Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/****************************************************************************
   3 *
   4 * Driver for the IFX 6x60 spi modem.
   5 *
   6 * Copyright (C) 2008 Option International
   7 * Copyright (C) 2008 Filip Aben <f.aben@option.com>
   8 *		      Denis Joseph Barrow <d.barow@option.com>
   9 *		      Jan Dumon <j.dumon@option.com>
  10 *
  11 * Copyright (C) 2009, 2010 Intel Corp
  12 * Russ Gorby <russ.gorby@intel.com>
  13 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  14 * Driver modified by Intel from Option gtm501l_spi.c
  15 *
  16 * Notes
  17 * o	The driver currently assumes a single device only. If you need to
  18 *	change this then look for saved_ifx_dev and add a device lookup
  19 * o	The driver is intended to be big-endian safe but has never been
  20 *	tested that way (no suitable hardware). There are a couple of FIXME
  21 *	notes by areas that may need addressing
  22 * o	Some of the GPIO naming/setup assumptions may need revisiting if
  23 *	you need to use this driver for another platform.
  24 *
  25 *****************************************************************************/
  26#include <linux/dma-mapping.h>
  27#include <linux/module.h>
  28#include <linux/termios.h>
  29#include <linux/tty.h>
  30#include <linux/device.h>
  31#include <linux/spi/spi.h>
  32#include <linux/kfifo.h>
  33#include <linux/tty_flip.h>
  34#include <linux/timer.h>
  35#include <linux/serial.h>
  36#include <linux/interrupt.h>
  37#include <linux/irq.h>
  38#include <linux/rfkill.h>
  39#include <linux/fs.h>
  40#include <linux/ip.h>
  41#include <linux/dmapool.h>
  42#include <linux/gpio.h>
  43#include <linux/sched.h>
  44#include <linux/time.h>
  45#include <linux/wait.h>
  46#include <linux/pm.h>
  47#include <linux/pm_runtime.h>
  48#include <linux/spi/ifx_modem.h>
  49#include <linux/delay.h>
  50#include <linux/reboot.h>
  51
  52#include "ifx6x60.h"
  53
  54#define IFX_SPI_MORE_MASK		0x10
  55#define IFX_SPI_MORE_BIT		4	/* bit position in u8 */
  56#define IFX_SPI_CTS_BIT			6	/* bit position in u8 */
  57#define IFX_SPI_MODE			SPI_MODE_1
  58#define IFX_SPI_TTY_ID			0
  59#define IFX_SPI_TIMEOUT_SEC		2
  60#define IFX_SPI_HEADER_0		(-1)
  61#define IFX_SPI_HEADER_F		(-2)
  62
  63#define PO_POST_DELAY		200
  64#define IFX_MDM_RST_PMU	4
  65
  66/* forward reference */
  67static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev);
  68static int ifx_modem_reboot_callback(struct notifier_block *nfb,
  69				unsigned long event, void *data);
  70static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev);
  71
  72/* local variables */
  73static int spi_bpw = 16;		/* 8, 16 or 32 bit word length */
  74static struct tty_driver *tty_drv;
  75static struct ifx_spi_device *saved_ifx_dev;
  76static struct lock_class_key ifx_spi_key;
  77
  78static struct notifier_block ifx_modem_reboot_notifier_block = {
  79	.notifier_call = ifx_modem_reboot_callback,
  80};
  81
  82static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev)
  83{
  84	gpio_set_value(IFX_MDM_RST_PMU, 1);
  85	msleep(PO_POST_DELAY);
  86
  87	return 0;
  88}
  89
  90static int ifx_modem_reboot_callback(struct notifier_block *nfb,
  91				 unsigned long event, void *data)
  92{
  93	if (saved_ifx_dev)
  94		ifx_modem_power_off(saved_ifx_dev);
  95	else
  96		pr_warn("no ifx modem active;\n");
  97
  98	return NOTIFY_OK;
  99}
 100
 101/* GPIO/GPE settings */
 102
 103/**
 104 *	mrdy_set_high		-	set MRDY GPIO
 105 *	@ifx: device we are controlling
 106 *
 107 */
 108static inline void mrdy_set_high(struct ifx_spi_device *ifx)
 109{
 110	gpio_set_value(ifx->gpio.mrdy, 1);
 111}
 112
 113/**
 114 *	mrdy_set_low		-	clear MRDY GPIO
 115 *	@ifx: device we are controlling
 116 *
 117 */
 118static inline void mrdy_set_low(struct ifx_spi_device *ifx)
 119{
 120	gpio_set_value(ifx->gpio.mrdy, 0);
 121}
 122
 123/**
 124 *	ifx_spi_power_state_set
 125 *	@ifx_dev: our SPI device
 126 *	@val: bits to set
 127 *
 128 *	Set bit in power status and signal power system if status becomes non-0
 129 */
 130static void
 131ifx_spi_power_state_set(struct ifx_spi_device *ifx_dev, unsigned char val)
 132{
 133	unsigned long flags;
 134
 135	spin_lock_irqsave(&ifx_dev->power_lock, flags);
 136
 137	/*
 138	 * if power status is already non-0, just update, else
 139	 * tell power system
 140	 */
 141	if (!ifx_dev->power_status)
 142		pm_runtime_get(&ifx_dev->spi_dev->dev);
 143	ifx_dev->power_status |= val;
 144
 145	spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
 146}
 147
 148/**
 149 *	ifx_spi_power_state_clear	-	clear power bit
 150 *	@ifx_dev: our SPI device
 151 *	@val: bits to clear
 152 *
 153 *	clear bit in power status and signal power system if status becomes 0
 154 */
 155static void
 156ifx_spi_power_state_clear(struct ifx_spi_device *ifx_dev, unsigned char val)
 157{
 158	unsigned long flags;
 159
 160	spin_lock_irqsave(&ifx_dev->power_lock, flags);
 161
 162	if (ifx_dev->power_status) {
 163		ifx_dev->power_status &= ~val;
 164		if (!ifx_dev->power_status)
 165			pm_runtime_put(&ifx_dev->spi_dev->dev);
 166	}
 167
 168	spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
 169}
 170
 171/**
 172 *	swap_buf_8
 173 *	@buf: our buffer
 174 *	@len : number of bytes (not words) in the buffer
 175 *	@end: end of buffer
 176 *
 177 *	Swap the contents of a buffer into big endian format
 178 */
 179static inline void swap_buf_8(unsigned char *buf, int len, void *end)
 180{
 181	/* don't swap buffer if SPI word width is 8 bits */
 182	return;
 183}
 184
 185/**
 186 *	swap_buf_16
 187 *	@buf: our buffer
 188 *	@len : number of bytes (not words) in the buffer
 189 *	@end: end of buffer
 190 *
 191 *	Swap the contents of a buffer into big endian format
 192 */
 193static inline void swap_buf_16(unsigned char *buf, int len, void *end)
 194{
 195	int n;
 196
 197	u16 *buf_16 = (u16 *)buf;
 198	len = ((len + 1) >> 1);
 199	if ((void *)&buf_16[len] > end) {
 200		pr_err("swap_buf_16: swap exceeds boundary (%p > %p)!",
 201		       &buf_16[len], end);
 202		return;
 203	}
 204	for (n = 0; n < len; n++) {
 205		*buf_16 = cpu_to_be16(*buf_16);
 206		buf_16++;
 207	}
 208}
 209
 210/**
 211 *	swap_buf_32
 212 *	@buf: our buffer
 213 *	@len : number of bytes (not words) in the buffer
 214 *	@end: end of buffer
 215 *
 216 *	Swap the contents of a buffer into big endian format
 217 */
 218static inline void swap_buf_32(unsigned char *buf, int len, void *end)
 219{
 220	int n;
 221
 222	u32 *buf_32 = (u32 *)buf;
 223	len = (len + 3) >> 2;
 224
 225	if ((void *)&buf_32[len] > end) {
 226		pr_err("swap_buf_32: swap exceeds boundary (%p > %p)!\n",
 227		       &buf_32[len], end);
 228		return;
 229	}
 230	for (n = 0; n < len; n++) {
 231		*buf_32 = cpu_to_be32(*buf_32);
 232		buf_32++;
 233	}
 234}
 235
 236/**
 237 *	mrdy_assert		-	assert MRDY line
 238 *	@ifx_dev: our SPI device
 239 *
 240 *	Assert mrdy and set timer to wait for SRDY interrupt, if SRDY is low
 241 *	now.
 242 *
 243 *	FIXME: Can SRDY even go high as we are running this code ?
 244 */
 245static void mrdy_assert(struct ifx_spi_device *ifx_dev)
 246{
 247	int val = gpio_get_value(ifx_dev->gpio.srdy);
 248	if (!val) {
 249		if (!test_and_set_bit(IFX_SPI_STATE_TIMER_PENDING,
 250				      &ifx_dev->flags)) {
 251			mod_timer(&ifx_dev->spi_timer,jiffies + IFX_SPI_TIMEOUT_SEC*HZ);
 
 
 252
 253		}
 254	}
 255	ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_DATA_PENDING);
 256	mrdy_set_high(ifx_dev);
 257}
 258
 259/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 260 *	ifx_spi_timeout		-	SPI timeout
 261 *	@arg: our SPI device
 262 *
 263 *	The SPI has timed out: hang up the tty. Users will then see a hangup
 264 *	and error events.
 265 */
 266static void ifx_spi_timeout(struct timer_list *t)
 267{
 268	struct ifx_spi_device *ifx_dev = from_timer(ifx_dev, t, spi_timer);
 269
 270	dev_warn(&ifx_dev->spi_dev->dev, "*** SPI Timeout ***");
 271	tty_port_tty_hangup(&ifx_dev->tty_port, false);
 272	mrdy_set_low(ifx_dev);
 273	clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
 274}
 275
 276/* char/tty operations */
 277
 278/**
 279 *	ifx_spi_tiocmget	-	get modem lines
 280 *	@tty: our tty device
 281 *	@filp: file handle issuing the request
 282 *
 283 *	Map the signal state into Linux modem flags and report the value
 284 *	in Linux terms
 285 */
 286static int ifx_spi_tiocmget(struct tty_struct *tty)
 287{
 288	unsigned int value;
 289	struct ifx_spi_device *ifx_dev = tty->driver_data;
 290
 291	value =
 292	(test_bit(IFX_SPI_RTS, &ifx_dev->signal_state) ? TIOCM_RTS : 0) |
 293	(test_bit(IFX_SPI_DTR, &ifx_dev->signal_state) ? TIOCM_DTR : 0) |
 294	(test_bit(IFX_SPI_CTS, &ifx_dev->signal_state) ? TIOCM_CTS : 0) |
 295	(test_bit(IFX_SPI_DSR, &ifx_dev->signal_state) ? TIOCM_DSR : 0) |
 296	(test_bit(IFX_SPI_DCD, &ifx_dev->signal_state) ? TIOCM_CAR : 0) |
 297	(test_bit(IFX_SPI_RI, &ifx_dev->signal_state) ? TIOCM_RNG : 0);
 298	return value;
 299}
 300
 301/**
 302 *	ifx_spi_tiocmset	-	set modem bits
 303 *	@tty: the tty structure
 304 *	@set: bits to set
 305 *	@clear: bits to clear
 306 *
 307 *	The IFX6x60 only supports DTR and RTS. Set them accordingly
 308 *	and flag that an update to the modem is needed.
 309 *
 310 *	FIXME: do we need to kick the tranfers when we do this ?
 311 */
 312static int ifx_spi_tiocmset(struct tty_struct *tty,
 313			    unsigned int set, unsigned int clear)
 314{
 315	struct ifx_spi_device *ifx_dev = tty->driver_data;
 316
 317	if (set & TIOCM_RTS)
 318		set_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
 319	if (set & TIOCM_DTR)
 320		set_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
 321	if (clear & TIOCM_RTS)
 322		clear_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
 323	if (clear & TIOCM_DTR)
 324		clear_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
 325
 326	set_bit(IFX_SPI_UPDATE, &ifx_dev->signal_state);
 327	return 0;
 328}
 329
 330/**
 331 *	ifx_spi_open	-	called on tty open
 332 *	@tty: our tty device
 333 *	@filp: file handle being associated with the tty
 334 *
 335 *	Open the tty interface. We let the tty_port layer do all the work
 336 *	for us.
 337 *
 338 *	FIXME: Remove single device assumption and saved_ifx_dev
 339 */
 340static int ifx_spi_open(struct tty_struct *tty, struct file *filp)
 341{
 342	return tty_port_open(&saved_ifx_dev->tty_port, tty, filp);
 343}
 344
 345/**
 346 *	ifx_spi_close	-	called when our tty closes
 347 *	@tty: the tty being closed
 348 *	@filp: the file handle being closed
 349 *
 350 *	Perform the close of the tty. We use the tty_port layer to do all
 351 *	our hard work.
 352 */
 353static void ifx_spi_close(struct tty_struct *tty, struct file *filp)
 354{
 355	struct ifx_spi_device *ifx_dev = tty->driver_data;
 356	tty_port_close(&ifx_dev->tty_port, tty, filp);
 357	/* FIXME: should we do an ifx_spi_reset here ? */
 358}
 359
 360/**
 361 *	ifx_decode_spi_header	-	decode received header
 362 *	@buffer: the received data
 363 *	@length: decoded length
 364 *	@more: decoded more flag
 365 *	@received_cts: status of cts we received
 366 *
 367 *	Note how received_cts is handled -- if header is all F it is left
 368 *	the same as it was, if header is all 0 it is set to 0 otherwise it is
 369 *	taken from the incoming header.
 370 *
 371 *	FIXME: endianness
 372 */
 373static int ifx_spi_decode_spi_header(unsigned char *buffer, int *length,
 374			unsigned char *more, unsigned char *received_cts)
 375{
 376	u16 h1;
 377	u16 h2;
 378	u16 *in_buffer = (u16 *)buffer;
 379
 380	h1 = *in_buffer;
 381	h2 = *(in_buffer+1);
 382
 383	if (h1 == 0 && h2 == 0) {
 384		*received_cts = 0;
 385		*more = 0;
 386		return IFX_SPI_HEADER_0;
 387	} else if (h1 == 0xffff && h2 == 0xffff) {
 388		*more = 0;
 389		/* spi_slave_cts remains as it was */
 390		return IFX_SPI_HEADER_F;
 391	}
 392
 393	*length = h1 & 0xfff;	/* upper bits of byte are flags */
 394	*more = (buffer[1] >> IFX_SPI_MORE_BIT) & 1;
 395	*received_cts = (buffer[3] >> IFX_SPI_CTS_BIT) & 1;
 396	return 0;
 397}
 398
 399/**
 400 *	ifx_setup_spi_header	-	set header fields
 401 *	@txbuffer: pointer to start of SPI buffer
 402 *	@tx_count: bytes
 403 *	@more: indicate if more to follow
 404 *
 405 *	Format up an SPI header for a transfer
 406 *
 407 *	FIXME: endianness?
 408 */
 409static void ifx_spi_setup_spi_header(unsigned char *txbuffer, int tx_count,
 410					unsigned char more)
 411{
 412	*(u16 *)(txbuffer) = tx_count;
 413	*(u16 *)(txbuffer+2) = IFX_SPI_PAYLOAD_SIZE;
 414	txbuffer[1] |= (more << IFX_SPI_MORE_BIT) & IFX_SPI_MORE_MASK;
 415}
 416
 417/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 418 *	ifx_spi_prepare_tx_buffer	-	prepare transmit frame
 419 *	@ifx_dev: our SPI device
 420 *
 421 *	The transmit buffr needs a header and various other bits of
 422 *	information followed by as much data as we can pull from the FIFO
 423 *	and transfer. This function formats up a suitable buffer in the
 424 *	ifx_dev->tx_buffer
 425 *
 426 *	FIXME: performance - should we wake the tty when the queue is half
 427 *			     empty ?
 428 */
 429static int ifx_spi_prepare_tx_buffer(struct ifx_spi_device *ifx_dev)
 430{
 431	int temp_count;
 432	int queue_length;
 433	int tx_count;
 434	unsigned char *tx_buffer;
 435
 436	tx_buffer = ifx_dev->tx_buffer;
 
