Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/ext2/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Goal-directed block allocation by Stephen Tweedie
17 * (sct@dcs.ed.ac.uk), 1993, 1998
18 * Big-endian to little-endian byte-swapping/bitmaps by
19 * David S. Miller (davem@caip.rutgers.edu), 1995
20 * 64-bit file support on 64-bit platforms by Jakub Jelinek
21 * (jj@sunsite.ms.mff.cuni.cz)
22 *
23 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
24 */
25
26#include <linux/time.h>
27#include <linux/highuid.h>
28#include <linux/pagemap.h>
29#include <linux/dax.h>
30#include <linux/blkdev.h>
31#include <linux/quotaops.h>
32#include <linux/writeback.h>
33#include <linux/buffer_head.h>
34#include <linux/mpage.h>
35#include <linux/fiemap.h>
36#include <linux/iomap.h>
37#include <linux/namei.h>
38#include <linux/uio.h>
39#include "ext2.h"
40#include "acl.h"
41#include "xattr.h"
42
43static int __ext2_write_inode(struct inode *inode, int do_sync);
44
45/*
46 * Test whether an inode is a fast symlink.
47 */
48static inline int ext2_inode_is_fast_symlink(struct inode *inode)
49{
50 int ea_blocks = EXT2_I(inode)->i_file_acl ?
51 (inode->i_sb->s_blocksize >> 9) : 0;
52
53 return (S_ISLNK(inode->i_mode) &&
54 inode->i_blocks - ea_blocks == 0);
55}
56
57static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
58
59static void ext2_write_failed(struct address_space *mapping, loff_t to)
60{
61 struct inode *inode = mapping->host;
62
63 if (to > inode->i_size) {
64 truncate_pagecache(inode, inode->i_size);
65 ext2_truncate_blocks(inode, inode->i_size);
66 }
67}
68
69/*
70 * Called at the last iput() if i_nlink is zero.
71 */
72void ext2_evict_inode(struct inode * inode)
73{
74 struct ext2_block_alloc_info *rsv;
75 int want_delete = 0;
76
77 if (!inode->i_nlink && !is_bad_inode(inode)) {
78 want_delete = 1;
79 dquot_initialize(inode);
80 } else {
81 dquot_drop(inode);
82 }
83
84 truncate_inode_pages_final(&inode->i_data);
85
86 if (want_delete) {
87 sb_start_intwrite(inode->i_sb);
88 /* set dtime */
89 EXT2_I(inode)->i_dtime = ktime_get_real_seconds();
90 mark_inode_dirty(inode);
91 __ext2_write_inode(inode, inode_needs_sync(inode));
92 /* truncate to 0 */
93 inode->i_size = 0;
94 if (inode->i_blocks)
95 ext2_truncate_blocks(inode, 0);
96 ext2_xattr_delete_inode(inode);
97 }
98
99 invalidate_inode_buffers(inode);
100 clear_inode(inode);
101
102 ext2_discard_reservation(inode);
103 rsv = EXT2_I(inode)->i_block_alloc_info;
104 EXT2_I(inode)->i_block_alloc_info = NULL;
105 if (unlikely(rsv))
106 kfree(rsv);
107
108 if (want_delete) {
109 ext2_free_inode(inode);
110 sb_end_intwrite(inode->i_sb);
111 }
112}
113
114typedef struct {
115 __le32 *p;
116 __le32 key;
117 struct buffer_head *bh;
118} Indirect;
119
120static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
121{
122 p->key = *(p->p = v);
123 p->bh = bh;
124}
125
126static inline int verify_chain(Indirect *from, Indirect *to)
127{
128 while (from <= to && from->key == *from->p)
129 from++;
130 return (from > to);
131}
132
133/**
134 * ext2_block_to_path - parse the block number into array of offsets
135 * @inode: inode in question (we are only interested in its superblock)
136 * @i_block: block number to be parsed
137 * @offsets: array to store the offsets in
138 * @boundary: set this non-zero if the referred-to block is likely to be
139 * followed (on disk) by an indirect block.
140 * To store the locations of file's data ext2 uses a data structure common
141 * for UNIX filesystems - tree of pointers anchored in the inode, with
142 * data blocks at leaves and indirect blocks in intermediate nodes.
143 * This function translates the block number into path in that tree -
144 * return value is the path length and @offsets[n] is the offset of
145 * pointer to (n+1)th node in the nth one. If @block is out of range
146 * (negative or too large) warning is printed and zero returned.
147 *
148 * Note: function doesn't find node addresses, so no IO is needed. All
149 * we need to know is the capacity of indirect blocks (taken from the
150 * inode->i_sb).
151 */
152
153/*
154 * Portability note: the last comparison (check that we fit into triple
155 * indirect block) is spelled differently, because otherwise on an
156 * architecture with 32-bit longs and 8Kb pages we might get into trouble
157 * if our filesystem had 8Kb blocks. We might use long long, but that would
158 * kill us on x86. Oh, well, at least the sign propagation does not matter -
159 * i_block would have to be negative in the very beginning, so we would not
160 * get there at all.
161 */
162
163static int ext2_block_to_path(struct inode *inode,
164 long i_block, int offsets[4], int *boundary)
165{
166 int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
167 int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
168 const long direct_blocks = EXT2_NDIR_BLOCKS,
169 indirect_blocks = ptrs,
170 double_blocks = (1 << (ptrs_bits * 2));
171 int n = 0;
172 int final = 0;
173
174 if (i_block < 0) {
175 ext2_msg(inode->i_sb, KERN_WARNING,
176 "warning: %s: block < 0", __func__);
177 } else if (i_block < direct_blocks) {
178 offsets[n++] = i_block;
179 final = direct_blocks;
180 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
181 offsets[n++] = EXT2_IND_BLOCK;
182 offsets[n++] = i_block;
183 final = ptrs;
184 } else if ((i_block -= indirect_blocks) < double_blocks) {
185 offsets[n++] = EXT2_DIND_BLOCK;
186 offsets[n++] = i_block >> ptrs_bits;
187 offsets[n++] = i_block & (ptrs - 1);
188 final = ptrs;
189 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
190 offsets[n++] = EXT2_TIND_BLOCK;
191 offsets[n++] = i_block >> (ptrs_bits * 2);
192 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
193 offsets[n++] = i_block & (ptrs - 1);
194 final = ptrs;
195 } else {
196 ext2_msg(inode->i_sb, KERN_WARNING,
197 "warning: %s: block is too big", __func__);
198 }
199 if (boundary)
200 *boundary = final - 1 - (i_block & (ptrs - 1));
201
202 return n;
203}
204
205/**
206 * ext2_get_branch - read the chain of indirect blocks leading to data
207 * @inode: inode in question
208 * @depth: depth of the chain (1 - direct pointer, etc.)
209 * @offsets: offsets of pointers in inode/indirect blocks
210 * @chain: place to store the result
211 * @err: here we store the error value
212 *
213 * Function fills the array of triples <key, p, bh> and returns %NULL
214 * if everything went OK or the pointer to the last filled triple
215 * (incomplete one) otherwise. Upon the return chain[i].key contains
216 * the number of (i+1)-th block in the chain (as it is stored in memory,
217 * i.e. little-endian 32-bit), chain[i].p contains the address of that
218 * number (it points into struct inode for i==0 and into the bh->b_data
219 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
220 * block for i>0 and NULL for i==0. In other words, it holds the block
221 * numbers of the chain, addresses they were taken from (and where we can
222 * verify that chain did not change) and buffer_heads hosting these
223 * numbers.
224 *
225 * Function stops when it stumbles upon zero pointer (absent block)
226 * (pointer to last triple returned, *@err == 0)
227 * or when it gets an IO error reading an indirect block
228 * (ditto, *@err == -EIO)
229 * or when it notices that chain had been changed while it was reading
230 * (ditto, *@err == -EAGAIN)
231 * or when it reads all @depth-1 indirect blocks successfully and finds
232 * the whole chain, all way to the data (returns %NULL, *err == 0).
233 */
234static Indirect *ext2_get_branch(struct inode *inode,
235 int depth,
236 int *offsets,
237 Indirect chain[4],
238 int *err)
239{
240 struct super_block *sb = inode->i_sb;
241 Indirect *p = chain;
242 struct buffer_head *bh;
243
244 *err = 0;
245 /* i_data is not going away, no lock needed */
246 add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
247 if (!p->key)
248 goto no_block;
249 while (--depth) {
250 bh = sb_bread(sb, le32_to_cpu(p->key));
251 if (!bh)
252 goto failure;
253 read_lock(&EXT2_I(inode)->i_meta_lock);
254 if (!verify_chain(chain, p))
255 goto changed;
256 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
257 read_unlock(&EXT2_I(inode)->i_meta_lock);
258 if (!p->key)
259 goto no_block;
260 }
261 return NULL;
262
263changed:
264 read_unlock(&EXT2_I(inode)->i_meta_lock);
265 brelse(bh);
266 *err = -EAGAIN;
267 goto no_block;
268failure:
269 *err = -EIO;
270no_block:
271 return p;
272}
273
274/**
275 * ext2_find_near - find a place for allocation with sufficient locality
276 * @inode: owner
277 * @ind: descriptor of indirect block.
278 *
279 * This function returns the preferred place for block allocation.
280 * It is used when heuristic for sequential allocation fails.
281 * Rules are:
282 * + if there is a block to the left of our position - allocate near it.
283 * + if pointer will live in indirect block - allocate near that block.
284 * + if pointer will live in inode - allocate in the same cylinder group.
285 *
286 * In the latter case we colour the starting block by the callers PID to
287 * prevent it from clashing with concurrent allocations for a different inode
288 * in the same block group. The PID is used here so that functionally related
289 * files will be close-by on-disk.
290 *
291 * Caller must make sure that @ind is valid and will stay that way.
292 */
293
294static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
295{
296 struct ext2_inode_info *ei = EXT2_I(inode);
297 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
298 __le32 *p;
299 ext2_fsblk_t bg_start;
300 ext2_fsblk_t colour;
301
302 /* Try to find previous block */
303 for (p = ind->p - 1; p >= start; p--)
304 if (*p)
305 return le32_to_cpu(*p);
306
307 /* No such thing, so let's try location of indirect block */
308 if (ind->bh)
309 return ind->bh->b_blocknr;
310
311 /*
312 * It is going to be referred from inode itself? OK, just put it into
313 * the same cylinder group then.
314 */
315 bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
316 colour = (current->pid % 16) *
317 (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
318 return bg_start + colour;
319}
320
321/**
322 * ext2_find_goal - find a preferred place for allocation.
323 * @inode: owner
324 * @block: block we want
325 * @partial: pointer to the last triple within a chain
326 *
327 * Returns preferred place for a block (the goal).
328 */
329
330static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
331 Indirect *partial)
332{
333 struct ext2_block_alloc_info *block_i;
334
335 block_i = EXT2_I(inode)->i_block_alloc_info;
336
337 /*
338 * try the heuristic for sequential allocation,
339 * failing that at least try to get decent locality.
340 */
341 if (block_i && (block == block_i->last_alloc_logical_block + 1)
342 && (block_i->last_alloc_physical_block != 0)) {
343 return block_i->last_alloc_physical_block + 1;
344 }
345
346 return ext2_find_near(inode, partial);
347}
348
349/**
350 * ext2_blks_to_allocate: Look up the block map and count the number
351 * of direct blocks need to be allocated for the given branch.
352 *
353 * @branch: chain of indirect blocks
354 * @k: number of blocks need for indirect blocks
355 * @blks: number of data blocks to be mapped.
356 * @blocks_to_boundary: the offset in the indirect block
357 *
358 * return the total number of blocks to be allocate, including the
359 * direct and indirect blocks.
360 */
361static int
362ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
363 int blocks_to_boundary)
364{
365 unsigned long count = 0;
366
367 /*
368 * Simple case, [t,d]Indirect block(s) has not allocated yet
369 * then it's clear blocks on that path have not allocated
370 */
371 if (k > 0) {
372 /* right now don't hanel cross boundary allocation */
373 if (blks < blocks_to_boundary + 1)
374 count += blks;
375 else
376 count += blocks_to_boundary + 1;
377 return count;
378 }
379
380 count++;
381 while (count < blks && count <= blocks_to_boundary
382 && le32_to_cpu(*(branch[0].p + count)) == 0) {
383 count++;
384 }
385 return count;
386}
387
388/**
389 * ext2_alloc_blocks: multiple allocate blocks needed for a branch
390 * @indirect_blks: the number of blocks need to allocate for indirect
391 * blocks
392 *
393 * @new_blocks: on return it will store the new block numbers for
394 * the indirect blocks(if needed) and the first direct block,
395 * @blks: on return it will store the total number of allocated
396 * direct blocks
397 */
398static int ext2_alloc_blocks(struct inode *inode,
399 ext2_fsblk_t goal, int indirect_blks, int blks,
400 ext2_fsblk_t new_blocks[4], int *err)
401{
402 int target, i;
403 unsigned long count = 0;
404 int index = 0;
405 ext2_fsblk_t current_block = 0;
406 int ret = 0;
407
408 /*
409 * Here we try to allocate the requested multiple blocks at once,
410 * on a best-effort basis.
