Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   3
   4#include <linux/kernel.h>
   5#include <linux/sched.h>
   6#include <linux/sched/clock.h>
   7#include <linux/init.h>
   8#include <linux/export.h>
   9#include <linux/timer.h>
  10#include <linux/acpi_pmtmr.h>
  11#include <linux/cpufreq.h>
  12#include <linux/delay.h>
  13#include <linux/clocksource.h>
  14#include <linux/percpu.h>
  15#include <linux/timex.h>
  16#include <linux/static_key.h>
  17
  18#include <asm/hpet.h>
  19#include <asm/timer.h>
  20#include <asm/vgtod.h>
  21#include <asm/time.h>
  22#include <asm/delay.h>
  23#include <asm/hypervisor.h>
  24#include <asm/nmi.h>
  25#include <asm/x86_init.h>
  26#include <asm/geode.h>
  27#include <asm/apic.h>
  28#include <asm/intel-family.h>
  29#include <asm/i8259.h>
  30#include <asm/uv/uv.h>
  31
  32unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
  33EXPORT_SYMBOL(cpu_khz);
  34
  35unsigned int __read_mostly tsc_khz;
  36EXPORT_SYMBOL(tsc_khz);
  37
  38#define KHZ	1000
  39
  40/*
  41 * TSC can be unstable due to cpufreq or due to unsynced TSCs
  42 */
  43static int __read_mostly tsc_unstable;
  44
  45static DEFINE_STATIC_KEY_FALSE(__use_tsc);
 
 
 
 
 
  46
  47int tsc_clocksource_reliable;
  48
  49static u32 art_to_tsc_numerator;
  50static u32 art_to_tsc_denominator;
  51static u64 art_to_tsc_offset;
  52struct clocksource *art_related_clocksource;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  53
  54struct cyc2ns {
  55	struct cyc2ns_data data[2];	/*  0 + 2*16 = 32 */
  56	seqcount_t	   seq;		/* 32 + 4    = 36 */
  57
  58}; /* fits one cacheline */
  59
  60static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
  61
  62__always_inline void cyc2ns_read_begin(struct cyc2ns_data *data)
  63{
  64	int seq, idx;
  65
  66	preempt_disable_notrace();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  67
  68	do {
  69		seq = this_cpu_read(cyc2ns.seq.sequence);
  70		idx = seq & 1;
  71
  72		data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
  73		data->cyc2ns_mul    = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
  74		data->cyc2ns_shift  = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
 
 
 
 
  75
  76	} while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
  77}
  78
  79__always_inline void cyc2ns_read_end(void)
  80{
  81	preempt_enable_notrace();
 
 
 
 
 
 
 
 
  82}
  83
  84/*
  85 * Accelerators for sched_clock()
  86 * convert from cycles(64bits) => nanoseconds (64bits)
  87 *  basic equation:
  88 *              ns = cycles / (freq / ns_per_sec)
  89 *              ns = cycles * (ns_per_sec / freq)
  90 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
  91 *              ns = cycles * (10^6 / cpu_khz)
  92 *
  93 *      Then we use scaling math (suggested by george@mvista.com) to get:
  94 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
  95 *              ns = cycles * cyc2ns_scale / SC
  96 *
  97 *      And since SC is a constant power of two, we can convert the div
  98 *  into a shift. The larger SC is, the more accurate the conversion, but
  99 *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
 100 *  (64-bit result) can be used.
 101 *
 102 *  We can use khz divisor instead of mhz to keep a better precision.
 
 103 *  (mathieu.desnoyers@polymtl.ca)
 104 *
 105 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 106 */
 107
 108static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
 109{
 110	struct cyc2ns_data data;
 111	unsigned long long ns;
 112
 113	cyc2ns_read_begin(&data);
 
 
 
 
 
 
 114
 115	ns = data.cyc2ns_offset;
 116	ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
 
 117
 118	cyc2ns_read_end();
 
 119
 120	return ns;
 
 121}
 122
 123static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
 124{
 125	unsigned long long ns_now;
 126	struct cyc2ns_data data;
 127	struct cyc2ns *c2n;
 128
 129	ns_now = cycles_2_ns(tsc_now);
 130
 131	/*
 132	 * Compute a new multiplier as per the above comment and ensure our
 133	 * time function is continuous; see the comment near struct
 134	 * cyc2ns_data.
 
 135	 */
 136	clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
 137			       NSEC_PER_MSEC, 0);
 138
 139	/*
 140	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
 141	 * not expected to be greater than 31 due to the original published
 142	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
 143	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
 144	 */
 145	if (data.cyc2ns_shift == 32) {
 146		data.cyc2ns_shift = 31;
 147		data.cyc2ns_mul >>= 1;
 148	}
 149
 150	data.cyc2ns_offset = ns_now -
 151		mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
 152
 153	c2n = per_cpu_ptr(&cyc2ns, cpu);
 
 154
 155	raw_write_seqcount_latch(&c2n->seq);
 156	c2n->data[0] = data;
 157	raw_write_seqcount_latch(&c2n->seq);
 158	c2n->data[1] = data;
 
 
 
 
 159}
 160
 161static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
 
 
 
 162{
 
 
 163	unsigned long flags;
 164
 165	local_irq_save(flags);
 166	sched_clock_idle_sleep_event();
 167
 168	if (khz)
 169		__set_cyc2ns_scale(khz, cpu, tsc_now);
 170
 171	sched_clock_idle_wakeup_event();
 172	local_irq_restore(flags);
 173}
 174
 175/*
 176 * Initialize cyc2ns for boot cpu
 177 */
 178static void __init cyc2ns_init_boot_cpu(void)
 179{
 180	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
 181
 182	seqcount_init(&c2n->seq);
 183	__set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
 184}
 
 
 
 
 
 
 185
 186/*
 187 * Secondary CPUs do not run through tsc_init(), so set up
 188 * all the scale factors for all CPUs, assuming the same
 189 * speed as the bootup CPU.
 190 */
 191static void __init cyc2ns_init_secondary_cpus(void)
 192{
 193	unsigned int cpu, this_cpu = smp_processor_id();
 194	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
 195	struct cyc2ns_data *data = c2n->data;
 196
 197	for_each_possible_cpu(cpu) {
 198		if (cpu != this_cpu) {
 199			seqcount_init(&c2n->seq);
 200			c2n = per_cpu_ptr(&cyc2ns, cpu);
 201			c2n->data[0] = data[0];
 202			c2n->data[1] = data[1];
 203		}
 204	}
 205}
 206
 207/*
 208 * Scheduler clock - returns current time in nanosec units.
 209 */
 210u64 native_sched_clock(void)
 211{
 212	if (static_branch_likely(&__use_tsc)) {
 213		u64 tsc_now = rdtsc();
 214
 215		/* return the value in ns */
 216		return cycles_2_ns(tsc_now);
 217	}
 218
 219	/*
 220	 * Fall back to jiffies if there's no TSC available:
 221	 * ( But note that we still use it if the TSC is marked
 222	 *   unstable. We do this because unlike Time Of Day,
 223	 *   the scheduler clock tolerates small errors and it's
 224	 *   very important for it to be as fast as the platform
 225	 *   can achieve it. )
 226	 */
 
 
 
 
 227
 228	/* No locking but a rare wrong value is not a big deal: */
 229	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
 230}
 231
 232/*
 233 * Generate a sched_clock if you already have a TSC value.
 234 */
 235u64 native_sched_clock_from_tsc(u64 tsc)
 236{
 237	return cycles_2_ns(tsc);
 238}
 239
 240/* We need to define a real function for sched_clock, to override the
 241   weak default version */
 242#ifdef CONFIG_PARAVIRT
 243unsigned long long sched_clock(void)
 244{
 245	return paravirt_sched_clock();
 246}
 247
 248bool using_native_sched_clock(void)
 249{
 250	return pv_ops.time.sched_clock == native_sched_clock;
 251}
 252#else
 253unsigned long long
 254sched_clock(void) __attribute__((alias("native_sched_clock")));
 255
 256bool using_native_sched_clock(void) { return true; }
 257#endif
 258
 
 
 
 
 
 
 259int check_tsc_unstable(void)
 260{
 261	return tsc_unstable;
 262}
 263EXPORT_SYMBOL_GPL(check_tsc_unstable);
 264
 
 
 
 
 
 
 265#ifdef CONFIG_X86_TSC
 266int __init notsc_setup(char *str)
 267{
 268	mark_tsc_unstable("boot parameter notsc");
 
