28#include "extent_map.h"
29#include "file.h"
30#include "inode.h"
31#include "journal.h"
32#include "suballoc.h"
33#include "super.h"
34#include "symlink.h"
35#include "refcounttree.h"
36#include "ocfs2_trace.h"
37
38#include "buffer_head_io.h"
39#include "dir.h"
40#include "namei.h"
41#include "sysfile.h"
42
43static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
44 struct buffer_head *bh_result, int create)
45{
46 int err = -EIO;
47 int status;
48 struct ocfs2_dinode *fe = NULL;
49 struct buffer_head *bh = NULL;
50 struct buffer_head *buffer_cache_bh = NULL;
51 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
52 void *kaddr;
53
54 trace_ocfs2_symlink_get_block(
55 (unsigned long long)OCFS2_I(inode)->ip_blkno,
56 (unsigned long long)iblock, bh_result, create);
57
58 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
59
60 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
61 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
62 (unsigned long long)iblock);
63 goto bail;
64 }
65
66 status = ocfs2_read_inode_block(inode, &bh);
67 if (status < 0) {
68 mlog_errno(status);
69 goto bail;
70 }
71 fe = (struct ocfs2_dinode *) bh->b_data;
72
73 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
74 le32_to_cpu(fe->i_clusters))) {
75 err = -ENOMEM;
76 mlog(ML_ERROR, "block offset is outside the allocated size: "
77 "%llu\n", (unsigned long long)iblock);
78 goto bail;
79 }
80
81 /* We don't use the page cache to create symlink data, so if
82 * need be, copy it over from the buffer cache. */
83 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
84 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
85 iblock;
86 buffer_cache_bh = sb_getblk(osb->sb, blkno);
87 if (!buffer_cache_bh) {
88 err = -ENOMEM;
89 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
90 goto bail;
91 }
92
93 /* we haven't locked out transactions, so a commit
94 * could've happened. Since we've got a reference on
95 * the bh, even if it commits while we're doing the
96 * copy, the data is still good. */
97 if (buffer_jbd(buffer_cache_bh)
98 && ocfs2_inode_is_new(inode)) {
99 kaddr = kmap_atomic(bh_result->b_page);
100 if (!kaddr) {
101 mlog(ML_ERROR, "couldn't kmap!\n");
102 goto bail;
103 }
104 memcpy(kaddr + (bh_result->b_size * iblock),
105 buffer_cache_bh->b_data,
106 bh_result->b_size);
107 kunmap_atomic(kaddr);
108 set_buffer_uptodate(bh_result);
109 }
110 brelse(buffer_cache_bh);
111 }
112
113 map_bh(bh_result, inode->i_sb,
114 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
115
116 err = 0;
117
118bail:
119 brelse(bh);
120
121 return err;
122}
123
124static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
125 struct buffer_head *bh_result, int create)
126{
127 int ret = 0;
128 struct ocfs2_inode_info *oi = OCFS2_I(inode);
129
130 down_read(&oi->ip_alloc_sem);
131 ret = ocfs2_get_block(inode, iblock, bh_result, create);
132 up_read(&oi->ip_alloc_sem);
133
134 return ret;
135}
136
137int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 struct buffer_head *bh_result, int create)
139{
140 int err = 0;
141 unsigned int ext_flags;
142 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143 u64 p_blkno, count, past_eof;
144 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
145
146 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147 (unsigned long long)iblock, bh_result, create);
148
149 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151 inode, inode->i_ino);
152
153 if (S_ISLNK(inode->i_mode)) {
154 /* this always does I/O for some reason. */
155 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156 goto bail;
157 }
158
159 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
160 &ext_flags);
161 if (err) {
162 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
163 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164 (unsigned long long)p_blkno);
165 goto bail;
166 }
167
168 if (max_blocks < count)
169 count = max_blocks;
170
171 /*
172 * ocfs2 never allocates in this function - the only time we
173 * need to use BH_New is when we're extending i_size on a file
174 * system which doesn't support holes, in which case BH_New
175 * allows __block_write_begin() to zero.
176 *
177 * If we see this on a sparse file system, then a truncate has
178 * raced us and removed the cluster. In this case, we clear
179 * the buffers dirty and uptodate bits and let the buffer code
180 * ignore it as a hole.
181 */
182 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183 clear_buffer_dirty(bh_result);
184 clear_buffer_uptodate(bh_result);
185 goto bail;
186 }
187
188 /* Treat the unwritten extent as a hole for zeroing purposes. */
189 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
190 map_bh(bh_result, inode->i_sb, p_blkno);
191
192 bh_result->b_size = count << inode->i_blkbits;
193
194 if (!ocfs2_sparse_alloc(osb)) {
195 if (p_blkno == 0) {
196 err = -EIO;
197 mlog(ML_ERROR,
198 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199 (unsigned long long)iblock,
200 (unsigned long long)p_blkno,
201 (unsigned long long)OCFS2_I(inode)->ip_blkno);
202 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203 dump_stack();
204 goto bail;
205 }
206 }
207
208 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
209
210 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211 (unsigned long long)past_eof);
212 if (create && (iblock >= past_eof))
213 set_buffer_new(bh_result);
214
215bail:
216 if (err < 0)
217 err = -EIO;
218
219 return err;
220}
221
222int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223 struct buffer_head *di_bh)
224{
225 void *kaddr;
226 loff_t size;
227 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228
229 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
231 (unsigned long long)OCFS2_I(inode)->ip_blkno);
232 return -EROFS;
233 }
234
235 size = i_size_read(inode);
236
237 if (size > PAGE_SIZE ||
238 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
239 ocfs2_error(inode->i_sb,
240 "Inode %llu has with inline data has bad size: %Lu\n",
241 (unsigned long long)OCFS2_I(inode)->ip_blkno,
242 (unsigned long long)size);
243 return -EROFS;
244 }
245
246 kaddr = kmap_atomic(page);
247 if (size)
248 memcpy(kaddr, di->id2.i_data.id_data, size);
249 /* Clear the remaining part of the page */
250 memset(kaddr + size, 0, PAGE_SIZE - size);
251 flush_dcache_page(page);
252 kunmap_atomic(kaddr);
253
254 SetPageUptodate(page);
255
256 return 0;
257}
258
259static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260{
261 int ret;
262 struct buffer_head *di_bh = NULL;
263
264 BUG_ON(!PageLocked(page));
265 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
266
267 ret = ocfs2_read_inode_block(inode, &di_bh);
268 if (ret) {
269 mlog_errno(ret);
270 goto out;
271 }
272
273 ret = ocfs2_read_inline_data(inode, page, di_bh);
274out:
275 unlock_page(page);
276
277 brelse(di_bh);
278 return ret;
279}
280
281static int ocfs2_readpage(struct file *file, struct page *page)
282{
283 struct inode *inode = page->mapping->host;
284 struct ocfs2_inode_info *oi = OCFS2_I(inode);
285 loff_t start = (loff_t)page->index << PAGE_SHIFT;
286 int ret, unlock = 1;
287
288 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289 (page ? page->index : 0));
290
291 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
292 if (ret != 0) {
293 if (ret == AOP_TRUNCATED_PAGE)
294 unlock = 0;
295 mlog_errno(ret);
296 goto out;
297 }
298
299 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
300 /*
301 * Unlock the page and cycle ip_alloc_sem so that we don't
302 * busyloop waiting for ip_alloc_sem to unlock
303 */
304 ret = AOP_TRUNCATED_PAGE;
305 unlock_page(page);
306 unlock = 0;
307 down_read(&oi->ip_alloc_sem);
308 up_read(&oi->ip_alloc_sem);
309 goto out_inode_unlock;
310 }
311
312 /*
313 * i_size might have just been updated as we grabed the meta lock. We
314 * might now be discovering a truncate that hit on another node.
315 * block_read_full_page->get_block freaks out if it is asked to read
316 * beyond the end of a file, so we check here. Callers
317 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
318 * and notice that the page they just read isn't needed.
319 *
320 * XXX sys_readahead() seems to get that wrong?
321 */
322 if (start >= i_size_read(inode)) {
323 zero_user(page, 0, PAGE_SIZE);
324 SetPageUptodate(page);
325 ret = 0;
326 goto out_alloc;
327 }
328
329 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330 ret = ocfs2_readpage_inline(inode, page);
331 else
332 ret = block_read_full_page(page, ocfs2_get_block);
333 unlock = 0;
334
335out_alloc:
336 up_read(&oi->ip_alloc_sem);
337out_inode_unlock:
338 ocfs2_inode_unlock(inode, 0);
339out:
340 if (unlock)
341 unlock_page(page);
342 return ret;
343}
344
345/*
346 * This is used only for read-ahead. Failures or difficult to handle
347 * situations are safe to ignore.
348 *
349 * Right now, we don't bother with BH_Boundary - in-inode extent lists
350 * are quite large (243 extents on 4k blocks), so most inodes don't
351 * grow out to a tree. If need be, detecting boundary extents could
352 * trivially be added in a future version of ocfs2_get_block().
353 */
354static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355 struct list_head *pages, unsigned nr_pages)
356{
357 int ret, err = -EIO;
358 struct inode *inode = mapping->host;
359 struct ocfs2_inode_info *oi = OCFS2_I(inode);
360 loff_t start;
361 struct page *last;
362
363 /*
364 * Use the nonblocking flag for the dlm code to avoid page
365 * lock inversion, but don't bother with retrying.
366 */
367 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368 if (ret)
369 return err;
370
371 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372 ocfs2_inode_unlock(inode, 0);
373 return err;
374 }
375
376 /*
377 * Don't bother with inline-data. There isn't anything
378 * to read-ahead in that case anyway...
379 */
380 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381 goto out_unlock;
382
383 /*
384 * Check whether a remote node truncated this file - we just
385 * drop out in that case as it's not worth handling here.
386 */
387 last = lru_to_page(pages);
388 start = (loff_t)last->index << PAGE_SHIFT;
389 if (start >= i_size_read(inode))
390 goto out_unlock;
391
392 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393
394out_unlock:
395 up_read(&oi->ip_alloc_sem);
396 ocfs2_inode_unlock(inode, 0);
397
398 return err;
399}
400
401/* Note: Because we don't support holes, our allocation has
402 * already happened (allocation writes zeros to the file data)
403 * so we don't have to worry about ordered writes in
404 * ocfs2_writepage.
405 *
406 * ->writepage is called during the process of invalidating the page cache
407 * during blocked lock processing. It can't block on any cluster locks
408 * to during block mapping. It's relying on the fact that the block
409 * mapping can't have disappeared under the dirty pages that it is
410 * being asked to write back.
411 */
412static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413{
414 trace_ocfs2_writepage(
415 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416 page->index);
417
418 return block_write_full_page(page, ocfs2_get_block, wbc);
419}
420
421/* Taken from ext3. We don't necessarily need the full blown
422 * functionality yet, but IMHO it's better to cut and paste the whole
423 * thing so we can avoid introducing our own bugs (and easily pick up
424 * their fixes when they happen) --Mark */
425int walk_page_buffers( handle_t *handle,
426 struct buffer_head *head,
427 unsigned from,
428 unsigned to,
429 int *partial,
430 int (*fn)( handle_t *handle,
431 struct buffer_head *bh))
432{
433 struct buffer_head *bh;
434 unsigned block_start, block_end;
435 unsigned blocksize = head->b_size;
436 int err, ret = 0;
437 struct buffer_head *next;
438
439 for ( bh = head, block_start = 0;
440 ret == 0 && (bh != head || !block_start);
441 block_start = block_end, bh = next)
442 {
443 next = bh->b_this_page;
444 block_end = block_start + blocksize;
445 if (block_end <= from || block_start >= to) {
446 if (partial && !buffer_uptodate(bh))
447 *partial = 1;
448 continue;
449 }
450 err = (*fn)(handle, bh);
451 if (!ret)
452 ret = err;
453 }
454 return ret;
455}
456
457static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458{
459 sector_t status;
460 u64 p_blkno = 0;
461 int err = 0;
462 struct inode *inode = mapping->host;
463
464 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465 (unsigned long long)block);
466
467 /*
468 * The swap code (ab-)uses ->bmap to get a block mapping and then
469 * bypasseѕ the file system for actual I/O. We really can't allow
470 * that on refcounted inodes, so we have to skip out here. And yes,
471 * 0 is the magic code for a bmap error..
472 */
473 if (ocfs2_is_refcount_inode(inode))
474 return 0;
475
476 /* We don't need to lock journal system files, since they aren't
477 * accessed concurrently from multiple nodes.
478 */
479 if (!INODE_JOURNAL(inode)) {
480 err = ocfs2_inode_lock(inode, NULL, 0);
481 if (err) {
482 if (err != -ENOENT)
483 mlog_errno(err);
484 goto bail;
485 }
486 down_read(&OCFS2_I(inode)->ip_alloc_sem);
487 }
488
489 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
490 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
491 NULL);
492
493 if (!INODE_JOURNAL(inode)) {
494 up_read(&OCFS2_I(inode)->ip_alloc_sem);
495 ocfs2_inode_unlock(inode, 0);
496 }
497
498 if (err) {
499 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
500 (unsigned long long)block);
501 mlog_errno(err);
502 goto bail;
503 }
504
505bail:
506 status = err ? 0 : p_blkno;
507
508 return status;
509}
510
511static int ocfs2_releasepage(struct page *page, gfp_t wait)
512{
513 if (!page_has_buffers(page))
514 return 0;
515 return try_to_free_buffers(page);
516}
517
518static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
519 u32 cpos,
520 unsigned int *start,
521 unsigned int *end)
522{
523 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
524
525 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
526 unsigned int cpp;
527
528 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
529
530 cluster_start = cpos % cpp;
531 cluster_start = cluster_start << osb->s_clustersize_bits;
532
533 cluster_end = cluster_start + osb->s_clustersize;
534 }
535
536 BUG_ON(cluster_start > PAGE_SIZE);
537 BUG_ON(cluster_end > PAGE_SIZE);
538
539 if (start)
540 *start = cluster_start;
541 if (end)
542 *end = cluster_end;
543}
544
545/*
546 * 'from' and 'to' are the region in the page to avoid zeroing.
547 *
548 * If pagesize > clustersize, this function will avoid zeroing outside
549 * of the cluster boundary.
550 *
551 * from == to == 0 is code for "zero the entire cluster region"
552 */
553static void ocfs2_clear_page_regions(struct page *page,
554 struct ocfs2_super *osb, u32 cpos,
555 unsigned from, unsigned to)
556{
557 void *kaddr;
558 unsigned int cluster_start, cluster_end;
559
560 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
561
562 kaddr = kmap_atomic(page);
563
564 if (from || to) {
565 if (from > cluster_start)
566 memset(kaddr + cluster_start, 0, from - cluster_start);
567 if (to < cluster_end)
568 memset(kaddr + to, 0, cluster_end - to);
569 } else {
570 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
571 }
572
573 kunmap_atomic(kaddr);
574}
575
576/*
577 * Nonsparse file systems fully allocate before we get to the write
578 * code. This prevents ocfs2_write() from tagging the write as an
579 * allocating one, which means ocfs2_map_page_blocks() might try to
580 * read-in the blocks at the tail of our file. Avoid reading them by
581 * testing i_size against each block offset.
582 */
583static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
584 unsigned int block_start)
585{
586 u64 offset = page_offset(page) + block_start;
587
588 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
589 return 1;
590
591 if (i_size_read(inode) > offset)
592 return 1;
593
594 return 0;
595}
596
597/*
598 * Some of this taken from __block_write_begin(). We already have our
599 * mapping by now though, and the entire write will be allocating or
600 * it won't, so not much need to use BH_New.