411 * To build a branch, we should allocate blocks for
412 * the indirect blocks(if not allocated yet), and at least
413 * the first direct block of this branch. That's the
414 * minimum number of blocks need to allocate(required)
415 */
416 target = blks + indirect_blks;
417
418 while (1) {
419 count = target;
420 /* allocating blocks for indirect blocks and direct blocks */
421 current_block = ext2_new_blocks(inode,goal,&count,err);
422 if (*err)
423 goto failed_out;
424
425 target -= count;
426 /* allocate blocks for indirect blocks */
427 while (index < indirect_blks && count) {
428 new_blocks[index++] = current_block++;
429 count--;
430 }
431
432 if (count > 0)
433 break;
434 }
435
436 /* save the new block number for the first direct block */
437 new_blocks[index] = current_block;
438
439 /* total number of blocks allocated for direct blocks */
440 ret = count;
441 *err = 0;
442 return ret;
443failed_out:
444 for (i = 0; i <index; i++)
445 ext2_free_blocks(inode, new_blocks[i], 1);
446 if (index)
447 mark_inode_dirty(inode);
448 return ret;
449}
450
451/**
452 * ext2_alloc_branch - allocate and set up a chain of blocks.
453 * @inode: owner
454 * @indirect_blks: depth of the chain (number of blocks to allocate)
455 * @blks: number of allocated direct blocks
456 * @goal: preferred place for allocation
457 * @offsets: offsets (in the blocks) to store the pointers to next.
458 * @branch: place to store the chain in.
459 *
460 * This function allocates @num blocks, zeroes out all but the last one,
461 * links them into chain and (if we are synchronous) writes them to disk.
462 * In other words, it prepares a branch that can be spliced onto the
463 * inode. It stores the information about that chain in the branch[], in
464 * the same format as ext2_get_branch() would do. We are calling it after
465 * we had read the existing part of chain and partial points to the last
466 * triple of that (one with zero ->key). Upon the exit we have the same
467 * picture as after the successful ext2_get_block(), except that in one
468 * place chain is disconnected - *branch->p is still zero (we did not
469 * set the last link), but branch->key contains the number that should
470 * be placed into *branch->p to fill that gap.
471 *
472 * If allocation fails we free all blocks we've allocated (and forget
473 * their buffer_heads) and return the error value the from failed
474 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
475 * as described above and return 0.
476 */
477
478static int ext2_alloc_branch(struct inode *inode,
479 int indirect_blks, int *blks, ext2_fsblk_t goal,
480 int *offsets, Indirect *branch)
481{
482 int blocksize = inode->i_sb->s_blocksize;
483 int i, n = 0;
484 int err = 0;
485 struct buffer_head *bh;
486 int num;
487 ext2_fsblk_t new_blocks[4];
488 ext2_fsblk_t current_block;
489
490 num = ext2_alloc_blocks(inode, goal, indirect_blks,
491 *blks, new_blocks, &err);
492 if (err)
493 return err;
494
495 branch[0].key = cpu_to_le32(new_blocks[0]);
496 /*
497 * metadata blocks and data blocks are allocated.
498 */
499 for (n = 1; n <= indirect_blks; n++) {
500 /*
501 * Get buffer_head for parent block, zero it out
502 * and set the pointer to new one, then send
503 * parent to disk.
504 */
505 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
506 if (unlikely(!bh)) {
507 err = -ENOMEM;
508 goto failed;
509 }
510 branch[n].bh = bh;
511 lock_buffer(bh);
512 memset(bh->b_data, 0, blocksize);
513 branch[n].p = (__le32 *) bh->b_data + offsets[n];
514 branch[n].key = cpu_to_le32(new_blocks[n]);
515 *branch[n].p = branch[n].key;
516 if ( n == indirect_blks) {
517 current_block = new_blocks[n];
518 /*
519 * End of chain, update the last new metablock of
520 * the chain to point to the new allocated
521 * data blocks numbers
522 */
523 for (i=1; i < num; i++)
524 *(branch[n].p + i) = cpu_to_le32(++current_block);
525 }
526 set_buffer_uptodate(bh);
527 unlock_buffer(bh);
528 mark_buffer_dirty_inode(bh, inode);
529 /* We used to sync bh here if IS_SYNC(inode).
530 * But we now rely upon generic_write_sync()
531 * and b_inode_buffers. But not for directories.
532 */
533 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
534 sync_dirty_buffer(bh);
535 }
536 *blks = num;
537 return err;
538
539failed:
540 for (i = 1; i < n; i++)
541 bforget(branch[i].bh);
542 for (i = 0; i < indirect_blks; i++)
543 ext2_free_blocks(inode, new_blocks[i], 1);
544 ext2_free_blocks(inode, new_blocks[i], num);
545 return err;
546}
547
548/**
549 * ext2_splice_branch - splice the allocated branch onto inode.
550 * @inode: owner
551 * @block: (logical) number of block we are adding
552 * @where: location of missing link
553 * @num: number of indirect blocks we are adding
554 * @blks: number of direct blocks we are adding
555 *
556 * This function fills the missing link and does all housekeeping needed in
557 * inode (->i_blocks, etc.). In case of success we end up with the full
558 * chain to new block and return 0.
559 */
560static void ext2_splice_branch(struct inode *inode,
561 long block, Indirect *where, int num, int blks)
562{
563 int i;
564 struct ext2_block_alloc_info *block_i;
565 ext2_fsblk_t current_block;
566
567 block_i = EXT2_I(inode)->i_block_alloc_info;
568
569 /* XXX LOCKING probably should have i_meta_lock ?*/
570 /* That's it */
571
572 *where->p = where->key;
573
574 /*
575 * Update the host buffer_head or inode to point to more just allocated
576 * direct blocks blocks
577 */
578 if (num == 0 && blks > 1) {
579 current_block = le32_to_cpu(where->key) + 1;
580 for (i = 1; i < blks; i++)
581 *(where->p + i ) = cpu_to_le32(current_block++);
582 }
583
584 /*
585 * update the most recently allocated logical & physical block
586 * in i_block_alloc_info, to assist find the proper goal block for next
587 * allocation
588 */
589 if (block_i) {
590 block_i->last_alloc_logical_block = block + blks - 1;
591 block_i->last_alloc_physical_block =
592 le32_to_cpu(where[num].key) + blks - 1;
593 }
594
595 /* We are done with atomic stuff, now do the rest of housekeeping */
596
597 /* had we spliced it onto indirect block? */
598 if (where->bh)
599 mark_buffer_dirty_inode(where->bh, inode);
600
601 inode->i_ctime = current_time(inode);
602 mark_inode_dirty(inode);
603}
604
605/*
606 * Allocation strategy is simple: if we have to allocate something, we will
607 * have to go the whole way to leaf. So let's do it before attaching anything
608 * to tree, set linkage between the newborn blocks, write them if sync is
609 * required, recheck the path, free and repeat if check fails, otherwise
610 * set the last missing link (that will protect us from any truncate-generated
611 * removals - all blocks on the path are immune now) and possibly force the
612 * write on the parent block.
613 * That has a nice additional property: no special recovery from the failed
614 * allocations is needed - we simply release blocks and do not touch anything
615 * reachable from inode.
616 *
617 * `handle' can be NULL if create == 0.
618 *
619 * return > 0, # of blocks mapped or allocated.
620 * return = 0, if plain lookup failed.
621 * return < 0, error case.
622 */
623static int ext2_get_blocks(struct inode *inode,
624 sector_t iblock, unsigned long maxblocks,
625 u32 *bno, bool *new, bool *boundary,
626 int create)
627{
628 int err;
629 int offsets[4];
630 Indirect chain[4];
631 Indirect *partial;
632 ext2_fsblk_t goal;
633 int indirect_blks;
634 int blocks_to_boundary = 0;
635 int depth;
636 struct ext2_inode_info *ei = EXT2_I(inode);
637 int count = 0;
638 ext2_fsblk_t first_block = 0;
639
640 BUG_ON(maxblocks == 0);
641
642 depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
643
644 if (depth == 0)
645 return -EIO;
646
647 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
648 /* Simplest case - block found, no allocation needed */
649 if (!partial) {
650 first_block = le32_to_cpu(chain[depth - 1].key);
651 count++;
652 /*map more blocks*/
653 while (count < maxblocks && count <= blocks_to_boundary) {
654 ext2_fsblk_t blk;
655
656 if (!verify_chain(chain, chain + depth - 1)) {
657 /*
658 * Indirect block might be removed by
659 * truncate while we were reading it.
660 * Handling of that case: forget what we've
661 * got now, go to reread.
662 */
663 err = -EAGAIN;
664 count = 0;
665 partial = chain + depth - 1;
666 break;
667 }
668 blk = le32_to_cpu(*(chain[depth-1].p + count));
669 if (blk == first_block + count)
670 count++;
671 else
672 break;
673 }
674 if (err != -EAGAIN)
675 goto got_it;
676 }
677
678 /* Next simple case - plain lookup or failed read of indirect block */
679 if (!create || err == -EIO)
680 goto cleanup;
681
682 mutex_lock(&ei->truncate_mutex);
683 /*
684 * If the indirect block is missing while we are reading
685 * the chain(ext2_get_branch() returns -EAGAIN err), or
686 * if the chain has been changed after we grab the semaphore,
687 * (either because another process truncated this branch, or
688 * another get_block allocated this branch) re-grab the chain to see if
689 * the request block has been allocated or not.
690 *
691 * Since we already block the truncate/other get_block
692 * at this point, we will have the current copy of the chain when we
693 * splice the branch into the tree.
694 */
695 if (err == -EAGAIN || !verify_chain(chain, partial)) {
696 while (partial > chain) {
697 brelse(partial->bh);
698 partial--;
699 }
700 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
701 if (!partial) {
702 count++;
703 mutex_unlock(&ei->truncate_mutex);
704 if (err)
705 goto cleanup;
706 goto got_it;
707 }
708 }
709
710 /*
711 * Okay, we need to do block allocation. Lazily initialize the block
712 * allocation info here if necessary
713 */
714 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
715 ext2_init_block_alloc_info(inode);
716
717 goal = ext2_find_goal(inode, iblock, partial);
718
719 /* the number of blocks need to allocate for [d,t]indirect blocks */
720 indirect_blks = (chain + depth) - partial - 1;
721 /*
722 * Next look up the indirect map to count the total number of
723 * direct blocks to allocate for this branch.
724 */
725 count = ext2_blks_to_allocate(partial, indirect_blks,
726 maxblocks, blocks_to_boundary);
727 /*
728 * XXX ???? Block out ext2_truncate while we alter the tree
729 */
730 err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
731 offsets + (partial - chain), partial);
732
733 if (err) {
734 mutex_unlock(&ei->truncate_mutex);
735 goto cleanup;
736 }
737
738 if (IS_DAX(inode)) {
739 /*
740 * We must unmap blocks before zeroing so that writeback cannot
741 * overwrite zeros with stale data from block device page cache.
