Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *	linux/kernel/resource.c
   4 *
   5 * Copyright (C) 1999	Linus Torvalds
   6 * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
   7 *
   8 * Arbitrary resource management.
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/export.h>
  14#include <linux/errno.h>
  15#include <linux/ioport.h>
  16#include <linux/init.h>
  17#include <linux/slab.h>
  18#include <linux/spinlock.h>
  19#include <linux/fs.h>
  20#include <linux/proc_fs.h>
 
  21#include <linux/sched.h>
  22#include <linux/seq_file.h>
  23#include <linux/device.h>
  24#include <linux/pfn.h>
  25#include <linux/mm.h>
 
  26#include <linux/resource_ext.h>
 
 
 
  27#include <asm/io.h>
  28
  29
  30struct resource ioport_resource = {
  31	.name	= "PCI IO",
  32	.start	= 0,
  33	.end	= IO_SPACE_LIMIT,
  34	.flags	= IORESOURCE_IO,
  35};
  36EXPORT_SYMBOL(ioport_resource);
  37
  38struct resource iomem_resource = {
  39	.name	= "PCI mem",
  40	.start	= 0,
  41	.end	= -1,
  42	.flags	= IORESOURCE_MEM,
  43};
  44EXPORT_SYMBOL(iomem_resource);
  45
  46/* constraints to be met while allocating resources */
  47struct resource_constraint {
  48	resource_size_t min, max, align;
  49	resource_size_t (*alignf)(void *, const struct resource *,
  50			resource_size_t, resource_size_t);
  51	void *alignf_data;
  52};
  53
  54static DEFINE_RWLOCK(resource_lock);
  55
  56/*
  57 * For memory hotplug, there is no way to free resource entries allocated
  58 * by boot mem after the system is up. So for reusing the resource entry
  59 * we need to remember the resource.
  60 */
  61static struct resource *bootmem_resource_free;
  62static DEFINE_SPINLOCK(bootmem_resource_lock);
  63
  64static struct resource *next_resource(struct resource *p, bool sibling_only)
  65{
  66	/* Caller wants to traverse through siblings only */
  67	if (sibling_only)
  68		return p->sibling;
  69
  70	if (p->child)
  71		return p->child;
  72	while (!p->sibling && p->parent)
  73		p = p->parent;
  74	return p->sibling;
  75}
  76
  77static void *r_next(struct seq_file *m, void *v, loff_t *pos)
  78{
  79	struct resource *p = v;
  80	(*pos)++;
  81	return (void *)next_resource(p, false);
  82}
  83
  84#ifdef CONFIG_PROC_FS
  85
  86enum { MAX_IORES_LEVEL = 5 };
  87
  88static void *r_start(struct seq_file *m, loff_t *pos)
  89	__acquires(resource_lock)
  90{
  91	struct resource *p = PDE_DATA(file_inode(m->file));
  92	loff_t l = 0;
 
 
  93	read_lock(&resource_lock);
  94	for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
  95		;
 
 
 
  96	return p;
  97}
  98
 
 
 
 
 
 
 
 
 
  99static void r_stop(struct seq_file *m, void *v)
 100	__releases(resource_lock)
 101{
 102	read_unlock(&resource_lock);
 103}
 104
 105static int r_show(struct seq_file *m, void *v)
 106{
 107	struct resource *root = PDE_DATA(file_inode(m->file));
 108	struct resource *r = v, *p;
 109	unsigned long long start, end;
 110	int width = root->end < 0x10000 ? 4 : 8;
 111	int depth;
 112
 113	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
 114		if (p->parent == root)
 115			break;
 116
 117	if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
 118		start = r->start;
 119		end = r->end;
 120	} else {
 121		start = end = 0;
 122	}
 123
 124	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
 125			depth * 2, "",
 126			width, start,
 127			width, end,
 128			r->name ? r->name : "<BAD>");
 129	return 0;
 130}
 131
 132static const struct seq_operations resource_op = {
 133	.start	= r_start,
 134	.next	= r_next,
 135	.stop	= r_stop,
 136	.show	= r_show,
 137};
 138
 139static int __init ioresources_init(void)
 140{
 141	proc_create_seq_data("ioports", 0, NULL, &resource_op,
 142			&ioport_resource);
 143	proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
 144	return 0;
 145}
 146__initcall(ioresources_init);
 147
 148#endif /* CONFIG_PROC_FS */
 149
 150static void free_resource(struct resource *res)
 151{
 152	if (!res)
 153		return;
 154
 155	if (!PageSlab(virt_to_head_page(res))) {
 156		spin_lock(&bootmem_resource_lock);
 157		res->sibling = bootmem_resource_free;
 158		bootmem_resource_free = res;
 159		spin_unlock(&bootmem_resource_lock);
 160	} else {
 161		kfree(res);
 162	}
 163}
 164
 165static struct resource *alloc_resource(gfp_t flags)
 166{
 167	struct resource *res = NULL;
 168
 169	spin_lock(&bootmem_resource_lock);
 170	if (bootmem_resource_free) {
 171		res = bootmem_resource_free;
 172		bootmem_resource_free = res->sibling;
 173	}
 174	spin_unlock(&bootmem_resource_lock);
 175
 176	if (res)
 177		memset(res, 0, sizeof(struct resource));
 178	else
 179		res = kzalloc(sizeof(struct resource), flags);
 180
 181	return res;
 182}
 183
 184/* Return the conflict entry if you can't request it */
 185static struct resource * __request_resource(struct resource *root, struct resource *new)
 186{
 187	resource_size_t start = new->start;
 188	resource_size_t end = new->end;
 189	struct resource *tmp, **p;
 190
 191	if (end < start)
 192		return root;
 193	if (start < root->start)
 194		return root;
 195	if (end > root->end)
 196		return root;
 197	p = &root->child;
 198	for (;;) {
 199		tmp = *p;
 200		if (!tmp || tmp->start > end) {
 201			new->sibling = tmp;
 202			*p = new;
 203			new->parent = root;
 204			return NULL;
 205		}
 206		p = &tmp->sibling;
 207		if (tmp->end < start)
 208			continue;
 209		return tmp;
 210	}
 211}
 212
 213static int __release_resource(struct resource *old, bool release_child)
 214{
 215	struct resource *tmp, **p, *chd;
 216
 217	p = &old->parent->child;
 218	for (;;) {
 219		tmp = *p;
 220		if (!tmp)
 221			break;
 222		if (tmp == old) {
 223			if (release_child || !(tmp->child)) {
 224				*p = tmp->sibling;
 225			} else {
 226				for (chd = tmp->child;; chd = chd->sibling) {
 227					chd->parent = tmp->parent;
 228					if (!(chd->sibling))
 229						break;
 230				}
 231				*p = tmp->child;
 232				chd->sibling = tmp->sibling;
 233			}
 234			old->parent = NULL;
 235			return 0;
 236		}
 237		p = &tmp->sibling;
 238	}
 239	return -EINVAL;
 240}
 241
 242static void __release_child_resources(struct resource *r)
 243{
 244	struct resource *tmp, *p;
 245	resource_size_t size;
 246
 247	p = r->child;
 248	r->child = NULL;
 249	while (p) {
 250		tmp = p;
 251		p = p->sibling;
 252
 253		tmp->parent = NULL;
 254		tmp->sibling = NULL;
 255		__release_child_resources(tmp);
 256
 257		printk(KERN_DEBUG "release child resource %pR\n", tmp);
 258		/* need to restore size, and keep flags */
 259		size = resource_size(tmp);
 260		tmp->start = 0;
 261		tmp->end = size - 1;
 262	}
 263}
 264
 265void release_child_resources(struct resource *r)
 266{
 267	write_lock(&resource_lock);
 268	__release_child_resources(r);
 269	write_unlock(&resource_lock);
 270}
 271
 272/**
 273 * request_resource_conflict - request and reserve an I/O or memory resource
 274 * @root: root resource descriptor
 275 * @new: resource descriptor desired by caller
 276 *
 277 * Returns 0 for success, conflict resource on error.
 278 */
 279struct resource *request_resource_conflict(struct resource *root, struct resource *new)
 280{
 281	struct resource *conflict;
 282
 283	write_lock(&resource_lock);
 284	conflict = __request_resource(root, new);
 285	write_unlock(&resource_lock);
 286	return conflict;
 287}
 288
 289/**
 290 * request_resource - request and reserve an I/O or memory resource
 291 * @root: root resource descriptor
 292 * @new: resource descriptor desired by caller
 293 *
 294 * Returns 0 for success, negative error code on error.
 295 */
 296int request_resource(struct resource *root, struct resource *new)
 297{
 298	struct resource *conflict;
 299
 300	conflict = request_resource_conflict(root, new);
 301	return conflict ? -EBUSY : 0;
 302}
 303
 304EXPORT_SYMBOL(request_resource);
 305
 306/**
 307 * release_resource - release a previously reserved resource
 308 * @old: resource pointer
 309 */
 310int release_resource(struct resource *old)
 311{
 312	int retval;
 313
 314	write_lock(&resource_lock);
 315	retval = __release_resource(old, true);
 316	write_unlock(&resource_lock);
 317	return retval;
 318}
 319
 320EXPORT_SYMBOL(release_resource);
 321
 322/**
 323 * Finds the lowest iomem resource that covers part of [@start..@end].  The
 324 * caller must specify @start, @end, @flags, and @desc (which may be
 325 * IORES_DESC_NONE).
 326 *
 327 * If a resource is found, returns 0 and @*res is overwritten with the part
 328 * of the resource that's within [@start..@end]; if none is found, returns
 329 * -ENODEV.  Returns -EINVAL for invalid parameters.
 330 *
 331 * This function walks the whole tree and not just first level children
 332 * unless @first_lvl is true.
 333 *
 334 * @start:	start address of the resource searched for
 335 * @end:	end address of same resource
 336 * @flags:	flags which the resource must have
 337 * @desc:	descriptor the resource must have
 338 * @first_lvl:	walk only the first level children, if set
 339 * @res:	return ptr, if resource found
 
 
 
 340 */
 341static int find_next_iomem_res(resource_size_t start, resource_size_t end,
 342			       unsigned long flags, unsigned long desc,
 343			       bool first_lvl, struct resource *res)
 344{
 345	bool siblings_only = true;
 346	struct resource *p;
 347
 348	if (!res)
 349		return -EINVAL;
 350
 351	if (start >= end)
 352		return -EINVAL;
 353
 354	read_lock(&resource_lock);
 355
 356	for (p = iomem_resource.child; p; p = next_resource(p, siblings_only)) {
 357		/* If we passed the resource we are looking for, stop */
 358		if (p->start > end) {
 359			p = NULL;
 360			break;
 361		}
 362
 363		/* Skip until we find a range that matches what we look for */
 364		if (p->end < start)
 365			continue;
 366
 367		/*
 368		 * Now that we found a range that matches what we look for,
 369		 * check the flags and the descriptor. If we were not asked to
 370		 * use only the first level, start looking at children as well.
 371		 */
 372		siblings_only = first_lvl;
 373
 374		if ((p->flags & flags) != flags)
 375			continue;
 376		if ((desc != IORES_DESC_NONE) && (desc != p->desc))
 377			continue;
 378
 379		/* Found a match, break */
 380		break;
 381	}
 382
 383	if (p) {
 384		/* copy data */
 385		res->start = max(start, p->start);
 386		res->end = min(end, p->end);
 387		res->flags = p->flags;
 388		res->desc = p->desc;
 
 
 
 389	}
 390
 391	read_unlock(&resource_lock);
 392	return p ? 0 : -ENODEV;
 393}
 394
 395static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
 396				 unsigned long flags, unsigned long desc,
 397				 bool first_lvl, void *arg,
 398				 int (*func)(struct resource *, void *))
 399{
 400	struct resource res;
 401	int ret = -EINVAL;
 402
 403	while (start < end &&
 404	       !find_next_iomem_res(start, end, flags, desc, first_lvl, &res)) {
 405		ret = (*func)(&res, arg);
 406		if (ret)
 407			break;
 408
 409		start = res.end + 1;
 410	}
 411
 412	return ret;
 413}
 414
 415/**
 416 * Walks through iomem resources and calls func() with matching resource
 417 * ranges. This walks through whole tree and not just first level children.
 418 * All the memory ranges which overlap start,end and also match flags and
 419 * desc are valid candidates.
 420 *
 421 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
 422 * @flags: I/O resource flags
 423 * @start: start addr
 424 * @end: end addr
 425 * @arg: function argument for the callback @func
 426 * @func: callback function that is called for each qualifying resource area
 427 *
 
 
 