 437
 438	/* make room for required SPI header */
 439	tx_buffer += IFX_SPI_HEADER_OVERHEAD;
 440	tx_count = IFX_SPI_HEADER_OVERHEAD;
 441
 442	/* clear to signal no more data if this turns out to be the
 443	 * last buffer sent in a sequence */
 444	ifx_dev->spi_more = 0;
 445
 446	/* if modem cts is set, just send empty buffer */
 447	if (!ifx_dev->spi_slave_cts) {
 448		/* see if there's tx data */
 449		queue_length = kfifo_len(&ifx_dev->tx_fifo);
 450		if (queue_length != 0) {
 451			/* data to mux -- see if there's room for it */
 452			temp_count = min(queue_length, IFX_SPI_PAYLOAD_SIZE);
 453			temp_count = kfifo_out_locked(&ifx_dev->tx_fifo,
 454					tx_buffer, temp_count,
 455					&ifx_dev->fifo_lock);
 456
 457			/* update buffer pointer and data count in message */
 458			tx_buffer += temp_count;
 459			tx_count += temp_count;
 460			if (temp_count == queue_length)
 461				/* poke port to get more data */
 462				tty_port_tty_wakeup(&ifx_dev->tty_port);
 463			else /* more data in port, use next SPI message */
 464				ifx_dev->spi_more = 1;
 465		}
 466	}
 467	/* have data and info for header -- set up SPI header in buffer */
 468	/* spi header needs payload size, not entire buffer size */
 469	ifx_spi_setup_spi_header(ifx_dev->tx_buffer,
 470					tx_count-IFX_SPI_HEADER_OVERHEAD,
 471					ifx_dev->spi_more);
 472	/* swap actual data in the buffer */
 473	ifx_dev->swap_buf((ifx_dev->tx_buffer), tx_count,
 474		&ifx_dev->tx_buffer[IFX_SPI_TRANSFER_SIZE]);
 475	return tx_count;
 476}
 477
 478/**
 479 *	ifx_spi_write		-	line discipline write
 480 *	@tty: our tty device
 481 *	@buf: pointer to buffer to write (kernel space)
 482 *	@count: size of buffer
 483 *
 484 *	Write the characters we have been given into the FIFO. If the device
 485 *	is not active then activate it, when the SRDY line is asserted back
 486 *	this will commence I/O
 487 */
 488static int ifx_spi_write(struct tty_struct *tty, const unsigned char *buf,
 489			 int count)
 490{
 491	struct ifx_spi_device *ifx_dev = tty->driver_data;
 492	unsigned char *tmp_buf = (unsigned char *)buf;
 493	unsigned long flags;
 494	bool is_fifo_empty;
 495	int tx_count;
 496
 497	spin_lock_irqsave(&ifx_dev->fifo_lock, flags);
 498	is_fifo_empty = kfifo_is_empty(&ifx_dev->tx_fifo);
 499	tx_count = kfifo_in(&ifx_dev->tx_fifo, tmp_buf, count);
 500	spin_unlock_irqrestore(&ifx_dev->fifo_lock, flags);
 501	if (is_fifo_empty)
 502		mrdy_assert(ifx_dev);
 503
 504	return tx_count;
 505}
 506
 507/**
 508 *	ifx_spi_chars_in_buffer	-	line discipline helper
 509 *	@tty: our tty device
 510 *
 511 *	Report how much data we can accept before we drop bytes. As we use
 512 *	a simple FIFO this is nice and easy.
 513 */
 514static int ifx_spi_write_room(struct tty_struct *tty)
 515{
 516	struct ifx_spi_device *ifx_dev = tty->driver_data;
 517	return IFX_SPI_FIFO_SIZE - kfifo_len(&ifx_dev->tx_fifo);
 518}
 519
 520/**
 521 *	ifx_spi_chars_in_buffer	-	line discipline helper
 522 *	@tty: our tty device
 523 *
 524 *	Report how many characters we have buffered. In our case this is the
 525 *	number of bytes sitting in our transmit FIFO.
 526 */
 527static int ifx_spi_chars_in_buffer(struct tty_struct *tty)
 528{
 529	struct ifx_spi_device *ifx_dev = tty->driver_data;
 530	return kfifo_len(&ifx_dev->tx_fifo);
 531}
 532
 533/**
 534 *	ifx_port_hangup
 535 *	@port: our tty port
 536 *
 537 *	tty port hang up. Called when tty_hangup processing is invoked either
 538 *	by loss of carrier, or by software (eg vhangup). Serialized against
 539 *	activate/shutdown by the tty layer.
 540 */
 541static void ifx_spi_hangup(struct tty_struct *tty)
 542{
 543	struct ifx_spi_device *ifx_dev = tty->driver_data;
 544	tty_port_hangup(&ifx_dev->tty_port);
 545}
 546
 547/**
 548 *	ifx_port_activate
 549 *	@port: our tty port
 550 *
 551 *	tty port activate method - called for first open. Serialized
 552 *	with hangup and shutdown by the tty layer.
 553 */
 554static int ifx_port_activate(struct tty_port *port, struct tty_struct *tty)
 555{
 556	struct ifx_spi_device *ifx_dev =
 557		container_of(port, struct ifx_spi_device, tty_port);
 558
 559	/* clear any old data; can't do this in 'close' */
 560	kfifo_reset(&ifx_dev->tx_fifo);
 561
 562	/* clear any flag which may be set in port shutdown procedure */
 563	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
 564	clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
 565
 566	/* put port data into this tty */
 567	tty->driver_data = ifx_dev;
 568
 569	/* allows flip string push from int context */
 570	port->low_latency = 1;
 571
 572	/* set flag to allows data transfer */
 573	set_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
 574
 575	return 0;
 576}
 577
 578/**
 579 *	ifx_port_shutdown
 580 *	@port: our tty port
 581 *
 582 *	tty port shutdown method - called for last port close. Serialized
 583 *	with hangup and activate by the tty layer.
 584 */
 585static void ifx_port_shutdown(struct tty_port *port)
 586{
 587	struct ifx_spi_device *ifx_dev =
 588		container_of(port, struct ifx_spi_device, tty_port);
 589
 590	clear_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
 591	mrdy_set_low(ifx_dev);
 592	del_timer(&ifx_dev->spi_timer);
 593	clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
 594	tasklet_kill(&ifx_dev->io_work_tasklet);
 595}
 596
 597static const struct tty_port_operations ifx_tty_port_ops = {
 598	.activate = ifx_port_activate,
 599	.shutdown = ifx_port_shutdown,
 600};
 601
 602static const struct tty_operations ifx_spi_serial_ops = {
 603	.open = ifx_spi_open,
 604	.close = ifx_spi_close,
 605	.write = ifx_spi_write,
 606	.hangup = ifx_spi_hangup,
 607	.write_room = ifx_spi_write_room,
 608	.chars_in_buffer = ifx_spi_chars_in_buffer,
 609	.tiocmget = ifx_spi_tiocmget,
 610	.tiocmset = ifx_spi_tiocmset,
 611};
 612
 613/**
 614 *	ifx_spi_insert_fip_string	-	queue received data
 615 *	@ifx_ser: our SPI device
 616 *	@chars: buffer we have received
 617 *	@size: number of chars reeived
 618 *
 619 *	Queue bytes to the tty assuming the tty side is currently open. If
 620 *	not the discard the data.
 621 */
 622static void ifx_spi_insert_flip_string(struct ifx_spi_device *ifx_dev,
 623				    unsigned char *chars, size_t size)
 624{
 625	tty_insert_flip_string(&ifx_dev->tty_port, chars, size);
 626	tty_flip_buffer_push(&ifx_dev->tty_port);
 
 
 
 
 627}
 628
 629/**
 630 *	ifx_spi_complete	-	SPI transfer completed
 631 *	@ctx: our SPI device
 632 *
 633 *	An SPI transfer has completed. Process any received data and kick off
 634 *	any further transmits we can commence.
 635 */
 636static void ifx_spi_complete(void *ctx)
 637{
 638	struct ifx_spi_device *ifx_dev = ctx;
 
 
 639	int length;
 640	int actual_length;
 641	unsigned char more = 0;
 642	unsigned char cts;
 643	int local_write_pending = 0;
 644	int queue_length;
 645	int srdy;
 646	int decode_result;
 647
 648	mrdy_set_low(ifx_dev);
 649
 650	if (!ifx_dev->spi_msg.status) {
 651		/* check header validity, get comm flags */
 652		ifx_dev->swap_buf(ifx_dev->rx_buffer, IFX_SPI_HEADER_OVERHEAD,
 653			&ifx_dev->rx_buffer[IFX_SPI_HEADER_OVERHEAD]);
 654		decode_result = ifx_spi_decode_spi_header(ifx_dev->rx_buffer,
 655				&length, &more, &cts);
 656		if (decode_result == IFX_SPI_HEADER_0) {
 657			dev_dbg(&ifx_dev->spi_dev->dev,
 658				"ignore input: invalid header 0");
 659			ifx_dev->spi_slave_cts = 0;
 660			goto complete_exit;
 661		} else if (decode_result == IFX_SPI_HEADER_F) {
 662			dev_dbg(&ifx_dev->spi_dev->dev,
 663				"ignore input: invalid header F");
 664			goto complete_exit;
 665		}
 666
 667		ifx_dev->spi_slave_cts = cts;
 668
 669		actual_length = min((unsigned int)length,
 670					ifx_dev->spi_msg.actual_length);
 671		ifx_dev->swap_buf(
 672			(ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD),
 673			 actual_length,
 674			 &ifx_dev->rx_buffer[IFX_SPI_TRANSFER_SIZE]);
 675		ifx_spi_insert_flip_string(
 676			ifx_dev,
 677			ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD,
 678			(size_t)actual_length);
 679	} else {
 680		more = 0;
 681		dev_dbg(&ifx_dev->spi_dev->dev, "SPI transfer error %d",
 682		       ifx_dev->spi_msg.status);
 683	}
 684
 685complete_exit:
 686	if (ifx_dev->write_pending) {
 687		ifx_dev->write_pending = 0;
 688		local_write_pending = 1;
 689	}
 690
 691	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &(ifx_dev->flags));
 692
 693	queue_length = kfifo_len(&ifx_dev->tx_fifo);
 694	srdy = gpio_get_value(ifx_dev->gpio.srdy);
 695	if (!srdy)
 696		ifx_spi_power_state_clear(ifx_dev, IFX_SPI_POWER_SRDY);
 697
 698	/* schedule output if there is more to do */
 699	if (test_and_clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags))
 700		tasklet_schedule(&ifx_dev->io_work_tasklet);
 701	else {
 702		if (more || ifx_dev->spi_more || queue_length > 0 ||
 703			local_write_pending) {
 704			if (ifx_dev->spi_slave_cts) {
 705				if (more)
 706					mrdy_assert(ifx_dev);
 707			} else
 708				mrdy_assert(ifx_dev);
 709		} else {
 710			/*
 711			 * poke line discipline driver if any for more data
 712			 * may or may not get more data to write
 713			 * for now, say not busy
 714			 */
 715			ifx_spi_power_state_clear(ifx_dev,
 716						  IFX_SPI_POWER_DATA_PENDING);
 717			tty_port_tty_wakeup(&ifx_dev->tty_port);
 
 
 
 
 
 
 