742 */
743 clean_bdev_aliases(inode->i_sb->s_bdev,
744 le32_to_cpu(chain[depth-1].key),
745 count);
746 /*
747 * block must be initialised before we put it in the tree
748 * so that it's not found by another thread before it's
749 * initialised
750 */
751 err = sb_issue_zeroout(inode->i_sb,
752 le32_to_cpu(chain[depth-1].key), count,
753 GFP_NOFS);
754 if (err) {
755 mutex_unlock(&ei->truncate_mutex);
756 goto cleanup;
757 }
758 }
759 *new = true;
760
761 ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
762 mutex_unlock(&ei->truncate_mutex);
763got_it:
764 if (count > blocks_to_boundary)
765 *boundary = true;
766 err = count;
767 /* Clean up and exit */
768 partial = chain + depth - 1; /* the whole chain */
769cleanup:
770 while (partial > chain) {
771 brelse(partial->bh);
772 partial--;
773 }
774 if (err > 0)
775 *bno = le32_to_cpu(chain[depth-1].key);
776 return err;
777}
778
779int ext2_get_block(struct inode *inode, sector_t iblock,
780 struct buffer_head *bh_result, int create)
781{
782 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
783 bool new = false, boundary = false;
784 u32 bno;
785 int ret;
786
787 ret = ext2_get_blocks(inode, iblock, max_blocks, &bno, &new, &boundary,
788 create);
789 if (ret <= 0)
790 return ret;
791
792 map_bh(bh_result, inode->i_sb, bno);
793 bh_result->b_size = (ret << inode->i_blkbits);
794 if (new)
795 set_buffer_new(bh_result);
796 if (boundary)
797 set_buffer_boundary(bh_result);
798 return 0;
799
800}
801
802#ifdef CONFIG_FS_DAX
803static int ext2_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
804 unsigned flags, struct iomap *iomap)
805{
806 unsigned int blkbits = inode->i_blkbits;
807 unsigned long first_block = offset >> blkbits;
808 unsigned long max_blocks = (length + (1 << blkbits) - 1) >> blkbits;
809 struct ext2_sb_info *sbi = EXT2_SB(inode->i_sb);
810 bool new = false, boundary = false;
811 u32 bno;
812 int ret;
813
814 ret = ext2_get_blocks(inode, first_block, max_blocks,
815 &bno, &new, &boundary, flags & IOMAP_WRITE);
816 if (ret < 0)
817 return ret;
818
819 iomap->flags = 0;
820 iomap->bdev = inode->i_sb->s_bdev;
821 iomap->offset = (u64)first_block << blkbits;
822 iomap->dax_dev = sbi->s_daxdev;
823
824 if (ret == 0) {
825 iomap->type = IOMAP_HOLE;
826 iomap->addr = IOMAP_NULL_ADDR;
827 iomap->length = 1 << blkbits;
828 } else {
829 iomap->type = IOMAP_MAPPED;
830 iomap->addr = (u64)bno << blkbits;
831 iomap->length = (u64)ret << blkbits;
832 iomap->flags |= IOMAP_F_MERGED;
833 }
834
835 if (new)
836 iomap->flags |= IOMAP_F_NEW;
837 return 0;
838}
839
840static int
841ext2_iomap_end(struct inode *inode, loff_t offset, loff_t length,
842 ssize_t written, unsigned flags, struct iomap *iomap)
843{
844 if (iomap->type == IOMAP_MAPPED &&
845 written < length &&
846 (flags & IOMAP_WRITE))
847 ext2_write_failed(inode->i_mapping, offset + length);
848 return 0;
849}
850
851const struct iomap_ops ext2_iomap_ops = {
852 .iomap_begin = ext2_iomap_begin,
853 .iomap_end = ext2_iomap_end,
854};
855#else
856/* Define empty ops for !CONFIG_FS_DAX case to avoid ugly ifdefs */
857const struct iomap_ops ext2_iomap_ops;
858#endif /* CONFIG_FS_DAX */
859
860int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
861 u64 start, u64 len)
862{
863 return generic_block_fiemap(inode, fieinfo, start, len,
864 ext2_get_block);
865}
866
867static int ext2_writepage(struct page *page, struct writeback_control *wbc)
868{
869 return block_write_full_page(page, ext2_get_block, wbc);
870}
871
872static int ext2_readpage(struct file *file, struct page *page)
873{
874 return mpage_readpage(page, ext2_get_block);
875}
876
877static int
878ext2_readpages(struct file *file, struct address_space *mapping,
879 struct list_head *pages, unsigned nr_pages)
880{
881 return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
882}
883
884static int
885ext2_write_begin(struct file *file, struct address_space *mapping,
886 loff_t pos, unsigned len, unsigned flags,
887 struct page **pagep, void **fsdata)
888{
889 int ret;
890
891 ret = block_write_begin(mapping, pos, len, flags, pagep,
892 ext2_get_block);
893 if (ret < 0)
894 ext2_write_failed(mapping, pos + len);
895 return ret;
896}
897
898static int ext2_write_end(struct file *file, struct address_space *mapping,
899 loff_t pos, unsigned len, unsigned copied,
900 struct page *page, void *fsdata)
901{
902 int ret;
903
904 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
905 if (ret < len)
906 ext2_write_failed(mapping, pos + len);
907 return ret;
908}
909
910static int
911ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
912 loff_t pos, unsigned len, unsigned flags,
913 struct page **pagep, void **fsdata)
914{
915 int ret;
916
917 ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
918 ext2_get_block);
919 if (ret < 0)
920 ext2_write_failed(mapping, pos + len);
921 return ret;
922}
923
924static int ext2_nobh_writepage(struct page *page,
925 struct writeback_control *wbc)
926{
927 return nobh_writepage(page, ext2_get_block, wbc);
928}
929
930static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
931{
932 return generic_block_bmap(mapping,block,ext2_get_block);
933}
934
935static ssize_t
936ext2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
937{
938 struct file *file = iocb->ki_filp;
939 struct address_space *mapping = file->f_mapping;
940 struct inode *inode = mapping->host;
941 size_t count = iov_iter_count(iter);
942 loff_t offset = iocb->ki_pos;
943 ssize_t ret;
944
945 ret = blockdev_direct_IO(iocb, inode, iter, ext2_get_block);
946 if (ret < 0 && iov_iter_rw(iter) == WRITE)
947 ext2_write_failed(mapping, offset + count);
948 return ret;
949}
950
951static int
952ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
953{
954 return mpage_writepages(mapping, wbc, ext2_get_block);
955}
956
957static int
958ext2_dax_writepages(struct address_space *mapping, struct writeback_control *wbc)
959{
960 return dax_writeback_mapping_range(mapping,
961 mapping->host->i_sb->s_bdev, wbc);
962}
963
964const struct address_space_operations ext2_aops = {
965 .readpage = ext2_readpage,
966 .readpages = ext2_readpages,
967 .writepage = ext2_writepage,
968 .write_begin = ext2_write_begin,
969 .write_end = ext2_write_end,
970 .bmap = ext2_bmap,
971 .direct_IO = ext2_direct_IO,
972 .writepages = ext2_writepages,
973 .migratepage = buffer_migrate_page,
974 .is_partially_uptodate = block_is_partially_uptodate,
975 .error_remove_page = generic_error_remove_page,
976};
977
978const struct address_space_operations ext2_nobh_aops = {
979 .readpage = ext2_readpage,
980 .readpages = ext2_readpages,
981 .writepage = ext2_nobh_writepage,
982 .write_begin = ext2_nobh_write_begin,
983 .write_end = nobh_write_end,
984 .bmap = ext2_bmap,
985 .direct_IO = ext2_direct_IO,
986 .writepages = ext2_writepages,
987 .migratepage = buffer_migrate_page,
988 .error_remove_page = generic_error_remove_page,
989};
990
991static const struct address_space_operations ext2_dax_aops = {
992 .writepages = ext2_dax_writepages,
993 .direct_IO = noop_direct_IO,
994 .set_page_dirty = noop_set_page_dirty,
995 .invalidatepage = noop_invalidatepage,
996};
997
998/*
999 * Probably it should be a library function... search for first non-zero word
1000 * or memcmp with zero_page, whatever is better for particular architecture.
1001 * Linus?
1002 */
1003static inline int all_zeroes(__le32 *p, __le32 *q)
1004{
1005 while (p < q)
1006 if (*p++)
1007 return 0;
1008 return 1;
1009}
1010
1011/**
1012 * ext2_find_shared - find the indirect blocks for partial truncation.
1013 * @inode: inode in question
1014 * @depth: depth of the affected branch
1015 * @offsets: offsets of pointers in that branch (see ext2_block_to_path)
1016 * @chain: place to store the pointers to partial indirect blocks
1017 * @top: place to the (detached) top of branch
1018 *
1019 * This is a helper function used by ext2_truncate().
1020 *
1021 * When we do truncate() we may have to clean the ends of several indirect
1022 * blocks but leave the blocks themselves alive. Block is partially
1023 * truncated if some data below the new i_size is referred from it (and
1024 * it is on the path to the first completely truncated data block, indeed).
1025 * We have to free the top of that path along with everything to the right
1026 * of the path. Since no allocation past the truncation point is possible
1027 * until ext2_truncate() finishes, we may safely do the latter, but top
1028 * of branch may require special attention - pageout below the truncation
1029 * point might try to populate it.
1030 *
1031 * We atomically detach the top of branch from the tree, store the block
1032 * number of its root in *@top, pointers to buffer_heads of partially
1033 * truncated blocks - in @chain[].bh and pointers to their last elements
1034 * that should not be removed - in @chain[].p. Return value is the pointer
1035 * to last filled element of @chain.
1036 *
1037 * The work left to caller to do the actual freeing of subtrees:
1038 * a) free the subtree starting from *@top
1039 * b) free the subtrees whose roots are stored in
1040 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1041 * c) free the subtrees growing from the inode past the @chain[0].p
1042 * (no partially truncated stuff there).
1043 */
1044
1045static Indirect *ext2_find_shared(struct inode *inode,
1046 int depth,
1047 int offsets[4],
1048 Indirect chain[4],
1049 __le32 *top)
1050{
1051 Indirect *partial, *p;
1052 int k, err;
1053
1054 *top = 0;
1055 for (k = depth; k > 1 && !offsets[k-1]; k--)
1056 ;
1057 partial = ext2_get_branch(inode, k, offsets, chain, &err);
1058 if (!partial)
1059 partial = chain + k-1;
1060 /*
1061 * If the branch acquired continuation since we've looked at it -
1062 * fine, it should all survive and (new) top doesn't belong to us.
1063 */
1064 write_lock(&EXT2_I(inode)->i_meta_lock);
1065 if (!partial->key && *partial->p) {
1066 write_unlock(&EXT2_I(inode)->i_meta_lock);
1067 goto no_top;
1068 }
1069 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1070 ;
1071 /*
1072 * OK, we've found the last block that must survive. The rest of our
1073 * branch should be detached before unlocking. However, if that rest
1074 * of branch is all ours and does not grow immediately from the inode
1075 * it's easier to cheat and just decrement partial->p.
1076 */
1077 if (p == chain + k - 1 && p > chain) {
1078 p->p--;
1079 } else {
1080 *top = *p->p;
1081 *p->p = 0;
1082 }
1083 write_unlock(&EXT2_I(inode)->i_meta_lock);
1084
1085 while(partial > p)
1086 {
1087 brelse(partial->bh);
1088 partial--;
1089 }
1090no_top:
1091 return partial;
1092}
1093
1094/**
1095 * ext2_free_data - free a list of data blocks
1096 * @inode: inode we are dealing with
1097 * @p: array of block numbers
1098 * @q: points immediately past the end of array
1099 *
1100 * We are freeing all blocks referred from that array (numbers are
1101 * stored as little-endian 32-bit) and updating @inode->i_blocks
1102 * appropriately.
1103 */
1104static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1105{
1106 unsigned long block_to_free = 0, count = 0;
1107 unsigned long nr;
1108
1109 for ( ; p < q ; p++) {
1110 nr = le32_to_cpu(*p);
1111 if (nr) {
1112 *p = 0;
1113 /* accumulate blocks to free if they're contiguous */
1114 if (count == 0)
1115 goto free_this;
1116 else if (block_to_free == nr - count)
1117 count++;
1118 else {
1119 ext2_free_blocks (inode, block_to_free, count);
1120 mark_inode_dirty(inode);
1121 free_this:
1122 block_to_free = nr;
1123 count = 1;
1124 }
1125 }
1126 }
1127 if (count > 0) {
1128 ext2_free_blocks (inode, block_to_free, count);
1129 mark_inode_dirty(inode);
1130 }
1131}
1132
1133/**
1134 * ext2_free_branches - free an array of branches
1135 * @inode: inode we are dealing with
1136 * @p: array of block numbers
1137 * @q: pointer immediately past the end of array
1138 * @depth: depth of the branches to free
1139 *
1140 * We are freeing all blocks referred from these branches (numbers are
1141 * stored as little-endian 32-bit) and updating @inode->i_blocks
1142 * appropriately.
1143 */
1144static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1145{
1146 struct buffer_head * bh;
1147 unsigned long nr;
1148
1149 if (depth--) {
1150 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1151 for ( ; p < q ; p++) {
1152 nr = le32_to_cpu(*p);
1153 if (!nr)
1154 continue;
1155 *p = 0;
1156 bh = sb_bread(inode->i_sb, nr);
1157 /*
1158 * A read failure? Report error and clear slot
1159 * (should be rare).
1160 */
1161 if (!bh) {
1162 ext2_error(inode->i_sb, "ext2_free_branches",
1163 "Read failure, inode=%ld, block=%ld",
1164 inode->i_ino, nr);
1165 continue;
1166 }
1167 ext2_free_branches(inode,
1168 (__le32*)bh->b_data,
1169 (__le32*)bh->b_data + addr_per_block,
1170 depth);
1171 bforget(bh);
1172 ext2_free_blocks(inode, nr, 1);
1173 mark_inode_dirty(inode);
1174 }
1175 } else
1176 ext2_free_data(inode, p, q);
1177}
1178
1179/* dax_sem must be held when calling this function */
1180static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1181{
1182 __le32 *i_data = EXT2_I(inode)->i_data;
1183 struct ext2_inode_info *ei = EXT2_I(inode);
1184 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1185 int offsets[4];
1186 Indirect chain[4];
1187 Indirect *partial;
1188 __le32 nr = 0;
1189 int n;
1190 long iblock;
1191 unsigned blocksize;
1192 blocksize = inode->i_sb->s_blocksize;
1193 iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1194
1195#ifdef CONFIG_FS_DAX
1196 WARN_ON(!rwsem_is_locked(&ei->dax_sem));
1197#endif
1198
1199 n = ext2_block_to_path(inode, iblock, offsets, NULL);
1200 if (n == 0)
1201 return;
1202
1203 /*
1204 * From here we block out all ext2_get_block() callers who want to
1205 * modify the block allocation tree.
