Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *	linux/kernel/resource.c
   4 *
   5 * Copyright (C) 1999	Linus Torvalds
   6 * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
   7 *
   8 * Arbitrary resource management.
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/export.h>
  14#include <linux/errno.h>
  15#include <linux/ioport.h>
  16#include <linux/init.h>
  17#include <linux/slab.h>
  18#include <linux/spinlock.h>
  19#include <linux/fs.h>
  20#include <linux/proc_fs.h>
  21#include <linux/sched.h>
  22#include <linux/seq_file.h>
  23#include <linux/device.h>
  24#include <linux/pfn.h>
  25#include <linux/mm.h>
  26#include <linux/resource_ext.h>
  27#include <asm/io.h>
  28
  29
  30struct resource ioport_resource = {
  31	.name	= "PCI IO",
  32	.start	= 0,
  33	.end	= IO_SPACE_LIMIT,
  34	.flags	= IORESOURCE_IO,
  35};
  36EXPORT_SYMBOL(ioport_resource);
  37
  38struct resource iomem_resource = {
  39	.name	= "PCI mem",
  40	.start	= 0,
  41	.end	= -1,
  42	.flags	= IORESOURCE_MEM,
  43};
  44EXPORT_SYMBOL(iomem_resource);
  45
  46/* constraints to be met while allocating resources */
  47struct resource_constraint {
  48	resource_size_t min, max, align;
  49	resource_size_t (*alignf)(void *, const struct resource *,
  50			resource_size_t, resource_size_t);
  51	void *alignf_data;
  52};
  53
  54static DEFINE_RWLOCK(resource_lock);
  55
  56/*
  57 * For memory hotplug, there is no way to free resource entries allocated
  58 * by boot mem after the system is up. So for reusing the resource entry
  59 * we need to remember the resource.
  60 */
  61static struct resource *bootmem_resource_free;
  62static DEFINE_SPINLOCK(bootmem_resource_lock);
  63
  64static struct resource *next_resource(struct resource *p, bool sibling_only)
  65{
  66	/* Caller wants to traverse through siblings only */
  67	if (sibling_only)
  68		return p->sibling;
  69
  70	if (p->child)
  71		return p->child;
  72	while (!p->sibling && p->parent)
  73		p = p->parent;
  74	return p->sibling;
  75}
  76
  77static void *r_next(struct seq_file *m, void *v, loff_t *pos)
  78{
  79	struct resource *p = v;
  80	(*pos)++;
  81	return (void *)next_resource(p, false);
  82}
  83
  84#ifdef CONFIG_PROC_FS
  85
  86enum { MAX_IORES_LEVEL = 5 };
  87
  88static void *r_start(struct seq_file *m, loff_t *pos)
  89	__acquires(resource_lock)
  90{
  91	struct resource *p = PDE_DATA(file_inode(m->file));
  92	loff_t l = 0;
  93	read_lock(&resource_lock);
  94	for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
  95		;
  96	return p;
  97}
  98
  99static void r_stop(struct seq_file *m, void *v)
 100	__releases(resource_lock)
 101{
 102	read_unlock(&resource_lock);
 103}
 104
 105static int r_show(struct seq_file *m, void *v)
 106{
 107	struct resource *root = PDE_DATA(file_inode(m->file));
 108	struct resource *r = v, *p;
 109	unsigned long long start, end;
 110	int width = root->end < 0x10000 ? 4 : 8;
 111	int depth;
 112
 113	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
 114		if (p->parent == root)
 115			break;
 116
 117	if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
 118		start = r->start;
 119		end = r->end;
 120	} else {
 121		start = end = 0;
 122	}
 123
 124	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
 125			depth * 2, "",
 126			width, start,
 127			width, end,
 128			r->name ? r->name : "<BAD>");
 129	return 0;
 130}
 131
 132static const struct seq_operations resource_op = {
 133	.start	= r_start,
 134	.next	= r_next,
 135	.stop	= r_stop,
 136	.show	= r_show,
 137};
 138
 139static int __init ioresources_init(void)
 140{
 141	proc_create_seq_data("ioports", 0, NULL, &resource_op,
 142			&ioport_resource);
 143	proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
 144	return 0;
 
 
 145}
 146__initcall(ioresources_init);
 147
 148#endif /* CONFIG_PROC_FS */
 149
 150static void free_resource(struct resource *res)
 151{
 152	if (!res)
 153		return;
 154
 155	if (!PageSlab(virt_to_head_page(res))) {
 156		spin_lock(&bootmem_resource_lock);
 157		res->sibling = bootmem_resource_free;
 158		bootmem_resource_free = res;
 159		spin_unlock(&bootmem_resource_lock);
 160	} else {
 161		kfree(res);
 162	}
 
 163}
 164
 165static struct resource *alloc_resource(gfp_t flags)
 166{
 167	struct resource *res = NULL;
 168
 169	spin_lock(&bootmem_resource_lock);
 170	if (bootmem_resource_free) {
 171		res = bootmem_resource_free;
 172		bootmem_resource_free = res->sibling;
 173	}
 174	spin_unlock(&bootmem_resource_lock);
 175
 176	if (res)
 177		memset(res, 0, sizeof(struct resource));
 178	else
 179		res = kzalloc(sizeof(struct resource), flags);
 
 
 180
 181	return res;
 
 
 
 
 182}
 
 
 
 183
 184/* Return the conflict entry if you can't request it */
 185static struct resource * __request_resource(struct resource *root, struct resource *new)
 186{
 187	resource_size_t start = new->start;
 188	resource_size_t end = new->end;
 189	struct resource *tmp, **p;
 190
 191	if (end < start)
 192		return root;
 193	if (start < root->start)
 194		return root;
 195	if (end > root->end)
 196		return root;
 197	p = &root->child;
 198	for (;;) {
 199		tmp = *p;
 200		if (!tmp || tmp->start > end) {
 201			new->sibling = tmp;
 202			*p = new;
 203			new->parent = root;
 204			return NULL;
 205		}
 206		p = &tmp->sibling;
 207		if (tmp->end < start)
 208			continue;
 209		return tmp;
 210	}
 211}
 212
 213static int __release_resource(struct resource *old, bool release_child)
 214{
 215	struct resource *tmp, **p, *chd;
 216
 217	p = &old->parent->child;
 218	for (;;) {
 219		tmp = *p;
 220		if (!tmp)
 221			break;
 222		if (tmp == old) {
 223			if (release_child || !(tmp->child)) {
 224				*p = tmp->sibling;
 225			} else {
 226				for (chd = tmp->child;; chd = chd->sibling) {
 227					chd->parent = tmp->parent;
 228					if (!(chd->sibling))
 229						break;
 230				}
 231				*p = tmp->child;
 232				chd->sibling = tmp->sibling;
 233			}
 234			old->parent = NULL;
 235			return 0;
 236		}
 237		p = &tmp->sibling;
 238	}
 239	return -EINVAL;
 240}
 241
 242static void __release_child_resources(struct resource *r)
 243{
 244	struct resource *tmp, *p;
 245	resource_size_t size;
 246
 247	p = r->child;
 248	r->child = NULL;
 249	while (p) {
 250		tmp = p;
 251		p = p->sibling;
 252
 253		tmp->parent = NULL;
 254		tmp->sibling = NULL;
 255		__release_child_resources(tmp);
 256
 257		printk(KERN_DEBUG "release child resource %pR\n", tmp);
 258		/* need to restore size, and keep flags */
 259		size = resource_size(tmp);
 260		tmp->start = 0;
 261		tmp->end = size - 1;
 262	}
 263}
 264
 265void release_child_resources(struct resource *r)
 266{
 267	write_lock(&resource_lock);
 268	__release_child_resources(r);
 269	write_unlock(&resource_lock);
 270}
 271
 272/**
 273 * request_resource_conflict - request and reserve an I/O or memory resource
 274 * @root: root resource descriptor
 275 * @new: resource descriptor desired by caller
 276 *
 277 * Returns 0 for success, conflict resource on error.
 278 */
 279struct resource *request_resource_conflict(struct resource *root, struct resource *new)
 280{
 281	struct resource *conflict;
 282
 283	write_lock(&resource_lock);
 284	conflict = __request_resource(root, new);
 285	write_unlock(&resource_lock);
 286	return conflict;
 287}
 288
 289/**
 290 * request_resource - request and reserve an I/O or memory resource
 291 * @root: root resource descriptor
 292 * @new: resource descriptor desired by caller
 293 *
 294 * Returns 0 for success, negative error code on error.
 295 */
 296int request_resource(struct resource *root, struct resource *new)
 297{
 298	struct resource *conflict;
 299
 300	conflict = request_resource_conflict(root, new);
 301	return conflict ? -EBUSY : 0;
 302}
 303
 304EXPORT_SYMBOL(request_resource);
 305
 306/**
 307 * release_resource - release a previously reserved resource
 308 * @old: resource pointer
 309 */
 310int release_resource(struct resource *old)
 311{
 312	int retval;
 313
 314	write_lock(&resource_lock);
 315	retval = __release_resource(old, true);
 316	write_unlock(&resource_lock);
 317	return retval;
 318}
 319
 320EXPORT_SYMBOL(release_resource);
 321
 322/**
 323 * Finds the lowest iomem resource that covers part of [@start..@end].  The
 324 * caller must specify @start, @end, @flags, and @desc (which may be
 325 * IORES_DESC_NONE).
 326 *
 327 * If a resource is found, returns 0 and @*res is overwritten with the part
 328 * of the resource that's within [@start..@end]; if none is found, returns
 329 * -ENODEV.  Returns -EINVAL for invalid parameters.
 330 *
 331 * This function walks the whole tree and not just first level children
 332 * unless @first_lvl is true.
 333 *
 334 * @start:	start address of the resource searched for
 335 * @end:	end address of same resource
 336 * @flags:	flags which the resource must have
 337 * @desc:	descriptor the resource must have
 338 * @first_lvl:	walk only the first level children, if set
 339 * @res:	return ptr, if resource found
 340 */
 341static int find_next_iomem_res(resource_size_t start, resource_size_t end,
 342			       unsigned long flags, unsigned long desc,
 343			       bool first_lvl, struct resource *res)
 344{
 345	bool siblings_only = true;
 346	struct resource *p;
 347
 348	if (!res)
 349		return -EINVAL;
 350
 351	if (start >= end)
 352		return -EINVAL;
 
 353
 354	read_lock(&resource_lock);
 355
 356	for (p = iomem_resource.child; p; p = next_resource(p, siblings_only)) {
 357		/* If we passed the resource we are looking for, stop */
 
 
 
