Loading...
1// SPDX-License-Identifier: GPL-2.0
2/****************************************************************************
3 *
4 * Driver for the IFX 6x60 spi modem.
5 *
6 * Copyright (C) 2008 Option International
7 * Copyright (C) 2008 Filip Aben <f.aben@option.com>
8 * Denis Joseph Barrow <d.barow@option.com>
9 * Jan Dumon <j.dumon@option.com>
10 *
11 * Copyright (C) 2009, 2010 Intel Corp
12 * Russ Gorby <russ.gorby@intel.com>
13 *
14 * Driver modified by Intel from Option gtm501l_spi.c
15 *
16 * Notes
17 * o The driver currently assumes a single device only. If you need to
18 * change this then look for saved_ifx_dev and add a device lookup
19 * o The driver is intended to be big-endian safe but has never been
20 * tested that way (no suitable hardware). There are a couple of FIXME
21 * notes by areas that may need addressing
22 * o Some of the GPIO naming/setup assumptions may need revisiting if
23 * you need to use this driver for another platform.
24 *
25 *****************************************************************************/
26#include <linux/dma-mapping.h>
27#include <linux/module.h>
28#include <linux/termios.h>
29#include <linux/tty.h>
30#include <linux/device.h>
31#include <linux/spi/spi.h>
32#include <linux/kfifo.h>
33#include <linux/tty_flip.h>
34#include <linux/timer.h>
35#include <linux/serial.h>
36#include <linux/interrupt.h>
37#include <linux/irq.h>
38#include <linux/rfkill.h>
39#include <linux/fs.h>
40#include <linux/ip.h>
41#include <linux/dmapool.h>
42#include <linux/gpio.h>
43#include <linux/sched.h>
44#include <linux/time.h>
45#include <linux/wait.h>
46#include <linux/pm.h>
47#include <linux/pm_runtime.h>
48#include <linux/spi/ifx_modem.h>
49#include <linux/delay.h>
50#include <linux/reboot.h>
51
52#include "ifx6x60.h"
53
54#define IFX_SPI_MORE_MASK 0x10
55#define IFX_SPI_MORE_BIT 4 /* bit position in u8 */
56#define IFX_SPI_CTS_BIT 6 /* bit position in u8 */
57#define IFX_SPI_MODE SPI_MODE_1
58#define IFX_SPI_TTY_ID 0
59#define IFX_SPI_TIMEOUT_SEC 2
60#define IFX_SPI_HEADER_0 (-1)
61#define IFX_SPI_HEADER_F (-2)
62
63#define PO_POST_DELAY 200
64#define IFX_MDM_RST_PMU 4
65
66/* forward reference */
67static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev);
68static int ifx_modem_reboot_callback(struct notifier_block *nfb,
69 unsigned long event, void *data);
70static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev);
71
72/* local variables */
73static int spi_bpw = 16; /* 8, 16 or 32 bit word length */
74static struct tty_driver *tty_drv;
75static struct ifx_spi_device *saved_ifx_dev;
76static struct lock_class_key ifx_spi_key;
77
78static struct notifier_block ifx_modem_reboot_notifier_block = {
79 .notifier_call = ifx_modem_reboot_callback,
80};
81
82static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev)
83{
84 gpio_set_value(IFX_MDM_RST_PMU, 1);
85 msleep(PO_POST_DELAY);
86
87 return 0;
88}
89
90static int ifx_modem_reboot_callback(struct notifier_block *nfb,
91 unsigned long event, void *data)
92{
93 if (saved_ifx_dev)
94 ifx_modem_power_off(saved_ifx_dev);
95 else
96 pr_warn("no ifx modem active;\n");
97
98 return NOTIFY_OK;
99}
100
101/* GPIO/GPE settings */
102
103/**
104 * mrdy_set_high - set MRDY GPIO
105 * @ifx: device we are controlling
106 *
107 */
108static inline void mrdy_set_high(struct ifx_spi_device *ifx)
109{
110 gpio_set_value(ifx->gpio.mrdy, 1);
111}
112
113/**
114 * mrdy_set_low - clear MRDY GPIO
115 * @ifx: device we are controlling
116 *
117 */
118static inline void mrdy_set_low(struct ifx_spi_device *ifx)
119{
120 gpio_set_value(ifx->gpio.mrdy, 0);
121}
122
123/**
124 * ifx_spi_power_state_set
125 * @ifx_dev: our SPI device
126 * @val: bits to set
127 *
128 * Set bit in power status and signal power system if status becomes non-0
129 */
130static void
131ifx_spi_power_state_set(struct ifx_spi_device *ifx_dev, unsigned char val)
132{
133 unsigned long flags;
134
135 spin_lock_irqsave(&ifx_dev->power_lock, flags);
136
137 /*
138 * if power status is already non-0, just update, else
139 * tell power system
140 */
141 if (!ifx_dev->power_status)
142 pm_runtime_get(&ifx_dev->spi_dev->dev);
143 ifx_dev->power_status |= val;
144
145 spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
146}
147
148/**
149 * ifx_spi_power_state_clear - clear power bit
150 * @ifx_dev: our SPI device
151 * @val: bits to clear
152 *
153 * clear bit in power status and signal power system if status becomes 0
154 */
155static void
156ifx_spi_power_state_clear(struct ifx_spi_device *ifx_dev, unsigned char val)
157{
158 unsigned long flags;
159
160 spin_lock_irqsave(&ifx_dev->power_lock, flags);
161
162 if (ifx_dev->power_status) {
163 ifx_dev->power_status &= ~val;
164 if (!ifx_dev->power_status)
165 pm_runtime_put(&ifx_dev->spi_dev->dev);
166 }
167
168 spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
169}
170
171/**
172 * swap_buf_8
173 * @buf: our buffer
174 * @len : number of bytes (not words) in the buffer
175 * @end: end of buffer
176 *
177 * Swap the contents of a buffer into big endian format
178 */
179static inline void swap_buf_8(unsigned char *buf, int len, void *end)
180{
181 /* don't swap buffer if SPI word width is 8 bits */
182 return;
183}
184
185/**
186 * swap_buf_16
187 * @buf: our buffer
188 * @len : number of bytes (not words) in the buffer
189 * @end: end of buffer
190 *
191 * Swap the contents of a buffer into big endian format
192 */
193static inline void swap_buf_16(unsigned char *buf, int len, void *end)
194{
195 int n;
196
197 u16 *buf_16 = (u16 *)buf;
198 len = ((len + 1) >> 1);
199 if ((void *)&buf_16[len] > end) {
200 pr_err("swap_buf_16: swap exceeds boundary (%p > %p)!",
201 &buf_16[len], end);
202 return;
203 }
204 for (n = 0; n < len; n++) {
205 *buf_16 = cpu_to_be16(*buf_16);
206 buf_16++;
207 }
208}
209
210/**
211 * swap_buf_32
212 * @buf: our buffer
213 * @len : number of bytes (not words) in the buffer
214 * @end: end of buffer
215 *
216 * Swap the contents of a buffer into big endian format
217 */
218static inline void swap_buf_32(unsigned char *buf, int len, void *end)
219{
220 int n;
221
222 u32 *buf_32 = (u32 *)buf;
223 len = (len + 3) >> 2;
224
225 if ((void *)&buf_32[len] > end) {
226 pr_err("swap_buf_32: swap exceeds boundary (%p > %p)!\n",
227 &buf_32[len], end);
228 return;
229 }
230 for (n = 0; n < len; n++) {
231 *buf_32 = cpu_to_be32(*buf_32);
232 buf_32++;
233 }
234}
235
236/**
237 * mrdy_assert - assert MRDY line
238 * @ifx_dev: our SPI device
239 *
240 * Assert mrdy and set timer to wait for SRDY interrupt, if SRDY is low
241 * now.
242 *
243 * FIXME: Can SRDY even go high as we are running this code ?
244 */
245static void mrdy_assert(struct ifx_spi_device *ifx_dev)
246{
247 int val = gpio_get_value(ifx_dev->gpio.srdy);
248 if (!val) {
249 if (!test_and_set_bit(IFX_SPI_STATE_TIMER_PENDING,
250 &ifx_dev->flags)) {
251 mod_timer(&ifx_dev->spi_timer,jiffies + IFX_SPI_TIMEOUT_SEC*HZ);
252
253 }
254 }
255 ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_DATA_PENDING);
256 mrdy_set_high(ifx_dev);
257}
258
259/**
260 * ifx_spi_timeout - SPI timeout
261 * @arg: our SPI device
262 *
263 * The SPI has timed out: hang up the tty. Users will then see a hangup
264 * and error events.
265 */
266static void ifx_spi_timeout(struct timer_list *t)
267{
268 struct ifx_spi_device *ifx_dev = from_timer(ifx_dev, t, spi_timer);
269
270 dev_warn(&ifx_dev->spi_dev->dev, "*** SPI Timeout ***");
271 tty_port_tty_hangup(&ifx_dev->tty_port, false);
272 mrdy_set_low(ifx_dev);
273 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
274}
275
276/* char/tty operations */
277
278/**
279 * ifx_spi_tiocmget - get modem lines
280 * @tty: our tty device
281 * @filp: file handle issuing the request
282 *
283 * Map the signal state into Linux modem flags and report the value
284 * in Linux terms
285 */
286static int ifx_spi_tiocmget(struct tty_struct *tty)
287{
288 unsigned int value;
289 struct ifx_spi_device *ifx_dev = tty->driver_data;
290
291 value =
292 (test_bit(IFX_SPI_RTS, &ifx_dev->signal_state) ? TIOCM_RTS : 0) |
293 (test_bit(IFX_SPI_DTR, &ifx_dev->signal_state) ? TIOCM_DTR : 0) |
294 (test_bit(IFX_SPI_CTS, &ifx_dev->signal_state) ? TIOCM_CTS : 0) |
295 (test_bit(IFX_SPI_DSR, &ifx_dev->signal_state) ? TIOCM_DSR : 0) |
296 (test_bit(IFX_SPI_DCD, &ifx_dev->signal_state) ? TIOCM_CAR : 0) |
297 (test_bit(IFX_SPI_RI, &ifx_dev->signal_state) ? TIOCM_RNG : 0);
298 return value;
299}
300
301/**
302 * ifx_spi_tiocmset - set modem bits
303 * @tty: the tty structure
304 * @set: bits to set
305 * @clear: bits to clear
306 *
307 * The IFX6x60 only supports DTR and RTS. Set them accordingly
308 * and flag that an update to the modem is needed.
309 *
310 * FIXME: do we need to kick the tranfers when we do this ?
311 */
312static int ifx_spi_tiocmset(struct tty_struct *tty,
313 unsigned int set, unsigned int clear)
314{
315 struct ifx_spi_device *ifx_dev = tty->driver_data;
316
317 if (set & TIOCM_RTS)
318 set_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
319 if (set & TIOCM_DTR)
320 set_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
321 if (clear & TIOCM_RTS)
322 clear_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
323 if (clear & TIOCM_DTR)
324 clear_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
325
326 set_bit(IFX_SPI_UPDATE, &ifx_dev->signal_state);
327 return 0;
328}
329
330/**
331 * ifx_spi_open - called on tty open
332 * @tty: our tty device
333 * @filp: file handle being associated with the tty
334 *
335 * Open the tty interface. We let the tty_port layer do all the work
336 * for us.
337 *
338 * FIXME: Remove single device assumption and saved_ifx_dev
339 */
340static int ifx_spi_open(struct tty_struct *tty, struct file *filp)
341{
342 return tty_port_open(&saved_ifx_dev->tty_port, tty, filp);
343}
344
345/**
346 * ifx_spi_close - called when our tty closes
347 * @tty: the tty being closed
348 * @filp: the file handle being closed
349 *
350 * Perform the close of the tty. We use the tty_port layer to do all
351 * our hard work.
352 */
353static void ifx_spi_close(struct tty_struct *tty, struct file *filp)
354{
355 struct ifx_spi_device *ifx_dev = tty->driver_data;
356 tty_port_close(&ifx_dev->tty_port, tty, filp);
357 /* FIXME: should we do an ifx_spi_reset here ? */
358}
359
360/**
361 * ifx_decode_spi_header - decode received header
362 * @buffer: the received data
363 * @length: decoded length
364 * @more: decoded more flag
365 * @received_cts: status of cts we received
366 *
367 * Note how received_cts is handled -- if header is all F it is left
368 * the same as it was, if header is all 0 it is set to 0 otherwise it is
369 * taken from the incoming header.