 428 * NOTE: For a new descriptor search, define a new IORES_DESC in
 429 * <linux/ioport.h> and set it in 'desc' of a target resource entry.
 430 */
 431int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
 432		u64 end, void *arg, int (*func)(struct resource *, void *))
 433{
 434	return __walk_iomem_res_desc(start, end, flags, desc, false, arg, func);
 435}
 436EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
 437
 438/*
 439 * This function calls the @func callback against all memory ranges of type
 440 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
 441 * Now, this function is only for System RAM, it deals with full ranges and
 442 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
 443 * ranges.
 444 */
 445int walk_system_ram_res(u64 start, u64 end, void *arg,
 446			int (*func)(struct resource *, void *))
 447{
 448	unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 449
 450	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, true,
 451				     arg, func);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 452}
 453
 454/*
 455 * This function calls the @func callback against all memory ranges, which
 456 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
 457 */
 458int walk_mem_res(u64 start, u64 end, void *arg,
 459		 int (*func)(struct resource *, void *))
 460{
 461	unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 462
 463	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, true,
 464				     arg, func);
 465}
 466
 467/*
 468 * This function calls the @func callback against all memory ranges of type
 469 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
 470 * It is to be used only for System RAM.
 471 *
 472 * This will find System RAM ranges that are children of top-level resources
 473 * in addition to top-level System RAM resources.
 474 */
 475int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
 476			  void *arg, int (*func)(unsigned long, unsigned long, void *))
 477{
 478	resource_size_t start, end;
 479	unsigned long flags;
 480	struct resource res;
 481	unsigned long pfn, end_pfn;
 482	int ret = -EINVAL;
 483
 484	start = (u64) start_pfn << PAGE_SHIFT;
 485	end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
 486	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 487	while (start < end &&
 488	       !find_next_iomem_res(start, end, flags, IORES_DESC_NONE,
 489				    false, &res)) {
 490		pfn = PFN_UP(res.start);
 491		end_pfn = PFN_DOWN(res.end + 1);
 492		if (end_pfn > pfn)
 493			ret = (*func)(pfn, end_pfn - pfn, arg);
 494		if (ret)
 495			break;
 496		start = res.end + 1;
 497	}
 498	return ret;
 499}
 500
 501static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
 502{
 503	return 1;
 504}
 505
 506/*
 507 * This generic page_is_ram() returns true if specified address is
 508 * registered as System RAM in iomem_resource list.
 509 */
 510int __weak page_is_ram(unsigned long pfn)
 511{
 512	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
 513}
 514EXPORT_SYMBOL_GPL(page_is_ram);
 515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 516/**
 517 * region_intersects() - determine intersection of region with known resources
 518 * @start: region start address
 519 * @size: size of region
 520 * @flags: flags of resource (in iomem_resource)
 521 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
 522 *
 523 * Check if the specified region partially overlaps or fully eclipses a
 524 * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
 525 * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
 526 * return REGION_MIXED if the region overlaps @flags/@desc and another
 527 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
 528 * and no other defined resource. Note that REGION_INTERSECTS is also
 529 * returned in the case when the specified region overlaps RAM and undefined
 530 * memory holes.
 531 *
 532 * region_intersect() is used by memory remapping functions to ensure
 533 * the user is not remapping RAM and is a vast speed up over walking
 534 * through the resource table page by page.
 535 */
 536int region_intersects(resource_size_t start, size_t size, unsigned long flags,
 537		      unsigned long desc)
 538{
 539	struct resource res;
 540	int type = 0; int other = 0;
 541	struct resource *p;
 542
 543	res.start = start;
 544	res.end = start + size - 1;
 545
 546	read_lock(&resource_lock);
 547	for (p = iomem_resource.child; p ; p = p->sibling) {
 548		bool is_type = (((p->flags & flags) == flags) &&
 549				((desc == IORES_DESC_NONE) ||
 550				 (desc == p->desc)));
 551
 552		if (resource_overlaps(p, &res))
 553			is_type ? type++ : other++;
 554	}
 555	read_unlock(&resource_lock);
 556
 557	if (other == 0)
 558		return type ? REGION_INTERSECTS : REGION_DISJOINT;
 559
 560	if (type)
 561		return REGION_MIXED;
 562
 563	return REGION_DISJOINT;
 564}
 565EXPORT_SYMBOL_GPL(region_intersects);
 566
 567void __weak arch_remove_reservations(struct resource *avail)
 568{
 569}
 570
 571static resource_size_t simple_align_resource(void *data,
 572					     const struct resource *avail,
 573					     resource_size_t size,
 574					     resource_size_t align)
 575{
 576	return avail->start;
 577}
 578
 579static void resource_clip(struct resource *res, resource_size_t min,
 580			  resource_size_t max)
 581{
 582	if (res->start < min)
 583		res->start = min;
 584	if (res->end > max)
 585		res->end = max;
 586}
 587
 588/*
 589 * Find empty slot in the resource tree with the given range and
 590 * alignment constraints
 591 */
 592static int __find_resource(struct resource *root, struct resource *old,
 593			 struct resource *new,
 594			 resource_size_t  size,
 595			 struct resource_constraint *constraint)
 596{
 597	struct resource *this = root->child;
 598	struct resource tmp = *new, avail, alloc;
 599
 600	tmp.start = root->start;
 601	/*
 602	 * Skip past an allocated resource that starts at 0, since the assignment
 603	 * of this->start - 1 to tmp->end below would cause an underflow.
 604	 */
 605	if (this && this->start == root->start) {
 606		tmp.start = (this == old) ? old->start : this->end + 1;
 607		this = this->sibling;
 608	}
 609	for(;;) {
 610		if (this)
 611			tmp.end = (this == old) ?  this->end : this->start - 1;
 612		else
 613			tmp.end = root->end;
 614
 615		if (tmp.end < tmp.start)
 616			goto next;
 617
 618		resource_clip(&tmp, constraint->min, constraint->max);
 619		arch_remove_reservations(&tmp);
 620
 621		/* Check for overflow after ALIGN() */
 622		avail.start = ALIGN(tmp.start, constraint->align);
 623		avail.end = tmp.end;
 624		avail.flags = new->flags & ~IORESOURCE_UNSET;
 625		if (avail.start >= tmp.start) {
 626			alloc.flags = avail.flags;
 627			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
 628					size, constraint->align);
 629			alloc.end = alloc.start + size - 1;
 630			if (alloc.start <= alloc.end &&
 631			    resource_contains(&avail, &alloc)) {
 632				new->start = alloc.start;
 633				new->end = alloc.end;
 634				return 0;
 635			}
 636		}
 637
 638next:		if (!this || this->end == root->end)
 639			break;
 640
 641		if (this != old)
 642			tmp.start = this->end + 1;
 643		this = this->sibling;
 644	}
 645	return -EBUSY;
 646}
 647
 648/*
 649 * Find empty slot in the resource tree given range and alignment.
 650 */
 651static int find_resource(struct resource *root, struct resource *new,
 652			resource_size_t size,
 653			struct resource_constraint  *constraint)
 654{
 655	return  __find_resource(root, NULL, new, size, constraint);
 656}
 657
 658/**
 659 * reallocate_resource - allocate a slot in the resource tree given range & alignment.
 660 *	The resource will be relocated if the new size cannot be reallocated in the
 661 *	current location.
 662 *
 663 * @root: root resource descriptor
 664 * @old:  resource descriptor desired by caller
 665 * @newsize: new size of the resource descriptor
 666 * @constraint: the size and alignment constraints to be met.
 667 */
 668static int reallocate_resource(struct resource *root, struct resource *old,
 669			       resource_size_t newsize,
 670			       struct resource_constraint *constraint)
 671{
 672	int err=0;
 673	struct resource new = *old;
 674	struct resource *conflict;
 675
 676	write_lock(&resource_lock);
 677
 678	if ((err = __find_resource(root, old, &new, newsize, constraint)))
 679		goto out;
 680
 681	if (resource_contains(&new, old)) {
 682		old->start = new.start;
 683		old->end = new.end;
 684		goto out;
 685	}
 686
 687	if (old->child) {
 688		err = -EBUSY;
 689		goto out;
 690	}
 691
 692	if (resource_contains(old, &new)) {
 693		old->start = new.start;
 694		old->end = new.end;
 695	} else {
 696		__release_resource(old, true);
 697		*old = new;
 698		conflict = __request_resource(root, old);
 699		BUG_ON(conflict);
 700	}
 701out:
 702	write_unlock(&resource_lock);
 703	return err;
 704}
 705
 706
 707/**
 708 * allocate_resource - allocate empty slot in the resource tree given range & alignment.
 709 * 	The resource will be reallocated with a new size if it was already allocated
 710 * @root: root resource descriptor
 711 * @new: resource descriptor desired by caller
 712 * @size: requested resource region size
 713 * @min: minimum boundary to allocate
 714 * @max: maximum boundary to allocate
 715 * @align: alignment requested, in bytes
 716 * @alignf: alignment function, optional, called if not NULL
 717 * @alignf_data: arbitrary data to pass to the @alignf function
 718 */
 719int allocate_resource(struct resource *root, struct resource *new,
 720		      resource_size_t size, resource_size_t min,
 721		      resource_size_t max, resource_size_t align,
 722		      resource_size_t (*alignf)(void *,
 723						const struct resource *,
 724						resource_size_t,
 725						resource_size_t),
 726		      void *alignf_data)
 727{
 728	int err;
 729	struct resource_constraint constraint;
 730
 731	if (!alignf)
 732		alignf = simple_align_resource;
 733
 734	constraint.min = min;
 735	constraint.max = max;
 736	constraint.align = align;
 737	constraint.alignf = alignf;
 738	constraint.alignf_data = alignf_data;
 739
 740	if ( new->parent ) {
 741		/* resource is already allocated, try reallocating with
 742		   the new constraints */
 743		return reallocate_resource(root, new, size, &constraint);
 744	}
 745
 746	write_lock(&resource_lock);
 747	err = find_resource(root, new, size, &constraint);
 748	if (err >= 0 && __request_resource(root, new))
 749		err = -EBUSY;
 750	write_unlock(&resource_lock);
 751	return err;
 752}
 753
 754EXPORT_SYMBOL(allocate_resource);
 755
 756/**
 757 * lookup_resource - find an existing resource by a resource start address
 758 * @root: root resource descriptor
 759 * @start: resource start address
 760 *
 761 * Returns a pointer to the resource if found, NULL otherwise
 762 */
 763struct resource *lookup_resource(struct resource *root, resource_size_t start)
 764{
 765	struct resource *res;
 766
 767	read_lock(&resource_lock);
 768	for (res = root->child; res; res = res->sibling) {
 769		if (res->start == start)
 770			break;
 771	}
 772	read_unlock(&resource_lock);
 773
 774	return res;
 775}
 776
 777/*
 778 * Insert a resource into the resource tree. If successful, return NULL,
 779 * otherwise return the conflicting resource (compare to __request_resource())
 780 */
 781static struct resource * __insert_resource(struct resource *parent, struct resource *new)
 782{
 783	struct resource *first, *next;
 784
 785	for (;; parent = first) {
 786		first = __request_resource(parent, new);
 787		if (!first)
 788			return first;
 789
 790		if (first == parent)
 791			return first;
 792		if (WARN_ON(first == new))	/* duplicated insertion */
 793			return first;
 794
 795		if ((first->start > new->start) || (first->end < new->end))
 796			break;
 797		if ((first->start == new->start) && (first->end == new->end))
 798			break;
 799	}
 800
 801	for (next = first; ; next = next->sibling) {
 802		/* Partial overlap? Bad, and unfixable */
 803		if (next->start < new->start || next->end > new->end)
 804			return next;
 805		if (!next->sibling)
 806			break;
 807		if (next->sibling->start > new->end)
 808			break;
 809	}
 810
 811	new->parent = parent;
 812	new->sibling = next->sibling;
 813	new->child = first;
 814
 815	next->sibling = NULL;
 816	for (next = first; next; next = next->sibling)
 817		next->parent = new;
 818
 819	if (parent->child == first) {
 820		parent->child = new;
 821	} else {
 822		next = parent->child;
 823		while (next->sibling != first)
 824			next = next->sibling;
 825		next->sibling = new;
 826	}
 827	return NULL;
 828}
 829
 830/**
 831 * insert_resource_conflict - Inserts resource in the resource tree
 832 * @parent: parent of the new resource
 833 * @new: new resource to insert
 834 *
 835 * Returns 0 on success, conflict resource if the resource can't be inserted.
 836 *
 837 * This function is equivalent to request_resource_conflict when no conflict
 838 * happens. If a conflict happens, and the conflicting resources
 839 * entirely fit within the range of the new resource, then the new
 840 * resource is inserted and the conflicting resources become children of
 841 * the new resource.
 842 *
 843 * This function is intended for producers of resources, such as FW modules
 844 * and bus drivers.
 845 */
 846struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
 847{
 848	struct resource *conflict;
 849
 850	write_lock(&resource_lock);
 851	conflict = __insert_resource(parent, new);
 852	write_unlock(&resource_lock);
 853	return conflict;
 854}
 855
 856/**
 857 * insert_resource - Inserts a resource in the resource tree
 858 * @parent: parent of the new resource
 859 * @new: new resource to insert
 860 *
 861 * Returns 0 on success, -EBUSY if the resource can't be inserted.
 862 *
 863 * This function is intended for producers of resources, such as FW modules
 864 * and bus drivers.
 865 */
 866int insert_resource(struct resource *parent, struct resource *new)
 867{
 868	struct resource *conflict;
 869
 870	conflict = insert_resource_conflict(parent, new);
 871	return conflict ? -EBUSY : 0;
 872}
 873EXPORT_SYMBOL_GPL(insert_resource);
 874
 875/**
 876 * insert_resource_expand_to_fit - Insert a resource into the resource tree
 877 * @root: root resource descriptor
 878 * @new: new resource to insert
 879 *
 880 * Insert a resource into the resource tree, possibly expanding it in order
 881 * to make it encompass any conflicting resources.
 882 */
 883void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
 884{
 885	if (new->parent)
 886		return;
 887
 888	write_lock(&resource_lock);
 889	for (;;) {
 890		struct resource *conflict;
 891
 892		conflict = __insert_resource(root, new);
 893		if (!conflict)
 894			break;
 895		if (conflict == root)
 896			break;
 897
 898		/* Ok, expand resource to cover the conflict, then try again .. */
 899		if (conflict->start < new->start)
 900			new->start = conflict->start;
 901		if (conflict->end > new->end)
 902			new->end = conflict->end;
 903
 904		printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
 905	}
 906	write_unlock(&resource_lock);
 907}
 
 
 
 
 
 
 