 269	return 1;
 270}
 271#else
 272/*
 273 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 274 * in cpu/common.c
 275 */
 276int __init notsc_setup(char *str)
 277{
 278	setup_clear_cpu_cap(X86_FEATURE_TSC);
 279	return 1;
 280}
 281#endif
 282
 283__setup("notsc", notsc_setup);
 284
 285static int no_sched_irq_time;
 286static int no_tsc_watchdog;
 287
 288static int __init tsc_setup(char *str)
 289{
 290	if (!strcmp(str, "reliable"))
 291		tsc_clocksource_reliable = 1;
 292	if (!strncmp(str, "noirqtime", 9))
 293		no_sched_irq_time = 1;
 294	if (!strcmp(str, "unstable"))
 295		mark_tsc_unstable("boot parameter");
 296	if (!strcmp(str, "nowatchdog"))
 297		no_tsc_watchdog = 1;
 298	return 1;
 299}
 300
 301__setup("tsc=", tsc_setup);
 302
 303#define MAX_RETRIES		5
 304#define TSC_DEFAULT_THRESHOLD	0x20000
 305
 306/*
 307 * Read TSC and the reference counters. Take care of any disturbances
 308 */
 309static u64 tsc_read_refs(u64 *p, int hpet)
 310{
 311	u64 t1, t2;
 312	u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD;
 313	int i;
 314
 315	for (i = 0; i < MAX_RETRIES; i++) {
 316		t1 = get_cycles();
 317		if (hpet)
 318			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
 319		else
 320			*p = acpi_pm_read_early();
 321		t2 = get_cycles();
 322		if ((t2 - t1) < thresh)
 323			return t2;
 324	}
 325	return ULLONG_MAX;
 326}
 327
 328/*
 329 * Calculate the TSC frequency from HPET reference
 330 */
 331static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
 332{
 333	u64 tmp;
 334
 335	if (hpet2 < hpet1)
 336		hpet2 += 0x100000000ULL;
 337	hpet2 -= hpet1;
 338	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
 339	do_div(tmp, 1000000);
 340	deltatsc = div64_u64(deltatsc, tmp);
 341
 342	return (unsigned long) deltatsc;
 343}
 344
 345/*
 346 * Calculate the TSC frequency from PMTimer reference
 347 */
 348static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
 349{
 350	u64 tmp;
 351
 352	if (!pm1 && !pm2)
 353		return ULONG_MAX;
 354
 355	if (pm2 < pm1)
 356		pm2 += (u64)ACPI_PM_OVRRUN;
 357	pm2 -= pm1;
 358	tmp = pm2 * 1000000000LL;
 359	do_div(tmp, PMTMR_TICKS_PER_SEC);
 360	do_div(deltatsc, tmp);
 361
 362	return (unsigned long) deltatsc;
 363}
 364
 365#define CAL_MS		10
 366#define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
 367#define CAL_PIT_LOOPS	1000
 368
 369#define CAL2_MS		50
 370#define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
 371#define CAL2_PIT_LOOPS	5000
 372
 373
 374/*
 375 * Try to calibrate the TSC against the Programmable
 376 * Interrupt Timer and return the frequency of the TSC
 377 * in kHz.
 378 *
 379 * Return ULONG_MAX on failure to calibrate.
 380 */
 381static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
 382{
 383	u64 tsc, t1, t2, delta;
 384	unsigned long tscmin, tscmax;
 385	int pitcnt;
 386
 387	if (!has_legacy_pic()) {
 388		/*
 389		 * Relies on tsc_early_delay_calibrate() to have given us semi
 390		 * usable udelay(), wait for the same 50ms we would have with
 391		 * the PIT loop below.
 392		 */
 393		udelay(10 * USEC_PER_MSEC);
 394		udelay(10 * USEC_PER_MSEC);
 395		udelay(10 * USEC_PER_MSEC);
 396		udelay(10 * USEC_PER_MSEC);
 397		udelay(10 * USEC_PER_MSEC);
 398		return ULONG_MAX;
 399	}
 400
 401	/* Set the Gate high, disable speaker */
 402	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 403
 404	/*
 405	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
 406	 * count mode), binary count. Set the latch register to 50ms
 407	 * (LSB then MSB) to begin countdown.
 408	 */
 409	outb(0xb0, 0x43);
 410	outb(latch & 0xff, 0x42);
 411	outb(latch >> 8, 0x42);
 412
 413	tsc = t1 = t2 = get_cycles();
 414
 415	pitcnt = 0;
 416	tscmax = 0;
 417	tscmin = ULONG_MAX;
 418	while ((inb(0x61) & 0x20) == 0) {
 419		t2 = get_cycles();
 420		delta = t2 - tsc;
 421		tsc = t2;
 422		if ((unsigned long) delta < tscmin)
 423			tscmin = (unsigned int) delta;
 424		if ((unsigned long) delta > tscmax)
 425			tscmax = (unsigned int) delta;
 426		pitcnt++;
 427	}
 428
 429	/*
 430	 * Sanity checks:
 431	 *
 432	 * If we were not able to read the PIT more than loopmin
 433	 * times, then we have been hit by a massive SMI
 434	 *
 435	 * If the maximum is 10 times larger than the minimum,
 436	 * then we got hit by an SMI as well.
 437	 */
 438	if (pitcnt < loopmin || tscmax > 10 * tscmin)
 439		return ULONG_MAX;
 440
 441	/* Calculate the PIT value */
 442	delta = t2 - t1;
 443	do_div(delta, ms);
 444	return delta;
 445}
 446
 447/*
 448 * This reads the current MSB of the PIT counter, and
 449 * checks if we are running on sufficiently fast and
 450 * non-virtualized hardware.
 451 *
 452 * Our expectations are:
 453 *
 454 *  - the PIT is running at roughly 1.19MHz
 455 *
 456 *  - each IO is going to take about 1us on real hardware,
 457 *    but we allow it to be much faster (by a factor of 10) or
 458 *    _slightly_ slower (ie we allow up to a 2us read+counter
 459 *    update - anything else implies a unacceptably slow CPU
 460 *    or PIT for the fast calibration to work.
 461 *
 462 *  - with 256 PIT ticks to read the value, we have 214us to
 463 *    see the same MSB (and overhead like doing a single TSC
 464 *    read per MSB value etc).
 465 *
 466 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 467 *    them each to take about a microsecond on real hardware.
 468 *    So we expect a count value of around 100. But we'll be
 469 *    generous, and accept anything over 50.
 470 *
 471 *  - if the PIT is stuck, and we see *many* more reads, we
 472 *    return early (and the next caller of pit_expect_msb()
 473 *    then consider it a failure when they don't see the
 474 *    next expected value).
 475 *
 476 * These expectations mean that we know that we have seen the
 477 * transition from one expected value to another with a fairly
 478 * high accuracy, and we didn't miss any events. We can thus
 479 * use the TSC value at the transitions to calculate a pretty
 480 * good value for the TSC frequencty.
 481 */
 482static inline int pit_verify_msb(unsigned char val)
 483{
 484	/* Ignore LSB */
 485	inb(0x42);
 486	return inb(0x42) == val;
 487}
 488
 489static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
 490{
 491	int count;
 492	u64 tsc = 0, prev_tsc = 0;
 493
 494	for (count = 0; count < 50000; count++) {
 495		if (!pit_verify_msb(val))
 496			break;
 497		prev_tsc = tsc;
 498		tsc = get_cycles();
 499	}
 500	*deltap = get_cycles() - prev_tsc;
 501	*tscp = tsc;
 502
 503	/*
 504	 * We require _some_ success, but the quality control
 505	 * will be based on the error terms on the TSC values.
 506	 */
 507	return count > 5;
 508}
 509
 510/*
 511 * How many MSB values do we want to see? We aim for
 512 * a maximum error rate of 500ppm (in practice the
 513 * real error is much smaller), but refuse to spend
 514 * more than 50ms on it.
 515 */
 516#define MAX_QUICK_PIT_MS 50
 517#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
 518
 519static unsigned long quick_pit_calibrate(void)
 520{
 521	int i;
 522	u64 tsc, delta;
 523	unsigned long d1, d2;
 524
 525	if (!has_legacy_pic())
 526		return 0;
 527
 528	/* Set the Gate high, disable speaker */
 529	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 530
 531	/*
 532	 * Counter 2, mode 0 (one-shot), binary count
 533	 *
 534	 * NOTE! Mode 2 decrements by two (and then the
 535	 * output is flipped each time, giving the same
 536	 * final output frequency as a decrement-by-one),
 537	 * so mode 0 is much better when looking at the
 538	 * individual counts.
 539	 */
 540	outb(0xb0, 0x43);
 541
 542	/* Start at 0xffff */
 543	outb(0xff, 0x42);
 544	outb(0xff, 0x42);
 545
 546	/*
 547	 * The PIT starts counting at the next edge, so we
 548	 * need to delay for a microsecond. The easiest way
 549	 * to do that is to just read back the 16-bit counter
 550	 * once from the PIT.
 551	 */
 552	pit_verify_msb(0);
 553
 554	if (pit_expect_msb(0xff, &tsc, &d1)) {
 555		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
 556			if (!pit_expect_msb(0xff-i, &delta, &d2))
 557				break;
 558
 559			delta -= tsc;
 560
 561			/*
 562			 * Extrapolate the error and fail fast if the error will
 563			 * never be below 500 ppm.
 564			 */
 565			if (i == 1 &&
 566			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
 567				return 0;
 568
 569			/*
 570			 * Iterate until the error is less than 500 ppm
 571			 */
 
 572			if (d1+d2 >= delta >> 11)
 573				continue;
 574
 575			/*
 576			 * Check the PIT one more time to verify that
 577			 * all TSC reads were stable wrt the PIT.
 578			 *
 579			 * This also guarantees serialization of the
 580			 * last cycle read ('d2') in pit_expect_msb.
 581			 */
 582			if (!pit_verify_msb(0xfe - i))
 583				break;
 584			goto success;
 585		}
 586	}
 587	pr_info("Fast TSC calibration failed\n");
 588	return 0;
 589
 590success:
 591	/*
 592	 * Ok, if we get here, then we've seen the
 593	 * MSB of the PIT decrement 'i' times, and the
 594	 * error has shrunk to less than 500 ppm.
 595	 *
 596	 * As a result, we can depend on there not being
 597	 * any odd delays anywhere, and the TSC reads are
 598	 * reliable (within the error).
 599	 *
 600	 * kHz = ticks / time-in-seconds / 1000;
 601	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
 602	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
 603	 */
 604	delta *= PIT_TICK_RATE;
 605	do_div(delta, i*256*1000);
 606	pr_info("Fast TSC calibration using PIT\n");
 607	return delta;
 608}
 609
 610/**
 611 * native_calibrate_tsc
 612 * Determine TSC frequency via CPUID, else return 0.
 613 */
 614unsigned long native_calibrate_tsc(void)
 615{
 616	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
 617	unsigned int crystal_khz;
 618
 619	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
 620		return 0;
 621
 622	if (boot_cpu_data.cpuid_level < 0x15)
 623		return 0;
 624
 625	eax_denominator = ebx_numerator = ecx_hz = edx = 0;
 626
 627	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
 628	cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
 629
 630	if (ebx_numerator == 0 || eax_denominator == 0)
 631		return 0;
 632
 633	crystal_khz = ecx_hz / 1000;
 634
 635	/*
 636	 * Denverton SoCs don't report crystal clock, and also don't support
 637	 * CPUID.0x16 for the calculation below, so hardcode the 25MHz crystal
 638	 * clock.
 639	 */
 640	if (crystal_khz == 0 &&
 641			boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT_D)
 642		crystal_khz = 25000;
 643
 644	/*
 645	 * TSC frequency reported directly by CPUID is a "hardware reported"
 646	 * frequency and is the most accurate one so far we have. This
 647	 * is considered a known frequency.
 648	 */
 649	if (crystal_khz != 0)
 650		setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
 651
 652	/*
 653	 * Some Intel SoCs like Skylake and Kabylake don't report the crystal
 654	 * clock, but we can easily calculate it to a high degree of accuracy
 655	 * by considering the crystal ratio and the CPU speed.
 656	 */
 657	if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= 0x16) {
 658		unsigned int eax_base_mhz, ebx, ecx, edx;
 659
 660		cpuid(0x16, &eax_base_mhz, &ebx, &ecx, &edx);
 661		crystal_khz = eax_base_mhz * 1000 *
 662			eax_denominator / ebx_numerator;
 663	}
 664
 665	if (crystal_khz == 0)
 666		return 0;
 667
 668	/*
 669	 * For Atom SoCs TSC is the only reliable clocksource.
 670	 * Mark TSC reliable so no watchdog on it.
 671	 */
 672	if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
 673		setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
 674
 675#ifdef CONFIG_X86_LOCAL_APIC
 676	/*
 677	 * The local APIC appears to be fed by the core crystal clock
 678	 * (which sounds entirely sensible). We can set the global
 679	 * lapic_timer_period here to avoid having to calibrate the APIC
 680	 * timer later.
 681	 */
 682	lapic_timer_period = crystal_khz * 1000 / HZ;
 683#endif
 684
 685	return crystal_khz * ebx_numerator / eax_denominator;
 686}
 687
 688static unsigned long cpu_khz_from_cpuid(void)
 689{
 690	unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
 691
 692	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
 693		return 0;
 694
 695	if (boot_cpu_data.cpuid_level < 0x16)
 696		return 0;
 697
 698	eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
 699
 700	cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
 701
 702	return eax_base_mhz * 1000;
 703}
 704
 705/*
 706 * calibrate cpu using pit, hpet, and ptimer methods. They are available
 707 * later in boot after acpi is initialized.
 708 */
 709static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
 710{
 711	u64 tsc1, tsc2, delta, ref1, ref2;
 712	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
 713	unsigned long flags, latch, ms;
 714	int hpet = is_hpet_enabled(), i, loopmin;
 715
 