370 *
371 * FIXME: endianness
372 */
373static int ifx_spi_decode_spi_header(unsigned char *buffer, int *length,
374 unsigned char *more, unsigned char *received_cts)
375{
376 u16 h1;
377 u16 h2;
378 u16 *in_buffer = (u16 *)buffer;
379
380 h1 = *in_buffer;
381 h2 = *(in_buffer+1);
382
383 if (h1 == 0 && h2 == 0) {
384 *received_cts = 0;
385 *more = 0;
386 return IFX_SPI_HEADER_0;
387 } else if (h1 == 0xffff && h2 == 0xffff) {
388 *more = 0;
389 /* spi_slave_cts remains as it was */
390 return IFX_SPI_HEADER_F;
391 }
392
393 *length = h1 & 0xfff; /* upper bits of byte are flags */
394 *more = (buffer[1] >> IFX_SPI_MORE_BIT) & 1;
395 *received_cts = (buffer[3] >> IFX_SPI_CTS_BIT) & 1;
396 return 0;
397}
398
399/**
400 * ifx_setup_spi_header - set header fields
401 * @txbuffer: pointer to start of SPI buffer
402 * @tx_count: bytes
403 * @more: indicate if more to follow
404 *
405 * Format up an SPI header for a transfer
406 *
407 * FIXME: endianness?
408 */
409static void ifx_spi_setup_spi_header(unsigned char *txbuffer, int tx_count,
410 unsigned char more)
411{
412 *(u16 *)(txbuffer) = tx_count;
413 *(u16 *)(txbuffer+2) = IFX_SPI_PAYLOAD_SIZE;
414 txbuffer[1] |= (more << IFX_SPI_MORE_BIT) & IFX_SPI_MORE_MASK;
415}
416
417/**
418 * ifx_spi_prepare_tx_buffer - prepare transmit frame
419 * @ifx_dev: our SPI device
420 *
421 * The transmit buffr needs a header and various other bits of
422 * information followed by as much data as we can pull from the FIFO
423 * and transfer. This function formats up a suitable buffer in the
424 * ifx_dev->tx_buffer
425 *
426 * FIXME: performance - should we wake the tty when the queue is half
427 * empty ?
428 */
429static int ifx_spi_prepare_tx_buffer(struct ifx_spi_device *ifx_dev)
430{
431 int temp_count;
432 int queue_length;
433 int tx_count;
434 unsigned char *tx_buffer;
435
436 tx_buffer = ifx_dev->tx_buffer;
437
438 /* make room for required SPI header */
439 tx_buffer += IFX_SPI_HEADER_OVERHEAD;
440 tx_count = IFX_SPI_HEADER_OVERHEAD;
441
442 /* clear to signal no more data if this turns out to be the
443 * last buffer sent in a sequence */
444 ifx_dev->spi_more = 0;
445
446 /* if modem cts is set, just send empty buffer */
447 if (!ifx_dev->spi_slave_cts) {
448 /* see if there's tx data */
449 queue_length = kfifo_len(&ifx_dev->tx_fifo);
450 if (queue_length != 0) {
451 /* data to mux -- see if there's room for it */
452 temp_count = min(queue_length, IFX_SPI_PAYLOAD_SIZE);
453 temp_count = kfifo_out_locked(&ifx_dev->tx_fifo,
454 tx_buffer, temp_count,
455 &ifx_dev->fifo_lock);
456
457 /* update buffer pointer and data count in message */
458 tx_buffer += temp_count;
459 tx_count += temp_count;
460 if (temp_count == queue_length)
461 /* poke port to get more data */
462 tty_port_tty_wakeup(&ifx_dev->tty_port);
463 else /* more data in port, use next SPI message */
464 ifx_dev->spi_more = 1;
465 }
466 }
467 /* have data and info for header -- set up SPI header in buffer */
468 /* spi header needs payload size, not entire buffer size */
469 ifx_spi_setup_spi_header(ifx_dev->tx_buffer,
470 tx_count-IFX_SPI_HEADER_OVERHEAD,
471 ifx_dev->spi_more);
472 /* swap actual data in the buffer */
473 ifx_dev->swap_buf((ifx_dev->tx_buffer), tx_count,
474 &ifx_dev->tx_buffer[IFX_SPI_TRANSFER_SIZE]);
475 return tx_count;
476}
477
478/**
479 * ifx_spi_write - line discipline write
480 * @tty: our tty device
481 * @buf: pointer to buffer to write (kernel space)
482 * @count: size of buffer
483 *
484 * Write the characters we have been given into the FIFO. If the device
485 * is not active then activate it, when the SRDY line is asserted back
486 * this will commence I/O
487 */
488static int ifx_spi_write(struct tty_struct *tty, const unsigned char *buf,
489 int count)
490{
491 struct ifx_spi_device *ifx_dev = tty->driver_data;
492 unsigned char *tmp_buf = (unsigned char *)buf;
493 unsigned long flags;
494 bool is_fifo_empty;
495 int tx_count;
496
497 spin_lock_irqsave(&ifx_dev->fifo_lock, flags);
498 is_fifo_empty = kfifo_is_empty(&ifx_dev->tx_fifo);
499 tx_count = kfifo_in(&ifx_dev->tx_fifo, tmp_buf, count);
500 spin_unlock_irqrestore(&ifx_dev->fifo_lock, flags);
501 if (is_fifo_empty)
502 mrdy_assert(ifx_dev);
503
504 return tx_count;
505}
506
507/**
508 * ifx_spi_chars_in_buffer - line discipline helper
509 * @tty: our tty device
510 *
511 * Report how much data we can accept before we drop bytes. As we use
512 * a simple FIFO this is nice and easy.
513 */
514static int ifx_spi_write_room(struct tty_struct *tty)
515{
516 struct ifx_spi_device *ifx_dev = tty->driver_data;
517 return IFX_SPI_FIFO_SIZE - kfifo_len(&ifx_dev->tx_fifo);
518}
519
520/**
521 * ifx_spi_chars_in_buffer - line discipline helper
522 * @tty: our tty device
523 *
524 * Report how many characters we have buffered. In our case this is the
525 * number of bytes sitting in our transmit FIFO.
526 */
527static int ifx_spi_chars_in_buffer(struct tty_struct *tty)
528{
529 struct ifx_spi_device *ifx_dev = tty->driver_data;
530 return kfifo_len(&ifx_dev->tx_fifo);
531}
532
533/**
534 * ifx_port_hangup
535 * @port: our tty port
536 *
537 * tty port hang up. Called when tty_hangup processing is invoked either
538 * by loss of carrier, or by software (eg vhangup). Serialized against
539 * activate/shutdown by the tty layer.
540 */
541static void ifx_spi_hangup(struct tty_struct *tty)
542{
543 struct ifx_spi_device *ifx_dev = tty->driver_data;
544 tty_port_hangup(&ifx_dev->tty_port);
545}
546
547/**
548 * ifx_port_activate
549 * @port: our tty port
550 *
551 * tty port activate method - called for first open. Serialized
552 * with hangup and shutdown by the tty layer.
553 */
554static int ifx_port_activate(struct tty_port *port, struct tty_struct *tty)
555{
556 struct ifx_spi_device *ifx_dev =
557 container_of(port, struct ifx_spi_device, tty_port);
558
559 /* clear any old data; can't do this in 'close' */
560 kfifo_reset(&ifx_dev->tx_fifo);
561
562 /* clear any flag which may be set in port shutdown procedure */
563 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
564 clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
565
566 /* put port data into this tty */
567 tty->driver_data = ifx_dev;
568
569 /* allows flip string push from int context */
570 port->low_latency = 1;
571
572 /* set flag to allows data transfer */
573 set_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
574
575 return 0;
576}
577
578/**
579 * ifx_port_shutdown
580 * @port: our tty port
581 *
582 * tty port shutdown method - called for last port close. Serialized
583 * with hangup and activate by the tty layer.
584 */
585static void ifx_port_shutdown(struct tty_port *port)
586{
587 struct ifx_spi_device *ifx_dev =
588 container_of(port, struct ifx_spi_device, tty_port);
589
590 clear_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
591 mrdy_set_low(ifx_dev);
592 del_timer(&ifx_dev->spi_timer);
593 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
594 tasklet_kill(&ifx_dev->io_work_tasklet);
595}
596
597static const struct tty_port_operations ifx_tty_port_ops = {
598 .activate = ifx_port_activate,
599 .shutdown = ifx_port_shutdown,
600};
601
602static const struct tty_operations ifx_spi_serial_ops = {
603 .open = ifx_spi_open,
604 .close = ifx_spi_close,
605 .write = ifx_spi_write,
606 .hangup = ifx_spi_hangup,
607 .write_room = ifx_spi_write_room,
608 .chars_in_buffer = ifx_spi_chars_in_buffer,
609 .tiocmget = ifx_spi_tiocmget,
610 .tiocmset = ifx_spi_tiocmset,
611};
612
613/**
614 * ifx_spi_insert_fip_string - queue received data
615 * @ifx_ser: our SPI device
616 * @chars: buffer we have received
617 * @size: number of chars reeived
618 *
619 * Queue bytes to the tty assuming the tty side is currently open. If
620 * not the discard the data.
621 */
622static void ifx_spi_insert_flip_string(struct ifx_spi_device *ifx_dev,
623 unsigned char *chars, size_t size)
624{
625 tty_insert_flip_string(&ifx_dev->tty_port, chars, size);
626 tty_flip_buffer_push(&ifx_dev->tty_port);
627}
628
629/**
630 * ifx_spi_complete - SPI transfer completed
631 * @ctx: our SPI device
632 *
633 * An SPI transfer has completed. Process any received data and kick off
634 * any further transmits we can commence.
635 */
636static void ifx_spi_complete(void *ctx)
637{
638 struct ifx_spi_device *ifx_dev = ctx;
639 int length;
640 int actual_length;
641 unsigned char more = 0;
642 unsigned char cts;
643 int local_write_pending = 0;
644 int queue_length;
645 int srdy;
646 int decode_result;
647
648 mrdy_set_low(ifx_dev);
649
650 if (!ifx_dev->spi_msg.status) {
651 /* check header validity, get comm flags */
652 ifx_dev->swap_buf(ifx_dev->rx_buffer, IFX_SPI_HEADER_OVERHEAD,
653 &ifx_dev->rx_buffer[IFX_SPI_HEADER_OVERHEAD]);
654 decode_result = ifx_spi_decode_spi_header(ifx_dev->rx_buffer,
655 &length, &more, &cts);
656 if (decode_result == IFX_SPI_HEADER_0) {
657 dev_dbg(&ifx_dev->spi_dev->dev,
658 "ignore input: invalid header 0");
659 ifx_dev->spi_slave_cts = 0;
660 goto complete_exit;
661 } else if (decode_result == IFX_SPI_HEADER_F) {
662 dev_dbg(&ifx_dev->spi_dev->dev,
663 "ignore input: invalid header F");
664 goto complete_exit;
665 }
666
667 ifx_dev->spi_slave_cts = cts;
668
669 actual_length = min((unsigned int)length,
670 ifx_dev->spi_msg.actual_length);
671 ifx_dev->swap_buf(
672 (ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD),
673 actual_length,
674 &ifx_dev->rx_buffer[IFX_SPI_TRANSFER_SIZE]);
675 ifx_spi_insert_flip_string(
676 ifx_dev,
677 ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD,
678 (size_t)actual_length);
679 } else {
680 more = 0;
681 dev_dbg(&ifx_dev->spi_dev->dev, "SPI transfer error %d",
682 ifx_dev->spi_msg.status);
683 }
684
685complete_exit:
686 if (ifx_dev->write_pending) {
687 ifx_dev->write_pending = 0;
688 local_write_pending = 1;
689 }
690
691 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &(ifx_dev->flags));
692
693 queue_length = kfifo_len(&ifx_dev->tx_fifo);
694 srdy = gpio_get_value(ifx_dev->gpio.srdy);
695 if (!srdy)
696 ifx_spi_power_state_clear(ifx_dev, IFX_SPI_POWER_SRDY);
697
698 /* schedule output if there is more to do */
699 if (test_and_clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags))
700 tasklet_schedule(&ifx_dev->io_work_tasklet);
701 else {
702 if (more || ifx_dev->spi_more || queue_length > 0 ||
703 local_write_pending) {
704 if (ifx_dev->spi_slave_cts) {
705 if (more)
706 mrdy_assert(ifx_dev);
707 } else
708 mrdy_assert(ifx_dev);
709 } else {
710 /*
711 * poke line discipline driver if any for more data
712 * may or may not get more data to write
713 * for now, say not busy
714 */
715 ifx_spi_power_state_clear(ifx_dev,
716 IFX_SPI_POWER_DATA_PENDING);
717 tty_port_tty_wakeup(&ifx_dev->tty_port);
718 }
719 }
720}
721
722/**
723 * ifx_spio_io - I/O tasklet
724 * @data: our SPI device
725 *
726 * Queue data for transmission if possible and then kick off the
727 * transfer.