1206 */
1207 mutex_lock(&ei->truncate_mutex);
1208
1209 if (n == 1) {
1210 ext2_free_data(inode, i_data+offsets[0],
1211 i_data + EXT2_NDIR_BLOCKS);
1212 goto do_indirects;
1213 }
1214
1215 partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1216 /* Kill the top of shared branch (already detached) */
1217 if (nr) {
1218 if (partial == chain)
1219 mark_inode_dirty(inode);
1220 else
1221 mark_buffer_dirty_inode(partial->bh, inode);
1222 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1223 }
1224 /* Clear the ends of indirect blocks on the shared branch */
1225 while (partial > chain) {
1226 ext2_free_branches(inode,
1227 partial->p + 1,
1228 (__le32*)partial->bh->b_data+addr_per_block,
1229 (chain+n-1) - partial);
1230 mark_buffer_dirty_inode(partial->bh, inode);
1231 brelse (partial->bh);
1232 partial--;
1233 }
1234do_indirects:
1235 /* Kill the remaining (whole) subtrees */
1236 switch (offsets[0]) {
1237 default:
1238 nr = i_data[EXT2_IND_BLOCK];
1239 if (nr) {
1240 i_data[EXT2_IND_BLOCK] = 0;
1241 mark_inode_dirty(inode);
1242 ext2_free_branches(inode, &nr, &nr+1, 1);
1243 }
1244 /* fall through */
1245 case EXT2_IND_BLOCK:
1246 nr = i_data[EXT2_DIND_BLOCK];
1247 if (nr) {
1248 i_data[EXT2_DIND_BLOCK] = 0;
1249 mark_inode_dirty(inode);
1250 ext2_free_branches(inode, &nr, &nr+1, 2);
1251 }
1252 /* fall through */
1253 case EXT2_DIND_BLOCK:
1254 nr = i_data[EXT2_TIND_BLOCK];
1255 if (nr) {
1256 i_data[EXT2_TIND_BLOCK] = 0;
1257 mark_inode_dirty(inode);
1258 ext2_free_branches(inode, &nr, &nr+1, 3);
1259 }
1260 case EXT2_TIND_BLOCK:
1261 ;
1262 }
1263
1264 ext2_discard_reservation(inode);
1265
1266 mutex_unlock(&ei->truncate_mutex);
1267}
1268
1269static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1270{
1271 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1272 S_ISLNK(inode->i_mode)))
1273 return;
1274 if (ext2_inode_is_fast_symlink(inode))
1275 return;
1276
1277 dax_sem_down_write(EXT2_I(inode));
1278 __ext2_truncate_blocks(inode, offset);
1279 dax_sem_up_write(EXT2_I(inode));
1280}
1281
1282static int ext2_setsize(struct inode *inode, loff_t newsize)
1283{
1284 int error;
1285
1286 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1287 S_ISLNK(inode->i_mode)))
1288 return -EINVAL;
1289 if (ext2_inode_is_fast_symlink(inode))
1290 return -EINVAL;
1291 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1292 return -EPERM;
1293
1294 inode_dio_wait(inode);
1295
1296 if (IS_DAX(inode)) {
1297 error = iomap_zero_range(inode, newsize,
1298 PAGE_ALIGN(newsize) - newsize, NULL,
1299 &ext2_iomap_ops);
1300 } else if (test_opt(inode->i_sb, NOBH))
1301 error = nobh_truncate_page(inode->i_mapping,
1302 newsize, ext2_get_block);
1303 else
1304 error = block_truncate_page(inode->i_mapping,
1305 newsize, ext2_get_block);
1306 if (error)
1307 return error;
1308
1309 dax_sem_down_write(EXT2_I(inode));
1310 truncate_setsize(inode, newsize);
1311 __ext2_truncate_blocks(inode, newsize);
1312 dax_sem_up_write(EXT2_I(inode));
1313
1314 inode->i_mtime = inode->i_ctime = current_time(inode);
1315 if (inode_needs_sync(inode)) {
1316 sync_mapping_buffers(inode->i_mapping);
1317 sync_inode_metadata(inode, 1);
1318 } else {
1319 mark_inode_dirty(inode);
1320 }
1321
1322 return 0;
1323}
1324
1325static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1326 struct buffer_head **p)
1327{
1328 struct buffer_head * bh;
1329 unsigned long block_group;
1330 unsigned long block;
1331 unsigned long offset;
1332 struct ext2_group_desc * gdp;
1333
1334 *p = NULL;
1335 if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1336 ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1337 goto Einval;
1338
1339 block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1340 gdp = ext2_get_group_desc(sb, block_group, NULL);
1341 if (!gdp)
1342 goto Egdp;
1343 /*
1344 * Figure out the offset within the block group inode table
1345 */
1346 offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1347 block = le32_to_cpu(gdp->bg_inode_table) +
1348 (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1349 if (!(bh = sb_bread(sb, block)))
1350 goto Eio;
1351
1352 *p = bh;
1353 offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1354 return (struct ext2_inode *) (bh->b_data + offset);
1355
1356Einval:
1357 ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1358 (unsigned long) ino);
1359 return ERR_PTR(-EINVAL);
1360Eio:
1361 ext2_error(sb, "ext2_get_inode",
1362 "unable to read inode block - inode=%lu, block=%lu",
1363 (unsigned long) ino, block);
1364Egdp:
1365 return ERR_PTR(-EIO);
1366}
1367
1368void ext2_set_inode_flags(struct inode *inode)
1369{
1370 unsigned int flags = EXT2_I(inode)->i_flags;
1371
1372 inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME |
1373 S_DIRSYNC | S_DAX);
1374 if (flags & EXT2_SYNC_FL)
1375 inode->i_flags |= S_SYNC;
1376 if (flags & EXT2_APPEND_FL)
1377 inode->i_flags |= S_APPEND;
1378 if (flags & EXT2_IMMUTABLE_FL)
1379 inode->i_flags |= S_IMMUTABLE;
1380 if (flags & EXT2_NOATIME_FL)
1381 inode->i_flags |= S_NOATIME;
1382 if (flags & EXT2_DIRSYNC_FL)
1383 inode->i_flags |= S_DIRSYNC;
1384 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
1385 inode->i_flags |= S_DAX;
1386}
1387
1388void ext2_set_file_ops(struct inode *inode)
1389{
1390 inode->i_op = &ext2_file_inode_operations;
1391 inode->i_fop = &ext2_file_operations;
1392 if (IS_DAX(inode))
1393 inode->i_mapping->a_ops = &ext2_dax_aops;
1394 else if (test_opt(inode->i_sb, NOBH))
1395 inode->i_mapping->a_ops = &ext2_nobh_aops;
1396 else
1397 inode->i_mapping->a_ops = &ext2_aops;
1398}
1399
1400struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1401{
1402 struct ext2_inode_info *ei;
1403 struct buffer_head * bh = NULL;
1404 struct ext2_inode *raw_inode;
1405 struct inode *inode;
1406 long ret = -EIO;
1407 int n;
1408 uid_t i_uid;
1409 gid_t i_gid;
1410
1411 inode = iget_locked(sb, ino);
1412 if (!inode)
1413 return ERR_PTR(-ENOMEM);
1414 if (!(inode->i_state & I_NEW))
1415 return inode;
1416
1417 ei = EXT2_I(inode);
1418 ei->i_block_alloc_info = NULL;
1419
1420 raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1421 if (IS_ERR(raw_inode)) {
1422 ret = PTR_ERR(raw_inode);
1423 goto bad_inode;
1424 }
1425
1426 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1427 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1428 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1429 if (!(test_opt (inode->i_sb, NO_UID32))) {
1430 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1431 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1432 }
1433 i_uid_write(inode, i_uid);
1434 i_gid_write(inode, i_gid);
1435 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1436 inode->i_size = le32_to_cpu(raw_inode->i_size);
1437 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1438 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1439 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1440 inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1441 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1442 /* We now have enough fields to check if the inode was active or not.
1443 * This is needed because nfsd might try to access dead inodes
1444 * the test is that same one that e2fsck uses
1445 * NeilBrown 1999oct15
1446 */
1447 if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1448 /* this inode is deleted */
1449 ret = -ESTALE;
1450 goto bad_inode;
1451 }
1452 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1453 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1454 ext2_set_inode_flags(inode);
1455 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1456 ei->i_frag_no = raw_inode->i_frag;
1457 ei->i_frag_size = raw_inode->i_fsize;
1458 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1459 ei->i_dir_acl = 0;
1460
1461 if (ei->i_file_acl &&
1462 !ext2_data_block_valid(EXT2_SB(sb), ei->i_file_acl, 1)) {
1463 ext2_error(sb, "ext2_iget", "bad extended attribute block %u",
1464 ei->i_file_acl);
1465 ret = -EFSCORRUPTED;
1466 goto bad_inode;
1467 }
1468
1469 if (S_ISREG(inode->i_mode))
1470 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1471 else
1472 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1473 if (i_size_read(inode) < 0) {
1474 ret = -EFSCORRUPTED;
1475 goto bad_inode;
1476 }
1477 ei->i_dtime = 0;
1478 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1479 ei->i_state = 0;
1480 ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1481 ei->i_dir_start_lookup = 0;
1482
1483 /*
1484 * NOTE! The in-memory inode i_data array is in little-endian order
1485 * even on big-endian machines: we do NOT byteswap the block numbers!
1486 */
1487 for (n = 0; n < EXT2_N_BLOCKS; n++)
1488 ei->i_data[n] = raw_inode->i_block[n];
1489
1490 if (S_ISREG(inode->i_mode)) {
1491 ext2_set_file_ops(inode);
1492 } else if (S_ISDIR(inode->i_mode)) {
1493 inode->i_op = &ext2_dir_inode_operations;
1494 inode->i_fop = &ext2_dir_operations;
1495 if (test_opt(inode->i_sb, NOBH))
1496 inode->i_mapping->a_ops = &ext2_nobh_aops;
1497 else
1498 inode->i_mapping->a_ops = &ext2_aops;
1499 } else if (S_ISLNK(inode->i_mode)) {
1500 if (ext2_inode_is_fast_symlink(inode)) {
1501 inode->i_link = (char *)ei->i_data;
1502 inode->i_op = &ext2_fast_symlink_inode_operations;
1503 nd_terminate_link(ei->i_data, inode->i_size,
1504 sizeof(ei->i_data) - 1);
1505 } else {
1506 inode->i_op = &ext2_symlink_inode_operations;
1507 inode_nohighmem(inode);
1508 if (test_opt(inode->i_sb, NOBH))
1509 inode->i_mapping->a_ops = &ext2_nobh_aops;
1510 else
1511 inode->i_mapping->a_ops = &ext2_aops;
1512 }
1513 } else {
1514 inode->i_op = &ext2_special_inode_operations;
1515 if (raw_inode->i_block[0])
1516 init_special_inode(inode, inode->i_mode,
1517 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1518 else
1519 init_special_inode(inode, inode->i_mode,
1520 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1521 }
1522 brelse (bh);
1523 unlock_new_inode(inode);
1524 return inode;
1525
1526bad_inode:
1527 brelse(bh);
1528 iget_failed(inode);
1529 return ERR_PTR(ret);
1530}
1531
1532static int __ext2_write_inode(struct inode *inode, int do_sync)
1533{
1534 struct ext2_inode_info *ei = EXT2_I(inode);
1535 struct super_block *sb = inode->i_sb;
1536 ino_t ino = inode->i_ino;
1537 uid_t uid = i_uid_read(inode);
1538 gid_t gid = i_gid_read(inode);
1539 struct buffer_head * bh;
1540 struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1541 int n;
1542 int err = 0;
1543
1544 if (IS_ERR(raw_inode))
1545 return -EIO;
1546
1547 /* For fields not not tracking in the in-memory inode,
1548 * initialise them to zero for new inodes. */
1549 if (ei->i_state & EXT2_STATE_NEW)
1550 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1551
1552 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1553 if (!(test_opt(sb, NO_UID32))) {
1554 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1555 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1556/*
1557 * Fix up interoperability with old kernels. Otherwise, old inodes get
1558 * re-used with the upper 16 bits of the uid/gid intact
1559 */
1560 if (!ei->i_dtime) {
1561 raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1562 raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1563 } else {
1564 raw_inode->i_uid_high = 0;
1565 raw_inode->i_gid_high = 0;
1566 }
1567 } else {
1568 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1569 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1570 raw_inode->i_uid_high = 0;
1571 raw_inode->i_gid_high = 0;
1572 }
1573 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1574 raw_inode->i_size = cpu_to_le32(inode->i_size);
1575 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1576 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1577 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1578
1579 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1580 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1581 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1582 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1583 raw_inode->i_frag = ei->i_frag_no;
1584 raw_inode->i_fsize = ei->i_frag_size;
1585 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1586 if (!S_ISREG(inode->i_mode))
1587 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1588 else {
1589 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1590 if (inode->i_size > 0x7fffffffULL) {
1591 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1592 EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1593 EXT2_SB(sb)->s_es->s_rev_level ==
1594 cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1595 /* If this is the first large file
1596 * created, add a flag to the superblock.