601 *
602 * This will also skip zeroing, which is handled externally.
603 */
604int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
605 struct inode *inode, unsigned int from,
606 unsigned int to, int new)
607{
608 int ret = 0;
609 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
610 unsigned int block_end, block_start;
611 unsigned int bsize = i_blocksize(inode);
612
613 if (!page_has_buffers(page))
614 create_empty_buffers(page, bsize, 0);
615
616 head = page_buffers(page);
617 for (bh = head, block_start = 0; bh != head || !block_start;
618 bh = bh->b_this_page, block_start += bsize) {
619 block_end = block_start + bsize;
620
621 clear_buffer_new(bh);
622
623 /*
624 * Ignore blocks outside of our i/o range -
625 * they may belong to unallocated clusters.
626 */
627 if (block_start >= to || block_end <= from) {
628 if (PageUptodate(page))
629 set_buffer_uptodate(bh);
630 continue;
631 }
632
633 /*
634 * For an allocating write with cluster size >= page
635 * size, we always write the entire page.
636 */
637 if (new)
638 set_buffer_new(bh);
639
640 if (!buffer_mapped(bh)) {
641 map_bh(bh, inode->i_sb, *p_blkno);
642 clean_bdev_bh_alias(bh);
643 }
644
645 if (PageUptodate(page)) {
646 if (!buffer_uptodate(bh))
647 set_buffer_uptodate(bh);
648 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
649 !buffer_new(bh) &&
650 ocfs2_should_read_blk(inode, page, block_start) &&
651 (block_start < from || block_end > to)) {
652 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
653 *wait_bh++=bh;
654 }
655
656 *p_blkno = *p_blkno + 1;
657 }
658
659 /*
660 * If we issued read requests - let them complete.
661 */
662 while(wait_bh > wait) {
663 wait_on_buffer(*--wait_bh);
664 if (!buffer_uptodate(*wait_bh))
665 ret = -EIO;
666 }
667
668 if (ret == 0 || !new)
669 return ret;
670
671 /*
672 * If we get -EIO above, zero out any newly allocated blocks
673 * to avoid exposing stale data.
674 */
675 bh = head;
676 block_start = 0;
677 do {
678 block_end = block_start + bsize;
679 if (block_end <= from)
680 goto next_bh;
681 if (block_start >= to)
682 break;
683
684 zero_user(page, block_start, bh->b_size);
685 set_buffer_uptodate(bh);
686 mark_buffer_dirty(bh);
687
688next_bh:
689 block_start = block_end;
690 bh = bh->b_this_page;
691 } while (bh != head);
692
693 return ret;
694}
695
696#if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
697#define OCFS2_MAX_CTXT_PAGES 1
698#else
699#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
700#endif
701
702#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
703
704struct ocfs2_unwritten_extent {
705 struct list_head ue_node;
706 struct list_head ue_ip_node;
707 u32 ue_cpos;
708 u32 ue_phys;
709};
710
711/*
712 * Describe the state of a single cluster to be written to.
713 */
714struct ocfs2_write_cluster_desc {
715 u32 c_cpos;
716 u32 c_phys;
717 /*
718 * Give this a unique field because c_phys eventually gets
719 * filled.
720 */
721 unsigned c_new;
722 unsigned c_clear_unwritten;
723 unsigned c_needs_zero;
724};
725
726struct ocfs2_write_ctxt {
727 /* Logical cluster position / len of write */
728 u32 w_cpos;
729 u32 w_clen;
730
731 /* First cluster allocated in a nonsparse extend */
732 u32 w_first_new_cpos;
733
734 /* Type of caller. Must be one of buffer, mmap, direct. */
735 ocfs2_write_type_t w_type;
736
737 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
738
739 /*
740 * This is true if page_size > cluster_size.
741 *
742 * It triggers a set of special cases during write which might
743 * have to deal with allocating writes to partial pages.
744 */
745 unsigned int w_large_pages;
746
747 /*
748 * Pages involved in this write.
749 *
750 * w_target_page is the page being written to by the user.
751 *
752 * w_pages is an array of pages which always contains
753 * w_target_page, and in the case of an allocating write with
754 * page_size < cluster size, it will contain zero'd and mapped
755 * pages adjacent to w_target_page which need to be written
756 * out in so that future reads from that region will get
757 * zero's.
758 */
759 unsigned int w_num_pages;
760 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
761 struct page *w_target_page;
762
763 /*
764 * w_target_locked is used for page_mkwrite path indicating no unlocking
765 * against w_target_page in ocfs2_write_end_nolock.
766 */
767 unsigned int w_target_locked:1;
768
769 /*
770 * ocfs2_write_end() uses this to know what the real range to
771 * write in the target should be.
772 */
773 unsigned int w_target_from;
774 unsigned int w_target_to;
775
776 /*
777 * We could use journal_current_handle() but this is cleaner,
778 * IMHO -Mark
779 */
780 handle_t *w_handle;
781
782 struct buffer_head *w_di_bh;
783
784 struct ocfs2_cached_dealloc_ctxt w_dealloc;
785
786 struct list_head w_unwritten_list;
787 unsigned int w_unwritten_count;
788};
789
790void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
791{
792 int i;
793
794 for(i = 0; i < num_pages; i++) {
795 if (pages[i]) {
796 unlock_page(pages[i]);
797 mark_page_accessed(pages[i]);
798 put_page(pages[i]);
799 }
800 }
801}
802
803static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
804{
805 int i;
806
807 /*
808 * w_target_locked is only set to true in the page_mkwrite() case.
809 * The intent is to allow us to lock the target page from write_begin()
810 * to write_end(). The caller must hold a ref on w_target_page.
811 */
812 if (wc->w_target_locked) {
813 BUG_ON(!wc->w_target_page);
814 for (i = 0; i < wc->w_num_pages; i++) {
815 if (wc->w_target_page == wc->w_pages[i]) {
816 wc->w_pages[i] = NULL;
817 break;
818 }
819 }
820 mark_page_accessed(wc->w_target_page);
821 put_page(wc->w_target_page);
822 }
823 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
824}
825
826static void ocfs2_free_unwritten_list(struct inode *inode,
827 struct list_head *head)
828{
829 struct ocfs2_inode_info *oi = OCFS2_I(inode);
830 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
831
832 list_for_each_entry_safe(ue, tmp, head, ue_node) {
833 list_del(&ue->ue_node);
834 spin_lock(&oi->ip_lock);
835 list_del(&ue->ue_ip_node);
836 spin_unlock(&oi->ip_lock);
837 kfree(ue);
838 }
839}
840
841static void ocfs2_free_write_ctxt(struct inode *inode,
842 struct ocfs2_write_ctxt *wc)
843{
844 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
845 ocfs2_unlock_pages(wc);
846 brelse(wc->w_di_bh);
847 kfree(wc);
848}
849
850static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
851 struct ocfs2_super *osb, loff_t pos,
852 unsigned len, ocfs2_write_type_t type,
853 struct buffer_head *di_bh)
854{
855 u32 cend;
856 struct ocfs2_write_ctxt *wc;
857
858 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
859 if (!wc)
860 return -ENOMEM;
861
862 wc->w_cpos = pos >> osb->s_clustersize_bits;
863 wc->w_first_new_cpos = UINT_MAX;
864 cend = (pos + len - 1) >> osb->s_clustersize_bits;
865 wc->w_clen = cend - wc->w_cpos + 1;
866 get_bh(di_bh);
867 wc->w_di_bh = di_bh;
868 wc->w_type = type;
869
870 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
871 wc->w_large_pages = 1;
872 else
873 wc->w_large_pages = 0;
874
875 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
876 INIT_LIST_HEAD(&wc->w_unwritten_list);
877
878 *wcp = wc;
879
880 return 0;
881}
882
883/*
884 * If a page has any new buffers, zero them out here, and mark them uptodate
885 * and dirty so they'll be written out (in order to prevent uninitialised
886 * block data from leaking). And clear the new bit.
887 */
888static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
889{
890 unsigned int block_start, block_end;
891 struct buffer_head *head, *bh;
892
893 BUG_ON(!PageLocked(page));
894 if (!page_has_buffers(page))
895 return;
896
897 bh = head = page_buffers(page);
898 block_start = 0;
899 do {
900 block_end = block_start + bh->b_size;
901
902 if (buffer_new(bh)) {
903 if (block_end > from && block_start < to) {
904 if (!PageUptodate(page)) {
905 unsigned start, end;
906
907 start = max(from, block_start);
908 end = min(to, block_end);
909
910 zero_user_segment(page, start, end);
911 set_buffer_uptodate(bh);
912 }
913
914 clear_buffer_new(bh);
915 mark_buffer_dirty(bh);
916 }
917 }
918
919 block_start = block_end;
920 bh = bh->b_this_page;
921 } while (bh != head);
922}
923
924/*
925 * Only called when we have a failure during allocating write to write
926 * zero's to the newly allocated region.
927 */
928static void ocfs2_write_failure(struct inode *inode,
929 struct ocfs2_write_ctxt *wc,
930 loff_t user_pos, unsigned user_len)
931{
932 int i;
933 unsigned from = user_pos & (PAGE_SIZE - 1),
934 to = user_pos + user_len;
935 struct page *tmppage;
936
937 if (wc->w_target_page)
938 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
939
940 for(i = 0; i < wc->w_num_pages; i++) {
941 tmppage = wc->w_pages[i];
942
943 if (tmppage && page_has_buffers(tmppage)) {
944 if (ocfs2_should_order_data(inode))
945 ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
946 user_pos, user_len);
947
948 block_commit_write(tmppage, from, to);
949 }
950 }
951}
952
953static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
954 struct ocfs2_write_ctxt *wc,
955 struct page *page, u32 cpos,
956 loff_t user_pos, unsigned user_len,
957 int new)
958{
959 int ret;
960 unsigned int map_from = 0, map_to = 0;
961 unsigned int cluster_start, cluster_end;
962 unsigned int user_data_from = 0, user_data_to = 0;
963
964 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
965 &cluster_start, &cluster_end);
966
967 /* treat the write as new if the a hole/lseek spanned across
968 * the page boundary.
969 */
970 new = new | ((i_size_read(inode) <= page_offset(page)) &&
971 (page_offset(page) <= user_pos));
972
973 if (page == wc->w_target_page) {
974 map_from = user_pos & (PAGE_SIZE - 1);
975 map_to = map_from + user_len;
976
977 if (new)
978 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
979 cluster_start, cluster_end,
980 new);
981 else
982 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
983 map_from, map_to, new);
984 if (ret) {
985 mlog_errno(ret);
986 goto out;
987 }
988
989 user_data_from = map_from;
990 user_data_to = map_to;
991 if (new) {
992 map_from = cluster_start;
993 map_to = cluster_end;
994 }
995 } else {
996 /*
997 * If we haven't allocated the new page yet, we
998 * shouldn't be writing it out without copying user
999 * data. This is likely a math error from the caller.
1000 */
1001 BUG_ON(!new);
1002
1003 map_from = cluster_start;
1004 map_to = cluster_end;
1005
1006 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1007 cluster_start, cluster_end, new);
1008 if (ret) {
1009 mlog_errno(ret);
1010 goto out;
1011 }
1012 }
1013
1014 /*
1015 * Parts of newly allocated pages need to be zero'd.
1016 *
1017 * Above, we have also rewritten 'to' and 'from' - as far as
1018 * the rest of the function is concerned, the entire cluster
1019 * range inside of a page needs to be written.
1020 *
1021 * We can skip this if the page is up to date - it's already
1022 * been zero'd from being read in as a hole.
1023 */
1024 if (new && !PageUptodate(page))
1025 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1026 cpos, user_data_from, user_data_to);
1027
1028 flush_dcache_page(page);
1029
1030out:
1031 return ret;
1032}
1033
1034/*
1035 * This function will only grab one clusters worth of pages.
1036 */
1037static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1038 struct ocfs2_write_ctxt *wc,
1039 u32 cpos, loff_t user_pos,
1040 unsigned user_len, int new,
1041 struct page *mmap_page)
1042{
1043 int ret = 0, i;
1044 unsigned long start, target_index, end_index, index;
1045 struct inode *inode = mapping->host;
1046 loff_t last_byte;
1047
1048 target_index = user_pos >> PAGE_SHIFT;
1049
1050 /*
1051 * Figure out how many pages we'll be manipulating here. For
1052 * non allocating write, we just change the one
1053 * page. Otherwise, we'll need a whole clusters worth. If we're
1054 * writing past i_size, we only need enough pages to cover the
1055 * last page of the write.
1056 */
1057 if (new) {
1058 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1059 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1060 /*
1061 * We need the index *past* the last page we could possibly
1062 * touch. This is the page past the end of the write or
1063 * i_size, whichever is greater.
1064 */
1065 last_byte = max(user_pos + user_len, i_size_read(inode));
1066 BUG_ON(last_byte < 1);
1067 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1068 if ((start + wc->w_num_pages) > end_index)
1069 wc->w_num_pages = end_index - start;
1070 } else {
1071 wc->w_num_pages = 1;
1072 start = target_index;
1073 }
1074 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1075
1076 for(i = 0; i < wc->w_num_pages; i++) {
1077 index = start + i;
1078
1079 if (index >= target_index && index <= end_index &&
1080 wc->w_type == OCFS2_WRITE_MMAP) {
1081 /*
1082 * ocfs2_pagemkwrite() is a little different
1083 * and wants us to directly use the page
1084 * passed in.
1085 */
1086 lock_page(mmap_page);
1087
1088 /* Exit and let the caller retry */
1089 if (mmap_page->mapping != mapping) {
1090 WARN_ON(mmap_page->mapping);
1091 unlock_page(mmap_page);
1092 ret = -EAGAIN;
1093 goto out;
1094 }
1095
1096 get_page(mmap_page);
1097 wc->w_pages[i] = mmap_page;
1098 wc->w_target_locked = true;
1099 } else if (index >= target_index && index <= end_index &&
1100 wc->w_type == OCFS2_WRITE_DIRECT) {
1101 /* Direct write has no mapping page. */
1102 wc->w_pages[i] = NULL;
1103 continue;
1104 } else {
1105 wc->w_pages[i] = find_or_create_page(mapping, index,
1106 GFP_NOFS);
1107 if (!wc->w_pages[i]) {
1108 ret = -ENOMEM;
1109 mlog_errno(ret);
1110 goto out;
1111 }
1112 }
1113 wait_for_stable_page(wc->w_pages[i]);
1114
1115 if (index == target_index)
1116 wc->w_target_page = wc->w_pages[i];
1117 }
1118out:
1119 if (ret)
1120 wc->w_target_locked = false;
1121 return ret;
1122}
1123
1124/*
1125 * Prepare a single cluster for write one cluster into the file.
1126 */
1127static int ocfs2_write_cluster(struct address_space *mapping,
1128 u32 *phys, unsigned int new,
1129 unsigned int clear_unwritten,
1130 unsigned int should_zero,
1131 struct ocfs2_alloc_context *data_ac,
1132 struct ocfs2_alloc_context *meta_ac,
1133 struct ocfs2_write_ctxt *wc, u32 cpos,
1134 loff_t user_pos, unsigned user_len)
1135{
1136 int ret, i;
1137 u64 p_blkno;
1138 struct inode *inode = mapping->host;
1139 struct ocfs2_extent_tree et;
1140 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1141
1142 if (new) {
1143 u32 tmp_pos;
1144
1145 /*
1146 * This is safe to call with the page locks - it won't take
1147 * any additional semaphores or cluster locks.