 
 
 
 
 
 
 
 
 
 
 
 
 716	/*
 717	 * Run 5 calibration loops to get the lowest frequency value
 718	 * (the best estimate). We use two different calibration modes
 719	 * here:
 720	 *
 721	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
 722	 * load a timeout of 50ms. We read the time right after we
 723	 * started the timer and wait until the PIT count down reaches
 724	 * zero. In each wait loop iteration we read the TSC and check
 725	 * the delta to the previous read. We keep track of the min
 726	 * and max values of that delta. The delta is mostly defined
 727	 * by the IO time of the PIT access, so we can detect when
 728	 * any disturbance happened between the two reads. If the
 729	 * maximum time is significantly larger than the minimum time,
 730	 * then we discard the result and have another try.
 731	 *
 732	 * 2) Reference counter. If available we use the HPET or the
 733	 * PMTIMER as a reference to check the sanity of that value.
 734	 * We use separate TSC readouts and check inside of the
 735	 * reference read for any possible disturbance. We dicard
 736	 * disturbed values here as well. We do that around the PIT
 737	 * calibration delay loop as we have to wait for a certain
 738	 * amount of time anyway.
 739	 */
 740
 741	/* Preset PIT loop values */
 742	latch = CAL_LATCH;
 743	ms = CAL_MS;
 744	loopmin = CAL_PIT_LOOPS;
 745
 746	for (i = 0; i < 3; i++) {
 747		unsigned long tsc_pit_khz;
 748
 749		/*
 750		 * Read the start value and the reference count of
 751		 * hpet/pmtimer when available. Then do the PIT
 752		 * calibration, which will take at least 50ms, and
 753		 * read the end value.
 754		 */
 755		local_irq_save(flags);
 756		tsc1 = tsc_read_refs(&ref1, hpet);
 757		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
 758		tsc2 = tsc_read_refs(&ref2, hpet);
 759		local_irq_restore(flags);
 760
 761		/* Pick the lowest PIT TSC calibration so far */
 762		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
 763
 764		/* hpet or pmtimer available ? */
 765		if (ref1 == ref2)
 766			continue;
 767
 768		/* Check, whether the sampling was disturbed */
 769		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
 770			continue;
 771
 772		tsc2 = (tsc2 - tsc1) * 1000000LL;
 773		if (hpet)
 774			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
 775		else
 776			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
 777
 778		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
 779
 780		/* Check the reference deviation */
 781		delta = ((u64) tsc_pit_min) * 100;
 782		do_div(delta, tsc_ref_min);
 783
 784		/*
 785		 * If both calibration results are inside a 10% window
 786		 * then we can be sure, that the calibration
 787		 * succeeded. We break out of the loop right away. We
 788		 * use the reference value, as it is more precise.
 789		 */
 790		if (delta >= 90 && delta <= 110) {
 791			pr_info("PIT calibration matches %s. %d loops\n",
 792				hpet ? "HPET" : "PMTIMER", i + 1);
 793			return tsc_ref_min;
 794		}
 795
 796		/*
 797		 * Check whether PIT failed more than once. This
 798		 * happens in virtualized environments. We need to
 799		 * give the virtual PC a slightly longer timeframe for
 800		 * the HPET/PMTIMER to make the result precise.
 801		 */
 802		if (i == 1 && tsc_pit_min == ULONG_MAX) {
 803			latch = CAL2_LATCH;
 804			ms = CAL2_MS;
 805			loopmin = CAL2_PIT_LOOPS;
 806		}
 807	}
 808
 809	/*
 810	 * Now check the results.
 811	 */
 812	if (tsc_pit_min == ULONG_MAX) {
 813		/* PIT gave no useful value */
 814		pr_warn("Unable to calibrate against PIT\n");
 815
 816		/* We don't have an alternative source, disable TSC */
 817		if (!hpet && !ref1 && !ref2) {
 818			pr_notice("No reference (HPET/PMTIMER) available\n");
 819			return 0;
 820		}
 821
 822		/* The alternative source failed as well, disable TSC */
 823		if (tsc_ref_min == ULONG_MAX) {
 824			pr_warn("HPET/PMTIMER calibration failed\n");
 825			return 0;
 826		}
 827
 828		/* Use the alternative source */
 829		pr_info("using %s reference calibration\n",
 830			hpet ? "HPET" : "PMTIMER");
 831
 832		return tsc_ref_min;
 833	}
 834
 835	/* We don't have an alternative source, use the PIT calibration value */
 836	if (!hpet && !ref1 && !ref2) {
 837		pr_info("Using PIT calibration value\n");
 838		return tsc_pit_min;
 839	}
 840
 841	/* The alternative source failed, use the PIT calibration value */
 842	if (tsc_ref_min == ULONG_MAX) {
 843		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
 844		return tsc_pit_min;
 845	}
 846
 847	/*
 848	 * The calibration values differ too much. In doubt, we use
 849	 * the PIT value as we know that there are PMTIMERs around
 850	 * running at double speed. At least we let the user know:
 851	 */
 852	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
 853		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
 854	pr_info("Using PIT calibration value\n");
 855	return tsc_pit_min;
 856}
 857
 858/**
 859 * native_calibrate_cpu_early - can calibrate the cpu early in boot
 860 */
 861unsigned long native_calibrate_cpu_early(void)
 862{
 863	unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
 864
 865	if (!fast_calibrate)
 866		fast_calibrate = cpu_khz_from_msr();
 867	if (!fast_calibrate) {
 868		local_irq_save(flags);
 869		fast_calibrate = quick_pit_calibrate();
 870		local_irq_restore(flags);
 871	}
 872	return fast_calibrate;
 873}
 874
 875
 876/**
 877 * native_calibrate_cpu - calibrate the cpu
 878 */
 879static unsigned long native_calibrate_cpu(void)
 880{
 881	unsigned long tsc_freq = native_calibrate_cpu_early();
 882
 883	if (!tsc_freq)
 884		tsc_freq = pit_hpet_ptimer_calibrate_cpu();
 885
 886	return tsc_freq;
 887}
 888
 889void recalibrate_cpu_khz(void)
 890{
 891#ifndef CONFIG_SMP
 892	unsigned long cpu_khz_old = cpu_khz;
 893
 894	if (!boot_cpu_has(X86_FEATURE_TSC))
 895		return;
 896
 897	cpu_khz = x86_platform.calibrate_cpu();
 898	tsc_khz = x86_platform.calibrate_tsc();
 899	if (tsc_khz == 0)
 900		tsc_khz = cpu_khz;
 901	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
 902		cpu_khz = tsc_khz;
 903	cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
 904						    cpu_khz_old, cpu_khz);
 
 
 
 
 
 
 905#endif
 906}
 907
 908EXPORT_SYMBOL(recalibrate_cpu_khz);
 909
 910
 911static unsigned long long cyc2ns_suspend;
 912
 913void tsc_save_sched_clock_state(void)
 914{
 915	if (!sched_clock_stable())
 916		return;
 917
 918	cyc2ns_suspend = sched_clock();
 919}
 920
 921/*
 922 * Even on processors with invariant TSC, TSC gets reset in some the
 923 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
 924 * arbitrary value (still sync'd across cpu's) during resume from such sleep
 925 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
 926 * that sched_clock() continues from the point where it was left off during
 927 * suspend.
 928 */
 929void tsc_restore_sched_clock_state(void)
 930{
 931	unsigned long long offset;
 932	unsigned long flags;
 933	int cpu;
 934
 935	if (!sched_clock_stable())
 936		return;
 937
 938	local_irq_save(flags);
 939
 940	/*
 941	 * We're coming out of suspend, there's no concurrency yet; don't
 942	 * bother being nice about the RCU stuff, just write to both
 943	 * data fields.
 944	 */
 945
 946	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
 947	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
 948
 949	offset = cyc2ns_suspend - sched_clock();
 950
 951	for_each_possible_cpu(cpu) {
 952		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
 953		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
 954	}
 955
 956	local_irq_restore(flags);
 957}
 958
 959#ifdef CONFIG_CPU_FREQ
 960/*
 961 * Frequency scaling support. Adjust the TSC based timer when the CPU frequency
 962 * changes.
 963 *
 964 * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC
 965 * as unstable and give up in those cases.
 
 966 *
 967 * Should fix up last_tsc too. Currently gettimeofday in the
 968 * first tick after the change will be slightly wrong.
 969 */
 970
 971static unsigned int  ref_freq;
 972static unsigned long loops_per_jiffy_ref;
 973static unsigned long tsc_khz_ref;
 974
 975static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
 976				void *data)
 977{
 978	struct cpufreq_freqs *freq = data;
 
 979
 980	if (num_online_cpus() > 1) {
 981		mark_tsc_unstable("cpufreq changes on SMP");
 982		return 0;
 983	}
 
 
 
 
 
 984
 985	if (!ref_freq) {
 986		ref_freq = freq->old;
 987		loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy;
 988		tsc_khz_ref = tsc_khz;
 989	}
 990
 991	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
 992	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
 993		boot_cpu_data.loops_per_jiffy =
 994			cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
 995
 996		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
 997		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
 998			mark_tsc_unstable("cpufreq changes");
 999
1000		set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc());
1001	}
1002
 