728 */
729static void ifx_spi_io(unsigned long data)
730{
731 int retval;
732 struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *) data;
733
734 if (!test_and_set_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags) &&
735 test_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags)) {
736 if (ifx_dev->gpio.unack_srdy_int_nb > 0)
737 ifx_dev->gpio.unack_srdy_int_nb--;
738
739 ifx_spi_prepare_tx_buffer(ifx_dev);
740
741 spi_message_init(&ifx_dev->spi_msg);
742 INIT_LIST_HEAD(&ifx_dev->spi_msg.queue);
743
744 ifx_dev->spi_msg.context = ifx_dev;
745 ifx_dev->spi_msg.complete = ifx_spi_complete;
746
747 /* set up our spi transfer */
748 /* note len is BYTES, not transfers */
749 ifx_dev->spi_xfer.len = IFX_SPI_TRANSFER_SIZE;
750 ifx_dev->spi_xfer.cs_change = 0;
751 ifx_dev->spi_xfer.speed_hz = ifx_dev->spi_dev->max_speed_hz;
752 /* ifx_dev->spi_xfer.speed_hz = 390625; */
753 ifx_dev->spi_xfer.bits_per_word =
754 ifx_dev->spi_dev->bits_per_word;
755
756 ifx_dev->spi_xfer.tx_buf = ifx_dev->tx_buffer;
757 ifx_dev->spi_xfer.rx_buf = ifx_dev->rx_buffer;
758
759 /*
760 * setup dma pointers
761 */
762 if (ifx_dev->use_dma) {
763 ifx_dev->spi_msg.is_dma_mapped = 1;
764 ifx_dev->tx_dma = ifx_dev->tx_bus;
765 ifx_dev->rx_dma = ifx_dev->rx_bus;
766 ifx_dev->spi_xfer.tx_dma = ifx_dev->tx_dma;
767 ifx_dev->spi_xfer.rx_dma = ifx_dev->rx_dma;
768 } else {
769 ifx_dev->spi_msg.is_dma_mapped = 0;
770 ifx_dev->tx_dma = (dma_addr_t)0;
771 ifx_dev->rx_dma = (dma_addr_t)0;
772 ifx_dev->spi_xfer.tx_dma = (dma_addr_t)0;
773 ifx_dev->spi_xfer.rx_dma = (dma_addr_t)0;
774 }
775
776 spi_message_add_tail(&ifx_dev->spi_xfer, &ifx_dev->spi_msg);
777
778 /* Assert MRDY. This may have already been done by the write
779 * routine.
780 */
781 mrdy_assert(ifx_dev);
782
783 retval = spi_async(ifx_dev->spi_dev, &ifx_dev->spi_msg);
784 if (retval) {
785 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS,
786 &ifx_dev->flags);
787 tasklet_schedule(&ifx_dev->io_work_tasklet);
788 return;
789 }
790 } else
791 ifx_dev->write_pending = 1;
792}
793
794/**
795 * ifx_spi_free_port - free up the tty side
796 * @ifx_dev: IFX device going away
797 *
798 * Unregister and free up a port when the device goes away
799 */
800static void ifx_spi_free_port(struct ifx_spi_device *ifx_dev)
801{
802 if (ifx_dev->tty_dev)
803 tty_unregister_device(tty_drv, ifx_dev->minor);
804 tty_port_destroy(&ifx_dev->tty_port);
805 kfifo_free(&ifx_dev->tx_fifo);
806}
807
808/**
809 * ifx_spi_create_port - create a new port
810 * @ifx_dev: our spi device
811 *
812 * Allocate and initialise the tty port that goes with this interface
813 * and add it to the tty layer so that it can be opened.
814 */
815static int ifx_spi_create_port(struct ifx_spi_device *ifx_dev)
816{
817 int ret = 0;
818 struct tty_port *pport = &ifx_dev->tty_port;
819
820 spin_lock_init(&ifx_dev->fifo_lock);
821 lockdep_set_class_and_subclass(&ifx_dev->fifo_lock,
822 &ifx_spi_key, 0);
823
824 if (kfifo_alloc(&ifx_dev->tx_fifo, IFX_SPI_FIFO_SIZE, GFP_KERNEL)) {
825 ret = -ENOMEM;
826 goto error_ret;
827 }
828
829 tty_port_init(pport);
830 pport->ops = &ifx_tty_port_ops;
831 ifx_dev->minor = IFX_SPI_TTY_ID;
832 ifx_dev->tty_dev = tty_port_register_device(pport, tty_drv,
833 ifx_dev->minor, &ifx_dev->spi_dev->dev);
834 if (IS_ERR(ifx_dev->tty_dev)) {
835 dev_dbg(&ifx_dev->spi_dev->dev,
836 "%s: registering tty device failed", __func__);
837 ret = PTR_ERR(ifx_dev->tty_dev);
838 goto error_port;
839 }
840 return 0;
841
842error_port:
843 tty_port_destroy(pport);
844error_ret:
845 ifx_spi_free_port(ifx_dev);
846 return ret;
847}
848
849/**
850 * ifx_spi_handle_srdy - handle SRDY
851 * @ifx_dev: device asserting SRDY
852 *
853 * Check our device state and see what we need to kick off when SRDY
854 * is asserted. This usually means killing the timer and firing off the
855 * I/O processing.
856 */
857static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev)
858{
859 if (test_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags)) {
860 del_timer(&ifx_dev->spi_timer);
861 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
862 }
863
864 ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_SRDY);
865
866 if (!test_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags))
867 tasklet_schedule(&ifx_dev->io_work_tasklet);
868 else
869 set_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
870}
871
872/**
873 * ifx_spi_srdy_interrupt - SRDY asserted
874 * @irq: our IRQ number
875 * @dev: our ifx device
876 *
877 * The modem asserted SRDY. Handle the srdy event
878 */
879static irqreturn_t ifx_spi_srdy_interrupt(int irq, void *dev)
880{
881 struct ifx_spi_device *ifx_dev = dev;
882 ifx_dev->gpio.unack_srdy_int_nb++;
883 ifx_spi_handle_srdy(ifx_dev);
884 return IRQ_HANDLED;
885}
886
887/**
888 * ifx_spi_reset_interrupt - Modem has changed reset state
889 * @irq: interrupt number
890 * @dev: our device pointer
891 *
892 * The modem has either entered or left reset state. Check the GPIO
893 * line to see which.
894 *
895 * FIXME: review locking on MR_INPROGRESS versus
896 * parallel unsolicited reset/solicited reset
897 */
898static irqreturn_t ifx_spi_reset_interrupt(int irq, void *dev)
899{
900 struct ifx_spi_device *ifx_dev = dev;
901 int val = gpio_get_value(ifx_dev->gpio.reset_out);
902 int solreset = test_bit(MR_START, &ifx_dev->mdm_reset_state);
903
904 if (val == 0) {
905 /* entered reset */
906 set_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
907 if (!solreset) {
908 /* unsolicited reset */
909 tty_port_tty_hangup(&ifx_dev->tty_port, false);
910 }
911 } else {
912 /* exited reset */
913 clear_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
914 if (solreset) {
915 set_bit(MR_COMPLETE, &ifx_dev->mdm_reset_state);
916 wake_up(&ifx_dev->mdm_reset_wait);
917 }
918 }
919 return IRQ_HANDLED;
920}
921
922/**
923 * ifx_spi_free_device - free device
924 * @ifx_dev: device to free
925 *
926 * Free the IFX device
927 */
928static void ifx_spi_free_device(struct ifx_spi_device *ifx_dev)
929{
930 ifx_spi_free_port(ifx_dev);
931 dma_free_coherent(&ifx_dev->spi_dev->dev,
932 IFX_SPI_TRANSFER_SIZE,
933 ifx_dev->tx_buffer,
934 ifx_dev->tx_bus);
935 dma_free_coherent(&ifx_dev->spi_dev->dev,
936 IFX_SPI_TRANSFER_SIZE,
937 ifx_dev->rx_buffer,
938 ifx_dev->rx_bus);
939}
940
941/**
942 * ifx_spi_reset - reset modem
943 * @ifx_dev: modem to reset
944 *
945 * Perform a reset on the modem
946 */
947static int ifx_spi_reset(struct ifx_spi_device *ifx_dev)
948{
949 int ret;
950 /*
951 * set up modem power, reset
952 *
953 * delays are required on some platforms for the modem
954 * to reset properly
955 */
956 set_bit(MR_START, &ifx_dev->mdm_reset_state);
957 gpio_set_value(ifx_dev->gpio.po, 0);
958 gpio_set_value(ifx_dev->gpio.reset, 0);
959 msleep(25);
960 gpio_set_value(ifx_dev->gpio.reset, 1);
961 msleep(1);
962 gpio_set_value(ifx_dev->gpio.po, 1);
963 msleep(1);
964 gpio_set_value(ifx_dev->gpio.po, 0);
965 ret = wait_event_timeout(ifx_dev->mdm_reset_wait,
966 test_bit(MR_COMPLETE,
967 &ifx_dev->mdm_reset_state),
968 IFX_RESET_TIMEOUT);
969 if (!ret)
970 dev_warn(&ifx_dev->spi_dev->dev, "Modem reset timeout: (state:%lx)",
971 ifx_dev->mdm_reset_state);
972
973 ifx_dev->mdm_reset_state = 0;
974 return ret;
975}
976
977/**
978 * ifx_spi_spi_probe - probe callback
979 * @spi: our possible matching SPI device
980 *
981 * Probe for a 6x60 modem on SPI bus. Perform any needed device and
982 * GPIO setup.