 
 718		}
 719	}
 720}
 721
 722/**
 723 *	ifx_spio_io		-	I/O tasklet
 724 *	@data: our SPI device
 725 *
 726 *	Queue data for transmission if possible and then kick off the
 727 *	transfer.
 728 */
 729static void ifx_spi_io(unsigned long data)
 730{
 731	int retval;
 732	struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *) data;
 733
 734	if (!test_and_set_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags) &&
 735		test_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags)) {
 736		if (ifx_dev->gpio.unack_srdy_int_nb > 0)
 737			ifx_dev->gpio.unack_srdy_int_nb--;
 738
 739		ifx_spi_prepare_tx_buffer(ifx_dev);
 740
 741		spi_message_init(&ifx_dev->spi_msg);
 742		INIT_LIST_HEAD(&ifx_dev->spi_msg.queue);
 743
 744		ifx_dev->spi_msg.context = ifx_dev;
 745		ifx_dev->spi_msg.complete = ifx_spi_complete;
 746
 747		/* set up our spi transfer */
 748		/* note len is BYTES, not transfers */
 749		ifx_dev->spi_xfer.len = IFX_SPI_TRANSFER_SIZE;
 750		ifx_dev->spi_xfer.cs_change = 0;
 751		ifx_dev->spi_xfer.speed_hz = ifx_dev->spi_dev->max_speed_hz;
 752		/* ifx_dev->spi_xfer.speed_hz = 390625; */
 753		ifx_dev->spi_xfer.bits_per_word =
 754			ifx_dev->spi_dev->bits_per_word;
 755
 756		ifx_dev->spi_xfer.tx_buf = ifx_dev->tx_buffer;
 757		ifx_dev->spi_xfer.rx_buf = ifx_dev->rx_buffer;
 758
 759		/*
 760		 * setup dma pointers
 761		 */
 762		if (ifx_dev->use_dma) {
 763			ifx_dev->spi_msg.is_dma_mapped = 1;
 764			ifx_dev->tx_dma = ifx_dev->tx_bus;
 765			ifx_dev->rx_dma = ifx_dev->rx_bus;
 766			ifx_dev->spi_xfer.tx_dma = ifx_dev->tx_dma;
 767			ifx_dev->spi_xfer.rx_dma = ifx_dev->rx_dma;
 768		} else {
 769			ifx_dev->spi_msg.is_dma_mapped = 0;
 770			ifx_dev->tx_dma = (dma_addr_t)0;
 771			ifx_dev->rx_dma = (dma_addr_t)0;
 772			ifx_dev->spi_xfer.tx_dma = (dma_addr_t)0;
 773			ifx_dev->spi_xfer.rx_dma = (dma_addr_t)0;
 774		}
 775
 776		spi_message_add_tail(&ifx_dev->spi_xfer, &ifx_dev->spi_msg);
 777
 778		/* Assert MRDY. This may have already been done by the write
 779		 * routine.
 780		 */
 781		mrdy_assert(ifx_dev);
 782
 783		retval = spi_async(ifx_dev->spi_dev, &ifx_dev->spi_msg);
 784		if (retval) {
 785			clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS,
 786				  &ifx_dev->flags);
 787			tasklet_schedule(&ifx_dev->io_work_tasklet);
 788			return;
 789		}
 790	} else
 791		ifx_dev->write_pending = 1;
 792}
 793
 794/**
 795 *	ifx_spi_free_port	-	free up the tty side
 796 *	@ifx_dev: IFX device going away
 797 *
 798 *	Unregister and free up a port when the device goes away
 799 */
 800static void ifx_spi_free_port(struct ifx_spi_device *ifx_dev)
 801{
 802	if (ifx_dev->tty_dev)
 803		tty_unregister_device(tty_drv, ifx_dev->minor);
 804	tty_port_destroy(&ifx_dev->tty_port);
 805	kfifo_free(&ifx_dev->tx_fifo);
 806}
 807
 808/**
 809 *	ifx_spi_create_port	-	create a new port
 810 *	@ifx_dev: our spi device
 811 *
 812 *	Allocate and initialise the tty port that goes with this interface
 813 *	and add it to the tty layer so that it can be opened.
 814 */
 815static int ifx_spi_create_port(struct ifx_spi_device *ifx_dev)
 816{
 817	int ret = 0;
 818	struct tty_port *pport = &ifx_dev->tty_port;
 819
 820	spin_lock_init(&ifx_dev->fifo_lock);
 821	lockdep_set_class_and_subclass(&ifx_dev->fifo_lock,
 822		&ifx_spi_key, 0);
 823
 824	if (kfifo_alloc(&ifx_dev->tx_fifo, IFX_SPI_FIFO_SIZE, GFP_KERNEL)) {
 825		ret = -ENOMEM;
 826		goto error_ret;
 827	}
 828
 829	tty_port_init(pport);
 830	pport->ops = &ifx_tty_port_ops;
 831	ifx_dev->minor = IFX_SPI_TTY_ID;
 832	ifx_dev->tty_dev = tty_port_register_device(pport, tty_drv,
 833			ifx_dev->minor, &ifx_dev->spi_dev->dev);
 834	if (IS_ERR(ifx_dev->tty_dev)) {
 835		dev_dbg(&ifx_dev->spi_dev->dev,
 836			"%s: registering tty device failed", __func__);
 837		ret = PTR_ERR(ifx_dev->tty_dev);
 838		goto error_port;
 839	}
 840	return 0;
 841
 842error_port:
 843	tty_port_destroy(pport);
 844error_ret:
 845	ifx_spi_free_port(ifx_dev);
 846	return ret;
 847}
 848
 849/**
 850 *	ifx_spi_handle_srdy		-	handle SRDY
 851 *	@ifx_dev: device asserting SRDY
 852 *
 853 *	Check our device state and see what we need to kick off when SRDY
 854 *	is asserted. This usually means killing the timer and firing off the
 855 *	I/O processing.
 856 */
 857static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev)
 858{
 859	if (test_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags)) {
 860		del_timer(&ifx_dev->spi_timer);
 861		clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
 862	}
 863
 864	ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_SRDY);
 865
 866	if (!test_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags))
 867		tasklet_schedule(&ifx_dev->io_work_tasklet);
 868	else
 869		set_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
 870}
 871
 872/**
 873 *	ifx_spi_srdy_interrupt	-	SRDY asserted
 874 *	@irq: our IRQ number
 875 *	@dev: our ifx device
 876 *
 877 *	The modem asserted SRDY. Handle the srdy event
 878 */
 879static irqreturn_t ifx_spi_srdy_interrupt(int irq, void *dev)
 880{
 881	struct ifx_spi_device *ifx_dev = dev;
 882	ifx_dev->gpio.unack_srdy_int_nb++;
 883	ifx_spi_handle_srdy(ifx_dev);
 884	return IRQ_HANDLED;
 885}
 886
 887/**
 888 *	ifx_spi_reset_interrupt	-	Modem has changed reset state
 889 *	@irq: interrupt number
 890 *	@dev: our device pointer
 891 *
 892 *	The modem has either entered or left reset state. Check the GPIO
 893 *	line to see which.
 894 *
 895 *	FIXME: review locking on MR_INPROGRESS versus
 896 *	parallel unsolicited reset/solicited reset
 897 */
 898static irqreturn_t ifx_spi_reset_interrupt(int irq, void *dev)
 899{
 900	struct ifx_spi_device *ifx_dev = dev;
 901	int val = gpio_get_value(ifx_dev->gpio.reset_out);
 902	int solreset = test_bit(MR_START, &ifx_dev->mdm_reset_state);
 903
 904	if (val == 0) {
 905		/* entered reset */
 906		set_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
 907		if (!solreset) {
 908			/* unsolicited reset  */
 909			tty_port_tty_hangup(&ifx_dev->tty_port, false);
 910		}
 911	} else {
 912		/* exited reset */
 913		clear_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
 914		if (solreset) {
 915			set_bit(MR_COMPLETE, &ifx_dev->mdm_reset_state);
 916			wake_up(&ifx_dev->mdm_reset_wait);
 917		}
 918	}
 919	return IRQ_HANDLED;
 920}
 921
 922/**
 923 *	ifx_spi_free_device - free device
 924 *	@ifx_dev: device to free
 925 *
 926 *	Free the IFX device
 927 */
 928static void ifx_spi_free_device(struct ifx_spi_device *ifx_dev)
 929{
 930	ifx_spi_free_port(ifx_dev);
 931	dma_free_coherent(&ifx_dev->spi_dev->dev,
 932				IFX_SPI_TRANSFER_SIZE,
 933				ifx_dev->tx_buffer,
 934				ifx_dev->tx_bus);
 935	dma_free_coherent(&ifx_dev->spi_dev->dev,
 936				IFX_SPI_TRANSFER_SIZE,
 937				ifx_dev->rx_buffer,
 938				ifx_dev->rx_bus);
 939}
 940
 941/**
 942 *	ifx_spi_reset	-	reset modem
 943 *	@ifx_dev: modem to reset
 944 *
 945 *	Perform a reset on the modem
 946 */
 947static int ifx_spi_reset(struct ifx_spi_device *ifx_dev)
 948{
 949	int ret;
 950	/*
 951	 * set up modem power, reset
 952	 *
 953	 * delays are required on some platforms for the modem
 954	 * to reset properly
 955	 */
 956	set_bit(MR_START, &ifx_dev->mdm_reset_state);
 957	gpio_set_value(ifx_dev->gpio.po, 0);
 958	gpio_set_value(ifx_dev->gpio.reset, 0);
 959	msleep(25);
 960	gpio_set_value(ifx_dev->gpio.reset, 1);
 961	msleep(1);
 962	gpio_set_value(ifx_dev->gpio.po, 1);
 963	msleep(1);
 964	gpio_set_value(ifx_dev->gpio.po, 0);
 965	ret = wait_event_timeout(ifx_dev->mdm_reset_wait,
 966				 test_bit(MR_COMPLETE,
 967					  &ifx_dev->mdm_reset_state),
 968				 IFX_RESET_TIMEOUT);
 969	if (!ret)
 970		dev_warn(&ifx_dev->spi_dev->dev, "Modem reset timeout: (state:%lx)",
 971			 ifx_dev->mdm_reset_state);
 972
 973	ifx_dev->mdm_reset_state = 0;
 974	return ret;
 975}
 976
 977/**
 978 *	ifx_spi_spi_probe	-	probe callback
 979 *	@spi: our possible matching SPI device
 980 *
 981 *	Probe for a 6x60 modem on SPI bus. Perform any needed device and
 982 *	GPIO setup.
 983 *
 984 *	FIXME:
 985 *	-	Support for multiple devices
 986 *	-	Split out MID specific GPIO handling eventually
 987 */
 988
 989static int ifx_spi_spi_probe(struct spi_device *spi)
 990{
 991	int ret;
 992	int srdy;
 993	struct ifx_modem_platform_data *pl_data;
 994	struct ifx_spi_device *ifx_dev;
 995
 996	if (saved_ifx_dev) {
 997		dev_dbg(&spi->dev, "ignoring subsequent detection");
 998		return -ENODEV;
 999	}
1000
1001	pl_data = dev_get_platdata(&spi->dev);
1002	if (!pl_data) {
1003		dev_err(&spi->dev, "missing platform data!");
1004		return -ENODEV;
1005	}
1006
1007	/* initialize structure to hold our device variables */
1008	ifx_dev = kzalloc(sizeof(struct ifx_spi_device), GFP_KERNEL);
1009	if (!ifx_dev) {
1010		dev_err(&spi->dev, "spi device allocation failed");
1011		return -ENOMEM;
1012	}
1013	saved_ifx_dev = ifx_dev;
1014	ifx_dev->spi_dev = spi;
1015	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
1016	spin_lock_init(&ifx_dev->write_lock);
1017	spin_lock_init(&ifx_dev->power_lock);
1018	ifx_dev->power_status = 0;
1019	timer_setup(&ifx_dev->spi_timer, ifx_spi_timeout, 0);
 