1597 */
1598 spin_lock(&EXT2_SB(sb)->s_lock);
1599 ext2_update_dynamic_rev(sb);
1600 EXT2_SET_RO_COMPAT_FEATURE(sb,
1601 EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1602 spin_unlock(&EXT2_SB(sb)->s_lock);
1603 ext2_sync_super(sb, EXT2_SB(sb)->s_es, 1);
1604 }
1605 }
1606 }
1607
1608 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1609 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1610 if (old_valid_dev(inode->i_rdev)) {
1611 raw_inode->i_block[0] =
1612 cpu_to_le32(old_encode_dev(inode->i_rdev));
1613 raw_inode->i_block[1] = 0;
1614 } else {
1615 raw_inode->i_block[0] = 0;
1616 raw_inode->i_block[1] =
1617 cpu_to_le32(new_encode_dev(inode->i_rdev));
1618 raw_inode->i_block[2] = 0;
1619 }
1620 } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1621 raw_inode->i_block[n] = ei->i_data[n];
1622 mark_buffer_dirty(bh);
1623 if (do_sync) {
1624 sync_dirty_buffer(bh);
1625 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1626 printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1627 sb->s_id, (unsigned long) ino);
1628 err = -EIO;
1629 }
1630 }
1631 ei->i_state &= ~EXT2_STATE_NEW;
1632 brelse (bh);
1633 return err;
1634}
1635
1636int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1637{
1638 return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1639}
1640
1641int ext2_getattr(const struct path *path, struct kstat *stat,
1642 u32 request_mask, unsigned int query_flags)
1643{
1644 struct inode *inode = d_inode(path->dentry);
1645 struct ext2_inode_info *ei = EXT2_I(inode);
1646 unsigned int flags;
1647
1648 flags = ei->i_flags & EXT2_FL_USER_VISIBLE;
1649 if (flags & EXT2_APPEND_FL)
1650 stat->attributes |= STATX_ATTR_APPEND;
1651 if (flags & EXT2_COMPR_FL)
1652 stat->attributes |= STATX_ATTR_COMPRESSED;
1653 if (flags & EXT2_IMMUTABLE_FL)
1654 stat->attributes |= STATX_ATTR_IMMUTABLE;
1655 if (flags & EXT2_NODUMP_FL)
1656 stat->attributes |= STATX_ATTR_NODUMP;
1657 stat->attributes_mask |= (STATX_ATTR_APPEND |
1658 STATX_ATTR_COMPRESSED |
1659 STATX_ATTR_ENCRYPTED |
1660 STATX_ATTR_IMMUTABLE |
1661 STATX_ATTR_NODUMP);
1662
1663 generic_fillattr(inode, stat);
1664 return 0;
1665}
1666
1667int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1668{
1669 struct inode *inode = d_inode(dentry);
1670 int error;
1671
1672 error = setattr_prepare(dentry, iattr);
1673 if (error)
1674 return error;
1675
1676 if (is_quota_modification(inode, iattr)) {
1677 error = dquot_initialize(inode);
1678 if (error)
1679 return error;
1680 }
1681 if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
1682 (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
1683 error = dquot_transfer(inode, iattr);
1684 if (error)
1685 return error;
1686 }
1687 if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1688 error = ext2_setsize(inode, iattr->ia_size);
1689 if (error)
1690 return error;
1691 }
1692 setattr_copy(inode, iattr);
1693 if (iattr->ia_valid & ATTR_MODE)
1694 error = posix_acl_chmod(inode, inode->i_mode);
1695 mark_inode_dirty(inode);
1696
1697 return error;
1698}
1/*
2 * linux/fs/ext2/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@dcs.ed.ac.uk), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
23 */
24
25#include <linux/time.h>
26#include <linux/highuid.h>
27#include <linux/pagemap.h>
28#include <linux/quotaops.h>
29#include <linux/module.h>
30#include <linux/writeback.h>
31#include <linux/buffer_head.h>
32#include <linux/mpage.h>
33#include <linux/fiemap.h>
34#include <linux/namei.h>
35#include "ext2.h"
36#include "acl.h"
37#include "xip.h"
38
39MODULE_AUTHOR("Remy Card and others");
40MODULE_DESCRIPTION("Second Extended Filesystem");
41MODULE_LICENSE("GPL");
42
43static int __ext2_write_inode(struct inode *inode, int do_sync);
44
45/*
46 * Test whether an inode is a fast symlink.
47 */
48static inline int ext2_inode_is_fast_symlink(struct inode *inode)
49{
50 int ea_blocks = EXT2_I(inode)->i_file_acl ?
51 (inode->i_sb->s_blocksize >> 9) : 0;
52
53 return (S_ISLNK(inode->i_mode) &&
54 inode->i_blocks - ea_blocks == 0);
55}
56
57static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
58
59static void ext2_write_failed(struct address_space *mapping, loff_t to)
60{
61 struct inode *inode = mapping->host;
62
63 if (to > inode->i_size) {
64 truncate_pagecache(inode, to, inode->i_size);
65 ext2_truncate_blocks(inode, inode->i_size);
66 }
67}
68
69/*
70 * Called at the last iput() if i_nlink is zero.
71 */
72void ext2_evict_inode(struct inode * inode)
73{
74 struct ext2_block_alloc_info *rsv;
75 int want_delete = 0;
76
77 if (!inode->i_nlink && !is_bad_inode(inode)) {
78 want_delete = 1;
79 dquot_initialize(inode);
80 } else {
81 dquot_drop(inode);
82 }
83
84 truncate_inode_pages(&inode->i_data, 0);
85
86 if (want_delete) {
87 /* set dtime */
88 EXT2_I(inode)->i_dtime = get_seconds();
89 mark_inode_dirty(inode);
90 __ext2_write_inode(inode, inode_needs_sync(inode));
91 /* truncate to 0 */
92 inode->i_size = 0;
93 if (inode->i_blocks)
94 ext2_truncate_blocks(inode, 0);
95 }
96
97 invalidate_inode_buffers(inode);
98 end_writeback(inode);
99
100 ext2_discard_reservation(inode);
101 rsv = EXT2_I(inode)->i_block_alloc_info;
102 EXT2_I(inode)->i_block_alloc_info = NULL;
103 if (unlikely(rsv))
104 kfree(rsv);
105
106 if (want_delete)
107 ext2_free_inode(inode);
108}
109
110typedef struct {
111 __le32 *p;
112 __le32 key;
113 struct buffer_head *bh;
114} Indirect;
115
116static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
117{
118 p->key = *(p->p = v);
119 p->bh = bh;
120}
121
122static inline int verify_chain(Indirect *from, Indirect *to)
123{
124 while (from <= to && from->key == *from->p)
125 from++;
126 return (from > to);
127}
128
129/**
130 * ext2_block_to_path - parse the block number into array of offsets
131 * @inode: inode in question (we are only interested in its superblock)
132 * @i_block: block number to be parsed
133 * @offsets: array to store the offsets in
134 * @boundary: set this non-zero if the referred-to block is likely to be
135 * followed (on disk) by an indirect block.
136 * To store the locations of file's data ext2 uses a data structure common
137 * for UNIX filesystems - tree of pointers anchored in the inode, with
138 * data blocks at leaves and indirect blocks in intermediate nodes.
139 * This function translates the block number into path in that tree -
140 * return value is the path length and @offsets[n] is the offset of
141 * pointer to (n+1)th node in the nth one. If @block is out of range
142 * (negative or too large) warning is printed and zero returned.
143 *
144 * Note: function doesn't find node addresses, so no IO is needed. All
145 * we need to know is the capacity of indirect blocks (taken from the
146 * inode->i_sb).
147 */
148
149/*
150 * Portability note: the last comparison (check that we fit into triple
151 * indirect block) is spelled differently, because otherwise on an
152 * architecture with 32-bit longs and 8Kb pages we might get into trouble
153 * if our filesystem had 8Kb blocks. We might use long long, but that would
154 * kill us on x86. Oh, well, at least the sign propagation does not matter -
155 * i_block would have to be negative in the very beginning, so we would not
156 * get there at all.
157 */
158
159static int ext2_block_to_path(struct inode *inode,
160 long i_block, int offsets[4], int *boundary)
161{
162 int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
163 int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
164 const long direct_blocks = EXT2_NDIR_BLOCKS,
165 indirect_blocks = ptrs,
166 double_blocks = (1 << (ptrs_bits * 2));
167 int n = 0;
168 int final = 0;
169
170 if (i_block < 0) {
171 ext2_msg(inode->i_sb, KERN_WARNING,
172 "warning: %s: block < 0", __func__);
173 } else if (i_block < direct_blocks) {
174 offsets[n++] = i_block;
175 final = direct_blocks;
176 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
177 offsets[n++] = EXT2_IND_BLOCK;
178 offsets[n++] = i_block;
179 final = ptrs;
180 } else if ((i_block -= indirect_blocks) < double_blocks) {
181 offsets[n++] = EXT2_DIND_BLOCK;
182 offsets[n++] = i_block >> ptrs_bits;
183 offsets[n++] = i_block & (ptrs - 1);
184 final = ptrs;
185 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
186 offsets[n++] = EXT2_TIND_BLOCK;
187 offsets[n++] = i_block >> (ptrs_bits * 2);
188 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
189 offsets[n++] = i_block & (ptrs - 1);
190 final = ptrs;
191 } else {
192 ext2_msg(inode->i_sb, KERN_WARNING,
193 "warning: %s: block is too big", __func__);
194 }
195 if (boundary)
196 *boundary = final - 1 - (i_block & (ptrs - 1));
197
198 return n;
199}
200
201/**
202 * ext2_get_branch - read the chain of indirect blocks leading to data
203 * @inode: inode in question
204 * @depth: depth of the chain (1 - direct pointer, etc.)
205 * @offsets: offsets of pointers in inode/indirect blocks
206 * @chain: place to store the result
207 * @err: here we store the error value
208 *
209 * Function fills the array of triples <key, p, bh> and returns %NULL
210 * if everything went OK or the pointer to the last filled triple
211 * (incomplete one) otherwise. Upon the return chain[i].key contains
212 * the number of (i+1)-th block in the chain (as it is stored in memory,
213 * i.e. little-endian 32-bit), chain[i].p contains the address of that
214 * number (it points into struct inode for i==0 and into the bh->b_data
215 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
216 * block for i>0 and NULL for i==0. In other words, it holds the block
217 * numbers of the chain, addresses they were taken from (and where we can
218 * verify that chain did not change) and buffer_heads hosting these
219 * numbers.
220 *
221 * Function stops when it stumbles upon zero pointer (absent block)
222 * (pointer to last triple returned, *@err == 0)
223 * or when it gets an IO error reading an indirect block
224 * (ditto, *@err == -EIO)
225 * or when it notices that chain had been changed while it was reading
226 * (ditto, *@err == -EAGAIN)
227 * or when it reads all @depth-1 indirect blocks successfully and finds
228 * the whole chain, all way to the data (returns %NULL, *err == 0).
229 */
230static Indirect *ext2_get_branch(struct inode *inode,
231 int depth,
232 int *offsets,
233 Indirect chain[4],
234 int *err)
235{
236 struct super_block *sb = inode->i_sb;
237 Indirect *p = chain;
238 struct buffer_head *bh;
239
240 *err = 0;
241 /* i_data is not going away, no lock needed */
242 add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
243 if (!p->key)
244 goto no_block;
245 while (--depth) {
246 bh = sb_bread(sb, le32_to_cpu(p->key));
247 if (!bh)
248 goto failure;
249 read_lock(&EXT2_I(inode)->i_meta_lock);
250 if (!verify_chain(chain, p))
251 goto changed;
252 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
253 read_unlock(&EXT2_I(inode)->i_meta_lock);
254 if (!p->key)
255 goto no_block;
256 }
257 return NULL;
258
259changed:
260 read_unlock(&EXT2_I(inode)->i_meta_lock);
261 brelse(bh);
262 *err = -EAGAIN;
263 goto no_block;
264failure:
265 *err = -EIO;
266no_block:
267 return p;
268}
269
270/**
271 * ext2_find_near - find a place for allocation with sufficient locality
272 * @inode: owner
273 * @ind: descriptor of indirect block.
274 *
275 * This function returns the preferred place for block allocation.
276 * It is used when heuristic for sequential allocation fails.
277 * Rules are:
278 * + if there is a block to the left of our position - allocate near it.
279 * + if pointer will live in indirect block - allocate near that block.
280 * + if pointer will live in inode - allocate in the same cylinder group.
281 *
282 * In the latter case we colour the starting block by the callers PID to
283 * prevent it from clashing with concurrent allocations for a different inode
284 * in the same block group. The PID is used here so that functionally related
285 * files will be close-by on-disk.
286 *
287 * Caller must make sure that @ind is valid and will stay that way.
288 */
289
290static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
291{
292 struct ext2_inode_info *ei = EXT2_I(inode);
293 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
294 __le32 *p;
295 ext2_fsblk_t bg_start;
296 ext2_fsblk_t colour;
297
298 /* Try to find previous block */
299 for (p = ind->p - 1; p >= start; p--)
300 if (*p)
301 return le32_to_cpu(*p);
302
303 /* No such thing, so let's try location of indirect block */
304 if (ind->bh)
305 return ind->bh->b_blocknr;
306
307 /*
308 * It is going to be referred from inode itself? OK, just put it into
309 * the same cylinder group then.
310 */
311 bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
312 colour = (current->pid % 16) *
313 (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
314 return bg_start + colour;
315}
316
317/**
318 * ext2_find_goal - find a preferred place for allocation.