983 *
984 * FIXME:
985 * - Support for multiple devices
986 * - Split out MID specific GPIO handling eventually
987 */
988
989static int ifx_spi_spi_probe(struct spi_device *spi)
990{
991 int ret;
992 int srdy;
993 struct ifx_modem_platform_data *pl_data;
994 struct ifx_spi_device *ifx_dev;
995
996 if (saved_ifx_dev) {
997 dev_dbg(&spi->dev, "ignoring subsequent detection");
998 return -ENODEV;
999 }
1000
1001 pl_data = dev_get_platdata(&spi->dev);
1002 if (!pl_data) {
1003 dev_err(&spi->dev, "missing platform data!");
1004 return -ENODEV;
1005 }
1006
1007 /* initialize structure to hold our device variables */
1008 ifx_dev = kzalloc(sizeof(struct ifx_spi_device), GFP_KERNEL);
1009 if (!ifx_dev) {
1010 dev_err(&spi->dev, "spi device allocation failed");
1011 return -ENOMEM;
1012 }
1013 saved_ifx_dev = ifx_dev;
1014 ifx_dev->spi_dev = spi;
1015 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
1016 spin_lock_init(&ifx_dev->write_lock);
1017 spin_lock_init(&ifx_dev->power_lock);
1018 ifx_dev->power_status = 0;
1019 timer_setup(&ifx_dev->spi_timer, ifx_spi_timeout, 0);
1020 ifx_dev->modem = pl_data->modem_type;
1021 ifx_dev->use_dma = pl_data->use_dma;
1022 ifx_dev->max_hz = pl_data->max_hz;
1023 /* initialize spi mode, etc */
1024 spi->max_speed_hz = ifx_dev->max_hz;
1025 spi->mode = IFX_SPI_MODE | (SPI_LOOP & spi->mode);
1026 spi->bits_per_word = spi_bpw;
1027 ret = spi_setup(spi);
1028 if (ret) {
1029 dev_err(&spi->dev, "SPI setup wasn't successful %d", ret);
1030 kfree(ifx_dev);
1031 return -ENODEV;
1032 }
1033
1034 /* init swap_buf function according to word width configuration */
1035 if (spi->bits_per_word == 32)
1036 ifx_dev->swap_buf = swap_buf_32;
1037 else if (spi->bits_per_word == 16)
1038 ifx_dev->swap_buf = swap_buf_16;
1039 else
1040 ifx_dev->swap_buf = swap_buf_8;
1041
1042 /* ensure SPI protocol flags are initialized to enable transfer */
1043 ifx_dev->spi_more = 0;
1044 ifx_dev->spi_slave_cts = 0;
1045
1046 /*initialize transfer and dma buffers */
1047 ifx_dev->tx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1048 IFX_SPI_TRANSFER_SIZE,
1049 &ifx_dev->tx_bus,
1050 GFP_KERNEL);
1051 if (!ifx_dev->tx_buffer) {
1052 dev_err(&spi->dev, "DMA-TX buffer allocation failed");
1053 ret = -ENOMEM;
1054 goto error_ret;
1055 }
1056 ifx_dev->rx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1057 IFX_SPI_TRANSFER_SIZE,
1058 &ifx_dev->rx_bus,
1059 GFP_KERNEL);
1060 if (!ifx_dev->rx_buffer) {
1061 dev_err(&spi->dev, "DMA-RX buffer allocation failed");
1062 ret = -ENOMEM;
1063 goto error_ret;
1064 }
1065
1066 /* initialize waitq for modem reset */
1067 init_waitqueue_head(&ifx_dev->mdm_reset_wait);
1068
1069 spi_set_drvdata(spi, ifx_dev);
1070 tasklet_init(&ifx_dev->io_work_tasklet, ifx_spi_io,
1071 (unsigned long)ifx_dev);
1072
1073 set_bit(IFX_SPI_STATE_PRESENT, &ifx_dev->flags);
1074
1075 /* create our tty port */
1076 ret = ifx_spi_create_port(ifx_dev);
1077 if (ret != 0) {
1078 dev_err(&spi->dev, "create default tty port failed");
1079 goto error_ret;
1080 }
1081
1082 ifx_dev->gpio.reset = pl_data->rst_pmu;
1083 ifx_dev->gpio.po = pl_data->pwr_on;
1084 ifx_dev->gpio.mrdy = pl_data->mrdy;
1085 ifx_dev->gpio.srdy = pl_data->srdy;
1086 ifx_dev->gpio.reset_out = pl_data->rst_out;
1087
1088 dev_info(&spi->dev, "gpios %d, %d, %d, %d, %d",
1089 ifx_dev->gpio.reset, ifx_dev->gpio.po, ifx_dev->gpio.mrdy,
1090 ifx_dev->gpio.srdy, ifx_dev->gpio.reset_out);
1091
1092 /* Configure gpios */
1093 ret = gpio_request(ifx_dev->gpio.reset, "ifxModem");
1094 if (ret < 0) {
1095 dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET)",
1096 ifx_dev->gpio.reset);
1097 goto error_ret;
1098 }
1099 ret += gpio_direction_output(ifx_dev->gpio.reset, 0);
1100 ret += gpio_export(ifx_dev->gpio.reset, 1);
1101 if (ret) {
1102 dev_err(&spi->dev, "Unable to configure GPIO%d (RESET)",
1103 ifx_dev->gpio.reset);
1104 ret = -EBUSY;
1105 goto error_ret2;
1106 }
1107
1108 ret = gpio_request(ifx_dev->gpio.po, "ifxModem");
1109 ret += gpio_direction_output(ifx_dev->gpio.po, 0);
1110 ret += gpio_export(ifx_dev->gpio.po, 1);
1111 if (ret) {
1112 dev_err(&spi->dev, "Unable to configure GPIO%d (ON)",
1113 ifx_dev->gpio.po);
1114 ret = -EBUSY;
1115 goto error_ret3;
1116 }
1117
1118 ret = gpio_request(ifx_dev->gpio.mrdy, "ifxModem");
1119 if (ret < 0) {
1120 dev_err(&spi->dev, "Unable to allocate GPIO%d (MRDY)",
1121 ifx_dev->gpio.mrdy);
1122 goto error_ret3;
1123 }
1124 ret += gpio_export(ifx_dev->gpio.mrdy, 1);
1125 ret += gpio_direction_output(ifx_dev->gpio.mrdy, 0);
1126 if (ret) {
1127 dev_err(&spi->dev, "Unable to configure GPIO%d (MRDY)",
1128 ifx_dev->gpio.mrdy);
1129 ret = -EBUSY;
1130 goto error_ret4;
1131 }
1132
1133 ret = gpio_request(ifx_dev->gpio.srdy, "ifxModem");
1134 if (ret < 0) {
1135 dev_err(&spi->dev, "Unable to allocate GPIO%d (SRDY)",
1136 ifx_dev->gpio.srdy);
1137 ret = -EBUSY;
1138 goto error_ret4;
1139 }
1140 ret += gpio_export(ifx_dev->gpio.srdy, 1);
1141 ret += gpio_direction_input(ifx_dev->gpio.srdy);
1142 if (ret) {
1143 dev_err(&spi->dev, "Unable to configure GPIO%d (SRDY)",
1144 ifx_dev->gpio.srdy);
1145 ret = -EBUSY;
1146 goto error_ret5;
1147 }
1148
1149 ret = gpio_request(ifx_dev->gpio.reset_out, "ifxModem");
1150 if (ret < 0) {
1151 dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET_OUT)",
1152 ifx_dev->gpio.reset_out);
1153 goto error_ret5;
1154 }
1155 ret += gpio_export(ifx_dev->gpio.reset_out, 1);
1156 ret += gpio_direction_input(ifx_dev->gpio.reset_out);
1157 if (ret) {
1158 dev_err(&spi->dev, "Unable to configure GPIO%d (RESET_OUT)",
1159 ifx_dev->gpio.reset_out);
1160 ret = -EBUSY;
1161 goto error_ret6;
1162 }
1163
1164 ret = request_irq(gpio_to_irq(ifx_dev->gpio.reset_out),
1165 ifx_spi_reset_interrupt,
1166 IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, DRVNAME,
1167 ifx_dev);
1168 if (ret) {
1169 dev_err(&spi->dev, "Unable to get irq %x\n",
1170 gpio_to_irq(ifx_dev->gpio.reset_out));
1171 goto error_ret6;
1172 }
1173
1174 ret = ifx_spi_reset(ifx_dev);
1175
1176 ret = request_irq(gpio_to_irq(ifx_dev->gpio.srdy),
1177 ifx_spi_srdy_interrupt, IRQF_TRIGGER_RISING, DRVNAME,
1178 ifx_dev);
1179 if (ret) {
1180 dev_err(&spi->dev, "Unable to get irq %x",
1181 gpio_to_irq(ifx_dev->gpio.srdy));
1182 goto error_ret7;
1183 }
1184
1185 /* set pm runtime power state and register with power system */
1186 pm_runtime_set_active(&spi->dev);
1187 pm_runtime_enable(&spi->dev);
1188
1189 /* handle case that modem is already signaling SRDY */
1190 /* no outgoing tty open at this point, this just satisfies the
1191 * modem's read and should reset communication properly
1192 */
1193 srdy = gpio_get_value(ifx_dev->gpio.srdy);
1194
1195 if (srdy) {
1196 mrdy_assert(ifx_dev);
1197 ifx_spi_handle_srdy(ifx_dev);
1198 } else
1199 mrdy_set_low(ifx_dev);
1200 return 0;
1201
1202error_ret7:
1203 free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), ifx_dev);
1204error_ret6:
1205 gpio_free(ifx_dev->gpio.srdy);
1206error_ret5:
1207 gpio_free(ifx_dev->gpio.mrdy);
1208error_ret4:
1209 gpio_free(ifx_dev->gpio.reset);
1210error_ret3:
1211 gpio_free(ifx_dev->gpio.po);
1212error_ret2:
1213 gpio_free(ifx_dev->gpio.reset_out);
1214error_ret:
1215 ifx_spi_free_device(ifx_dev);
1216 saved_ifx_dev = NULL;
1217 return ret;
1218}
1219
1220/**
1221 * ifx_spi_spi_remove - SPI device was removed
1222 * @spi: SPI device
1223 *
1224 * FIXME: We should be shutting the device down here not in
1225 * the module unload path.
1226 */
1227
1228static int ifx_spi_spi_remove(struct spi_device *spi)
1229{
1230 struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1231 /* stop activity */
1232 tasklet_kill(&ifx_dev->io_work_tasklet);
1233 /* free irq */
1234 free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), ifx_dev);
1235 free_irq(gpio_to_irq(ifx_dev->gpio.srdy), ifx_dev);
1236
1237 gpio_free(ifx_dev->gpio.srdy);
1238 gpio_free(ifx_dev->gpio.mrdy);
1239 gpio_free(ifx_dev->gpio.reset);
1240 gpio_free(ifx_dev->gpio.po);
1241 gpio_free(ifx_dev->gpio.reset_out);
1242
1243 /* free allocations */
1244 ifx_spi_free_device(ifx_dev);
1245
1246 saved_ifx_dev = NULL;
1247 return 0;
1248}
1249
1250/**
1251 * ifx_spi_spi_shutdown - called on SPI shutdown
1252 * @spi: SPI device
1253 *
1254 * No action needs to be taken here
1255 */
1256
1257static void ifx_spi_spi_shutdown(struct spi_device *spi)
1258{
1259 struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1260
1261 ifx_modem_power_off(ifx_dev);
1262}
1263
1264/*
1265 * various suspends and resumes have nothing to do
1266 * no hardware to save state for
1267 */
1268
1269/**
1270 * ifx_spi_pm_suspend - suspend modem on system suspend
1271 * @dev: device being suspended
1272 *
1273 * Suspend the modem. No action needed on Intel MID platforms, may
1274 * need extending for other systems.
1275 */
1276static int ifx_spi_pm_suspend(struct device *dev)
1277{
1278 return 0;
1279}
1280
1281/**
1282 * ifx_spi_pm_resume - resume modem on system resume
1283 * @dev: device being suspended
1284 *
1285 * Allow the modem to resume. No action needed.
1286 *
1287 * FIXME: do we need to reset anything here ?
1288 */
1289static int ifx_spi_pm_resume(struct device *dev)
1290{
1291 return 0;
1292}
1293
1294/**
1295 * ifx_spi_pm_runtime_resume - suspend modem
1296 * @dev: device being suspended
1297 *
1298 * Allow the modem to resume. No action needed.
1299 */
1300static int ifx_spi_pm_runtime_resume(struct device *dev)
1301{
1302 return 0;
1303}
1304
1305/**
1306 * ifx_spi_pm_runtime_suspend - suspend modem
1307 * @dev: device being suspended
1308 *
1309 * Allow the modem to suspend and thus suspend to continue up the
1310 * device tree.
1311 */
1312static int ifx_spi_pm_runtime_suspend(struct device *dev)
1313{
1314 return 0;
1315}
1316
1317/**
1318 * ifx_spi_pm_runtime_idle - check if modem idle
1319 * @dev: our device
1320 *
1321 * Check conditions and queue runtime suspend if idle.
1322 */
1323static int ifx_spi_pm_runtime_idle(struct device *dev)
1324{
1325 struct spi_device *spi = to_spi_device(dev);
1326 struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1327
1328 if (!ifx_dev->power_status)
1329 pm_runtime_suspend(dev);
1330
1331 return 0;
1332}
1333
1334static const struct dev_pm_ops ifx_spi_pm = {
1335 .resume = ifx_spi_pm_resume,
1336 .suspend = ifx_spi_pm_suspend,
1337 .runtime_resume = ifx_spi_pm_runtime_resume,
1338 .runtime_suspend = ifx_spi_pm_runtime_suspend,
1339 .runtime_idle = ifx_spi_pm_runtime_idle
1340};
1341
1342static const struct spi_device_id ifx_id_table[] = {
1343 {"ifx6160", 0},
1344 {"ifx6260", 0},
1345 { }
1346};
1347MODULE_DEVICE_TABLE(spi, ifx_id_table);
1348
1349/* spi operations */
1350static struct spi_driver ifx_spi_driver = {
1351 .driver = {
1352 .name = DRVNAME,
1353 .pm = &ifx_spi_pm,
1354 },
1355 .probe = ifx_spi_spi_probe,
1356 .shutdown = ifx_spi_spi_shutdown,
1357 .remove = ifx_spi_spi_remove,
1358 .id_table = ifx_id_table
1359};
1360
1361/**
1362 * ifx_spi_exit - module exit
1363 *
1364 * Unload the module.
1365 */
1366
1367static void __exit ifx_spi_exit(void)
1368{
1369 /* unregister */
1370 spi_unregister_driver(&ifx_spi_driver);
1371 tty_unregister_driver(tty_drv);
1372 put_tty_driver(tty_drv);
1373 unregister_reboot_notifier(&ifx_modem_reboot_notifier_block);
1374}
1375
1376/**
1377 * ifx_spi_init - module entry point
1378 *
1379 * Initialise the SPI and tty interfaces for the IFX SPI driver
1380 * We need to initialize upper-edge spi driver after the tty
1381 * driver because otherwise the spi probe will race
1382 */
1383
1384static int __init ifx_spi_init(void)
1385{
1386 int result;
1387
1388 tty_drv = alloc_tty_driver(1);
1389 if (!tty_drv) {
1390 pr_err("%s: alloc_tty_driver failed", DRVNAME);
1391 return -ENOMEM;
1392 }
1393
1394 tty_drv->driver_name = DRVNAME;
1395 tty_drv->name = TTYNAME;
1396 tty_drv->minor_start = IFX_SPI_TTY_ID;
1397 tty_drv->type = TTY_DRIVER_TYPE_SERIAL;
1398 tty_drv->subtype = SERIAL_TYPE_NORMAL;
1399 tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1400 tty_drv->init_termios = tty_std_termios;
1401
1402 tty_set_operations(tty_drv, &ifx_spi_serial_ops);
1403
1404 result = tty_register_driver(tty_drv);
1405 if (result) {
1406 pr_err("%s: tty_register_driver failed(%d)",
1407 DRVNAME, result);
1408 goto err_free_tty;
1409 }
1410
1411 result = spi_register_driver(&ifx_spi_driver);
1412 if (result) {
1413 pr_err("%s: spi_register_driver failed(%d)",
1414 DRVNAME, result);
1415 goto err_unreg_tty;
1416 }
1417
1418 result = register_reboot_notifier(&ifx_modem_reboot_notifier_block);
1419 if (result) {
1420 pr_err("%s: register ifx modem reboot notifier failed(%d)",
1421 DRVNAME, result);
1422 goto err_unreg_spi;
1423 }
1424
1425 return 0;
1426err_unreg_spi:
1427 spi_unregister_driver(&ifx_spi_driver);
1428err_unreg_tty:
1429 tty_unregister_driver(tty_drv);
1430err_free_tty:
1431 put_tty_driver(tty_drv);
1432
1433 return result;
1434}
1435
1436module_init(ifx_spi_init);
1437module_exit(ifx_spi_exit);
1438
1439MODULE_AUTHOR("Intel");
1440MODULE_DESCRIPTION("IFX6x60 spi driver");
1441MODULE_LICENSE("GPL");
1442MODULE_INFO(Version, "0.1-IFX6x60");
1/****************************************************************************
2 *
3 * Driver for the IFX 6x60 spi modem.