1148 */
1149 tmp_pos = cpos;
1150 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1151 &tmp_pos, 1, !clear_unwritten,
1152 wc->w_di_bh, wc->w_handle,
1153 data_ac, meta_ac, NULL);
1154 /*
1155 * This shouldn't happen because we must have already
1156 * calculated the correct meta data allocation required. The
1157 * internal tree allocation code should know how to increase
1158 * transaction credits itself.
1159 *
1160 * If need be, we could handle -EAGAIN for a
1161 * RESTART_TRANS here.
1162 */
1163 mlog_bug_on_msg(ret == -EAGAIN,
1164 "Inode %llu: EAGAIN return during allocation.\n",
1165 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1166 if (ret < 0) {
1167 mlog_errno(ret);
1168 goto out;
1169 }
1170 } else if (clear_unwritten) {
1171 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1172 wc->w_di_bh);
1173 ret = ocfs2_mark_extent_written(inode, &et,
1174 wc->w_handle, cpos, 1, *phys,
1175 meta_ac, &wc->w_dealloc);
1176 if (ret < 0) {
1177 mlog_errno(ret);
1178 goto out;
1179 }
1180 }
1181
1182 /*
1183 * The only reason this should fail is due to an inability to
1184 * find the extent added.
1185 */
1186 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1187 if (ret < 0) {
1188 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1189 "at logical cluster %u",
1190 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1191 goto out;
1192 }
1193
1194 BUG_ON(*phys == 0);
1195
1196 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1197 if (!should_zero)
1198 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1199
1200 for(i = 0; i < wc->w_num_pages; i++) {
1201 int tmpret;
1202
1203 /* This is the direct io target page. */
1204 if (wc->w_pages[i] == NULL) {
1205 p_blkno++;
1206 continue;
1207 }
1208
1209 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1210 wc->w_pages[i], cpos,
1211 user_pos, user_len,
1212 should_zero);
1213 if (tmpret) {
1214 mlog_errno(tmpret);
1215 if (ret == 0)
1216 ret = tmpret;
1217 }
1218 }
1219
1220 /*
1221 * We only have cleanup to do in case of allocating write.
1222 */
1223 if (ret && new)
1224 ocfs2_write_failure(inode, wc, user_pos, user_len);
1225
1226out:
1227
1228 return ret;
1229}
1230
1231static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1232 struct ocfs2_alloc_context *data_ac,
1233 struct ocfs2_alloc_context *meta_ac,
1234 struct ocfs2_write_ctxt *wc,
1235 loff_t pos, unsigned len)
1236{
1237 int ret, i;
1238 loff_t cluster_off;
1239 unsigned int local_len = len;
1240 struct ocfs2_write_cluster_desc *desc;
1241 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1242
1243 for (i = 0; i < wc->w_clen; i++) {
1244 desc = &wc->w_desc[i];
1245
1246 /*
1247 * We have to make sure that the total write passed in
1248 * doesn't extend past a single cluster.
1249 */
1250 local_len = len;
1251 cluster_off = pos & (osb->s_clustersize - 1);
1252 if ((cluster_off + local_len) > osb->s_clustersize)
1253 local_len = osb->s_clustersize - cluster_off;
1254
1255 ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1256 desc->c_new,
1257 desc->c_clear_unwritten,
1258 desc->c_needs_zero,
1259 data_ac, meta_ac,
1260 wc, desc->c_cpos, pos, local_len);
1261 if (ret) {
1262 mlog_errno(ret);
1263 goto out;
1264 }
1265
1266 len -= local_len;
1267 pos += local_len;
1268 }
1269
1270 ret = 0;
1271out:
1272 return ret;
1273}
1274
1275/*
1276 * ocfs2_write_end() wants to know which parts of the target page it
1277 * should complete the write on. It's easiest to compute them ahead of
1278 * time when a more complete view of the write is available.
1279 */
1280static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1281 struct ocfs2_write_ctxt *wc,
1282 loff_t pos, unsigned len, int alloc)
1283{
1284 struct ocfs2_write_cluster_desc *desc;
1285
1286 wc->w_target_from = pos & (PAGE_SIZE - 1);
1287 wc->w_target_to = wc->w_target_from + len;
1288
1289 if (alloc == 0)
1290 return;
1291
1292 /*
1293 * Allocating write - we may have different boundaries based
1294 * on page size and cluster size.
1295 *
1296 * NOTE: We can no longer compute one value from the other as
1297 * the actual write length and user provided length may be
1298 * different.
1299 */
1300
1301 if (wc->w_large_pages) {
1302 /*
1303 * We only care about the 1st and last cluster within
1304 * our range and whether they should be zero'd or not. Either
1305 * value may be extended out to the start/end of a
1306 * newly allocated cluster.
1307 */
1308 desc = &wc->w_desc[0];
1309 if (desc->c_needs_zero)
1310 ocfs2_figure_cluster_boundaries(osb,
1311 desc->c_cpos,
1312 &wc->w_target_from,
1313 NULL);
1314
1315 desc = &wc->w_desc[wc->w_clen - 1];
1316 if (desc->c_needs_zero)
1317 ocfs2_figure_cluster_boundaries(osb,
1318 desc->c_cpos,
1319 NULL,
1320 &wc->w_target_to);
1321 } else {
1322 wc->w_target_from = 0;
1323 wc->w_target_to = PAGE_SIZE;
1324 }
1325}
1326
1327/*
1328 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1329 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1330 * by the direct io procedure.
1331 * If this is a new extent that allocated by direct io, we should mark it in
1332 * the ip_unwritten_list.
1333 */
1334static int ocfs2_unwritten_check(struct inode *inode,
1335 struct ocfs2_write_ctxt *wc,
1336 struct ocfs2_write_cluster_desc *desc)
1337{
1338 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1339 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1340 int ret = 0;
1341
1342 if (!desc->c_needs_zero)
1343 return 0;
1344
1345retry:
1346 spin_lock(&oi->ip_lock);
1347 /* Needs not to zero no metter buffer or direct. The one who is zero
1348 * the cluster is doing zero. And he will clear unwritten after all
1349 * cluster io finished. */
1350 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1351 if (desc->c_cpos == ue->ue_cpos) {
1352 BUG_ON(desc->c_new);
1353 desc->c_needs_zero = 0;
1354 desc->c_clear_unwritten = 0;
1355 goto unlock;
1356 }
1357 }
1358
1359 if (wc->w_type != OCFS2_WRITE_DIRECT)
1360 goto unlock;
1361
1362 if (new == NULL) {
1363 spin_unlock(&oi->ip_lock);
1364 new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1365 GFP_NOFS);
1366 if (new == NULL) {
1367 ret = -ENOMEM;
1368 goto out;
1369 }
1370 goto retry;
1371 }
1372 /* This direct write will doing zero. */
1373 new->ue_cpos = desc->c_cpos;
1374 new->ue_phys = desc->c_phys;
1375 desc->c_clear_unwritten = 0;
1376 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1377 list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1378 wc->w_unwritten_count++;
1379 new = NULL;
1380unlock:
1381 spin_unlock(&oi->ip_lock);
1382out:
1383 kfree(new);
1384 return ret;
1385}
1386
1387/*
1388 * Populate each single-cluster write descriptor in the write context
1389 * with information about the i/o to be done.
1390 *
1391 * Returns the number of clusters that will have to be allocated, as
1392 * well as a worst case estimate of the number of extent records that
1393 * would have to be created during a write to an unwritten region.
1394 */
1395static int ocfs2_populate_write_desc(struct inode *inode,
1396 struct ocfs2_write_ctxt *wc,
1397 unsigned int *clusters_to_alloc,
1398 unsigned int *extents_to_split)
1399{
1400 int ret;
1401 struct ocfs2_write_cluster_desc *desc;
1402 unsigned int num_clusters = 0;
1403 unsigned int ext_flags = 0;
1404 u32 phys = 0;
1405 int i;
1406
1407 *clusters_to_alloc = 0;
1408 *extents_to_split = 0;
1409
1410 for (i = 0; i < wc->w_clen; i++) {
1411 desc = &wc->w_desc[i];
1412 desc->c_cpos = wc->w_cpos + i;
1413
1414 if (num_clusters == 0) {
1415 /*
1416 * Need to look up the next extent record.
1417 */
1418 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1419 &num_clusters, &ext_flags);
1420 if (ret) {
1421 mlog_errno(ret);
1422 goto out;
1423 }
1424
1425 /* We should already CoW the refcountd extent. */
1426 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1427
1428 /*
1429 * Assume worst case - that we're writing in
1430 * the middle of the extent.
1431 *
1432 * We can assume that the write proceeds from
1433 * left to right, in which case the extent
1434 * insert code is smart enough to coalesce the
1435 * next splits into the previous records created.
1436 */
1437 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1438 *extents_to_split = *extents_to_split + 2;
1439 } else if (phys) {
1440 /*
1441 * Only increment phys if it doesn't describe
1442 * a hole.
1443 */
1444 phys++;
1445 }
1446
1447 /*
1448 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1449 * file that got extended. w_first_new_cpos tells us
1450 * where the newly allocated clusters are so we can
1451 * zero them.
1452 */
1453 if (desc->c_cpos >= wc->w_first_new_cpos) {
1454 BUG_ON(phys == 0);
1455 desc->c_needs_zero = 1;
1456 }
1457
1458 desc->c_phys = phys;
1459 if (phys == 0) {
1460 desc->c_new = 1;
1461 desc->c_needs_zero = 1;
1462 desc->c_clear_unwritten = 1;
1463 *clusters_to_alloc = *clusters_to_alloc + 1;
1464 }
1465
1466 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1467 desc->c_clear_unwritten = 1;
1468 desc->c_needs_zero = 1;
1469 }
1470
1471 ret = ocfs2_unwritten_check(inode, wc, desc);
1472 if (ret) {
1473 mlog_errno(ret);
1474 goto out;
1475 }
1476
1477 num_clusters--;
1478 }
1479
1480 ret = 0;
1481out:
1482 return ret;
1483}
1484
1485static int ocfs2_write_begin_inline(struct address_space *mapping,
1486 struct inode *inode,
1487 struct ocfs2_write_ctxt *wc)
1488{
1489 int ret;
1490 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1491 struct page *page;
1492 handle_t *handle;
1493 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1494
1495 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1496 if (IS_ERR(handle)) {
1497 ret = PTR_ERR(handle);
1498 mlog_errno(ret);
1499 goto out;
1500 }
1501
1502 page = find_or_create_page(mapping, 0, GFP_NOFS);
1503 if (!page) {
1504 ocfs2_commit_trans(osb, handle);
1505 ret = -ENOMEM;
1506 mlog_errno(ret);
1507 goto out;
1508 }
1509 /*
1510 * If we don't set w_num_pages then this page won't get unlocked
1511 * and freed on cleanup of the write context.
1512 */
1513 wc->w_pages[0] = wc->w_target_page = page;
1514 wc->w_num_pages = 1;
1515
1516 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1517 OCFS2_JOURNAL_ACCESS_WRITE);
1518 if (ret) {
1519 ocfs2_commit_trans(osb, handle);
1520
1521 mlog_errno(ret);
1522 goto out;
1523 }
1524
1525 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1526 ocfs2_set_inode_data_inline(inode, di);
1527
1528 if (!PageUptodate(page)) {
1529 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1530 if (ret) {
1531 ocfs2_commit_trans(osb, handle);
1532
1533 goto out;
1534 }
1535 }
1536
1537 wc->w_handle = handle;
1538out:
1539 return ret;
1540}
1541
1542int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1543{
1544 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1545
1546 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1547 return 1;
1548 return 0;
1549}
1550
1551static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1552 struct inode *inode, loff_t pos,
1553 unsigned len, struct page *mmap_page,
1554 struct ocfs2_write_ctxt *wc)
1555{
1556 int ret, written = 0;
1557 loff_t end = pos + len;
1558 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1559 struct ocfs2_dinode *di = NULL;
1560
1561 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1562 len, (unsigned long long)pos,
1563 oi->ip_dyn_features);
1564
1565 /*
1566 * Handle inodes which already have inline data 1st.
1567 */
1568 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1569 if (mmap_page == NULL &&
1570 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1571 goto do_inline_write;
1572
1573 /*
1574 * The write won't fit - we have to give this inode an
1575 * inline extent list now.
1576 */
1577 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1578 if (ret)
1579 mlog_errno(ret);
1580 goto out;
1581 }
1582
1583 /*
1584 * Check whether the inode can accept inline data.
1585 */
1586 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1587 return 0;
1588
1589 /*
1590 * Check whether the write can fit.
1591 */
1592 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1593 if (mmap_page ||
1594 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1595 return 0;
1596
1597do_inline_write:
1598 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1599 if (ret) {
1600 mlog_errno(ret);
1601 goto out;
1602 }
1603
1604 /*
1605 * This signals to the caller that the data can be written
1606 * inline.
1607 */
1608 written = 1;
1609out:
1610 return written ? written : ret;
1611}
1612
1613/*
1614 * This function only does anything for file systems which can't
1615 * handle sparse files.
1616 *
1617 * What we want to do here is fill in any hole between the current end
1618 * of allocation and the end of our write. That way the rest of the
1619 * write path can treat it as an non-allocating write, which has no
1620 * special case code for sparse/nonsparse files.
1621 */
1622static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1623 struct buffer_head *di_bh,
1624 loff_t pos, unsigned len,
1625 struct ocfs2_write_ctxt *wc)
1626{
1627 int ret;
1628 loff_t newsize = pos + len;
1629
1630 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1631
1632 if (newsize <= i_size_read(inode))
1633 return 0;
1634
1635 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1636 if (ret)
1637 mlog_errno(ret);
1638
1639 /* There is no wc if this is call from direct. */
1640 if (wc)
1641 wc->w_first_new_cpos =
1642 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1643
1644 return ret;
1645}
1646
1647static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1648 loff_t pos)
1649{
1650 int ret = 0;
1651
1652 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1653 if (pos > i_size_read(inode))
1654 ret = ocfs2_zero_extend(inode, di_bh, pos);
1655
1656 return ret;
1657}
1658
1659int ocfs2_write_begin_nolock(struct address_space *mapping,
1660 loff_t pos, unsigned len, ocfs2_write_type_t type,
1661 struct page **pagep, void **fsdata,
1662 struct buffer_head *di_bh, struct page *mmap_page)
1663{
1664 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1665 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1666 struct ocfs2_write_ctxt *wc;
1667 struct inode *inode = mapping->host;
1668 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1669 struct ocfs2_dinode *di;
1670 struct ocfs2_alloc_context *data_ac = NULL;
1671 struct ocfs2_alloc_context *meta_ac = NULL;
1672 handle_t *handle;
1673 struct ocfs2_extent_tree et;
1674 int try_free = 1, ret1;
1675
1676try_again:
1677 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1678 if (ret) {
1679 mlog_errno(ret);
1680 return ret;
1681 }
1682
1683 if (ocfs2_supports_inline_data(osb)) {
1684 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1685 mmap_page, wc);
1686 if (ret == 1) {
1687 ret = 0;
1688 goto success;
1689 }
1690 if (ret < 0) {
1691 mlog_errno(ret);
1692 goto out;
1693 }
1694 }
1695
1696 /* Direct io change i_size late, should not zero tail here. */
1697 if (type != OCFS2_WRITE_DIRECT) {
1698 if (ocfs2_sparse_alloc(osb))
1699 ret = ocfs2_zero_tail(inode, di_bh, pos);
1700 else
1701 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1702 len, wc);
1703 if (ret) {
1704 mlog_errno(ret);
1705 goto out;
1706 }
1707 }
1708
1709 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1710 if (ret < 0) {
1711 mlog_errno(ret);
1712 goto out;
1713 } else if (ret == 1) {
1714 clusters_need = wc->w_clen;
1715 ret = ocfs2_refcount_cow(inode, di_bh,
1716 wc->w_cpos, wc->w_clen, UINT_MAX);
1717 if (ret) {
1718 mlog_errno(ret);
1719 goto out;
1720 }
1721 }
1722
1723 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1724 &extents_to_split);
1725 if (ret) {
1726 mlog_errno(ret);
1727 goto out;
1728 }
1729 clusters_need += clusters_to_alloc;
1730
1731 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1732
1733 trace_ocfs2_write_begin_nolock(
1734 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1735 (long long)i_size_read(inode),
1736 le32_to_cpu(di->i_clusters),
1737 pos, len, type, mmap_page,
1738 clusters_to_alloc, extents_to_split);
1739
1740 /*
1741 * We set w_target_from, w_target_to here so that
1742 * ocfs2_write_end() knows which range in the target page to
1743 * write out. An allocation requires that we write the entire
1744 * cluster range.