 908
 909/**
 910 * remove_resource - Remove a resource in the resource tree
 911 * @old: resource to remove
 912 *
 913 * Returns 0 on success, -EINVAL if the resource is not valid.
 914 *
 915 * This function removes a resource previously inserted by insert_resource()
 916 * or insert_resource_conflict(), and moves the children (if any) up to
 917 * where they were before.  insert_resource() and insert_resource_conflict()
 918 * insert a new resource, and move any conflicting resources down to the
 919 * children of the new resource.
 920 *
 921 * insert_resource(), insert_resource_conflict() and remove_resource() are
 922 * intended for producers of resources, such as FW modules and bus drivers.
 923 */
 924int remove_resource(struct resource *old)
 925{
 926	int retval;
 927
 928	write_lock(&resource_lock);
 929	retval = __release_resource(old, false);
 930	write_unlock(&resource_lock);
 931	return retval;
 932}
 933EXPORT_SYMBOL_GPL(remove_resource);
 934
 935static int __adjust_resource(struct resource *res, resource_size_t start,
 936				resource_size_t size)
 937{
 938	struct resource *tmp, *parent = res->parent;
 939	resource_size_t end = start + size - 1;
 940	int result = -EBUSY;
 941
 942	if (!parent)
 943		goto skip;
 944
 945	if ((start < parent->start) || (end > parent->end))
 946		goto out;
 947
 948	if (res->sibling && (res->sibling->start <= end))
 949		goto out;
 950
 951	tmp = parent->child;
 952	if (tmp != res) {
 953		while (tmp->sibling != res)
 954			tmp = tmp->sibling;
 955		if (start <= tmp->end)
 956			goto out;
 957	}
 958
 959skip:
 960	for (tmp = res->child; tmp; tmp = tmp->sibling)
 961		if ((tmp->start < start) || (tmp->end > end))
 962			goto out;
 963
 964	res->start = start;
 965	res->end = end;
 966	result = 0;
 967
 968 out:
 969	return result;
 970}
 971
 972/**
 973 * adjust_resource - modify a resource's start and size
 974 * @res: resource to modify
 975 * @start: new start value
 976 * @size: new size
 977 *
 978 * Given an existing resource, change its start and size to match the
 979 * arguments.  Returns 0 on success, -EBUSY if it can't fit.
 980 * Existing children of the resource are assumed to be immutable.
 981 */
 982int adjust_resource(struct resource *res, resource_size_t start,
 983		    resource_size_t size)
 984{
 985	int result;
 986
 987	write_lock(&resource_lock);
 988	result = __adjust_resource(res, start, size);
 989	write_unlock(&resource_lock);
 990	return result;
 991}
 992EXPORT_SYMBOL(adjust_resource);
 993
 994static void __init
 995__reserve_region_with_split(struct resource *root, resource_size_t start,
 996			    resource_size_t end, const char *name)
 997{
 998	struct resource *parent = root;
 999	struct resource *conflict;
1000	struct resource *res = alloc_resource(GFP_ATOMIC);
1001	struct resource *next_res = NULL;
1002	int type = resource_type(root);
1003
1004	if (!res)
1005		return;
1006
1007	res->name = name;
1008	res->start = start;
1009	res->end = end;
1010	res->flags = type | IORESOURCE_BUSY;
1011	res->desc = IORES_DESC_NONE;
1012
1013	while (1) {
1014
1015		conflict = __request_resource(parent, res);
1016		if (!conflict) {
1017			if (!next_res)
1018				break;
1019			res = next_res;
1020			next_res = NULL;
1021			continue;
1022		}
1023
1024		/* conflict covered whole area */
1025		if (conflict->start <= res->start &&
1026				conflict->end >= res->end) {
1027			free_resource(res);
1028			WARN_ON(next_res);
1029			break;
1030		}
1031
1032		/* failed, split and try again */
1033		if (conflict->start > res->start) {
1034			end = res->end;
1035			res->end = conflict->start - 1;
1036			if (conflict->end < end) {
1037				next_res = alloc_resource(GFP_ATOMIC);
1038				if (!next_res) {
1039					free_resource(res);
1040					break;
1041				}
1042				next_res->name = name;
1043				next_res->start = conflict->end + 1;
1044				next_res->end = end;
1045				next_res->flags = type | IORESOURCE_BUSY;
1046				next_res->desc = IORES_DESC_NONE;
1047			}
1048		} else {
1049			res->start = conflict->end + 1;
1050		}
1051	}
1052
1053}
1054
1055void __init
1056reserve_region_with_split(struct resource *root, resource_size_t start,
1057			  resource_size_t end, const char *name)
1058{
1059	int abort = 0;
1060
1061	write_lock(&resource_lock);
1062	if (root->start > start || root->end < end) {
1063		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1064		       (unsigned long long)start, (unsigned long long)end,
1065		       root);
1066		if (start > root->end || end < root->start)
1067			abort = 1;
1068		else {
1069			if (end > root->end)
1070				end = root->end;
1071			if (start < root->start)
1072				start = root->start;
1073			pr_err("fixing request to [0x%llx-0x%llx]\n",
1074			       (unsigned long long)start,
1075			       (unsigned long long)end);
1076		}
1077		dump_stack();
1078	}
1079	if (!abort)
1080		__reserve_region_with_split(root, start, end, name);
1081	write_unlock(&resource_lock);
1082}
1083
1084/**
1085 * resource_alignment - calculate resource's alignment
1086 * @res: resource pointer
1087 *
1088 * Returns alignment on success, 0 (invalid alignment) on failure.
1089 */
1090resource_size_t resource_alignment(struct resource *res)
1091{
1092	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1093	case IORESOURCE_SIZEALIGN:
1094		return resource_size(res);
1095	case IORESOURCE_STARTALIGN:
1096		return res->start;
1097	default:
1098		return 0;
1099	}
1100}
1101
1102/*
1103 * This is compatibility stuff for IO resources.
1104 *
1105 * Note how this, unlike the above, knows about
1106 * the IO flag meanings (busy etc).
1107 *
1108 * request_region creates a new busy region.
1109 *
1110 * release_region releases a matching busy region.
1111 */
1112
1113static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1114
1115/**
1116 * __request_region - create a new busy resource region
1117 * @parent: parent resource descriptor
1118 * @start: resource start address
1119 * @n: resource region size
1120 * @name: reserving caller's ID string
1121 * @flags: IO resource flags
1122 */
1123struct resource * __request_region(struct resource *parent,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1124				   resource_size_t start, resource_size_t n,
1125				   const char *name, int flags)
1126{
1127	DECLARE_WAITQUEUE(wait, current);
1128	struct resource *res = alloc_resource(GFP_KERNEL);
1129
1130	if (!res)
1131		return NULL;
1132
1133	res->name = name;
1134	res->start = start;
1135	res->end = start + n - 1;
1136
1137	write_lock(&resource_lock);
1138
1139	for (;;) {
1140		struct resource *conflict;
1141
1142		res->flags = resource_type(parent) | resource_ext_type(parent);
1143		res->flags |= IORESOURCE_BUSY | flags;
1144		res->desc = parent->desc;
1145
1146		conflict = __request_resource(parent, res);
1147		if (!conflict)
1148			break;
1149		/*
1150		 * mm/hmm.c reserves physical addresses which then
1151		 * become unavailable to other users.  Conflicts are
1152		 * not expected.  Warn to aid debugging if encountered.
1153		 */
1154		if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
1155			pr_warn("Unaddressable device %s %pR conflicts with %pR",
1156				conflict->name, conflict, res);
1157		}
1158		if (conflict != parent) {
1159			if (!(conflict->flags & IORESOURCE_BUSY)) {
1160				parent = conflict;
1161				continue;
1162			}
1163		}
1164		if (conflict->flags & flags & IORESOURCE_MUXED) {
1165			add_wait_queue(&muxed_resource_wait, &wait);
1166			write_unlock(&resource_lock);
1167			set_current_state(TASK_UNINTERRUPTIBLE);
1168			schedule();
1169			remove_wait_queue(&muxed_resource_wait, &wait);
1170			write_lock(&resource_lock);
1171			continue;
1172		}
1173		/* Uhhuh, that didn't work out.. */
1174		free_resource(res);
1175		res = NULL;
1176		break;
1177	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1178	write_unlock(&resource_lock);
 
 
 
 
 
 
 
 
 
1179	return res;
1180}
1181EXPORT_SYMBOL(__request_region);
1182
1183/**
1184 * __release_region - release a previously reserved resource region
1185 * @parent: parent resource descriptor
1186 * @start: resource start address
1187 * @n: resource region size
1188 *
1189 * The described resource region must match a currently busy region.
1190 */
1191void __release_region(struct resource *parent, resource_size_t start,
1192		      resource_size_t n)
1193{
1194	struct resource **p;
1195	resource_size_t end;
1196
1197	p = &parent->child;
1198	end = start + n - 1;
1199
1200	write_lock(&resource_lock);
1201
1202	for (;;) {
1203		struct resource *res = *p;
1204
1205		if (!res)
1206			break;
1207		if (res->start <= start && res->end >= end) {
1208			if (!(res->flags & IORESOURCE_BUSY)) {
1209				p = &res->child;
1210				continue;
1211			}
1212			if (res->start != start || res->end != end)
1213				break;
1214			*p = res->sibling;
1215			write_unlock(&resource_lock);
1216			if (res->flags & IORESOURCE_MUXED)
1217				wake_up(&muxed_resource_wait);
1218			free_resource(res);
1219			return;
1220		}
1221		p = &res->sibling;
1222	}
1223
1224	write_unlock(&resource_lock);
1225
1226	printk(KERN_WARNING "Trying to free nonexistent resource "
1227		"<%016llx-%016llx>\n", (unsigned long long)start,
1228		(unsigned long long)end);
1229}
1230EXPORT_SYMBOL(__release_region);
1231
1232#ifdef CONFIG_MEMORY_HOTREMOVE
1233/**
1234 * release_mem_region_adjustable - release a previously reserved memory region
1235 * @parent: parent resource descriptor
1236 * @start: resource start address
1237 * @size: resource region size
1238 *
1239 * This interface is intended for memory hot-delete.  The requested region
1240 * is released from a currently busy memory resource.  The requested region
1241 * must either match exactly or fit into a single busy resource entry.  In
1242 * the latter case, the remaining resource is adjusted accordingly.
1243 * Existing children of the busy memory resource must be immutable in the
1244 * request.
1245 *
1246 * Note:
1247 * - Additional release conditions, such as overlapping region, can be
1248 *   supported after they are confirmed as valid cases.
1249 * - When a busy memory resource gets split into two entries, the code
1250 *   assumes that all children remain in the lower address entry for
1251 *   simplicity.  Enhance this logic when necessary.
1252 */
1253int release_mem_region_adjustable(struct resource *parent,
1254				  resource_size_t start, resource_size_t size)
1255{
 
 
 
1256	struct resource **p;
1257	struct resource *res;
1258	struct resource *new_res;
1259	resource_size_t end;
1260	int ret = -EINVAL;
1261
1262	end = start + size - 1;
1263	if ((start < parent->start) || (end > parent->end))
1264		return ret;
1265
1266	/* The alloc_resource() result gets checked later */
1267	new_res = alloc_resource(GFP_KERNEL);
 
 
 
 
 
 
 
1268
1269	p = &parent->child;
1270	write_lock(&resource_lock);
1271
1272	while ((res = *p)) {
1273		if (res->start >= end)
1274			break;
1275
1276		/* look for the next resource if it does not fit into */
1277		if (res->start > start || res->end < end) {
1278			p = &res->sibling;
1279			continue;
1280		}
1281
1282		/*
1283		 * All memory regions added from memory-hotplug path have the
1284		 * flag IORESOURCE_SYSTEM_RAM. If the resource does not have
1285		 * this flag, we know that we are dealing with a resource coming
1286		 * from HMM/devm. HMM/devm use another mechanism to add/release
1287		 * a resource. This goes via devm_request_mem_region and
1288		 * devm_release_mem_region.
1289		 * HMM/devm take care to release their resources when they want,
1290		 * so if we are dealing with them, let us just back off here.
1291		 */
1292		if (!(res->flags & IORESOURCE_SYSRAM)) {
1293			ret = 0;
1294			break;
1295		}
1296
1297		if (!(res->flags & IORESOURCE_MEM))
1298			break;
1299
1300		if (!(res->flags & IORESOURCE_BUSY)) {
1301			p = &res->child;
1302			continue;
1303		}
1304
1305		/* found the target resource; let's adjust accordingly */
1306		if (res->start == start && res->end == end) {
1307			/* free the whole entry */
1308			*p = res->sibling;
1309			free_resource(res);
1310			ret = 0;
1311		} else if (res->start == start && res->end != end) {
1312			/* adjust the start */
1313			ret = __adjust_resource(res, end + 1,
1314						res->end - end);
1315		} else if (res->start != start && res->end == end) {
1316			/* adjust the end */
1317			ret = __adjust_resource(res, res->start,
1318						start - res->start);
1319		} else {
1320			/* split into two entries */
1321			if (!new_res) {
1322				ret = -ENOMEM;
1323				break;
 
 
 
 
1324			}
1325			new_res->name = res->name;
1326			new_res->start = end + 1;
1327			new_res->end = res->end;
1328			new_res->flags = res->flags;
1329			new_res->desc = res->desc;
1330			new_res->parent = res->parent;
1331			new_res->sibling = res->sibling;
1332			new_res->child = NULL;
1333
1334			ret = __adjust_resource(res, res->start,
1335						start - res->start);
1336			if (ret)
1337				break;
1338			res->sibling = new_res;
1339			new_res = NULL;
1340		}
1341
1342		break;
1343	}
1344
1345	write_unlock(&resource_lock);
1346	free_resource(new_res);
1347	return ret;
1348}
1349#endif	/* CONFIG_MEMORY_HOTREMOVE */
1350
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1351/*
1352 * Managed region resource
1353 */
1354static void devm_resource_release(struct device *dev, void *ptr)
1355{
1356	struct resource **r = ptr;
1357
1358	release_resource(*r);
1359}
1360
1361/**
1362 * devm_request_resource() - request and reserve an I/O or memory resource
1363 * @dev: device for which to request the resource
1364 * @root: root of the resource tree from which to request the resource
1365 * @new: descriptor of the resource to request
1366 *
1367 * This is a device-managed version of request_resource(). There is usually
1368 * no need to release resources requested by this function explicitly since
1369 * that will be taken care of when the device is unbound from its driver.
1370 * If for some reason the resource needs to be released explicitly, because
1371 * of ordering issues for example, drivers must call devm_release_resource()
1372 * rather than the regular release_resource().
1373 *
1374 * When a conflict is detected between any existing resources and the newly
1375 * requested resource, an error message will be printed.
1376 *
1377 * Returns 0 on success or a negative error code on failure.
1378 */
1379int devm_request_resource(struct device *dev, struct resource *root,
1380			  struct resource *new)
1381{
1382	struct resource *conflict, **ptr;
1383
1384	ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1385	if (!ptr)
1386		return -ENOMEM;
1387
1388	*ptr = new;
1389
1390	conflict = request_resource_conflict(root, new);
1391	if (conflict) {
1392		dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1393			new, conflict->name, conflict);
1394		devres_free(ptr);
1395		return -EBUSY;
1396	}
1397
1398	devres_add(dev, ptr);
1399	return 0;
1400}
1401EXPORT_SYMBOL(devm_request_resource);
1402
1403static int devm_resource_match(struct device *dev, void *res, void *data)
1404{
1405	struct resource **ptr = res;
1406
1407	return *ptr == data;
1408}
1409
1410/**
1411 * devm_release_resource() - release a previously requested resource
1412 * @dev: device for which to release the resource
1413 * @new: descriptor of the resource to release
1414 *
1415 * Releases a resource previously requested using devm_request_resource().
1416 */
1417void devm_release_resource(struct device *dev, struct resource *new)
1418{
1419	WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1420			       new));
1421}
1422EXPORT_SYMBOL(devm_release_resource);
1423
1424struct region_devres {
1425	struct resource *parent;
1426	resource_size_t start;
1427	resource_size_t n;
1428};
1429
1430static void devm_region_release(struct device *dev, void *res)
1431{
1432	struct region_devres *this = res;
1433
1434	__release_region(this->parent, this->start, this->n);
1435}
1436
1437static int devm_region_match(struct device *dev, void *res, void *match_data)
1438{
1439	struct region_devres *this = res, *match = match_data;
1440
1441	return this->parent == match->parent &&
1442		this->start == match->start && this->n == match->n;
1443}
1444
1445struct resource *
1446__devm_request_region(struct device *dev, struct resource *parent,
1447		      resource_size_t start, resource_size_t n, const char *name)
1448{
1449	struct region_devres *dr = NULL;
1450	struct resource *res;
1451
1452	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1453			  GFP_KERNEL);
1454	if (!dr)
1455		return NULL;
1456
1457	dr->parent = parent;
1458	dr->start = start;
1459	dr->n = n;
1460
1461	res = __request_region(parent, start, n, name, 0);
1462	if (res)
1463		devres_add(dev, dr);
1464	else
1465		devres_free(dr);
1466
1467	return res;
1468}
1469EXPORT_SYMBOL(__devm_request_region);
1470
1471void __devm_release_region(struct device *dev, struct resource *parent,
1472			   resource_size_t start, resource_size_t n)
1473{
1474	struct region_devres match_data = { parent, start, n };
1475
1476	__release_region(parent, start, n);
1477	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1478			       &match_data));
1479}
1480EXPORT_SYMBOL(__devm_release_region);
1481
1482/*
1483 * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1484 */
1485#define MAXRESERVE 4
1486static int __init reserve_setup(char *str)
1487{
1488	static int reserved;
1489	static struct resource reserve[MAXRESERVE];
1490
1491	for (;;) {
1492		unsigned int io_start, io_num;
1493		int x = reserved;
1494		struct resource *parent;
1495
1496		if (get_option(&str, &io_start) != 2)
1497			break;
1498		if (get_option(&str, &io_num) == 0)
1499			break;
1500		if (x < MAXRESERVE) {
1501			struct resource *res = reserve + x;
1502
1503			/*
1504			 * If the region starts below 0x10000, we assume it's
1505			 * I/O port space; otherwise assume it's memory.
1506			 */
1507			if (io_start < 0x10000) {
1508				res->flags = IORESOURCE_IO;
1509				parent = &ioport_resource;
1510			} else {
1511				res->flags = IORESOURCE_MEM;
1512				parent = &iomem_resource;
1513			}
1514			res->name = "reserved";
1515			res->start = io_start;
1516			res->end = io_start + io_num - 1;
1517			res->flags |= IORESOURCE_BUSY;
1518			res->desc = IORES_DESC_NONE;
1519			res->child = NULL;
1520			if (request_resource(parent, res) == 0)
1521				reserved = x+1;
1522		}
1523	}
1524	return 1;
1525}
1526__setup("reserve=", reserve_setup);
1527
1528/*
1529 * Check if the requested addr and size spans more than any slot in the
1530 * iomem resource tree.
1531 */
1532int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1533{
1534	struct resource *p = &iomem_resource;
 