319 * @inode: owner
320 * @block: block we want
321 * @partial: pointer to the last triple within a chain
322 *
323 * Returns preferred place for a block (the goal).
324 */
325
326static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
327 Indirect *partial)
328{
329 struct ext2_block_alloc_info *block_i;
330
331 block_i = EXT2_I(inode)->i_block_alloc_info;
332
333 /*
334 * try the heuristic for sequential allocation,
335 * failing that at least try to get decent locality.
336 */
337 if (block_i && (block == block_i->last_alloc_logical_block + 1)
338 && (block_i->last_alloc_physical_block != 0)) {
339 return block_i->last_alloc_physical_block + 1;
340 }
341
342 return ext2_find_near(inode, partial);
343}
344
345/**
346 * ext2_blks_to_allocate: Look up the block map and count the number
347 * of direct blocks need to be allocated for the given branch.
348 *
349 * @branch: chain of indirect blocks
350 * @k: number of blocks need for indirect blocks
351 * @blks: number of data blocks to be mapped.
352 * @blocks_to_boundary: the offset in the indirect block
353 *
354 * return the total number of blocks to be allocate, including the
355 * direct and indirect blocks.
356 */
357static int
358ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
359 int blocks_to_boundary)
360{
361 unsigned long count = 0;
362
363 /*
364 * Simple case, [t,d]Indirect block(s) has not allocated yet
365 * then it's clear blocks on that path have not allocated
366 */
367 if (k > 0) {
368 /* right now don't hanel cross boundary allocation */
369 if (blks < blocks_to_boundary + 1)
370 count += blks;
371 else
372 count += blocks_to_boundary + 1;
373 return count;
374 }
375
376 count++;
377 while (count < blks && count <= blocks_to_boundary
378 && le32_to_cpu(*(branch[0].p + count)) == 0) {
379 count++;
380 }
381 return count;
382}
383
384/**
385 * ext2_alloc_blocks: multiple allocate blocks needed for a branch
386 * @indirect_blks: the number of blocks need to allocate for indirect
387 * blocks
388 *
389 * @new_blocks: on return it will store the new block numbers for
390 * the indirect blocks(if needed) and the first direct block,
391 * @blks: on return it will store the total number of allocated
392 * direct blocks
393 */
394static int ext2_alloc_blocks(struct inode *inode,
395 ext2_fsblk_t goal, int indirect_blks, int blks,
396 ext2_fsblk_t new_blocks[4], int *err)
397{
398 int target, i;
399 unsigned long count = 0;
400 int index = 0;
401 ext2_fsblk_t current_block = 0;
402 int ret = 0;
403
404 /*
405 * Here we try to allocate the requested multiple blocks at once,
406 * on a best-effort basis.
407 * To build a branch, we should allocate blocks for
408 * the indirect blocks(if not allocated yet), and at least
409 * the first direct block of this branch. That's the
410 * minimum number of blocks need to allocate(required)
411 */
412 target = blks + indirect_blks;
413
414 while (1) {
415 count = target;
416 /* allocating blocks for indirect blocks and direct blocks */
417 current_block = ext2_new_blocks(inode,goal,&count,err);
418 if (*err)
419 goto failed_out;
420
421 target -= count;
422 /* allocate blocks for indirect blocks */
423 while (index < indirect_blks && count) {
424 new_blocks[index++] = current_block++;
425 count--;
426 }
427
428 if (count > 0)
429 break;
430 }
431
432 /* save the new block number for the first direct block */
433 new_blocks[index] = current_block;
434
435 /* total number of blocks allocated for direct blocks */
436 ret = count;
437 *err = 0;
438 return ret;
439failed_out:
440 for (i = 0; i <index; i++)
441 ext2_free_blocks(inode, new_blocks[i], 1);
442 if (index)
443 mark_inode_dirty(inode);
444 return ret;
445}
446
447/**
448 * ext2_alloc_branch - allocate and set up a chain of blocks.
449 * @inode: owner
450 * @num: depth of the chain (number of blocks to allocate)
451 * @offsets: offsets (in the blocks) to store the pointers to next.
452 * @branch: place to store the chain in.
453 *
454 * This function allocates @num blocks, zeroes out all but the last one,
455 * links them into chain and (if we are synchronous) writes them to disk.
456 * In other words, it prepares a branch that can be spliced onto the
457 * inode. It stores the information about that chain in the branch[], in
458 * the same format as ext2_get_branch() would do. We are calling it after
459 * we had read the existing part of chain and partial points to the last
460 * triple of that (one with zero ->key). Upon the exit we have the same
461 * picture as after the successful ext2_get_block(), except that in one
462 * place chain is disconnected - *branch->p is still zero (we did not
463 * set the last link), but branch->key contains the number that should
464 * be placed into *branch->p to fill that gap.
465 *
466 * If allocation fails we free all blocks we've allocated (and forget
467 * their buffer_heads) and return the error value the from failed
468 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
469 * as described above and return 0.
470 */
471
472static int ext2_alloc_branch(struct inode *inode,
473 int indirect_blks, int *blks, ext2_fsblk_t goal,
474 int *offsets, Indirect *branch)
475{
476 int blocksize = inode->i_sb->s_blocksize;
477 int i, n = 0;
478 int err = 0;
479 struct buffer_head *bh;
480 int num;
481 ext2_fsblk_t new_blocks[4];
482 ext2_fsblk_t current_block;
483
484 num = ext2_alloc_blocks(inode, goal, indirect_blks,
485 *blks, new_blocks, &err);
486 if (err)
487 return err;
488
489 branch[0].key = cpu_to_le32(new_blocks[0]);
490 /*
491 * metadata blocks and data blocks are allocated.
492 */
493 for (n = 1; n <= indirect_blks; n++) {
494 /*
495 * Get buffer_head for parent block, zero it out
496 * and set the pointer to new one, then send
497 * parent to disk.
498 */
499 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
500 branch[n].bh = bh;
501 lock_buffer(bh);
502 memset(bh->b_data, 0, blocksize);
503 branch[n].p = (__le32 *) bh->b_data + offsets[n];
504 branch[n].key = cpu_to_le32(new_blocks[n]);
505 *branch[n].p = branch[n].key;
506 if ( n == indirect_blks) {
507 current_block = new_blocks[n];
508 /*
509 * End of chain, update the last new metablock of
510 * the chain to point to the new allocated
511 * data blocks numbers
512 */
513 for (i=1; i < num; i++)
514 *(branch[n].p + i) = cpu_to_le32(++current_block);
515 }
516 set_buffer_uptodate(bh);
517 unlock_buffer(bh);
518 mark_buffer_dirty_inode(bh, inode);
519 /* We used to sync bh here if IS_SYNC(inode).
520 * But we now rely upon generic_write_sync()
521 * and b_inode_buffers. But not for directories.
522 */
523 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
524 sync_dirty_buffer(bh);
525 }
526 *blks = num;
527 return err;
528}
529
530/**
531 * ext2_splice_branch - splice the allocated branch onto inode.
532 * @inode: owner
533 * @block: (logical) number of block we are adding
534 * @where: location of missing link
535 * @num: number of indirect blocks we are adding
536 * @blks: number of direct blocks we are adding
537 *
538 * This function fills the missing link and does all housekeeping needed in
539 * inode (->i_blocks, etc.). In case of success we end up with the full
540 * chain to new block and return 0.
541 */
542static void ext2_splice_branch(struct inode *inode,
543 long block, Indirect *where, int num, int blks)
544{
545 int i;
546 struct ext2_block_alloc_info *block_i;
547 ext2_fsblk_t current_block;
548
549 block_i = EXT2_I(inode)->i_block_alloc_info;
550
551 /* XXX LOCKING probably should have i_meta_lock ?*/
552 /* That's it */
553
554 *where->p = where->key;
555
556 /*
557 * Update the host buffer_head or inode to point to more just allocated
558 * direct blocks blocks
559 */
560 if (num == 0 && blks > 1) {
561 current_block = le32_to_cpu(where->key) + 1;
562 for (i = 1; i < blks; i++)
563 *(where->p + i ) = cpu_to_le32(current_block++);
564 }
565
566 /*
567 * update the most recently allocated logical & physical block
568 * in i_block_alloc_info, to assist find the proper goal block for next
569 * allocation
570 */
571 if (block_i) {
572 block_i->last_alloc_logical_block = block + blks - 1;
573 block_i->last_alloc_physical_block =
574 le32_to_cpu(where[num].key) + blks - 1;
575 }
576
577 /* We are done with atomic stuff, now do the rest of housekeeping */
578
579 /* had we spliced it onto indirect block? */
580 if (where->bh)
581 mark_buffer_dirty_inode(where->bh, inode);
582
583 inode->i_ctime = CURRENT_TIME_SEC;
584 mark_inode_dirty(inode);
585}
586
587/*
588 * Allocation strategy is simple: if we have to allocate something, we will
589 * have to go the whole way to leaf. So let's do it before attaching anything
590 * to tree, set linkage between the newborn blocks, write them if sync is
591 * required, recheck the path, free and repeat if check fails, otherwise
592 * set the last missing link (that will protect us from any truncate-generated
593 * removals - all blocks on the path are immune now) and possibly force the
594 * write on the parent block.
595 * That has a nice additional property: no special recovery from the failed
596 * allocations is needed - we simply release blocks and do not touch anything
597 * reachable from inode.
598 *
599 * `handle' can be NULL if create == 0.
600 *
601 * return > 0, # of blocks mapped or allocated.
602 * return = 0, if plain lookup failed.
603 * return < 0, error case.
604 */
605static int ext2_get_blocks(struct inode *inode,
606 sector_t iblock, unsigned long maxblocks,
607 struct buffer_head *bh_result,
608 int create)
609{
610 int err = -EIO;
611 int offsets[4];
612 Indirect chain[4];
613 Indirect *partial;
614 ext2_fsblk_t goal;
615 int indirect_blks;
616 int blocks_to_boundary = 0;
617 int depth;
618 struct ext2_inode_info *ei = EXT2_I(inode);
619 int count = 0;
620 ext2_fsblk_t first_block = 0;
621
622 depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
623
624 if (depth == 0)
625 return (err);
626
627 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
628 /* Simplest case - block found, no allocation needed */
629 if (!partial) {
630 first_block = le32_to_cpu(chain[depth - 1].key);
631 clear_buffer_new(bh_result); /* What's this do? */
632 count++;
633 /*map more blocks*/
634 while (count < maxblocks && count <= blocks_to_boundary) {
635 ext2_fsblk_t blk;
636
637 if (!verify_chain(chain, chain + depth - 1)) {
638 /*
639 * Indirect block might be removed by
640 * truncate while we were reading it.
641 * Handling of that case: forget what we've
642 * got now, go to reread.
643 */
644 err = -EAGAIN;
645 count = 0;
646 break;
647 }
648 blk = le32_to_cpu(*(chain[depth-1].p + count));
649 if (blk == first_block + count)
650 count++;
651 else
652 break;
653 }
654 if (err != -EAGAIN)
655 goto got_it;
656 }
657
658 /* Next simple case - plain lookup or failed read of indirect block */
659 if (!create || err == -EIO)
660 goto cleanup;
661
662 mutex_lock(&ei->truncate_mutex);
663 /*
664 * If the indirect block is missing while we are reading
665 * the chain(ext2_get_branch() returns -EAGAIN err), or
666 * if the chain has been changed after we grab the semaphore,
667 * (either because another process truncated this branch, or
668 * another get_block allocated this branch) re-grab the chain to see if
669 * the request block has been allocated or not.
670 *
671 * Since we already block the truncate/other get_block
672 * at this point, we will have the current copy of the chain when we
673 * splice the branch into the tree.
674 */
675 if (err == -EAGAIN || !verify_chain(chain, partial)) {
676 while (partial > chain) {
677 brelse(partial->bh);
678 partial--;
679 }
680 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
681 if (!partial) {
682 count++;
683 mutex_unlock(&ei->truncate_mutex);
684 if (err)
685 goto cleanup;
686 clear_buffer_new(bh_result);
687 goto got_it;
688 }
689 }
690
691 /*
692 * Okay, we need to do block allocation. Lazily initialize the block
693 * allocation info here if necessary
694 */
695 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
696 ext2_init_block_alloc_info(inode);
697
698 goal = ext2_find_goal(inode, iblock, partial);
699
700 /* the number of blocks need to allocate for [d,t]indirect blocks */
701 indirect_blks = (chain + depth) - partial - 1;
702 /*
703 * Next look up the indirect map to count the totoal number of
704 * direct blocks to allocate for this branch.