1745 */
1746 if (clusters_to_alloc || extents_to_split) {
1747 /*
1748 * XXX: We are stretching the limits of
1749 * ocfs2_lock_allocators(). It greatly over-estimates
1750 * the work to be done.
1751 */
1752 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1753 wc->w_di_bh);
1754 ret = ocfs2_lock_allocators(inode, &et,
1755 clusters_to_alloc, extents_to_split,
1756 &data_ac, &meta_ac);
1757 if (ret) {
1758 mlog_errno(ret);
1759 goto out;
1760 }
1761
1762 if (data_ac)
1763 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1764
1765 credits = ocfs2_calc_extend_credits(inode->i_sb,
1766 &di->id2.i_list);
1767 } else if (type == OCFS2_WRITE_DIRECT)
1768 /* direct write needs not to start trans if no extents alloc. */
1769 goto success;
1770
1771 /*
1772 * We have to zero sparse allocated clusters, unwritten extent clusters,
1773 * and non-sparse clusters we just extended. For non-sparse writes,
1774 * we know zeros will only be needed in the first and/or last cluster.
1775 */
1776 if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1777 wc->w_desc[wc->w_clen - 1].c_needs_zero))
1778 cluster_of_pages = 1;
1779 else
1780 cluster_of_pages = 0;
1781
1782 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1783
1784 handle = ocfs2_start_trans(osb, credits);
1785 if (IS_ERR(handle)) {
1786 ret = PTR_ERR(handle);
1787 mlog_errno(ret);
1788 goto out;
1789 }
1790
1791 wc->w_handle = handle;
1792
1793 if (clusters_to_alloc) {
1794 ret = dquot_alloc_space_nodirty(inode,
1795 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1796 if (ret)
1797 goto out_commit;
1798 }
1799
1800 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1801 OCFS2_JOURNAL_ACCESS_WRITE);
1802 if (ret) {
1803 mlog_errno(ret);
1804 goto out_quota;
1805 }
1806
1807 /*
1808 * Fill our page array first. That way we've grabbed enough so
1809 * that we can zero and flush if we error after adding the
1810 * extent.
1811 */
1812 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1813 cluster_of_pages, mmap_page);
1814 if (ret && ret != -EAGAIN) {
1815 mlog_errno(ret);
1816 goto out_quota;
1817 }
1818
1819 /*
1820 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1821 * the target page. In this case, we exit with no error and no target
1822 * page. This will trigger the caller, page_mkwrite(), to re-try
1823 * the operation.
1824 */
1825 if (ret == -EAGAIN) {
1826 BUG_ON(wc->w_target_page);
1827 ret = 0;
1828 goto out_quota;
1829 }
1830
1831 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1832 len);
1833 if (ret) {
1834 mlog_errno(ret);
1835 goto out_quota;
1836 }
1837
1838 if (data_ac)
1839 ocfs2_free_alloc_context(data_ac);
1840 if (meta_ac)
1841 ocfs2_free_alloc_context(meta_ac);
1842
1843success:
1844 if (pagep)
1845 *pagep = wc->w_target_page;
1846 *fsdata = wc;
1847 return 0;
1848out_quota:
1849 if (clusters_to_alloc)
1850 dquot_free_space(inode,
1851 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1852out_commit:
1853 ocfs2_commit_trans(osb, handle);
1854
1855out:
1856 /*
1857 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1858 * even in case of error here like ENOSPC and ENOMEM. So, we need
1859 * to unlock the target page manually to prevent deadlocks when
1860 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1861 * to VM code.
1862 */
1863 if (wc->w_target_locked)
1864 unlock_page(mmap_page);
1865
1866 ocfs2_free_write_ctxt(inode, wc);
1867
1868 if (data_ac) {
1869 ocfs2_free_alloc_context(data_ac);
1870 data_ac = NULL;
1871 }
1872 if (meta_ac) {
1873 ocfs2_free_alloc_context(meta_ac);
1874 meta_ac = NULL;
1875 }
1876
1877 if (ret == -ENOSPC && try_free) {
1878 /*
1879 * Try to free some truncate log so that we can have enough
1880 * clusters to allocate.
1881 */
1882 try_free = 0;
1883
1884 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1885 if (ret1 == 1)
1886 goto try_again;
1887
1888 if (ret1 < 0)
1889 mlog_errno(ret1);
1890 }
1891
1892 return ret;
1893}
1894
1895static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1896 loff_t pos, unsigned len, unsigned flags,
1897 struct page **pagep, void **fsdata)
1898{
1899 int ret;
1900 struct buffer_head *di_bh = NULL;
1901 struct inode *inode = mapping->host;
1902
1903 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1904 if (ret) {
1905 mlog_errno(ret);
1906 return ret;
1907 }
1908
1909 /*
1910 * Take alloc sem here to prevent concurrent lookups. That way
1911 * the mapping, zeroing and tree manipulation within
1912 * ocfs2_write() will be safe against ->readpage(). This
1913 * should also serve to lock out allocation from a shared
1914 * writeable region.
1915 */
1916 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1917
1918 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1919 pagep, fsdata, di_bh, NULL);
1920 if (ret) {
1921 mlog_errno(ret);
1922 goto out_fail;
1923 }
1924
1925 brelse(di_bh);
1926
1927 return 0;
1928
1929out_fail:
1930 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1931
1932 brelse(di_bh);
1933 ocfs2_inode_unlock(inode, 1);
1934
1935 return ret;
1936}
1937
1938static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1939 unsigned len, unsigned *copied,
1940 struct ocfs2_dinode *di,
1941 struct ocfs2_write_ctxt *wc)
1942{
1943 void *kaddr;
1944
1945 if (unlikely(*copied < len)) {
1946 if (!PageUptodate(wc->w_target_page)) {
1947 *copied = 0;
1948 return;
1949 }
1950 }
1951
1952 kaddr = kmap_atomic(wc->w_target_page);
1953 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1954 kunmap_atomic(kaddr);
1955
1956 trace_ocfs2_write_end_inline(
1957 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1958 (unsigned long long)pos, *copied,
1959 le16_to_cpu(di->id2.i_data.id_count),
1960 le16_to_cpu(di->i_dyn_features));
1961}
1962
1963int ocfs2_write_end_nolock(struct address_space *mapping,
1964 loff_t pos, unsigned len, unsigned copied, void *fsdata)
1965{
1966 int i, ret;
1967 unsigned from, to, start = pos & (PAGE_SIZE - 1);
1968 struct inode *inode = mapping->host;
1969 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1970 struct ocfs2_write_ctxt *wc = fsdata;
1971 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1972 handle_t *handle = wc->w_handle;
1973 struct page *tmppage;
1974
1975 BUG_ON(!list_empty(&wc->w_unwritten_list));
1976
1977 if (handle) {
1978 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1979 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1980 if (ret) {
1981 copied = ret;
1982 mlog_errno(ret);
1983 goto out;
1984 }
1985 }
1986
1987 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1988 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1989 goto out_write_size;
1990 }
1991
1992 if (unlikely(copied < len) && wc->w_target_page) {
1993 if (!PageUptodate(wc->w_target_page))
1994 copied = 0;
1995
1996 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1997 start+len);
1998 }
1999 if (wc->w_target_page)
2000 flush_dcache_page(wc->w_target_page);
2001
2002 for(i = 0; i < wc->w_num_pages; i++) {
2003 tmppage = wc->w_pages[i];
2004
2005 /* This is the direct io target page. */
2006 if (tmppage == NULL)
2007 continue;
2008
2009 if (tmppage == wc->w_target_page) {
2010 from = wc->w_target_from;
2011 to = wc->w_target_to;
2012
2013 BUG_ON(from > PAGE_SIZE ||
2014 to > PAGE_SIZE ||
2015 to < from);
2016 } else {
2017 /*
2018 * Pages adjacent to the target (if any) imply
2019 * a hole-filling write in which case we want
2020 * to flush their entire range.
2021 */
2022 from = 0;
2023 to = PAGE_SIZE;
2024 }
2025
2026 if (page_has_buffers(tmppage)) {
2027 if (handle && ocfs2_should_order_data(inode)) {
2028 loff_t start_byte =
2029 ((loff_t)tmppage->index << PAGE_SHIFT) +
2030 from;
2031 loff_t length = to - from;
2032 ocfs2_jbd2_inode_add_write(handle, inode,
2033 start_byte, length);
2034 }
2035 block_commit_write(tmppage, from, to);
2036 }
2037 }
2038
2039out_write_size:
2040 /* Direct io do not update i_size here. */
2041 if (wc->w_type != OCFS2_WRITE_DIRECT) {
2042 pos += copied;
2043 if (pos > i_size_read(inode)) {
2044 i_size_write(inode, pos);
2045 mark_inode_dirty(inode);
2046 }
2047 inode->i_blocks = ocfs2_inode_sector_count(inode);
2048 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2049 inode->i_mtime = inode->i_ctime = current_time(inode);
2050 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2051 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2052 if (handle)
2053 ocfs2_update_inode_fsync_trans(handle, inode, 1);
2054 }
2055 if (handle)
2056 ocfs2_journal_dirty(handle, wc->w_di_bh);
2057
2058out:
2059 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2060 * lock, or it will cause a deadlock since journal commit threads holds
2061 * this lock and will ask for the page lock when flushing the data.
2062 * put it here to preserve the unlock order.
2063 */
2064 ocfs2_unlock_pages(wc);
2065
2066 if (handle)
2067 ocfs2_commit_trans(osb, handle);
2068
2069 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2070
2071 brelse(wc->w_di_bh);
2072 kfree(wc);
2073
2074 return copied;
2075}
2076
2077static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2078 loff_t pos, unsigned len, unsigned copied,
2079 struct page *page, void *fsdata)
2080{
2081 int ret;
2082 struct inode *inode = mapping->host;
2083
2084 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2085
2086 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2087 ocfs2_inode_unlock(inode, 1);
2088
2089 return ret;
2090}
2091
2092struct ocfs2_dio_write_ctxt {
2093 struct list_head dw_zero_list;
2094 unsigned dw_zero_count;
2095 int dw_orphaned;
2096 pid_t dw_writer_pid;
2097};
2098
2099static struct ocfs2_dio_write_ctxt *
2100ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2101{
2102 struct ocfs2_dio_write_ctxt *dwc = NULL;
2103
2104 if (bh->b_private)
2105 return bh->b_private;
2106
2107 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2108 if (dwc == NULL)
2109 return NULL;
2110 INIT_LIST_HEAD(&dwc->dw_zero_list);
2111 dwc->dw_zero_count = 0;
2112 dwc->dw_orphaned = 0;
2113 dwc->dw_writer_pid = task_pid_nr(current);
2114 bh->b_private = dwc;
2115 *alloc = 1;
2116
2117 return dwc;
2118}
2119
2120static void ocfs2_dio_free_write_ctx(struct inode *inode,
2121 struct ocfs2_dio_write_ctxt *dwc)
2122{
2123 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2124 kfree(dwc);
2125}
2126
2127/*
2128 * TODO: Make this into a generic get_blocks function.
2129 *
2130 * From do_direct_io in direct-io.c:
2131 * "So what we do is to permit the ->get_blocks function to populate
2132 * bh.b_size with the size of IO which is permitted at this offset and
2133 * this i_blkbits."
2134 *
2135 * This function is called directly from get_more_blocks in direct-io.c.
2136 *
2137 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2138 * fs_count, map_bh, dio->rw == WRITE);
2139 */
2140static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2141 struct buffer_head *bh_result, int create)
2142{
2143 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2144 struct ocfs2_inode_info *oi = OCFS2_I(inode);
2145 struct ocfs2_write_ctxt *wc;
2146 struct ocfs2_write_cluster_desc *desc = NULL;
2147 struct ocfs2_dio_write_ctxt *dwc = NULL;
2148 struct buffer_head *di_bh = NULL;
2149 u64 p_blkno;
2150 unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2151 loff_t pos = iblock << i_blkbits;
2152 sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
2153 unsigned len, total_len = bh_result->b_size;
2154 int ret = 0, first_get_block = 0;
2155
2156 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2157 len = min(total_len, len);
2158
2159 /*
2160 * bh_result->b_size is count in get_more_blocks according to write
2161 * "pos" and "end", we need map twice to return different buffer state:
2162 * 1. area in file size, not set NEW;
2163 * 2. area out file size, set NEW.
2164 *
2165 * iblock endblk
2166 * |--------|---------|---------|---------
2167 * |<-------area in file------->|
2168 */
2169
2170 if ((iblock <= endblk) &&
2171 ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2172 len = (endblk - iblock + 1) << i_blkbits;
2173
2174 mlog(0, "get block of %lu at %llu:%u req %u\n",
2175 inode->i_ino, pos, len, total_len);
2176
2177 /*
2178 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2179 * we may need to add it to orphan dir. So can not fall to fast path
2180 * while file size will be changed.
2181 */
2182 if (pos + total_len <= i_size_read(inode)) {
2183
2184 /* This is the fast path for re-write. */
2185 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2186 if (buffer_mapped(bh_result) &&
2187 !buffer_new(bh_result) &&
2188 ret == 0)
2189 goto out;
2190
2191 /* Clear state set by ocfs2_get_block. */
2192 bh_result->b_state = 0;
2193 }
2194
2195 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2196 if (unlikely(dwc == NULL)) {
2197 ret = -ENOMEM;
2198 mlog_errno(ret);
2199 goto out;
2200 }
2201
2202 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2203 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2204 !dwc->dw_orphaned) {
2205 /*
2206 * when we are going to alloc extents beyond file size, add the
2207 * inode to orphan dir, so we can recall those spaces when
2208 * system crashed during write.