1535	int err = 0;
1536	loff_t l;
1537
1538	read_lock(&resource_lock);
1539	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1540		/*
1541		 * We can probably skip the resources without
1542		 * IORESOURCE_IO attribute?
1543		 */
1544		if (p->start >= addr + size)
1545			continue;
1546		if (p->end < addr)
1547			continue;
1548		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1549		    PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1550			continue;
1551		/*
1552		 * if a resource is "BUSY", it's not a hardware resource
1553		 * but a driver mapping of such a resource; we don't want
1554		 * to warn for those; some drivers legitimately map only
1555		 * partial hardware resources. (example: vesafb)
1556		 */
1557		if (p->flags & IORESOURCE_BUSY)
1558			continue;
1559
1560		printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
1561		       (unsigned long long)addr,
1562		       (unsigned long long)(addr + size - 1),
1563		       p->name, p);
1564		err = -1;
1565		break;
1566	}
1567	read_unlock(&resource_lock);
1568
1569	return err;
1570}
1571
1572#ifdef CONFIG_STRICT_DEVMEM
1573static int strict_iomem_checks = 1;
1574#else
1575static int strict_iomem_checks;
1576#endif
1577
1578/*
1579 * check if an address is reserved in the iomem resource tree
1580 * returns true if reserved, false if not reserved.
 
 
1581 */
1582bool iomem_is_exclusive(u64 addr)
1583{
1584	struct resource *p = &iomem_resource;
1585	bool err = false;
1586	loff_t l;
1587	int size = PAGE_SIZE;
1588
1589	if (!strict_iomem_checks)
1590		return false;
1591
1592	addr = addr & PAGE_MASK;
1593
1594	read_lock(&resource_lock);
1595	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1596		/*
1597		 * We can probably skip the resources without
1598		 * IORESOURCE_IO attribute?
1599		 */
1600		if (p->start >= addr + size)
1601			break;
1602		if (p->end < addr)
 
1603			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1604		/*
1605		 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1606		 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1607		 * resource is busy.
1608		 */
1609		if ((p->flags & IORESOURCE_BUSY) == 0)
1610			continue;
1611		if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1612				|| p->flags & IORESOURCE_EXCLUSIVE) {
1613			err = true;
1614			break;
1615		}
1616	}
1617	read_unlock(&resource_lock);
1618
1619	return err;
1620}
1621
 
 
 
 
 
 
1622struct resource_entry *resource_list_create_entry(struct resource *res,
1623						  size_t extra_size)
1624{
1625	struct resource_entry *entry;
1626
1627	entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1628	if (entry) {
1629		INIT_LIST_HEAD(&entry->node);
1630		entry->res = res ? res : &entry->__res;
1631	}
1632
1633	return entry;
1634}
1635EXPORT_SYMBOL(resource_list_create_entry);
1636
1637void resource_list_free(struct list_head *head)
1638{
1639	struct resource_entry *entry, *tmp;
1640
1641	list_for_each_entry_safe(entry, tmp, head, node)
1642		resource_list_destroy_entry(entry);
1643}
1644EXPORT_SYMBOL(resource_list_free);
1645
1646#ifdef CONFIG_DEVICE_PRIVATE
1647static struct resource *__request_free_mem_region(struct device *dev,
1648		struct resource *base, unsigned long size, const char *name)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1649{
1650	resource_size_t end, addr;
1651	struct resource *res;
 
1652
1653	size = ALIGN(size, 1UL << PA_SECTION_SHIFT);
1654	end = min_t(unsigned long, base->end, (1UL << MAX_PHYSMEM_BITS) - 1);
1655	addr = end - size + 1UL;
1656
1657	for (; addr > size && addr >= base->start; addr -= size) {
1658		if (region_intersects(addr, size, 0, IORES_DESC_NONE) !=
1659				REGION_DISJOINT)
1660			continue;
1661
1662		if (dev)
1663			res = devm_request_mem_region(dev, addr, size, name);
1664		else
1665			res = request_mem_region(addr, size, name);
1666		if (!res)
 
 
 
 
1667			return ERR_PTR(-ENOMEM);
1668		res->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1669		return res;
1670	}
 
 
 
 
 
 
 
1671
1672	return ERR_PTR(-ERANGE);
1673}
1674
1675/**
1676 * devm_request_free_mem_region - find free region for device private memory
1677 *
1678 * @dev: device struct to bind the resource to
1679 * @size: size in bytes of the device memory to add
1680 * @base: resource tree to look in
1681 *
1682 * This function tries to find an empty range of physical address big enough to
1683 * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE
1684 * memory, which in turn allocates struct pages.
1685 */
1686struct resource *devm_request_free_mem_region(struct device *dev,
1687		struct resource *base, unsigned long size)
1688{
1689	return __request_free_mem_region(dev, base, size, dev_name(dev));
 
 
 
 
1690}
1691EXPORT_SYMBOL_GPL(devm_request_free_mem_region);
1692
1693struct resource *request_free_mem_region(struct resource *base,
1694		unsigned long size, const char *name)
1695{
1696	return __request_free_mem_region(NULL, base, size, name);
 
 
 
1697}
1698EXPORT_SYMBOL_GPL(request_free_mem_region);
1699
1700#endif /* CONFIG_DEVICE_PRIVATE */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1701
1702static int __init strict_iomem(char *str)
1703{
1704	if (strstr(str, "relaxed"))
1705		strict_iomem_checks = 0;
1706	if (strstr(str, "strict"))
1707		strict_iomem_checks = 1;
1708	return 1;
1709}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1710
1711__setup("iomem=", strict_iomem);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *	linux/kernel/resource.c
   4 *
   5 * Copyright (C) 1999	Linus Torvalds
   6 * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
   7 *
   8 * Arbitrary resource management.
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/export.h>
  14#include <linux/errno.h>
  15#include <linux/ioport.h>
  16#include <linux/init.h>
  17#include <linux/slab.h>
  18#include <linux/spinlock.h>
  19#include <linux/fs.h>
  20#include <linux/proc_fs.h>
  21#include <linux/pseudo_fs.h>
  22#include <linux/sched.h>
  23#include <linux/seq_file.h>
  24#include <linux/device.h>
  25#include <linux/pfn.h>
  26#include <linux/mm.h>
  27#include <linux/mount.h>
  28#include <linux/resource_ext.h>
  29#include <uapi/linux/magic.h>
  30#include <linux/string.h>
  31#include <linux/vmalloc.h>
  32#include <asm/io.h>
  33
  34
  35struct resource ioport_resource = {
  36	.name	= "PCI IO",
  37	.start	= 0,
  38	.end	= IO_SPACE_LIMIT,
  39	.flags	= IORESOURCE_IO,
  40};
  41EXPORT_SYMBOL(ioport_resource);
  42
  43struct resource iomem_resource = {
  44	.name	= "PCI mem",
  45	.start	= 0,
  46	.end	= -1,
  47	.flags	= IORESOURCE_MEM,
  48};
  49EXPORT_SYMBOL(iomem_resource);
  50
  51/* constraints to be met while allocating resources */
  52struct resource_constraint {
  53	resource_size_t min, max, align;
  54	resource_size_t (*alignf)(void *, const struct resource *,
  55			resource_size_t, resource_size_t);
  56	void *alignf_data;
  57};
  58
  59static DEFINE_RWLOCK(resource_lock);
  60
  61static struct resource *next_resource(struct resource *p, bool skip_children)
 
 
 
 
 
 
 
 
  62{
  63	if (!skip_children && p->child)
 
 
 
 
  64		return p->child;
  65	while (!p->sibling && p->parent)
  66		p = p->parent;
  67	return p->sibling;
  68}
  69
  70#define for_each_resource(_root, _p, _skip_children) \
  71	for ((_p) = (_root)->child; (_p); (_p) = next_resource(_p, _skip_children))
 
 
 
 
  72
  73#ifdef CONFIG_PROC_FS
  74
  75enum { MAX_IORES_LEVEL = 5 };
  76
  77static void *r_start(struct seq_file *m, loff_t *pos)
  78	__acquires(resource_lock)
  79{
  80	struct resource *root = pde_data(file_inode(m->file));
  81	struct resource *p;
  82	loff_t l = *pos;
  83
  84	read_lock(&resource_lock);
  85	for_each_resource(root, p, false) {
  86		if (l-- == 0)
  87			break;
  88	}
  89
  90	return p;
  91}
  92
  93static void *r_next(struct seq_file *m, void *v, loff_t *pos)
  94{
  95	struct resource *p = v;
  96
  97	(*pos)++;
  98
  99	return (void *)next_resource(p, false);
 100}
 101
 102static void r_stop(struct seq_file *m, void *v)
 103	__releases(resource_lock)
 104{
 105	read_unlock(&resource_lock);
 106}
 107
 108static int r_show(struct seq_file *m, void *v)
 109{
 110	struct resource *root = pde_data(file_inode(m->file));
 111	struct resource *r = v, *p;
 112	unsigned long long start, end;
 113	int width = root->end < 0x10000 ? 4 : 8;
 114	int depth;
 115
 116	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
 117		if (p->parent == root)
 118			break;
 119
 120	if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
 121		start = r->start;
 122		end = r->end;
 123	} else {
 124		start = end = 0;
 125	}
 126
 127	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
 128			depth * 2, "",
 129			width, start,
 130			width, end,
 131			r->name ? r->name : "<BAD>");
 132	return 0;
 133}
 134
 135static const struct seq_operations resource_op = {
 136	.start	= r_start,
 137	.next	= r_next,
 138	.stop	= r_stop,
 139	.show	= r_show,
 140};
 141
 142static int __init ioresources_init(void)
 143{
 144	proc_create_seq_data("ioports", 0, NULL, &resource_op,
 145			&ioport_resource);
 146	proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
 147	return 0;
 148}
 149__initcall(ioresources_init);
 150
 151#endif /* CONFIG_PROC_FS */
 152
 153static void free_resource(struct resource *res)
 154{
 155	/**
 156	 * If the resource was allocated using memblock early during boot
 157	 * we'll leak it here: we can only return full pages back to the
 158	 * buddy and trying to be smart and reusing them eventually in
 159	 * alloc_resource() overcomplicates resource handling.
 160	 */
 161	if (res && PageSlab(virt_to_head_page(res)))
 
 
 162		kfree(res);
 