 358		if (p->start > end) {
 359			p = NULL;
 360			break;
 361		}
 362
 363		/* Skip until we find a range that matches what we look for */
 364		if (p->end < start)
 365			continue;
 366
 367		/*
 368		 * Now that we found a range that matches what we look for,
 369		 * check the flags and the descriptor. If we were not asked to
 370		 * use only the first level, start looking at children as well.
 371		 */
 372		siblings_only = first_lvl;
 373
 374		if ((p->flags & flags) != flags)
 375			continue;
 376		if ((desc != IORES_DESC_NONE) && (desc != p->desc))
 377			continue;
 378
 379		/* Found a match, break */
 380		break;
 381	}
 382
 383	if (p) {
 384		/* copy data */
 385		res->start = max(start, p->start);
 386		res->end = min(end, p->end);
 387		res->flags = p->flags;
 388		res->desc = p->desc;
 389	}
 390
 391	read_unlock(&resource_lock);
 392	return p ? 0 : -ENODEV;
 393}
 394
 395static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
 396				 unsigned long flags, unsigned long desc,
 397				 bool first_lvl, void *arg,
 398				 int (*func)(struct resource *, void *))
 399{
 400	struct resource res;
 401	int ret = -EINVAL;
 402
 403	while (start < end &&
 404	       !find_next_iomem_res(start, end, flags, desc, first_lvl, &res)) {
 405		ret = (*func)(&res, arg);
 406		if (ret)
 407			break;
 408
 409		start = res.end + 1;
 410	}
 411
 412	return ret;
 413}
 414
 415/**
 416 * Walks through iomem resources and calls func() with matching resource
 417 * ranges. This walks through whole tree and not just first level children.
 418 * All the memory ranges which overlap start,end and also match flags and
 419 * desc are valid candidates.
 420 *
 421 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
 422 * @flags: I/O resource flags
 423 * @start: start addr
 424 * @end: end addr
 425 * @arg: function argument for the callback @func
 426 * @func: callback function that is called for each qualifying resource area
 427 *
 428 * NOTE: For a new descriptor search, define a new IORES_DESC in
 429 * <linux/ioport.h> and set it in 'desc' of a target resource entry.
 430 */
 431int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
 432		u64 end, void *arg, int (*func)(struct resource *, void *))
 433{
 434	return __walk_iomem_res_desc(start, end, flags, desc, false, arg, func);
 435}
 436EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
 437
 438/*
 439 * This function calls the @func callback against all memory ranges of type
 440 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
 441 * Now, this function is only for System RAM, it deals with full ranges and
 442 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
 443 * ranges.
 444 */
 445int walk_system_ram_res(u64 start, u64 end, void *arg,
 446			int (*func)(struct resource *, void *))
 447{
 448	unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 449
 450	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, true,
 451				     arg, func);
 452}
 453
 454/*
 455 * This function calls the @func callback against all memory ranges, which
 456 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
 457 */
 458int walk_mem_res(u64 start, u64 end, void *arg,
 459		 int (*func)(struct resource *, void *))
 460{
 461	unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 462
 463	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, true,
 464				     arg, func);
 465}
 466
 467/*
 468 * This function calls the @func callback against all memory ranges of type
 469 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
 470 * It is to be used only for System RAM.
 471 *
 472 * This will find System RAM ranges that are children of top-level resources
 473 * in addition to top-level System RAM resources.
 474 */
 475int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
 476			  void *arg, int (*func)(unsigned long, unsigned long, void *))
 477{
 478	resource_size_t start, end;
 479	unsigned long flags;
 480	struct resource res;
 481	unsigned long pfn, end_pfn;
 482	int ret = -EINVAL;
 
 483
 484	start = (u64) start_pfn << PAGE_SHIFT;
 485	end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
 486	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 487	while (start < end &&
 488	       !find_next_iomem_res(start, end, flags, IORES_DESC_NONE,
 489				    false, &res)) {
 490		pfn = PFN_UP(res.start);
 491		end_pfn = PFN_DOWN(res.end + 1);
 492		if (end_pfn > pfn)
 493			ret = (*func)(pfn, end_pfn - pfn, arg);
 494		if (ret)
 495			break;
 496		start = res.end + 1;
 
 497	}
 498	return ret;
 499}
 500
 
 
 501static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
 502{
 503	return 1;
 504}
 505
 506/*
 507 * This generic page_is_ram() returns true if specified address is
 508 * registered as System RAM in iomem_resource list.
 509 */
 510int __weak page_is_ram(unsigned long pfn)
 511{
 512	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
 513}
 514EXPORT_SYMBOL_GPL(page_is_ram);
 515
 516/**
 517 * region_intersects() - determine intersection of region with known resources
 518 * @start: region start address
 519 * @size: size of region
 520 * @flags: flags of resource (in iomem_resource)
 521 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
 522 *
 523 * Check if the specified region partially overlaps or fully eclipses a
 524 * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
 525 * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
 526 * return REGION_MIXED if the region overlaps @flags/@desc and another
 527 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
 528 * and no other defined resource. Note that REGION_INTERSECTS is also
 529 * returned in the case when the specified region overlaps RAM and undefined
 530 * memory holes.
 531 *
 532 * region_intersect() is used by memory remapping functions to ensure
 533 * the user is not remapping RAM and is a vast speed up over walking
 534 * through the resource table page by page.
 535 */
 536int region_intersects(resource_size_t start, size_t size, unsigned long flags,
 537		      unsigned long desc)
 538{
 539	struct resource res;
 540	int type = 0; int other = 0;
 541	struct resource *p;
 542
 543	res.start = start;
 544	res.end = start + size - 1;
 545
 546	read_lock(&resource_lock);
 547	for (p = iomem_resource.child; p ; p = p->sibling) {
 548		bool is_type = (((p->flags & flags) == flags) &&
 549				((desc == IORES_DESC_NONE) ||
 550				 (desc == p->desc)));
 551
 552		if (resource_overlaps(p, &res))
 553			is_type ? type++ : other++;
 554	}
 555	read_unlock(&resource_lock);
 556
 557	if (other == 0)
 558		return type ? REGION_INTERSECTS : REGION_DISJOINT;
 559
 560	if (type)
 561		return REGION_MIXED;
 562
 563	return REGION_DISJOINT;
 564}
 565EXPORT_SYMBOL_GPL(region_intersects);
 566
 567void __weak arch_remove_reservations(struct resource *avail)
 568{
 569}
 570
 571static resource_size_t simple_align_resource(void *data,
 572					     const struct resource *avail,
 573					     resource_size_t size,
 574					     resource_size_t align)
 575{
 576	return avail->start;
 577}
 578
 579static void resource_clip(struct resource *res, resource_size_t min,
 580			  resource_size_t max)
 581{
 582	if (res->start < min)
 583		res->start = min;
 584	if (res->end > max)
 585		res->end = max;
 586}
 587
 
 
 
 
 
 588/*
 589 * Find empty slot in the resource tree with the given range and
 590 * alignment constraints
 591 */
 592static int __find_resource(struct resource *root, struct resource *old,
 593			 struct resource *new,
 594			 resource_size_t  size,
 595			 struct resource_constraint *constraint)
 596{
 597	struct resource *this = root->child;
 598	struct resource tmp = *new, avail, alloc;
 599
 
 600	tmp.start = root->start;
 601	/*
 602	 * Skip past an allocated resource that starts at 0, since the assignment
 603	 * of this->start - 1 to tmp->end below would cause an underflow.
 604	 */
 605	if (this && this->start == root->start) {
 606		tmp.start = (this == old) ? old->start : this->end + 1;
 607		this = this->sibling;
 608	}
 609	for(;;) {
 610		if (this)
 611			tmp.end = (this == old) ?  this->end : this->start - 1;
 612		else
 613			tmp.end = root->end;
 614
 615		if (tmp.end < tmp.start)
 616			goto next;
 617
 618		resource_clip(&tmp, constraint->min, constraint->max);
 619		arch_remove_reservations(&tmp);
 620
 621		/* Check for overflow after ALIGN() */
 