2209 */
2210 ret = ocfs2_add_inode_to_orphan(osb, inode);
2211 if (ret < 0) {
2212 mlog_errno(ret);
2213 goto out;
2214 }
2215 dwc->dw_orphaned = 1;
2216 }
2217
2218 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2219 if (ret) {
2220 mlog_errno(ret);
2221 goto out;
2222 }
2223
2224 down_write(&oi->ip_alloc_sem);
2225
2226 if (first_get_block) {
2227 if (ocfs2_sparse_alloc(osb))
2228 ret = ocfs2_zero_tail(inode, di_bh, pos);
2229 else
2230 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2231 total_len, NULL);
2232 if (ret < 0) {
2233 mlog_errno(ret);
2234 goto unlock;
2235 }
2236 }
2237
2238 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2239 OCFS2_WRITE_DIRECT, NULL,
2240 (void **)&wc, di_bh, NULL);
2241 if (ret) {
2242 mlog_errno(ret);
2243 goto unlock;
2244 }
2245
2246 desc = &wc->w_desc[0];
2247
2248 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2249 BUG_ON(p_blkno == 0);
2250 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2251
2252 map_bh(bh_result, inode->i_sb, p_blkno);
2253 bh_result->b_size = len;
2254 if (desc->c_needs_zero)
2255 set_buffer_new(bh_result);
2256
2257 if (iblock > endblk)
2258 set_buffer_new(bh_result);
2259
2260 /* May sleep in end_io. It should not happen in a irq context. So defer
2261 * it to dio work queue. */
2262 set_buffer_defer_completion(bh_result);
2263
2264 if (!list_empty(&wc->w_unwritten_list)) {
2265 struct ocfs2_unwritten_extent *ue = NULL;
2266
2267 ue = list_first_entry(&wc->w_unwritten_list,
2268 struct ocfs2_unwritten_extent,
2269 ue_node);
2270 BUG_ON(ue->ue_cpos != desc->c_cpos);
2271 /* The physical address may be 0, fill it. */
2272 ue->ue_phys = desc->c_phys;
2273
2274 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2275 dwc->dw_zero_count += wc->w_unwritten_count;
2276 }
2277
2278 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2279 BUG_ON(ret != len);
2280 ret = 0;
2281unlock:
2282 up_write(&oi->ip_alloc_sem);
2283 ocfs2_inode_unlock(inode, 1);
2284 brelse(di_bh);
2285out:
2286 if (ret < 0)
2287 ret = -EIO;
2288 return ret;
2289}
2290
2291static int ocfs2_dio_end_io_write(struct inode *inode,
2292 struct ocfs2_dio_write_ctxt *dwc,
2293 loff_t offset,
2294 ssize_t bytes)
2295{
2296 struct ocfs2_cached_dealloc_ctxt dealloc;
2297 struct ocfs2_extent_tree et;
2298 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2299 struct ocfs2_inode_info *oi = OCFS2_I(inode);
2300 struct ocfs2_unwritten_extent *ue = NULL;
2301 struct buffer_head *di_bh = NULL;
2302 struct ocfs2_dinode *di;
2303 struct ocfs2_alloc_context *data_ac = NULL;
2304 struct ocfs2_alloc_context *meta_ac = NULL;
2305 handle_t *handle = NULL;
2306 loff_t end = offset + bytes;
2307 int ret = 0, credits = 0, locked = 0;
2308
2309 ocfs2_init_dealloc_ctxt(&dealloc);
2310
2311 /* We do clear unwritten, delete orphan, change i_size here. If neither
2312 * of these happen, we can skip all this. */
2313 if (list_empty(&dwc->dw_zero_list) &&
2314 end <= i_size_read(inode) &&
2315 !dwc->dw_orphaned)
2316 goto out;
2317
2318 /* ocfs2_file_write_iter will get i_mutex, so we need not lock if we
2319 * are in that context. */
2320 if (dwc->dw_writer_pid != task_pid_nr(current)) {
2321 inode_lock(inode);
2322 locked = 1;
2323 }
2324
2325 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2326 if (ret < 0) {
2327 mlog_errno(ret);
2328 goto out;
2329 }
2330
2331 down_write(&oi->ip_alloc_sem);
2332
2333 /* Delete orphan before acquire i_mutex. */
2334 if (dwc->dw_orphaned) {
2335 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2336
2337 end = end > i_size_read(inode) ? end : 0;
2338
2339 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2340 !!end, end);
2341 if (ret < 0)
2342 mlog_errno(ret);
2343 }
2344
2345 di = (struct ocfs2_dinode *)di_bh->b_data;
2346
2347 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2348
2349 /* Attach dealloc with extent tree in case that we may reuse extents
2350 * which are already unlinked from current extent tree due to extent
2351 * rotation and merging.
2352 */
2353 et.et_dealloc = &dealloc;
2354
2355 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2356 &data_ac, &meta_ac);
2357 if (ret) {
2358 mlog_errno(ret);
2359 goto unlock;
2360 }
2361
2362 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2363
2364 handle = ocfs2_start_trans(osb, credits);
2365 if (IS_ERR(handle)) {
2366 ret = PTR_ERR(handle);
2367 mlog_errno(ret);
2368 goto unlock;
2369 }
2370 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2371 OCFS2_JOURNAL_ACCESS_WRITE);
2372 if (ret) {
2373 mlog_errno(ret);
2374 goto commit;
2375 }
2376
2377 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2378 ret = ocfs2_mark_extent_written(inode, &et, handle,
2379 ue->ue_cpos, 1,
2380 ue->ue_phys,
2381 meta_ac, &dealloc);
2382 if (ret < 0) {
2383 mlog_errno(ret);
2384 break;
2385 }
2386 }
2387
2388 if (end > i_size_read(inode)) {
2389 ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2390 if (ret < 0)
2391 mlog_errno(ret);
2392 }
2393commit:
2394 ocfs2_commit_trans(osb, handle);
2395unlock:
2396 up_write(&oi->ip_alloc_sem);
2397 ocfs2_inode_unlock(inode, 1);
2398 brelse(di_bh);
2399out:
2400 if (data_ac)
2401 ocfs2_free_alloc_context(data_ac);
2402 if (meta_ac)
2403 ocfs2_free_alloc_context(meta_ac);
2404 ocfs2_run_deallocs(osb, &dealloc);
2405 if (locked)
2406 inode_unlock(inode);
2407 ocfs2_dio_free_write_ctx(inode, dwc);
2408
2409 return ret;
2410}
2411
2412/*
2413 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
2414 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
2415 * to protect io on one node from truncation on another.
2416 */
2417static int ocfs2_dio_end_io(struct kiocb *iocb,
2418 loff_t offset,
2419 ssize_t bytes,
2420 void *private)
2421{
2422 struct inode *inode = file_inode(iocb->ki_filp);
2423 int level;
2424 int ret = 0;
2425
2426 /* this io's submitter should not have unlocked this before we could */
2427 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2428
2429 if (bytes <= 0)
2430 mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2431 (long long)bytes);
2432 if (private) {
2433 if (bytes > 0)
2434 ret = ocfs2_dio_end_io_write(inode, private, offset,
2435 bytes);
2436 else
2437 ocfs2_dio_free_write_ctx(inode, private);
2438 }
2439
2440 ocfs2_iocb_clear_rw_locked(iocb);
2441
2442 level = ocfs2_iocb_rw_locked_level(iocb);
2443 ocfs2_rw_unlock(inode, level);
2444 return ret;
2445}
2446
2447static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2448{
2449 struct file *file = iocb->ki_filp;
2450 struct inode *inode = file->f_mapping->host;
2451 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2452 get_block_t *get_block;
2453
2454 /*
2455 * Fallback to buffered I/O if we see an inode without
2456 * extents.
2457 */
2458 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2459 return 0;
2460
2461 /* Fallback to buffered I/O if we do not support append dio. */
2462 if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2463 !ocfs2_supports_append_dio(osb))
2464 return 0;
2465
2466 if (iov_iter_rw(iter) == READ)
2467 get_block = ocfs2_lock_get_block;
2468 else
2469 get_block = ocfs2_dio_wr_get_block;
2470
2471 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2472 iter, get_block,
2473 ocfs2_dio_end_io, NULL, 0);
2474}
2475
2476const struct address_space_operations ocfs2_aops = {
2477 .readpage = ocfs2_readpage,
2478 .readpages = ocfs2_readpages,
2479 .writepage = ocfs2_writepage,
2480 .write_begin = ocfs2_write_begin,
2481 .write_end = ocfs2_write_end,
2482 .bmap = ocfs2_bmap,
2483 .direct_IO = ocfs2_direct_IO,
2484 .invalidatepage = block_invalidatepage,
2485 .releasepage = ocfs2_releasepage,
2486 .migratepage = buffer_migrate_page,
2487 .is_partially_uptodate = block_is_partially_uptodate,
2488 .error_remove_page = generic_error_remove_page,
2489};
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
27#include <linux/swap.h>
28#include <linux/pipe_fs_i.h>
29#include <linux/mpage.h>
30#include <linux/quotaops.h>
31
32#include <cluster/masklog.h>
33
34#include "ocfs2.h"
35
36#include "alloc.h"
37#include "aops.h"
38#include "dlmglue.h"
39#include "extent_map.h"
40#include "file.h"
41#include "inode.h"
42#include "journal.h"
43#include "suballoc.h"
44#include "super.h"
45#include "symlink.h"
46#include "refcounttree.h"
47#include "ocfs2_trace.h"
48
49#include "buffer_head_io.h"
50
51static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
53{
54 int err = -EIO;
55 int status;
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 void *kaddr;
61
62 trace_ocfs2_symlink_get_block(
63 (unsigned long long)OCFS2_I(inode)->ip_blkno,
64 (unsigned long long)iblock, bh_result, create);
65
66 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67
68 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70 (unsigned long long)iblock);
71 goto bail;
72 }
73
74 status = ocfs2_read_inode_block(inode, &bh);
75 if (status < 0) {
76 mlog_errno(status);
77 goto bail;
78 }
79 fe = (struct ocfs2_dinode *) bh->b_data;
80
81 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82 le32_to_cpu(fe->i_clusters))) {
83 mlog(ML_ERROR, "block offset is outside the allocated size: "
84 "%llu\n", (unsigned long long)iblock);
85 goto bail;
86 }
87
88 /* We don't use the page cache to create symlink data, so if
89 * need be, copy it over from the buffer cache. */
90 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
91 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
92 iblock;
93 buffer_cache_bh = sb_getblk(osb->sb, blkno);
94 if (!buffer_cache_bh) {
95 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
96 goto bail;
97 }
98
99 /* we haven't locked out transactions, so a commit
100 * could've happened. Since we've got a reference on
101 * the bh, even if it commits while we're doing the
102 * copy, the data is still good. */
103 if (buffer_jbd(buffer_cache_bh)
104 && ocfs2_inode_is_new(inode)) {
105 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
106 if (!kaddr) {
107 mlog(ML_ERROR, "couldn't kmap!\n");
108 goto bail;
109 }
110 memcpy(kaddr + (bh_result->b_size * iblock),
111 buffer_cache_bh->b_data,
112 bh_result->b_size);
113 kunmap_atomic(kaddr, KM_USER0);
114 set_buffer_uptodate(bh_result);
115 }
116 brelse(buffer_cache_bh);
117 }
118
119 map_bh(bh_result, inode->i_sb,
120 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
121
122 err = 0;
123
124bail:
125 brelse(bh);
126
127 return err;
128}
129
130int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 struct buffer_head *bh_result, int create)
132{
133 int err = 0;
134 unsigned int ext_flags;
135 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 u64 p_blkno, count, past_eof;
137 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
138
139 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
140 (unsigned long long)iblock, bh_result, create);
141
142 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 inode, inode->i_ino);
145
146 if (S_ISLNK(inode->i_mode)) {
147 /* this always does I/O for some reason. */
148 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 goto bail;
150 }
151
152 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153 &ext_flags);
154 if (err) {
155 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 (unsigned long long)p_blkno);
158 goto bail;
159 }
160
161 if (max_blocks < count)
162 count = max_blocks;
163
164 /*
165 * ocfs2 never allocates in this function - the only time we
166 * need to use BH_New is when we're extending i_size on a file
167 * system which doesn't support holes, in which case BH_New
168 * allows __block_write_begin() to zero.
169 *
170 * If we see this on a sparse file system, then a truncate has
171 * raced us and removed the cluster. In this case, we clear
172 * the buffers dirty and uptodate bits and let the buffer code
173 * ignore it as a hole.
174 */
175 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 clear_buffer_dirty(bh_result);
177 clear_buffer_uptodate(bh_result);
178 goto bail;
179 }
180
181 /* Treat the unwritten extent as a hole for zeroing purposes. */
182 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183 map_bh(bh_result, inode->i_sb, p_blkno);
184
185 bh_result->b_size = count << inode->i_blkbits;
186
187 if (!ocfs2_sparse_alloc(osb)) {
188 if (p_blkno == 0) {
189 err = -EIO;
190 mlog(ML_ERROR,
191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 (unsigned long long)iblock,
193 (unsigned long long)p_blkno,
194 (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 dump_stack();
197 goto bail;
198 }
199 }
200
201 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
202
203 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
204 (unsigned long long)past_eof);
205 if (create && (iblock >= past_eof))
206 set_buffer_new(bh_result);
207
208bail:
209 if (err < 0)
210 err = -EIO;
211
212 return err;
213}
214
215int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216 struct buffer_head *di_bh)
217{
218 void *kaddr;
219 loff_t size;
220 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
221
222 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224 (unsigned long long)OCFS2_I(inode)->ip_blkno);
225 return -EROFS;
226 }
227
228 size = i_size_read(inode);
229
230 if (size > PAGE_CACHE_SIZE ||
231 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
232 ocfs2_error(inode->i_sb,
233 "Inode %llu has with inline data has bad size: %Lu",
234 (unsigned long long)OCFS2_I(inode)->ip_blkno,
235 (unsigned long long)size);
236 return -EROFS;
237 }
238
239 kaddr = kmap_atomic(page, KM_USER0);
240 if (size)
241 memcpy(kaddr, di->id2.i_data.id_data, size);
242 /* Clear the remaining part of the page */
243 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244 flush_dcache_page(page);
245 kunmap_atomic(kaddr, KM_USER0);
246
247 SetPageUptodate(page);
248
249 return 0;
250}
251
252static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
253{
254 int ret;
255 struct buffer_head *di_bh = NULL;
256
257 BUG_ON(!PageLocked(page));
258 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
259
260 ret = ocfs2_read_inode_block(inode, &di_bh);
261 if (ret) {
262 mlog_errno(ret);
263 goto out;
264 }
265
266 ret = ocfs2_read_inline_data(inode, page, di_bh);
267out:
268 unlock_page(page);
269
270 brelse(di_bh);
271 return ret;
272}
273
274static int ocfs2_readpage(struct file *file, struct page *page)
275{
276 struct inode *inode = page->mapping->host;
277 struct ocfs2_inode_info *oi = OCFS2_I(inode);
278 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279 int ret, unlock = 1;
280
281 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
282 (page ? page->index : 0));
283
284 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
285 if (ret != 0) {
286 if (ret == AOP_TRUNCATED_PAGE)
287 unlock = 0;
288 mlog_errno(ret);
289 goto out;
290 }
291
292 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
293 ret = AOP_TRUNCATED_PAGE;
294 goto out_inode_unlock;
295 }
296
297 /*
298 * i_size might have just been updated as we grabed the meta lock. We
299 * might now be discovering a truncate that hit on another node.
300 * block_read_full_page->get_block freaks out if it is asked to read
301 * beyond the end of a file, so we check here. Callers
302 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
303 * and notice that the page they just read isn't needed.
304 *
305 * XXX sys_readahead() seems to get that wrong?
306 */
307 if (start >= i_size_read(inode)) {
308 zero_user(page, 0, PAGE_SIZE);
309 SetPageUptodate(page);
310 ret = 0;
311 goto out_alloc;
312 }
313
314 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
315 ret = ocfs2_readpage_inline(inode, page);
316 else
317 ret = block_read_full_page(page, ocfs2_get_block);
318 unlock = 0;
319
320out_alloc:
321 up_read(&OCFS2_I(inode)->ip_alloc_sem);
322out_inode_unlock:
323 ocfs2_inode_unlock(inode, 0);
324out:
325 if (unlock)
326 unlock_page(page);
327 return ret;
328}
329
330/*
331 * This is used only for read-ahead. Failures or difficult to handle
332 * situations are safe to ignore.
333 *
334 * Right now, we don't bother with BH_Boundary - in-inode extent lists
335 * are quite large (243 extents on 4k blocks), so most inodes don't
336 * grow out to a tree. If need be, detecting boundary extents could
337 * trivially be added in a future version of ocfs2_get_block().