4 *
5 * Copyright (C) 2008 Option International
6 * Copyright (C) 2008 Filip Aben <f.aben@option.com>
7 * Denis Joseph Barrow <d.barow@option.com>
8 * Jan Dumon <j.dumon@option.com>
9 *
10 * Copyright (C) 2009, 2010 Intel Corp
11 * Russ Gorby <russ.gorby@intel.com>
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
25 * USA
26 *
27 * Driver modified by Intel from Option gtm501l_spi.c
28 *
29 * Notes
30 * o The driver currently assumes a single device only. If you need to
31 * change this then look for saved_ifx_dev and add a device lookup
32 * o The driver is intended to be big-endian safe but has never been
33 * tested that way (no suitable hardware). There are a couple of FIXME
34 * notes by areas that may need addressing
35 * o Some of the GPIO naming/setup assumptions may need revisiting if
36 * you need to use this driver for another platform.
37 *
38 *****************************************************************************/
39#include <linux/dma-mapping.h>
40#include <linux/module.h>
41#include <linux/termios.h>
42#include <linux/tty.h>
43#include <linux/device.h>
44#include <linux/spi/spi.h>
45#include <linux/kfifo.h>
46#include <linux/tty_flip.h>
47#include <linux/timer.h>
48#include <linux/serial.h>
49#include <linux/interrupt.h>
50#include <linux/irq.h>
51#include <linux/rfkill.h>
52#include <linux/fs.h>
53#include <linux/ip.h>
54#include <linux/dmapool.h>
55#include <linux/gpio.h>
56#include <linux/sched.h>
57#include <linux/time.h>
58#include <linux/wait.h>
59#include <linux/pm.h>
60#include <linux/pm_runtime.h>
61#include <linux/spi/ifx_modem.h>
62#include <linux/delay.h>
63
64#include "ifx6x60.h"
65
66#define IFX_SPI_MORE_MASK 0x10
67#define IFX_SPI_MORE_BIT 12 /* bit position in u16 */
68#define IFX_SPI_CTS_BIT 13 /* bit position in u16 */
69#define IFX_SPI_MODE SPI_MODE_1
70#define IFX_SPI_TTY_ID 0
71#define IFX_SPI_TIMEOUT_SEC 2
72#define IFX_SPI_HEADER_0 (-1)
73#define IFX_SPI_HEADER_F (-2)
74
75/* forward reference */
76static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev);
77
78/* local variables */
79static int spi_bpw = 16; /* 8, 16 or 32 bit word length */
80static struct tty_driver *tty_drv;
81static struct ifx_spi_device *saved_ifx_dev;
82static struct lock_class_key ifx_spi_key;
83
84/* GPIO/GPE settings */
85
86/**
87 * mrdy_set_high - set MRDY GPIO
88 * @ifx: device we are controlling
89 *
90 */
91static inline void mrdy_set_high(struct ifx_spi_device *ifx)
92{
93 gpio_set_value(ifx->gpio.mrdy, 1);
94}
95
96/**
97 * mrdy_set_low - clear MRDY GPIO
98 * @ifx: device we are controlling
99 *
100 */
101static inline void mrdy_set_low(struct ifx_spi_device *ifx)
102{
103 gpio_set_value(ifx->gpio.mrdy, 0);
104}
105
106/**
107 * ifx_spi_power_state_set
108 * @ifx_dev: our SPI device
109 * @val: bits to set
110 *
111 * Set bit in power status and signal power system if status becomes non-0
112 */
113static void
114ifx_spi_power_state_set(struct ifx_spi_device *ifx_dev, unsigned char val)
115{
116 unsigned long flags;
117
118 spin_lock_irqsave(&ifx_dev->power_lock, flags);
119
120 /*
121 * if power status is already non-0, just update, else
122 * tell power system
123 */
124 if (!ifx_dev->power_status)
125 pm_runtime_get(&ifx_dev->spi_dev->dev);
126 ifx_dev->power_status |= val;
127
128 spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
129}
130
131/**
132 * ifx_spi_power_state_clear - clear power bit
133 * @ifx_dev: our SPI device
134 * @val: bits to clear
135 *
136 * clear bit in power status and signal power system if status becomes 0
137 */
138static void
139ifx_spi_power_state_clear(struct ifx_spi_device *ifx_dev, unsigned char val)
140{
141 unsigned long flags;
142
143 spin_lock_irqsave(&ifx_dev->power_lock, flags);
144
145 if (ifx_dev->power_status) {
146 ifx_dev->power_status &= ~val;
147 if (!ifx_dev->power_status)
148 pm_runtime_put(&ifx_dev->spi_dev->dev);
149 }
150
151 spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
152}
153
154/**
155 * swap_buf
156 * @buf: our buffer
157 * @len : number of bytes (not words) in the buffer
158 * @end: end of buffer
159 *
160 * Swap the contents of a buffer into big endian format
161 */
162static inline void swap_buf(u16 *buf, int len, void *end)
163{
164 int n;
165
166 len = ((len + 1) >> 1);
167 if ((void *)&buf[len] > end) {
168 pr_err("swap_buf: swap exceeds boundary (%p > %p)!",
169 &buf[len], end);
170 return;
171 }
172 for (n = 0; n < len; n++) {
173 *buf = cpu_to_be16(*buf);
174 buf++;
175 }
176}
177
178/**
179 * mrdy_assert - assert MRDY line
180 * @ifx_dev: our SPI device
181 *
182 * Assert mrdy and set timer to wait for SRDY interrupt, if SRDY is low
183 * now.
184 *
185 * FIXME: Can SRDY even go high as we are running this code ?
186 */
187static void mrdy_assert(struct ifx_spi_device *ifx_dev)
188{
189 int val = gpio_get_value(ifx_dev->gpio.srdy);
190 if (!val) {
191 if (!test_and_set_bit(IFX_SPI_STATE_TIMER_PENDING,
192 &ifx_dev->flags)) {
193 ifx_dev->spi_timer.expires =
194 jiffies + IFX_SPI_TIMEOUT_SEC*HZ;
195 add_timer(&ifx_dev->spi_timer);
196
197 }
198 }
199 ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_DATA_PENDING);
200 mrdy_set_high(ifx_dev);
201}
202
203/**
204 * ifx_spi_hangup - hang up an IFX device
205 * @ifx_dev: our SPI device
206 *
207 * Hang up the tty attached to the IFX device if one is currently
208 * open. If not take no action
209 */
210static void ifx_spi_ttyhangup(struct ifx_spi_device *ifx_dev)
211{
212 struct tty_port *pport = &ifx_dev->tty_port;
213 struct tty_struct *tty = tty_port_tty_get(pport);
214 if (tty) {
215 tty_hangup(tty);
216 tty_kref_put(tty);
217 }
218}
219
220/**
221 * ifx_spi_timeout - SPI timeout
222 * @arg: our SPI device
223 *
224 * The SPI has timed out: hang up the tty. Users will then see a hangup
225 * and error events.
226 */
227static void ifx_spi_timeout(unsigned long arg)
228{
229 struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *)arg;
230
231 dev_warn(&ifx_dev->spi_dev->dev, "*** SPI Timeout ***");
232 ifx_spi_ttyhangup(ifx_dev);
233 mrdy_set_low(ifx_dev);
234 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
235}
236
237/* char/tty operations */
238
239/**
240 * ifx_spi_tiocmget - get modem lines
241 * @tty: our tty device
242 * @filp: file handle issuing the request
243 *
244 * Map the signal state into Linux modem flags and report the value
245 * in Linux terms
246 */
247static int ifx_spi_tiocmget(struct tty_struct *tty)
248{
249 unsigned int value;
250 struct ifx_spi_device *ifx_dev = tty->driver_data;
251
252 value =
253 (test_bit(IFX_SPI_RTS, &ifx_dev->signal_state) ? TIOCM_RTS : 0) |
254 (test_bit(IFX_SPI_DTR, &ifx_dev->signal_state) ? TIOCM_DTR : 0) |
255 (test_bit(IFX_SPI_CTS, &ifx_dev->signal_state) ? TIOCM_CTS : 0) |
256 (test_bit(IFX_SPI_DSR, &ifx_dev->signal_state) ? TIOCM_DSR : 0) |
257 (test_bit(IFX_SPI_DCD, &ifx_dev->signal_state) ? TIOCM_CAR : 0) |
258 (test_bit(IFX_SPI_RI, &ifx_dev->signal_state) ? TIOCM_RNG : 0);
259 return value;
260}
261
262/**
263 * ifx_spi_tiocmset - set modem bits
264 * @tty: the tty structure
265 * @set: bits to set
266 * @clear: bits to clear
267 *
268 * The IFX6x60 only supports DTR and RTS. Set them accordingly
269 * and flag that an update to the modem is needed.
270 *
271 * FIXME: do we need to kick the tranfers when we do this ?
272 */
273static int ifx_spi_tiocmset(struct tty_struct *tty,
274 unsigned int set, unsigned int clear)
275{
276 struct ifx_spi_device *ifx_dev = tty->driver_data;
277
278 if (set & TIOCM_RTS)
279 set_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
280 if (set & TIOCM_DTR)
281 set_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
282 if (clear & TIOCM_RTS)
283 clear_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
284 if (clear & TIOCM_DTR)
285 clear_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
286
287 set_bit(IFX_SPI_UPDATE, &ifx_dev->signal_state);
288 return 0;
289}
290
291/**
292 * ifx_spi_open - called on tty open
293 * @tty: our tty device
294 * @filp: file handle being associated with the tty
295 *
296 * Open the tty interface. We let the tty_port layer do all the work
297 * for us.
298 *
299 * FIXME: Remove single device assumption and saved_ifx_dev
300 */
301static int ifx_spi_open(struct tty_struct *tty, struct file *filp)
302{
303 return tty_port_open(&saved_ifx_dev->tty_port, tty, filp);
304}
305
306/**
307 * ifx_spi_close - called when our tty closes
308 * @tty: the tty being closed
309 * @filp: the file handle being closed
310 *
311 * Perform the close of the tty. We use the tty_port layer to do all
312 * our hard work.
313 */
314static void ifx_spi_close(struct tty_struct *tty, struct file *filp)
315{
316 struct ifx_spi_device *ifx_dev = tty->driver_data;
317 tty_port_close(&ifx_dev->tty_port, tty, filp);
318 /* FIXME: should we do an ifx_spi_reset here ? */
319}
320
321/**
322 * ifx_decode_spi_header - decode received header
323 * @buffer: the received data
324 * @length: decoded length
325 * @more: decoded more flag
326 * @received_cts: status of cts we received
327 *
328 * Note how received_cts is handled -- if header is all F it is left
329 * the same as it was, if header is all 0 it is set to 0 otherwise it is
330 * taken from the incoming header.
331 *
332 * FIXME: endianness
333 */
334static int ifx_spi_decode_spi_header(unsigned char *buffer, int *length,
335 unsigned char *more, unsigned char *received_cts)
336{
337 u16 h1;
338 u16 h2;
339 u16 *in_buffer = (u16 *)buffer;
340
341 h1 = *in_buffer;
342 h2 = *(in_buffer+1);
343
344 if (h1 == 0 && h2 == 0) {
345 *received_cts = 0;
346 return IFX_SPI_HEADER_0;
347 } else if (h1 == 0xffff && h2 == 0xffff) {
348 /* spi_slave_cts remains as it was */
349 return IFX_SPI_HEADER_F;
350 }
351
352 *length = h1 & 0xfff; /* upper bits of byte are flags */
353 *more = (buffer[1] >> IFX_SPI_MORE_BIT) & 1;
354 *received_cts = (buffer[3] >> IFX_SPI_CTS_BIT) & 1;
355 return 0;
356}
357
358/**
359 * ifx_setup_spi_header - set header fields
360 * @txbuffer: pointer to start of SPI buffer
361 * @tx_count: bytes
362 * @more: indicate if more to follow
363 *
364 * Format up an SPI header for a transfer
365 *
366 * FIXME: endianness?