 622		avail.start = ALIGN(tmp.start, constraint->align);
 623		avail.end = tmp.end;
 624		avail.flags = new->flags & ~IORESOURCE_UNSET;
 625		if (avail.start >= tmp.start) {
 626			alloc.flags = avail.flags;
 627			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
 628					size, constraint->align);
 629			alloc.end = alloc.start + size - 1;
 630			if (alloc.start <= alloc.end &&
 631			    resource_contains(&avail, &alloc)) {
 632				new->start = alloc.start;
 633				new->end = alloc.end;
 634				return 0;
 635			}
 636		}
 637
 638next:		if (!this || this->end == root->end)
 639			break;
 640
 641		if (this != old)
 642			tmp.start = this->end + 1;
 643		this = this->sibling;
 644	}
 645	return -EBUSY;
 646}
 647
 648/*
 649 * Find empty slot in the resource tree given range and alignment.
 650 */
 651static int find_resource(struct resource *root, struct resource *new,
 652			resource_size_t size,
 653			struct resource_constraint  *constraint)
 654{
 655	return  __find_resource(root, NULL, new, size, constraint);
 656}
 657
 658/**
 659 * reallocate_resource - allocate a slot in the resource tree given range & alignment.
 660 *	The resource will be relocated if the new size cannot be reallocated in the
 661 *	current location.
 662 *
 663 * @root: root resource descriptor
 664 * @old:  resource descriptor desired by caller
 665 * @newsize: new size of the resource descriptor
 666 * @constraint: the size and alignment constraints to be met.
 667 */
 668static int reallocate_resource(struct resource *root, struct resource *old,
 669			       resource_size_t newsize,
 670			       struct resource_constraint *constraint)
 671{
 672	int err=0;
 673	struct resource new = *old;
 674	struct resource *conflict;
 675
 676	write_lock(&resource_lock);
 677
 678	if ((err = __find_resource(root, old, &new, newsize, constraint)))
 679		goto out;
 680
 681	if (resource_contains(&new, old)) {
 682		old->start = new.start;
 683		old->end = new.end;
 684		goto out;
 685	}
 686
 687	if (old->child) {
 688		err = -EBUSY;
 689		goto out;
 690	}
 691
 692	if (resource_contains(old, &new)) {
 693		old->start = new.start;
 694		old->end = new.end;
 695	} else {
 696		__release_resource(old, true);
 697		*old = new;
 698		conflict = __request_resource(root, old);
 699		BUG_ON(conflict);
 700	}
 701out:
 702	write_unlock(&resource_lock);
 703	return err;
 704}
 705
 706
 707/**
 708 * allocate_resource - allocate empty slot in the resource tree given range & alignment.
 709 * 	The resource will be reallocated with a new size if it was already allocated
 710 * @root: root resource descriptor
 711 * @new: resource descriptor desired by caller
 712 * @size: requested resource region size
 713 * @min: minimum boundary to allocate
 714 * @max: maximum boundary to allocate
 715 * @align: alignment requested, in bytes
 716 * @alignf: alignment function, optional, called if not NULL
 717 * @alignf_data: arbitrary data to pass to the @alignf function
 718 */
 719int allocate_resource(struct resource *root, struct resource *new,
 720		      resource_size_t size, resource_size_t min,
 721		      resource_size_t max, resource_size_t align,
 722		      resource_size_t (*alignf)(void *,
 723						const struct resource *,
 724						resource_size_t,
 725						resource_size_t),
 726		      void *alignf_data)
 727{
 728	int err;
 729	struct resource_constraint constraint;
 730
 731	if (!alignf)
 732		alignf = simple_align_resource;
 733
 734	constraint.min = min;
 735	constraint.max = max;
 736	constraint.align = align;
 737	constraint.alignf = alignf;
 738	constraint.alignf_data = alignf_data;
 739
 740	if ( new->parent ) {
 741		/* resource is already allocated, try reallocating with
 742		   the new constraints */
 743		return reallocate_resource(root, new, size, &constraint);
 744	}
 745
 746	write_lock(&resource_lock);
 747	err = find_resource(root, new, size, &constraint);
 748	if (err >= 0 && __request_resource(root, new))
 749		err = -EBUSY;
 750	write_unlock(&resource_lock);
 751	return err;
 752}
 753
 754EXPORT_SYMBOL(allocate_resource);
 755
 756/**
 757 * lookup_resource - find an existing resource by a resource start address
 758 * @root: root resource descriptor
 759 * @start: resource start address
 760 *
 761 * Returns a pointer to the resource if found, NULL otherwise
 762 */
 763struct resource *lookup_resource(struct resource *root, resource_size_t start)
 764{
 765	struct resource *res;
 766
 767	read_lock(&resource_lock);
 768	for (res = root->child; res; res = res->sibling) {
 769		if (res->start == start)
 770			break;
 771	}
 772	read_unlock(&resource_lock);
 773
 774	return res;
 775}
 776
 777/*
 778 * Insert a resource into the resource tree. If successful, return NULL,
 779 * otherwise return the conflicting resource (compare to __request_resource())
 780 */
 781static struct resource * __insert_resource(struct resource *parent, struct resource *new)
 782{
 783	struct resource *first, *next;
 784
 785	for (;; parent = first) {
 786		first = __request_resource(parent, new);
 787		if (!first)
 788			return first;
 789
 790		if (first == parent)
 791			return first;
 792		if (WARN_ON(first == new))	/* duplicated insertion */
 793			return first;
 794
 795		if ((first->start > new->start) || (first->end < new->end))
 796			break;
 797		if ((first->start == new->start) && (first->end == new->end))
 798			break;
 799	}
 800
 801	for (next = first; ; next = next->sibling) {
 802		/* Partial overlap? Bad, and unfixable */
 803		if (next->start < new->start || next->end > new->end)
 804			return next;
 805		if (!next->sibling)
 806			break;
 807		if (next->sibling->start > new->end)
 808			break;
 809	}
 810
 811	new->parent = parent;
 812	new->sibling = next->sibling;
 813	new->child = first;
 814
 815	next->sibling = NULL;
 816	for (next = first; next; next = next->sibling)
 817		next->parent = new;
 818
 819	if (parent->child == first) {
 820		parent->child = new;
 821	} else {
 822		next = parent->child;
 823		while (next->sibling != first)
 824			next = next->sibling;
 825		next->sibling = new;
 826	}
 827	return NULL;
 828}
 829
 830/**
 831 * insert_resource_conflict - Inserts resource in the resource tree
 832 * @parent: parent of the new resource
 833 * @new: new resource to insert
 834 *
 835 * Returns 0 on success, conflict resource if the resource can't be inserted.
 836 *
 837 * This function is equivalent to request_resource_conflict when no conflict
 838 * happens. If a conflict happens, and the conflicting resources
 839 * entirely fit within the range of the new resource, then the new
 840 * resource is inserted and the conflicting resources become children of
 841 * the new resource.
 842 *
 843 * This function is intended for producers of resources, such as FW modules
 844 * and bus drivers.
 845 */
 846struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
 847{
 848	struct resource *conflict;
 849
 850	write_lock(&resource_lock);
 851	conflict = __insert_resource(parent, new);
 852	write_unlock(&resource_lock);
 853	return conflict;
 854}
 855
 856/**
 857 * insert_resource - Inserts a resource in the resource tree
 858 * @parent: parent of the new resource
 859 * @new: new resource to insert
 860 *
 861 * Returns 0 on success, -EBUSY if the resource can't be inserted.
 862 *
 863 * This function is intended for producers of resources, such as FW modules
 864 * and bus drivers.
 865 */
 866int insert_resource(struct resource *parent, struct resource *new)
 867{
 868	struct resource *conflict;
 869
 870	conflict = insert_resource_conflict(parent, new);
 871	return conflict ? -EBUSY : 0;
 872}
 873EXPORT_SYMBOL_GPL(insert_resource);
 874
 875/**
 876 * insert_resource_expand_to_fit - Insert a resource into the resource tree
 877 * @root: root resource descriptor
 878 * @new: new resource to insert
 879 *
 880 * Insert a resource into the resource tree, possibly expanding it in order
 881 * to make it encompass any conflicting resources.
 882 */
 883void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
 884{
 885	if (new->parent)
 886		return;
 887
 888	write_lock(&resource_lock);
 889	for (;;) {
 890		struct resource *conflict;
 891
 892		conflict = __insert_resource(root, new);
 893		if (!conflict)
 894			break;
 895		if (conflict == root)
 896			break;
 897
 898		/* Ok, expand resource to cover the conflict, then try again .. */
 899		if (conflict->start < new->start)
 900			new->start = conflict->start;
 901		if (conflict->end > new->end)
 902			new->end = conflict->end;
 903
 904		printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
 905	}
 906	write_unlock(&resource_lock);
 907}
 908
 909/**
 910 * remove_resource - Remove a resource in the resource tree
 911 * @old: resource to remove
 912 *
 913 * Returns 0 on success, -EINVAL if the resource is not valid.
 914 *
 915 * This function removes a resource previously inserted by insert_resource()
 916 * or insert_resource_conflict(), and moves the children (if any) up to
 917 * where they were before.  insert_resource() and insert_resource_conflict()
 918 * insert a new resource, and move any conflicting resources down to the
 919 * children of the new resource.
 920 *
 921 * insert_resource(), insert_resource_conflict() and remove_resource() are
 922 * intended for producers of resources, such as FW modules and bus drivers.
 
 923 */
 924int remove_resource(struct resource *old)
 925{
 926	int retval;
 927
 928	write_lock(&resource_lock);
 929	retval = __release_resource(old, false);
 930	write_unlock(&resource_lock);
 931	return retval;
 932}
 933EXPORT_SYMBOL_GPL(remove_resource);
 934
 935static int __adjust_resource(struct resource *res, resource_size_t start,
 936				resource_size_t size)
 937{
 938	struct resource *tmp, *parent = res->parent;
 939	resource_size_t end = start + size - 1;
 940	int result = -EBUSY;
 941
 942	if (!parent)
 943		goto skip;
 944
 945	if ((start < parent->start) || (end > parent->end))
 946		goto out;
 947
 
 
 
 
 
 948	if (res->sibling && (res->sibling->start <= end))
 949		goto out;
 950
 951	tmp = parent->child;
 952	if (tmp != res) {
 953		while (tmp->sibling != res)
 954			tmp = tmp->sibling;
 955		if (start <= tmp->end)
 956			goto out;
 957	}
 958
 959skip:
 960	for (tmp = res->child; tmp; tmp = tmp->sibling)
 961		if ((tmp->start < start) || (tmp->end > end))
 962			goto out;
 963
 964	res->start = start;
 965	res->end = end;
 966	result = 0;
 967
 968 out:
 969	return result;
 970}
 971
 972/**
 973 * adjust_resource - modify a resource's start and size
 974 * @res: resource to modify
 975 * @start: new start value
 976 * @size: new size
 977 *
 978 * Given an existing resource, change its start and size to match the
 979 * arguments.  Returns 0 on success, -EBUSY if it can't fit.
 980 * Existing children of the resource are assumed to be immutable.
 981 */
 982int adjust_resource(struct resource *res, resource_size_t start,
 983		    resource_size_t size)
 984{
 985	int result;
 986
 987	write_lock(&resource_lock);
 988	result = __adjust_resource(res, start, size);
 989	write_unlock(&resource_lock);
 990	return result;
 991}
 992EXPORT_SYMBOL(adjust_resource);
 993
 994static void __init
 995__reserve_region_with_split(struct resource *root, resource_size_t start,
 996			    resource_size_t end, const char *name)
 997{
 998	struct resource *parent = root;
 999	struct resource *conflict;
1000	struct resource *res = alloc_resource(GFP_ATOMIC);
1001	struct resource *next_res = NULL;
1002	int type = resource_type(root);
1003
1004	if (!res)
1005		return;
1006
1007	res->name = name;
1008	res->start = start;
1009	res->end = end;
1010	res->flags = type | IORESOURCE_BUSY;
1011	res->desc = IORES_DESC_NONE;
1012
1013	while (1) {
1014
1015		conflict = __request_resource(parent, res);
1016		if (!conflict) {
1017			if (!next_res)
1018				break;
1019			res = next_res;
1020			next_res = NULL;
1021			continue;
1022		}
1023
1024		/* conflict covered whole area */
1025		if (conflict->start <= res->start &&
1026				conflict->end >= res->end) {
1027			free_resource(res);
1028			WARN_ON(next_res);
1029			break;
1030		}
1031
1032		/* failed, split and try again */
1033		if (conflict->start > res->start) {
1034			end = res->end;
1035			res->end = conflict->start - 1;
1036			if (conflict->end < end) {
1037				next_res = alloc_resource(GFP_ATOMIC);
1038				if (!next_res) {
1039					free_resource(res);
1040					break;
1041				}
1042				next_res->name = name;
1043				next_res->start = conflict->end + 1;
1044				next_res->end = end;
1045				next_res->flags = type | IORESOURCE_BUSY;
1046				next_res->desc = IORES_DESC_NONE;
1047			}
1048		} else {
1049			res->start = conflict->end + 1;
1050		}
1051	}
1052
 
 
 
 
1053}
1054
1055void __init
1056reserve_region_with_split(struct resource *root, resource_size_t start,
1057			  resource_size_t end, const char *name)
1058{
1059	int abort = 0;
1060
1061	write_lock(&resource_lock);
1062	if (root->start > start || root->end < end) {
1063		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1064		       (unsigned long long)start, (unsigned long long)end,
1065		       root);
1066		if (start > root->end || end < root->start)
1067			abort = 1;
1068		else {
1069			if (end > root->end)
1070				end = root->end;
1071			if (start < root->start)
1072				start = root->start;
1073			pr_err("fixing request to [0x%llx-0x%llx]\n",
1074			       (unsigned long long)start,
1075			       (unsigned long long)end);
1076		}
1077		dump_stack();
1078	}
1079	if (!abort)
1080		__reserve_region_with_split(root, start, end, name);
1081	write_unlock(&resource_lock);
1082}
1083
 