 
1003	return 0;
1004}
1005
1006static struct notifier_block time_cpufreq_notifier_block = {
1007	.notifier_call  = time_cpufreq_notifier
1008};
1009
1010static int __init cpufreq_register_tsc_scaling(void)
1011{
1012	if (!boot_cpu_has(X86_FEATURE_TSC))
1013		return 0;
1014	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1015		return 0;
1016	cpufreq_register_notifier(&time_cpufreq_notifier_block,
1017				CPUFREQ_TRANSITION_NOTIFIER);
1018	return 0;
1019}
1020
1021core_initcall(cpufreq_register_tsc_scaling);
1022
1023#endif /* CONFIG_CPU_FREQ */
1024
1025#define ART_CPUID_LEAF (0x15)
1026#define ART_MIN_DENOMINATOR (1)
1027
1028
1029/*
1030 * If ART is present detect the numerator:denominator to convert to TSC
1031 */
1032static void __init detect_art(void)
1033{
1034	unsigned int unused[2];
1035
1036	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1037		return;
1038
1039	/*
1040	 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
1041	 * and the TSC counter resets must not occur asynchronously.
1042	 */
1043	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1044	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1045	    !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
1046	    tsc_async_resets)
1047		return;
1048
1049	cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1050	      &art_to_tsc_numerator, unused, unused+1);
1051
1052	if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1053		return;
1054
1055	rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
1056
1057	/* Make this sticky over multiple CPU init calls */
1058	setup_force_cpu_cap(X86_FEATURE_ART);
1059}
1060
1061
1062/* clocksource code */
1063
1064static void tsc_resume(struct clocksource *cs)
1065{
1066	tsc_verify_tsc_adjust(true);
1067}
1068
1069/*
1070 * We used to compare the TSC to the cycle_last value in the clocksource
1071 * structure to avoid a nasty time-warp. This can be observed in a
1072 * very small window right after one CPU updated cycle_last under
1073 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1074 * is smaller than the cycle_last reference value due to a TSC which
1075 * is slighty behind. This delta is nowhere else observable, but in
1076 * that case it results in a forward time jump in the range of hours
1077 * due to the unsigned delta calculation of the time keeping core
1078 * code, which is necessary to support wrapping clocksources like pm
1079 * timer.
1080 *
1081 * This sanity check is now done in the core timekeeping code.
1082 * checking the result of read_tsc() - cycle_last for being negative.
1083 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1084 */
1085static u64 read_tsc(struct clocksource *cs)
1086{
1087	return (u64)rdtsc_ordered();
1088}
1089
1090static void tsc_cs_mark_unstable(struct clocksource *cs)
1091{
1092	if (tsc_unstable)
1093		return;
1094
1095	tsc_unstable = 1;
1096	if (using_native_sched_clock())
1097		clear_sched_clock_stable();
1098	disable_sched_clock_irqtime();
1099	pr_info("Marking TSC unstable due to clocksource watchdog\n");
1100}
1101
1102static void tsc_cs_tick_stable(struct clocksource *cs)
1103{
1104	if (tsc_unstable)
1105		return;
1106
1107	if (using_native_sched_clock())
1108		sched_clock_tick_stable();
1109}
1110
1111/*
1112 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1113 */
1114static struct clocksource clocksource_tsc_early = {
1115	.name                   = "tsc-early",
1116	.rating                 = 299,
1117	.read                   = read_tsc,
1118	.mask                   = CLOCKSOURCE_MASK(64),
1119	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1120				  CLOCK_SOURCE_MUST_VERIFY,
1121	.archdata               = { .vclock_mode = VCLOCK_TSC },
1122	.resume			= tsc_resume,
1123	.mark_unstable		= tsc_cs_mark_unstable,
1124	.tick_stable		= tsc_cs_tick_stable,
1125	.list			= LIST_HEAD_INIT(clocksource_tsc_early.list),
1126};
1127
1128/*
1129 * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1130 * this one will immediately take over. We will only register if TSC has
1131 * been found good.
1132 */
1133static struct clocksource clocksource_tsc = {
1134	.name                   = "tsc",
1135	.rating                 = 300,
1136	.read                   = read_tsc,
 
1137	.mask                   = CLOCKSOURCE_MASK(64),
1138	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1139				  CLOCK_SOURCE_VALID_FOR_HRES |
1140				  CLOCK_SOURCE_MUST_VERIFY,
1141	.archdata               = { .vclock_mode = VCLOCK_TSC },
1142	.resume			= tsc_resume,
1143	.mark_unstable		= tsc_cs_mark_unstable,
1144	.tick_stable		= tsc_cs_tick_stable,
1145	.list			= LIST_HEAD_INIT(clocksource_tsc.list),
1146};
1147
1148void mark_tsc_unstable(char *reason)
1149{
1150	if (tsc_unstable)
1151		return;
1152
1153	tsc_unstable = 1;
1154	if (using_native_sched_clock())
1155		clear_sched_clock_stable();
1156	disable_sched_clock_irqtime();
1157	pr_info("Marking TSC unstable due to %s\n", reason);
1158
1159	clocksource_mark_unstable(&clocksource_tsc_early);
1160	clocksource_mark_unstable(&clocksource_tsc);
 
 
 
 
 
1161}
1162
1163EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1164
1165static void __init check_system_tsc_reliable(void)
1166{
1167#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1168	if (is_geode_lx()) {
1169		/* RTSC counts during suspend */
1170#define RTSC_SUSP 0x100
1171		unsigned long res_low, res_high;
1172
1173		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1174		/* Geode_LX - the OLPC CPU has a very reliable TSC */
1175		if (res_low & RTSC_SUSP)
1176			tsc_clocksource_reliable = 1;
1177	}
1178#endif
1179	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1180		tsc_clocksource_reliable = 1;
1181}
1182
1183/*
1184 * Make an educated guess if the TSC is trustworthy and synchronized
1185 * over all CPUs.
1186 */
1187int unsynchronized_tsc(void)
1188{
1189	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1190		return 1;
1191
1192#ifdef CONFIG_SMP
1193	if (apic_is_clustered_box())
1194		return 1;
1195#endif
1196
1197	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1198		return 0;
1199
1200	if (tsc_clocksource_reliable)
1201		return 0;
1202	/*
1203	 * Intel systems are normally all synchronized.
1204	 * Exceptions must mark TSC as unstable:
1205	 */
1206	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1207		/* assume multi socket systems are not synchronized: */
1208		if (num_possible_cpus() > 1)
1209			return 1;
1210	}
1211
1212	return 0;
1213}
1214
1215/*
1216 * Convert ART to TSC given numerator/denominator found in detect_art()
1217 */
1218struct system_counterval_t convert_art_to_tsc(u64 art)
1219{
1220	u64 tmp, res, rem;
1221
1222	rem = do_div(art, art_to_tsc_denominator);
1223
1224	res = art * art_to_tsc_numerator;
1225	tmp = rem * art_to_tsc_numerator;
1226
1227	do_div(tmp, art_to_tsc_denominator);
1228	res += tmp + art_to_tsc_offset;
1229
1230	return (struct system_counterval_t) {.cs = art_related_clocksource,
1231			.cycles = res};
1232}
1233EXPORT_SYMBOL(convert_art_to_tsc);
1234
1235/**
1236 * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
1237 * @art_ns: ART (Always Running Timer) in unit of nanoseconds
1238 *
1239 * PTM requires all timestamps to be in units of nanoseconds. When user
1240 * software requests a cross-timestamp, this function converts system timestamp
1241 * to TSC.
1242 *
1243 * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
1244 * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
1245 * that this flag is set before conversion to TSC is attempted.
1246 *
1247 * Return:
1248 * struct system_counterval_t - system counter value with the pointer to the
1249 *	corresponding clocksource
1250 *	@cycles:	System counter value
1251 *	@cs:		Clocksource corresponding to system counter value. Used
1252 *			by timekeeping code to verify comparibility of two cycle
1253 *			values.
1254 */
1255
1256struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
1257{
1258	u64 tmp, res, rem;
1259
1260	rem = do_div(art_ns, USEC_PER_SEC);
1261
1262	res = art_ns * tsc_khz;
1263	tmp = rem * tsc_khz;
1264
1265	do_div(tmp, USEC_PER_SEC);
1266	res += tmp;
1267
1268	return (struct system_counterval_t) { .cs = art_related_clocksource,
1269					      .cycles = res};
1270}
1271EXPORT_SYMBOL(convert_art_ns_to_tsc);
1272
1273
1274static void tsc_refine_calibration_work(struct work_struct *work);
1275static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1276/**
1277 * tsc_refine_calibration_work - Further refine tsc freq calibration
1278 * @work - ignored.
1279 *
1280 * This functions uses delayed work over a period of a
1281 * second to further refine the TSC freq value. Since this is
1282 * timer based, instead of loop based, we don't block the boot
1283 * process while this longer calibration is done.
1284 *
1285 * If there are any calibration anomalies (too many SMIs, etc),
1286 * or the refined calibration is off by 1% of the fast early
1287 * calibration, we throw out the new calibration and use the
1288 * early calibration.
1289 */
1290static void tsc_refine_calibration_work(struct work_struct *work)
1291{
1292	static u64 tsc_start = ULLONG_MAX, ref_start;
1293	static int hpet;
1294	u64 tsc_stop, ref_stop, delta;
1295	unsigned long freq;
1296	int cpu;
1297
1298	/* Don't bother refining TSC on unstable systems */
1299	if (tsc_unstable)
1300		goto unreg;
1301
1302	/*
1303	 * Since the work is started early in boot, we may be
1304	 * delayed the first time we expire. So set the workqueue
1305	 * again once we know timers are working.
1306	 */
1307	if (tsc_start == ULLONG_MAX) {
1308restart:
1309		/*
1310		 * Only set hpet once, to avoid mixing hardware
1311		 * if the hpet becomes enabled later.
1312		 */
1313		hpet = is_hpet_enabled();
1314		tsc_start = tsc_read_refs(&ref_start, hpet);
1315		schedule_delayed_work(&tsc_irqwork, HZ);
 
1316		return;
1317	}
1318
1319	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1320
1321	/* hpet or pmtimer available ? */
1322	if (ref_start == ref_stop)
1323		goto out;
1324
1325	/* Check, whether the sampling was disturbed */
1326	if (tsc_stop == ULLONG_MAX)
1327		goto restart;
1328
1329	delta = tsc_stop - tsc_start;
1330	delta *= 1000000LL;
1331	if (hpet)
1332		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1333	else
1334		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1335
1336	/* Make sure we're within 1% */
1337	if (abs(tsc_khz - freq) > tsc_khz/100)
1338		goto out;
1339
1340	tsc_khz = freq;
1341	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1342		(unsigned long)tsc_khz / 1000,
1343		(unsigned long)tsc_khz % 1000);
1344
1345	/* Inform the TSC deadline clockevent devices about the recalibration */
1346	lapic_update_tsc_freq();
1347
1348	/* Update the sched_clock() rate to match the clocksource one */
1349	for_each_possible_cpu(cpu)
1350		set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1351
1352out:
1353	if (tsc_unstable)
1354		goto unreg;
1355
1356	if (boot_cpu_has(X86_FEATURE_ART))
1357		art_related_clocksource = &clocksource_tsc;
1358	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1359unreg:
1360	clocksource_unregister(&clocksource_tsc_early);
1361}
1362
1363
1364static int __init init_tsc_clocksource(void)
1365{
1366	if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
1367		return 0;
1368
1369	if (tsc_unstable)
1370		goto unreg;
1371
1372	if (tsc_clocksource_reliable || no_tsc_watchdog)
1373		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
 
 
 
 
 