 163}
 164
 165static struct resource *alloc_resource(gfp_t flags)
 166{
 167	return kzalloc(sizeof(struct resource), flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 168}
 169
 170/* Return the conflict entry if you can't request it */
 171static struct resource * __request_resource(struct resource *root, struct resource *new)
 172{
 173	resource_size_t start = new->start;
 174	resource_size_t end = new->end;
 175	struct resource *tmp, **p;
 176
 177	if (end < start)
 178		return root;
 179	if (start < root->start)
 180		return root;
 181	if (end > root->end)
 182		return root;
 183	p = &root->child;
 184	for (;;) {
 185		tmp = *p;
 186		if (!tmp || tmp->start > end) {
 187			new->sibling = tmp;
 188			*p = new;
 189			new->parent = root;
 190			return NULL;
 191		}
 192		p = &tmp->sibling;
 193		if (tmp->end < start)
 194			continue;
 195		return tmp;
 196	}
 197}
 198
 199static int __release_resource(struct resource *old, bool release_child)
 200{
 201	struct resource *tmp, **p, *chd;
 202
 203	p = &old->parent->child;
 204	for (;;) {
 205		tmp = *p;
 206		if (!tmp)
 207			break;
 208		if (tmp == old) {
 209			if (release_child || !(tmp->child)) {
 210				*p = tmp->sibling;
 211			} else {
 212				for (chd = tmp->child;; chd = chd->sibling) {
 213					chd->parent = tmp->parent;
 214					if (!(chd->sibling))
 215						break;
 216				}
 217				*p = tmp->child;
 218				chd->sibling = tmp->sibling;
 219			}
 220			old->parent = NULL;
 221			return 0;
 222		}
 223		p = &tmp->sibling;
 224	}
 225	return -EINVAL;
 226}
 227
 228static void __release_child_resources(struct resource *r)
 229{
 230	struct resource *tmp, *p;
 231	resource_size_t size;
 232
 233	p = r->child;
 234	r->child = NULL;
 235	while (p) {
 236		tmp = p;
 237		p = p->sibling;
 238
 239		tmp->parent = NULL;
 240		tmp->sibling = NULL;
 241		__release_child_resources(tmp);
 242
 243		printk(KERN_DEBUG "release child resource %pR\n", tmp);
 244		/* need to restore size, and keep flags */
 245		size = resource_size(tmp);
 246		tmp->start = 0;
 247		tmp->end = size - 1;
 248	}
 249}
 250
 251void release_child_resources(struct resource *r)
 252{
 253	write_lock(&resource_lock);
 254	__release_child_resources(r);
 255	write_unlock(&resource_lock);
 256}
 257
 258/**
 259 * request_resource_conflict - request and reserve an I/O or memory resource
 260 * @root: root resource descriptor
 261 * @new: resource descriptor desired by caller
 262 *
 263 * Returns 0 for success, conflict resource on error.
 264 */
 265struct resource *request_resource_conflict(struct resource *root, struct resource *new)
 266{
 267	struct resource *conflict;
 268
 269	write_lock(&resource_lock);
 270	conflict = __request_resource(root, new);
 271	write_unlock(&resource_lock);
 272	return conflict;
 273}
 274
 275/**
 276 * request_resource - request and reserve an I/O or memory resource
 277 * @root: root resource descriptor
 278 * @new: resource descriptor desired by caller
 279 *
 280 * Returns 0 for success, negative error code on error.
 281 */
 282int request_resource(struct resource *root, struct resource *new)
 283{
 284	struct resource *conflict;
 285
 286	conflict = request_resource_conflict(root, new);
 287	return conflict ? -EBUSY : 0;
 288}
 289
 290EXPORT_SYMBOL(request_resource);
 291
 292/**
 293 * release_resource - release a previously reserved resource
 294 * @old: resource pointer
 295 */
 296int release_resource(struct resource *old)
 297{
 298	int retval;
 299
 300	write_lock(&resource_lock);
 301	retval = __release_resource(old, true);
 302	write_unlock(&resource_lock);
 303	return retval;
 304}
 305
 306EXPORT_SYMBOL(release_resource);
 307
 308/**
 309 * find_next_iomem_res - Finds the lowest iomem resource that covers part of
 310 *			 [@start..@end].
 
 311 *
 312 * If a resource is found, returns 0 and @*res is overwritten with the part
 313 * of the resource that's within [@start..@end]; if none is found, returns
 314 * -ENODEV.  Returns -EINVAL for invalid parameters.
 315 *
 
 
 
 316 * @start:	start address of the resource searched for
 317 * @end:	end address of same resource
 318 * @flags:	flags which the resource must have
 319 * @desc:	descriptor the resource must have
 
 320 * @res:	return ptr, if resource found
 321 *
 322 * The caller must specify @start, @end, @flags, and @desc
 323 * (which may be IORES_DESC_NONE).
 324 */
 325static int find_next_iomem_res(resource_size_t start, resource_size_t end,
 326			       unsigned long flags, unsigned long desc,
 327			       struct resource *res)
 328{
 
 329	struct resource *p;
 330
 331	if (!res)
 332		return -EINVAL;
 333
 334	if (start >= end)
 335		return -EINVAL;
 336
 337	read_lock(&resource_lock);
 338
 339	for_each_resource(&iomem_resource, p, false) {
 340		/* If we passed the resource we are looking for, stop */
 341		if (p->start > end) {
 342			p = NULL;
 343			break;
 344		}
 345
 346		/* Skip until we find a range that matches what we look for */
 347		if (p->end < start)
 348			continue;
 349
 
 
 
 
 
 
 
 350		if ((p->flags & flags) != flags)
 351			continue;
 352		if ((desc != IORES_DESC_NONE) && (desc != p->desc))
 353			continue;
 354
 355		/* Found a match, break */
 356		break;
 357	}
 358
 359	if (p) {
 360		/* copy data */
 361		*res = (struct resource) {
 362			.start = max(start, p->start),
 363			.end = min(end, p->end),
 364			.flags = p->flags,
 365			.desc = p->desc,
 366			.parent = p->parent,
 367		};
 368	}
 369
 370	read_unlock(&resource_lock);
 371	return p ? 0 : -ENODEV;
 372}
 373
 374static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
 375				 unsigned long flags, unsigned long desc,
 376				 void *arg,
 377				 int (*func)(struct resource *, void *))
 378{
 379	struct resource res;
 380	int ret = -EINVAL;
 381
 382	while (start < end &&
 383	       !find_next_iomem_res(start, end, flags, desc, &res)) {
 384		ret = (*func)(&res, arg);
 385		if (ret)
 386			break;
 387
 388		start = res.end + 1;
 389	}
 390
 391	return ret;
 392}
 393
 394/**
 395 * walk_iomem_res_desc - Walks through iomem resources and calls func()
 396 *			 with matching resource ranges.
 397 * *
 
 
 398 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
 399 * @flags: I/O resource flags
 400 * @start: start addr
 401 * @end: end addr
 402 * @arg: function argument for the callback @func
 403 * @func: callback function that is called for each qualifying resource area
 404 *
 405 * All the memory ranges which overlap start,end and also match flags and
 406 * desc are valid candidates.
 407 *
 408 * NOTE: For a new descriptor search, define a new IORES_DESC in
 409 * <linux/ioport.h> and set it in 'desc' of a target resource entry.
 410 */
 411int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
 412		u64 end, void *arg, int (*func)(struct resource *, void *))
 413{
 414	return __walk_iomem_res_desc(start, end, flags, desc, arg, func);
 415}
 416EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
 417
 418/*
 419 * This function calls the @func callback against all memory ranges of type
 420 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
 421 * Now, this function is only for System RAM, it deals with full ranges and
 422 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
 423 * ranges.
 424 */
 425int walk_system_ram_res(u64 start, u64 end, void *arg,
 426			int (*func)(struct resource *, void *))
 427{
 428	unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 429
 430	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
 431				     func);
 432}
 433
 434/*
 435 * This function, being a variant of walk_system_ram_res(), calls the @func
 436 * callback against all memory ranges of type System RAM which are marked as
 437 * IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY in reversed order, i.e., from
 438 * higher to lower.
 439 */
 440int walk_system_ram_res_rev(u64 start, u64 end, void *arg,
 441				int (*func)(struct resource *, void *))
 442{
 443	struct resource res, *rams;
 444	int rams_size = 16, i;
 445	unsigned long flags;
 446	int ret = -1;
 447
 448	/* create a list */
 449	rams = kvcalloc(rams_size, sizeof(struct resource), GFP_KERNEL);
 450	if (!rams)
 451		return ret;
 452
 453	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 454	i = 0;
 455	while ((start < end) &&
 456		(!find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res))) {
 457		if (i >= rams_size) {
 458			/* re-alloc */
 459			struct resource *rams_new;
 460
 461			rams_new = kvrealloc(rams, rams_size * sizeof(struct resource),
 462					     (rams_size + 16) * sizeof(struct resource),
 463					     GFP_KERNEL);
 464			if (!rams_new)
 465				goto out;
 466
 467			rams = rams_new;
 468			rams_size += 16;
 469		}
 470
 471		rams[i].start = res.start;
 472		rams[i++].end = res.end;
 473
 474		start = res.end + 1;
 475	}
 476
 477	/* go reverse */
 478	for (i--; i >= 0; i--) {
 479		ret = (*func)(&rams[i], arg);
 480		if (ret)
 481			break;
 482	}
 483
 484out:
 485	kvfree(rams);
 486	return ret;
 487}
 488
 489/*
 490 * This function calls the @func callback against all memory ranges, which
 491 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
 492 */
 493int walk_mem_res(u64 start, u64 end, void *arg,
 494		 int (*func)(struct resource *, void *))
 495{
 496	unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 497
 498	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
 499				     func);
 500}
 501
 502/*
 503 * This function calls the @func callback against all memory ranges of type
 504 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
 505 * It is to be used only for System RAM.
 
 
 
 506 */
 507int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
 508			  void *arg, int (*func)(unsigned long, unsigned long, void *))
 509{
 510	resource_size_t start, end;
 511	unsigned long flags;
 512	struct resource res;
 513	unsigned long pfn, end_pfn;
 514	int ret = -EINVAL;
 515
 516	start = (u64) start_pfn << PAGE_SHIFT;
 517	end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
 518	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 519	while (start < end &&
 520	       !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) {
 
 521		pfn = PFN_UP(res.start);
 522		end_pfn = PFN_DOWN(res.end + 1);
 523		if (end_pfn > pfn)
 524			ret = (*func)(pfn, end_pfn - pfn, arg);
 525		if (ret)
 526			break;
 527		start = res.end + 1;
 528	}
 529	return ret;
 530}
 531
 532static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
 533{
 534	return 1;
 535}
 536
 537/*
 538 * This generic page_is_ram() returns true if specified address is
 539 * registered as System RAM in iomem_resource list.
 540 */
 541int __weak page_is_ram(unsigned long pfn)
 542{
 543	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
 544}
 545EXPORT_SYMBOL_GPL(page_is_ram);
 546
 547static int __region_intersects(struct resource *parent, resource_size_t start,
 548			       size_t size, unsigned long flags,
 549			       unsigned long desc)
 550{
 551	struct resource res;
 552	int type = 0; int other = 0;
 553	struct resource *p;
 554
 555	res.start = start;
 556	res.end = start + size - 1;
 557
 558	for (p = parent->child; p ; p = p->sibling) {
 559		bool is_type = (((p->flags & flags) == flags) &&
 560				((desc == IORES_DESC_NONE) ||
 561				 (desc == p->desc)));
 562
 563		if (resource_overlaps(p, &res))
 564			is_type ? type++ : other++;
 565	}
 566
 567	if (type == 0)
 568		return REGION_DISJOINT;
 569
 570	if (other == 0)
 571		return REGION_INTERSECTS;
 572
 573	return REGION_MIXED;
 574}
 575
 576/**
 577 * region_intersects() - determine intersection of region with known resources
 578 * @start: region start address
 579 * @size: size of region
 580 * @flags: flags of resource (in iomem_resource)
 581 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
 582 *
 583 * Check if the specified region partially overlaps or fully eclipses a
 584 * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
 585 * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
 586 * return REGION_MIXED if the region overlaps @flags/@desc and another
 587 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
 588 * and no other defined resource. Note that REGION_INTERSECTS is also
 589 * returned in the case when the specified region overlaps RAM and undefined
 590 * memory holes.
 591 *
 592 * region_intersect() is used by memory remapping functions to ensure
 593 * the user is not remapping RAM and is a vast speed up over walking
 594 * through the resource table page by page.
 595 */
 596int region_intersects(resource_size_t start, size_t size, unsigned long flags,
 597		      unsigned long desc)
 598{
 599	int ret;
 
 
 
 
 
 600
 601	read_lock(&resource_lock);
 602	ret = __region_intersects(&iomem_resource, start, size, flags, desc);
 
 
 
 
 
 
 
 603	read_unlock(&resource_lock);
 604
 605	return ret;
 
 
 
 
 