 
1084/**
1085 * resource_alignment - calculate resource's alignment
1086 * @res: resource pointer
1087 *
1088 * Returns alignment on success, 0 (invalid alignment) on failure.
1089 */
1090resource_size_t resource_alignment(struct resource *res)
1091{
1092	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1093	case IORESOURCE_SIZEALIGN:
1094		return resource_size(res);
1095	case IORESOURCE_STARTALIGN:
1096		return res->start;
1097	default:
1098		return 0;
1099	}
1100}
1101
1102/*
1103 * This is compatibility stuff for IO resources.
1104 *
1105 * Note how this, unlike the above, knows about
1106 * the IO flag meanings (busy etc).
1107 *
1108 * request_region creates a new busy region.
1109 *
 
 
1110 * release_region releases a matching busy region.
1111 */
1112
1113static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1114
1115/**
1116 * __request_region - create a new busy resource region
1117 * @parent: parent resource descriptor
1118 * @start: resource start address
1119 * @n: resource region size
1120 * @name: reserving caller's ID string
1121 * @flags: IO resource flags
1122 */
1123struct resource * __request_region(struct resource *parent,
1124				   resource_size_t start, resource_size_t n,
1125				   const char *name, int flags)
1126{
1127	DECLARE_WAITQUEUE(wait, current);
1128	struct resource *res = alloc_resource(GFP_KERNEL);
1129
1130	if (!res)
1131		return NULL;
1132
1133	res->name = name;
1134	res->start = start;
1135	res->end = start + n - 1;
 
 
1136
1137	write_lock(&resource_lock);
1138
1139	for (;;) {
1140		struct resource *conflict;
1141
1142		res->flags = resource_type(parent) | resource_ext_type(parent);
1143		res->flags |= IORESOURCE_BUSY | flags;
1144		res->desc = parent->desc;
1145
1146		conflict = __request_resource(parent, res);
1147		if (!conflict)
1148			break;
1149		/*
1150		 * mm/hmm.c reserves physical addresses which then
1151		 * become unavailable to other users.  Conflicts are
1152		 * not expected.  Warn to aid debugging if encountered.
1153		 */
1154		if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
1155			pr_warn("Unaddressable device %s %pR conflicts with %pR",
1156				conflict->name, conflict, res);
1157		}
1158		if (conflict != parent) {
1159			if (!(conflict->flags & IORESOURCE_BUSY)) {
1160				parent = conflict;
1161				continue;
1162			}
1163		}
1164		if (conflict->flags & flags & IORESOURCE_MUXED) {
1165			add_wait_queue(&muxed_resource_wait, &wait);
1166			write_unlock(&resource_lock);
1167			set_current_state(TASK_UNINTERRUPTIBLE);
1168			schedule();
1169			remove_wait_queue(&muxed_resource_wait, &wait);
1170			write_lock(&resource_lock);
1171			continue;
1172		}
1173		/* Uhhuh, that didn't work out.. */
1174		free_resource(res);
1175		res = NULL;
1176		break;
1177	}
1178	write_unlock(&resource_lock);
1179	return res;
1180}
1181EXPORT_SYMBOL(__request_region);
1182
1183/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1184 * __release_region - release a previously reserved resource region
1185 * @parent: parent resource descriptor
1186 * @start: resource start address
1187 * @n: resource region size
1188 *
1189 * The described resource region must match a currently busy region.
1190 */
1191void __release_region(struct resource *parent, resource_size_t start,
1192		      resource_size_t n)
1193{
1194	struct resource **p;
1195	resource_size_t end;
1196
1197	p = &parent->child;
1198	end = start + n - 1;
1199
1200	write_lock(&resource_lock);
1201
1202	for (;;) {
1203		struct resource *res = *p;
1204
1205		if (!res)
1206			break;
1207		if (res->start <= start && res->end >= end) {
1208			if (!(res->flags & IORESOURCE_BUSY)) {
1209				p = &res->child;
1210				continue;
1211			}
1212			if (res->start != start || res->end != end)
1213				break;
1214			*p = res->sibling;
1215			write_unlock(&resource_lock);
1216			if (res->flags & IORESOURCE_MUXED)
1217				wake_up(&muxed_resource_wait);
1218			free_resource(res);
1219			return;
1220		}
1221		p = &res->sibling;
1222	}
1223
1224	write_unlock(&resource_lock);
1225
1226	printk(KERN_WARNING "Trying to free nonexistent resource "
1227		"<%016llx-%016llx>\n", (unsigned long long)start,
1228		(unsigned long long)end);
1229}
1230EXPORT_SYMBOL(__release_region);
1231
1232#ifdef CONFIG_MEMORY_HOTREMOVE
1233/**
1234 * release_mem_region_adjustable - release a previously reserved memory region
1235 * @parent: parent resource descriptor
1236 * @start: resource start address
1237 * @size: resource region size
1238 *
1239 * This interface is intended for memory hot-delete.  The requested region
1240 * is released from a currently busy memory resource.  The requested region
1241 * must either match exactly or fit into a single busy resource entry.  In
1242 * the latter case, the remaining resource is adjusted accordingly.
1243 * Existing children of the busy memory resource must be immutable in the
1244 * request.
1245 *
1246 * Note:
1247 * - Additional release conditions, such as overlapping region, can be
1248 *   supported after they are confirmed as valid cases.
1249 * - When a busy memory resource gets split into two entries, the code
1250 *   assumes that all children remain in the lower address entry for
1251 *   simplicity.  Enhance this logic when necessary.
1252 */
1253int release_mem_region_adjustable(struct resource *parent,
1254				  resource_size_t start, resource_size_t size)
1255{
1256	struct resource **p;
1257	struct resource *res;
1258	struct resource *new_res;
1259	resource_size_t end;
1260	int ret = -EINVAL;
1261
1262	end = start + size - 1;
1263	if ((start < parent->start) || (end > parent->end))
1264		return ret;
1265
1266	/* The alloc_resource() result gets checked later */
1267	new_res = alloc_resource(GFP_KERNEL);
1268
1269	p = &parent->child;
1270	write_lock(&resource_lock);
1271
1272	while ((res = *p)) {
1273		if (res->start >= end)
1274			break;
1275
1276		/* look for the next resource if it does not fit into */
1277		if (res->start > start || res->end < end) {
1278			p = &res->sibling;
1279			continue;
1280		}
1281
1282		/*
1283		 * All memory regions added from memory-hotplug path have the
1284		 * flag IORESOURCE_SYSTEM_RAM. If the resource does not have
1285		 * this flag, we know that we are dealing with a resource coming
1286		 * from HMM/devm. HMM/devm use another mechanism to add/release
1287		 * a resource. This goes via devm_request_mem_region and
1288		 * devm_release_mem_region.
1289		 * HMM/devm take care to release their resources when they want,
1290		 * so if we are dealing with them, let us just back off here.
1291		 */
1292		if (!(res->flags & IORESOURCE_SYSRAM)) {
1293			ret = 0;
1294			break;
1295		}
1296
1297		if (!(res->flags & IORESOURCE_MEM))
1298			break;
1299
1300		if (!(res->flags & IORESOURCE_BUSY)) {
1301			p = &res->child;
1302			continue;
1303		}
1304
1305		/* found the target resource; let's adjust accordingly */
1306		if (res->start == start && res->end == end) {
1307			/* free the whole entry */
1308			*p = res->sibling;
1309			free_resource(res);
1310			ret = 0;
1311		} else if (res->start == start && res->end != end) {
1312			/* adjust the start */
1313			ret = __adjust_resource(res, end + 1,
1314						res->end - end);
1315		} else if (res->start != start && res->end == end) {
1316			/* adjust the end */
1317			ret = __adjust_resource(res, res->start,
1318						start - res->start);
1319		} else {
1320			/* split into two entries */
1321			if (!new_res) {
1322				ret = -ENOMEM;
1323				break;
1324			}
1325			new_res->name = res->name;
1326			new_res->start = end + 1;
1327			new_res->end = res->end;
1328			new_res->flags = res->flags;
1329			new_res->desc = res->desc;
1330			new_res->parent = res->parent;
1331			new_res->sibling = res->sibling;
1332			new_res->child = NULL;
1333
1334			ret = __adjust_resource(res, res->start,
1335						start - res->start);
1336			if (ret)
1337				break;
1338			res->sibling = new_res;
1339			new_res = NULL;
1340		}
1341
1342		break;
1343	}
1344
1345	write_unlock(&resource_lock);
1346	free_resource(new_res);
1347	return ret;
1348}
1349#endif	/* CONFIG_MEMORY_HOTREMOVE */
1350
1351/*
1352 * Managed region resource
1353 */
1354static void devm_resource_release(struct device *dev, void *ptr)
1355{
1356	struct resource **r = ptr;
1357
1358	release_resource(*r);
1359}
1360
1361/**
1362 * devm_request_resource() - request and reserve an I/O or memory resource
1363 * @dev: device for which to request the resource
1364 * @root: root of the resource tree from which to request the resource
1365 * @new: descriptor of the resource to request
1366 *
1367 * This is a device-managed version of request_resource(). There is usually
1368 * no need to release resources requested by this function explicitly since
1369 * that will be taken care of when the device is unbound from its driver.
1370 * If for some reason the resource needs to be released explicitly, because
1371 * of ordering issues for example, drivers must call devm_release_resource()
1372 * rather than the regular release_resource().
1373 *
1374 * When a conflict is detected between any existing resources and the newly
1375 * requested resource, an error message will be printed.
1376 *
1377 * Returns 0 on success or a negative error code on failure.
1378 */
1379int devm_request_resource(struct device *dev, struct resource *root,
1380			  struct resource *new)
1381{
1382	struct resource *conflict, **ptr;
1383
1384	ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1385	if (!ptr)
1386		return -ENOMEM;
1387
1388	*ptr = new;
1389
1390	conflict = request_resource_conflict(root, new);
1391	if (conflict) {
1392		dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1393			new, conflict->name, conflict);
1394		devres_free(ptr);
1395		return -EBUSY;
1396	}
1397
1398	devres_add(dev, ptr);
1399	return 0;
1400}
1401EXPORT_SYMBOL(devm_request_resource);
1402
1403static int devm_resource_match(struct device *dev, void *res, void *data)
1404{
1405	struct resource **ptr = res;
1406
1407	return *ptr == data;
1408}
1409
1410/**
1411 * devm_release_resource() - release a previously requested resource
1412 * @dev: device for which to release the resource
1413 * @new: descriptor of the resource to release
1414 *
1415 * Releases a resource previously requested using devm_request_resource().
1416 */
1417void devm_release_resource(struct device *dev, struct resource *new)
1418{
1419	WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1420			       new));
1421}
1422EXPORT_SYMBOL(devm_release_resource);
1423
1424struct region_devres {
1425	struct resource *parent;
1426	resource_size_t start;
1427	resource_size_t n;
1428};
1429
1430static void devm_region_release(struct device *dev, void *res)
1431{
1432	struct region_devres *this = res;
1433
1434	__release_region(this->parent, this->start, this->n);
1435}
1436
1437static int devm_region_match(struct device *dev, void *res, void *match_data)
1438{
1439	struct region_devres *this = res, *match = match_data;
1440
1441	return this->parent == match->parent &&
1442		this->start == match->start && this->n == match->n;
1443}
1444
1445struct resource *
1446__devm_request_region(struct device *dev, struct resource *parent,
1447		      resource_size_t start, resource_size_t n, const char *name)
1448{
1449	struct region_devres *dr = NULL;
1450	struct resource *res;
1451
1452	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1453			  GFP_KERNEL);
1454	if (!dr)
1455		return NULL;
1456
1457	dr->parent = parent;
1458	dr->start = start;
1459	dr->n = n;
1460
1461	res = __request_region(parent, start, n, name, 0);
1462	if (res)
1463		devres_add(dev, dr);
1464	else
1465		devres_free(dr);
1466
1467	return res;
1468}
1469EXPORT_SYMBOL(__devm_request_region);
1470
1471void __devm_release_region(struct device *dev, struct resource *parent,
1472			   resource_size_t start, resource_size_t n)
1473{
1474	struct region_devres match_data = { parent, start, n };
1475
1476	__release_region(parent, start, n);
1477	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1478			       &match_data));
1479}
1480EXPORT_SYMBOL(__devm_release_region);
1481
1482/*
1483 * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1484 */
1485#define MAXRESERVE 4
1486static int __init reserve_setup(char *str)
1487{
1488	static int reserved;
1489	static struct resource reserve[MAXRESERVE];
1490
1491	for (;;) {
1492		unsigned int io_start, io_num;
1493		int x = reserved;
1494		struct resource *parent;
1495
1496		if (get_option(&str, &io_start) != 2)
1497			break;
1498		if (get_option(&str, &io_num) == 0)
1499			break;
1500		if (x < MAXRESERVE) {
1501			struct resource *res = reserve + x;
1502
1503			/*
1504			 * If the region starts below 0x10000, we assume it's
1505			 * I/O port space; otherwise assume it's memory.
1506			 */
1507			if (io_start < 0x10000) {
1508				res->flags = IORESOURCE_IO;
1509				parent = &ioport_resource;
1510			} else {
1511				res->flags = IORESOURCE_MEM;
1512				parent = &iomem_resource;
1513			}
1514			res->name = "reserved";
1515			res->start = io_start;
1516			res->end = io_start + io_num - 1;
1517			res->flags |= IORESOURCE_BUSY;
1518			res->desc = IORES_DESC_NONE;
1519			res->child = NULL;
1520			if (request_resource(parent, res) == 0)
1521				reserved = x+1;
1522		}
1523	}
1524	return 1;
1525}
 