367 */
368static void ifx_spi_setup_spi_header(unsigned char *txbuffer, int tx_count,
369 unsigned char more)
370{
371 *(u16 *)(txbuffer) = tx_count;
372 *(u16 *)(txbuffer+2) = IFX_SPI_PAYLOAD_SIZE;
373 txbuffer[1] |= (more << IFX_SPI_MORE_BIT) & IFX_SPI_MORE_MASK;
374}
375
376/**
377 * ifx_spi_wakeup_serial - SPI space made
378 * @port_data: our SPI device
379 *
380 * We have emptied the FIFO enough that we want to get more data
381 * queued into it. Poke the line discipline via tty_wakeup so that
382 * it will feed us more bits
383 */
384static void ifx_spi_wakeup_serial(struct ifx_spi_device *ifx_dev)
385{
386 struct tty_struct *tty;
387
388 tty = tty_port_tty_get(&ifx_dev->tty_port);
389 if (!tty)
390 return;
391 tty_wakeup(tty);
392 tty_kref_put(tty);
393}
394
395/**
396 * ifx_spi_prepare_tx_buffer - prepare transmit frame
397 * @ifx_dev: our SPI device
398 *
399 * The transmit buffr needs a header and various other bits of
400 * information followed by as much data as we can pull from the FIFO
401 * and transfer. This function formats up a suitable buffer in the
402 * ifx_dev->tx_buffer
403 *
404 * FIXME: performance - should we wake the tty when the queue is half
405 * empty ?
406 */
407static int ifx_spi_prepare_tx_buffer(struct ifx_spi_device *ifx_dev)
408{
409 int temp_count;
410 int queue_length;
411 int tx_count;
412 unsigned char *tx_buffer;
413
414 tx_buffer = ifx_dev->tx_buffer;
415 memset(tx_buffer, 0, IFX_SPI_TRANSFER_SIZE);
416
417 /* make room for required SPI header */
418 tx_buffer += IFX_SPI_HEADER_OVERHEAD;
419 tx_count = IFX_SPI_HEADER_OVERHEAD;
420
421 /* clear to signal no more data if this turns out to be the
422 * last buffer sent in a sequence */
423 ifx_dev->spi_more = 0;
424
425 /* if modem cts is set, just send empty buffer */
426 if (!ifx_dev->spi_slave_cts) {
427 /* see if there's tx data */
428 queue_length = kfifo_len(&ifx_dev->tx_fifo);
429 if (queue_length != 0) {
430 /* data to mux -- see if there's room for it */
431 temp_count = min(queue_length, IFX_SPI_PAYLOAD_SIZE);
432 temp_count = kfifo_out_locked(&ifx_dev->tx_fifo,
433 tx_buffer, temp_count,
434 &ifx_dev->fifo_lock);
435
436 /* update buffer pointer and data count in message */
437 tx_buffer += temp_count;
438 tx_count += temp_count;
439 if (temp_count == queue_length)
440 /* poke port to get more data */
441 ifx_spi_wakeup_serial(ifx_dev);
442 else /* more data in port, use next SPI message */
443 ifx_dev->spi_more = 1;
444 }
445 }
446 /* have data and info for header -- set up SPI header in buffer */
447 /* spi header needs payload size, not entire buffer size */
448 ifx_spi_setup_spi_header(ifx_dev->tx_buffer,
449 tx_count-IFX_SPI_HEADER_OVERHEAD,
450 ifx_dev->spi_more);
451 /* swap actual data in the buffer */
452 swap_buf((u16 *)(ifx_dev->tx_buffer), tx_count,
453 &ifx_dev->tx_buffer[IFX_SPI_TRANSFER_SIZE]);
454 return tx_count;
455}
456
457/**
458 * ifx_spi_write - line discipline write
459 * @tty: our tty device
460 * @buf: pointer to buffer to write (kernel space)
461 * @count: size of buffer
462 *
463 * Write the characters we have been given into the FIFO. If the device
464 * is not active then activate it, when the SRDY line is asserted back
465 * this will commence I/O
466 */
467static int ifx_spi_write(struct tty_struct *tty, const unsigned char *buf,
468 int count)
469{
470 struct ifx_spi_device *ifx_dev = tty->driver_data;
471 unsigned char *tmp_buf = (unsigned char *)buf;
472 int tx_count = kfifo_in_locked(&ifx_dev->tx_fifo, tmp_buf, count,
473 &ifx_dev->fifo_lock);
474 mrdy_assert(ifx_dev);
475 return tx_count;
476}
477
478/**
479 * ifx_spi_chars_in_buffer - line discipline helper
480 * @tty: our tty device
481 *
482 * Report how much data we can accept before we drop bytes. As we use
483 * a simple FIFO this is nice and easy.
484 */
485static int ifx_spi_write_room(struct tty_struct *tty)
486{
487 struct ifx_spi_device *ifx_dev = tty->driver_data;
488 return IFX_SPI_FIFO_SIZE - kfifo_len(&ifx_dev->tx_fifo);
489}
490
491/**
492 * ifx_spi_chars_in_buffer - line discipline helper
493 * @tty: our tty device
494 *
495 * Report how many characters we have buffered. In our case this is the
496 * number of bytes sitting in our transmit FIFO.
497 */
498static int ifx_spi_chars_in_buffer(struct tty_struct *tty)
499{
500 struct ifx_spi_device *ifx_dev = tty->driver_data;
501 return kfifo_len(&ifx_dev->tx_fifo);
502}
503
504/**
505 * ifx_port_hangup
506 * @port: our tty port
507 *
508 * tty port hang up. Called when tty_hangup processing is invoked either
509 * by loss of carrier, or by software (eg vhangup). Serialized against
510 * activate/shutdown by the tty layer.
511 */
512static void ifx_spi_hangup(struct tty_struct *tty)
513{
514 struct ifx_spi_device *ifx_dev = tty->driver_data;
515 tty_port_hangup(&ifx_dev->tty_port);
516}
517
518/**
519 * ifx_port_activate
520 * @port: our tty port
521 *
522 * tty port activate method - called for first open. Serialized
523 * with hangup and shutdown by the tty layer.
524 */
525static int ifx_port_activate(struct tty_port *port, struct tty_struct *tty)
526{
527 struct ifx_spi_device *ifx_dev =
528 container_of(port, struct ifx_spi_device, tty_port);
529
530 /* clear any old data; can't do this in 'close' */
531 kfifo_reset(&ifx_dev->tx_fifo);
532
533 /* put port data into this tty */
534 tty->driver_data = ifx_dev;
535
536 /* allows flip string push from int context */
537 tty->low_latency = 1;
538
539 return 0;
540}
541
542/**
543 * ifx_port_shutdown
544 * @port: our tty port
545 *
546 * tty port shutdown method - called for last port close. Serialized
547 * with hangup and activate by the tty layer.
548 */
549static void ifx_port_shutdown(struct tty_port *port)
550{
551 struct ifx_spi_device *ifx_dev =
552 container_of(port, struct ifx_spi_device, tty_port);
553
554 mrdy_set_low(ifx_dev);
555 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
556 tasklet_kill(&ifx_dev->io_work_tasklet);
557}
558
559static const struct tty_port_operations ifx_tty_port_ops = {
560 .activate = ifx_port_activate,
561 .shutdown = ifx_port_shutdown,
562};
563
564static const struct tty_operations ifx_spi_serial_ops = {
565 .open = ifx_spi_open,
566 .close = ifx_spi_close,
567 .write = ifx_spi_write,
568 .hangup = ifx_spi_hangup,
569 .write_room = ifx_spi_write_room,
570 .chars_in_buffer = ifx_spi_chars_in_buffer,
571 .tiocmget = ifx_spi_tiocmget,
572 .tiocmset = ifx_spi_tiocmset,
573};
574
575/**
576 * ifx_spi_insert_fip_string - queue received data
577 * @ifx_ser: our SPI device
578 * @chars: buffer we have received
579 * @size: number of chars reeived
580 *
581 * Queue bytes to the tty assuming the tty side is currently open. If
582 * not the discard the data.
583 */
584static void ifx_spi_insert_flip_string(struct ifx_spi_device *ifx_dev,
585 unsigned char *chars, size_t size)
586{
587 struct tty_struct *tty = tty_port_tty_get(&ifx_dev->tty_port);
588 if (!tty)
589 return;
590 tty_insert_flip_string(tty, chars, size);
591 tty_flip_buffer_push(tty);
592 tty_kref_put(tty);
593}
594
595/**
596 * ifx_spi_complete - SPI transfer completed
597 * @ctx: our SPI device
598 *
599 * An SPI transfer has completed. Process any received data and kick off
600 * any further transmits we can commence.
601 */
602static void ifx_spi_complete(void *ctx)
603{
604 struct ifx_spi_device *ifx_dev = ctx;
605 struct tty_struct *tty;
606 struct tty_ldisc *ldisc = NULL;
607 int length;
608 int actual_length;
609 unsigned char more;
610 unsigned char cts;
611 int local_write_pending = 0;
612 int queue_length;
613 int srdy;
614 int decode_result;
615
616 mrdy_set_low(ifx_dev);
617
618 if (!ifx_dev->spi_msg.status) {
619 /* check header validity, get comm flags */
620 swap_buf((u16 *)ifx_dev->rx_buffer, IFX_SPI_HEADER_OVERHEAD,
621 &ifx_dev->rx_buffer[IFX_SPI_HEADER_OVERHEAD]);
622 decode_result = ifx_spi_decode_spi_header(ifx_dev->rx_buffer,
623 &length, &more, &cts);
624 if (decode_result == IFX_SPI_HEADER_0) {
625 dev_dbg(&ifx_dev->spi_dev->dev,
626 "ignore input: invalid header 0");
627 ifx_dev->spi_slave_cts = 0;
628 goto complete_exit;
629 } else if (decode_result == IFX_SPI_HEADER_F) {
630 dev_dbg(&ifx_dev->spi_dev->dev,
631 "ignore input: invalid header F");
632 goto complete_exit;
633 }
634
635 ifx_dev->spi_slave_cts = cts;
636
637 actual_length = min((unsigned int)length,
638 ifx_dev->spi_msg.actual_length);
639 swap_buf((u16 *)(ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD),
640 actual_length,
641 &ifx_dev->rx_buffer[IFX_SPI_TRANSFER_SIZE]);
642 ifx_spi_insert_flip_string(
643 ifx_dev,
644 ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD,
645 (size_t)actual_length);
646 } else {
647 dev_dbg(&ifx_dev->spi_dev->dev, "SPI transfer error %d",
648 ifx_dev->spi_msg.status);
649 }
650
651complete_exit:
652 if (ifx_dev->write_pending) {
653 ifx_dev->write_pending = 0;
654 local_write_pending = 1;
655 }
656
657 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &(ifx_dev->flags));
658
659 queue_length = kfifo_len(&ifx_dev->tx_fifo);
660 srdy = gpio_get_value(ifx_dev->gpio.srdy);
661 if (!srdy)
662 ifx_spi_power_state_clear(ifx_dev, IFX_SPI_POWER_SRDY);
663
664 /* schedule output if there is more to do */
665 if (test_and_clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags))
666 tasklet_schedule(&ifx_dev->io_work_tasklet);
667 else {
668 if (more || ifx_dev->spi_more || queue_length > 0 ||
669 local_write_pending) {
670 if (ifx_dev->spi_slave_cts) {
671 if (more)
672 mrdy_assert(ifx_dev);
673 } else
674 mrdy_assert(ifx_dev);
675 } else {
676 /*
677 * poke line discipline driver if any for more data
678 * may or may not get more data to write
679 * for now, say not busy
680 */
681 ifx_spi_power_state_clear(ifx_dev,
682 IFX_SPI_POWER_DATA_PENDING);
683 tty = tty_port_tty_get(&ifx_dev->tty_port);
684 if (tty) {
685 ldisc = tty_ldisc_ref(tty);
686 if (ldisc) {
687 ldisc->ops->write_wakeup(tty);
688 tty_ldisc_deref(ldisc);
689 }
690 tty_kref_put(tty);
691 }
692 }
693 }
694}
695
696/**
697 * ifx_spio_io - I/O tasklet
698 * @data: our SPI device
699 *
700 * Queue data for transmission if possible and then kick off the
701 * transfer.