 
 606}
 607EXPORT_SYMBOL_GPL(region_intersects);
 608
 609void __weak arch_remove_reservations(struct resource *avail)
 610{
 611}
 612
 613static resource_size_t simple_align_resource(void *data,
 614					     const struct resource *avail,
 615					     resource_size_t size,
 616					     resource_size_t align)
 617{
 618	return avail->start;
 619}
 620
 621static void resource_clip(struct resource *res, resource_size_t min,
 622			  resource_size_t max)
 623{
 624	if (res->start < min)
 625		res->start = min;
 626	if (res->end > max)
 627		res->end = max;
 628}
 629
 630/*
 631 * Find empty slot in the resource tree with the given range and
 632 * alignment constraints
 633 */
 634static int __find_resource(struct resource *root, struct resource *old,
 635			 struct resource *new,
 636			 resource_size_t  size,
 637			 struct resource_constraint *constraint)
 638{
 639	struct resource *this = root->child;
 640	struct resource tmp = *new, avail, alloc;
 641
 642	tmp.start = root->start;
 643	/*
 644	 * Skip past an allocated resource that starts at 0, since the assignment
 645	 * of this->start - 1 to tmp->end below would cause an underflow.
 646	 */
 647	if (this && this->start == root->start) {
 648		tmp.start = (this == old) ? old->start : this->end + 1;
 649		this = this->sibling;
 650	}
 651	for(;;) {
 652		if (this)
 653			tmp.end = (this == old) ?  this->end : this->start - 1;
 654		else
 655			tmp.end = root->end;
 656
 657		if (tmp.end < tmp.start)
 658			goto next;
 659
 660		resource_clip(&tmp, constraint->min, constraint->max);
 661		arch_remove_reservations(&tmp);
 662
 663		/* Check for overflow after ALIGN() */
 664		avail.start = ALIGN(tmp.start, constraint->align);
 665		avail.end = tmp.end;
 666		avail.flags = new->flags & ~IORESOURCE_UNSET;
 667		if (avail.start >= tmp.start) {
 668			alloc.flags = avail.flags;
 669			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
 670					size, constraint->align);
 671			alloc.end = alloc.start + size - 1;
 672			if (alloc.start <= alloc.end &&
 673			    resource_contains(&avail, &alloc)) {
 674				new->start = alloc.start;
 675				new->end = alloc.end;
 676				return 0;
 677			}
 678		}
 679
 680next:		if (!this || this->end == root->end)
 681			break;
 682
 683		if (this != old)
 684			tmp.start = this->end + 1;
 685		this = this->sibling;
 686	}
 687	return -EBUSY;
 688}
 689
 690/*
 691 * Find empty slot in the resource tree given range and alignment.
 692 */
 693static int find_resource(struct resource *root, struct resource *new,
 694			resource_size_t size,
 695			struct resource_constraint  *constraint)
 696{
 697	return  __find_resource(root, NULL, new, size, constraint);
 698}
 699
 700/**
 701 * reallocate_resource - allocate a slot in the resource tree given range & alignment.
 702 *	The resource will be relocated if the new size cannot be reallocated in the
 703 *	current location.
 704 *
 705 * @root: root resource descriptor
 706 * @old:  resource descriptor desired by caller
 707 * @newsize: new size of the resource descriptor
 708 * @constraint: the size and alignment constraints to be met.
 709 */
 710static int reallocate_resource(struct resource *root, struct resource *old,
 711			       resource_size_t newsize,
 712			       struct resource_constraint *constraint)
 713{
 714	int err=0;
 715	struct resource new = *old;
 716	struct resource *conflict;
 717
 718	write_lock(&resource_lock);
 719
 720	if ((err = __find_resource(root, old, &new, newsize, constraint)))
 721		goto out;
 722
 723	if (resource_contains(&new, old)) {
 724		old->start = new.start;
 725		old->end = new.end;
 726		goto out;
 727	}
 728
 729	if (old->child) {
 730		err = -EBUSY;
 731		goto out;
 732	}
 733
 734	if (resource_contains(old, &new)) {
 735		old->start = new.start;
 736		old->end = new.end;
 737	} else {
 738		__release_resource(old, true);
 739		*old = new;
 740		conflict = __request_resource(root, old);
 741		BUG_ON(conflict);
 742	}
 743out:
 744	write_unlock(&resource_lock);
 745	return err;
 746}
 747
 748
 749/**
 750 * allocate_resource - allocate empty slot in the resource tree given range & alignment.
 751 * 	The resource will be reallocated with a new size if it was already allocated
 752 * @root: root resource descriptor
 753 * @new: resource descriptor desired by caller
 754 * @size: requested resource region size
 755 * @min: minimum boundary to allocate
 756 * @max: maximum boundary to allocate
 757 * @align: alignment requested, in bytes
 758 * @alignf: alignment function, optional, called if not NULL
 759 * @alignf_data: arbitrary data to pass to the @alignf function
 760 */
 761int allocate_resource(struct resource *root, struct resource *new,
 762		      resource_size_t size, resource_size_t min,
 763		      resource_size_t max, resource_size_t align,
 764		      resource_size_t (*alignf)(void *,
 765						const struct resource *,
 766						resource_size_t,
 767						resource_size_t),
 768		      void *alignf_data)
 769{
 770	int err;
 771	struct resource_constraint constraint;
 772
 773	if (!alignf)
 774		alignf = simple_align_resource;
 775
 776	constraint.min = min;
 777	constraint.max = max;
 778	constraint.align = align;
 779	constraint.alignf = alignf;
 780	constraint.alignf_data = alignf_data;
 781
 782	if ( new->parent ) {
 783		/* resource is already allocated, try reallocating with
 784		   the new constraints */
 785		return reallocate_resource(root, new, size, &constraint);
 786	}
 787
 788	write_lock(&resource_lock);
 789	err = find_resource(root, new, size, &constraint);
 790	if (err >= 0 && __request_resource(root, new))
 791		err = -EBUSY;
 792	write_unlock(&resource_lock);
 793	return err;
 794}
 795
 796EXPORT_SYMBOL(allocate_resource);
 797
 798/**
 799 * lookup_resource - find an existing resource by a resource start address
 800 * @root: root resource descriptor
 801 * @start: resource start address
 802 *
 803 * Returns a pointer to the resource if found, NULL otherwise
 804 */
 805struct resource *lookup_resource(struct resource *root, resource_size_t start)
 806{
 807	struct resource *res;
 808
 809	read_lock(&resource_lock);
 810	for (res = root->child; res; res = res->sibling) {
 811		if (res->start == start)
 812			break;
 813	}
 814	read_unlock(&resource_lock);
 815
 816	return res;
 817}
 818
 819/*
 820 * Insert a resource into the resource tree. If successful, return NULL,
 821 * otherwise return the conflicting resource (compare to __request_resource())
 822 */
 823static struct resource * __insert_resource(struct resource *parent, struct resource *new)
 824{
 825	struct resource *first, *next;
 826
 827	for (;; parent = first) {
 828		first = __request_resource(parent, new);
 829		if (!first)
 830			return first;
 831
 832		if (first == parent)
 833			return first;
 834		if (WARN_ON(first == new))	/* duplicated insertion */
 835			return first;
 836
 837		if ((first->start > new->start) || (first->end < new->end))
 838			break;
 839		if ((first->start == new->start) && (first->end == new->end))
 840			break;
 841	}
 842
 843	for (next = first; ; next = next->sibling) {
 844		/* Partial overlap? Bad, and unfixable */
 845		if (next->start < new->start || next->end > new->end)
 846			return next;
 847		if (!next->sibling)
 848			break;
 849		if (next->sibling->start > new->end)
 850			break;
 851	}
 852
 853	new->parent = parent;
 854	new->sibling = next->sibling;
 855	new->child = first;
 856
 857	next->sibling = NULL;
 858	for (next = first; next; next = next->sibling)
 859		next->parent = new;
 860
 861	if (parent->child == first) {
 862		parent->child = new;
 863	} else {
 864		next = parent->child;
 865		while (next->sibling != first)
 866			next = next->sibling;
 867		next->sibling = new;
 868	}
 869	return NULL;
 870}
 871
 872/**
 873 * insert_resource_conflict - Inserts resource in the resource tree
 874 * @parent: parent of the new resource
 875 * @new: new resource to insert
 876 *
 877 * Returns 0 on success, conflict resource if the resource can't be inserted.
 878 *
 879 * This function is equivalent to request_resource_conflict when no conflict
 880 * happens. If a conflict happens, and the conflicting resources
 881 * entirely fit within the range of the new resource, then the new
 882 * resource is inserted and the conflicting resources become children of
 883 * the new resource.
 884 *
 885 * This function is intended for producers of resources, such as FW modules
 886 * and bus drivers.
 887 */
 888struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
 889{
 890	struct resource *conflict;
 891
 892	write_lock(&resource_lock);
 893	conflict = __insert_resource(parent, new);
 894	write_unlock(&resource_lock);
 895	return conflict;
 896}
 897
 898/**
 899 * insert_resource - Inserts a resource in the resource tree
 900 * @parent: parent of the new resource
 901 * @new: new resource to insert
 902 *
 903 * Returns 0 on success, -EBUSY if the resource can't be inserted.
 904 *
 905 * This function is intended for producers of resources, such as FW modules
 906 * and bus drivers.
 907 */
 908int insert_resource(struct resource *parent, struct resource *new)
 909{
 910	struct resource *conflict;
 911
 912	conflict = insert_resource_conflict(parent, new);
 913	return conflict ? -EBUSY : 0;
 914}
 915EXPORT_SYMBOL_GPL(insert_resource);
 916
 917/**
 918 * insert_resource_expand_to_fit - Insert a resource into the resource tree
 919 * @root: root resource descriptor
 920 * @new: new resource to insert
 921 *
 922 * Insert a resource into the resource tree, possibly expanding it in order
 923 * to make it encompass any conflicting resources.
 924 */
 925void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
 926{
 927	if (new->parent)
 928		return;
 929
 930	write_lock(&resource_lock);
 931	for (;;) {
 932		struct resource *conflict;
 933
 934		conflict = __insert_resource(root, new);
 935		if (!conflict)
 936			break;
 937		if (conflict == root)
 938			break;
 939
 940		/* Ok, expand resource to cover the conflict, then try again .. */
 941		if (conflict->start < new->start)
 942			new->start = conflict->start;
 943		if (conflict->end > new->end)
 944			new->end = conflict->end;
 945
 946		pr_info("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
 947	}
 948	write_unlock(&resource_lock);
 949}
 950/*
 951 * Not for general consumption, only early boot memory map parsing, PCI
 952 * resource discovery, and late discovery of CXL resources are expected
 953 * to use this interface. The former are built-in and only the latter,
 954 * CXL, is a module.
 955 */
 956EXPORT_SYMBOL_NS_GPL(insert_resource_expand_to_fit, CXL);
 957
 958/**
 959 * remove_resource - Remove a resource in the resource tree
 960 * @old: resource to remove
 961 *
 962 * Returns 0 on success, -EINVAL if the resource is not valid.
 963 *
 964 * This function removes a resource previously inserted by insert_resource()
 965 * or insert_resource_conflict(), and moves the children (if any) up to
 966 * where they were before.  insert_resource() and insert_resource_conflict()
 967 * insert a new resource, and move any conflicting resources down to the
 968 * children of the new resource.
 969 *
 970 * insert_resource(), insert_resource_conflict() and remove_resource() are
 971 * intended for producers of resources, such as FW modules and bus drivers.
 972 */
 973int remove_resource(struct resource *old)
 974{
 975	int retval;
 976
 977	write_lock(&resource_lock);
 978	retval = __release_resource(old, false);
 979	write_unlock(&resource_lock);
 980	return retval;
 981}
 982EXPORT_SYMBOL_GPL(remove_resource);
 983
 984static int __adjust_resource(struct resource *res, resource_size_t start,
 985				resource_size_t size)
 986{
 987	struct resource *tmp, *parent = res->parent;
 988	resource_size_t end = start + size - 1;
 989	int result = -EBUSY;
 990
 991	if (!parent)
 992		goto skip;
 993
 994	if ((start < parent->start) || (end > parent->end))
 995		goto out;
 996
 997	if (res->sibling && (res->sibling->start <= end))
 998		goto out;
 999
1000	tmp = parent->child;
1001	if (tmp != res) {
1002		while (tmp->sibling != res)
1003			tmp = tmp->sibling;
1004		if (start <= tmp->end)
1005			goto out;
1006	}
1007
1008skip:
1009	for (tmp = res->child; tmp; tmp = tmp->sibling)
1010		if ((tmp->start < start) || (tmp->end > end))
1011			goto out;
1012
1013	res->start = start;
1014	res->end = end;
1015	result = 0;
1016
1017 out:
1018	return result;
1019}
1020
1021/**
1022 * adjust_resource - modify a resource's start and size
1023 * @res: resource to modify
1024 * @start: new start value
1025 * @size: new size
1026 *
1027 * Given an existing resource, change its start and size to match the
1028 * arguments.  Returns 0 on success, -EBUSY if it can't fit.
1029 * Existing children of the resource are assumed to be immutable.
1030 */
1031int adjust_resource(struct resource *res, resource_size_t start,
1032		    resource_size_t size)
1033{
1034	int result;
1035
1036	write_lock(&resource_lock);
1037	result = __adjust_resource(res, start, size);
1038	write_unlock(&resource_lock);
1039	return result;
1040}
1041EXPORT_SYMBOL(adjust_resource);
1042
1043static void __init
1044__reserve_region_with_split(struct resource *root, resource_size_t start,
1045			    resource_size_t end, const char *name)
1046{
1047	struct resource *parent = root;
1048	struct resource *conflict;
1049	struct resource *res = alloc_resource(GFP_ATOMIC);
1050	struct resource *next_res = NULL;
1051	int type = resource_type(root);
1052
1053	if (!res)
1054		return;
1055
1056	res->name = name;
1057	res->start = start;
1058	res->end = end;
1059	res->flags = type | IORESOURCE_BUSY;
1060	res->desc = IORES_DESC_NONE;
1061
1062	while (1) {
1063
1064		conflict = __request_resource(parent, res);
1065		if (!conflict) {
1066			if (!next_res)
1067				break;
1068			res = next_res;
1069			next_res = NULL;
1070			continue;
1071		}
1072
1073		/* conflict covered whole area */
1074		if (conflict->start <= res->start &&
1075				conflict->end >= res->end) {
1076			free_resource(res);
1077			WARN_ON(next_res);
1078			break;
1079		}
1080
1081		/* failed, split and try again */
1082		if (conflict->start > res->start) {
1083			end = res->end;
1084			res->end = conflict->start - 1;
1085			if (conflict->end < end) {
1086				next_res = alloc_resource(GFP_ATOMIC);
1087				if (!next_res) {
1088					free_resource(res);
1089					break;
1090				}
1091				next_res->name = name;
1092				next_res->start = conflict->end + 1;
1093				next_res->end = end;
1094				next_res->flags = type | IORESOURCE_BUSY;
1095				next_res->desc = IORES_DESC_NONE;
1096			}
1097		} else {
1098			res->start = conflict->end + 1;
1099		}
1100	}
1101
1102}
1103
1104void __init
1105reserve_region_with_split(struct resource *root, resource_size_t start,
1106			  resource_size_t end, const char *name)
1107{
1108	int abort = 0;
1109
1110	write_lock(&resource_lock);
1111	if (root->start > start || root->end < end) {
1112		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1113		       (unsigned long long)start, (unsigned long long)end,
1114		       root);
1115		if (start > root->end || end < root->start)
1116			abort = 1;
1117		else {
1118			if (end > root->end)
1119				end = root->end;
1120			if (start < root->start)
1121				start = root->start;
1122			pr_err("fixing request to [0x%llx-0x%llx]\n",
1123			       (unsigned long long)start,
1124			       (unsigned long long)end);
1125		}
1126		dump_stack();
1127	}
1128	if (!abort)
1129		__reserve_region_with_split(root, start, end, name);
1130	write_unlock(&resource_lock);
1131}
1132
1133/**
1134 * resource_alignment - calculate resource's alignment
1135 * @res: resource pointer
1136 *
1137 * Returns alignment on success, 0 (invalid alignment) on failure.
1138 */
1139resource_size_t resource_alignment(struct resource *res)
1140{
1141	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1142	case IORESOURCE_SIZEALIGN:
1143		return resource_size(res);
1144	case IORESOURCE_STARTALIGN:
1145		return res->start;
1146	default:
1147		return 0;
1148	}
1149}
1150
1151/*
1152 * This is compatibility stuff for IO resources.
1153 *
1154 * Note how this, unlike the above, knows about
1155 * the IO flag meanings (busy etc).
1156 *
1157 * request_region creates a new busy region.
1158 *
1159 * release_region releases a matching busy region.
1160 */
1161
1162static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1163
1164static struct inode *iomem_inode;
1165
1166#ifdef CONFIG_IO_STRICT_DEVMEM
1167static void revoke_iomem(struct resource *res)
1168{
1169	/* pairs with smp_store_release() in iomem_init_inode() */
1170	struct inode *inode = smp_load_acquire(&iomem_inode);
1171
1172	/*
1173	 * Check that the initialization has completed. Losing the race
1174	 * is ok because it means drivers are claiming resources before
1175	 * the fs_initcall level of init and prevent iomem_get_mapping users
1176	 * from establishing mappings.
1177	 */
1178	if (!inode)
1179		return;
1180
1181	/*
1182	 * The expectation is that the driver has successfully marked
1183	 * the resource busy by this point, so devmem_is_allowed()
1184	 * should start returning false, however for performance this
1185	 * does not iterate the entire resource range.
1186	 */
1187	if (devmem_is_allowed(PHYS_PFN(res->start)) &&
1188	    devmem_is_allowed(PHYS_PFN(res->end))) {
1189		/*
1190		 * *cringe* iomem=relaxed says "go ahead, what's the
1191		 * worst that can happen?"
1192		 */
1193		return;
1194	}
1195
1196	unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1);
1197}
1198#else
1199static void revoke_iomem(struct resource *res) {}
1200#endif
1201
1202struct address_space *iomem_get_mapping(void)
1203{
1204	/*
1205	 * This function is only called from file open paths, hence guaranteed
1206	 * that fs_initcalls have completed and no need to check for NULL. But
1207	 * since revoke_iomem can be called before the initcall we still need
1208	 * the barrier to appease checkers.
1209	 */
1210	return smp_load_acquire(&iomem_inode)->i_mapping;
1211}
1212
1213static int __request_region_locked(struct resource *res, struct resource *parent,
1214				   resource_size_t start, resource_size_t n,
1215				   const char *name, int flags)
1216{
1217	DECLARE_WAITQUEUE(wait, current);
 