1526__setup("reserve=", reserve_setup);
1527
1528/*
1529 * Check if the requested addr and size spans more than any slot in the
1530 * iomem resource tree.
1531 */
1532int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1533{
1534	struct resource *p = &iomem_resource;
1535	int err = 0;
1536	loff_t l;
1537
1538	read_lock(&resource_lock);
1539	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1540		/*
1541		 * We can probably skip the resources without
1542		 * IORESOURCE_IO attribute?
1543		 */
1544		if (p->start >= addr + size)
1545			continue;
1546		if (p->end < addr)
1547			continue;
1548		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1549		    PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1550			continue;
1551		/*
1552		 * if a resource is "BUSY", it's not a hardware resource
1553		 * but a driver mapping of such a resource; we don't want
1554		 * to warn for those; some drivers legitimately map only
1555		 * partial hardware resources. (example: vesafb)
1556		 */
1557		if (p->flags & IORESOURCE_BUSY)
1558			continue;
1559
1560		printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
 
1561		       (unsigned long long)addr,
1562		       (unsigned long long)(addr + size - 1),
1563		       p->name, p);
 
 
1564		err = -1;
1565		break;
1566	}
1567	read_unlock(&resource_lock);
1568
1569	return err;
1570}
1571
1572#ifdef CONFIG_STRICT_DEVMEM
1573static int strict_iomem_checks = 1;
1574#else
1575static int strict_iomem_checks;
1576#endif
1577
1578/*
1579 * check if an address is reserved in the iomem resource tree
1580 * returns true if reserved, false if not reserved.
1581 */
1582bool iomem_is_exclusive(u64 addr)
1583{
1584	struct resource *p = &iomem_resource;
1585	bool err = false;
1586	loff_t l;
1587	int size = PAGE_SIZE;
1588
1589	if (!strict_iomem_checks)
1590		return false;
1591
1592	addr = addr & PAGE_MASK;
1593
1594	read_lock(&resource_lock);
1595	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1596		/*
1597		 * We can probably skip the resources without
1598		 * IORESOURCE_IO attribute?
1599		 */
1600		if (p->start >= addr + size)
1601			break;
1602		if (p->end < addr)
1603			continue;
1604		/*
1605		 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1606		 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1607		 * resource is busy.
1608		 */
1609		if ((p->flags & IORESOURCE_BUSY) == 0)
1610			continue;
1611		if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1612				|| p->flags & IORESOURCE_EXCLUSIVE) {
1613			err = true;
1614			break;
1615		}
1616	}
1617	read_unlock(&resource_lock);
1618
1619	return err;
1620}
1621
1622struct resource_entry *resource_list_create_entry(struct resource *res,
1623						  size_t extra_size)
1624{
1625	struct resource_entry *entry;
1626
1627	entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1628	if (entry) {
1629		INIT_LIST_HEAD(&entry->node);
1630		entry->res = res ? res : &entry->__res;
1631	}
1632
1633	return entry;
1634}
1635EXPORT_SYMBOL(resource_list_create_entry);
1636
1637void resource_list_free(struct list_head *head)
1638{
1639	struct resource_entry *entry, *tmp;
1640
1641	list_for_each_entry_safe(entry, tmp, head, node)
1642		resource_list_destroy_entry(entry);
1643}
1644EXPORT_SYMBOL(resource_list_free);
1645
1646#ifdef CONFIG_DEVICE_PRIVATE
1647static struct resource *__request_free_mem_region(struct device *dev,
1648		struct resource *base, unsigned long size, const char *name)
1649{
1650	resource_size_t end, addr;
1651	struct resource *res;
1652
1653	size = ALIGN(size, 1UL << PA_SECTION_SHIFT);
1654	end = min_t(unsigned long, base->end, (1UL << MAX_PHYSMEM_BITS) - 1);
1655	addr = end - size + 1UL;
1656
1657	for (; addr > size && addr >= base->start; addr -= size) {
1658		if (region_intersects(addr, size, 0, IORES_DESC_NONE) !=
1659				REGION_DISJOINT)
1660			continue;
1661
1662		if (dev)
1663			res = devm_request_mem_region(dev, addr, size, name);
1664		else
1665			res = request_mem_region(addr, size, name);
1666		if (!res)
1667			return ERR_PTR(-ENOMEM);
1668		res->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1669		return res;
1670	}
1671
1672	return ERR_PTR(-ERANGE);
1673}
1674
1675/**
1676 * devm_request_free_mem_region - find free region for device private memory
1677 *
1678 * @dev: device struct to bind the resource to
1679 * @size: size in bytes of the device memory to add
1680 * @base: resource tree to look in
1681 *
1682 * This function tries to find an empty range of physical address big enough to
1683 * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE
1684 * memory, which in turn allocates struct pages.
1685 */
1686struct resource *devm_request_free_mem_region(struct device *dev,
1687		struct resource *base, unsigned long size)
1688{
1689	return __request_free_mem_region(dev, base, size, dev_name(dev));
1690}
1691EXPORT_SYMBOL_GPL(devm_request_free_mem_region);
1692
1693struct resource *request_free_mem_region(struct resource *base,
1694		unsigned long size, const char *name)
1695{
1696	return __request_free_mem_region(NULL, base, size, name);
1697}
1698EXPORT_SYMBOL_GPL(request_free_mem_region);
1699
1700#endif /* CONFIG_DEVICE_PRIVATE */
1701
1702static int __init strict_iomem(char *str)
1703{
1704	if (strstr(str, "relaxed"))
1705		strict_iomem_checks = 0;
1706	if (strstr(str, "strict"))
1707		strict_iomem_checks = 1;
1708	return 1;
1709}
1710
1711__setup("iomem=", strict_iomem);
v3.1
 
   1/*
   2 *	linux/kernel/resource.c
   3 *
   4 * Copyright (C) 1999	Linus Torvalds
   5 * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
   6 *
   7 * Arbitrary resource management.
   8 */
   9
  10#include <linux/module.h>
 
 
  11#include <linux/errno.h>
  12#include <linux/ioport.h>
  13#include <linux/init.h>
  14#include <linux/slab.h>
  15#include <linux/spinlock.h>
  16#include <linux/fs.h>
  17#include <linux/proc_fs.h>
  18#include <linux/sched.h>
  19#include <linux/seq_file.h>
  20#include <linux/device.h>
  21#include <linux/pfn.h>
 
 
  22#include <asm/io.h>
  23
  24
  25struct resource ioport_resource = {
  26	.name	= "PCI IO",
  27	.start	= 0,
  28	.end	= IO_SPACE_LIMIT,
  29	.flags	= IORESOURCE_IO,
  30};
  31EXPORT_SYMBOL(ioport_resource);
  32
  33struct resource iomem_resource = {
  34	.name	= "PCI mem",
  35	.start	= 0,
  36	.end	= -1,
  37	.flags	= IORESOURCE_MEM,
  38};
  39EXPORT_SYMBOL(iomem_resource);
  40
  41/* constraints to be met while allocating resources */
  42struct resource_constraint {
  43	resource_size_t min, max, align;
  44	resource_size_t (*alignf)(void *, const struct resource *,
  45			resource_size_t, resource_size_t);
  46	void *alignf_data;
  47};
  48
  49static DEFINE_RWLOCK(resource_lock);
  50
  51static void *r_next(struct seq_file *m, void *v, loff_t *pos)
  52{
  53	struct resource *p = v;
  54	(*pos)++;
 
 
 
 
 
 
 
 
 
 
  55	if (p->child)
  56		return p->child;
  57	while (!p->sibling && p->parent)
  58		p = p->parent;
  59	return p->sibling;
  60}
  61
 
 
 
 
 
 
 
  62#ifdef CONFIG_PROC_FS
  63
  64enum { MAX_IORES_LEVEL = 5 };
  65
  66static void *r_start(struct seq_file *m, loff_t *pos)
  67	__acquires(resource_lock)
  68{
  69	struct resource *p = m->private;
  70	loff_t l = 0;
  71	read_lock(&resource_lock);
  72	for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
  73		;
  74	return p;
  75}
  76
  77static void r_stop(struct seq_file *m, void *v)
  78	__releases(resource_lock)
  79{
  80	read_unlock(&resource_lock);
  81}
  82
  83static int r_show(struct seq_file *m, void *v)
  84{
  85	struct resource *root = m->private;
  86	struct resource *r = v, *p;
 