1374
1375	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1376		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1377
1378	/*
1379	 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1380	 * the refined calibration and directly register it as a clocksource.
1381	 */
1382	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1383		if (boot_cpu_has(X86_FEATURE_ART))
1384			art_related_clocksource = &clocksource_tsc;
1385		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1386unreg:
1387		clocksource_unregister(&clocksource_tsc_early);
1388		return 0;
1389	}
1390
1391	schedule_delayed_work(&tsc_irqwork, 0);
1392	return 0;
1393}
1394/*
1395 * We use device_initcall here, to ensure we run after the hpet
1396 * is fully initialized, which may occur at fs_initcall time.
1397 */
1398device_initcall(init_tsc_clocksource);
1399
1400static bool __init determine_cpu_tsc_frequencies(bool early)
1401{
1402	/* Make sure that cpu and tsc are not already calibrated */
1403	WARN_ON(cpu_khz || tsc_khz);
1404
1405	if (early) {
1406		cpu_khz = x86_platform.calibrate_cpu();
1407		tsc_khz = x86_platform.calibrate_tsc();
1408	} else {
1409		/* We should not be here with non-native cpu calibration */
1410		WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
1411		cpu_khz = pit_hpet_ptimer_calibrate_cpu();
1412	}
1413
1414	/*
1415	 * Trust non-zero tsc_khz as authoritative,
1416	 * and use it to sanity check cpu_khz,
1417	 * which will be off if system timer is off.
1418	 */
1419	if (tsc_khz == 0)
1420		tsc_khz = cpu_khz;
1421	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1422		cpu_khz = tsc_khz;
1423
1424	if (tsc_khz == 0)
1425		return false;
1426
1427	pr_info("Detected %lu.%03lu MHz processor\n",
1428		(unsigned long)cpu_khz / KHZ,
1429		(unsigned long)cpu_khz % KHZ);
1430
1431	if (cpu_khz != tsc_khz) {
1432		pr_info("Detected %lu.%03lu MHz TSC",
1433			(unsigned long)tsc_khz / KHZ,
1434			(unsigned long)tsc_khz % KHZ);
1435	}
1436	return true;
1437}
1438
1439static unsigned long __init get_loops_per_jiffy(void)
1440{
1441	u64 lpj = (u64)tsc_khz * KHZ;
1442
1443	do_div(lpj, HZ);
1444	return lpj;
1445}
1446
1447static void __init tsc_enable_sched_clock(void)
1448{
1449	/* Sanitize TSC ADJUST before cyc2ns gets initialized */
1450	tsc_store_and_check_tsc_adjust(true);
1451	cyc2ns_init_boot_cpu();
1452	static_branch_enable(&__use_tsc);
1453}
1454
1455void __init tsc_early_init(void)
1456{
1457	if (!boot_cpu_has(X86_FEATURE_TSC))
1458		return;
1459	/* Don't change UV TSC multi-chassis synchronization */
1460	if (is_early_uv_system())
1461		return;
1462	if (!determine_cpu_tsc_frequencies(true))
1463		return;
1464	loops_per_jiffy = get_loops_per_jiffy();
1465
1466	tsc_enable_sched_clock();
1467}
 
1468
1469void __init tsc_init(void)
1470{
1471	/*
1472	 * native_calibrate_cpu_early can only calibrate using methods that are
1473	 * available early in boot.
 
 
1474	 */
1475	if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
1476		x86_platform.calibrate_cpu = native_calibrate_cpu;
 
 
1477
1478	if (!boot_cpu_has(X86_FEATURE_TSC)) {
1479		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1480		return;
1481	}
1482
1483	if (!tsc_khz) {
1484		/* We failed to determine frequencies earlier, try again */
1485		if (!determine_cpu_tsc_frequencies(false)) {
1486			mark_tsc_unstable("could not calculate TSC khz");
1487			setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1488			return;
1489		}
1490		tsc_enable_sched_clock();
1491	}
1492
1493	cyc2ns_init_secondary_cpus();
 
1494
1495	if (!no_sched_irq_time)
1496		enable_sched_clock_irqtime();
1497
1498	lpj_fine = get_loops_per_jiffy();
1499	use_tsc_delay();
 
1500
1501	check_system_tsc_reliable();
1502
1503	if (unsynchronized_tsc()) {
1504		mark_tsc_unstable("TSCs unsynchronized");
1505		return;
1506	}
1507
1508	if (tsc_clocksource_reliable || no_tsc_watchdog)
1509		clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1510
1511	clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1512	detect_art();
1513}
1514
1515#ifdef CONFIG_SMP
1516/*
1517 * If we have a constant TSC and are using the TSC for the delay loop,
1518 * we can skip clock calibration if another cpu in the same socket has already
1519 * been calibrated. This assumes that CONSTANT_TSC applies to all
1520 * cpus in the socket - this should be a safe assumption.
1521 */
1522unsigned long calibrate_delay_is_known(void)
1523{
1524	int sibling, cpu = smp_processor_id();
1525	int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1526	const struct cpumask *mask = topology_core_cpumask(cpu);
1527
1528	if (!constant_tsc || !mask)
1529		return 0;
1530
1531	sibling = cpumask_any_but(mask, cpu);
1532	if (sibling < nr_cpu_ids)
1533		return cpu_data(sibling).loops_per_jiffy;
1534	return 0;
1535}
1536#endif
v3.15
 
   1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   2
   3#include <linux/kernel.h>
   4#include <linux/sched.h>
 
   5#include <linux/init.h>
   6#include <linux/module.h>
   7#include <linux/timer.h>
   8#include <linux/acpi_pmtmr.h>
   9#include <linux/cpufreq.h>
  10#include <linux/delay.h>
  11#include <linux/clocksource.h>
  12#include <linux/percpu.h>
  13#include <linux/timex.h>
  14#include <linux/static_key.h>
  15
  16#include <asm/hpet.h>
  17#include <asm/timer.h>
  18#include <asm/vgtod.h>
  19#include <asm/time.h>
  20#include <asm/delay.h>
  21#include <asm/hypervisor.h>
  22#include <asm/nmi.h>
  23#include <asm/x86_init.h>
 
 
 
 
 
  24
  25unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
  26EXPORT_SYMBOL(cpu_khz);
  27
  28unsigned int __read_mostly tsc_khz;
  29EXPORT_SYMBOL(tsc_khz);
  30
 
 
  31/*
  32 * TSC can be unstable due to cpufreq or due to unsynced TSCs
  33 */
  34static int __read_mostly tsc_unstable;
  35
  36/* native_sched_clock() is called before tsc_init(), so
  37   we must start with the TSC soft disabled to prevent
  38   erroneous rdtsc usage on !cpu_has_tsc processors */
  39static int __read_mostly tsc_disabled = -1;
  40
  41static struct static_key __use_tsc = STATIC_KEY_INIT;
  42
  43int tsc_clocksource_reliable;
  44
  45/*
  46 * Use a ring-buffer like data structure, where a writer advances the head by
  47 * writing a new data entry and a reader advances the tail when it observes a
  48 * new entry.
  49 *
  50 * Writers are made to wait on readers until there's space to write a new
  51 * entry.
  52 *
  53 * This means that we can always use an {offset, mul} pair to compute a ns
  54 * value that is 'roughly' in the right direction, even if we're writing a new
  55 * {offset, mul} pair during the clock read.
  56 *
  57 * The down-side is that we can no longer guarantee strict monotonicity anymore
  58 * (assuming the TSC was that to begin with), because while we compute the
  59 * intersection point of the two clock slopes and make sure the time is
  60 * continuous at the point of switching; we can no longer guarantee a reader is
  61 * strictly before or after the switch point.
  62 *
  63 * It does mean a reader no longer needs to disable IRQs in order to avoid
  64 * CPU-Freq updates messing with his times, and similarly an NMI reader will
  65 * no longer run the risk of hitting half-written state.
  66 */
  67
  68struct cyc2ns {
  69	struct cyc2ns_data data[2];	/*  0 + 2*24 = 48 */
  70	struct cyc2ns_data *head;	/* 48 + 8    = 56 */
  71	struct cyc2ns_data *tail;	/* 56 + 8    = 64 */
  72}; /* exactly fits one cacheline */
  73
  74static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
  75
  76struct cyc2ns_data *cyc2ns_read_begin(void)
  77{
  78	struct cyc2ns_data *head;
  79
  80	preempt_disable();
  81
  82	head = this_cpu_read(cyc2ns.head);
  83	/*
  84	 * Ensure we observe the entry when we observe the pointer to it.
  85	 * matches the wmb from cyc2ns_write_end().
  86	 */
  87	smp_read_barrier_depends();
  88	head->__count++;
  89	barrier();
  90
  91	return head;
  92}
  93
  94void cyc2ns_read_end(struct cyc2ns_data *head)
  95{
  96	barrier();
  97	/*
  98	 * If we're the outer most nested read; update the tail pointer
  99	 * when we're done. This notifies possible pending writers
 100	 * that we've observed the head pointer and that the other
 101	 * entry is now free.
 102	 */
 103	if (!--head->__count) {
 104		/*
 105		 * x86-TSO does not reorder writes with older reads;
 106		 * therefore once this write becomes visible to another
 107		 * cpu, we must be finished reading the cyc2ns_data.
 108		 *
 109		 * matches with cyc2ns_write_begin().
 110		 */
 111		this_cpu_write(cyc2ns.tail, head);
 112	}
 113	preempt_enable();
 114}
 115
 116/*
 117 * Begin writing a new @data entry for @cpu.
 118 *
 119 * Assumes some sort of write side lock; currently 'provided' by the assumption
 120 * that cpufreq will call its notifiers sequentially.
 121 */
 122static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
 123{
 124	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
 125	struct cyc2ns_data *data = c2n->data;
 126
 127	if (data == c2n->head)
 128		data++;
 129
 130	/* XXX send an IPI to @cpu in order to guarantee a read? */
 
 
 131
 132	/*
 133	 * When we observe the tail write from cyc2ns_read_end(),
 134	 * the cpu must be done with that entry and its safe
 135	 * to start writing to it.
 136	 */
 137	while (c2n->tail == data)
 138		cpu_relax();
 139
 140	return data;
 141}
 142
 143static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
 144{
 145	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
 146
 147	/*
 148	 * Ensure the @data writes are visible before we publish the
 149	 * entry. Matches the data-depencency in cyc2ns_read_begin().
 150	 */
 151	smp_wmb();
 152
 153	ACCESS_ONCE(c2n->head) = data;
 154}
 155
 156/*
 157 * Accelerators for sched_clock()
 158 * convert from cycles(64bits) => nanoseconds (64bits)
 159 *  basic equation:
 160 *              ns = cycles / (freq / ns_per_sec)
 161 *              ns = cycles * (ns_per_sec / freq)
 162 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
 163 *              ns = cycles * (10^6 / cpu_khz)
 164 *
 165 *      Then we use scaling math (suggested by george@mvista.com) to get:
 166 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
 167 *              ns = cycles * cyc2ns_scale / SC
 168 *
 169 *      And since SC is a constant power of two, we can convert the div
 170 *  into a shift.
 