 
 
 
1218
1219	res->name = name;
1220	res->start = start;
1221	res->end = start + n - 1;
1222
 
 
1223	for (;;) {
1224		struct resource *conflict;
1225
1226		res->flags = resource_type(parent) | resource_ext_type(parent);
1227		res->flags |= IORESOURCE_BUSY | flags;
1228		res->desc = parent->desc;
1229
1230		conflict = __request_resource(parent, res);
1231		if (!conflict)
1232			break;
1233		/*
1234		 * mm/hmm.c reserves physical addresses which then
1235		 * become unavailable to other users.  Conflicts are
1236		 * not expected.  Warn to aid debugging if encountered.
1237		 */
1238		if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
1239			pr_warn("Unaddressable device %s %pR conflicts with %pR",
1240				conflict->name, conflict, res);
1241		}
1242		if (conflict != parent) {
1243			if (!(conflict->flags & IORESOURCE_BUSY)) {
1244				parent = conflict;
1245				continue;
1246			}
1247		}
1248		if (conflict->flags & flags & IORESOURCE_MUXED) {
1249			add_wait_queue(&muxed_resource_wait, &wait);
1250			write_unlock(&resource_lock);
1251			set_current_state(TASK_UNINTERRUPTIBLE);
1252			schedule();
1253			remove_wait_queue(&muxed_resource_wait, &wait);
1254			write_lock(&resource_lock);
1255			continue;
1256		}
1257		/* Uhhuh, that didn't work out.. */
1258		return -EBUSY;
 
 
1259	}
1260
1261	return 0;
1262}
1263
1264/**
1265 * __request_region - create a new busy resource region
1266 * @parent: parent resource descriptor
1267 * @start: resource start address
1268 * @n: resource region size
1269 * @name: reserving caller's ID string
1270 * @flags: IO resource flags
1271 */
1272struct resource *__request_region(struct resource *parent,
1273				  resource_size_t start, resource_size_t n,
1274				  const char *name, int flags)
1275{
1276	struct resource *res = alloc_resource(GFP_KERNEL);
1277	int ret;
1278
1279	if (!res)
1280		return NULL;
1281
1282	write_lock(&resource_lock);
1283	ret = __request_region_locked(res, parent, start, n, name, flags);
1284	write_unlock(&resource_lock);
1285
1286	if (ret) {
1287		free_resource(res);
1288		return NULL;
1289	}
1290
1291	if (parent == &iomem_resource)
1292		revoke_iomem(res);
1293
1294	return res;
1295}
1296EXPORT_SYMBOL(__request_region);
1297
1298/**
1299 * __release_region - release a previously reserved resource region
1300 * @parent: parent resource descriptor
1301 * @start: resource start address
1302 * @n: resource region size
1303 *
1304 * The described resource region must match a currently busy region.
1305 */
1306void __release_region(struct resource *parent, resource_size_t start,
1307		      resource_size_t n)
1308{
1309	struct resource **p;
1310	resource_size_t end;
1311
1312	p = &parent->child;
1313	end = start + n - 1;
1314
1315	write_lock(&resource_lock);
1316
1317	for (;;) {
1318		struct resource *res = *p;
1319
1320		if (!res)
1321			break;
1322		if (res->start <= start && res->end >= end) {
1323			if (!(res->flags & IORESOURCE_BUSY)) {
1324				p = &res->child;
1325				continue;
1326			}
1327			if (res->start != start || res->end != end)
1328				break;
1329			*p = res->sibling;
1330			write_unlock(&resource_lock);
1331			if (res->flags & IORESOURCE_MUXED)
1332				wake_up(&muxed_resource_wait);
1333			free_resource(res);
1334			return;
1335		}
1336		p = &res->sibling;
1337	}
1338
1339	write_unlock(&resource_lock);
1340
1341	pr_warn("Trying to free nonexistent resource <%pa-%pa>\n", &start, &end);
 
 
1342}
1343EXPORT_SYMBOL(__release_region);
1344
1345#ifdef CONFIG_MEMORY_HOTREMOVE
1346/**
1347 * release_mem_region_adjustable - release a previously reserved memory region
 
1348 * @start: resource start address
1349 * @size: resource region size
1350 *
1351 * This interface is intended for memory hot-delete.  The requested region
1352 * is released from a currently busy memory resource.  The requested region
1353 * must either match exactly or fit into a single busy resource entry.  In
1354 * the latter case, the remaining resource is adjusted accordingly.
1355 * Existing children of the busy memory resource must be immutable in the
1356 * request.
1357 *
1358 * Note:
1359 * - Additional release conditions, such as overlapping region, can be
1360 *   supported after they are confirmed as valid cases.
1361 * - When a busy memory resource gets split into two entries, the code
1362 *   assumes that all children remain in the lower address entry for
1363 *   simplicity.  Enhance this logic when necessary.
1364 */
1365void release_mem_region_adjustable(resource_size_t start, resource_size_t size)
 
1366{
1367	struct resource *parent = &iomem_resource;
1368	struct resource *new_res = NULL;
1369	bool alloc_nofail = false;
1370	struct resource **p;
1371	struct resource *res;
 
1372	resource_size_t end;
 
1373
1374	end = start + size - 1;
1375	if (WARN_ON_ONCE((start < parent->start) || (end > parent->end)))
1376		return;
1377
1378	/*
1379	 * We free up quite a lot of memory on memory hotunplug (esp., memap),
1380	 * just before releasing the region. This is highly unlikely to
1381	 * fail - let's play save and make it never fail as the caller cannot
1382	 * perform any error handling (e.g., trying to re-add memory will fail
1383	 * similarly).
1384	 */
1385retry:
1386	new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0));
1387
1388	p = &parent->child;
1389	write_lock(&resource_lock);
1390
1391	while ((res = *p)) {
1392		if (res->start >= end)
1393			break;
1394
1395		/* look for the next resource if it does not fit into */
1396		if (res->start > start || res->end < end) {
1397			p = &res->sibling;
1398			continue;
1399		}
1400
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1401		if (!(res->flags & IORESOURCE_MEM))
1402			break;
1403
1404		if (!(res->flags & IORESOURCE_BUSY)) {
1405			p = &res->child;
1406			continue;
1407		}
1408
1409		/* found the target resource; let's adjust accordingly */
1410		if (res->start == start && res->end == end) {
1411			/* free the whole entry */
1412			*p = res->sibling;
1413			free_resource(res);
 
1414		} else if (res->start == start && res->end != end) {
1415			/* adjust the start */
1416			WARN_ON_ONCE(__adjust_resource(res, end + 1,
1417						       res->end - end));
1418		} else if (res->start != start && res->end == end) {
1419			/* adjust the end */
1420			WARN_ON_ONCE(__adjust_resource(res, res->start,
1421						       start - res->start));
1422		} else {
1423			/* split into two entries - we need a new resource */
1424			if (!new_res) {
1425				new_res = alloc_resource(GFP_ATOMIC);
1426				if (!new_res) {
1427					alloc_nofail = true;
1428					write_unlock(&resource_lock);
1429					goto retry;
1430				}
1431			}
1432			new_res->name = res->name;
1433			new_res->start = end + 1;
1434			new_res->end = res->end;
1435			new_res->flags = res->flags;
1436			new_res->desc = res->desc;
1437			new_res->parent = res->parent;
1438			new_res->sibling = res->sibling;
1439			new_res->child = NULL;
1440
1441			if (WARN_ON_ONCE(__adjust_resource(res, res->start,
1442							   start - res->start)))
 
1443				break;
1444			res->sibling = new_res;
1445			new_res = NULL;
1446		}
1447
1448		break;
1449	}
1450
1451	write_unlock(&resource_lock);
1452	free_resource(new_res);
 
1453}
1454#endif	/* CONFIG_MEMORY_HOTREMOVE */
1455
1456#ifdef CONFIG_MEMORY_HOTPLUG
1457static bool system_ram_resources_mergeable(struct resource *r1,
1458					   struct resource *r2)
1459{
1460	/* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */
1461	return r1->flags == r2->flags && r1->end + 1 == r2->start &&
1462	       r1->name == r2->name && r1->desc == r2->desc &&
1463	       !r1->child && !r2->child;
1464}
1465
1466/**
1467 * merge_system_ram_resource - mark the System RAM resource mergeable and try to
1468 *	merge it with adjacent, mergeable resources
1469 * @res: resource descriptor
1470 *
1471 * This interface is intended for memory hotplug, whereby lots of contiguous
1472 * system ram resources are added (e.g., via add_memory*()) by a driver, and
1473 * the actual resource boundaries are not of interest (e.g., it might be
1474 * relevant for DIMMs). Only resources that are marked mergeable, that have the
1475 * same parent, and that don't have any children are considered. All mergeable
1476 * resources must be immutable during the request.
1477 *
1478 * Note:
1479 * - The caller has to make sure that no pointers to resources that are
1480 *   marked mergeable are used anymore after this call - the resource might
1481 *   be freed and the pointer might be stale!
1482 * - release_mem_region_adjustable() will split on demand on memory hotunplug
1483 */
1484void merge_system_ram_resource(struct resource *res)
1485{
1486	const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
1487	struct resource *cur;
1488
1489	if (WARN_ON_ONCE((res->flags & flags) != flags))
1490		return;
1491
1492	write_lock(&resource_lock);
1493	res->flags |= IORESOURCE_SYSRAM_MERGEABLE;
1494
1495	/* Try to merge with next item in the list. */
1496	cur = res->sibling;
1497	if (cur && system_ram_resources_mergeable(res, cur)) {
1498		res->end = cur->end;
1499		res->sibling = cur->sibling;
1500		free_resource(cur);
1501	}
1502
1503	/* Try to merge with previous item in the list. */
1504	cur = res->parent->child;
1505	while (cur && cur->sibling != res)
1506		cur = cur->sibling;
1507	if (cur && system_ram_resources_mergeable(cur, res)) {
1508		cur->end = res->end;
1509		cur->sibling = res->sibling;
1510		free_resource(res);
1511	}
1512	write_unlock(&resource_lock);
1513}
1514#endif	/* CONFIG_MEMORY_HOTPLUG */
1515
1516/*
1517 * Managed region resource
1518 */
1519static void devm_resource_release(struct device *dev, void *ptr)
1520{
1521	struct resource **r = ptr;
1522
1523	release_resource(*r);
1524}
1525
1526/**
1527 * devm_request_resource() - request and reserve an I/O or memory resource
1528 * @dev: device for which to request the resource
1529 * @root: root of the resource tree from which to request the resource
1530 * @new: descriptor of the resource to request
1531 *
1532 * This is a device-managed version of request_resource(). There is usually
1533 * no need to release resources requested by this function explicitly since
1534 * that will be taken care of when the device is unbound from its driver.
1535 * If for some reason the resource needs to be released explicitly, because
1536 * of ordering issues for example, drivers must call devm_release_resource()
1537 * rather than the regular release_resource().
1538 *
1539 * When a conflict is detected between any existing resources and the newly
1540 * requested resource, an error message will be printed.
1541 *
1542 * Returns 0 on success or a negative error code on failure.
1543 */
1544int devm_request_resource(struct device *dev, struct resource *root,
1545			  struct resource *new)
1546{
1547	struct resource *conflict, **ptr;
1548
1549	ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1550	if (!ptr)
1551		return -ENOMEM;
1552
1553	*ptr = new;
1554
1555	conflict = request_resource_conflict(root, new);
1556	if (conflict) {
1557		dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1558			new, conflict->name, conflict);
1559		devres_free(ptr);
1560		return -EBUSY;
1561	}
1562
1563	devres_add(dev, ptr);
1564	return 0;
1565}
1566EXPORT_SYMBOL(devm_request_resource);
1567
1568static int devm_resource_match(struct device *dev, void *res, void *data)
1569{
1570	struct resource **ptr = res;
1571
1572	return *ptr == data;
1573}
1574
1575/**
1576 * devm_release_resource() - release a previously requested resource
1577 * @dev: device for which to release the resource
1578 * @new: descriptor of the resource to release
1579 *
1580 * Releases a resource previously requested using devm_request_resource().
1581 */
1582void devm_release_resource(struct device *dev, struct resource *new)
1583{
1584	WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1585			       new));
1586}
1587EXPORT_SYMBOL(devm_release_resource);
1588
1589struct region_devres {
1590	struct resource *parent;
1591	resource_size_t start;
1592	resource_size_t n;
1593};
1594
1595static void devm_region_release(struct device *dev, void *res)
1596{
1597	struct region_devres *this = res;
1598
1599	__release_region(this->parent, this->start, this->n);
1600}
1601
1602static int devm_region_match(struct device *dev, void *res, void *match_data)
1603{
1604	struct region_devres *this = res, *match = match_data;
1605
1606	return this->parent == match->parent &&
1607		this->start == match->start && this->n == match->n;
1608}
1609
1610struct resource *
1611__devm_request_region(struct device *dev, struct resource *parent,
1612		      resource_size_t start, resource_size_t n, const char *name)
1613{
1614	struct region_devres *dr = NULL;
1615	struct resource *res;
1616
1617	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1618			  GFP_KERNEL);
1619	if (!dr)
1620		return NULL;
1621
1622	dr->parent = parent;
1623	dr->start = start;
1624	dr->n = n;
1625
1626	res = __request_region(parent, start, n, name, 0);
1627	if (res)
1628		devres_add(dev, dr);
1629	else
1630		devres_free(dr);
1631
1632	return res;
1633}
1634EXPORT_SYMBOL(__devm_request_region);
1635
1636void __devm_release_region(struct device *dev, struct resource *parent,
1637			   resource_size_t start, resource_size_t n)
1638{
1639	struct region_devres match_data = { parent, start, n };
1640
1641	__release_region(parent, start, n);
1642	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1643			       &match_data));
1644}
1645EXPORT_SYMBOL(__devm_release_region);
1646
1647/*
1648 * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1649 */
1650#define MAXRESERVE 4
1651static int __init reserve_setup(char *str)
1652{
1653	static int reserved;
1654	static struct resource reserve[MAXRESERVE];
1655
1656	for (;;) {
1657		unsigned int io_start, io_num;
1658		int x = reserved;
1659		struct resource *parent;
1660
1661		if (get_option(&str, &io_start) != 2)
1662			break;
1663		if (get_option(&str, &io_num) == 0)
1664			break;
1665		if (x < MAXRESERVE) {
1666			struct resource *res = reserve + x;
1667
1668			/*
1669			 * If the region starts below 0x10000, we assume it's
1670			 * I/O port space; otherwise assume it's memory.
1671			 */
1672			if (io_start < 0x10000) {
1673				res->flags = IORESOURCE_IO;
1674				parent = &ioport_resource;
1675			} else {
1676				res->flags = IORESOURCE_MEM;
1677				parent = &iomem_resource;
1678			}
1679			res->name = "reserved";
1680			res->start = io_start;
1681			res->end = io_start + io_num - 1;
1682			res->flags |= IORESOURCE_BUSY;
1683			res->desc = IORES_DESC_NONE;
1684			res->child = NULL;
1685			if (request_resource(parent, res) == 0)
1686				reserved = x+1;
1687		}
1688	}
1689	return 1;
1690}
1691__setup("reserve=", reserve_setup);
1692
1693/*
1694 * Check if the requested addr and size spans more than any slot in the
1695 * iomem resource tree.
1696 */
1697int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1698{
1699	resource_size_t end = addr + size - 1;
1700	struct resource *p;
1701	int err = 0;
 