  87	int width = root->end < 0x10000 ? 4 : 8;
  88	int depth;
  89
  90	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
  91		if (p->parent == root)
  92			break;
 
 
 
 
 
 
 
 
  93	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
  94			depth * 2, "",
  95			width, (unsigned long long) r->start,
  96			width, (unsigned long long) r->end,
  97			r->name ? r->name : "<BAD>");
  98	return 0;
  99}
 100
 101static const struct seq_operations resource_op = {
 102	.start	= r_start,
 103	.next	= r_next,
 104	.stop	= r_stop,
 105	.show	= r_show,
 106};
 107
 108static int ioports_open(struct inode *inode, struct file *file)
 109{
 110	int res = seq_open(file, &resource_op);
 111	if (!res) {
 112		struct seq_file *m = file->private_data;
 113		m->private = &ioport_resource;
 114	}
 115	return res;
 116}
 
 
 
 117
 118static int iomem_open(struct inode *inode, struct file *file)
 119{
 120	int res = seq_open(file, &resource_op);
 121	if (!res) {
 122		struct seq_file *m = file->private_data;
 123		m->private = &iomem_resource;
 
 
 
 
 
 
 124	}
 125	return res;
 126}
 127
 128static const struct file_operations proc_ioports_operations = {
 129	.open		= ioports_open,
 130	.read		= seq_read,
 131	.llseek		= seq_lseek,
 132	.release	= seq_release,
 133};
 
 
 
 
 134
 135static const struct file_operations proc_iomem_operations = {
 136	.open		= iomem_open,
 137	.read		= seq_read,
 138	.llseek		= seq_lseek,
 139	.release	= seq_release,
 140};
 141
 142static int __init ioresources_init(void)
 143{
 144	proc_create("ioports", 0, NULL, &proc_ioports_operations);
 145	proc_create("iomem", 0, NULL, &proc_iomem_operations);
 146	return 0;
 147}
 148__initcall(ioresources_init);
 149
 150#endif /* CONFIG_PROC_FS */
 151
 152/* Return the conflict entry if you can't request it */
 153static struct resource * __request_resource(struct resource *root, struct resource *new)
 154{
 155	resource_size_t start = new->start;
 156	resource_size_t end = new->end;
 157	struct resource *tmp, **p;
 158
 159	if (end < start)
 160		return root;
 161	if (start < root->start)
 162		return root;
 163	if (end > root->end)
 164		return root;
 165	p = &root->child;
 166	for (;;) {
 167		tmp = *p;
 168		if (!tmp || tmp->start > end) {
 169			new->sibling = tmp;
 170			*p = new;
 171			new->parent = root;
 172			return NULL;
 173		}
 174		p = &tmp->sibling;
 175		if (tmp->end < start)
 176			continue;
 177		return tmp;
 178	}
 179}
 180
 181static int __release_resource(struct resource *old)
 182{
 183	struct resource *tmp, **p;
 184
 185	p = &old->parent->child;
 186	for (;;) {
 187		tmp = *p;
 188		if (!tmp)
 189			break;
 190		if (tmp == old) {
 191			*p = tmp->sibling;
 
 
 
 
 
 
 
 
 
 
 192			old->parent = NULL;
 193			return 0;
 194		}
 195		p = &tmp->sibling;
 196	}
 197	return -EINVAL;
 198}
 199
 200static void __release_child_resources(struct resource *r)
 201{
 202	struct resource *tmp, *p;
 203	resource_size_t size;
 204
 205	p = r->child;
 206	r->child = NULL;
 207	while (p) {
 208		tmp = p;
 209		p = p->sibling;
 210
 211		tmp->parent = NULL;
 212		tmp->sibling = NULL;
 213		__release_child_resources(tmp);
 214
 215		printk(KERN_DEBUG "release child resource %pR\n", tmp);
 216		/* need to restore size, and keep flags */
 217		size = resource_size(tmp);
 218		tmp->start = 0;
 219		tmp->end = size - 1;
 220	}
 221}
 222
 223void release_child_resources(struct resource *r)
 224{
 225	write_lock(&resource_lock);
 226	__release_child_resources(r);
 227	write_unlock(&resource_lock);
 228}
 229
 230/**
 231 * request_resource_conflict - request and reserve an I/O or memory resource
 232 * @root: root resource descriptor
 233 * @new: resource descriptor desired by caller
 234 *
 235 * Returns 0 for success, conflict resource on error.
 236 */
 237struct resource *request_resource_conflict(struct resource *root, struct resource *new)
 238{
 239	struct resource *conflict;
 240
 241	write_lock(&resource_lock);
 242	conflict = __request_resource(root, new);
 243	write_unlock(&resource_lock);
 244	return conflict;
 245}
 246
 247/**
 248 * request_resource - request and reserve an I/O or memory resource
 249 * @root: root resource descriptor
 250 * @new: resource descriptor desired by caller
 251 *
 252 * Returns 0 for success, negative error code on error.
 253 */
 254int request_resource(struct resource *root, struct resource *new)
 255{
 256	struct resource *conflict;
 257
 258	conflict = request_resource_conflict(root, new);
 259	return conflict ? -EBUSY : 0;
 260}
 261
 262EXPORT_SYMBOL(request_resource);
 263
 264/**
 265 * release_resource - release a previously reserved resource
 266 * @old: resource pointer
 267 */
 268int release_resource(struct resource *old)
 269{
 270	int retval;
 271
 272	write_lock(&resource_lock);
 273	retval = __release_resource(old);
 274	write_unlock(&resource_lock);
 275	return retval;
 276}
 277
 278EXPORT_SYMBOL(release_resource);
 279
 280#if !defined(CONFIG_ARCH_HAS_WALK_MEMORY)
 281/*
 282 * Finds the lowest memory reosurce exists within [res->start.res->end)
 283 * the caller must specify res->start, res->end, res->flags and "name".
 284 * If found, returns 0, res is overwritten, if not found, returns -1.
 285 */
 286static int find_next_system_ram(struct resource *res, char *name)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 287{
 288	resource_size_t start, end;
 289	struct resource *p;
 290
 291	BUG_ON(!res);
 
 292
 293	start = res->start;
 294	end = res->end;
 295	BUG_ON(start >= end);
 296
 297	read_lock(&resource_lock);
 298	for (p = iomem_resource.child; p ; p = p->sibling) {
 299		/* system ram is just marked as IORESOURCE_MEM */
 300		if (p->flags != res->flags)
 301			continue;
 302		if (name && strcmp(p->name, name))
 303			continue;
 304		if (p->start > end) {
 305			p = NULL;
 306			break;
 307		}
 308		if ((p->end >= start) && (p->start < end))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 309			break;
 
 
 310	}
 311	read_unlock(&resource_lock);
 312	if (!p)
 313		return -1;
 314	/* copy data */
 315	if (res->start < p->start)
 316		res->start = p->start;
 317	if (res->end > p->end)
 318		res->end = p->end;
 319	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 320}
 321
 322/*
 323 * This function calls callback against all memory range of "System RAM"
 324 * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY.
 325 * Now, this function is only for "System RAM".
 
 
 
 326 */
 327int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
 328		void *arg, int (*func)(unsigned long, unsigned long, void *))
 329{
 
 
 330	struct resource res;
 331	unsigned long pfn, end_pfn;
 332	u64 orig_end;
 333	int ret = -1;
 334
 335	res.start = (u64) start_pfn << PAGE_SHIFT;
 336	res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
 337	res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 338	orig_end = res.end;
 339	while ((res.start < res.end) &&
 340		(find_next_system_ram(&res, "System RAM") >= 0)) {
 341		pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT;
 342		end_pfn = (res.end + 1) >> PAGE_SHIFT;
 343		if (end_pfn > pfn)
 344			ret = (*func)(pfn, end_pfn - pfn, arg);
 345		if (ret)
 346			break;
 347		res.start = res.end + 1;
 348		res.end = orig_end;
 349	}
 350	return ret;
 351}
 352
 353#endif
 354
 355static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
 356{
 357	return 1;
 358}
 
 359/*
 360 * This generic page_is_ram() returns true if specified address is
 361 * registered as "System RAM" in iomem_resource list.
 362 */
 363int __weak page_is_ram(unsigned long pfn)
 364{
 365	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
 366}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 367
 368void __weak arch_remove_reservations(struct resource *avail)
 369{
 370}
 371
 372static resource_size_t simple_align_resource(void *data,
 373					     const struct resource *avail,
 374					     resource_size_t size,
 375					     resource_size_t align)
 376{
 377	return avail->start;
 378}
 379
 380static void resource_clip(struct resource *res, resource_size_t min,
 381			  resource_size_t max)
 382{
 383	if (res->start < min)
 384		res->start = min;
 385	if (res->end > max)
 386		res->end = max;
 387}
 388
 389static bool resource_contains(struct resource *res1, struct resource *res2)
 390{
 391	return res1->start <= res2->start && res1->end >= res2->end;
 392}
 393
 394/*
 395 * Find empty slot in the resource tree with the given range and
 396 * alignment constraints
 397 */
 398static int __find_resource(struct resource *root, struct resource *old,
 399			 struct resource *new,
 400			 resource_size_t  size,
 401			 struct resource_constraint *constraint)
 402{
 403	struct resource *this = root->child;
 404	struct resource tmp = *new, avail, alloc;
 405
 406	tmp.flags = new->flags;
 407	tmp.start = root->start;
 408	/*
 409	 * Skip past an allocated resource that starts at 0, since the assignment
 410	 * of this->start - 1 to tmp->end below would cause an underflow.
 411	 */
 412	if (this && this->start == root->start) {
 413		tmp.start = (this == old) ? old->start : this->end + 1;
 414		this = this->sibling;
 415	}
 416	for(;;) {
 417		if (this)
 418			tmp.end = (this == old) ?  this->end : this->start - 1;
 419		else
 420			tmp.end = root->end;
 421
 422		if (tmp.end < tmp.start)
 423			goto next;
 424
 425		resource_clip(&tmp, constraint->min, constraint->max);
 426		arch_remove_reservations(&tmp);
 427
 428		/* Check for overflow after ALIGN() */
 429		avail = *new;
 430		avail.start = ALIGN(tmp.start, constraint->align);
 431		avail.end = tmp.end;
 
 432		if (avail.start >= tmp.start) {
 
 433			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
 434					size, constraint->align);
 435			alloc.end = alloc.start + size - 1;
 436			if (resource_contains(&avail, &alloc)) {
 