 
 171 *
 172 *  We can use khz divisor instead of mhz to keep a better precision, since
 173 *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
 174 *  (mathieu.desnoyers@polymtl.ca)
 175 *
 176 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 177 */
 178
 179#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
 
 
 
 180
 181static void cyc2ns_data_init(struct cyc2ns_data *data)
 182{
 183	data->cyc2ns_mul = 0;
 184	data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
 185	data->cyc2ns_offset = 0;
 186	data->__count = 0;
 187}
 188
 189static void cyc2ns_init(int cpu)
 190{
 191	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
 192
 193	cyc2ns_data_init(&c2n->data[0]);
 194	cyc2ns_data_init(&c2n->data[1]);
 195
 196	c2n->head = c2n->data;
 197	c2n->tail = c2n->data;
 198}
 199
 200static inline unsigned long long cycles_2_ns(unsigned long long cyc)
 201{
 202	struct cyc2ns_data *data, *tail;
 203	unsigned long long ns;
 
 
 
 204
 205	/*
 206	 * See cyc2ns_read_*() for details; replicated in order to avoid
 207	 * an extra few instructions that came with the abstraction.
 208	 * Notable, it allows us to only do the __count and tail update
 209	 * dance when its actually needed.
 210	 */
 
 
 211
 212	preempt_disable_notrace();
 213	data = this_cpu_read(cyc2ns.head);
 214	tail = this_cpu_read(cyc2ns.tail);
 215
 216	if (likely(data == tail)) {
 217		ns = data->cyc2ns_offset;
 218		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
 219	} else {
 220		data->__count++;
 
 221
 222		barrier();
 
 223
 224		ns = data->cyc2ns_offset;
 225		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
 226
 227		barrier();
 228
 229		if (!--data->__count)
 230			this_cpu_write(cyc2ns.tail, data);
 231	}
 232	preempt_enable_notrace();
 233
 234	return ns;
 235}
 236
 237/* XXX surely we already have this someplace in the kernel?! */
 238#define DIV_ROUND(n, d) (((n) + ((d) / 2)) / (d))
 239
 240static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
 241{
 242	unsigned long long tsc_now, ns_now;
 243	struct cyc2ns_data *data;
 244	unsigned long flags;
 245
 246	local_irq_save(flags);
 247	sched_clock_idle_sleep_event();
 248
 249	if (!cpu_khz)
 250		goto done;
 251
 252	data = cyc2ns_write_begin(cpu);
 
 
 253
 254	rdtscll(tsc_now);
 255	ns_now = cycles_2_ns(tsc_now);
 
 
 
 
 256
 257	/*
 258	 * Compute a new multiplier as per the above comment and ensure our
 259	 * time function is continuous; see the comment near struct
 260	 * cyc2ns_data.
 261	 */
 262	data->cyc2ns_mul = DIV_ROUND(NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR, cpu_khz);
 263	data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
 264	data->cyc2ns_offset = ns_now -
 265		mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
 266
 267	cyc2ns_write_end(cpu, data);
 
 
 
 
 
 
 
 
 
 268
 269done:
 270	sched_clock_idle_wakeup_event(0);
 271	local_irq_restore(flags);
 
 
 
 
 
 272}
 
 273/*
 274 * Scheduler clock - returns current time in nanosec units.
 275 */
 276u64 native_sched_clock(void)
 277{
 278	u64 tsc_now;
 
 
 
 
 
 279
 280	/*
 281	 * Fall back to jiffies if there's no TSC available:
 282	 * ( But note that we still use it if the TSC is marked
 283	 *   unstable. We do this because unlike Time Of Day,
 284	 *   the scheduler clock tolerates small errors and it's
 285	 *   very important for it to be as fast as the platform
 286	 *   can achieve it. )
 287	 */
 288	if (!static_key_false(&__use_tsc)) {
 289		/* No locking but a rare wrong value is not a big deal: */
 290		return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
 291	}
 292
 293	/* read the Time Stamp Counter: */
 294	rdtscll(tsc_now);
 
 295
 296	/* return the value in ns */
 297	return cycles_2_ns(tsc_now);
 
 
 
 
 298}
 299
 300/* We need to define a real function for sched_clock, to override the
 301   weak default version */
 302#ifdef CONFIG_PARAVIRT
 303unsigned long long sched_clock(void)
 304{
 305	return paravirt_sched_clock();
 306}
 
 
 
 
 
 307#else
 308unsigned long long
 309sched_clock(void) __attribute__((alias("native_sched_clock")));
 
 
 310#endif
 311
 312unsigned long long native_read_tsc(void)
 313{
 314	return __native_read_tsc();
 315}
 316EXPORT_SYMBOL(native_read_tsc);
 317
 318int check_tsc_unstable(void)
 319{
 320	return tsc_unstable;
 321}
 322EXPORT_SYMBOL_GPL(check_tsc_unstable);
 323
 324int check_tsc_disabled(void)
 325{
 326	return tsc_disabled;
 327}
 328EXPORT_SYMBOL_GPL(check_tsc_disabled);
 329
 330#ifdef CONFIG_X86_TSC
 331int __init notsc_setup(char *str)
 332{
 333	pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
 334	tsc_disabled = 1;
 335	return 1;
 336}
 337#else
 338/*
 339 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 340 * in cpu/common.c
 341 */
 342int __init notsc_setup(char *str)
 343{
 344	setup_clear_cpu_cap(X86_FEATURE_TSC);
 345	return 1;
 346}
 347#endif
 348
 349__setup("notsc", notsc_setup);
 350
 351static int no_sched_irq_time;
 
 352
 353static int __init tsc_setup(char *str)
 354{
 355	if (!strcmp(str, "reliable"))
 356		tsc_clocksource_reliable = 1;
 357	if (!strncmp(str, "noirqtime", 9))
 358		no_sched_irq_time = 1;
 
 
 
 
 359	return 1;
 360}
 361
 362__setup("tsc=", tsc_setup);
 363
 364#define MAX_RETRIES     5
 365#define SMI_TRESHOLD    50000
 366
 367/*
 368 * Read TSC and the reference counters. Take care of SMI disturbance
 369 */
 370static u64 tsc_read_refs(u64 *p, int hpet)
 371{
 372	u64 t1, t2;
 
 373	int i;
 374
 375	for (i = 0; i < MAX_RETRIES; i++) {
 376		t1 = get_cycles();
 377		if (hpet)
 378			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
 379		else
 380			*p = acpi_pm_read_early();
 381		t2 = get_cycles();
 382		if ((t2 - t1) < SMI_TRESHOLD)
 383			return t2;
 384	}
 385	return ULLONG_MAX;
 386}
 387
 388/*
 389 * Calculate the TSC frequency from HPET reference
 390 */
 391static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
 392{
 393	u64 tmp;
 394
 395	if (hpet2 < hpet1)
 396		hpet2 += 0x100000000ULL;
 397	hpet2 -= hpet1;
 398	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
 399	do_div(tmp, 1000000);
 400	do_div(deltatsc, tmp);
 401
 402	return (unsigned long) deltatsc;
 403}
 404
 405/*
 406 * Calculate the TSC frequency from PMTimer reference
 407 */
 408static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
 409{
 410	u64 tmp;
 411
 412	if (!pm1 && !pm2)
 413		return ULONG_MAX;
 414
 415	if (pm2 < pm1)
 416		pm2 += (u64)ACPI_PM_OVRRUN;
 417	pm2 -= pm1;
 418	tmp = pm2 * 1000000000LL;
 419	do_div(tmp, PMTMR_TICKS_PER_SEC);
 420	do_div(deltatsc, tmp);
 421
 422	return (unsigned long) deltatsc;
 423}
 424
 425#define CAL_MS		10
 426#define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
 427#define CAL_PIT_LOOPS	1000
 428
 429#define CAL2_MS		50
 430#define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
 431#define CAL2_PIT_LOOPS	5000
 432
 433
 434/*
 435 * Try to calibrate the TSC against the Programmable
 436 * Interrupt Timer and return the frequency of the TSC
 437 * in kHz.
 438 *
 439 * Return ULONG_MAX on failure to calibrate.
 440 */
 441static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
 442{
 443	u64 tsc, t1, t2, delta;
 444	unsigned long tscmin, tscmax;
 445	int pitcnt;
 446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 447	/* Set the Gate high, disable speaker */
 448	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 449
 450	/*
 451	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
 452	 * count mode), binary count. Set the latch register to 50ms
 453	 * (LSB then MSB) to begin countdown.
 454	 */
 455	outb(0xb0, 0x43);
 456	outb(latch & 0xff, 0x42);
 457	outb(latch >> 8, 0x42);
 458
 459	tsc = t1 = t2 = get_cycles();
 460
 461	pitcnt = 0;
 462	tscmax = 0;
 463	tscmin = ULONG_MAX;
 464	while ((inb(0x61) & 0x20) == 0) {
 465		t2 = get_cycles();
 466		delta = t2 - tsc;
 467		tsc = t2;
 468		if ((unsigned long) delta < tscmin)
 469			tscmin = (unsigned int) delta;
 470		if ((unsigned long) delta > tscmax)
 471			tscmax = (unsigned int) delta;
 472		pitcnt++;
 473	}
 474
 475	/*
 476	 * Sanity checks:
 477	 *
 478	 * If we were not able to read the PIT more than loopmin
 479	 * times, then we have been hit by a massive SMI
 480	 *
 481	 * If the maximum is 10 times larger than the minimum,
 482	 * then we got hit by an SMI as well.
 483	 */
 484	if (pitcnt < loopmin || tscmax > 10 * tscmin)
 485		return ULONG_MAX;
 486
 487	/* Calculate the PIT value */
 488	delta = t2 - t1;
 489	do_div(delta, ms);
 490	return delta;
 491}
 492
 493/*
 494 * This reads the current MSB of the PIT counter, and
 495 * checks if we are running on sufficiently fast and
 496 * non-virtualized hardware.
 497 *
 498 * Our expectations are:
 499 *
 500 *  - the PIT is running at roughly 1.19MHz
 501 *
 502 *  - each IO is going to take about 1us on real hardware,
 503 *    but we allow it to be much faster (by a factor of 10) or
 504 *    _slightly_ slower (ie we allow up to a 2us read+counter
 505 *    update - anything else implies a unacceptably slow CPU
 506 *    or PIT for the fast calibration to work.
 507 *
 508 *  - with 256 PIT ticks to read the value, we have 214us to
 509 *    see the same MSB (and overhead like doing a single TSC
 510 *    read per MSB value etc).
 511 *
 512 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 513 *    them each to take about a microsecond on real hardware.
 514 *    So we expect a count value of around 100. But we'll be
 515 *    generous, and accept anything over 50.
 516 *
 517 *  - if the PIT is stuck, and we see *many* more reads, we
 518 *    return early (and the next caller of pit_expect_msb()
 519 *    then consider it a failure when they don't see the
 520 *    next expected value).
 521 *
 522 * These expectations mean that we know that we have seen the
 523 * transition from one expected value to another with a fairly
 524 * high accuracy, and we didn't miss any events. We can thus
 525 * use the TSC value at the transitions to calculate a pretty
 526 * good value for the TSC frequencty.
 527 */
 528static inline int pit_verify_msb(unsigned char val)
 529{
 530	/* Ignore LSB */
 531	inb(0x42);
 532	return inb(0x42) == val;
 533}
 534
 535static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
 536{
 537	int count;
 538	u64 tsc = 0, prev_tsc = 0;
 539
 540	for (count = 0; count < 50000; count++) {
 541		if (!pit_verify_msb(val))
 542			break;
 543		prev_tsc = tsc;
 544		tsc = get_cycles();
 545	}
 546	*deltap = get_cycles() - prev_tsc;
 547	*tscp = tsc;
 548
 549	/*
 550	 * We require _some_ success, but the quality control
 551	 * will be based on the error terms on the TSC values.
 552	 */
 553	return count > 5;
 554}
 555
 556/*
 557 * How many MSB values do we want to see? We aim for
 558 * a maximum error rate of 500ppm (in practice the
 559 * real error is much smaller), but refuse to spend
 560 * more than 50ms on it.
 561 */
 562#define MAX_QUICK_PIT_MS 50
 563#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
 564
 565static unsigned long quick_pit_calibrate(void)
 566{
 567	int i;
 568	u64 tsc, delta;
 569	unsigned long d1, d2;
 570
 