 
1020	ifx_dev->modem = pl_data->modem_type;
1021	ifx_dev->use_dma = pl_data->use_dma;
1022	ifx_dev->max_hz = pl_data->max_hz;
1023	/* initialize spi mode, etc */
1024	spi->max_speed_hz = ifx_dev->max_hz;
1025	spi->mode = IFX_SPI_MODE | (SPI_LOOP & spi->mode);
1026	spi->bits_per_word = spi_bpw;
1027	ret = spi_setup(spi);
1028	if (ret) {
1029		dev_err(&spi->dev, "SPI setup wasn't successful %d", ret);
1030		kfree(ifx_dev);
1031		return -ENODEV;
1032	}
1033
1034	/* init swap_buf function according to word width configuration */
1035	if (spi->bits_per_word == 32)
1036		ifx_dev->swap_buf = swap_buf_32;
1037	else if (spi->bits_per_word == 16)
1038		ifx_dev->swap_buf = swap_buf_16;
1039	else
1040		ifx_dev->swap_buf = swap_buf_8;
1041
1042	/* ensure SPI protocol flags are initialized to enable transfer */
1043	ifx_dev->spi_more = 0;
1044	ifx_dev->spi_slave_cts = 0;
1045
1046	/*initialize transfer and dma buffers */
1047	ifx_dev->tx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1048				IFX_SPI_TRANSFER_SIZE,
1049				&ifx_dev->tx_bus,
1050				GFP_KERNEL);
1051	if (!ifx_dev->tx_buffer) {
1052		dev_err(&spi->dev, "DMA-TX buffer allocation failed");
1053		ret = -ENOMEM;
1054		goto error_ret;
1055	}
1056	ifx_dev->rx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1057				IFX_SPI_TRANSFER_SIZE,
1058				&ifx_dev->rx_bus,
1059				GFP_KERNEL);
1060	if (!ifx_dev->rx_buffer) {
1061		dev_err(&spi->dev, "DMA-RX buffer allocation failed");
1062		ret = -ENOMEM;
1063		goto error_ret;
1064	}
1065
1066	/* initialize waitq for modem reset */
1067	init_waitqueue_head(&ifx_dev->mdm_reset_wait);
1068
1069	spi_set_drvdata(spi, ifx_dev);
1070	tasklet_init(&ifx_dev->io_work_tasklet, ifx_spi_io,
1071						(unsigned long)ifx_dev);
1072
1073	set_bit(IFX_SPI_STATE_PRESENT, &ifx_dev->flags);
1074
1075	/* create our tty port */
1076	ret = ifx_spi_create_port(ifx_dev);
1077	if (ret != 0) {
1078		dev_err(&spi->dev, "create default tty port failed");
1079		goto error_ret;
1080	}
1081
1082	ifx_dev->gpio.reset = pl_data->rst_pmu;
1083	ifx_dev->gpio.po = pl_data->pwr_on;
1084	ifx_dev->gpio.mrdy = pl_data->mrdy;
1085	ifx_dev->gpio.srdy = pl_data->srdy;
1086	ifx_dev->gpio.reset_out = pl_data->rst_out;
1087
1088	dev_info(&spi->dev, "gpios %d, %d, %d, %d, %d",
1089		 ifx_dev->gpio.reset, ifx_dev->gpio.po, ifx_dev->gpio.mrdy,
1090		 ifx_dev->gpio.srdy, ifx_dev->gpio.reset_out);
1091
1092	/* Configure gpios */
1093	ret = gpio_request(ifx_dev->gpio.reset, "ifxModem");
1094	if (ret < 0) {
1095		dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET)",
1096			ifx_dev->gpio.reset);
1097		goto error_ret;
1098	}
1099	ret += gpio_direction_output(ifx_dev->gpio.reset, 0);
1100	ret += gpio_export(ifx_dev->gpio.reset, 1);
1101	if (ret) {
1102		dev_err(&spi->dev, "Unable to configure GPIO%d (RESET)",
1103			ifx_dev->gpio.reset);
1104		ret = -EBUSY;
1105		goto error_ret2;
1106	}
1107
1108	ret = gpio_request(ifx_dev->gpio.po, "ifxModem");
1109	ret += gpio_direction_output(ifx_dev->gpio.po, 0);
1110	ret += gpio_export(ifx_dev->gpio.po, 1);
1111	if (ret) {
1112		dev_err(&spi->dev, "Unable to configure GPIO%d (ON)",
1113			ifx_dev->gpio.po);
1114		ret = -EBUSY;
1115		goto error_ret3;
1116	}
1117
1118	ret = gpio_request(ifx_dev->gpio.mrdy, "ifxModem");
1119	if (ret < 0) {
1120		dev_err(&spi->dev, "Unable to allocate GPIO%d (MRDY)",
1121			ifx_dev->gpio.mrdy);
1122		goto error_ret3;
1123	}
1124	ret += gpio_export(ifx_dev->gpio.mrdy, 1);
1125	ret += gpio_direction_output(ifx_dev->gpio.mrdy, 0);
1126	if (ret) {
1127		dev_err(&spi->dev, "Unable to configure GPIO%d (MRDY)",
1128			ifx_dev->gpio.mrdy);
1129		ret = -EBUSY;
1130		goto error_ret4;
1131	}
1132
1133	ret = gpio_request(ifx_dev->gpio.srdy, "ifxModem");
1134	if (ret < 0) {
1135		dev_err(&spi->dev, "Unable to allocate GPIO%d (SRDY)",
1136			ifx_dev->gpio.srdy);
1137		ret = -EBUSY;
1138		goto error_ret4;
1139	}
1140	ret += gpio_export(ifx_dev->gpio.srdy, 1);
1141	ret += gpio_direction_input(ifx_dev->gpio.srdy);
1142	if (ret) {
1143		dev_err(&spi->dev, "Unable to configure GPIO%d (SRDY)",
1144			ifx_dev->gpio.srdy);
1145		ret = -EBUSY;
1146		goto error_ret5;
1147	}
1148
1149	ret = gpio_request(ifx_dev->gpio.reset_out, "ifxModem");
1150	if (ret < 0) {
1151		dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET_OUT)",
1152			ifx_dev->gpio.reset_out);
1153		goto error_ret5;
1154	}
1155	ret += gpio_export(ifx_dev->gpio.reset_out, 1);
1156	ret += gpio_direction_input(ifx_dev->gpio.reset_out);
1157	if (ret) {
1158		dev_err(&spi->dev, "Unable to configure GPIO%d (RESET_OUT)",
1159			ifx_dev->gpio.reset_out);
1160		ret = -EBUSY;
1161		goto error_ret6;
1162	}
1163
1164	ret = request_irq(gpio_to_irq(ifx_dev->gpio.reset_out),
1165			  ifx_spi_reset_interrupt,
1166			  IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, DRVNAME,
1167			  ifx_dev);
1168	if (ret) {
1169		dev_err(&spi->dev, "Unable to get irq %x\n",
1170			gpio_to_irq(ifx_dev->gpio.reset_out));
1171		goto error_ret6;
1172	}
1173
1174	ret = ifx_spi_reset(ifx_dev);
1175
1176	ret = request_irq(gpio_to_irq(ifx_dev->gpio.srdy),
1177			  ifx_spi_srdy_interrupt, IRQF_TRIGGER_RISING, DRVNAME,
1178			  ifx_dev);
 
1179	if (ret) {
1180		dev_err(&spi->dev, "Unable to get irq %x",
1181			gpio_to_irq(ifx_dev->gpio.srdy));
1182		goto error_ret7;
1183	}
1184
1185	/* set pm runtime power state and register with power system */
1186	pm_runtime_set_active(&spi->dev);
1187	pm_runtime_enable(&spi->dev);
1188
1189	/* handle case that modem is already signaling SRDY */
1190	/* no outgoing tty open at this point, this just satisfies the
1191	 * modem's read and should reset communication properly
1192	 */
1193	srdy = gpio_get_value(ifx_dev->gpio.srdy);
1194
1195	if (srdy) {
1196		mrdy_assert(ifx_dev);
1197		ifx_spi_handle_srdy(ifx_dev);
1198	} else
1199		mrdy_set_low(ifx_dev);
1200	return 0;
1201
1202error_ret7:
1203	free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), ifx_dev);
1204error_ret6:
1205	gpio_free(ifx_dev->gpio.srdy);
1206error_ret5:
1207	gpio_free(ifx_dev->gpio.mrdy);
1208error_ret4:
1209	gpio_free(ifx_dev->gpio.reset);
1210error_ret3:
1211	gpio_free(ifx_dev->gpio.po);
1212error_ret2:
1213	gpio_free(ifx_dev->gpio.reset_out);
1214error_ret:
1215	ifx_spi_free_device(ifx_dev);
1216	saved_ifx_dev = NULL;
1217	return ret;
1218}
1219
1220/**
1221 *	ifx_spi_spi_remove	-	SPI device was removed
1222 *	@spi: SPI device
1223 *
1224 *	FIXME: We should be shutting the device down here not in
1225 *	the module unload path.
1226 */
1227
1228static int ifx_spi_spi_remove(struct spi_device *spi)
1229{
1230	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1231	/* stop activity */
1232	tasklet_kill(&ifx_dev->io_work_tasklet);
1233	/* free irq */
1234	free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), ifx_dev);
1235	free_irq(gpio_to_irq(ifx_dev->gpio.srdy), ifx_dev);
1236
1237	gpio_free(ifx_dev->gpio.srdy);
1238	gpio_free(ifx_dev->gpio.mrdy);
1239	gpio_free(ifx_dev->gpio.reset);
1240	gpio_free(ifx_dev->gpio.po);
1241	gpio_free(ifx_dev->gpio.reset_out);
1242
1243	/* free allocations */
1244	ifx_spi_free_device(ifx_dev);
1245
1246	saved_ifx_dev = NULL;
1247	return 0;
1248}
1249
1250/**
1251 *	ifx_spi_spi_shutdown	-	called on SPI shutdown
1252 *	@spi: SPI device
1253 *
1254 *	No action needs to be taken here
1255 */
1256
1257static void ifx_spi_spi_shutdown(struct spi_device *spi)
1258{
1259	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1260
1261	ifx_modem_power_off(ifx_dev);
1262}
1263
1264/*
1265 * various suspends and resumes have nothing to do
1266 * no hardware to save state for
1267 */
1268
1269/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1270 *	ifx_spi_pm_suspend	-	suspend modem on system suspend
1271 *	@dev: device being suspended
1272 *
1273 *	Suspend the modem. No action needed on Intel MID platforms, may
1274 *	need extending for other systems.
1275 */
1276static int ifx_spi_pm_suspend(struct device *dev)
1277{
1278	return 0;
1279}
1280
1281/**
1282 *	ifx_spi_pm_resume	-	resume modem on system resume
1283 *	@dev: device being suspended
1284 *
1285 *	Allow the modem to resume. No action needed.
1286 *
1287 *	FIXME: do we need to reset anything here ?
1288 */
1289static int ifx_spi_pm_resume(struct device *dev)
1290{
1291	return 0;
1292}
1293
1294/**
1295 *	ifx_spi_pm_runtime_resume	-	suspend modem
1296 *	@dev: device being suspended
1297 *
1298 *	Allow the modem to resume. No action needed.
1299 */
1300static int ifx_spi_pm_runtime_resume(struct device *dev)
1301{
1302	return 0;
1303}
1304
1305/**
1306 *	ifx_spi_pm_runtime_suspend	-	suspend modem
1307 *	@dev: device being suspended
1308 *
1309 *	Allow the modem to suspend and thus suspend to continue up the
1310 *	device tree.
1311 */
1312static int ifx_spi_pm_runtime_suspend(struct device *dev)
1313{
1314	return 0;
1315}
1316
1317/**
1318 *	ifx_spi_pm_runtime_idle		-	check if modem idle
1319 *	@dev: our device
1320 *
1321 *	Check conditions and queue runtime suspend if idle.
1322 */
1323static int ifx_spi_pm_runtime_idle(struct device *dev)
1324{
1325	struct spi_device *spi = to_spi_device(dev);
1326	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1327
1328	if (!ifx_dev->power_status)
1329		pm_runtime_suspend(dev);
1330
1331	return 0;
1332}
1333
1334static const struct dev_pm_ops ifx_spi_pm = {
1335	.resume = ifx_spi_pm_resume,
1336	.suspend = ifx_spi_pm_suspend,
1337	.runtime_resume = ifx_spi_pm_runtime_resume,
1338	.runtime_suspend = ifx_spi_pm_runtime_suspend,
1339	.runtime_idle = ifx_spi_pm_runtime_idle
1340};
1341
1342static const struct spi_device_id ifx_id_table[] = {
1343	{"ifx6160", 0},
1344	{"ifx6260", 0},
1345	{ }
1346};
1347MODULE_DEVICE_TABLE(spi, ifx_id_table);
1348
1349/* spi operations */
1350static struct spi_driver ifx_spi_driver = {
1351	.driver = {
1352		.name = DRVNAME,
 
1353		.pm = &ifx_spi_pm,
1354	},
1355	.probe = ifx_spi_spi_probe,
1356	.shutdown = ifx_spi_spi_shutdown,
1357	.remove = ifx_spi_spi_remove,
 
 
1358	.id_table = ifx_id_table
1359};
1360
1361/**
1362 *	ifx_spi_exit	-	module exit
1363 *
1364 *	Unload the module.
1365 */
1366
1367static void __exit ifx_spi_exit(void)
1368{
1369	/* unregister */
1370	spi_unregister_driver(&ifx_spi_driver);
1371	tty_unregister_driver(tty_drv);
1372	put_tty_driver(tty_drv);
1373	unregister_reboot_notifier(&ifx_modem_reboot_notifier_block);
1374}
1375
1376/**
1377 *	ifx_spi_init		-	module entry point
1378 *
1379 *	Initialise the SPI and tty interfaces for the IFX SPI driver
1380 *	We need to initialize upper-edge spi driver after the tty
1381 *	driver because otherwise the spi probe will race
1382 */
1383
1384static int __init ifx_spi_init(void)
1385{
1386	int result;
1387
1388	tty_drv = alloc_tty_driver(1);
1389	if (!tty_drv) {
1390		pr_err("%s: alloc_tty_driver failed", DRVNAME);
1391		return -ENOMEM;
1392	}
1393
 
 
1394	tty_drv->driver_name = DRVNAME;
1395	tty_drv->name = TTYNAME;
1396	tty_drv->minor_start = IFX_SPI_TTY_ID;
 
1397	tty_drv->type = TTY_DRIVER_TYPE_SERIAL;
1398	tty_drv->subtype = SERIAL_TYPE_NORMAL;
1399	tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1400	tty_drv->init_termios = tty_std_termios;
1401
1402	tty_set_operations(tty_drv, &ifx_spi_serial_ops);
1403
1404	result = tty_register_driver(tty_drv);
1405	if (result) {
1406		pr_err("%s: tty_register_driver failed(%d)",
1407			DRVNAME, result);
1408		goto err_free_tty;
 
1409	}
1410
1411	result = spi_register_driver(&ifx_spi_driver);
1412	if (result) {
1413		pr_err("%s: spi_register_driver failed(%d)",
1414			DRVNAME, result);
1415		goto err_unreg_tty;
1416	}
1417
1418	result = register_reboot_notifier(&ifx_modem_reboot_notifier_block);
1419	if (result) {
1420		pr_err("%s: register ifx modem reboot notifier failed(%d)",
1421			DRVNAME, result);
1422		goto err_unreg_spi;
1423	}
1424
1425	return 0;
1426err_unreg_spi:
1427	spi_unregister_driver(&ifx_spi_driver);
1428err_unreg_tty:
1429	tty_unregister_driver(tty_drv);
1430err_free_tty:
1431	put_tty_driver(tty_drv);
1432
1433	return result;
1434}
1435
1436module_init(ifx_spi_init);
1437module_exit(ifx_spi_exit);
1438
1439MODULE_AUTHOR("Intel");
1440MODULE_DESCRIPTION("IFX6x60 spi driver");
1441MODULE_LICENSE("GPL");
1442MODULE_INFO(Version, "0.1-IFX6x60");
v3.1
 