 437				new->start = alloc.start;
 438				new->end = alloc.end;
 439				return 0;
 440			}
 441		}
 442
 443next:		if (!this || this->end == root->end)
 444			break;
 445
 446		if (this != old)
 447			tmp.start = this->end + 1;
 448		this = this->sibling;
 449	}
 450	return -EBUSY;
 451}
 452
 453/*
 454 * Find empty slot in the resource tree given range and alignment.
 455 */
 456static int find_resource(struct resource *root, struct resource *new,
 457			resource_size_t size,
 458			struct resource_constraint  *constraint)
 459{
 460	return  __find_resource(root, NULL, new, size, constraint);
 461}
 462
 463/**
 464 * reallocate_resource - allocate a slot in the resource tree given range & alignment.
 465 *	The resource will be relocated if the new size cannot be reallocated in the
 466 *	current location.
 467 *
 468 * @root: root resource descriptor
 469 * @old:  resource descriptor desired by caller
 470 * @newsize: new size of the resource descriptor
 471 * @constraint: the size and alignment constraints to be met.
 472 */
 473int reallocate_resource(struct resource *root, struct resource *old,
 474			resource_size_t newsize,
 475			struct resource_constraint  *constraint)
 476{
 477	int err=0;
 478	struct resource new = *old;
 479	struct resource *conflict;
 480
 481	write_lock(&resource_lock);
 482
 483	if ((err = __find_resource(root, old, &new, newsize, constraint)))
 484		goto out;
 485
 486	if (resource_contains(&new, old)) {
 487		old->start = new.start;
 488		old->end = new.end;
 489		goto out;
 490	}
 491
 492	if (old->child) {
 493		err = -EBUSY;
 494		goto out;
 495	}
 496
 497	if (resource_contains(old, &new)) {
 498		old->start = new.start;
 499		old->end = new.end;
 500	} else {
 501		__release_resource(old);
 502		*old = new;
 503		conflict = __request_resource(root, old);
 504		BUG_ON(conflict);
 505	}
 506out:
 507	write_unlock(&resource_lock);
 508	return err;
 509}
 510
 511
 512/**
 513 * allocate_resource - allocate empty slot in the resource tree given range & alignment.
 514 * 	The resource will be reallocated with a new size if it was already allocated
 515 * @root: root resource descriptor
 516 * @new: resource descriptor desired by caller
 517 * @size: requested resource region size
 518 * @min: minimum size to allocate
 519 * @max: maximum size to allocate
 520 * @align: alignment requested, in bytes
 521 * @alignf: alignment function, optional, called if not NULL
 522 * @alignf_data: arbitrary data to pass to the @alignf function
 523 */
 524int allocate_resource(struct resource *root, struct resource *new,
 525		      resource_size_t size, resource_size_t min,
 526		      resource_size_t max, resource_size_t align,
 527		      resource_size_t (*alignf)(void *,
 528						const struct resource *,
 529						resource_size_t,
 530						resource_size_t),
 531		      void *alignf_data)
 532{
 533	int err;
 534	struct resource_constraint constraint;
 535
 536	if (!alignf)
 537		alignf = simple_align_resource;
 538
 539	constraint.min = min;
 540	constraint.max = max;
 541	constraint.align = align;
 542	constraint.alignf = alignf;
 543	constraint.alignf_data = alignf_data;
 544
 545	if ( new->parent ) {
 546		/* resource is already allocated, try reallocating with
 547		   the new constraints */
 548		return reallocate_resource(root, new, size, &constraint);
 549	}
 550
 551	write_lock(&resource_lock);
 552	err = find_resource(root, new, size, &constraint);
 553	if (err >= 0 && __request_resource(root, new))
 554		err = -EBUSY;
 555	write_unlock(&resource_lock);
 556	return err;
 557}
 558
 559EXPORT_SYMBOL(allocate_resource);
 560
 561/**
 562 * lookup_resource - find an existing resource by a resource start address
 563 * @root: root resource descriptor
 564 * @start: resource start address
 565 *
 566 * Returns a pointer to the resource if found, NULL otherwise
 567 */
 568struct resource *lookup_resource(struct resource *root, resource_size_t start)
 569{
 570	struct resource *res;
 571
 572	read_lock(&resource_lock);
 573	for (res = root->child; res; res = res->sibling) {
 574		if (res->start == start)
 575			break;
 576	}
 577	read_unlock(&resource_lock);
 578
 579	return res;
 580}
 581
 582/*
 583 * Insert a resource into the resource tree. If successful, return NULL,
 584 * otherwise return the conflicting resource (compare to __request_resource())
 585 */
 586static struct resource * __insert_resource(struct resource *parent, struct resource *new)
 587{
 588	struct resource *first, *next;
 589
 590	for (;; parent = first) {
 591		first = __request_resource(parent, new);
 592		if (!first)
 593			return first;
 594
 595		if (first == parent)
 596			return first;
 597		if (WARN_ON(first == new))	/* duplicated insertion */
 598			return first;
 599
 600		if ((first->start > new->start) || (first->end < new->end))
 601			break;
 602		if ((first->start == new->start) && (first->end == new->end))
 603			break;
 604	}
 605
 606	for (next = first; ; next = next->sibling) {
 607		/* Partial overlap? Bad, and unfixable */
 608		if (next->start < new->start || next->end > new->end)
 609			return next;
 610		if (!next->sibling)
 611			break;
 612		if (next->sibling->start > new->end)
 613			break;
 614	}
 615
 616	new->parent = parent;
 617	new->sibling = next->sibling;
 618	new->child = first;
 619
 620	next->sibling = NULL;
 621	for (next = first; next; next = next->sibling)
 622		next->parent = new;
 623
 624	if (parent->child == first) {
 625		parent->child = new;
 626	} else {
 627		next = parent->child;
 628		while (next->sibling != first)
 629			next = next->sibling;
 630		next->sibling = new;
 631	}
 632	return NULL;
 633}
 634
 635/**
 636 * insert_resource_conflict - Inserts resource in the resource tree
 637 * @parent: parent of the new resource
 638 * @new: new resource to insert
 639 *
 640 * Returns 0 on success, conflict resource if the resource can't be inserted.
 641 *
 642 * This function is equivalent to request_resource_conflict when no conflict
 643 * happens. If a conflict happens, and the conflicting resources
 644 * entirely fit within the range of the new resource, then the new
 645 * resource is inserted and the conflicting resources become children of
 646 * the new resource.
 
 
 
 647 */
 648struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
 649{
 650	struct resource *conflict;
 651
 652	write_lock(&resource_lock);
 653	conflict = __insert_resource(parent, new);
 654	write_unlock(&resource_lock);
 655	return conflict;
 656}
 657
 658/**
 659 * insert_resource - Inserts a resource in the resource tree
 660 * @parent: parent of the new resource
 661 * @new: new resource to insert
 662 *
 663 * Returns 0 on success, -EBUSY if the resource can't be inserted.
 
 
 
 664 */
 665int insert_resource(struct resource *parent, struct resource *new)
 666{
 667	struct resource *conflict;
 668
 669	conflict = insert_resource_conflict(parent, new);
 670	return conflict ? -EBUSY : 0;
 671}
 
 672
 673/**
 674 * insert_resource_expand_to_fit - Insert a resource into the resource tree
 675 * @root: root resource descriptor
 676 * @new: new resource to insert
 677 *
 678 * Insert a resource into the resource tree, possibly expanding it in order
 679 * to make it encompass any conflicting resources.
 680 */
 681void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
 682{
 683	if (new->parent)
 684		return;
 685
 686	write_lock(&resource_lock);
 687	for (;;) {
 688		struct resource *conflict;
 689
 690		conflict = __insert_resource(root, new);
 691		if (!conflict)
 692			break;
 693		if (conflict == root)
 694			break;
 695
 696		/* Ok, expand resource to cover the conflict, then try again .. */
 697		if (conflict->start < new->start)
 698			new->start = conflict->start;
 699		if (conflict->end > new->end)
 700			new->end = conflict->end;
 701
 702		printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
 703	}
 704	write_unlock(&resource_lock);
 705}
 706
 707/**
 708 * adjust_resource - modify a resource's start and size
 709 * @res: resource to modify
 710 * @start: new start value
 711 * @size: new size
 
 
 
 
 
 
 712 *
 713 * Given an existing resource, change its start and size to match the
 714 * arguments.  Returns 0 on success, -EBUSY if it can't fit.
 715 * Existing children of the resource are assumed to be immutable.
 716 */
 717int adjust_resource(struct resource *res, resource_size_t start, resource_size_t size)
 
 
 
 
 
 
 
 
 
 
 
 
 718{
 719	struct resource *tmp, *parent = res->parent;
 720	resource_size_t end = start + size - 1;
 721	int result = -EBUSY;
 722
 723	write_lock(&resource_lock);
 
 724
 725	if ((start < parent->start) || (end > parent->end))
 726		goto out;
 727
 728	for (tmp = res->child; tmp; tmp = tmp->sibling) {
 729		if ((tmp->start < start) || (tmp->end > end))
 730			goto out;
 731	}
 732
 733	if (res->sibling && (res->sibling->start <= end))
 734		goto out;
 735
 736	tmp = parent->child;
 737	if (tmp != res) {
 738		while (tmp->sibling != res)
 739			tmp = tmp->sibling;
 740		if (start <= tmp->end)
 741			goto out;
 742	}
 743
 
 
 
 
 
 744	res->start = start;
 745	res->end = end;
 746	result = 0;
 747
 748 out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 749	write_unlock(&resource_lock);
 750	return result;
 751}
 
 752
 753static void __init __reserve_region_with_split(struct resource *root,
 754		resource_size_t start, resource_size_t end,
 755		const char *name)
 756{
 757	struct resource *parent = root;
 758	struct resource *conflict;
 759	struct resource *res = kzalloc(sizeof(*res), GFP_ATOMIC);
 
 
 760
 761	if (!res)
 762		return;
 763
 764	res->name = name;
 765	res->start = start;
 766	res->end = end;
 767	res->flags = IORESOURCE_BUSY;
 
 
 
 768
 769	conflict = __request_resource(parent, res);
 770	if (!conflict)
 771		return;
 
 
 
 
 
 772
 773	/* failed, split and try again */
 774	kfree(res);
 
 
 
 
 
 775
 776	/* conflict covered whole area */
 777	if (conflict->start <= start && conflict->end >= end)
 778		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 779
 780	if (conflict->start > start)
 781		__reserve_region_with_split(root, start, conflict->start-1, name);
 782	if (conflict->end < end)
 783		__reserve_region_with_split(root, conflict->end+1, end, name);
 784}
 785
 786void __init reserve_region_with_split(struct resource *root,
 787		resource_size_t start, resource_size_t end,
 788		const char *name)
 789{
 