 
 
 571	/* Set the Gate high, disable speaker */
 572	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 573
 574	/*
 575	 * Counter 2, mode 0 (one-shot), binary count
 576	 *
 577	 * NOTE! Mode 2 decrements by two (and then the
 578	 * output is flipped each time, giving the same
 579	 * final output frequency as a decrement-by-one),
 580	 * so mode 0 is much better when looking at the
 581	 * individual counts.
 582	 */
 583	outb(0xb0, 0x43);
 584
 585	/* Start at 0xffff */
 586	outb(0xff, 0x42);
 587	outb(0xff, 0x42);
 588
 589	/*
 590	 * The PIT starts counting at the next edge, so we
 591	 * need to delay for a microsecond. The easiest way
 592	 * to do that is to just read back the 16-bit counter
 593	 * once from the PIT.
 594	 */
 595	pit_verify_msb(0);
 596
 597	if (pit_expect_msb(0xff, &tsc, &d1)) {
 598		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
 599			if (!pit_expect_msb(0xff-i, &delta, &d2))
 600				break;
 601
 
 
 
 
 
 
 
 
 
 
 602			/*
 603			 * Iterate until the error is less than 500 ppm
 604			 */
 605			delta -= tsc;
 606			if (d1+d2 >= delta >> 11)
 607				continue;
 608
 609			/*
 610			 * Check the PIT one more time to verify that
 611			 * all TSC reads were stable wrt the PIT.
 612			 *
 613			 * This also guarantees serialization of the
 614			 * last cycle read ('d2') in pit_expect_msb.
 615			 */
 616			if (!pit_verify_msb(0xfe - i))
 617				break;
 618			goto success;
 619		}
 620	}
 621	pr_err("Fast TSC calibration failed\n");
 622	return 0;
 623
 624success:
 625	/*
 626	 * Ok, if we get here, then we've seen the
 627	 * MSB of the PIT decrement 'i' times, and the
 628	 * error has shrunk to less than 500 ppm.
 629	 *
 630	 * As a result, we can depend on there not being
 631	 * any odd delays anywhere, and the TSC reads are
 632	 * reliable (within the error).
 633	 *
 634	 * kHz = ticks / time-in-seconds / 1000;
 635	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
 636	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
 637	 */
 638	delta *= PIT_TICK_RATE;
 639	do_div(delta, i*256*1000);
 640	pr_info("Fast TSC calibration using PIT\n");
 641	return delta;
 642}
 643
 644/**
 645 * native_calibrate_tsc - calibrate the tsc on boot
 
 646 */
 647unsigned long native_calibrate_tsc(void)
 648{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 649	u64 tsc1, tsc2, delta, ref1, ref2;
 650	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
 651	unsigned long flags, latch, ms, fast_calibrate;
 652	int hpet = is_hpet_enabled(), i, loopmin;
 653
 654	/* Calibrate TSC using MSR for Intel Atom SoCs */
 655	local_irq_save(flags);
 656	fast_calibrate = try_msr_calibrate_tsc();
 657	local_irq_restore(flags);
 658	if (fast_calibrate)
 659		return fast_calibrate;
 660
 661	local_irq_save(flags);
 662	fast_calibrate = quick_pit_calibrate();
 663	local_irq_restore(flags);
 664	if (fast_calibrate)
 665		return fast_calibrate;
 666
 667	/*
 668	 * Run 5 calibration loops to get the lowest frequency value
 669	 * (the best estimate). We use two different calibration modes
 670	 * here:
 671	 *
 672	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
 673	 * load a timeout of 50ms. We read the time right after we
 674	 * started the timer and wait until the PIT count down reaches
 675	 * zero. In each wait loop iteration we read the TSC and check
 676	 * the delta to the previous read. We keep track of the min
 677	 * and max values of that delta. The delta is mostly defined
 678	 * by the IO time of the PIT access, so we can detect when a
 679	 * SMI/SMM disturbance happened between the two reads. If the
 680	 * maximum time is significantly larger than the minimum time,
 681	 * then we discard the result and have another try.
 682	 *
 683	 * 2) Reference counter. If available we use the HPET or the
 684	 * PMTIMER as a reference to check the sanity of that value.
 685	 * We use separate TSC readouts and check inside of the
 686	 * reference read for a SMI/SMM disturbance. We dicard
 687	 * disturbed values here as well. We do that around the PIT
 688	 * calibration delay loop as we have to wait for a certain
 689	 * amount of time anyway.
 690	 */
 691
 692	/* Preset PIT loop values */
 693	latch = CAL_LATCH;
 694	ms = CAL_MS;
 695	loopmin = CAL_PIT_LOOPS;
 696
 697	for (i = 0; i < 3; i++) {
 698		unsigned long tsc_pit_khz;
 699
 700		/*
 701		 * Read the start value and the reference count of
 702		 * hpet/pmtimer when available. Then do the PIT
 703		 * calibration, which will take at least 50ms, and
 704		 * read the end value.
 705		 */
 706		local_irq_save(flags);
 707		tsc1 = tsc_read_refs(&ref1, hpet);
 708		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
 709		tsc2 = tsc_read_refs(&ref2, hpet);
 710		local_irq_restore(flags);
 711
 712		/* Pick the lowest PIT TSC calibration so far */
 713		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
 714
 715		/* hpet or pmtimer available ? */
 716		if (ref1 == ref2)
 717			continue;
 718
 719		/* Check, whether the sampling was disturbed by an SMI */
 720		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
 721			continue;
 722
 723		tsc2 = (tsc2 - tsc1) * 1000000LL;
 724		if (hpet)
 725			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
 726		else
 727			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
 728
 729		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
 730
 731		/* Check the reference deviation */
 732		delta = ((u64) tsc_pit_min) * 100;
 733		do_div(delta, tsc_ref_min);
 734
 735		/*
 736		 * If both calibration results are inside a 10% window
 737		 * then we can be sure, that the calibration
 738		 * succeeded. We break out of the loop right away. We
 739		 * use the reference value, as it is more precise.
 740		 */
 741		if (delta >= 90 && delta <= 110) {
 742			pr_info("PIT calibration matches %s. %d loops\n",
 743				hpet ? "HPET" : "PMTIMER", i + 1);
 744			return tsc_ref_min;
 745		}
 746
 747		/*
 748		 * Check whether PIT failed more than once. This
 749		 * happens in virtualized environments. We need to
 750		 * give the virtual PC a slightly longer timeframe for
 751		 * the HPET/PMTIMER to make the result precise.
 752		 */
 753		if (i == 1 && tsc_pit_min == ULONG_MAX) {
 754			latch = CAL2_LATCH;
 755			ms = CAL2_MS;
 756			loopmin = CAL2_PIT_LOOPS;
 757		}
 758	}
 759
 760	/*
 761	 * Now check the results.
 762	 */
 763	if (tsc_pit_min == ULONG_MAX) {
 764		/* PIT gave no useful value */
 765		pr_warn("Unable to calibrate against PIT\n");
 766
 767		/* We don't have an alternative source, disable TSC */
 768		if (!hpet && !ref1 && !ref2) {
 769			pr_notice("No reference (HPET/PMTIMER) available\n");
 770			return 0;
 771		}
 772
 773		/* The alternative source failed as well, disable TSC */
 774		if (tsc_ref_min == ULONG_MAX) {
 775			pr_warn("HPET/PMTIMER calibration failed\n");
 776			return 0;
 777		}
 778
 779		/* Use the alternative source */
 780		pr_info("using %s reference calibration\n",
 781			hpet ? "HPET" : "PMTIMER");
 782
 783		return tsc_ref_min;
 784	}
 785
 786	/* We don't have an alternative source, use the PIT calibration value */
 787	if (!hpet && !ref1 && !ref2) {
 788		pr_info("Using PIT calibration value\n");
 789		return tsc_pit_min;
 790	}
 791
 792	/* The alternative source failed, use the PIT calibration value */
 793	if (tsc_ref_min == ULONG_MAX) {
 794		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
 795		return tsc_pit_min;
 796	}
 797
 798	/*
 799	 * The calibration values differ too much. In doubt, we use
 800	 * the PIT value as we know that there are PMTIMERs around
 801	 * running at double speed. At least we let the user know:
 802	 */
 803	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
 804		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
 805	pr_info("Using PIT calibration value\n");
 806	return tsc_pit_min;
 807}
 808
 809int recalibrate_cpu_khz(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 810{
 811#ifndef CONFIG_SMP
 812	unsigned long cpu_khz_old = cpu_khz;
 813
 814	if (cpu_has_tsc) {
 815		tsc_khz = x86_platform.calibrate_tsc();
 
 
 
 
 
 
 816		cpu_khz = tsc_khz;
 817		cpu_data(0).loops_per_jiffy =
 818			cpufreq_scale(cpu_data(0).loops_per_jiffy,
 819					cpu_khz_old, cpu_khz);
 820		return 0;
 821	} else
 822		return -ENODEV;
 823#else
 824	return -ENODEV;
 825#endif
 826}
 827
 828EXPORT_SYMBOL(recalibrate_cpu_khz);
 829
 830
 831static unsigned long long cyc2ns_suspend;
 832
 833void tsc_save_sched_clock_state(void)
 834{
 835	if (!sched_clock_stable())
 836		return;
 837
 838	cyc2ns_suspend = sched_clock();
 839}
 840
 841/*
 842 * Even on processors with invariant TSC, TSC gets reset in some the
 843 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
 844 * arbitrary value (still sync'd across cpu's) during resume from such sleep
 845 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
 846 * that sched_clock() continues from the point where it was left off during
 847 * suspend.
 848 */
 849void tsc_restore_sched_clock_state(void)
 850{
 851	unsigned long long offset;
 852	unsigned long flags;
 853	int cpu;
 854
 855	if (!sched_clock_stable())
 856		return;
 857
 858	local_irq_save(flags);
 859
 860	/*
 861	 * We're comming out of suspend, there's no concurrency yet; don't
 862	 * bother being nice about the RCU stuff, just write to both
 863	 * data fields.
 864	 */
 865
 866	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
 867	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
 868
 869	offset = cyc2ns_suspend - sched_clock();
 870
 871	for_each_possible_cpu(cpu) {
 872		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
 873		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
 874	}
 875
 876	local_irq_restore(flags);
 877}
 878
 879#ifdef CONFIG_CPU_FREQ
 880
 881/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
 882 * changes.
 883 *
 884 * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
 885 * not that important because current Opteron setups do not support
 886 * scaling on SMP anyroads.
 887 *
 888 * Should fix up last_tsc too. Currently gettimeofday in the
 889 * first tick after the change will be slightly wrong.
 890 */
 891
 892static unsigned int  ref_freq;
 893static unsigned long loops_per_jiffy_ref;
 894static unsigned long tsc_khz_ref;
 895
 896static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
 897				void *data)
 898{
 899	struct cpufreq_freqs *freq = data;
 900	unsigned long *lpj;
 901
 902	if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
 