   1/****************************************************************************
   2 *
   3 * Driver for the IFX 6x60 spi modem.
   4 *
   5 * Copyright (C) 2008 Option International
   6 * Copyright (C) 2008 Filip Aben <f.aben@option.com>
   7 *		      Denis Joseph Barrow <d.barow@option.com>
   8 *		      Jan Dumon <j.dumon@option.com>
   9 *
  10 * Copyright (C) 2009, 2010 Intel Corp
  11 * Russ Gorby <russ.gorby@intel.com>
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License version 2 as
  15 * published by the Free Software Foundation.
  16 *
  17 * This program is distributed in the hope that it will be useful,
  18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
  20 * GNU General Public License for more details.
  21 *
  22 * You should have received a copy of the GNU General Public License
  23 * along with this program; if not, write to the Free Software
  24 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
  25 * USA
  26 *
  27 * Driver modified by Intel from Option gtm501l_spi.c
  28 *
  29 * Notes
  30 * o	The driver currently assumes a single device only. If you need to
  31 *	change this then look for saved_ifx_dev and add a device lookup
  32 * o	The driver is intended to be big-endian safe but has never been
  33 *	tested that way (no suitable hardware). There are a couple of FIXME
  34 *	notes by areas that may need addressing
  35 * o	Some of the GPIO naming/setup assumptions may need revisiting if
  36 *	you need to use this driver for another platform.
  37 *
  38 *****************************************************************************/
  39#include <linux/dma-mapping.h>
  40#include <linux/module.h>
  41#include <linux/termios.h>
  42#include <linux/tty.h>
  43#include <linux/device.h>
  44#include <linux/spi/spi.h>
  45#include <linux/kfifo.h>
  46#include <linux/tty_flip.h>
  47#include <linux/timer.h>
  48#include <linux/serial.h>
  49#include <linux/interrupt.h>
  50#include <linux/irq.h>
  51#include <linux/rfkill.h>
  52#include <linux/fs.h>
  53#include <linux/ip.h>
  54#include <linux/dmapool.h>
  55#include <linux/gpio.h>
  56#include <linux/sched.h>
  57#include <linux/time.h>
  58#include <linux/wait.h>
  59#include <linux/pm.h>
  60#include <linux/pm_runtime.h>
  61#include <linux/spi/ifx_modem.h>
  62#include <linux/delay.h>
 
  63
  64#include "ifx6x60.h"
  65
  66#define IFX_SPI_MORE_MASK		0x10
  67#define IFX_SPI_MORE_BIT		12	/* bit position in u16 */
  68#define IFX_SPI_CTS_BIT			13	/* bit position in u16 */
  69#define IFX_SPI_MODE			SPI_MODE_1
  70#define IFX_SPI_TTY_ID			0
  71#define IFX_SPI_TIMEOUT_SEC		2
  72#define IFX_SPI_HEADER_0		(-1)
  73#define IFX_SPI_HEADER_F		(-2)
  74
 
 
 
  75/* forward reference */
  76static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev);
 
 
 
  77
  78/* local variables */
  79static int spi_bpw = 16;		/* 8, 16 or 32 bit word length */
  80static struct tty_driver *tty_drv;
  81static struct ifx_spi_device *saved_ifx_dev;
  82static struct lock_class_key ifx_spi_key;
  83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  84/* GPIO/GPE settings */
  85
  86/**
  87 *	mrdy_set_high		-	set MRDY GPIO
  88 *	@ifx: device we are controlling
  89 *
  90 */
  91static inline void mrdy_set_high(struct ifx_spi_device *ifx)
  92{
  93	gpio_set_value(ifx->gpio.mrdy, 1);
  94}
  95
  96/**
  97 *	mrdy_set_low		-	clear MRDY GPIO
  98 *	@ifx: device we are controlling
  99 *
 100 */
 101static inline void mrdy_set_low(struct ifx_spi_device *ifx)
 102{
 103	gpio_set_value(ifx->gpio.mrdy, 0);
 104}
 105
 106/**
 107 *	ifx_spi_power_state_set
 108 *	@ifx_dev: our SPI device
 109 *	@val: bits to set
 110 *
 111 *	Set bit in power status and signal power system if status becomes non-0
 112 */
 113static void
 114ifx_spi_power_state_set(struct ifx_spi_device *ifx_dev, unsigned char val)
 115{
 116	unsigned long flags;
 117
 118	spin_lock_irqsave(&ifx_dev->power_lock, flags);
 119
 120	/*
 121	 * if power status is already non-0, just update, else
 122	 * tell power system
 123	 */
 124	if (!ifx_dev->power_status)
 125		pm_runtime_get(&ifx_dev->spi_dev->dev);
 126	ifx_dev->power_status |= val;
 127
 128	spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
 129}
 130
 131/**
 132 *	ifx_spi_power_state_clear	-	clear power bit
 133 *	@ifx_dev: our SPI device
 134 *	@val: bits to clear
 135 *
 136 *	clear bit in power status and signal power system if status becomes 0
 137 */
 138static void
 139ifx_spi_power_state_clear(struct ifx_spi_device *ifx_dev, unsigned char val)
 140{
 141	unsigned long flags;
 142
 143	spin_lock_irqsave(&ifx_dev->power_lock, flags);
 144
 145	if (ifx_dev->power_status) {
 146		ifx_dev->power_status &= ~val;
 147		if (!ifx_dev->power_status)
 148			pm_runtime_put(&ifx_dev->spi_dev->dev);
 149	}
 150
 151	spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
 152}
 153
 154/**
 155 *	swap_buf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 156 *	@buf: our buffer
 157 *	@len : number of bytes (not words) in the buffer
 158 *	@end: end of buffer
 159 *
 160 *	Swap the contents of a buffer into big endian format
 161 */
 162static inline void swap_buf(u16 *buf, int len, void *end)
 163{
 164	int n;
 165
 
 166	len = ((len + 1) >> 1);
 167	if ((void *)&buf[len] > end) {
 168		pr_err("swap_buf: swap exceeds boundary (%p > %p)!",
 169		       &buf[len], end);
 170		return;
 171	}
 172	for (n = 0; n < len; n++) {
 173		*buf = cpu_to_be16(*buf);
 174		buf++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 175	}
 176}
 177
 178/**
 179 *	mrdy_assert		-	assert MRDY line
 180 *	@ifx_dev: our SPI device
 181 *
 182 *	Assert mrdy and set timer to wait for SRDY interrupt, if SRDY is low
 183 *	now.
 184 *
 185 *	FIXME: Can SRDY even go high as we are running this code ?
 186 */
 187static void mrdy_assert(struct ifx_spi_device *ifx_dev)
 188{
 189	int val = gpio_get_value(ifx_dev->gpio.srdy);
 190	if (!val) {
 191		if (!test_and_set_bit(IFX_SPI_STATE_TIMER_PENDING,
 192				      &ifx_dev->flags)) {
 193			ifx_dev->spi_timer.expires =
 194				jiffies + IFX_SPI_TIMEOUT_SEC*HZ;
 195			add_timer(&ifx_dev->spi_timer);
 196
 197		}
 198	}
 199	ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_DATA_PENDING);
 200	mrdy_set_high(ifx_dev);
 201}
 202
 203/**
 204 *	ifx_spi_hangup		-	hang up an IFX device
 205 *	@ifx_dev: our SPI device
 206 *
 207 *	Hang up the tty attached to the IFX device if one is currently
 208 *	open. If not take no action
 209 */
 210static void ifx_spi_ttyhangup(struct ifx_spi_device *ifx_dev)
 211{
 212	struct tty_port *pport = &ifx_dev->tty_port;
 213	struct tty_struct *tty = tty_port_tty_get(pport);
 214	if (tty) {
 215		tty_hangup(tty);
 216		tty_kref_put(tty);
 217	}
 218}
 219
 220/**
 221 *	ifx_spi_timeout		-	SPI timeout
 222 *	@arg: our SPI device
 223 *
 224 *	The SPI has timed out: hang up the tty. Users will then see a hangup
 225 *	and error events.
 226 */
 227static void ifx_spi_timeout(unsigned long arg)
 228{
 229	struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *)arg;
 230
 231	dev_warn(&ifx_dev->spi_dev->dev, "*** SPI Timeout ***");
 232	ifx_spi_ttyhangup(ifx_dev);
 233	mrdy_set_low(ifx_dev);
 234	clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
 235}
 236
 237/* char/tty operations */
 238
 239/**
 240 *	ifx_spi_tiocmget	-	get modem lines
 241 *	@tty: our tty device
 242 *	@filp: file handle issuing the request
 243 *
 244 *	Map the signal state into Linux modem flags and report the value
 245 *	in Linux terms
 246 */
 247static int ifx_spi_tiocmget(struct tty_struct *tty)
 248{
 249	unsigned int value;
 250	struct ifx_spi_device *ifx_dev = tty->driver_data;
 251
 252	value =
 253	(test_bit(IFX_SPI_RTS, &ifx_dev->signal_state) ? TIOCM_RTS : 0) |
 254	(test_bit(IFX_SPI_DTR, &ifx_dev->signal_state) ? TIOCM_DTR : 0) |
 255	(test_bit(IFX_SPI_CTS, &ifx_dev->signal_state) ? TIOCM_CTS : 0) |
 256	(test_bit(IFX_SPI_DSR, &ifx_dev->signal_state) ? TIOCM_DSR : 0) |
 257	(test_bit(IFX_SPI_DCD, &ifx_dev->signal_state) ? TIOCM_CAR : 0) |
 258	(test_bit(IFX_SPI_RI, &ifx_dev->signal_state) ? TIOCM_RNG : 0);
 259	return value;
 260}
 261
 262/**
 263 *	ifx_spi_tiocmset	-	set modem bits
 264 *	@tty: the tty structure
 265 *	@set: bits to set
 266 *	@clear: bits to clear
 267 *
 268 *	The IFX6x60 only supports DTR and RTS. Set them accordingly
 269 *	and flag that an update to the modem is needed.
 270 *
 271 *	FIXME: do we need to kick the tranfers when we do this ?
 272 */
 273static int ifx_spi_tiocmset(struct tty_struct *tty,
 274			    unsigned int set, unsigned int clear)
 275{
 276	struct ifx_spi_device *ifx_dev = tty->driver_data;
 277
 278	if (set & TIOCM_RTS)
 279		set_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
 280	if (set & TIOCM_DTR)
 281		set_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
 282	if (clear & TIOCM_RTS)
 283		clear_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
 284	if (clear & TIOCM_DTR)
 285		clear_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
 286
 287	set_bit(IFX_SPI_UPDATE, &ifx_dev->signal_state);
 288	return 0;
 289}
 290
 291/**
 292 *	ifx_spi_open	-	called on tty open
 293 *	@tty: our tty device
 294 *	@filp: file handle being associated with the tty
 295 *
 296 *	Open the tty interface. We let the tty_port layer do all the work
 297 *	for us.
 298 *
 299 *	FIXME: Remove single device assumption and saved_ifx_dev
 300 */
 301static int ifx_spi_open(struct tty_struct *tty, struct file *filp)
 302{
 303	return tty_port_open(&saved_ifx_dev->tty_port, tty, filp);
 304}
 305
 306/**
 307 *	ifx_spi_close	-	called when our tty closes
 308 *	@tty: the tty being closed
 309 *	@filp: the file handle being closed
 310 *
 311 *	Perform the close of the tty. We use the tty_port layer to do all
 312 *	our hard work.
 313 */
 314static void ifx_spi_close(struct tty_struct *tty, struct file *filp)
 315{
 316	struct ifx_spi_device *ifx_dev = tty->driver_data;
 317	tty_port_close(&ifx_dev->tty_port, tty, filp);
 318	/* FIXME: should we do an ifx_spi_reset here ? */
 319}
 320
 321/**
 322 *	ifx_decode_spi_header	-	decode received header
 323 *	@buffer: the received data
 324 *	@length: decoded length
 325 *	@more: decoded more flag
 326 *	@received_cts: status of cts we received
 327 *
 328 *	Note how received_cts is handled -- if header is all F it is left
 329 *	the same as it was, if header is all 0 it is set to 0 otherwise it is
 330 *	taken from the incoming header.
 331 *
 332 *	FIXME: endianness
 333 */
 334static int ifx_spi_decode_spi_header(unsigned char *buffer, int *length,
 335			unsigned char *more, unsigned char *received_cts)
 336{
 337	u16 h1;
 338	u16 h2;
 339	u16 *in_buffer = (u16 *)buffer;
 340
 341	h1 = *in_buffer;
 342	h2 = *(in_buffer+1);
 343
 344	if (h1 == 0 && h2 == 0) {
 345		*received_cts = 0;
 