 
 790	write_lock(&resource_lock);
 791	__reserve_region_with_split(root, start, end, name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 792	write_unlock(&resource_lock);
 793}
 794
 795EXPORT_SYMBOL(adjust_resource);
 796
 797/**
 798 * resource_alignment - calculate resource's alignment
 799 * @res: resource pointer
 800 *
 801 * Returns alignment on success, 0 (invalid alignment) on failure.
 802 */
 803resource_size_t resource_alignment(struct resource *res)
 804{
 805	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
 806	case IORESOURCE_SIZEALIGN:
 807		return resource_size(res);
 808	case IORESOURCE_STARTALIGN:
 809		return res->start;
 810	default:
 811		return 0;
 812	}
 813}
 814
 815/*
 816 * This is compatibility stuff for IO resources.
 817 *
 818 * Note how this, unlike the above, knows about
 819 * the IO flag meanings (busy etc).
 820 *
 821 * request_region creates a new busy region.
 822 *
 823 * check_region returns non-zero if the area is already busy.
 824 *
 825 * release_region releases a matching busy region.
 826 */
 827
 828static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
 829
 830/**
 831 * __request_region - create a new busy resource region
 832 * @parent: parent resource descriptor
 833 * @start: resource start address
 834 * @n: resource region size
 835 * @name: reserving caller's ID string
 836 * @flags: IO resource flags
 837 */
 838struct resource * __request_region(struct resource *parent,
 839				   resource_size_t start, resource_size_t n,
 840				   const char *name, int flags)
 841{
 842	DECLARE_WAITQUEUE(wait, current);
 843	struct resource *res = kzalloc(sizeof(*res), GFP_KERNEL);
 844
 845	if (!res)
 846		return NULL;
 847
 848	res->name = name;
 849	res->start = start;
 850	res->end = start + n - 1;
 851	res->flags = IORESOURCE_BUSY;
 852	res->flags |= flags;
 853
 854	write_lock(&resource_lock);
 855
 856	for (;;) {
 857		struct resource *conflict;
 858
 
 
 
 
 859		conflict = __request_resource(parent, res);
 860		if (!conflict)
 861			break;
 
 
 
 
 
 
 
 
 
 862		if (conflict != parent) {
 863			parent = conflict;
 864			if (!(conflict->flags & IORESOURCE_BUSY))
 865				continue;
 
 866		}
 867		if (conflict->flags & flags & IORESOURCE_MUXED) {
 868			add_wait_queue(&muxed_resource_wait, &wait);
 869			write_unlock(&resource_lock);
 870			set_current_state(TASK_UNINTERRUPTIBLE);
 871			schedule();
 872			remove_wait_queue(&muxed_resource_wait, &wait);
 873			write_lock(&resource_lock);
 874			continue;
 875		}
 876		/* Uhhuh, that didn't work out.. */
 877		kfree(res);
 878		res = NULL;
 879		break;
 880	}
 881	write_unlock(&resource_lock);
 882	return res;
 883}
 884EXPORT_SYMBOL(__request_region);
 885
 886/**
 887 * __check_region - check if a resource region is busy or free
 888 * @parent: parent resource descriptor
 889 * @start: resource start address
 890 * @n: resource region size
 891 *
 892 * Returns 0 if the region is free at the moment it is checked,
 893 * returns %-EBUSY if the region is busy.
 894 *
 895 * NOTE:
 896 * This function is deprecated because its use is racy.
 897 * Even if it returns 0, a subsequent call to request_region()
 898 * may fail because another driver etc. just allocated the region.
 899 * Do NOT use it.  It will be removed from the kernel.
 900 */
 901int __check_region(struct resource *parent, resource_size_t start,
 902			resource_size_t n)
 903{
 904	struct resource * res;
 905
 906	res = __request_region(parent, start, n, "check-region", 0);
 907	if (!res)
 908		return -EBUSY;
 909
 910	release_resource(res);
 911	kfree(res);
 912	return 0;
 913}
 914EXPORT_SYMBOL(__check_region);
 915
 916/**
 917 * __release_region - release a previously reserved resource region
 918 * @parent: parent resource descriptor
 919 * @start: resource start address
 920 * @n: resource region size
 921 *
 922 * The described resource region must match a currently busy region.
 923 */
 924void __release_region(struct resource *parent, resource_size_t start,
 925			resource_size_t n)
 926{
 927	struct resource **p;
 928	resource_size_t end;
 929
 930	p = &parent->child;
 931	end = start + n - 1;
 932
 933	write_lock(&resource_lock);
 934
 935	for (;;) {
 936		struct resource *res = *p;
 937
 938		if (!res)
 939			break;
 940		if (res->start <= start && res->end >= end) {
 941			if (!(res->flags & IORESOURCE_BUSY)) {
 942				p = &res->child;
 943				continue;
 944			}
 945			if (res->start != start || res->end != end)
 946				break;
 947			*p = res->sibling;
 948			write_unlock(&resource_lock);
 949			if (res->flags & IORESOURCE_MUXED)
 950				wake_up(&muxed_resource_wait);
 951			kfree(res);
 952			return;
 953		}
 954		p = &res->sibling;
 955	}
 956
 957	write_unlock(&resource_lock);
 958
 959	printk(KERN_WARNING "Trying to free nonexistent resource "
 960		"<%016llx-%016llx>\n", (unsigned long long)start,
 961		(unsigned long long)end);
 962}
 963EXPORT_SYMBOL(__release_region);
 964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 965/*
 966 * Managed region resource
 967 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 968struct region_devres {
 969	struct resource *parent;
 970	resource_size_t start;
 971	resource_size_t n;
 972};
 973
 974static void devm_region_release(struct device *dev, void *res)
 975{
 976	struct region_devres *this = res;
 977
 978	__release_region(this->parent, this->start, this->n);
 979}
 980
 981static int devm_region_match(struct device *dev, void *res, void *match_data)
 982{
 983	struct region_devres *this = res, *match = match_data;
 984
 985	return this->parent == match->parent &&
 986		this->start == match->start && this->n == match->n;
 987}
 988
 989struct resource * __devm_request_region(struct device *dev,
 990				struct resource *parent, resource_size_t start,
 991				resource_size_t n, const char *name)
 992{
 993	struct region_devres *dr = NULL;
 994	struct resource *res;
 995
 996	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
 997			  GFP_KERNEL);
 998	if (!dr)
 999		return NULL;
1000
1001	dr->parent = parent;
1002	dr->start = start;
1003	dr->n = n;
1004
1005	res = __request_region(parent, start, n, name, 0);
1006	if (res)
1007		devres_add(dev, dr);
1008	else
1009		devres_free(dr);
1010
1011	return res;
1012}
1013EXPORT_SYMBOL(__devm_request_region);
1014
1015void __devm_release_region(struct device *dev, struct resource *parent,
1016			   resource_size_t start, resource_size_t n)
1017{
1018	struct region_devres match_data = { parent, start, n };
1019
1020	__release_region(parent, start, n);
1021	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1022			       &match_data));
1023}
1024EXPORT_SYMBOL(__devm_release_region);
1025
1026/*
1027 * Called from init/main.c to reserve IO ports.
1028 */
1029#define MAXRESERVE 4
1030static int __init reserve_setup(char *str)
1031{
1032	static int reserved;
1033	static struct resource reserve[MAXRESERVE];
1034
1035	for (;;) {
1036		unsigned int io_start, io_num;
1037		int x = reserved;
 
1038
1039		if (get_option (&str, &io_start) != 2)
1040			break;
1041		if (get_option (&str, &io_num)   == 0)
1042			break;
1043		if (x < MAXRESERVE) {
1044			struct resource *res = reserve + x;
 
 
 
 
 
 
 
 
 
 
 
 
1045			res->name = "reserved";
1046			res->start = io_start;
1047			res->end = io_start + io_num - 1;
1048			res->flags = IORESOURCE_BUSY;
 
1049			res->child = NULL;
1050			if (request_resource(res->start >= 0x10000 ? &iomem_resource : &ioport_resource, res) == 0)
1051				reserved = x+1;
1052		}
1053	}
1054	return 1;
1055}
1056
1057__setup("reserve=", reserve_setup);
1058
1059/*
1060 * Check if the requested addr and size spans more than any slot in the
1061 * iomem resource tree.
1062 */
1063int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1064{
1065	struct resource *p = &iomem_resource;
1066	int err = 0;
1067	loff_t l;
1068
1069	read_lock(&resource_lock);
1070	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1071		/*
1072		 * We can probably skip the resources without
1073		 * IORESOURCE_IO attribute?
1074		 */
1075		if (p->start >= addr + size)
1076			continue;
1077		if (p->end < addr)
1078			continue;
1079		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1080		    PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1081			continue;
1082		/*
1083		 * if a resource is "BUSY", it's not a hardware resource
1084		 * but a driver mapping of such a resource; we don't want
1085		 * to warn for those; some drivers legitimately map only
1086		 * partial hardware resources. (example: vesafb)
1087		 */
1088		if (p->flags & IORESOURCE_BUSY)
1089			continue;
1090
1091		printk(KERN_WARNING "resource map sanity check conflict: "
1092		       "0x%llx 0x%llx 0x%llx 0x%llx %s\n",
1093		       (unsigned long long)addr,
1094		       (unsigned long long)(addr + size - 1),
1095		       (unsigned long long)p->start,
1096		       (unsigned long long)p->end,
1097		       p->name);
1098		err = -1;
1099		break;
1100	}
1101	read_unlock(&resource_lock);
1102
1103	return err;
1104}
1105
1106#ifdef CONFIG_STRICT_DEVMEM
1107static int strict_iomem_checks = 1;
1108#else
1109static int strict_iomem_checks;
1110#endif
1111
1112/*
1113 * check if an address is reserved in the iomem resource tree
1114 * returns 1 if reserved, 0 if not reserved.
1115 */
1116int iomem_is_exclusive(u64 addr)
1117{
1118	struct resource *p = &iomem_resource;
1119	int err = 0;
1120	loff_t l;
1121	int size = PAGE_SIZE;
1122
1123	if (!strict_iomem_checks)
1124		return 0;
1125
1126	addr = addr & PAGE_MASK;
1127
1128	read_lock(&resource_lock);
1129	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1130		/*
1131		 * We can probably skip the resources without
1132		 * IORESOURCE_IO attribute?
1133		 */
1134		if (p->start >= addr + size)
1135			break;
1136		if (p->end < addr)
1137			continue;
1138		if (p->flags & IORESOURCE_BUSY &&
1139		     p->flags & IORESOURCE_EXCLUSIVE) {
1140			err = 1;
 
 
 
 
 
 
 
1141			break;
1142		}
1143	}
1144	read_unlock(&resource_lock);
1145
1146	return err;
1147}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1148
1149static int __init strict_iomem(char *str)
1150{
1151	if (strstr(str, "relaxed"))
1152		strict_iomem_checks = 0;
1153	if (strstr(str, "strict"))
1154		strict_iomem_checks = 1;
1155	return 1;
1156}
1157
1158__setup("iomem=", strict_iomem);