338 */
339static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
340 struct list_head *pages, unsigned nr_pages)
341{
342 int ret, err = -EIO;
343 struct inode *inode = mapping->host;
344 struct ocfs2_inode_info *oi = OCFS2_I(inode);
345 loff_t start;
346 struct page *last;
347
348 /*
349 * Use the nonblocking flag for the dlm code to avoid page
350 * lock inversion, but don't bother with retrying.
351 */
352 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
353 if (ret)
354 return err;
355
356 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
357 ocfs2_inode_unlock(inode, 0);
358 return err;
359 }
360
361 /*
362 * Don't bother with inline-data. There isn't anything
363 * to read-ahead in that case anyway...
364 */
365 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
366 goto out_unlock;
367
368 /*
369 * Check whether a remote node truncated this file - we just
370 * drop out in that case as it's not worth handling here.
371 */
372 last = list_entry(pages->prev, struct page, lru);
373 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
374 if (start >= i_size_read(inode))
375 goto out_unlock;
376
377 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
378
379out_unlock:
380 up_read(&oi->ip_alloc_sem);
381 ocfs2_inode_unlock(inode, 0);
382
383 return err;
384}
385
386/* Note: Because we don't support holes, our allocation has
387 * already happened (allocation writes zeros to the file data)
388 * so we don't have to worry about ordered writes in
389 * ocfs2_writepage.
390 *
391 * ->writepage is called during the process of invalidating the page cache
392 * during blocked lock processing. It can't block on any cluster locks
393 * to during block mapping. It's relying on the fact that the block
394 * mapping can't have disappeared under the dirty pages that it is
395 * being asked to write back.
396 */
397static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
398{
399 trace_ocfs2_writepage(
400 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
401 page->index);
402
403 return block_write_full_page(page, ocfs2_get_block, wbc);
404}
405
406/* Taken from ext3. We don't necessarily need the full blown
407 * functionality yet, but IMHO it's better to cut and paste the whole
408 * thing so we can avoid introducing our own bugs (and easily pick up
409 * their fixes when they happen) --Mark */
410int walk_page_buffers( handle_t *handle,
411 struct buffer_head *head,
412 unsigned from,
413 unsigned to,
414 int *partial,
415 int (*fn)( handle_t *handle,
416 struct buffer_head *bh))
417{
418 struct buffer_head *bh;
419 unsigned block_start, block_end;
420 unsigned blocksize = head->b_size;
421 int err, ret = 0;
422 struct buffer_head *next;
423
424 for ( bh = head, block_start = 0;
425 ret == 0 && (bh != head || !block_start);
426 block_start = block_end, bh = next)
427 {
428 next = bh->b_this_page;
429 block_end = block_start + blocksize;
430 if (block_end <= from || block_start >= to) {
431 if (partial && !buffer_uptodate(bh))
432 *partial = 1;
433 continue;
434 }
435 err = (*fn)(handle, bh);
436 if (!ret)
437 ret = err;
438 }
439 return ret;
440}
441
442static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
443{
444 sector_t status;
445 u64 p_blkno = 0;
446 int err = 0;
447 struct inode *inode = mapping->host;
448
449 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
450 (unsigned long long)block);
451
452 /* We don't need to lock journal system files, since they aren't
453 * accessed concurrently from multiple nodes.
454 */
455 if (!INODE_JOURNAL(inode)) {
456 err = ocfs2_inode_lock(inode, NULL, 0);
457 if (err) {
458 if (err != -ENOENT)
459 mlog_errno(err);
460 goto bail;
461 }
462 down_read(&OCFS2_I(inode)->ip_alloc_sem);
463 }
464
465 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
466 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
467 NULL);
468
469 if (!INODE_JOURNAL(inode)) {
470 up_read(&OCFS2_I(inode)->ip_alloc_sem);
471 ocfs2_inode_unlock(inode, 0);
472 }
473
474 if (err) {
475 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
476 (unsigned long long)block);
477 mlog_errno(err);
478 goto bail;
479 }
480
481bail:
482 status = err ? 0 : p_blkno;
483
484 return status;
485}
486
487/*
488 * TODO: Make this into a generic get_blocks function.
489 *
490 * From do_direct_io in direct-io.c:
491 * "So what we do is to permit the ->get_blocks function to populate
492 * bh.b_size with the size of IO which is permitted at this offset and
493 * this i_blkbits."
494 *
495 * This function is called directly from get_more_blocks in direct-io.c.
496 *
497 * called like this: dio->get_blocks(dio->inode, fs_startblk,
498 * fs_count, map_bh, dio->rw == WRITE);
499 *
500 * Note that we never bother to allocate blocks here, and thus ignore the
501 * create argument.
502 */
503static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
504 struct buffer_head *bh_result, int create)
505{
506 int ret;
507 u64 p_blkno, inode_blocks, contig_blocks;
508 unsigned int ext_flags;
509 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
510 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
511
512 /* This function won't even be called if the request isn't all
513 * nicely aligned and of the right size, so there's no need
514 * for us to check any of that. */
515
516 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
517
518 /* This figures out the size of the next contiguous block, and
519 * our logical offset */
520 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
521 &contig_blocks, &ext_flags);
522 if (ret) {
523 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
524 (unsigned long long)iblock);
525 ret = -EIO;
526 goto bail;
527 }
528
529 /* We should already CoW the refcounted extent in case of create. */
530 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
531
532 /*
533 * get_more_blocks() expects us to describe a hole by clearing
534 * the mapped bit on bh_result().
535 *
536 * Consider an unwritten extent as a hole.
537 */
538 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
539 map_bh(bh_result, inode->i_sb, p_blkno);
540 else
541 clear_buffer_mapped(bh_result);
542
543 /* make sure we don't map more than max_blocks blocks here as
544 that's all the kernel will handle at this point. */
545 if (max_blocks < contig_blocks)
546 contig_blocks = max_blocks;
547 bh_result->b_size = contig_blocks << blocksize_bits;
548bail:
549 return ret;
550}
551
552/*
553 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
554 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
555 * to protect io on one node from truncation on another.
556 */
557static void ocfs2_dio_end_io(struct kiocb *iocb,
558 loff_t offset,
559 ssize_t bytes,
560 void *private,
561 int ret,
562 bool is_async)
563{
564 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
565 int level;
566
567 /* this io's submitter should not have unlocked this before we could */
568 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
569
570 if (ocfs2_iocb_is_sem_locked(iocb))
571 ocfs2_iocb_clear_sem_locked(iocb);
572
573 ocfs2_iocb_clear_rw_locked(iocb);
574
575 level = ocfs2_iocb_rw_locked_level(iocb);
576 ocfs2_rw_unlock(inode, level);
577
578 if (is_async)
579 aio_complete(iocb, ret, 0);
580 inode_dio_done(inode);
581}
582
583/*
584 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
585 * from ext3. PageChecked() bits have been removed as OCFS2 does not
586 * do journalled data.
587 */
588static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
589{
590 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
591
592 jbd2_journal_invalidatepage(journal, page, offset);
593}
594
595static int ocfs2_releasepage(struct page *page, gfp_t wait)
596{
597 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
598
599 if (!page_has_buffers(page))
600 return 0;
601 return jbd2_journal_try_to_free_buffers(journal, page, wait);
602}
603
604static ssize_t ocfs2_direct_IO(int rw,
605 struct kiocb *iocb,
606 const struct iovec *iov,
607 loff_t offset,
608 unsigned long nr_segs)
609{
610 struct file *file = iocb->ki_filp;
611 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
612
613 /*
614 * Fallback to buffered I/O if we see an inode without
615 * extents.
616 */
617 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
618 return 0;
619
620 /* Fallback to buffered I/O if we are appending. */
621 if (i_size_read(inode) <= offset)
622 return 0;
623
624 return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
625 iov, offset, nr_segs,
626 ocfs2_direct_IO_get_blocks,
627 ocfs2_dio_end_io, NULL, 0);
628}
629
630static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
631 u32 cpos,
632 unsigned int *start,
633 unsigned int *end)
634{
635 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
636
637 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
638 unsigned int cpp;
639
640 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
641
642 cluster_start = cpos % cpp;
643 cluster_start = cluster_start << osb->s_clustersize_bits;
644
645 cluster_end = cluster_start + osb->s_clustersize;
646 }
647
648 BUG_ON(cluster_start > PAGE_SIZE);
649 BUG_ON(cluster_end > PAGE_SIZE);
650
651 if (start)
652 *start = cluster_start;
653 if (end)
654 *end = cluster_end;
655}
656
657/*
658 * 'from' and 'to' are the region in the page to avoid zeroing.
659 *
660 * If pagesize > clustersize, this function will avoid zeroing outside
661 * of the cluster boundary.
662 *
663 * from == to == 0 is code for "zero the entire cluster region"
664 */
665static void ocfs2_clear_page_regions(struct page *page,
666 struct ocfs2_super *osb, u32 cpos,
667 unsigned from, unsigned to)
668{
669 void *kaddr;
670 unsigned int cluster_start, cluster_end;
671
672 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
673
674 kaddr = kmap_atomic(page, KM_USER0);
675
676 if (from || to) {
677 if (from > cluster_start)
678 memset(kaddr + cluster_start, 0, from - cluster_start);
679 if (to < cluster_end)
680 memset(kaddr + to, 0, cluster_end - to);
681 } else {
682 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
683 }
684
685 kunmap_atomic(kaddr, KM_USER0);
686}
687
688/*
689 * Nonsparse file systems fully allocate before we get to the write
690 * code. This prevents ocfs2_write() from tagging the write as an
691 * allocating one, which means ocfs2_map_page_blocks() might try to
692 * read-in the blocks at the tail of our file. Avoid reading them by
693 * testing i_size against each block offset.
694 */
695static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
696 unsigned int block_start)
697{
698 u64 offset = page_offset(page) + block_start;
699
700 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
701 return 1;
702
703 if (i_size_read(inode) > offset)
704 return 1;
705
706 return 0;
707}
708
709/*
710 * Some of this taken from __block_write_begin(). We already have our
711 * mapping by now though, and the entire write will be allocating or
712 * it won't, so not much need to use BH_New.
713 *
714 * This will also skip zeroing, which is handled externally.
715 */
716int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
717 struct inode *inode, unsigned int from,
718 unsigned int to, int new)
719{
720 int ret = 0;
721 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
722 unsigned int block_end, block_start;
723 unsigned int bsize = 1 << inode->i_blkbits;
724
725 if (!page_has_buffers(page))
726 create_empty_buffers(page, bsize, 0);
727
728 head = page_buffers(page);
729 for (bh = head, block_start = 0; bh != head || !block_start;
730 bh = bh->b_this_page, block_start += bsize) {
731 block_end = block_start + bsize;
732
733 clear_buffer_new(bh);
734
735 /*
736 * Ignore blocks outside of our i/o range -
737 * they may belong to unallocated clusters.
738 */
739 if (block_start >= to || block_end <= from) {
740 if (PageUptodate(page))
741 set_buffer_uptodate(bh);
742 continue;
743 }
744
745 /*
746 * For an allocating write with cluster size >= page
747 * size, we always write the entire page.
748 */
749 if (new)
750 set_buffer_new(bh);
751
752 if (!buffer_mapped(bh)) {
753 map_bh(bh, inode->i_sb, *p_blkno);
754 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
755 }
756
757 if (PageUptodate(page)) {
758 if (!buffer_uptodate(bh))
759 set_buffer_uptodate(bh);
760 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
761 !buffer_new(bh) &&
762 ocfs2_should_read_blk(inode, page, block_start) &&
763 (block_start < from || block_end > to)) {
764 ll_rw_block(READ, 1, &bh);
765 *wait_bh++=bh;
766 }
767
768 *p_blkno = *p_blkno + 1;
769 }
770
771 /*
772 * If we issued read requests - let them complete.
773 */
774 while(wait_bh > wait) {
775 wait_on_buffer(*--wait_bh);
776 if (!buffer_uptodate(*wait_bh))
777 ret = -EIO;
778 }
779
780 if (ret == 0 || !new)
781 return ret;
782
783 /*
784 * If we get -EIO above, zero out any newly allocated blocks
785 * to avoid exposing stale data.
786 */
787 bh = head;
788 block_start = 0;
789 do {
790 block_end = block_start + bsize;
791 if (block_end <= from)
792 goto next_bh;
793 if (block_start >= to)
794 break;
795
796 zero_user(page, block_start, bh->b_size);
797 set_buffer_uptodate(bh);
798 mark_buffer_dirty(bh);
799
800next_bh:
801 block_start = block_end;
802 bh = bh->b_this_page;
803 } while (bh != head);
804
805 return ret;
806}
807
808#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
809#define OCFS2_MAX_CTXT_PAGES 1
810#else
811#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
812#endif
813
814#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
815
816/*
817 * Describe the state of a single cluster to be written to.
818 */
819struct ocfs2_write_cluster_desc {
820 u32 c_cpos;
821 u32 c_phys;
822 /*
823 * Give this a unique field because c_phys eventually gets
824 * filled.
825 */
826 unsigned c_new;
827 unsigned c_unwritten;
828 unsigned c_needs_zero;
829};
830
831struct ocfs2_write_ctxt {
832 /* Logical cluster position / len of write */
833 u32 w_cpos;
834 u32 w_clen;
835
836 /* First cluster allocated in a nonsparse extend */
837 u32 w_first_new_cpos;
838
839 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
840
841 /*
842 * This is true if page_size > cluster_size.
843 *
844 * It triggers a set of special cases during write which might
845 * have to deal with allocating writes to partial pages.
846 */
847 unsigned int w_large_pages;
848
849 /*
850 * Pages involved in this write.
851 *
852 * w_target_page is the page being written to by the user.
853 *
854 * w_pages is an array of pages which always contains
855 * w_target_page, and in the case of an allocating write with
856 * page_size < cluster size, it will contain zero'd and mapped
857 * pages adjacent to w_target_page which need to be written
858 * out in so that future reads from that region will get
859 * zero's.
860 */
861 unsigned int w_num_pages;
862 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
863 struct page *w_target_page;
864
865 /*
866 * ocfs2_write_end() uses this to know what the real range to
867 * write in the target should be.
868 */
869 unsigned int w_target_from;
870 unsigned int w_target_to;
871
872 /*
873 * We could use journal_current_handle() but this is cleaner,
874 * IMHO -Mark
875 */
876 handle_t *w_handle;
877
878 struct buffer_head *w_di_bh;
879
880 struct ocfs2_cached_dealloc_ctxt w_dealloc;
881};
882
883void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
884{
885 int i;
886
887 for(i = 0; i < num_pages; i++) {
888 if (pages[i]) {
889 unlock_page(pages[i]);
890 mark_page_accessed(pages[i]);
891 page_cache_release(pages[i]);
892 }
893 }
894}
895
896static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
897{
898 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
899
900 brelse(wc->w_di_bh);
901 kfree(wc);
902}
903
904static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
905 struct ocfs2_super *osb, loff_t pos,
906 unsigned len, struct buffer_head *di_bh)
907{
908 u32 cend;
909 struct ocfs2_write_ctxt *wc;
910
911 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
912 if (!wc)
913 return -ENOMEM;
914
915 wc->w_cpos = pos >> osb->s_clustersize_bits;
916 wc->w_first_new_cpos = UINT_MAX;
917 cend = (pos + len - 1) >> osb->s_clustersize_bits;
918 wc->w_clen = cend - wc->w_cpos + 1;
919 get_bh(di_bh);
920 wc->w_di_bh = di_bh;
921
922 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
923 wc->w_large_pages = 1;
924 else
925 wc->w_large_pages = 0;
926
927 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
928
929 *wcp = wc;
930
931 return 0;
932}
933
934/*
935 * If a page has any new buffers, zero them out here, and mark them uptodate
936 * and dirty so they'll be written out (in order to prevent uninitialised
937 * block data from leaking). And clear the new bit.