 346		return IFX_SPI_HEADER_0;
 347	} else if (h1 == 0xffff && h2 == 0xffff) {
 
 348		/* spi_slave_cts remains as it was */
 349		return IFX_SPI_HEADER_F;
 350	}
 351
 352	*length = h1 & 0xfff;	/* upper bits of byte are flags */
 353	*more = (buffer[1] >> IFX_SPI_MORE_BIT) & 1;
 354	*received_cts = (buffer[3] >> IFX_SPI_CTS_BIT) & 1;
 355	return 0;
 356}
 357
 358/**
 359 *	ifx_setup_spi_header	-	set header fields
 360 *	@txbuffer: pointer to start of SPI buffer
 361 *	@tx_count: bytes
 362 *	@more: indicate if more to follow
 363 *
 364 *	Format up an SPI header for a transfer
 365 *
 366 *	FIXME: endianness?
 367 */
 368static void ifx_spi_setup_spi_header(unsigned char *txbuffer, int tx_count,
 369					unsigned char more)
 370{
 371	*(u16 *)(txbuffer) = tx_count;
 372	*(u16 *)(txbuffer+2) = IFX_SPI_PAYLOAD_SIZE;
 373	txbuffer[1] |= (more << IFX_SPI_MORE_BIT) & IFX_SPI_MORE_MASK;
 374}
 375
 376/**
 377 *	ifx_spi_wakeup_serial	-	SPI space made
 378 *	@port_data: our SPI device
 379 *
 380 *	We have emptied the FIFO enough that we want to get more data
 381 *	queued into it. Poke the line discipline via tty_wakeup so that
 382 *	it will feed us more bits
 383 */
 384static void ifx_spi_wakeup_serial(struct ifx_spi_device *ifx_dev)
 385{
 386	struct tty_struct *tty;
 387
 388	tty = tty_port_tty_get(&ifx_dev->tty_port);
 389	if (!tty)
 390		return;
 391	tty_wakeup(tty);
 392	tty_kref_put(tty);
 393}
 394
 395/**
 396 *	ifx_spi_prepare_tx_buffer	-	prepare transmit frame
 397 *	@ifx_dev: our SPI device
 398 *
 399 *	The transmit buffr needs a header and various other bits of
 400 *	information followed by as much data as we can pull from the FIFO
 401 *	and transfer. This function formats up a suitable buffer in the
 402 *	ifx_dev->tx_buffer
 403 *
 404 *	FIXME: performance - should we wake the tty when the queue is half
 405 *			     empty ?
 406 */
 407static int ifx_spi_prepare_tx_buffer(struct ifx_spi_device *ifx_dev)
 408{
 409	int temp_count;
 410	int queue_length;
 411	int tx_count;
 412	unsigned char *tx_buffer;
 413
 414	tx_buffer = ifx_dev->tx_buffer;
 415	memset(tx_buffer, 0, IFX_SPI_TRANSFER_SIZE);
 416
 417	/* make room for required SPI header */
 418	tx_buffer += IFX_SPI_HEADER_OVERHEAD;
 419	tx_count = IFX_SPI_HEADER_OVERHEAD;
 420
 421	/* clear to signal no more data if this turns out to be the
 422	 * last buffer sent in a sequence */
 423	ifx_dev->spi_more = 0;
 424
 425	/* if modem cts is set, just send empty buffer */
 426	if (!ifx_dev->spi_slave_cts) {
 427		/* see if there's tx data */
 428		queue_length = kfifo_len(&ifx_dev->tx_fifo);
 429		if (queue_length != 0) {
 430			/* data to mux -- see if there's room for it */
 431			temp_count = min(queue_length, IFX_SPI_PAYLOAD_SIZE);
 432			temp_count = kfifo_out_locked(&ifx_dev->tx_fifo,
 433					tx_buffer, temp_count,
 434					&ifx_dev->fifo_lock);
 435
 436			/* update buffer pointer and data count in message */
 437			tx_buffer += temp_count;
 438			tx_count += temp_count;
 439			if (temp_count == queue_length)
 440				/* poke port to get more data */
 441				ifx_spi_wakeup_serial(ifx_dev);
 442			else /* more data in port, use next SPI message */
 443				ifx_dev->spi_more = 1;
 444		}
 445	}
 446	/* have data and info for header -- set up SPI header in buffer */
 447	/* spi header needs payload size, not entire buffer size */
 448	ifx_spi_setup_spi_header(ifx_dev->tx_buffer,
 449					tx_count-IFX_SPI_HEADER_OVERHEAD,
 450					ifx_dev->spi_more);
 451	/* swap actual data in the buffer */
 452	swap_buf((u16 *)(ifx_dev->tx_buffer), tx_count,
 453		&ifx_dev->tx_buffer[IFX_SPI_TRANSFER_SIZE]);
 454	return tx_count;
 455}
 456
 457/**
 458 *	ifx_spi_write		-	line discipline write
 459 *	@tty: our tty device
 460 *	@buf: pointer to buffer to write (kernel space)
 461 *	@count: size of buffer
 462 *
 463 *	Write the characters we have been given into the FIFO. If the device
 464 *	is not active then activate it, when the SRDY line is asserted back
 465 *	this will commence I/O
 466 */
 467static int ifx_spi_write(struct tty_struct *tty, const unsigned char *buf,
 468			 int count)
 469{
 470	struct ifx_spi_device *ifx_dev = tty->driver_data;
 471	unsigned char *tmp_buf = (unsigned char *)buf;
 472	int tx_count = kfifo_in_locked(&ifx_dev->tx_fifo, tmp_buf, count,
 473				   &ifx_dev->fifo_lock);
 474	mrdy_assert(ifx_dev);
 
 
 
 
 
 
 
 
 475	return tx_count;
 476}
 477
 478/**
 479 *	ifx_spi_chars_in_buffer	-	line discipline helper
 480 *	@tty: our tty device
 481 *
 482 *	Report how much data we can accept before we drop bytes. As we use
 483 *	a simple FIFO this is nice and easy.
 484 */
 485static int ifx_spi_write_room(struct tty_struct *tty)
 486{
 487	struct ifx_spi_device *ifx_dev = tty->driver_data;
 488	return IFX_SPI_FIFO_SIZE - kfifo_len(&ifx_dev->tx_fifo);
 489}
 490
 491/**
 492 *	ifx_spi_chars_in_buffer	-	line discipline helper
 493 *	@tty: our tty device
 494 *
 495 *	Report how many characters we have buffered. In our case this is the
 496 *	number of bytes sitting in our transmit FIFO.
 497 */
 498static int ifx_spi_chars_in_buffer(struct tty_struct *tty)
 499{
 500	struct ifx_spi_device *ifx_dev = tty->driver_data;
 501	return kfifo_len(&ifx_dev->tx_fifo);
 502}
 503
 504/**
 505 *	ifx_port_hangup
 506 *	@port: our tty port
 507 *
 508 *	tty port hang up. Called when tty_hangup processing is invoked either
 509 *	by loss of carrier, or by software (eg vhangup). Serialized against
 510 *	activate/shutdown by the tty layer.
 511 */
 512static void ifx_spi_hangup(struct tty_struct *tty)
 513{
 514	struct ifx_spi_device *ifx_dev = tty->driver_data;
 515	tty_port_hangup(&ifx_dev->tty_port);
 516}
 517
 518/**
 519 *	ifx_port_activate
 520 *	@port: our tty port
 521 *
 522 *	tty port activate method - called for first open. Serialized
 523 *	with hangup and shutdown by the tty layer.
 524 */
 525static int ifx_port_activate(struct tty_port *port, struct tty_struct *tty)
 526{
 527	struct ifx_spi_device *ifx_dev =
 528		container_of(port, struct ifx_spi_device, tty_port);
 529
 530	/* clear any old data; can't do this in 'close' */
 531	kfifo_reset(&ifx_dev->tx_fifo);
 532
 
 
 
 
 533	/* put port data into this tty */
 534	tty->driver_data = ifx_dev;
 535
 536	/* allows flip string push from int context */
 537	tty->low_latency = 1;
 
 
 
 538
 539	return 0;
 540}
 541
 542/**
 543 *	ifx_port_shutdown
 544 *	@port: our tty port
 545 *
 546 *	tty port shutdown method - called for last port close. Serialized
 547 *	with hangup and activate by the tty layer.
 548 */
 549static void ifx_port_shutdown(struct tty_port *port)
 550{
 551	struct ifx_spi_device *ifx_dev =
 552		container_of(port, struct ifx_spi_device, tty_port);
 553
 
 554	mrdy_set_low(ifx_dev);
 
 555	clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
 556	tasklet_kill(&ifx_dev->io_work_tasklet);
 557}
 558
 559static const struct tty_port_operations ifx_tty_port_ops = {
 560	.activate = ifx_port_activate,
 561	.shutdown = ifx_port_shutdown,
 562};
 563
 564static const struct tty_operations ifx_spi_serial_ops = {
 565	.open = ifx_spi_open,
 566	.close = ifx_spi_close,
 567	.write = ifx_spi_write,
 568	.hangup = ifx_spi_hangup,
 569	.write_room = ifx_spi_write_room,
 570	.chars_in_buffer = ifx_spi_chars_in_buffer,
 571	.tiocmget = ifx_spi_tiocmget,
 572	.tiocmset = ifx_spi_tiocmset,
 573};
 574
 575/**
 576 *	ifx_spi_insert_fip_string	-	queue received data
 577 *	@ifx_ser: our SPI device
 578 *	@chars: buffer we have received
 579 *	@size: number of chars reeived
 580 *
 581 *	Queue bytes to the tty assuming the tty side is currently open. If
 582 *	not the discard the data.
 583 */
 584static void ifx_spi_insert_flip_string(struct ifx_spi_device *ifx_dev,
 585				    unsigned char *chars, size_t size)
 586{
 587	struct tty_struct *tty = tty_port_tty_get(&ifx_dev->tty_port);
 588	if (!tty)
 589		return;
 590	tty_insert_flip_string(tty, chars, size);
 591	tty_flip_buffer_push(tty);
 592	tty_kref_put(tty);
 593}
 594
 595/**
 596 *	ifx_spi_complete	-	SPI transfer completed
 597 *	@ctx: our SPI device
 598 *
 599 *	An SPI transfer has completed. Process any received data and kick off
 600 *	any further transmits we can commence.
 601 */
 602static void ifx_spi_complete(void *ctx)
 603{
 604	struct ifx_spi_device *ifx_dev = ctx;
 605	struct tty_struct *tty;
 606	struct tty_ldisc *ldisc = NULL;
 607	int length;
 608	int actual_length;
 609	unsigned char more;
 610	unsigned char cts;
 611	int local_write_pending = 0;
 612	int queue_length;
 613	int srdy;
 614	int decode_result;
 615
 616	mrdy_set_low(ifx_dev);
 617
 618	if (!ifx_dev->spi_msg.status) {
 619		/* check header validity, get comm flags */
 620		swap_buf((u16 *)ifx_dev->rx_buffer, IFX_SPI_HEADER_OVERHEAD,
 621			&ifx_dev->rx_buffer[IFX_SPI_HEADER_OVERHEAD]);
 622		decode_result = ifx_spi_decode_spi_header(ifx_dev->rx_buffer,
 623				&length, &more, &cts);
 624		if (decode_result == IFX_SPI_HEADER_0) {
 625			dev_dbg(&ifx_dev->spi_dev->dev,
 626				"ignore input: invalid header 0");
 627			ifx_dev->spi_slave_cts = 0;
 628			goto complete_exit;
 629		} else if (decode_result == IFX_SPI_HEADER_F) {
 630			dev_dbg(&ifx_dev->spi_dev->dev,
 631				"ignore input: invalid header F");
 632			goto complete_exit;
 633		}
 634
 635		ifx_dev->spi_slave_cts = cts;
 636
 637		actual_length = min((unsigned int)length,
 638					ifx_dev->spi_msg.actual_length);
 639		swap_buf((u16 *)(ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD),
 
 640			 actual_length,
 641			 &ifx_dev->rx_buffer[IFX_SPI_TRANSFER_SIZE]);
 642		ifx_spi_insert_flip_string(
 643			ifx_dev,
 644			ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD,
 645			(size_t)actual_length);
 646	} else {
 
 647		dev_dbg(&ifx_dev->spi_dev->dev, "SPI transfer error %d",
 648		       ifx_dev->spi_msg.status);
 649	}
 650
 651complete_exit:
 652	if (ifx_dev->write_pending) {
 653		ifx_dev->write_pending = 0;
 654		local_write_pending = 1;
 655	}
 656
 657	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &(ifx_dev->flags));
 658
 659	queue_length = kfifo_len(&ifx_dev->tx_fifo);
 660	srdy = gpio_get_value(ifx_dev->gpio.srdy);
 661	if (!srdy)
 662		ifx_spi_power_state_clear(ifx_dev, IFX_SPI_POWER_SRDY);
 663
 664	/* schedule output if there is more to do */
 665	if (test_and_clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags))
 666		tasklet_schedule(&ifx_dev->io_work_tasklet);
 667	else {
 668		if (more || ifx_dev->spi_more || queue_length > 0 ||
 669			local_write_pending) {
 670			if (ifx_dev->spi_slave_cts) {
 671				if (more)
 672					mrdy_assert(ifx_dev);
 673			} else
 674				mrdy_assert(ifx_dev);
 675		} else {
 676			/*
 677			 * poke line discipline driver if any for more data
 678			 * may or may not get more data to write
 679			 * for now, say not busy
 680			 */
 681			ifx_spi_power_state_clear(ifx_dev,
 682						  IFX_SPI_POWER_DATA_PENDING);
 683			tty = tty_port_tty_get(&ifx_dev->tty_port);
 684			if (tty) {
 685				ldisc = tty_ldisc_ref(tty);
 686				if (ldisc) {
 687					ldisc->ops->write_wakeup(tty);
 688					tty_ldisc_deref(ldisc);
 689				}
 690				tty_kref_put(tty);
 691			}
 692		}
 693	}
 694}
 695
 696/**
 697 *	ifx_spio_io		-	I/O tasklet
 698 *	@data: our SPI device
 699 *
 700 *	Queue data for transmission if possible and then kick off the
 701 *	transfer.
 702 */
 703static void ifx_spi_io(unsigned long data)
 704{
 705	int retval;
 706	struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *) data;
 707
 708	if (!test_and_set_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags)) {
 