705 */
706 count = ext2_blks_to_allocate(partial, indirect_blks,
707 maxblocks, blocks_to_boundary);
708 /*
709 * XXX ???? Block out ext2_truncate while we alter the tree
710 */
711 err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
712 offsets + (partial - chain), partial);
713
714 if (err) {
715 mutex_unlock(&ei->truncate_mutex);
716 goto cleanup;
717 }
718
719 if (ext2_use_xip(inode->i_sb)) {
720 /*
721 * we need to clear the block
722 */
723 err = ext2_clear_xip_target (inode,
724 le32_to_cpu(chain[depth-1].key));
725 if (err) {
726 mutex_unlock(&ei->truncate_mutex);
727 goto cleanup;
728 }
729 }
730
731 ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
732 mutex_unlock(&ei->truncate_mutex);
733 set_buffer_new(bh_result);
734got_it:
735 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
736 if (count > blocks_to_boundary)
737 set_buffer_boundary(bh_result);
738 err = count;
739 /* Clean up and exit */
740 partial = chain + depth - 1; /* the whole chain */
741cleanup:
742 while (partial > chain) {
743 brelse(partial->bh);
744 partial--;
745 }
746 return err;
747}
748
749int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
750{
751 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
752 int ret = ext2_get_blocks(inode, iblock, max_blocks,
753 bh_result, create);
754 if (ret > 0) {
755 bh_result->b_size = (ret << inode->i_blkbits);
756 ret = 0;
757 }
758 return ret;
759
760}
761
762int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
763 u64 start, u64 len)
764{
765 return generic_block_fiemap(inode, fieinfo, start, len,
766 ext2_get_block);
767}
768
769static int ext2_writepage(struct page *page, struct writeback_control *wbc)
770{
771 return block_write_full_page(page, ext2_get_block, wbc);
772}
773
774static int ext2_readpage(struct file *file, struct page *page)
775{
776 return mpage_readpage(page, ext2_get_block);
777}
778
779static int
780ext2_readpages(struct file *file, struct address_space *mapping,
781 struct list_head *pages, unsigned nr_pages)
782{
783 return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
784}
785
786static int
787ext2_write_begin(struct file *file, struct address_space *mapping,
788 loff_t pos, unsigned len, unsigned flags,
789 struct page **pagep, void **fsdata)
790{
791 int ret;
792
793 ret = block_write_begin(mapping, pos, len, flags, pagep,
794 ext2_get_block);
795 if (ret < 0)
796 ext2_write_failed(mapping, pos + len);
797 return ret;
798}
799
800static int ext2_write_end(struct file *file, struct address_space *mapping,
801 loff_t pos, unsigned len, unsigned copied,
802 struct page *page, void *fsdata)
803{
804 int ret;
805
806 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
807 if (ret < len)
808 ext2_write_failed(mapping, pos + len);
809 return ret;
810}
811
812static int
813ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
814 loff_t pos, unsigned len, unsigned flags,
815 struct page **pagep, void **fsdata)
816{
817 int ret;
818
819 ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
820 ext2_get_block);
821 if (ret < 0)
822 ext2_write_failed(mapping, pos + len);
823 return ret;
824}
825
826static int ext2_nobh_writepage(struct page *page,
827 struct writeback_control *wbc)
828{
829 return nobh_writepage(page, ext2_get_block, wbc);
830}
831
832static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
833{
834 return generic_block_bmap(mapping,block,ext2_get_block);
835}
836
837static ssize_t
838ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
839 loff_t offset, unsigned long nr_segs)
840{
841 struct file *file = iocb->ki_filp;
842 struct address_space *mapping = file->f_mapping;
843 struct inode *inode = mapping->host;
844 ssize_t ret;
845
846 ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
847 ext2_get_block);
848 if (ret < 0 && (rw & WRITE))
849 ext2_write_failed(mapping, offset + iov_length(iov, nr_segs));
850 return ret;
851}
852
853static int
854ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
855{
856 return mpage_writepages(mapping, wbc, ext2_get_block);
857}
858
859const struct address_space_operations ext2_aops = {
860 .readpage = ext2_readpage,
861 .readpages = ext2_readpages,
862 .writepage = ext2_writepage,
863 .write_begin = ext2_write_begin,
864 .write_end = ext2_write_end,
865 .bmap = ext2_bmap,
866 .direct_IO = ext2_direct_IO,
867 .writepages = ext2_writepages,
868 .migratepage = buffer_migrate_page,
869 .is_partially_uptodate = block_is_partially_uptodate,
870 .error_remove_page = generic_error_remove_page,
871};
872
873const struct address_space_operations ext2_aops_xip = {
874 .bmap = ext2_bmap,
875 .get_xip_mem = ext2_get_xip_mem,
876};
877
878const struct address_space_operations ext2_nobh_aops = {
879 .readpage = ext2_readpage,
880 .readpages = ext2_readpages,
881 .writepage = ext2_nobh_writepage,
882 .write_begin = ext2_nobh_write_begin,
883 .write_end = nobh_write_end,
884 .bmap = ext2_bmap,
885 .direct_IO = ext2_direct_IO,
886 .writepages = ext2_writepages,
887 .migratepage = buffer_migrate_page,
888 .error_remove_page = generic_error_remove_page,
889};
890
891/*
892 * Probably it should be a library function... search for first non-zero word
893 * or memcmp with zero_page, whatever is better for particular architecture.
894 * Linus?
895 */
896static inline int all_zeroes(__le32 *p, __le32 *q)
897{
898 while (p < q)
899 if (*p++)
900 return 0;
901 return 1;
902}
903
904/**
905 * ext2_find_shared - find the indirect blocks for partial truncation.
906 * @inode: inode in question
907 * @depth: depth of the affected branch
908 * @offsets: offsets of pointers in that branch (see ext2_block_to_path)
909 * @chain: place to store the pointers to partial indirect blocks
910 * @top: place to the (detached) top of branch
911 *
912 * This is a helper function used by ext2_truncate().
913 *
914 * When we do truncate() we may have to clean the ends of several indirect
915 * blocks but leave the blocks themselves alive. Block is partially
916 * truncated if some data below the new i_size is referred from it (and
917 * it is on the path to the first completely truncated data block, indeed).
918 * We have to free the top of that path along with everything to the right
919 * of the path. Since no allocation past the truncation point is possible
920 * until ext2_truncate() finishes, we may safely do the latter, but top
921 * of branch may require special attention - pageout below the truncation
922 * point might try to populate it.
923 *
924 * We atomically detach the top of branch from the tree, store the block
925 * number of its root in *@top, pointers to buffer_heads of partially
926 * truncated blocks - in @chain[].bh and pointers to their last elements
927 * that should not be removed - in @chain[].p. Return value is the pointer
928 * to last filled element of @chain.
929 *
930 * The work left to caller to do the actual freeing of subtrees:
931 * a) free the subtree starting from *@top
932 * b) free the subtrees whose roots are stored in
933 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
934 * c) free the subtrees growing from the inode past the @chain[0].p
935 * (no partially truncated stuff there).
936 */
937
938static Indirect *ext2_find_shared(struct inode *inode,
939 int depth,
940 int offsets[4],
941 Indirect chain[4],
942 __le32 *top)
943{
944 Indirect *partial, *p;
945 int k, err;
946
947 *top = 0;
948 for (k = depth; k > 1 && !offsets[k-1]; k--)
949 ;
950 partial = ext2_get_branch(inode, k, offsets, chain, &err);
951 if (!partial)
952 partial = chain + k-1;
953 /*
954 * If the branch acquired continuation since we've looked at it -
955 * fine, it should all survive and (new) top doesn't belong to us.
956 */
957 write_lock(&EXT2_I(inode)->i_meta_lock);
958 if (!partial->key && *partial->p) {
959 write_unlock(&EXT2_I(inode)->i_meta_lock);
960 goto no_top;
961 }
962 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
963 ;
964 /*
965 * OK, we've found the last block that must survive. The rest of our
966 * branch should be detached before unlocking. However, if that rest
967 * of branch is all ours and does not grow immediately from the inode
968 * it's easier to cheat and just decrement partial->p.
969 */
970 if (p == chain + k - 1 && p > chain) {
971 p->p--;
972 } else {
973 *top = *p->p;
974 *p->p = 0;
975 }
976 write_unlock(&EXT2_I(inode)->i_meta_lock);
977
978 while(partial > p)
979 {
980 brelse(partial->bh);
981 partial--;
982 }
983no_top:
984 return partial;
985}
986
987/**
988 * ext2_free_data - free a list of data blocks
989 * @inode: inode we are dealing with
990 * @p: array of block numbers
991 * @q: points immediately past the end of array
992 *
993 * We are freeing all blocks referred from that array (numbers are
994 * stored as little-endian 32-bit) and updating @inode->i_blocks
995 * appropriately.
996 */
997static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
998{
999 unsigned long block_to_free = 0, count = 0;
1000 unsigned long nr;
1001
1002 for ( ; p < q ; p++) {
1003 nr = le32_to_cpu(*p);
1004 if (nr) {
1005 *p = 0;
1006 /* accumulate blocks to free if they're contiguous */
1007 if (count == 0)
1008 goto free_this;
1009 else if (block_to_free == nr - count)
1010 count++;
1011 else {
1012 ext2_free_blocks (inode, block_to_free, count);
1013 mark_inode_dirty(inode);
1014 free_this:
1015 block_to_free = nr;
1016 count = 1;
1017 }
1018 }
1019 }
1020 if (count > 0) {
1021 ext2_free_blocks (inode, block_to_free, count);
1022 mark_inode_dirty(inode);
1023 }
1024}
1025
1026/**
1027 * ext2_free_branches - free an array of branches
1028 * @inode: inode we are dealing with
1029 * @p: array of block numbers
1030 * @q: pointer immediately past the end of array
1031 * @depth: depth of the branches to free
1032 *
1033 * We are freeing all blocks referred from these branches (numbers are
1034 * stored as little-endian 32-bit) and updating @inode->i_blocks
1035 * appropriately.
1036 */
1037static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1038{
1039 struct buffer_head * bh;
1040 unsigned long nr;
1041
1042 if (depth--) {
1043 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1044 for ( ; p < q ; p++) {
1045 nr = le32_to_cpu(*p);
1046 if (!nr)
1047 continue;
1048 *p = 0;
1049 bh = sb_bread(inode->i_sb, nr);
1050 /*
1051 * A read failure? Report error and clear slot
1052 * (should be rare).
1053 */
1054 if (!bh) {
1055 ext2_error(inode->i_sb, "ext2_free_branches",
1056 "Read failure, inode=%ld, block=%ld",
1057 inode->i_ino, nr);
1058 continue;
1059 }
1060 ext2_free_branches(inode,
1061 (__le32*)bh->b_data,
1062 (__le32*)bh->b_data + addr_per_block,
1063 depth);
1064 bforget(bh);
1065 ext2_free_blocks(inode, nr, 1);
1066 mark_inode_dirty(inode);
1067 }
1068 } else
1069 ext2_free_data(inode, p, q);
1070}
1071
1072static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1073{
1074 __le32 *i_data = EXT2_I(inode)->i_data;
1075 struct ext2_inode_info *ei = EXT2_I(inode);
1076 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1077 int offsets[4];
1078 Indirect chain[4];
1079 Indirect *partial;
1080 __le32 nr = 0;
1081 int n;
1082 long iblock;
1083 unsigned blocksize;
1084 blocksize = inode->i_sb->s_blocksize;
1085 iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1086
1087 n = ext2_block_to_path(inode, iblock, offsets, NULL);
1088 if (n == 0)
1089 return;
1090
1091 /*
1092 * From here we block out all ext2_get_block() callers who want to
1093 * modify the block allocation tree.
1094 */
1095 mutex_lock(&ei->truncate_mutex);
1096
1097 if (n == 1) {
1098 ext2_free_data(inode, i_data+offsets[0],
1099 i_data + EXT2_NDIR_BLOCKS);
1100 goto do_indirects;
1101 }
1102
1103 partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1104 /* Kill the top of shared branch (already detached) */
1105 if (nr) {
1106 if (partial == chain)
1107 mark_inode_dirty(inode);
1108 else
1109 mark_buffer_dirty_inode(partial->bh, inode);
1110 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1111 }
1112 /* Clear the ends of indirect blocks on the shared branch */
1113 while (partial > chain) {
1114 ext2_free_branches(inode,
1115 partial->p + 1,
1116 (__le32*)partial->bh->b_data+addr_per_block,
1117 (chain+n-1) - partial);
1118 mark_buffer_dirty_inode(partial->bh, inode);
1119 brelse (partial->bh);
1120 partial--;
1121 }
1122do_indirects:
1123 /* Kill the remaining (whole) subtrees */
1124 switch (offsets[0]) {
1125 default:
1126 nr = i_data[EXT2_IND_BLOCK];
1127 if (nr) {
1128 i_data[EXT2_IND_BLOCK] = 0;
1129 mark_inode_dirty(inode);
1130 ext2_free_branches(inode, &nr, &nr+1, 1);
1131 }
1132 case EXT2_IND_BLOCK:
1133 nr = i_data[EXT2_DIND_BLOCK];
1134 if (nr) {
1135 i_data[EXT2_DIND_BLOCK] = 0;
1136 mark_inode_dirty(inode);
1137 ext2_free_branches(inode, &nr, &nr+1, 2);
1138 }
1139 case EXT2_DIND_BLOCK:
1140 nr = i_data[EXT2_TIND_BLOCK];
1141 if (nr) {
1142 i_data[EXT2_TIND_BLOCK] = 0;
1143 mark_inode_dirty(inode);
1144 ext2_free_branches(inode, &nr, &nr+1, 3);
1145 }
1146 case EXT2_TIND_BLOCK:
1147 ;
1148 }
1149
1150 ext2_discard_reservation(inode);
1151
1152 mutex_unlock(&ei->truncate_mutex);
1153}
1154
1155static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1156{
1157 /*
1158 * XXX: it seems like a bug here that we don't allow
1159 * IS_APPEND inode to have blocks-past-i_size trimmed off.