 903		return 0;
 904
 905	lpj = &boot_cpu_data.loops_per_jiffy;
 906#ifdef CONFIG_SMP
 907	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
 908		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
 909#endif
 910
 911	if (!ref_freq) {
 912		ref_freq = freq->old;
 913		loops_per_jiffy_ref = *lpj;
 914		tsc_khz_ref = tsc_khz;
 915	}
 
 916	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
 917			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
 918		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
 
 919
 920		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
 921		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
 922			mark_tsc_unstable("cpufreq changes");
 
 
 923	}
 924
 925	set_cyc2ns_scale(tsc_khz, freq->cpu);
 926
 927	return 0;
 928}
 929
 930static struct notifier_block time_cpufreq_notifier_block = {
 931	.notifier_call  = time_cpufreq_notifier
 932};
 933
 934static int __init cpufreq_tsc(void)
 935{
 936	if (!cpu_has_tsc)
 937		return 0;
 938	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
 939		return 0;
 940	cpufreq_register_notifier(&time_cpufreq_notifier_block,
 941				CPUFREQ_TRANSITION_NOTIFIER);
 942	return 0;
 943}
 944
 945core_initcall(cpufreq_tsc);
 946
 947#endif /* CONFIG_CPU_FREQ */
 948
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 949/* clocksource code */
 950
 951static struct clocksource clocksource_tsc;
 
 
 
 952
 953/*
 954 * We compare the TSC to the cycle_last value in the clocksource
 955 * structure to avoid a nasty time-warp. This can be observed in a
 956 * very small window right after one CPU updated cycle_last under
 957 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
 958 * is smaller than the cycle_last reference value due to a TSC which
 959 * is slighty behind. This delta is nowhere else observable, but in
 960 * that case it results in a forward time jump in the range of hours
 961 * due to the unsigned delta calculation of the time keeping core
 962 * code, which is necessary to support wrapping clocksources like pm
 963 * timer.
 
 
 
 
 964 */
 965static cycle_t read_tsc(struct clocksource *cs)
 
 
 
 
 
 966{
 967	cycle_t ret = (cycle_t)get_cycles();
 
 968
 969	return ret >= clocksource_tsc.cycle_last ?
 970		ret : clocksource_tsc.cycle_last;
 
 
 
 971}
 972
 973static void resume_tsc(struct clocksource *cs)
 974{
 975	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
 976		clocksource_tsc.cycle_last = 0;
 
 
 
 977}
 978
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 979static struct clocksource clocksource_tsc = {
 980	.name                   = "tsc",
 981	.rating                 = 300,
 982	.read                   = read_tsc,
 983	.resume			= resume_tsc,
 984	.mask                   = CLOCKSOURCE_MASK(64),
 985	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
 
 986				  CLOCK_SOURCE_MUST_VERIFY,
 987	.archdata               = { .vclock_mode = VCLOCK_TSC },
 
 
 
 
 988};
 989
 990void mark_tsc_unstable(char *reason)
 991{
 992	if (!tsc_unstable) {
 993		tsc_unstable = 1;
 
 
 
 994		clear_sched_clock_stable();
 995		disable_sched_clock_irqtime();
 996		pr_info("Marking TSC unstable due to %s\n", reason);
 997		/* Change only the rating, when not registered */
 998		if (clocksource_tsc.mult)
 999			clocksource_mark_unstable(&clocksource_tsc);
1000		else {
1001			clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1002			clocksource_tsc.rating = 0;
1003		}
1004	}
1005}
1006
1007EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1008
1009static void __init check_system_tsc_reliable(void)
1010{
1011#ifdef CONFIG_MGEODE_LX
1012	/* RTSC counts during suspend */
 
1013#define RTSC_SUSP 0x100
1014	unsigned long res_low, res_high;
1015
1016	rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1017	/* Geode_LX - the OLPC CPU has a very reliable TSC */
1018	if (res_low & RTSC_SUSP)
1019		tsc_clocksource_reliable = 1;
 
1020#endif
1021	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1022		tsc_clocksource_reliable = 1;
1023}
1024
1025/*
1026 * Make an educated guess if the TSC is trustworthy and synchronized
1027 * over all CPUs.
1028 */
1029int unsynchronized_tsc(void)
1030{
1031	if (!cpu_has_tsc || tsc_unstable)
1032		return 1;
1033
1034#ifdef CONFIG_SMP
1035	if (apic_is_clustered_box())
1036		return 1;
1037#endif
1038
1039	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1040		return 0;
1041
1042	if (tsc_clocksource_reliable)
1043		return 0;
1044	/*
1045	 * Intel systems are normally all synchronized.
1046	 * Exceptions must mark TSC as unstable:
1047	 */
1048	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1049		/* assume multi socket systems are not synchronized: */
1050		if (num_possible_cpus() > 1)
1051			return 1;
1052	}
1053
1054	return 0;
1055}
1056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1057
1058static void tsc_refine_calibration_work(struct work_struct *work);
1059static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1060/**
1061 * tsc_refine_calibration_work - Further refine tsc freq calibration
1062 * @work - ignored.
1063 *
1064 * This functions uses delayed work over a period of a
1065 * second to further refine the TSC freq value. Since this is
1066 * timer based, instead of loop based, we don't block the boot
1067 * process while this longer calibration is done.
1068 *
1069 * If there are any calibration anomalies (too many SMIs, etc),
1070 * or the refined calibration is off by 1% of the fast early
1071 * calibration, we throw out the new calibration and use the
1072 * early calibration.
1073 */
1074static void tsc_refine_calibration_work(struct work_struct *work)
1075{
1076	static u64 tsc_start = -1, ref_start;
1077	static int hpet;
1078	u64 tsc_stop, ref_stop, delta;
1079	unsigned long freq;
 
1080
1081	/* Don't bother refining TSC on unstable systems */
1082	if (check_tsc_unstable())
1083		goto out;
1084
1085	/*
1086	 * Since the work is started early in boot, we may be
1087	 * delayed the first time we expire. So set the workqueue
1088	 * again once we know timers are working.
1089	 */
1090	if (tsc_start == -1) {
 
1091		/*
1092		 * Only set hpet once, to avoid mixing hardware
1093		 * if the hpet becomes enabled later.
1094		 */
1095		hpet = is_hpet_enabled();
 
1096		schedule_delayed_work(&tsc_irqwork, HZ);
1097		tsc_start = tsc_read_refs(&ref_start, hpet);
1098		return;
1099	}
1100
1101	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1102
1103	/* hpet or pmtimer available ? */
1104	if (ref_start == ref_stop)
1105		goto out;
1106
1107	/* Check, whether the sampling was disturbed by an SMI */
1108	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1109		goto out;
1110
1111	delta = tsc_stop - tsc_start;
1112	delta *= 1000000LL;
1113	if (hpet)
1114		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1115	else
1116		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1117
1118	/* Make sure we're within 1% */
1119	if (abs(tsc_khz - freq) > tsc_khz/100)
1120		goto out;
1121
1122	tsc_khz = freq;
1123	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1124		(unsigned long)tsc_khz / 1000,
1125		(unsigned long)tsc_khz % 1000);
1126
 
 
 
 
 
 
 
1127out:
 
 
 
 
 
1128	clocksource_register_khz(&clocksource_tsc, tsc_khz);
 
 
1129}
1130
1131
1132static int __init init_tsc_clocksource(void)
1133{
1134	if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
1135		return 0;
1136
1137	if (tsc_clocksource_reliable)
 
 
 
1138		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1139	/* lower the rating if we already know its unstable: */
1140	if (check_tsc_unstable()) {
1141		clocksource_tsc.rating = 0;
1142		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1143	}
1144
1145	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1146		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1147
1148	/*
1149	 * Trust the results of the earlier calibration on systems
1150	 * exporting a reliable TSC.
1151	 */
1152	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
 
 
1153		clocksource_register_khz(&clocksource_tsc, tsc_khz);
 
 
1154		return 0;
1155	}
1156
1157	schedule_delayed_work(&tsc_irqwork, 0);
1158	return 0;
1159}
1160/*
1161 * We use device_initcall here, to ensure we run after the hpet
1162 * is fully initialized, which may occur at fs_initcall time.
1163 */
1164device_initcall(init_tsc_clocksource);
1165
1166void __init tsc_init(void)
1167{
1168	u64 lpj;
1169	int cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1170
1171	x86_init.timers.tsc_pre_init();
 
 
1172
1173	if (!cpu_has_tsc)
1174		return;
 
1175
1176	tsc_khz = x86_platform.calibrate_tsc();
1177	cpu_khz = tsc_khz;
 
 
 
 
 
1178
1179	if (!tsc_khz) {
1180		mark_tsc_unstable("could not calculate TSC khz");
 
 
 
 
 
 
1181		return;
1182	}
1183
1184	pr_info("Detected %lu.%03lu MHz processor\n",
1185		(unsigned long)cpu_khz / 1000,
1186		(unsigned long)cpu_khz % 1000);
1187
 
 
1188	/*
1189	 * Secondary CPUs do not run through tsc_init(), so set up
1190	 * all the scale factors for all CPUs, assuming the same
1191	 * speed as the bootup CPU. (cpufreq notifiers will fix this
1192	 * up if their speed diverges)
1193	 */
1194	for_each_possible_cpu(cpu) {
1195		cyc2ns_init(cpu);
1196		set_cyc2ns_scale(cpu_khz, cpu);
1197	}
1198
1199	if (tsc_disabled > 0)
 
1200		return;
 
1201
1202	/* now allow native_sched_clock() to use rdtsc */
 
 
 
 
 
 
 
 
1203
1204	tsc_disabled = 0;
1205	static_key_slow_inc(&__use_tsc);
1206
1207	if (!no_sched_irq_time)
1208		enable_sched_clock_irqtime();
1209
1210	lpj = ((u64)tsc_khz * 1000);
1211	do_div(lpj, HZ);
1212	lpj_fine = lpj;
1213
1214	use_tsc_delay();
1215
1216	if (unsynchronized_tsc())
1217		mark_tsc_unstable("TSCs unsynchronized");
 
 
1218
1219	check_system_tsc_reliable();
 
 
 
 
1220}
1221
1222#ifdef CONFIG_SMP
1223/*
1224 * If we have a constant TSC and are using the TSC for the delay loop,
1225 * we can skip clock calibration if another cpu in the same socket has already
1226 * been calibrated. This assumes that CONSTANT_TSC applies to all
1227 * cpus in the socket - this should be a safe assumption.
1228 */
1229unsigned long calibrate_delay_is_known(void)
1230{
1231	int i, cpu = smp_processor_id();
 
 
1232
1233	if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1234		return 0;
1235
1236	for_each_online_cpu(i)
1237		if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
1238			return cpu_data(i).loops_per_jiffy;
1239	return 0;
1240}
1241#endif