 709		if (ifx_dev->gpio.unack_srdy_int_nb > 0)
 710			ifx_dev->gpio.unack_srdy_int_nb--;
 711
 712		ifx_spi_prepare_tx_buffer(ifx_dev);
 713
 714		spi_message_init(&ifx_dev->spi_msg);
 715		INIT_LIST_HEAD(&ifx_dev->spi_msg.queue);
 716
 717		ifx_dev->spi_msg.context = ifx_dev;
 718		ifx_dev->spi_msg.complete = ifx_spi_complete;
 719
 720		/* set up our spi transfer */
 721		/* note len is BYTES, not transfers */
 722		ifx_dev->spi_xfer.len = IFX_SPI_TRANSFER_SIZE;
 723		ifx_dev->spi_xfer.cs_change = 0;
 724		ifx_dev->spi_xfer.speed_hz = ifx_dev->spi_dev->max_speed_hz;
 725		/* ifx_dev->spi_xfer.speed_hz = 390625; */
 726		ifx_dev->spi_xfer.bits_per_word = spi_bpw;
 
 727
 728		ifx_dev->spi_xfer.tx_buf = ifx_dev->tx_buffer;
 729		ifx_dev->spi_xfer.rx_buf = ifx_dev->rx_buffer;
 730
 731		/*
 732		 * setup dma pointers
 733		 */
 734		if (ifx_dev->use_dma) {
 735			ifx_dev->spi_msg.is_dma_mapped = 1;
 736			ifx_dev->tx_dma = ifx_dev->tx_bus;
 737			ifx_dev->rx_dma = ifx_dev->rx_bus;
 738			ifx_dev->spi_xfer.tx_dma = ifx_dev->tx_dma;
 739			ifx_dev->spi_xfer.rx_dma = ifx_dev->rx_dma;
 740		} else {
 741			ifx_dev->spi_msg.is_dma_mapped = 0;
 742			ifx_dev->tx_dma = (dma_addr_t)0;
 743			ifx_dev->rx_dma = (dma_addr_t)0;
 744			ifx_dev->spi_xfer.tx_dma = (dma_addr_t)0;
 745			ifx_dev->spi_xfer.rx_dma = (dma_addr_t)0;
 746		}
 747
 748		spi_message_add_tail(&ifx_dev->spi_xfer, &ifx_dev->spi_msg);
 749
 750		/* Assert MRDY. This may have already been done by the write
 751		 * routine.
 752		 */
 753		mrdy_assert(ifx_dev);
 754
 755		retval = spi_async(ifx_dev->spi_dev, &ifx_dev->spi_msg);
 756		if (retval) {
 757			clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS,
 758				  &ifx_dev->flags);
 759			tasklet_schedule(&ifx_dev->io_work_tasklet);
 760			return;
 761		}
 762	} else
 763		ifx_dev->write_pending = 1;
 764}
 765
 766/**
 767 *	ifx_spi_free_port	-	free up the tty side
 768 *	@ifx_dev: IFX device going away
 769 *
 770 *	Unregister and free up a port when the device goes away
 771 */
 772static void ifx_spi_free_port(struct ifx_spi_device *ifx_dev)
 773{
 774	if (ifx_dev->tty_dev)
 775		tty_unregister_device(tty_drv, ifx_dev->minor);
 
 776	kfifo_free(&ifx_dev->tx_fifo);
 777}
 778
 779/**
 780 *	ifx_spi_create_port	-	create a new port
 781 *	@ifx_dev: our spi device
 782 *
 783 *	Allocate and initialise the tty port that goes with this interface
 784 *	and add it to the tty layer so that it can be opened.
 785 */
 786static int ifx_spi_create_port(struct ifx_spi_device *ifx_dev)
 787{
 788	int ret = 0;
 789	struct tty_port *pport = &ifx_dev->tty_port;
 790
 791	spin_lock_init(&ifx_dev->fifo_lock);
 792	lockdep_set_class_and_subclass(&ifx_dev->fifo_lock,
 793		&ifx_spi_key, 0);
 794
 795	if (kfifo_alloc(&ifx_dev->tx_fifo, IFX_SPI_FIFO_SIZE, GFP_KERNEL)) {
 796		ret = -ENOMEM;
 797		goto error_ret;
 798	}
 799
 800	tty_port_init(pport);
 801	pport->ops = &ifx_tty_port_ops;
 802	ifx_dev->minor = IFX_SPI_TTY_ID;
 803	ifx_dev->tty_dev = tty_register_device(tty_drv, ifx_dev->minor,
 804					       &ifx_dev->spi_dev->dev);
 805	if (IS_ERR(ifx_dev->tty_dev)) {
 806		dev_dbg(&ifx_dev->spi_dev->dev,
 807			"%s: registering tty device failed", __func__);
 808		ret = PTR_ERR(ifx_dev->tty_dev);
 809		goto error_ret;
 810	}
 811	return 0;
 812
 
 
 813error_ret:
 814	ifx_spi_free_port(ifx_dev);
 815	return ret;
 816}
 817
 818/**
 819 *	ifx_spi_handle_srdy		-	handle SRDY
 820 *	@ifx_dev: device asserting SRDY
 821 *
 822 *	Check our device state and see what we need to kick off when SRDY
 823 *	is asserted. This usually means killing the timer and firing off the
 824 *	I/O processing.
 825 */
 826static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev)
 827{
 828	if (test_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags)) {
 829		del_timer_sync(&ifx_dev->spi_timer);
 830		clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
 831	}
 832
 833	ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_SRDY);
 834
 835	if (!test_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags))
 836		tasklet_schedule(&ifx_dev->io_work_tasklet);
 837	else
 838		set_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
 839}
 840
 841/**
 842 *	ifx_spi_srdy_interrupt	-	SRDY asserted
 843 *	@irq: our IRQ number
 844 *	@dev: our ifx device
 845 *
 846 *	The modem asserted SRDY. Handle the srdy event
 847 */
 848static irqreturn_t ifx_spi_srdy_interrupt(int irq, void *dev)
 849{
 850	struct ifx_spi_device *ifx_dev = dev;
 851	ifx_dev->gpio.unack_srdy_int_nb++;
 852	ifx_spi_handle_srdy(ifx_dev);
 853	return IRQ_HANDLED;
 854}
 855
 856/**
 857 *	ifx_spi_reset_interrupt	-	Modem has changed reset state
 858 *	@irq: interrupt number
 859 *	@dev: our device pointer
 860 *
 861 *	The modem has either entered or left reset state. Check the GPIO
 862 *	line to see which.
 863 *
 864 *	FIXME: review locking on MR_INPROGRESS versus
 865 *	parallel unsolicited reset/solicited reset
 866 */
 867static irqreturn_t ifx_spi_reset_interrupt(int irq, void *dev)
 868{
 869	struct ifx_spi_device *ifx_dev = dev;
 870	int val = gpio_get_value(ifx_dev->gpio.reset_out);
 871	int solreset = test_bit(MR_START, &ifx_dev->mdm_reset_state);
 872
 873	if (val == 0) {
 874		/* entered reset */
 875		set_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
 876		if (!solreset) {
 877			/* unsolicited reset  */
 878			ifx_spi_ttyhangup(ifx_dev);
 879		}
 880	} else {
 881		/* exited reset */
 882		clear_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
 883		if (solreset) {
 884			set_bit(MR_COMPLETE, &ifx_dev->mdm_reset_state);
 885			wake_up(&ifx_dev->mdm_reset_wait);
 886		}
 887	}
 888	return IRQ_HANDLED;
 889}
 890
 891/**
 892 *	ifx_spi_free_device - free device
 893 *	@ifx_dev: device to free
 894 *
 895 *	Free the IFX device
 896 */
 897static void ifx_spi_free_device(struct ifx_spi_device *ifx_dev)
 898{
 899	ifx_spi_free_port(ifx_dev);
 900	dma_free_coherent(&ifx_dev->spi_dev->dev,
 901				IFX_SPI_TRANSFER_SIZE,
 902				ifx_dev->tx_buffer,
 903				ifx_dev->tx_bus);
 904	dma_free_coherent(&ifx_dev->spi_dev->dev,
 905				IFX_SPI_TRANSFER_SIZE,
 906				ifx_dev->rx_buffer,
 907				ifx_dev->rx_bus);
 908}
 909
 910/**
 911 *	ifx_spi_reset	-	reset modem
 912 *	@ifx_dev: modem to reset
 913 *
 914 *	Perform a reset on the modem
 915 */
 916static int ifx_spi_reset(struct ifx_spi_device *ifx_dev)
 917{
 918	int ret;
 919	/*
 920	 * set up modem power, reset
 921	 *
 922	 * delays are required on some platforms for the modem
 923	 * to reset properly
 924	 */
 925	set_bit(MR_START, &ifx_dev->mdm_reset_state);
 926	gpio_set_value(ifx_dev->gpio.po, 0);
 927	gpio_set_value(ifx_dev->gpio.reset, 0);
 928	msleep(25);
 929	gpio_set_value(ifx_dev->gpio.reset, 1);
 930	msleep(1);
 931	gpio_set_value(ifx_dev->gpio.po, 1);
 932	msleep(1);
 933	gpio_set_value(ifx_dev->gpio.po, 0);
 934	ret = wait_event_timeout(ifx_dev->mdm_reset_wait,
 935				 test_bit(MR_COMPLETE,
 936					  &ifx_dev->mdm_reset_state),
 937				 IFX_RESET_TIMEOUT);
 938	if (!ret)
 939		dev_warn(&ifx_dev->spi_dev->dev, "Modem reset timeout: (state:%lx)",
 940			 ifx_dev->mdm_reset_state);
 941
 942	ifx_dev->mdm_reset_state = 0;
 943	return ret;
 944}
 945
 946/**
 947 *	ifx_spi_spi_probe	-	probe callback
 948 *	@spi: our possible matching SPI device
 949 *
 950 *	Probe for a 6x60 modem on SPI bus. Perform any needed device and
 951 *	GPIO setup.
 952 *
 953 *	FIXME:
 954 *	-	Support for multiple devices
 955 *	-	Split out MID specific GPIO handling eventually
 956 */
 957
 958static int ifx_spi_spi_probe(struct spi_device *spi)
 959{
 960	int ret;
 961	int srdy;
 962	struct ifx_modem_platform_data *pl_data;
 963	struct ifx_spi_device *ifx_dev;
 964
 965	if (saved_ifx_dev) {
 966		dev_dbg(&spi->dev, "ignoring subsequent detection");
 967		return -ENODEV;
 968	}
 969
 970	pl_data = (struct ifx_modem_platform_data *)spi->dev.platform_data;
 971	if (!pl_data) {
 972		dev_err(&spi->dev, "missing platform data!");
 973		return -ENODEV;
 974	}
 975
 976	/* initialize structure to hold our device variables */
 977	ifx_dev = kzalloc(sizeof(struct ifx_spi_device), GFP_KERNEL);
 978	if (!ifx_dev) {
 979		dev_err(&spi->dev, "spi device allocation failed");
 980		return -ENOMEM;
 981	}
 982	saved_ifx_dev = ifx_dev;
 983	ifx_dev->spi_dev = spi;
 984	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
 985	spin_lock_init(&ifx_dev->write_lock);
 986	spin_lock_init(&ifx_dev->power_lock);
 987	ifx_dev->power_status = 0;
 988	init_timer(&ifx_dev->spi_timer);
 989	ifx_dev->spi_timer.function = ifx_spi_timeout;
 990	ifx_dev->spi_timer.data = (unsigned long)ifx_dev;
 991	ifx_dev->modem = pl_data->modem_type;
 992	ifx_dev->use_dma = pl_data->use_dma;
 993	ifx_dev->max_hz = pl_data->max_hz;
 994	/* initialize spi mode, etc */
 995	spi->max_speed_hz = ifx_dev->max_hz;
 996	spi->mode = IFX_SPI_MODE | (SPI_LOOP & spi->mode);
 997	spi->bits_per_word = spi_bpw;
 998	ret = spi_setup(spi);
 999	if (ret) {
1000		dev_err(&spi->dev, "SPI setup wasn't successful %d", ret);
 
1001		return -ENODEV;
1002	}
1003
 
 
 
 
 
 
 