938 */
939static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
940{
941 unsigned int block_start, block_end;
942 struct buffer_head *head, *bh;
943
944 BUG_ON(!PageLocked(page));
945 if (!page_has_buffers(page))
946 return;
947
948 bh = head = page_buffers(page);
949 block_start = 0;
950 do {
951 block_end = block_start + bh->b_size;
952
953 if (buffer_new(bh)) {
954 if (block_end > from && block_start < to) {
955 if (!PageUptodate(page)) {
956 unsigned start, end;
957
958 start = max(from, block_start);
959 end = min(to, block_end);
960
961 zero_user_segment(page, start, end);
962 set_buffer_uptodate(bh);
963 }
964
965 clear_buffer_new(bh);
966 mark_buffer_dirty(bh);
967 }
968 }
969
970 block_start = block_end;
971 bh = bh->b_this_page;
972 } while (bh != head);
973}
974
975/*
976 * Only called when we have a failure during allocating write to write
977 * zero's to the newly allocated region.
978 */
979static void ocfs2_write_failure(struct inode *inode,
980 struct ocfs2_write_ctxt *wc,
981 loff_t user_pos, unsigned user_len)
982{
983 int i;
984 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
985 to = user_pos + user_len;
986 struct page *tmppage;
987
988 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
989
990 for(i = 0; i < wc->w_num_pages; i++) {
991 tmppage = wc->w_pages[i];
992
993 if (page_has_buffers(tmppage)) {
994 if (ocfs2_should_order_data(inode))
995 ocfs2_jbd2_file_inode(wc->w_handle, inode);
996
997 block_commit_write(tmppage, from, to);
998 }
999 }
1000}
1001
1002static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1003 struct ocfs2_write_ctxt *wc,
1004 struct page *page, u32 cpos,
1005 loff_t user_pos, unsigned user_len,
1006 int new)
1007{
1008 int ret;
1009 unsigned int map_from = 0, map_to = 0;
1010 unsigned int cluster_start, cluster_end;
1011 unsigned int user_data_from = 0, user_data_to = 0;
1012
1013 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1014 &cluster_start, &cluster_end);
1015
1016 /* treat the write as new if the a hole/lseek spanned across
1017 * the page boundary.
1018 */
1019 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1020 (page_offset(page) <= user_pos));
1021
1022 if (page == wc->w_target_page) {
1023 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1024 map_to = map_from + user_len;
1025
1026 if (new)
1027 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1028 cluster_start, cluster_end,
1029 new);
1030 else
1031 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1032 map_from, map_to, new);
1033 if (ret) {
1034 mlog_errno(ret);
1035 goto out;
1036 }
1037
1038 user_data_from = map_from;
1039 user_data_to = map_to;
1040 if (new) {
1041 map_from = cluster_start;
1042 map_to = cluster_end;
1043 }
1044 } else {
1045 /*
1046 * If we haven't allocated the new page yet, we
1047 * shouldn't be writing it out without copying user
1048 * data. This is likely a math error from the caller.
1049 */
1050 BUG_ON(!new);
1051
1052 map_from = cluster_start;
1053 map_to = cluster_end;
1054
1055 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1056 cluster_start, cluster_end, new);
1057 if (ret) {
1058 mlog_errno(ret);
1059 goto out;
1060 }
1061 }
1062
1063 /*
1064 * Parts of newly allocated pages need to be zero'd.
1065 *
1066 * Above, we have also rewritten 'to' and 'from' - as far as
1067 * the rest of the function is concerned, the entire cluster
1068 * range inside of a page needs to be written.
1069 *
1070 * We can skip this if the page is up to date - it's already
1071 * been zero'd from being read in as a hole.
1072 */
1073 if (new && !PageUptodate(page))
1074 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1075 cpos, user_data_from, user_data_to);
1076
1077 flush_dcache_page(page);
1078
1079out:
1080 return ret;
1081}
1082
1083/*
1084 * This function will only grab one clusters worth of pages.
1085 */
1086static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1087 struct ocfs2_write_ctxt *wc,
1088 u32 cpos, loff_t user_pos,
1089 unsigned user_len, int new,
1090 struct page *mmap_page)
1091{
1092 int ret = 0, i;
1093 unsigned long start, target_index, end_index, index;
1094 struct inode *inode = mapping->host;
1095 loff_t last_byte;
1096
1097 target_index = user_pos >> PAGE_CACHE_SHIFT;
1098
1099 /*
1100 * Figure out how many pages we'll be manipulating here. For
1101 * non allocating write, we just change the one
1102 * page. Otherwise, we'll need a whole clusters worth. If we're
1103 * writing past i_size, we only need enough pages to cover the
1104 * last page of the write.
1105 */
1106 if (new) {
1107 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1108 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1109 /*
1110 * We need the index *past* the last page we could possibly
1111 * touch. This is the page past the end of the write or
1112 * i_size, whichever is greater.
1113 */
1114 last_byte = max(user_pos + user_len, i_size_read(inode));
1115 BUG_ON(last_byte < 1);
1116 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1117 if ((start + wc->w_num_pages) > end_index)
1118 wc->w_num_pages = end_index - start;
1119 } else {
1120 wc->w_num_pages = 1;
1121 start = target_index;
1122 }
1123
1124 for(i = 0; i < wc->w_num_pages; i++) {
1125 index = start + i;
1126
1127 if (index == target_index && mmap_page) {
1128 /*
1129 * ocfs2_pagemkwrite() is a little different
1130 * and wants us to directly use the page
1131 * passed in.
1132 */
1133 lock_page(mmap_page);
1134
1135 if (mmap_page->mapping != mapping) {
1136 unlock_page(mmap_page);
1137 /*
1138 * Sanity check - the locking in
1139 * ocfs2_pagemkwrite() should ensure
1140 * that this code doesn't trigger.
1141 */
1142 ret = -EINVAL;
1143 mlog_errno(ret);
1144 goto out;
1145 }
1146
1147 page_cache_get(mmap_page);
1148 wc->w_pages[i] = mmap_page;
1149 } else {
1150 wc->w_pages[i] = find_or_create_page(mapping, index,
1151 GFP_NOFS);
1152 if (!wc->w_pages[i]) {
1153 ret = -ENOMEM;
1154 mlog_errno(ret);
1155 goto out;
1156 }
1157 }
1158
1159 if (index == target_index)
1160 wc->w_target_page = wc->w_pages[i];
1161 }
1162out:
1163 return ret;
1164}
1165
1166/*
1167 * Prepare a single cluster for write one cluster into the file.
1168 */
1169static int ocfs2_write_cluster(struct address_space *mapping,
1170 u32 phys, unsigned int unwritten,
1171 unsigned int should_zero,
1172 struct ocfs2_alloc_context *data_ac,
1173 struct ocfs2_alloc_context *meta_ac,
1174 struct ocfs2_write_ctxt *wc, u32 cpos,
1175 loff_t user_pos, unsigned user_len)
1176{
1177 int ret, i, new;
1178 u64 v_blkno, p_blkno;
1179 struct inode *inode = mapping->host;
1180 struct ocfs2_extent_tree et;
1181
1182 new = phys == 0 ? 1 : 0;
1183 if (new) {
1184 u32 tmp_pos;
1185
1186 /*
1187 * This is safe to call with the page locks - it won't take
1188 * any additional semaphores or cluster locks.
1189 */
1190 tmp_pos = cpos;
1191 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1192 &tmp_pos, 1, 0, wc->w_di_bh,
1193 wc->w_handle, data_ac,
1194 meta_ac, NULL);
1195 /*
1196 * This shouldn't happen because we must have already
1197 * calculated the correct meta data allocation required. The
1198 * internal tree allocation code should know how to increase
1199 * transaction credits itself.
1200 *
1201 * If need be, we could handle -EAGAIN for a
1202 * RESTART_TRANS here.
1203 */
1204 mlog_bug_on_msg(ret == -EAGAIN,
1205 "Inode %llu: EAGAIN return during allocation.\n",
1206 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1207 if (ret < 0) {
1208 mlog_errno(ret);
1209 goto out;
1210 }
1211 } else if (unwritten) {
1212 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1213 wc->w_di_bh);
1214 ret = ocfs2_mark_extent_written(inode, &et,
1215 wc->w_handle, cpos, 1, phys,
1216 meta_ac, &wc->w_dealloc);
1217 if (ret < 0) {
1218 mlog_errno(ret);
1219 goto out;
1220 }
1221 }
1222
1223 if (should_zero)
1224 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1225 else
1226 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1227
1228 /*
1229 * The only reason this should fail is due to an inability to
1230 * find the extent added.
1231 */
1232 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1233 NULL);
1234 if (ret < 0) {
1235 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1236 "at logical block %llu",
1237 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1238 (unsigned long long)v_blkno);
1239 goto out;
1240 }
1241
1242 BUG_ON(p_blkno == 0);
1243
1244 for(i = 0; i < wc->w_num_pages; i++) {
1245 int tmpret;
1246
1247 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1248 wc->w_pages[i], cpos,
1249 user_pos, user_len,
1250 should_zero);
1251 if (tmpret) {
1252 mlog_errno(tmpret);
1253 if (ret == 0)
1254 ret = tmpret;
1255 }
1256 }
1257
1258 /*
1259 * We only have cleanup to do in case of allocating write.
1260 */
1261 if (ret && new)
1262 ocfs2_write_failure(inode, wc, user_pos, user_len);
1263
1264out:
1265
1266 return ret;
1267}
1268
1269static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1270 struct ocfs2_alloc_context *data_ac,
1271 struct ocfs2_alloc_context *meta_ac,
1272 struct ocfs2_write_ctxt *wc,
1273 loff_t pos, unsigned len)
1274{
1275 int ret, i;
1276 loff_t cluster_off;
1277 unsigned int local_len = len;
1278 struct ocfs2_write_cluster_desc *desc;
1279 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1280
1281 for (i = 0; i < wc->w_clen; i++) {
1282 desc = &wc->w_desc[i];
1283
1284 /*
1285 * We have to make sure that the total write passed in
1286 * doesn't extend past a single cluster.
1287 */
1288 local_len = len;
1289 cluster_off = pos & (osb->s_clustersize - 1);
1290 if ((cluster_off + local_len) > osb->s_clustersize)
1291 local_len = osb->s_clustersize - cluster_off;
1292
1293 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1294 desc->c_unwritten,
1295 desc->c_needs_zero,
1296 data_ac, meta_ac,
1297 wc, desc->c_cpos, pos, local_len);
1298 if (ret) {
1299 mlog_errno(ret);
1300 goto out;
1301 }
1302
1303 len -= local_len;
1304 pos += local_len;
1305 }
1306
1307 ret = 0;
1308out:
1309 return ret;
1310}
1311
1312/*
1313 * ocfs2_write_end() wants to know which parts of the target page it
1314 * should complete the write on. It's easiest to compute them ahead of
1315 * time when a more complete view of the write is available.
1316 */
1317static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1318 struct ocfs2_write_ctxt *wc,
1319 loff_t pos, unsigned len, int alloc)
1320{
1321 struct ocfs2_write_cluster_desc *desc;
1322
1323 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1324 wc->w_target_to = wc->w_target_from + len;
1325
1326 if (alloc == 0)
1327 return;
1328
1329 /*
1330 * Allocating write - we may have different boundaries based
1331 * on page size and cluster size.
1332 *
1333 * NOTE: We can no longer compute one value from the other as
1334 * the actual write length and user provided length may be
1335 * different.
1336 */
1337
1338 if (wc->w_large_pages) {
1339 /*
1340 * We only care about the 1st and last cluster within
1341 * our range and whether they should be zero'd or not. Either
1342 * value may be extended out to the start/end of a
1343 * newly allocated cluster.
1344 */
1345 desc = &wc->w_desc[0];
1346 if (desc->c_needs_zero)
1347 ocfs2_figure_cluster_boundaries(osb,
1348 desc->c_cpos,
1349 &wc->w_target_from,
1350 NULL);
1351
1352 desc = &wc->w_desc[wc->w_clen - 1];
1353 if (desc->c_needs_zero)
1354 ocfs2_figure_cluster_boundaries(osb,
1355 desc->c_cpos,
1356 NULL,
1357 &wc->w_target_to);
1358 } else {
1359 wc->w_target_from = 0;
1360 wc->w_target_to = PAGE_CACHE_SIZE;
1361 }
1362}
1363
1364/*
1365 * Populate each single-cluster write descriptor in the write context
1366 * with information about the i/o to be done.
1367 *
1368 * Returns the number of clusters that will have to be allocated, as
1369 * well as a worst case estimate of the number of extent records that
1370 * would have to be created during a write to an unwritten region.
1371 */
1372static int ocfs2_populate_write_desc(struct inode *inode,
1373 struct ocfs2_write_ctxt *wc,
1374 unsigned int *clusters_to_alloc,
1375 unsigned int *extents_to_split)
1376{
1377 int ret;
1378 struct ocfs2_write_cluster_desc *desc;
1379 unsigned int num_clusters = 0;
1380 unsigned int ext_flags = 0;
1381 u32 phys = 0;
1382 int i;
1383
1384 *clusters_to_alloc = 0;
1385 *extents_to_split = 0;
1386
1387 for (i = 0; i < wc->w_clen; i++) {
1388 desc = &wc->w_desc[i];
1389 desc->c_cpos = wc->w_cpos + i;
1390
1391 if (num_clusters == 0) {
1392 /*
1393 * Need to look up the next extent record.
1394 */
1395 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1396 &num_clusters, &ext_flags);
1397 if (ret) {
1398 mlog_errno(ret);
1399 goto out;
1400 }
1401
1402 /* We should already CoW the refcountd extent. */
1403 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1404
1405 /*
1406 * Assume worst case - that we're writing in
1407 * the middle of the extent.
1408 *
1409 * We can assume that the write proceeds from
1410 * left to right, in which case the extent
1411 * insert code is smart enough to coalesce the
1412 * next splits into the previous records created.
1413 */
1414 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1415 *extents_to_split = *extents_to_split + 2;
1416 } else if (phys) {
1417 /*
1418 * Only increment phys if it doesn't describe
1419 * a hole.
1420 */
1421 phys++;
1422 }
1423
1424 /*
1425 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1426 * file that got extended. w_first_new_cpos tells us
1427 * where the newly allocated clusters are so we can
1428 * zero them.
1429 */
1430 if (desc->c_cpos >= wc->w_first_new_cpos) {
1431 BUG_ON(phys == 0);
1432 desc->c_needs_zero = 1;
1433 }
1434
1435 desc->c_phys = phys;
1436 if (phys == 0) {
1437 desc->c_new = 1;
1438 desc->c_needs_zero = 1;
1439 *clusters_to_alloc = *clusters_to_alloc + 1;
1440 }
1441
1442 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1443 desc->c_unwritten = 1;
1444 desc->c_needs_zero = 1;
1445 }
1446
1447 num_clusters--;
1448 }
1449
1450 ret = 0;
1451out:
1452 return ret;
1453}
1454
1455static int ocfs2_write_begin_inline(struct address_space *mapping,
1456 struct inode *inode,
1457 struct ocfs2_write_ctxt *wc)
1458{
1459 int ret;
1460 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1461 struct page *page;
1462 handle_t *handle;
1463 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1464
1465 page = find_or_create_page(mapping, 0, GFP_NOFS);
1466 if (!page) {
1467 ret = -ENOMEM;
1468 mlog_errno(ret);
1469 goto out;
1470 }
1471 /*
1472 * If we don't set w_num_pages then this page won't get unlocked
1473 * and freed on cleanup of the write context.