1160 * review and fix this.
1161 *
1162 * Also would be nice to be able to handle IO errors and such,
1163 * but that's probably too much to ask.
1164 */
1165 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1166 S_ISLNK(inode->i_mode)))
1167 return;
1168 if (ext2_inode_is_fast_symlink(inode))
1169 return;
1170 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1171 return;
1172 __ext2_truncate_blocks(inode, offset);
1173}
1174
1175static int ext2_setsize(struct inode *inode, loff_t newsize)
1176{
1177 int error;
1178
1179 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1180 S_ISLNK(inode->i_mode)))
1181 return -EINVAL;
1182 if (ext2_inode_is_fast_symlink(inode))
1183 return -EINVAL;
1184 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1185 return -EPERM;
1186
1187 inode_dio_wait(inode);
1188
1189 if (mapping_is_xip(inode->i_mapping))
1190 error = xip_truncate_page(inode->i_mapping, newsize);
1191 else if (test_opt(inode->i_sb, NOBH))
1192 error = nobh_truncate_page(inode->i_mapping,
1193 newsize, ext2_get_block);
1194 else
1195 error = block_truncate_page(inode->i_mapping,
1196 newsize, ext2_get_block);
1197 if (error)
1198 return error;
1199
1200 truncate_setsize(inode, newsize);
1201 __ext2_truncate_blocks(inode, newsize);
1202
1203 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1204 if (inode_needs_sync(inode)) {
1205 sync_mapping_buffers(inode->i_mapping);
1206 sync_inode_metadata(inode, 1);
1207 } else {
1208 mark_inode_dirty(inode);
1209 }
1210
1211 return 0;
1212}
1213
1214static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1215 struct buffer_head **p)
1216{
1217 struct buffer_head * bh;
1218 unsigned long block_group;
1219 unsigned long block;
1220 unsigned long offset;
1221 struct ext2_group_desc * gdp;
1222
1223 *p = NULL;
1224 if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1225 ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1226 goto Einval;
1227
1228 block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1229 gdp = ext2_get_group_desc(sb, block_group, NULL);
1230 if (!gdp)
1231 goto Egdp;
1232 /*
1233 * Figure out the offset within the block group inode table
1234 */
1235 offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1236 block = le32_to_cpu(gdp->bg_inode_table) +
1237 (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1238 if (!(bh = sb_bread(sb, block)))
1239 goto Eio;
1240
1241 *p = bh;
1242 offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1243 return (struct ext2_inode *) (bh->b_data + offset);
1244
1245Einval:
1246 ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1247 (unsigned long) ino);
1248 return ERR_PTR(-EINVAL);
1249Eio:
1250 ext2_error(sb, "ext2_get_inode",
1251 "unable to read inode block - inode=%lu, block=%lu",
1252 (unsigned long) ino, block);
1253Egdp:
1254 return ERR_PTR(-EIO);
1255}
1256
1257void ext2_set_inode_flags(struct inode *inode)
1258{
1259 unsigned int flags = EXT2_I(inode)->i_flags;
1260
1261 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
1262 if (flags & EXT2_SYNC_FL)
1263 inode->i_flags |= S_SYNC;
1264 if (flags & EXT2_APPEND_FL)
1265 inode->i_flags |= S_APPEND;
1266 if (flags & EXT2_IMMUTABLE_FL)
1267 inode->i_flags |= S_IMMUTABLE;
1268 if (flags & EXT2_NOATIME_FL)
1269 inode->i_flags |= S_NOATIME;
1270 if (flags & EXT2_DIRSYNC_FL)
1271 inode->i_flags |= S_DIRSYNC;
1272}
1273
1274/* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1275void ext2_get_inode_flags(struct ext2_inode_info *ei)
1276{
1277 unsigned int flags = ei->vfs_inode.i_flags;
1278
1279 ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1280 EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1281 if (flags & S_SYNC)
1282 ei->i_flags |= EXT2_SYNC_FL;
1283 if (flags & S_APPEND)
1284 ei->i_flags |= EXT2_APPEND_FL;
1285 if (flags & S_IMMUTABLE)
1286 ei->i_flags |= EXT2_IMMUTABLE_FL;
1287 if (flags & S_NOATIME)
1288 ei->i_flags |= EXT2_NOATIME_FL;
1289 if (flags & S_DIRSYNC)
1290 ei->i_flags |= EXT2_DIRSYNC_FL;
1291}
1292
1293struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1294{
1295 struct ext2_inode_info *ei;
1296 struct buffer_head * bh;
1297 struct ext2_inode *raw_inode;
1298 struct inode *inode;
1299 long ret = -EIO;
1300 int n;
1301
1302 inode = iget_locked(sb, ino);
1303 if (!inode)
1304 return ERR_PTR(-ENOMEM);
1305 if (!(inode->i_state & I_NEW))
1306 return inode;
1307
1308 ei = EXT2_I(inode);
1309 ei->i_block_alloc_info = NULL;
1310
1311 raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1312 if (IS_ERR(raw_inode)) {
1313 ret = PTR_ERR(raw_inode);
1314 goto bad_inode;
1315 }
1316
1317 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1318 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1319 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1320 if (!(test_opt (inode->i_sb, NO_UID32))) {
1321 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1322 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1323 }
1324 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
1325 inode->i_size = le32_to_cpu(raw_inode->i_size);
1326 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1327 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1328 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1329 inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1330 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1331 /* We now have enough fields to check if the inode was active or not.
1332 * This is needed because nfsd might try to access dead inodes
1333 * the test is that same one that e2fsck uses
1334 * NeilBrown 1999oct15
1335 */
1336 if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1337 /* this inode is deleted */
1338 brelse (bh);
1339 ret = -ESTALE;
1340 goto bad_inode;
1341 }
1342 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1343 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1344 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1345 ei->i_frag_no = raw_inode->i_frag;
1346 ei->i_frag_size = raw_inode->i_fsize;
1347 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1348 ei->i_dir_acl = 0;
1349 if (S_ISREG(inode->i_mode))
1350 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1351 else
1352 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1353 ei->i_dtime = 0;
1354 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1355 ei->i_state = 0;
1356 ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1357 ei->i_dir_start_lookup = 0;
1358
1359 /*
1360 * NOTE! The in-memory inode i_data array is in little-endian order
1361 * even on big-endian machines: we do NOT byteswap the block numbers!
1362 */
1363 for (n = 0; n < EXT2_N_BLOCKS; n++)
1364 ei->i_data[n] = raw_inode->i_block[n];
1365
1366 if (S_ISREG(inode->i_mode)) {
1367 inode->i_op = &ext2_file_inode_operations;
1368 if (ext2_use_xip(inode->i_sb)) {
1369 inode->i_mapping->a_ops = &ext2_aops_xip;
1370 inode->i_fop = &ext2_xip_file_operations;
1371 } else if (test_opt(inode->i_sb, NOBH)) {
1372 inode->i_mapping->a_ops = &ext2_nobh_aops;
1373 inode->i_fop = &ext2_file_operations;
1374 } else {
1375 inode->i_mapping->a_ops = &ext2_aops;
1376 inode->i_fop = &ext2_file_operations;
1377 }
1378 } else if (S_ISDIR(inode->i_mode)) {
1379 inode->i_op = &ext2_dir_inode_operations;
1380 inode->i_fop = &ext2_dir_operations;
1381 if (test_opt(inode->i_sb, NOBH))
1382 inode->i_mapping->a_ops = &ext2_nobh_aops;
1383 else
1384 inode->i_mapping->a_ops = &ext2_aops;
1385 } else if (S_ISLNK(inode->i_mode)) {
1386 if (ext2_inode_is_fast_symlink(inode)) {
1387 inode->i_op = &ext2_fast_symlink_inode_operations;
1388 nd_terminate_link(ei->i_data, inode->i_size,
1389 sizeof(ei->i_data) - 1);
1390 } else {
1391 inode->i_op = &ext2_symlink_inode_operations;
1392 if (test_opt(inode->i_sb, NOBH))
1393 inode->i_mapping->a_ops = &ext2_nobh_aops;
1394 else
1395 inode->i_mapping->a_ops = &ext2_aops;
1396 }
1397 } else {
1398 inode->i_op = &ext2_special_inode_operations;
1399 if (raw_inode->i_block[0])
1400 init_special_inode(inode, inode->i_mode,
1401 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1402 else
1403 init_special_inode(inode, inode->i_mode,
1404 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1405 }
1406 brelse (bh);
1407 ext2_set_inode_flags(inode);
1408 unlock_new_inode(inode);
1409 return inode;
1410
1411bad_inode:
1412 iget_failed(inode);
1413 return ERR_PTR(ret);
1414}
1415
1416static int __ext2_write_inode(struct inode *inode, int do_sync)
1417{
1418 struct ext2_inode_info *ei = EXT2_I(inode);
1419 struct super_block *sb = inode->i_sb;
1420 ino_t ino = inode->i_ino;
1421 uid_t uid = inode->i_uid;
1422 gid_t gid = inode->i_gid;
1423 struct buffer_head * bh;
1424 struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1425 int n;
1426 int err = 0;
1427
1428 if (IS_ERR(raw_inode))
1429 return -EIO;
1430
1431 /* For fields not not tracking in the in-memory inode,
1432 * initialise them to zero for new inodes. */
1433 if (ei->i_state & EXT2_STATE_NEW)
1434 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1435
1436 ext2_get_inode_flags(ei);
1437 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1438 if (!(test_opt(sb, NO_UID32))) {
1439 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1440 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1441/*
1442 * Fix up interoperability with old kernels. Otherwise, old inodes get
1443 * re-used with the upper 16 bits of the uid/gid intact
1444 */
1445 if (!ei->i_dtime) {
1446 raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1447 raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1448 } else {
1449 raw_inode->i_uid_high = 0;
1450 raw_inode->i_gid_high = 0;
1451 }
1452 } else {
1453 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1454 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1455 raw_inode->i_uid_high = 0;
1456 raw_inode->i_gid_high = 0;
1457 }
1458 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1459 raw_inode->i_size = cpu_to_le32(inode->i_size);
1460 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1461 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1462 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1463
1464 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1465 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1466 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1467 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1468 raw_inode->i_frag = ei->i_frag_no;
1469 raw_inode->i_fsize = ei->i_frag_size;
1470 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1471 if (!S_ISREG(inode->i_mode))
1472 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1473 else {
1474 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1475 if (inode->i_size > 0x7fffffffULL) {
1476 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1477 EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1478 EXT2_SB(sb)->s_es->s_rev_level ==
1479 cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1480 /* If this is the first large file
1481 * created, add a flag to the superblock.
1482 */
1483 spin_lock(&EXT2_SB(sb)->s_lock);
1484 ext2_update_dynamic_rev(sb);
1485 EXT2_SET_RO_COMPAT_FEATURE(sb,
1486 EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1487 spin_unlock(&EXT2_SB(sb)->s_lock);
1488 ext2_write_super(sb);
1489 }
1490 }
1491 }
1492
1493 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1494 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1495 if (old_valid_dev(inode->i_rdev)) {
1496 raw_inode->i_block[0] =
1497 cpu_to_le32(old_encode_dev(inode->i_rdev));
1498 raw_inode->i_block[1] = 0;
1499 } else {
1500 raw_inode->i_block[0] = 0;
1501 raw_inode->i_block[1] =
1502 cpu_to_le32(new_encode_dev(inode->i_rdev));
1503 raw_inode->i_block[2] = 0;
1504 }
1505 } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1506 raw_inode->i_block[n] = ei->i_data[n];
1507 mark_buffer_dirty(bh);
1508 if (do_sync) {
1509 sync_dirty_buffer(bh);
1510 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1511 printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1512 sb->s_id, (unsigned long) ino);
1513 err = -EIO;
1514 }
1515 }
1516 ei->i_state &= ~EXT2_STATE_NEW;
1517 brelse (bh);
1518 return err;
1519}
1520
1521int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1522{
1523 return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1524}
1525
1526int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1527{
1528 struct inode *inode = dentry->d_inode;
1529 int error;
1530
1531 error = inode_change_ok(inode, iattr);
1532 if (error)
1533 return error;
1534
1535 if (is_quota_modification(inode, iattr))
1536 dquot_initialize(inode);
1537 if ((iattr->ia_valid & ATTR_UID && iattr->ia_uid != inode->i_uid) ||
1538 (iattr->ia_valid & ATTR_GID && iattr->ia_gid != inode->i_gid)) {
1539 error = dquot_transfer(inode, iattr);
1540 if (error)
1541 return error;
1542 }
1543 if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1544 error = ext2_setsize(inode, iattr->ia_size);
1545 if (error)
1546 return error;
1547 }
1548 setattr_copy(inode, iattr);
1549 if (iattr->ia_valid & ATTR_MODE)
1550 error = ext2_acl_chmod(inode);
1551 mark_inode_dirty(inode);
1552
1553 return error;
1554}