 
1004	/* ensure SPI protocol flags are initialized to enable transfer */
1005	ifx_dev->spi_more = 0;
1006	ifx_dev->spi_slave_cts = 0;
1007
1008	/*initialize transfer and dma buffers */
1009	ifx_dev->tx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1010				IFX_SPI_TRANSFER_SIZE,
1011				&ifx_dev->tx_bus,
1012				GFP_KERNEL);
1013	if (!ifx_dev->tx_buffer) {
1014		dev_err(&spi->dev, "DMA-TX buffer allocation failed");
1015		ret = -ENOMEM;
1016		goto error_ret;
1017	}
1018	ifx_dev->rx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1019				IFX_SPI_TRANSFER_SIZE,
1020				&ifx_dev->rx_bus,
1021				GFP_KERNEL);
1022	if (!ifx_dev->rx_buffer) {
1023		dev_err(&spi->dev, "DMA-RX buffer allocation failed");
1024		ret = -ENOMEM;
1025		goto error_ret;
1026	}
1027
1028	/* initialize waitq for modem reset */
1029	init_waitqueue_head(&ifx_dev->mdm_reset_wait);
1030
1031	spi_set_drvdata(spi, ifx_dev);
1032	tasklet_init(&ifx_dev->io_work_tasklet, ifx_spi_io,
1033						(unsigned long)ifx_dev);
1034
1035	set_bit(IFX_SPI_STATE_PRESENT, &ifx_dev->flags);
1036
1037	/* create our tty port */
1038	ret = ifx_spi_create_port(ifx_dev);
1039	if (ret != 0) {
1040		dev_err(&spi->dev, "create default tty port failed");
1041		goto error_ret;
1042	}
1043
1044	ifx_dev->gpio.reset = pl_data->rst_pmu;
1045	ifx_dev->gpio.po = pl_data->pwr_on;
1046	ifx_dev->gpio.mrdy = pl_data->mrdy;
1047	ifx_dev->gpio.srdy = pl_data->srdy;
1048	ifx_dev->gpio.reset_out = pl_data->rst_out;
1049
1050	dev_info(&spi->dev, "gpios %d, %d, %d, %d, %d",
1051		 ifx_dev->gpio.reset, ifx_dev->gpio.po, ifx_dev->gpio.mrdy,
1052		 ifx_dev->gpio.srdy, ifx_dev->gpio.reset_out);
1053
1054	/* Configure gpios */
1055	ret = gpio_request(ifx_dev->gpio.reset, "ifxModem");
1056	if (ret < 0) {
1057		dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET)",
1058			ifx_dev->gpio.reset);
1059		goto error_ret;
1060	}
1061	ret += gpio_direction_output(ifx_dev->gpio.reset, 0);
1062	ret += gpio_export(ifx_dev->gpio.reset, 1);
1063	if (ret) {
1064		dev_err(&spi->dev, "Unable to configure GPIO%d (RESET)",
1065			ifx_dev->gpio.reset);
1066		ret = -EBUSY;
1067		goto error_ret2;
1068	}
1069
1070	ret = gpio_request(ifx_dev->gpio.po, "ifxModem");
1071	ret += gpio_direction_output(ifx_dev->gpio.po, 0);
1072	ret += gpio_export(ifx_dev->gpio.po, 1);
1073	if (ret) {
1074		dev_err(&spi->dev, "Unable to configure GPIO%d (ON)",
1075			ifx_dev->gpio.po);
1076		ret = -EBUSY;
1077		goto error_ret3;
1078	}
1079
1080	ret = gpio_request(ifx_dev->gpio.mrdy, "ifxModem");
1081	if (ret < 0) {
1082		dev_err(&spi->dev, "Unable to allocate GPIO%d (MRDY)",
1083			ifx_dev->gpio.mrdy);
1084		goto error_ret3;
1085	}
1086	ret += gpio_export(ifx_dev->gpio.mrdy, 1);
1087	ret += gpio_direction_output(ifx_dev->gpio.mrdy, 0);
1088	if (ret) {
1089		dev_err(&spi->dev, "Unable to configure GPIO%d (MRDY)",
1090			ifx_dev->gpio.mrdy);
1091		ret = -EBUSY;
1092		goto error_ret4;
1093	}
1094
1095	ret = gpio_request(ifx_dev->gpio.srdy, "ifxModem");
1096	if (ret < 0) {
1097		dev_err(&spi->dev, "Unable to allocate GPIO%d (SRDY)",
1098			ifx_dev->gpio.srdy);
1099		ret = -EBUSY;
1100		goto error_ret4;
1101	}
1102	ret += gpio_export(ifx_dev->gpio.srdy, 1);
1103	ret += gpio_direction_input(ifx_dev->gpio.srdy);
1104	if (ret) {
1105		dev_err(&spi->dev, "Unable to configure GPIO%d (SRDY)",
1106			ifx_dev->gpio.srdy);
1107		ret = -EBUSY;
1108		goto error_ret5;
1109	}
1110
1111	ret = gpio_request(ifx_dev->gpio.reset_out, "ifxModem");
1112	if (ret < 0) {
1113		dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET_OUT)",
1114			ifx_dev->gpio.reset_out);
1115		goto error_ret5;
1116	}
1117	ret += gpio_export(ifx_dev->gpio.reset_out, 1);
1118	ret += gpio_direction_input(ifx_dev->gpio.reset_out);
1119	if (ret) {
1120		dev_err(&spi->dev, "Unable to configure GPIO%d (RESET_OUT)",
1121			ifx_dev->gpio.reset_out);
1122		ret = -EBUSY;
1123		goto error_ret6;
1124	}
1125
1126	ret = request_irq(gpio_to_irq(ifx_dev->gpio.reset_out),
1127			  ifx_spi_reset_interrupt,
1128			  IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, DRVNAME,
1129		(void *)ifx_dev);
1130	if (ret) {
1131		dev_err(&spi->dev, "Unable to get irq %x\n",
1132			gpio_to_irq(ifx_dev->gpio.reset_out));
1133		goto error_ret6;
1134	}
1135
1136	ret = ifx_spi_reset(ifx_dev);
1137
1138	ret = request_irq(gpio_to_irq(ifx_dev->gpio.srdy),
1139			  ifx_spi_srdy_interrupt,
1140			  IRQF_TRIGGER_RISING, DRVNAME,
1141			  (void *)ifx_dev);
1142	if (ret) {
1143		dev_err(&spi->dev, "Unable to get irq %x",
1144			gpio_to_irq(ifx_dev->gpio.srdy));
1145		goto error_ret7;
1146	}
1147
1148	/* set pm runtime power state and register with power system */
1149	pm_runtime_set_active(&spi->dev);
1150	pm_runtime_enable(&spi->dev);
1151
1152	/* handle case that modem is already signaling SRDY */
1153	/* no outgoing tty open at this point, this just satisfies the
1154	 * modem's read and should reset communication properly
1155	 */
1156	srdy = gpio_get_value(ifx_dev->gpio.srdy);
1157
1158	if (srdy) {
1159		mrdy_assert(ifx_dev);
1160		ifx_spi_handle_srdy(ifx_dev);
1161	} else
1162		mrdy_set_low(ifx_dev);
1163	return 0;
1164
1165error_ret7:
1166	free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), (void *)ifx_dev);
1167error_ret6:
1168	gpio_free(ifx_dev->gpio.srdy);
1169error_ret5:
1170	gpio_free(ifx_dev->gpio.mrdy);
1171error_ret4:
1172	gpio_free(ifx_dev->gpio.reset);
1173error_ret3:
1174	gpio_free(ifx_dev->gpio.po);
1175error_ret2:
1176	gpio_free(ifx_dev->gpio.reset_out);
1177error_ret:
1178	ifx_spi_free_device(ifx_dev);
1179	saved_ifx_dev = NULL;
1180	return ret;
1181}
1182
1183/**
1184 *	ifx_spi_spi_remove	-	SPI device was removed
1185 *	@spi: SPI device
1186 *
1187 *	FIXME: We should be shutting the device down here not in
1188 *	the module unload path.
1189 */
1190
1191static int ifx_spi_spi_remove(struct spi_device *spi)
1192{
1193	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1194	/* stop activity */
1195	tasklet_kill(&ifx_dev->io_work_tasklet);
1196	/* free irq */
1197	free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), (void *)ifx_dev);
1198	free_irq(gpio_to_irq(ifx_dev->gpio.srdy), (void *)ifx_dev);
1199
1200	gpio_free(ifx_dev->gpio.srdy);
1201	gpio_free(ifx_dev->gpio.mrdy);
1202	gpio_free(ifx_dev->gpio.reset);
1203	gpio_free(ifx_dev->gpio.po);
1204	gpio_free(ifx_dev->gpio.reset_out);
1205
1206	/* free allocations */
1207	ifx_spi_free_device(ifx_dev);
1208
1209	saved_ifx_dev = NULL;
1210	return 0;
1211}
1212
1213/**
1214 *	ifx_spi_spi_shutdown	-	called on SPI shutdown
1215 *	@spi: SPI device
1216 *
1217 *	No action needs to be taken here
1218 */
1219
1220static void ifx_spi_spi_shutdown(struct spi_device *spi)
1221{
 
 
 
1222}
1223
1224/*
1225 * various suspends and resumes have nothing to do
1226 * no hardware to save state for
1227 */
1228
1229/**
1230 *	ifx_spi_spi_suspend	-	suspend SPI on system suspend
1231 *	@dev: device being suspended
1232 *
1233 *	Suspend the SPI side. No action needed on Intel MID platforms, may
1234 *	need extending for other systems.
1235 */
1236static int ifx_spi_spi_suspend(struct spi_device *spi, pm_message_t msg)
1237{
1238	return 0;
1239}
1240
1241/**
1242 *	ifx_spi_spi_resume	-	resume SPI side on system resume
1243 *	@dev: device being suspended
1244 *
1245 *	Suspend the SPI side. No action needed on Intel MID platforms, may
1246 *	need extending for other systems.
1247 */
1248static int ifx_spi_spi_resume(struct spi_device *spi)
1249{
1250	return 0;
1251}
1252
1253/**
1254 *	ifx_spi_pm_suspend	-	suspend modem on system suspend
1255 *	@dev: device being suspended
1256 *
1257 *	Suspend the modem. No action needed on Intel MID platforms, may
1258 *	need extending for other systems.
1259 */
1260static int ifx_spi_pm_suspend(struct device *dev)
1261{
1262	return 0;
1263}
1264
1265/**
1266 *	ifx_spi_pm_resume	-	resume modem on system resume
1267 *	@dev: device being suspended
1268 *
1269 *	Allow the modem to resume. No action needed.
1270 *
1271 *	FIXME: do we need to reset anything here ?
1272 */
1273static int ifx_spi_pm_resume(struct device *dev)
1274{
1275	return 0;
1276}
1277
1278/**
1279 *	ifx_spi_pm_runtime_resume	-	suspend modem
1280 *	@dev: device being suspended
1281 *
1282 *	Allow the modem to resume. No action needed.
1283 */
1284static int ifx_spi_pm_runtime_resume(struct device *dev)
1285{
1286	return 0;
1287}
1288
1289/**
1290 *	ifx_spi_pm_runtime_suspend	-	suspend modem
1291 *	@dev: device being suspended
1292 *
1293 *	Allow the modem to suspend and thus suspend to continue up the
1294 *	device tree.
1295 */
1296static int ifx_spi_pm_runtime_suspend(struct device *dev)
1297{
1298	return 0;
1299}
1300
1301/**
1302 *	ifx_spi_pm_runtime_idle		-	check if modem idle
1303 *	@dev: our device
1304 *
1305 *	Check conditions and queue runtime suspend if idle.
1306 */
1307static int ifx_spi_pm_runtime_idle(struct device *dev)
1308{
1309	struct spi_device *spi = to_spi_device(dev);
1310	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1311
1312	if (!ifx_dev->power_status)
1313		pm_runtime_suspend(dev);
1314
1315	return 0;
1316}
1317
1318static const struct dev_pm_ops ifx_spi_pm = {
1319	.resume = ifx_spi_pm_resume,
1320	.suspend = ifx_spi_pm_suspend,
1321	.runtime_resume = ifx_spi_pm_runtime_resume,
1322	.runtime_suspend = ifx_spi_pm_runtime_suspend,
1323	.runtime_idle = ifx_spi_pm_runtime_idle
1324};
1325
1326static const struct spi_device_id ifx_id_table[] = {
1327	{"ifx6160", 0},
1328	{"ifx6260", 0},
1329	{ }
1330};
1331MODULE_DEVICE_TABLE(spi, ifx_id_table);
1332
1333/* spi operations */
1334static const struct spi_driver ifx_spi_driver = {
1335	.driver = {
1336		.name = DRVNAME,
1337		.bus = &spi_bus_type,
1338		.pm = &ifx_spi_pm,
1339		.owner = THIS_MODULE},
1340	.probe = ifx_spi_spi_probe,
1341	.shutdown = ifx_spi_spi_shutdown,
1342	.remove = __devexit_p(ifx_spi_spi_remove),
1343	.suspend = ifx_spi_spi_suspend,
1344	.resume = ifx_spi_spi_resume,
1345	.id_table = ifx_id_table
1346};
1347
1348/**
1349 *	ifx_spi_exit	-	module exit
1350 *
1351 *	Unload the module.
1352 */
1353
1354static void __exit ifx_spi_exit(void)
1355{
1356	/* unregister */
 
1357	tty_unregister_driver(tty_drv);
1358	spi_unregister_driver((void *)&ifx_spi_driver);
 
1359}
1360
1361/**
1362 *	ifx_spi_init		-	module entry point
1363 *
1364 *	Initialise the SPI and tty interfaces for the IFX SPI driver
1365 *	We need to initialize upper-edge spi driver after the tty
1366 *	driver because otherwise the spi probe will race
1367 */
1368
1369static int __init ifx_spi_init(void)
1370{
1371	int result;
1372
1373	tty_drv = alloc_tty_driver(1);
1374	if (!tty_drv) {
1375		pr_err("%s: alloc_tty_driver failed", DRVNAME);
1376		return -ENOMEM;
1377	}
1378
1379	tty_drv->magic = TTY_DRIVER_MAGIC;
1380	tty_drv->owner = THIS_MODULE;
1381	tty_drv->driver_name = DRVNAME;
1382	tty_drv->name = TTYNAME;
1383	tty_drv->minor_start = IFX_SPI_TTY_ID;
1384	tty_drv->num = 1;
1385	tty_drv->type = TTY_DRIVER_TYPE_SERIAL;
1386	tty_drv->subtype = SERIAL_TYPE_NORMAL;
1387	tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1388	tty_drv->init_termios = tty_std_termios;
1389
1390	tty_set_operations(tty_drv, &ifx_spi_serial_ops);
1391
1392	result = tty_register_driver(tty_drv);
1393	if (result) {
1394		pr_err("%s: tty_register_driver failed(%d)",
1395			DRVNAME, result);
1396		put_tty_driver(tty_drv);
1397		return result;
1398	}
1399
1400	result = spi_register_driver((void *)&ifx_spi_driver);
1401	if (result) {
1402		pr_err("%s: spi_register_driver failed(%d)",
1403			DRVNAME, result);
1404		tty_unregister_driver(tty_drv);
 
 
 
 
 
 
 
1405	}
 
 
 
 
 
 
 
 
 
1406	return result;
1407}
1408
1409module_init(ifx_spi_init);
1410module_exit(ifx_spi_exit);
1411
1412MODULE_AUTHOR("Intel");
1413MODULE_DESCRIPTION("IFX6x60 spi driver");
1414MODULE_LICENSE("GPL");
1415MODULE_INFO(Version, "0.1-IFX6x60");