702 */
703static void ifx_spi_io(unsigned long data)
704{
705 int retval;
706 struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *) data;
707
708 if (!test_and_set_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags)) {
709 if (ifx_dev->gpio.unack_srdy_int_nb > 0)
710 ifx_dev->gpio.unack_srdy_int_nb--;
711
712 ifx_spi_prepare_tx_buffer(ifx_dev);
713
714 spi_message_init(&ifx_dev->spi_msg);
715 INIT_LIST_HEAD(&ifx_dev->spi_msg.queue);
716
717 ifx_dev->spi_msg.context = ifx_dev;
718 ifx_dev->spi_msg.complete = ifx_spi_complete;
719
720 /* set up our spi transfer */
721 /* note len is BYTES, not transfers */
722 ifx_dev->spi_xfer.len = IFX_SPI_TRANSFER_SIZE;
723 ifx_dev->spi_xfer.cs_change = 0;
724 ifx_dev->spi_xfer.speed_hz = ifx_dev->spi_dev->max_speed_hz;
725 /* ifx_dev->spi_xfer.speed_hz = 390625; */
726 ifx_dev->spi_xfer.bits_per_word = spi_bpw;
727
728 ifx_dev->spi_xfer.tx_buf = ifx_dev->tx_buffer;
729 ifx_dev->spi_xfer.rx_buf = ifx_dev->rx_buffer;
730
731 /*
732 * setup dma pointers
733 */
734 if (ifx_dev->use_dma) {
735 ifx_dev->spi_msg.is_dma_mapped = 1;
736 ifx_dev->tx_dma = ifx_dev->tx_bus;
737 ifx_dev->rx_dma = ifx_dev->rx_bus;
738 ifx_dev->spi_xfer.tx_dma = ifx_dev->tx_dma;
739 ifx_dev->spi_xfer.rx_dma = ifx_dev->rx_dma;
740 } else {
741 ifx_dev->spi_msg.is_dma_mapped = 0;
742 ifx_dev->tx_dma = (dma_addr_t)0;
743 ifx_dev->rx_dma = (dma_addr_t)0;
744 ifx_dev->spi_xfer.tx_dma = (dma_addr_t)0;
745 ifx_dev->spi_xfer.rx_dma = (dma_addr_t)0;
746 }
747
748 spi_message_add_tail(&ifx_dev->spi_xfer, &ifx_dev->spi_msg);
749
750 /* Assert MRDY. This may have already been done by the write
751 * routine.
752 */
753 mrdy_assert(ifx_dev);
754
755 retval = spi_async(ifx_dev->spi_dev, &ifx_dev->spi_msg);
756 if (retval) {
757 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS,
758 &ifx_dev->flags);
759 tasklet_schedule(&ifx_dev->io_work_tasklet);
760 return;
761 }
762 } else
763 ifx_dev->write_pending = 1;
764}
765
766/**
767 * ifx_spi_free_port - free up the tty side
768 * @ifx_dev: IFX device going away
769 *
770 * Unregister and free up a port when the device goes away
771 */
772static void ifx_spi_free_port(struct ifx_spi_device *ifx_dev)
773{
774 if (ifx_dev->tty_dev)
775 tty_unregister_device(tty_drv, ifx_dev->minor);
776 kfifo_free(&ifx_dev->tx_fifo);
777}
778
779/**
780 * ifx_spi_create_port - create a new port
781 * @ifx_dev: our spi device
782 *
783 * Allocate and initialise the tty port that goes with this interface
784 * and add it to the tty layer so that it can be opened.
785 */
786static int ifx_spi_create_port(struct ifx_spi_device *ifx_dev)
787{
788 int ret = 0;
789 struct tty_port *pport = &ifx_dev->tty_port;
790
791 spin_lock_init(&ifx_dev->fifo_lock);
792 lockdep_set_class_and_subclass(&ifx_dev->fifo_lock,
793 &ifx_spi_key, 0);
794
795 if (kfifo_alloc(&ifx_dev->tx_fifo, IFX_SPI_FIFO_SIZE, GFP_KERNEL)) {
796 ret = -ENOMEM;
797 goto error_ret;
798 }
799
800 tty_port_init(pport);
801 pport->ops = &ifx_tty_port_ops;
802 ifx_dev->minor = IFX_SPI_TTY_ID;
803 ifx_dev->tty_dev = tty_register_device(tty_drv, ifx_dev->minor,
804 &ifx_dev->spi_dev->dev);
805 if (IS_ERR(ifx_dev->tty_dev)) {
806 dev_dbg(&ifx_dev->spi_dev->dev,
807 "%s: registering tty device failed", __func__);
808 ret = PTR_ERR(ifx_dev->tty_dev);
809 goto error_ret;
810 }
811 return 0;
812
813error_ret:
814 ifx_spi_free_port(ifx_dev);
815 return ret;
816}
817
818/**
819 * ifx_spi_handle_srdy - handle SRDY
820 * @ifx_dev: device asserting SRDY
821 *
822 * Check our device state and see what we need to kick off when SRDY
823 * is asserted. This usually means killing the timer and firing off the
824 * I/O processing.
825 */
826static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev)
827{
828 if (test_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags)) {
829 del_timer_sync(&ifx_dev->spi_timer);
830 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
831 }
832
833 ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_SRDY);
834
835 if (!test_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags))
836 tasklet_schedule(&ifx_dev->io_work_tasklet);
837 else
838 set_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
839}
840
841/**
842 * ifx_spi_srdy_interrupt - SRDY asserted
843 * @irq: our IRQ number
844 * @dev: our ifx device
845 *
846 * The modem asserted SRDY. Handle the srdy event
847 */
848static irqreturn_t ifx_spi_srdy_interrupt(int irq, void *dev)
849{
850 struct ifx_spi_device *ifx_dev = dev;
851 ifx_dev->gpio.unack_srdy_int_nb++;
852 ifx_spi_handle_srdy(ifx_dev);
853 return IRQ_HANDLED;
854}
855
856/**
857 * ifx_spi_reset_interrupt - Modem has changed reset state
858 * @irq: interrupt number
859 * @dev: our device pointer
860 *
861 * The modem has either entered or left reset state. Check the GPIO
862 * line to see which.
863 *
864 * FIXME: review locking on MR_INPROGRESS versus
865 * parallel unsolicited reset/solicited reset
866 */
867static irqreturn_t ifx_spi_reset_interrupt(int irq, void *dev)
868{
869 struct ifx_spi_device *ifx_dev = dev;
870 int val = gpio_get_value(ifx_dev->gpio.reset_out);
871 int solreset = test_bit(MR_START, &ifx_dev->mdm_reset_state);
872
873 if (val == 0) {
874 /* entered reset */
875 set_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
876 if (!solreset) {
877 /* unsolicited reset */
878 ifx_spi_ttyhangup(ifx_dev);
879 }
880 } else {
881 /* exited reset */
882 clear_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
883 if (solreset) {
884 set_bit(MR_COMPLETE, &ifx_dev->mdm_reset_state);
885 wake_up(&ifx_dev->mdm_reset_wait);
886 }
887 }
888 return IRQ_HANDLED;
889}
890
891/**
892 * ifx_spi_free_device - free device
893 * @ifx_dev: device to free
894 *
895 * Free the IFX device
896 */
897static void ifx_spi_free_device(struct ifx_spi_device *ifx_dev)
898{
899 ifx_spi_free_port(ifx_dev);
900 dma_free_coherent(&ifx_dev->spi_dev->dev,
901 IFX_SPI_TRANSFER_SIZE,
902 ifx_dev->tx_buffer,
903 ifx_dev->tx_bus);
904 dma_free_coherent(&ifx_dev->spi_dev->dev,
905 IFX_SPI_TRANSFER_SIZE,
906 ifx_dev->rx_buffer,
907 ifx_dev->rx_bus);
908}
909
910/**
911 * ifx_spi_reset - reset modem
912 * @ifx_dev: modem to reset
913 *
914 * Perform a reset on the modem
915 */
916static int ifx_spi_reset(struct ifx_spi_device *ifx_dev)
917{
918 int ret;
919 /*
920 * set up modem power, reset
921 *
922 * delays are required on some platforms for the modem
923 * to reset properly
924 */
925 set_bit(MR_START, &ifx_dev->mdm_reset_state);
926 gpio_set_value(ifx_dev->gpio.po, 0);
927 gpio_set_value(ifx_dev->gpio.reset, 0);
928 msleep(25);
929 gpio_set_value(ifx_dev->gpio.reset, 1);
930 msleep(1);
931 gpio_set_value(ifx_dev->gpio.po, 1);
932 msleep(1);
933 gpio_set_value(ifx_dev->gpio.po, 0);
934 ret = wait_event_timeout(ifx_dev->mdm_reset_wait,
935 test_bit(MR_COMPLETE,
936 &ifx_dev->mdm_reset_state),
937 IFX_RESET_TIMEOUT);
938 if (!ret)
939 dev_warn(&ifx_dev->spi_dev->dev, "Modem reset timeout: (state:%lx)",
940 ifx_dev->mdm_reset_state);
941
942 ifx_dev->mdm_reset_state = 0;
943 return ret;
944}
945
946/**
947 * ifx_spi_spi_probe - probe callback
948 * @spi: our possible matching SPI device
949 *
950 * Probe for a 6x60 modem on SPI bus. Perform any needed device and
951 * GPIO setup.
952 *
953 * FIXME:
954 * - Support for multiple devices
955 * - Split out MID specific GPIO handling eventually
956 */
957
958static int ifx_spi_spi_probe(struct spi_device *spi)
959{
960 int ret;
961 int srdy;
962 struct ifx_modem_platform_data *pl_data;
963 struct ifx_spi_device *ifx_dev;
964
965 if (saved_ifx_dev) {
966 dev_dbg(&spi->dev, "ignoring subsequent detection");
967 return -ENODEV;
968 }
969
970 pl_data = (struct ifx_modem_platform_data *)spi->dev.platform_data;
971 if (!pl_data) {
972 dev_err(&spi->dev, "missing platform data!");
973 return -ENODEV;
974 }
975
976 /* initialize structure to hold our device variables */
977 ifx_dev = kzalloc(sizeof(struct ifx_spi_device), GFP_KERNEL);
978 if (!ifx_dev) {
979 dev_err(&spi->dev, "spi device allocation failed");
980 return -ENOMEM;
981 }
982 saved_ifx_dev = ifx_dev;
983 ifx_dev->spi_dev = spi;
984 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
985 spin_lock_init(&ifx_dev->write_lock);
986 spin_lock_init(&ifx_dev->power_lock);
987 ifx_dev->power_status = 0;
988 init_timer(&ifx_dev->spi_timer);
989 ifx_dev->spi_timer.function = ifx_spi_timeout;
990 ifx_dev->spi_timer.data = (unsigned long)ifx_dev;
991 ifx_dev->modem = pl_data->modem_type;
992 ifx_dev->use_dma = pl_data->use_dma;
993 ifx_dev->max_hz = pl_data->max_hz;
994 /* initialize spi mode, etc */
995 spi->max_speed_hz = ifx_dev->max_hz;
996 spi->mode = IFX_SPI_MODE | (SPI_LOOP & spi->mode);
997 spi->bits_per_word = spi_bpw;
998 ret = spi_setup(spi);
999 if (ret) {
1000 dev_err(&spi->dev, "SPI setup wasn't successful %d", ret);
1001 return -ENODEV;
1002 }
1003
1004 /* ensure SPI protocol flags are initialized to enable transfer */
1005 ifx_dev->spi_more = 0;
1006 ifx_dev->spi_slave_cts = 0;
1007
1008 /*initialize transfer and dma buffers */
1009 ifx_dev->tx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1010 IFX_SPI_TRANSFER_SIZE,
1011 &ifx_dev->tx_bus,
1012 GFP_KERNEL);
1013 if (!ifx_dev->tx_buffer) {
1014 dev_err(&spi->dev, "DMA-TX buffer allocation failed");
1015 ret = -ENOMEM;
1016 goto error_ret;
1017 }
1018 ifx_dev->rx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1019 IFX_SPI_TRANSFER_SIZE,
1020 &ifx_dev->rx_bus,
1021 GFP_KERNEL);
1022 if (!ifx_dev->rx_buffer) {
1023 dev_err(&spi->dev, "DMA-RX buffer allocation failed");
1024 ret = -ENOMEM;
1025 goto error_ret;
1026 }
1027
1028 /* initialize waitq for modem reset */
1029 init_waitqueue_head(&ifx_dev->mdm_reset_wait);
1030
1031 spi_set_drvdata(spi, ifx_dev);
1032 tasklet_init(&ifx_dev->io_work_tasklet, ifx_spi_io,
1033 (unsigned long)ifx_dev);
1034
1035 set_bit(IFX_SPI_STATE_PRESENT, &ifx_dev->flags);
1036
1037 /* create our tty port */
1038 ret = ifx_spi_create_port(ifx_dev);
1039 if (ret != 0) {
1040 dev_err(&spi->dev, "create default tty port failed");
1041 goto error_ret;
1042 }
1043
1044 ifx_dev->gpio.reset = pl_data->rst_pmu;
1045 ifx_dev->gpio.po = pl_data->pwr_on;
1046 ifx_dev->gpio.mrdy = pl_data->mrdy;
1047 ifx_dev->gpio.srdy = pl_data->srdy;
1048 ifx_dev->gpio.reset_out = pl_data->rst_out;