1474 */
1475 wc->w_pages[0] = wc->w_target_page = page;
1476 wc->w_num_pages = 1;
1477
1478 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1479 if (IS_ERR(handle)) {
1480 ret = PTR_ERR(handle);
1481 mlog_errno(ret);
1482 goto out;
1483 }
1484
1485 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1486 OCFS2_JOURNAL_ACCESS_WRITE);
1487 if (ret) {
1488 ocfs2_commit_trans(osb, handle);
1489
1490 mlog_errno(ret);
1491 goto out;
1492 }
1493
1494 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1495 ocfs2_set_inode_data_inline(inode, di);
1496
1497 if (!PageUptodate(page)) {
1498 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1499 if (ret) {
1500 ocfs2_commit_trans(osb, handle);
1501
1502 goto out;
1503 }
1504 }
1505
1506 wc->w_handle = handle;
1507out:
1508 return ret;
1509}
1510
1511int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1512{
1513 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1514
1515 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1516 return 1;
1517 return 0;
1518}
1519
1520static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1521 struct inode *inode, loff_t pos,
1522 unsigned len, struct page *mmap_page,
1523 struct ocfs2_write_ctxt *wc)
1524{
1525 int ret, written = 0;
1526 loff_t end = pos + len;
1527 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1528 struct ocfs2_dinode *di = NULL;
1529
1530 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1531 len, (unsigned long long)pos,
1532 oi->ip_dyn_features);
1533
1534 /*
1535 * Handle inodes which already have inline data 1st.
1536 */
1537 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1538 if (mmap_page == NULL &&
1539 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1540 goto do_inline_write;
1541
1542 /*
1543 * The write won't fit - we have to give this inode an
1544 * inline extent list now.
1545 */
1546 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1547 if (ret)
1548 mlog_errno(ret);
1549 goto out;
1550 }
1551
1552 /*
1553 * Check whether the inode can accept inline data.
1554 */
1555 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1556 return 0;
1557
1558 /*
1559 * Check whether the write can fit.
1560 */
1561 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1562 if (mmap_page ||
1563 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1564 return 0;
1565
1566do_inline_write:
1567 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1568 if (ret) {
1569 mlog_errno(ret);
1570 goto out;
1571 }
1572
1573 /*
1574 * This signals to the caller that the data can be written
1575 * inline.
1576 */
1577 written = 1;
1578out:
1579 return written ? written : ret;
1580}
1581
1582/*
1583 * This function only does anything for file systems which can't
1584 * handle sparse files.
1585 *
1586 * What we want to do here is fill in any hole between the current end
1587 * of allocation and the end of our write. That way the rest of the
1588 * write path can treat it as an non-allocating write, which has no
1589 * special case code for sparse/nonsparse files.
1590 */
1591static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1592 struct buffer_head *di_bh,
1593 loff_t pos, unsigned len,
1594 struct ocfs2_write_ctxt *wc)
1595{
1596 int ret;
1597 loff_t newsize = pos + len;
1598
1599 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1600
1601 if (newsize <= i_size_read(inode))
1602 return 0;
1603
1604 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1605 if (ret)
1606 mlog_errno(ret);
1607
1608 wc->w_first_new_cpos =
1609 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1610
1611 return ret;
1612}
1613
1614static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1615 loff_t pos)
1616{
1617 int ret = 0;
1618
1619 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1620 if (pos > i_size_read(inode))
1621 ret = ocfs2_zero_extend(inode, di_bh, pos);
1622
1623 return ret;
1624}
1625
1626/*
1627 * Try to flush truncate logs if we can free enough clusters from it.
1628 * As for return value, "< 0" means error, "0" no space and "1" means
1629 * we have freed enough spaces and let the caller try to allocate again.
1630 */
1631static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1632 unsigned int needed)
1633{
1634 tid_t target;
1635 int ret = 0;
1636 unsigned int truncated_clusters;
1637
1638 mutex_lock(&osb->osb_tl_inode->i_mutex);
1639 truncated_clusters = osb->truncated_clusters;
1640 mutex_unlock(&osb->osb_tl_inode->i_mutex);
1641
1642 /*
1643 * Check whether we can succeed in allocating if we free
1644 * the truncate log.
1645 */
1646 if (truncated_clusters < needed)
1647 goto out;
1648
1649 ret = ocfs2_flush_truncate_log(osb);
1650 if (ret) {
1651 mlog_errno(ret);
1652 goto out;
1653 }
1654
1655 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1656 jbd2_log_wait_commit(osb->journal->j_journal, target);
1657 ret = 1;
1658 }
1659out:
1660 return ret;
1661}
1662
1663int ocfs2_write_begin_nolock(struct file *filp,
1664 struct address_space *mapping,
1665 loff_t pos, unsigned len, unsigned flags,
1666 struct page **pagep, void **fsdata,
1667 struct buffer_head *di_bh, struct page *mmap_page)
1668{
1669 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1670 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1671 struct ocfs2_write_ctxt *wc;
1672 struct inode *inode = mapping->host;
1673 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1674 struct ocfs2_dinode *di;
1675 struct ocfs2_alloc_context *data_ac = NULL;
1676 struct ocfs2_alloc_context *meta_ac = NULL;
1677 handle_t *handle;
1678 struct ocfs2_extent_tree et;
1679 int try_free = 1, ret1;
1680
1681try_again:
1682 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1683 if (ret) {
1684 mlog_errno(ret);
1685 return ret;
1686 }
1687
1688 if (ocfs2_supports_inline_data(osb)) {
1689 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1690 mmap_page, wc);
1691 if (ret == 1) {
1692 ret = 0;
1693 goto success;
1694 }
1695 if (ret < 0) {
1696 mlog_errno(ret);
1697 goto out;
1698 }
1699 }
1700
1701 if (ocfs2_sparse_alloc(osb))
1702 ret = ocfs2_zero_tail(inode, di_bh, pos);
1703 else
1704 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1705 wc);
1706 if (ret) {
1707 mlog_errno(ret);
1708 goto out;
1709 }
1710
1711 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1712 if (ret < 0) {
1713 mlog_errno(ret);
1714 goto out;
1715 } else if (ret == 1) {
1716 clusters_need = wc->w_clen;
1717 ret = ocfs2_refcount_cow(inode, filp, di_bh,
1718 wc->w_cpos, wc->w_clen, UINT_MAX);
1719 if (ret) {
1720 mlog_errno(ret);
1721 goto out;
1722 }
1723 }
1724
1725 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1726 &extents_to_split);
1727 if (ret) {
1728 mlog_errno(ret);
1729 goto out;
1730 }
1731 clusters_need += clusters_to_alloc;
1732
1733 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1734
1735 trace_ocfs2_write_begin_nolock(
1736 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1737 (long long)i_size_read(inode),
1738 le32_to_cpu(di->i_clusters),
1739 pos, len, flags, mmap_page,
1740 clusters_to_alloc, extents_to_split);
1741
1742 /*
1743 * We set w_target_from, w_target_to here so that
1744 * ocfs2_write_end() knows which range in the target page to
1745 * write out. An allocation requires that we write the entire
1746 * cluster range.
1747 */
1748 if (clusters_to_alloc || extents_to_split) {
1749 /*
1750 * XXX: We are stretching the limits of
1751 * ocfs2_lock_allocators(). It greatly over-estimates
1752 * the work to be done.
1753 */
1754 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1755 wc->w_di_bh);
1756 ret = ocfs2_lock_allocators(inode, &et,
1757 clusters_to_alloc, extents_to_split,
1758 &data_ac, &meta_ac);
1759 if (ret) {
1760 mlog_errno(ret);
1761 goto out;
1762 }
1763
1764 if (data_ac)
1765 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1766
1767 credits = ocfs2_calc_extend_credits(inode->i_sb,
1768 &di->id2.i_list,
1769 clusters_to_alloc);
1770
1771 }
1772
1773 /*
1774 * We have to zero sparse allocated clusters, unwritten extent clusters,
1775 * and non-sparse clusters we just extended. For non-sparse writes,
1776 * we know zeros will only be needed in the first and/or last cluster.
1777 */
1778 if (clusters_to_alloc || extents_to_split ||
1779 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1780 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1781 cluster_of_pages = 1;
1782 else
1783 cluster_of_pages = 0;
1784
1785 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1786
1787 handle = ocfs2_start_trans(osb, credits);
1788 if (IS_ERR(handle)) {
1789 ret = PTR_ERR(handle);
1790 mlog_errno(ret);
1791 goto out;
1792 }
1793
1794 wc->w_handle = handle;
1795
1796 if (clusters_to_alloc) {
1797 ret = dquot_alloc_space_nodirty(inode,
1798 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1799 if (ret)
1800 goto out_commit;
1801 }
1802 /*
1803 * We don't want this to fail in ocfs2_write_end(), so do it
1804 * here.
1805 */
1806 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1807 OCFS2_JOURNAL_ACCESS_WRITE);
1808 if (ret) {
1809 mlog_errno(ret);
1810 goto out_quota;
1811 }
1812
1813 /*
1814 * Fill our page array first. That way we've grabbed enough so
1815 * that we can zero and flush if we error after adding the
1816 * extent.
1817 */
1818 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1819 cluster_of_pages, mmap_page);
1820 if (ret) {
1821 mlog_errno(ret);
1822 goto out_quota;
1823 }
1824
1825 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1826 len);
1827 if (ret) {
1828 mlog_errno(ret);
1829 goto out_quota;
1830 }
1831
1832 if (data_ac)
1833 ocfs2_free_alloc_context(data_ac);
1834 if (meta_ac)
1835 ocfs2_free_alloc_context(meta_ac);
1836
1837success:
1838 *pagep = wc->w_target_page;
1839 *fsdata = wc;
1840 return 0;
1841out_quota:
1842 if (clusters_to_alloc)
1843 dquot_free_space(inode,
1844 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1845out_commit:
1846 ocfs2_commit_trans(osb, handle);
1847
1848out:
1849 ocfs2_free_write_ctxt(wc);
1850
1851 if (data_ac)
1852 ocfs2_free_alloc_context(data_ac);
1853 if (meta_ac)
1854 ocfs2_free_alloc_context(meta_ac);
1855
1856 if (ret == -ENOSPC && try_free) {
1857 /*
1858 * Try to free some truncate log so that we can have enough
1859 * clusters to allocate.
1860 */
1861 try_free = 0;
1862
1863 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1864 if (ret1 == 1)
1865 goto try_again;
1866
1867 if (ret1 < 0)
1868 mlog_errno(ret1);
1869 }
1870
1871 return ret;
1872}
1873
1874static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1875 loff_t pos, unsigned len, unsigned flags,
1876 struct page **pagep, void **fsdata)
1877{
1878 int ret;
1879 struct buffer_head *di_bh = NULL;
1880 struct inode *inode = mapping->host;
1881
1882 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1883 if (ret) {
1884 mlog_errno(ret);
1885 return ret;
1886 }
1887
1888 /*
1889 * Take alloc sem here to prevent concurrent lookups. That way
1890 * the mapping, zeroing and tree manipulation within
1891 * ocfs2_write() will be safe against ->readpage(). This
1892 * should also serve to lock out allocation from a shared
1893 * writeable region.
1894 */
1895 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1896
1897 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1898 fsdata, di_bh, NULL);
1899 if (ret) {
1900 mlog_errno(ret);
1901 goto out_fail;
1902 }
1903
1904 brelse(di_bh);
1905
1906 return 0;
1907
1908out_fail:
1909 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1910
1911 brelse(di_bh);
1912 ocfs2_inode_unlock(inode, 1);
1913
1914 return ret;
1915}
1916
1917static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1918 unsigned len, unsigned *copied,
1919 struct ocfs2_dinode *di,
1920 struct ocfs2_write_ctxt *wc)
1921{
1922 void *kaddr;
1923
1924 if (unlikely(*copied < len)) {
1925 if (!PageUptodate(wc->w_target_page)) {
1926 *copied = 0;
1927 return;
1928 }
1929 }
1930
1931 kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1932 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1933 kunmap_atomic(kaddr, KM_USER0);
1934
1935 trace_ocfs2_write_end_inline(
1936 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1937 (unsigned long long)pos, *copied,
1938 le16_to_cpu(di->id2.i_data.id_count),
1939 le16_to_cpu(di->i_dyn_features));
1940}
1941
1942int ocfs2_write_end_nolock(struct address_space *mapping,
1943 loff_t pos, unsigned len, unsigned copied,
1944 struct page *page, void *fsdata)
1945{
1946 int i;
1947 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1948 struct inode *inode = mapping->host;
1949 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1950 struct ocfs2_write_ctxt *wc = fsdata;
1951 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1952 handle_t *handle = wc->w_handle;
1953 struct page *tmppage;
1954
1955 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1956 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1957 goto out_write_size;
1958 }
1959
1960 if (unlikely(copied < len)) {
1961 if (!PageUptodate(wc->w_target_page))
1962 copied = 0;
1963
1964 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1965 start+len);
1966 }
1967 flush_dcache_page(wc->w_target_page);
1968
1969 for(i = 0; i < wc->w_num_pages; i++) {
1970 tmppage = wc->w_pages[i];
1971
1972 if (tmppage == wc->w_target_page) {
1973 from = wc->w_target_from;
1974 to = wc->w_target_to;
1975
1976 BUG_ON(from > PAGE_CACHE_SIZE ||
1977 to > PAGE_CACHE_SIZE ||
1978 to < from);
1979 } else {
1980 /*
1981 * Pages adjacent to the target (if any) imply
1982 * a hole-filling write in which case we want
1983 * to flush their entire range.
1984 */
1985 from = 0;
1986 to = PAGE_CACHE_SIZE;
1987 }
1988
1989 if (page_has_buffers(tmppage)) {
1990 if (ocfs2_should_order_data(inode))
1991 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1992 block_commit_write(tmppage, from, to);
1993 }
1994 }
1995
1996out_write_size:
1997 pos += copied;
1998 if (pos > inode->i_size) {
1999 i_size_write(inode, pos);
2000 mark_inode_dirty(inode);
2001 }
2002 inode->i_blocks = ocfs2_inode_sector_count(inode);
2003 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2004 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2005 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2006 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2007 ocfs2_journal_dirty(handle, wc->w_di_bh);
2008
2009 ocfs2_commit_trans(osb, handle);
2010
2011 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2012
2013 ocfs2_free_write_ctxt(wc);
2014
2015 return copied;
2016}
2017
2018static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2019 loff_t pos, unsigned len, unsigned copied,
2020 struct page *page, void *fsdata)
2021{
2022 int ret;
2023 struct inode *inode = mapping->host;
2024
2025 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2026
2027 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2028 ocfs2_inode_unlock(inode, 1);
2029
2030 return ret;
2031}
2032
2033const struct address_space_operations ocfs2_aops = {
2034 .readpage = ocfs2_readpage,
2035 .readpages = ocfs2_readpages,
2036 .writepage = ocfs2_writepage,
2037 .write_begin = ocfs2_write_begin,
2038 .write_end = ocfs2_write_end,
2039 .bmap = ocfs2_bmap,
2040 .direct_IO = ocfs2_direct_IO,
2041 .invalidatepage = ocfs2_invalidatepage,
2042 .releasepage = ocfs2_releasepage,
2043 .migratepage = buffer_migrate_page,
2044 .is_partially_uptodate = block_is_partially_uptodate,
2045 .error_remove_page = generic_error_remove_page,
2046};