1702
1703	read_lock(&resource_lock);
1704	for_each_resource(&iomem_resource, p, false) {
1705		/*
1706		 * We can probably skip the resources without
1707		 * IORESOURCE_IO attribute?
1708		 */
1709		if (p->start > end)
1710			continue;
1711		if (p->end < addr)
1712			continue;
1713		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1714		    PFN_DOWN(p->end) >= PFN_DOWN(end))
1715			continue;
1716		/*
1717		 * if a resource is "BUSY", it's not a hardware resource
1718		 * but a driver mapping of such a resource; we don't want
1719		 * to warn for those; some drivers legitimately map only
1720		 * partial hardware resources. (example: vesafb)
1721		 */
1722		if (p->flags & IORESOURCE_BUSY)
1723			continue;
1724
1725		pr_warn("resource sanity check: requesting [mem %pa-%pa], which spans more than %s %pR\n",
1726			&addr, &end, p->name, p);
 
 
1727		err = -1;
1728		break;
1729	}
1730	read_unlock(&resource_lock);
1731
1732	return err;
1733}
1734
1735#ifdef CONFIG_STRICT_DEVMEM
1736static int strict_iomem_checks = 1;
1737#else
1738static int strict_iomem_checks;
1739#endif
1740
1741/*
1742 * Check if an address is exclusive to the kernel and must not be mapped to
1743 * user space, for example, via /dev/mem.
1744 *
1745 * Returns true if exclusive to the kernel, otherwise returns false.
1746 */
1747bool resource_is_exclusive(struct resource *root, u64 addr, resource_size_t size)
1748{
1749	const unsigned int exclusive_system_ram = IORESOURCE_SYSTEM_RAM |
1750						  IORESOURCE_EXCLUSIVE;
1751	bool skip_children = false, err = false;
1752	struct resource *p;
 
 
 
 
 
1753
1754	read_lock(&resource_lock);
1755	for_each_resource(root, p, skip_children) {
 
 
 
 
1756		if (p->start >= addr + size)
1757			break;
1758		if (p->end < addr) {
1759			skip_children = true;
1760			continue;
1761		}
1762		skip_children = false;
1763
1764		/*
1765		 * IORESOURCE_SYSTEM_RAM resources are exclusive if
1766		 * IORESOURCE_EXCLUSIVE is set, even if they
1767		 * are not busy and even if "iomem=relaxed" is set. The
1768		 * responsible driver dynamically adds/removes system RAM within
1769		 * such an area and uncontrolled access is dangerous.
1770		 */
1771		if ((p->flags & exclusive_system_ram) == exclusive_system_ram) {
1772			err = true;
1773			break;
1774		}
1775
1776		/*
1777		 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1778		 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1779		 * resource is busy.
1780		 */
1781		if (!strict_iomem_checks || !(p->flags & IORESOURCE_BUSY))
1782			continue;
1783		if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1784				|| p->flags & IORESOURCE_EXCLUSIVE) {
1785			err = true;
1786			break;
1787		}
1788	}
1789	read_unlock(&resource_lock);
1790
1791	return err;
1792}
1793
1794bool iomem_is_exclusive(u64 addr)
1795{
1796	return resource_is_exclusive(&iomem_resource, addr & PAGE_MASK,
1797				     PAGE_SIZE);
1798}
1799
1800struct resource_entry *resource_list_create_entry(struct resource *res,
1801						  size_t extra_size)
1802{
1803	struct resource_entry *entry;
1804
1805	entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1806	if (entry) {
1807		INIT_LIST_HEAD(&entry->node);
1808		entry->res = res ? res : &entry->__res;
1809	}
1810
1811	return entry;
1812}
1813EXPORT_SYMBOL(resource_list_create_entry);
1814
1815void resource_list_free(struct list_head *head)
1816{
1817	struct resource_entry *entry, *tmp;
1818
1819	list_for_each_entry_safe(entry, tmp, head, node)
1820		resource_list_destroy_entry(entry);
1821}
1822EXPORT_SYMBOL(resource_list_free);
1823
1824#ifdef CONFIG_GET_FREE_REGION
1825#define GFR_DESCENDING		(1UL << 0)
1826#define GFR_REQUEST_REGION	(1UL << 1)
1827#define GFR_DEFAULT_ALIGN (1UL << PA_SECTION_SHIFT)
1828
1829static resource_size_t gfr_start(struct resource *base, resource_size_t size,
1830				 resource_size_t align, unsigned long flags)
1831{
1832	if (flags & GFR_DESCENDING) {
1833		resource_size_t end;
1834
1835		end = min_t(resource_size_t, base->end,
1836			    (1ULL << MAX_PHYSMEM_BITS) - 1);
1837		return end - size + 1;
1838	}
1839
1840	return ALIGN(base->start, align);
1841}
1842
1843static bool gfr_continue(struct resource *base, resource_size_t addr,
1844			 resource_size_t size, unsigned long flags)
1845{
1846	if (flags & GFR_DESCENDING)
1847		return addr > size && addr >= base->start;
1848	/*
1849	 * In the ascend case be careful that the last increment by
1850	 * @size did not wrap 0.
1851	 */
1852	return addr > addr - size &&
1853	       addr <= min_t(resource_size_t, base->end,
1854			     (1ULL << MAX_PHYSMEM_BITS) - 1);
1855}
1856
1857static resource_size_t gfr_next(resource_size_t addr, resource_size_t size,
1858				unsigned long flags)
1859{
1860	if (flags & GFR_DESCENDING)
1861		return addr - size;
1862	return addr + size;
1863}
1864
1865static void remove_free_mem_region(void *_res)
1866{
1867	struct resource *res = _res;
1868
1869	if (res->parent)
1870		remove_resource(res);
1871	free_resource(res);
1872}
1873
1874static struct resource *
1875get_free_mem_region(struct device *dev, struct resource *base,
1876		    resource_size_t size, const unsigned long align,
1877		    const char *name, const unsigned long desc,
1878		    const unsigned long flags)
1879{
1880	resource_size_t addr;
1881	struct resource *res;
1882	struct region_devres *dr = NULL;
1883
1884	size = ALIGN(size, align);
 
 
 
 
 
 
 
1885
1886	res = alloc_resource(GFP_KERNEL);
1887	if (!res)
1888		return ERR_PTR(-ENOMEM);
1889
1890	if (dev && (flags & GFR_REQUEST_REGION)) {
1891		dr = devres_alloc(devm_region_release,
1892				sizeof(struct region_devres), GFP_KERNEL);
1893		if (!dr) {
1894			free_resource(res);
1895			return ERR_PTR(-ENOMEM);
1896		}
1897	} else if (dev) {
1898		if (devm_add_action_or_reset(dev, remove_free_mem_region, res))
1899			return ERR_PTR(-ENOMEM);
1900	}
1901
1902	write_lock(&resource_lock);
1903	for (addr = gfr_start(base, size, align, flags);
1904	     gfr_continue(base, addr, align, flags);
1905	     addr = gfr_next(addr, align, flags)) {
1906		if (__region_intersects(base, addr, size, 0, IORES_DESC_NONE) !=
1907		    REGION_DISJOINT)
1908			continue;
1909
1910		if (flags & GFR_REQUEST_REGION) {
1911			if (__request_region_locked(res, &iomem_resource, addr,
1912						    size, name, 0))
1913				break;
1914
1915			if (dev) {
1916				dr->parent = &iomem_resource;
1917				dr->start = addr;
1918				dr->n = size;
1919				devres_add(dev, dr);
1920			}
1921
1922			res->desc = desc;
1923			write_unlock(&resource_lock);
1924
1925
1926			/*
1927			 * A driver is claiming this region so revoke any
1928			 * mappings.
1929			 */
1930			revoke_iomem(res);
1931		} else {
1932			res->start = addr;
1933			res->end = addr + size - 1;
1934			res->name = name;
1935			res->desc = desc;
1936			res->flags = IORESOURCE_MEM;
1937
1938			/*
1939			 * Only succeed if the resource hosts an exclusive
1940			 * range after the insert
1941			 */
1942			if (__insert_resource(base, res) || res->child)
1943				break;
1944
1945			write_unlock(&resource_lock);
1946		}
1947
1948		return res;
1949	}
1950	write_unlock(&resource_lock);
1951
1952	if (flags & GFR_REQUEST_REGION) {
1953		free_resource(res);
1954		devres_free(dr);
1955	} else if (dev)
1956		devm_release_action(dev, remove_free_mem_region, res);
1957
1958	return ERR_PTR(-ERANGE);
1959}
1960
1961/**
1962 * devm_request_free_mem_region - find free region for device private memory
1963 *
1964 * @dev: device struct to bind the resource to
1965 * @size: size in bytes of the device memory to add
1966 * @base: resource tree to look in
1967 *
1968 * This function tries to find an empty range of physical address big enough to
1969 * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE
1970 * memory, which in turn allocates struct pages.
1971 */
1972struct resource *devm_request_free_mem_region(struct device *dev,
1973		struct resource *base, unsigned long size)
1974{
1975	unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
1976
1977	return get_free_mem_region(dev, base, size, GFR_DEFAULT_ALIGN,
1978				   dev_name(dev),
1979				   IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
1980}
1981EXPORT_SYMBOL_GPL(devm_request_free_mem_region);
1982
1983struct resource *request_free_mem_region(struct resource *base,
1984		unsigned long size, const char *name)
1985{
1986	unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
1987
1988	return get_free_mem_region(NULL, base, size, GFR_DEFAULT_ALIGN, name,
1989				   IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
1990}
1991EXPORT_SYMBOL_GPL(request_free_mem_region);
1992
1993/**
1994 * alloc_free_mem_region - find a free region relative to @base
1995 * @base: resource that will parent the new resource
1996 * @size: size in bytes of memory to allocate from @base
1997 * @align: alignment requirements for the allocation
1998 * @name: resource name
1999 *
2000 * Buses like CXL, that can dynamically instantiate new memory regions,
2001 * need a method to allocate physical address space for those regions.
2002 * Allocate and insert a new resource to cover a free, unclaimed by a
2003 * descendant of @base, range in the span of @base.
2004 */
2005struct resource *alloc_free_mem_region(struct resource *base,
2006				       unsigned long size, unsigned long align,
2007				       const char *name)
2008{
2009	/* Default of ascending direction and insert resource */
2010	unsigned long flags = 0;
2011
2012	return get_free_mem_region(NULL, base, size, align, name,
2013				   IORES_DESC_NONE, flags);
2014}
2015EXPORT_SYMBOL_NS_GPL(alloc_free_mem_region, CXL);
2016#endif /* CONFIG_GET_FREE_REGION */
2017
2018static int __init strict_iomem(char *str)
2019{
2020	if (strstr(str, "relaxed"))
2021		strict_iomem_checks = 0;
2022	if (strstr(str, "strict"))
2023		strict_iomem_checks = 1;
2024	return 1;
2025}
2026
2027static int iomem_fs_init_fs_context(struct fs_context *fc)
2028{
2029	return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM;
2030}
2031
2032static struct file_system_type iomem_fs_type = {
2033	.name		= "iomem",
2034	.owner		= THIS_MODULE,
2035	.init_fs_context = iomem_fs_init_fs_context,
2036	.kill_sb	= kill_anon_super,
2037};
2038
2039static int __init iomem_init_inode(void)
2040{
2041	static struct vfsmount *iomem_vfs_mount;
2042	static int iomem_fs_cnt;
2043	struct inode *inode;
2044	int rc;
2045
2046	rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt);
2047	if (rc < 0) {
2048		pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc);
2049		return rc;
2050	}
2051
2052	inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb);
2053	if (IS_ERR(inode)) {
2054		rc = PTR_ERR(inode);
2055		pr_err("Cannot allocate inode for iomem: %d\n", rc);
2056		simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt);
2057		return rc;
2058	}
2059
2060	/*
2061	 * Publish iomem revocation inode initialized.
2062	 * Pairs with smp_load_acquire() in revoke_iomem().
2063	 */
2064	smp_store_release(&iomem_inode, inode);
2065
2066	return 0;
2067}
2068
2069fs_initcall(iomem_init_inode);
2070
2071__setup("iomem=", strict_iomem);