1049
1050 dev_info(&spi->dev, "gpios %d, %d, %d, %d, %d",
1051 ifx_dev->gpio.reset, ifx_dev->gpio.po, ifx_dev->gpio.mrdy,
1052 ifx_dev->gpio.srdy, ifx_dev->gpio.reset_out);
1053
1054 /* Configure gpios */
1055 ret = gpio_request(ifx_dev->gpio.reset, "ifxModem");
1056 if (ret < 0) {
1057 dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET)",
1058 ifx_dev->gpio.reset);
1059 goto error_ret;
1060 }
1061 ret += gpio_direction_output(ifx_dev->gpio.reset, 0);
1062 ret += gpio_export(ifx_dev->gpio.reset, 1);
1063 if (ret) {
1064 dev_err(&spi->dev, "Unable to configure GPIO%d (RESET)",
1065 ifx_dev->gpio.reset);
1066 ret = -EBUSY;
1067 goto error_ret2;
1068 }
1069
1070 ret = gpio_request(ifx_dev->gpio.po, "ifxModem");
1071 ret += gpio_direction_output(ifx_dev->gpio.po, 0);
1072 ret += gpio_export(ifx_dev->gpio.po, 1);
1073 if (ret) {
1074 dev_err(&spi->dev, "Unable to configure GPIO%d (ON)",
1075 ifx_dev->gpio.po);
1076 ret = -EBUSY;
1077 goto error_ret3;
1078 }
1079
1080 ret = gpio_request(ifx_dev->gpio.mrdy, "ifxModem");
1081 if (ret < 0) {
1082 dev_err(&spi->dev, "Unable to allocate GPIO%d (MRDY)",
1083 ifx_dev->gpio.mrdy);
1084 goto error_ret3;
1085 }
1086 ret += gpio_export(ifx_dev->gpio.mrdy, 1);
1087 ret += gpio_direction_output(ifx_dev->gpio.mrdy, 0);
1088 if (ret) {
1089 dev_err(&spi->dev, "Unable to configure GPIO%d (MRDY)",
1090 ifx_dev->gpio.mrdy);
1091 ret = -EBUSY;
1092 goto error_ret4;
1093 }
1094
1095 ret = gpio_request(ifx_dev->gpio.srdy, "ifxModem");
1096 if (ret < 0) {
1097 dev_err(&spi->dev, "Unable to allocate GPIO%d (SRDY)",
1098 ifx_dev->gpio.srdy);
1099 ret = -EBUSY;
1100 goto error_ret4;
1101 }
1102 ret += gpio_export(ifx_dev->gpio.srdy, 1);
1103 ret += gpio_direction_input(ifx_dev->gpio.srdy);
1104 if (ret) {
1105 dev_err(&spi->dev, "Unable to configure GPIO%d (SRDY)",
1106 ifx_dev->gpio.srdy);
1107 ret = -EBUSY;
1108 goto error_ret5;
1109 }
1110
1111 ret = gpio_request(ifx_dev->gpio.reset_out, "ifxModem");
1112 if (ret < 0) {
1113 dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET_OUT)",
1114 ifx_dev->gpio.reset_out);
1115 goto error_ret5;
1116 }
1117 ret += gpio_export(ifx_dev->gpio.reset_out, 1);
1118 ret += gpio_direction_input(ifx_dev->gpio.reset_out);
1119 if (ret) {
1120 dev_err(&spi->dev, "Unable to configure GPIO%d (RESET_OUT)",
1121 ifx_dev->gpio.reset_out);
1122 ret = -EBUSY;
1123 goto error_ret6;
1124 }
1125
1126 ret = request_irq(gpio_to_irq(ifx_dev->gpio.reset_out),
1127 ifx_spi_reset_interrupt,
1128 IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, DRVNAME,
1129 (void *)ifx_dev);
1130 if (ret) {
1131 dev_err(&spi->dev, "Unable to get irq %x\n",
1132 gpio_to_irq(ifx_dev->gpio.reset_out));
1133 goto error_ret6;
1134 }
1135
1136 ret = ifx_spi_reset(ifx_dev);
1137
1138 ret = request_irq(gpio_to_irq(ifx_dev->gpio.srdy),
1139 ifx_spi_srdy_interrupt,
1140 IRQF_TRIGGER_RISING, DRVNAME,
1141 (void *)ifx_dev);
1142 if (ret) {
1143 dev_err(&spi->dev, "Unable to get irq %x",
1144 gpio_to_irq(ifx_dev->gpio.srdy));
1145 goto error_ret7;
1146 }
1147
1148 /* set pm runtime power state and register with power system */
1149 pm_runtime_set_active(&spi->dev);
1150 pm_runtime_enable(&spi->dev);
1151
1152 /* handle case that modem is already signaling SRDY */
1153 /* no outgoing tty open at this point, this just satisfies the
1154 * modem's read and should reset communication properly
1155 */
1156 srdy = gpio_get_value(ifx_dev->gpio.srdy);
1157
1158 if (srdy) {
1159 mrdy_assert(ifx_dev);
1160 ifx_spi_handle_srdy(ifx_dev);
1161 } else
1162 mrdy_set_low(ifx_dev);
1163 return 0;
1164
1165error_ret7:
1166 free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), (void *)ifx_dev);
1167error_ret6:
1168 gpio_free(ifx_dev->gpio.srdy);
1169error_ret5:
1170 gpio_free(ifx_dev->gpio.mrdy);
1171error_ret4:
1172 gpio_free(ifx_dev->gpio.reset);
1173error_ret3:
1174 gpio_free(ifx_dev->gpio.po);
1175error_ret2:
1176 gpio_free(ifx_dev->gpio.reset_out);
1177error_ret:
1178 ifx_spi_free_device(ifx_dev);
1179 saved_ifx_dev = NULL;
1180 return ret;
1181}
1182
1183/**
1184 * ifx_spi_spi_remove - SPI device was removed
1185 * @spi: SPI device
1186 *
1187 * FIXME: We should be shutting the device down here not in
1188 * the module unload path.
1189 */
1190
1191static int ifx_spi_spi_remove(struct spi_device *spi)
1192{
1193 struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1194 /* stop activity */
1195 tasklet_kill(&ifx_dev->io_work_tasklet);
1196 /* free irq */
1197 free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), (void *)ifx_dev);
1198 free_irq(gpio_to_irq(ifx_dev->gpio.srdy), (void *)ifx_dev);
1199
1200 gpio_free(ifx_dev->gpio.srdy);
1201 gpio_free(ifx_dev->gpio.mrdy);
1202 gpio_free(ifx_dev->gpio.reset);
1203 gpio_free(ifx_dev->gpio.po);
1204 gpio_free(ifx_dev->gpio.reset_out);
1205
1206 /* free allocations */
1207 ifx_spi_free_device(ifx_dev);
1208
1209 saved_ifx_dev = NULL;
1210 return 0;
1211}
1212
1213/**
1214 * ifx_spi_spi_shutdown - called on SPI shutdown
1215 * @spi: SPI device
1216 *
1217 * No action needs to be taken here
1218 */
1219
1220static void ifx_spi_spi_shutdown(struct spi_device *spi)
1221{
1222}
1223
1224/*
1225 * various suspends and resumes have nothing to do
1226 * no hardware to save state for
1227 */
1228
1229/**
1230 * ifx_spi_spi_suspend - suspend SPI on system suspend
1231 * @dev: device being suspended
1232 *
1233 * Suspend the SPI side. No action needed on Intel MID platforms, may
1234 * need extending for other systems.
1235 */
1236static int ifx_spi_spi_suspend(struct spi_device *spi, pm_message_t msg)
1237{
1238 return 0;
1239}
1240
1241/**
1242 * ifx_spi_spi_resume - resume SPI side on system resume
1243 * @dev: device being suspended
1244 *
1245 * Suspend the SPI side. No action needed on Intel MID platforms, may
1246 * need extending for other systems.
1247 */
1248static int ifx_spi_spi_resume(struct spi_device *spi)
1249{
1250 return 0;
1251}
1252
1253/**
1254 * ifx_spi_pm_suspend - suspend modem on system suspend
1255 * @dev: device being suspended
1256 *
1257 * Suspend the modem. No action needed on Intel MID platforms, may
1258 * need extending for other systems.
1259 */
1260static int ifx_spi_pm_suspend(struct device *dev)
1261{
1262 return 0;
1263}
1264
1265/**
1266 * ifx_spi_pm_resume - resume modem on system resume
1267 * @dev: device being suspended
1268 *
1269 * Allow the modem to resume. No action needed.
1270 *
1271 * FIXME: do we need to reset anything here ?
1272 */
1273static int ifx_spi_pm_resume(struct device *dev)
1274{
1275 return 0;
1276}
1277
1278/**
1279 * ifx_spi_pm_runtime_resume - suspend modem
1280 * @dev: device being suspended
1281 *
1282 * Allow the modem to resume. No action needed.
1283 */
1284static int ifx_spi_pm_runtime_resume(struct device *dev)
1285{
1286 return 0;
1287}
1288
1289/**
1290 * ifx_spi_pm_runtime_suspend - suspend modem
1291 * @dev: device being suspended
1292 *
1293 * Allow the modem to suspend and thus suspend to continue up the
1294 * device tree.
1295 */
1296static int ifx_spi_pm_runtime_suspend(struct device *dev)
1297{
1298 return 0;
1299}
1300
1301/**
1302 * ifx_spi_pm_runtime_idle - check if modem idle
1303 * @dev: our device
1304 *
1305 * Check conditions and queue runtime suspend if idle.
1306 */
1307static int ifx_spi_pm_runtime_idle(struct device *dev)
1308{
1309 struct spi_device *spi = to_spi_device(dev);
1310 struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1311
1312 if (!ifx_dev->power_status)
1313 pm_runtime_suspend(dev);
1314
1315 return 0;
1316}
1317
1318static const struct dev_pm_ops ifx_spi_pm = {
1319 .resume = ifx_spi_pm_resume,
1320 .suspend = ifx_spi_pm_suspend,
1321 .runtime_resume = ifx_spi_pm_runtime_resume,
1322 .runtime_suspend = ifx_spi_pm_runtime_suspend,
1323 .runtime_idle = ifx_spi_pm_runtime_idle
1324};
1325
1326static const struct spi_device_id ifx_id_table[] = {
1327 {"ifx6160", 0},
1328 {"ifx6260", 0},
1329 { }
1330};
1331MODULE_DEVICE_TABLE(spi, ifx_id_table);
1332
1333/* spi operations */
1334static const struct spi_driver ifx_spi_driver = {
1335 .driver = {
1336 .name = DRVNAME,
1337 .bus = &spi_bus_type,
1338 .pm = &ifx_spi_pm,
1339 .owner = THIS_MODULE},
1340 .probe = ifx_spi_spi_probe,
1341 .shutdown = ifx_spi_spi_shutdown,
1342 .remove = __devexit_p(ifx_spi_spi_remove),
1343 .suspend = ifx_spi_spi_suspend,
1344 .resume = ifx_spi_spi_resume,
1345 .id_table = ifx_id_table
1346};
1347
1348/**
1349 * ifx_spi_exit - module exit
1350 *
1351 * Unload the module.
1352 */
1353
1354static void __exit ifx_spi_exit(void)
1355{
1356 /* unregister */
1357 tty_unregister_driver(tty_drv);
1358 spi_unregister_driver((void *)&ifx_spi_driver);
1359}
1360
1361/**
1362 * ifx_spi_init - module entry point
1363 *
1364 * Initialise the SPI and tty interfaces for the IFX SPI driver
1365 * We need to initialize upper-edge spi driver after the tty
1366 * driver because otherwise the spi probe will race
1367 */
1368
1369static int __init ifx_spi_init(void)
1370{
1371 int result;
1372
1373 tty_drv = alloc_tty_driver(1);
1374 if (!tty_drv) {
1375 pr_err("%s: alloc_tty_driver failed", DRVNAME);
1376 return -ENOMEM;
1377 }
1378
1379 tty_drv->magic = TTY_DRIVER_MAGIC;
1380 tty_drv->owner = THIS_MODULE;
1381 tty_drv->driver_name = DRVNAME;
1382 tty_drv->name = TTYNAME;
1383 tty_drv->minor_start = IFX_SPI_TTY_ID;
1384 tty_drv->num = 1;
1385 tty_drv->type = TTY_DRIVER_TYPE_SERIAL;
1386 tty_drv->subtype = SERIAL_TYPE_NORMAL;
1387 tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1388 tty_drv->init_termios = tty_std_termios;
1389
1390 tty_set_operations(tty_drv, &ifx_spi_serial_ops);
1391
1392 result = tty_register_driver(tty_drv);
1393 if (result) {
1394 pr_err("%s: tty_register_driver failed(%d)",
1395 DRVNAME, result);
1396 put_tty_driver(tty_drv);
1397 return result;
1398 }
1399
1400 result = spi_register_driver((void *)&ifx_spi_driver);
1401 if (result) {
1402 pr_err("%s: spi_register_driver failed(%d)",
1403 DRVNAME, result);
1404 tty_unregister_driver(tty_drv);
1405 }
1406 return result;
1407}
1408
1409module_init(ifx_spi_init);
1410module_exit(ifx_spi_exit);
1411
1412MODULE_AUTHOR("Intel");
1413MODULE_DESCRIPTION("IFX6x60 spi driver");
1414MODULE_LICENSE("GPL");
1415MODULE_INFO(Version, "0.1-IFX6x60");